hash
stringlengths
64
64
content
stringlengths
0
1.51M
7daf79cb315174437ca84aad9b0a1e0e48fc25ea7aa765ba567f0d3cbb5b5863
# -*- coding: utf-8 -*- import sys from sympy.assumptions import Q from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq from sympy.functions import exp, factorial, factorial2, sin from sympy.logic import And from sympy.series import Limit from sympy.testing.pytest import raises, skip from sympy.parsing.sympy_parser import ( parse_expr, standard_transformations, rationalize, TokenError, split_symbols, implicit_multiplication, convert_equals_signs, convert_xor, function_exponentiation, lambda_notation, auto_symbol, repeated_decimals, implicit_multiplication_application, auto_number, factorial_notation, implicit_application, _transformation, T ) def test_sympy_parser(): x = Symbol('x') inputs = { '2*x': 2 * x, '3.00': Float(3), '22/7': Rational(22, 7), '2+3j': 2 + 3*I, 'exp(x)': exp(x), 'x!': factorial(x), 'x!!': factorial2(x), '(x + 1)! - 1': factorial(x + 1) - 1, '3.[3]': Rational(10, 3), '.0[3]': Rational(1, 30), '3.2[3]': Rational(97, 30), '1.3[12]': Rational(433, 330), '1 + 3.[3]': Rational(13, 3), '1 + .0[3]': Rational(31, 30), '1 + 3.2[3]': Rational(127, 30), '.[0011]': Rational(1, 909), '0.1[00102] + 1': Rational(366697, 333330), '1.[0191]': Rational(10190, 9999), '10!': 3628800, '-(2)': -Integer(2), '[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)], 'Symbol("x").free_symbols': x.free_symbols, "S('S(3).n(n=3)')": 3.00, 'factorint(12, visual=True)': Mul( Pow(2, 2, evaluate=False), Pow(3, 1, evaluate=False), evaluate=False), 'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'), 'Q.even(x)': Q.even(x), } for text, result in inputs.items(): assert parse_expr(text) == result raises(TypeError, lambda: parse_expr('x', standard_transformations)) raises(TypeError, lambda: parse_expr('x', transformations=lambda x,y: 1)) raises(TypeError, lambda: parse_expr('x', transformations=(lambda x,y: 1,))) raises(TypeError, lambda: parse_expr('x', transformations=((),))) raises(TypeError, lambda: parse_expr('x', {}, [], [])) raises(TypeError, lambda: parse_expr('x', [], [], {})) raises(TypeError, lambda: parse_expr('x', [], [], {})) def test_rationalize(): inputs = { '0.123': Rational(123, 1000) } transformations = standard_transformations + (rationalize,) for text, result in inputs.items(): assert parse_expr(text, transformations=transformations) == result def test_factorial_fail(): inputs = ['x!!!', 'x!!!!', '(!)'] for text in inputs: try: parse_expr(text) assert False except TokenError: assert True def test_repeated_fail(): inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]', '0.1[[1]]', '0x1.1[1]'] # All are valid Python, so only raise TypeError for invalid indexing for text in inputs: raises(TypeError, lambda: parse_expr(text)) inputs = ['0.1[', '0.1[1', '0.1[]'] for text in inputs: raises((TokenError, SyntaxError), lambda: parse_expr(text)) def test_repeated_dot_only(): assert parse_expr('.[1]') == Rational(1, 9) assert parse_expr('1 + .[1]') == Rational(10, 9) def test_local_dict(): local_dict = { 'my_function': lambda x: x + 2 } inputs = { 'my_function(2)': Integer(4) } for text, result in inputs.items(): assert parse_expr(text, local_dict=local_dict) == result def test_local_dict_split_implmult(): t = standard_transformations + (split_symbols, implicit_multiplication,) w = Symbol('w', real=True) y = Symbol('y') assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w def test_local_dict_symbol_to_fcn(): x = Symbol('x') d = {'foo': Function('bar')} assert parse_expr('foo(x)', local_dict=d) == d['foo'](x) d = {'foo': Symbol('baz')} raises(TypeError, lambda: parse_expr('foo(x)', local_dict=d)) def test_global_dict(): global_dict = { 'Symbol': Symbol } inputs = { 'Q & S': And(Symbol('Q'), Symbol('S')) } for text, result in inputs.items(): assert parse_expr(text, global_dict=global_dict) == result def test_issue_2515(): raises(TokenError, lambda: parse_expr('(()')) raises(TokenError, lambda: parse_expr('"""')) def test_issue_7663(): x = Symbol('x') e = '2*(x+1)' assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False) assert parse_expr(e, evaluate=0).equals(2*(x+1)) def test_recursive_evaluate_false_10560(): inputs = { '4*-3' : '4*-3', '-4*3' : '(-4)*3', "-2*x*y": '(-2)*x*y', "x*-4*x": "x*(-4)*x" } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_function_evaluate_false(): inputs = [ 'Abs(0)', 'im(0)', 're(0)', 'sign(0)', 'arg(0)', 'conjugate(0)', 'acos(0)', 'acot(0)', 'acsc(0)', 'asec(0)', 'asin(0)', 'atan(0)', 'acosh(0)', 'acoth(0)', 'acsch(0)', 'asech(0)', 'asinh(0)', 'atanh(0)', 'cos(0)', 'cot(0)', 'csc(0)', 'sec(0)', 'sin(0)', 'tan(0)', 'cosh(0)', 'coth(0)', 'csch(0)', 'sech(0)', 'sinh(0)', 'tanh(0)', 'exp(0)', 'log(0)', 'sqrt(0)', ] for case in inputs: expr = parse_expr(case, evaluate=False) assert case == str(expr) != str(expr.doit()) assert str(parse_expr('ln(0)', evaluate=False)) == 'log(0)' assert str(parse_expr('cbrt(0)', evaluate=False)) == '0**(1/3)' def test_issue_10773(): inputs = { '-10/5': '(-10)/5', '-10/-5' : '(-10)/(-5)', } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_split_symbols(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') xy = Symbol('xy') assert parse_expr("xy") == xy assert parse_expr("xy", transformations=transformations) == x*y def test_split_symbols_function(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') a = Symbol('a') f = Function('f') assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1) assert parse_expr("af(x+1)", transformations=transformations, local_dict={'f':f}) == a*f(x+1) def test_functional_exponent(): t = standard_transformations + (convert_xor, function_exponentiation) x = Symbol('x') y = Symbol('y') a = Symbol('a') yfcn = Function('y') assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2 assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x)) assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x)) def test_match_parentheses_implicit_multiplication(): transformations = standard_transformations + \ (implicit_multiplication,) raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations)) def test_convert_equals_signs(): transformations = standard_transformations + \ (convert_equals_signs, ) x = Symbol('x') y = Symbol('y') assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x) assert parse_expr("y = x", transformations=transformations) == Eq(y, x) assert parse_expr("(2*y = x) = False", transformations=transformations) == Eq(Eq(2*y, x), False) def test_parse_function_issue_3539(): x = Symbol('x') f = Function('f') assert parse_expr('f(x)') == f(x) def test_split_symbols_numeric(): transformations = ( standard_transformations + (implicit_multiplication_application,)) n = Symbol('n') expr1 = parse_expr('2**n * 3**n') expr2 = parse_expr('2**n3**n', transformations=transformations) assert expr1 == expr2 == 2**n*3**n expr1 = parse_expr('n12n34', transformations=transformations) assert expr1 == n*12*n*34 def test_unicode_names(): assert parse_expr('α') == Symbol('α') def test_python3_features(): # Make sure the tokenizer can handle Python 3-only features if sys.version_info < (3, 7): skip("test_python3_features requires Python 3.7 or newer") assert parse_expr("123_456") == 123456 assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495) assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333) assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99) assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990) assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000) def test_issue_19501(): x = Symbol('x') eq = parse_expr('E**x(1+x)', local_dict={'x': x}, transformations=( standard_transformations + (implicit_multiplication_application,))) assert eq.free_symbols == {x} def test_parsing_definitions(): from sympy.abc import x assert len(_transformation) == 12 # if this changes, extend below assert _transformation[0] == lambda_notation assert _transformation[1] == auto_symbol assert _transformation[2] == repeated_decimals assert _transformation[3] == auto_number assert _transformation[4] == factorial_notation assert _transformation[5] == implicit_multiplication_application assert _transformation[6] == convert_xor assert _transformation[7] == implicit_application assert _transformation[8] == implicit_multiplication assert _transformation[9] == convert_equals_signs assert _transformation[10] == function_exponentiation assert _transformation[11] == rationalize assert T[:5] == T[0,1,2,3,4] == standard_transformations t = _transformation assert T[-1, 0] == (t[len(t) - 1], t[0]) assert T[:5, 8] == standard_transformations + (t[8],) assert parse_expr('0.3x^2', transformations='all') == 3*x**2/10 assert parse_expr('sin 3x', transformations='implicit') == sin(3*x)
75a7f3e347ba2a9910e3a72b9e83b29b19a7359a2d4cc409da10cfa4cda79018
from sympy.testing.pytest import raises, XFAIL from sympy.external import import_module from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.function import (Derivative, Function) from sympy.core.mul import Mul from sympy.core.numbers import (E, oo) from sympy.core.power import Pow from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import (binomial, factorial) from sympy.functions.elementary.complexes import (Abs, conjugate) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.integers import (ceiling, floor) from sympy.functions.elementary.miscellaneous import (root, sqrt) from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan) from sympy.integrals.integrals import Integral from sympy.series.limits import Limit from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge from sympy.physics.quantum.state import Bra, Ket from sympy.abc import x, y, z, a, b, c, t, k, n antlr4 = import_module("antlr4") # disable tests if antlr4-python*-runtime is not present if not antlr4: disabled = True theta = Symbol('theta') f = Function('f') # shorthand definitions def _Add(a, b): return Add(a, b, evaluate=False) def _Mul(a, b): return Mul(a, b, evaluate=False) def _Pow(a, b): return Pow(a, b, evaluate=False) def _Sqrt(a): return sqrt(a, evaluate=False) def _Conjugate(a): return conjugate(a, evaluate=False) def _Abs(a): return Abs(a, evaluate=False) def _factorial(a): return factorial(a, evaluate=False) def _exp(a): return exp(a, evaluate=False) def _log(a, b): return log(a, b, evaluate=False) def _binomial(n, k): return binomial(n, k, evaluate=False) def test_import(): from sympy.parsing.latex._build_latex_antlr import ( build_parser, check_antlr_version, dir_latex_antlr ) # XXX: It would be better to come up with a test for these... del build_parser, check_antlr_version, dir_latex_antlr # These LaTeX strings should parse to the corresponding SymPy expression GOOD_PAIRS = [ (r"0", 0), (r"1", 1), (r"-3.14", -3.14), (r"(-7.13)(1.5)", _Mul(-7.13, 1.5)), (r"x", x), (r"2x", 2*x), (r"x^2", x**2), (r"x^{3 + 1}", x**_Add(3, 1)), (r"-c", -c), (r"a \cdot b", a * b), (r"a / b", a / b), (r"a \div b", a / b), (r"a + b", a + b), (r"a + b - a", _Add(a+b, -a)), (r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)), (r"(x + y) z", _Mul(_Add(x, y), z)), (r"\left(x + y\right) z", _Mul(_Add(x, y), z)), (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), (r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), (r"\left[x + y\right] z", _Mul(_Add(x, y), z)), (r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)), (r"1+1", _Add(1, 1)), (r"0+1", _Add(0, 1)), (r"1*2", _Mul(1, 2)), (r"0*1", _Mul(0, 1)), (r"x = y", Eq(x, y)), (r"x \neq y", Ne(x, y)), (r"x < y", Lt(x, y)), (r"x > y", Gt(x, y)), (r"x \leq y", Le(x, y)), (r"x \geq y", Ge(x, y)), (r"x \le y", Le(x, y)), (r"x \ge y", Ge(x, y)), (r"\lfloor x \rfloor", floor(x)), (r"\lceil x \rceil", ceiling(x)), (r"\langle x |", Bra('x')), (r"| x \rangle", Ket('x')), (r"\sin \theta", sin(theta)), (r"\sin(\theta)", sin(theta)), (r"\sin^{-1} a", asin(a)), (r"\sin a \cos b", _Mul(sin(a), cos(b))), (r"\sin \cos \theta", sin(cos(theta))), (r"\sin(\cos \theta)", sin(cos(theta))), (r"\frac{a}{b}", a / b), (r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), (r"\frac{7}{3}", _Mul(7, _Pow(3, -1))), (r"(\csc x)(\sec y)", csc(x)*sec(y)), (r"\lim_{x \to 3} a", Limit(a, x, 3)), (r"\lim_{x \rightarrow 3} a", Limit(a, x, 3)), (r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3)), (r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3)), (r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3)), (r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')), (r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')), (r"\infty", oo), (r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)), (r"\frac{d}{dx} x", Derivative(x, x)), (r"\frac{d}{dt} x", Derivative(x, t)), (r"f(x)", f(x)), (r"f(x, y)", f(x, y)), (r"f(x, y, z)", f(x, y, z)), (r"\frac{d f(x)}{dx}", Derivative(f(x), x)), (r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)), (r"x \neq y", Unequality(x, y)), (r"|x|", _Abs(x)), (r"||x||", _Abs(Abs(x))), (r"|x||y|", _Abs(x)*_Abs(y)), (r"||x||y||", _Abs(_Abs(x)*_Abs(y))), (r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)), (r"\int x dx", Integral(x, x)), (r"\int x d\theta", Integral(x, theta)), (r"\int (x^2 - y)dx", Integral(x**2 - y, x)), (r"\int x + a dx", Integral(_Add(x, a), x)), (r"\int da", Integral(1, a)), (r"\int_0^7 dx", Integral(1, (x, 0, 7))), (r"\int_a^b x dx", Integral(x, (x, a, b))), (r"\int^b_a x dx", Integral(x, (x, a, b))), (r"\int_{a}^b x dx", Integral(x, (x, a, b))), (r"\int^{b}_a x dx", Integral(x, (x, a, b))), (r"\int_{a}^{b} x dx", Integral(x, (x, a, b))), (r"\int^{b}_{a} x dx", Integral(x, (x, a, b))), (r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), (r"\int (x+a)", Integral(_Add(x, a), x)), (r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)), (r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)), (r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)), (r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)), (r"\int \frac{1}{a} + \frac{1}{b} dx", Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)), (r"\int \frac{3 \cdot d\theta}{\theta}", Integral(3*_Pow(theta, -1), theta)), (r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)), (r"x_0", Symbol('x_{0}')), (r"x_{1}", Symbol('x_{1}')), (r"x_a", Symbol('x_{a}')), (r"x_{b}", Symbol('x_{b}')), (r"h_\theta", Symbol('h_{theta}')), (r"h_{\theta}", Symbol('h_{theta}')), (r"h_{\theta}(x_0, x_1)", Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))), (r"x!", _factorial(x)), (r"100!", _factorial(100)), (r"\theta!", _factorial(theta)), (r"(x + 1)!", _factorial(_Add(x, 1))), (r"(x!)!", _factorial(_factorial(x))), (r"x!!!", _factorial(_factorial(_factorial(x)))), (r"5!7!", _Mul(_factorial(5), _factorial(7))), (r"\sqrt{x}", sqrt(x)), (r"\sqrt{x + b}", sqrt(_Add(x, b))), (r"\sqrt[3]{\sin x}", root(sin(x), 3)), (r"\sqrt[y]{\sin x}", root(sin(x), y)), (r"\sqrt[\theta]{\sin x}", root(sin(x), theta)), (r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))), (r"\overline{z}", _Conjugate(z)), (r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))), (r"\overline{x + y}", _Conjugate(_Add(x, y))), (r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)), (r"x < y", StrictLessThan(x, y)), (r"x \leq y", LessThan(x, y)), (r"x > y", StrictGreaterThan(x, y)), (r"x \geq y", GreaterThan(x, y)), (r"\mathit{x}", Symbol('x')), (r"\mathit{test}", Symbol('test')), (r"\mathit{TEST}", Symbol('TEST')), (r"\mathit{HELLO world}", Symbol('HELLO world')), (r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), (r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), (r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), (r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), (r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))), (r"\sum_{n = 0}^{\infty} \frac{1}{n!}", Sum(_Pow(_factorial(n), -1), (n, 0, oo))), (r"\prod_{a = b}^{c} x", Product(x, (a, b, c))), (r"\prod_{a = b}^c x", Product(x, (a, b, c))), (r"\prod^{c}_{a = b} x", Product(x, (a, b, c))), (r"\prod^c_{a = b} x", Product(x, (a, b, c))), (r"\exp x", _exp(x)), (r"\exp(x)", _exp(x)), (r"\ln x", _log(x, E)), (r"\ln xy", _log(x*y, E)), (r"\log x", _log(x, 10)), (r"\log xy", _log(x*y, 10)), (r"\log_{2} x", _log(x, 2)), (r"\log_{a} x", _log(x, a)), (r"\log_{11} x", _log(x, 11)), (r"\log_{a^2} x", _log(x, _Pow(a, 2))), (r"[x]", x), (r"[a + b]", _Add(a, b)), (r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)), (r"\binom{n}{k}", _binomial(n, k)), (r"\tbinom{n}{k}", _binomial(n, k)), (r"\dbinom{n}{k}", _binomial(n, k)), (r"\binom{n}{0}", _binomial(n, 0)), (r"a \, b", _Mul(a, b)), (r"a \thinspace b", _Mul(a, b)), (r"a \: b", _Mul(a, b)), (r"a \medspace b", _Mul(a, b)), (r"a \; b", _Mul(a, b)), (r"a \thickspace b", _Mul(a, b)), (r"a \quad b", _Mul(a, b)), (r"a \qquad b", _Mul(a, b)), (r"a \! b", _Mul(a, b)), (r"a \negthinspace b", _Mul(a, b)), (r"a \negmedspace b", _Mul(a, b)), (r"a \negthickspace b", _Mul(a, b)), (r"\int x \, dx", Integral(x, x)), (r"\log_2 x", _log(x, 2)), (r"\log_a x", _log(x, a)), (r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))), ] def test_parseable(): from sympy.parsing.latex import parse_latex for latex_str, sympy_expr in GOOD_PAIRS: assert parse_latex(latex_str) == sympy_expr, latex_str # These bad LaTeX strings should raise a LaTeXParsingError when parsed BAD_STRINGS = [ r"(", r")", r"\frac{d}{dx}", r"(\frac{d}{dx})", r"\sqrt{}", r"\sqrt", r"\overline{}", r"\overline", r"{", r"}", r"\mathit{x + y}", r"\mathit{21}", r"\frac{2}{}", r"\frac{}{2}", r"\int", r"!", r"!0", r"_", r"^", r"|", r"||x|", r"()", r"((((((((((((((((()))))))))))))))))", r"-", r"\frac{d}{dx} + \frac{d}{dt}", r"f(x,,y)", r"f(x,y,", r"\sin^x", r"\cos^2", r"@", r"#", r"$", r"%", r"&", r"*", r"" "\\", r"~", r"\frac{(2 + x}{1 - x)}", ] def test_not_parseable(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str) # At time of migration from latex2sympy, should fail but doesn't FAILING_BAD_STRINGS = [ r"\cos 1 \cos", r"f(,", r"f()", r"a \div \div b", r"a \cdot \cdot b", r"a // b", r"a +", r"1.1.1", r"1 +", r"a / b /", ] @XFAIL def test_failing_not_parseable(): from sympy.parsing.latex import parse_latex, LaTeXParsingError for latex_str in FAILING_BAD_STRINGS: with raises(LaTeXParsingError): parse_latex(latex_str)
c8861d7e76875fd67ddfe0a67fac7d0bb7b2b10fb2dff954fba08645737858bf
from sympy.parsing.sym_expr import SymPyExpression from sympy.testing.pytest import raises, XFAIL from sympy.external import import_module cin = import_module('clang.cindex', import_kwargs = {'fromlist': ['cindex']}) if cin: from sympy.codegen.ast import (Variable, String, Return, FunctionDefinition, Integer, Float, Declaration, CodeBlock, FunctionPrototype, FunctionCall, NoneToken, Assignment, Type, IntBaseType, SignedIntType, UnsignedIntType, FloatType, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment, While) from sympy.codegen.cnodes import (PreDecrement, PostDecrement, PreIncrement, PostIncrement) from sympy.core import (Add, Mul, Mod, Pow, Rational, StrictLessThan, LessThan, StrictGreaterThan, GreaterThan, Equality, Unequality) from sympy.logic.boolalg import And, Not, Or from sympy.core.symbol import Symbol from sympy.logic.boolalg import (false, true) import os def test_variable(): c_src1 = ( 'int a;' + '\n' + 'int b;' + '\n' ) c_src2 = ( 'float a;' + '\n' + 'float b;' + '\n' ) c_src3 = ( 'int a;' + '\n' + 'float b;' + '\n' + 'int c;' ) c_src4 = ( 'int x = 1, y = 6.78;' + '\n' + 'float p = 2, q = 9.67;' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ) assert res1[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('intc')) ) ) assert res2[0] == Declaration( Variable( Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ) assert res2[1] == Declaration( Variable( Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ) assert res3[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ) assert res3[1] == Declaration( Variable( Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ) assert res3[2] == Declaration( Variable( Symbol('c'), type=IntBaseType(String('intc')) ) ) assert res4[0] == Declaration( Variable( Symbol('x'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res4[1] == Declaration( Variable( Symbol('y'), type=IntBaseType(String('intc')), value=Integer(6) ) ) assert res4[2] == Declaration( Variable( Symbol('p'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.0', precision=53) ) ) assert res4[3] == Declaration( Variable( Symbol('q'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('9.67', precision=53) ) ) @XFAIL def test_int(): c_src1 = 'int a = 1;' c_src2 = ( 'int a = 1;' + '\n' + 'int b = 2;' + '\n' ) c_src3 = 'int a = 2.345, b = 5.67;' c_src4 = 'int p = 6, q = 23.45;' c_src5 = "int x = '0', y = 'a';" c_src6 = "int r = true, s = false;" # cin.TypeKind.UCHAR c_src_type1 = ( "signed char a = 1, b = 5.1;" ) # cin.TypeKind.SHORT c_src_type2 = ( "short a = 1, b = 5.1;" "signed short c = 1, d = 5.1;" "short int e = 1, f = 5.1;" "signed short int g = 1, h = 5.1;" ) # cin.TypeKind.INT c_src_type3 = ( "signed int a = 1, b = 5.1;" "int c = 1, d = 5.1;" ) # cin.TypeKind.LONG c_src_type4 = ( "long a = 1, b = 5.1;" "long int c = 1, d = 5.1;" ) # cin.TypeKind.UCHAR c_src_type5 = "unsigned char a = 1, b = 5.1;" # cin.TypeKind.USHORT c_src_type6 = ( "unsigned short a = 1, b = 5.1;" "unsigned short int c = 1, d = 5.1;" ) # cin.TypeKind.UINT c_src_type7 = "unsigned int a = 1, b = 5.1;" # cin.TypeKind.ULONG c_src_type8 = ( "unsigned long a = 1, b = 5.1;" "unsigned long int c = 1, d = 5.1;" ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() res6 = SymPyExpression(c_src6, 'c').return_expr() res_type1 = SymPyExpression(c_src_type1, 'c').return_expr() res_type2 = SymPyExpression(c_src_type2, 'c').return_expr() res_type3 = SymPyExpression(c_src_type3, 'c').return_expr() res_type4 = SymPyExpression(c_src_type4, 'c').return_expr() res_type5 = SymPyExpression(c_src_type5, 'c').return_expr() res_type6 = SymPyExpression(c_src_type6, 'c').return_expr() res_type7 = SymPyExpression(c_src_type7, 'c').return_expr() res_type8 = SymPyExpression(c_src_type8, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res2[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res2[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res3[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res3[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('intc')), value=Integer(5) ) ) assert res4[0] == Declaration( Variable( Symbol('p'), type=IntBaseType(String('intc')), value=Integer(6) ) ) assert res4[1] == Declaration( Variable( Symbol('q'), type=IntBaseType(String('intc')), value=Integer(23) ) ) assert res5[0] == Declaration( Variable( Symbol('x'), type=IntBaseType(String('intc')), value=Integer(48) ) ) assert res5[1] == Declaration( Variable( Symbol('y'), type=IntBaseType(String('intc')), value=Integer(97) ) ) assert res6[0] == Declaration( Variable( Symbol('r'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res6[1] == Declaration( Variable( Symbol('s'), type=IntBaseType(String('intc')), value=Integer(0) ) ) assert res_type1[0] == Declaration( Variable( Symbol('a'), type=SignedIntType( String('int8'), nbits=Integer(8) ), value=Integer(1) ) ) assert res_type1[1] == Declaration( Variable( Symbol('b'), type=SignedIntType( String('int8'), nbits=Integer(8) ), value=Integer(5) ) ) assert res_type2[0] == Declaration( Variable( Symbol('a'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(1) ) ) assert res_type2[1] == Declaration( Variable( Symbol('b'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(5) ) ) assert res_type2[2] == Declaration( Variable(Symbol('c'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(1) ) ) assert res_type2[3] == Declaration( Variable( Symbol('d'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(5) ) ) assert res_type2[4] == Declaration( Variable( Symbol('e'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(1) ) ) assert res_type2[5] == Declaration( Variable( Symbol('f'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(5) ) ) assert res_type2[6] == Declaration( Variable( Symbol('g'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(1) ) ) assert res_type2[7] == Declaration( Variable( Symbol('h'), type=SignedIntType( String('int16'), nbits=Integer(16) ), value=Integer(5) ) ) assert res_type3[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res_type3[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('intc')), value=Integer(5) ) ) assert res_type3[2] == Declaration( Variable( Symbol('c'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res_type3[3] == Declaration( Variable( Symbol('d'), type=IntBaseType(String('intc')), value=Integer(5) ) ) assert res_type4[0] == Declaration( Variable( Symbol('a'), type=SignedIntType( String('int64'), nbits=Integer(64) ), value=Integer(1) ) ) assert res_type4[1] == Declaration( Variable( Symbol('b'), type=SignedIntType( String('int64'), nbits=Integer(64) ), value=Integer(5) ) ) assert res_type4[2] == Declaration( Variable( Symbol('c'), type=SignedIntType( String('int64'), nbits=Integer(64) ), value=Integer(1) ) ) assert res_type4[3] == Declaration( Variable( Symbol('d'), type=SignedIntType( String('int64'), nbits=Integer(64) ), value=Integer(5) ) ) assert res_type5[0] == Declaration( Variable( Symbol('a'), type=UnsignedIntType( String('uint8'), nbits=Integer(8) ), value=Integer(1) ) ) assert res_type5[1] == Declaration( Variable( Symbol('b'), type=UnsignedIntType( String('uint8'), nbits=Integer(8) ), value=Integer(5) ) ) assert res_type6[0] == Declaration( Variable( Symbol('a'), type=UnsignedIntType( String('uint16'), nbits=Integer(16) ), value=Integer(1) ) ) assert res_type6[1] == Declaration( Variable( Symbol('b'), type=UnsignedIntType( String('uint16'), nbits=Integer(16) ), value=Integer(5) ) ) assert res_type6[2] == Declaration( Variable( Symbol('c'), type=UnsignedIntType( String('uint16'), nbits=Integer(16) ), value=Integer(1) ) ) assert res_type6[3] == Declaration( Variable( Symbol('d'), type=UnsignedIntType( String('uint16'), nbits=Integer(16) ), value=Integer(5) ) ) assert res_type7[0] == Declaration( Variable( Symbol('a'), type=UnsignedIntType( String('uint32'), nbits=Integer(32) ), value=Integer(1) ) ) assert res_type7[1] == Declaration( Variable( Symbol('b'), type=UnsignedIntType( String('uint32'), nbits=Integer(32) ), value=Integer(5) ) ) assert res_type8[0] == Declaration( Variable( Symbol('a'), type=UnsignedIntType( String('uint64'), nbits=Integer(64) ), value=Integer(1) ) ) assert res_type8[1] == Declaration( Variable( Symbol('b'), type=UnsignedIntType( String('uint64'), nbits=Integer(64) ), value=Integer(5) ) ) assert res_type8[2] == Declaration( Variable( Symbol('c'), type=UnsignedIntType( String('uint64'), nbits=Integer(64) ), value=Integer(1) ) ) assert res_type8[3] == Declaration( Variable( Symbol('d'), type=UnsignedIntType( String('uint64'), nbits=Integer(64) ), value=Integer(5) ) ) @XFAIL def test_float(): c_src1 = 'float a = 1.0;' c_src2 = ( 'float a = 1.25;' + '\n' + 'float b = 2.39;' + '\n' ) c_src3 = 'float x = 1, y = 2;' c_src4 = 'float p = 5, e = 7.89;' c_src5 = 'float r = true, s = false;' # cin.TypeKind.FLOAT c_src_type1 = 'float x = 1, y = 2.5;' # cin.TypeKind.DOUBLE c_src_type2 = 'double x = 1, y = 2.5;' # cin.TypeKind.LONGDOUBLE c_src_type3 = 'long double x = 1, y = 2.5;' res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() res_type1 = SymPyExpression(c_src_type1, 'c').return_expr() res_type2 = SymPyExpression(c_src_type2, 'c').return_expr() res_type3 = SymPyExpression(c_src_type3, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.0', precision=53) ) ) assert res2[0] == Declaration( Variable( Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.25', precision=53) ) ) assert res2[1] == Declaration( Variable( Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.3900000000000001', precision=53) ) ) assert res3[0] == Declaration( Variable( Symbol('x'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.0', precision=53) ) ) assert res3[1] == Declaration( Variable( Symbol('y'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.0', precision=53) ) ) assert res4[0] == Declaration( Variable( Symbol('p'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('5.0', precision=53) ) ) assert res4[1] == Declaration( Variable( Symbol('e'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('7.89', precision=53) ) ) assert res5[0] == Declaration( Variable( Symbol('r'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.0', precision=53) ) ) assert res5[1] == Declaration( Variable( Symbol('s'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('0.0', precision=53) ) ) assert res_type1[0] == Declaration( Variable( Symbol('x'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.0', precision=53) ) ) assert res_type1[1] == Declaration( Variable( Symbol('y'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.5', precision=53) ) ) assert res_type2[0] == Declaration( Variable( Symbol('x'), type=FloatType( String('float64'), nbits=Integer(64), nmant=Integer(52), nexp=Integer(11) ), value=Float('1.0', precision=53) ) ) assert res_type2[1] == Declaration( Variable( Symbol('y'), type=FloatType( String('float64'), nbits=Integer(64), nmant=Integer(52), nexp=Integer(11) ), value=Float('2.5', precision=53) ) ) assert res_type3[0] == Declaration( Variable( Symbol('x'), type=FloatType( String('float80'), nbits=Integer(80), nmant=Integer(63), nexp=Integer(15) ), value=Float('1.0', precision=53) ) ) assert res_type3[1] == Declaration( Variable( Symbol('y'), type=FloatType( String('float80'), nbits=Integer(80), nmant=Integer(63), nexp=Integer(15) ), value=Float('2.5', precision=53) ) ) @XFAIL def test_bool(): c_src1 = ( 'bool a = true, b = false;' ) c_src2 = ( 'bool a = 1, b = 0;' ) c_src3 = ( 'bool a = 10, b = 20;' ) c_src4 = ( 'bool a = 19.1, b = 9.0, c = 0.0;' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=true ) ) assert res1[1] == Declaration( Variable(Symbol('b'), type=Type(String('bool')), value=false ) ) assert res2[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=true) ) assert res2[1] == Declaration( Variable(Symbol('b'), type=Type(String('bool')), value=false ) ) assert res3[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=true ) ) assert res3[1] == Declaration( Variable(Symbol('b'), type=Type(String('bool')), value=true ) ) assert res4[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=true) ) assert res4[1] == Declaration( Variable(Symbol('b'), type=Type(String('bool')), value=true ) ) assert res4[2] == Declaration( Variable(Symbol('c'), type=Type(String('bool')), value=false ) ) def test_function(): c_src1 = ( 'void fun1()' + '\n' + '{' + '\n' + 'int a;' + '\n' + '}' ) c_src2 = ( 'int fun2()' + '\n' + '{'+ '\n' + 'int a;' + '\n' + 'return a;' + '\n' + '}' ) c_src3 = ( 'float fun3()' + '\n' + '{' + '\n' + 'float b;' + '\n' + 'return b;' + '\n' + '}' ) c_src4 = ( 'float fun4()' + '\n' + '{}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('fun1'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ) ) ) assert res2[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun2'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ), Return('a') ) ) assert res3[0] == FunctionDefinition( FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), name=String('fun3'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Return('b') ) ) assert res4[0] == FunctionPrototype( FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), name=String('fun4'), parameters=() ) def test_parameters(): c_src1 = ( 'void fun1( int a)' + '\n' + '{' + '\n' + 'int i;' + '\n' + '}' ) c_src2 = ( 'int fun2(float x, float y)' + '\n' + '{'+ '\n' + 'int a;' + '\n' + 'return a;' + '\n' + '}' ) c_src3 = ( 'float fun3(int p, float q, int r)' + '\n' + '{' + '\n' + 'float b;' + '\n' + 'return b;' + '\n' + '}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('fun1'), parameters=( Variable( Symbol('a'), type=IntBaseType(String('intc')) ), ), body=CodeBlock( Declaration( Variable( Symbol('i'), type=IntBaseType(String('intc')) ) ) ) ) assert res2[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun2'), parameters=( Variable( Symbol('x'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ), Variable( Symbol('y'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ), Return('a') ) ) assert res3[0] == FunctionDefinition( FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), name=String('fun3'), parameters=( Variable( Symbol('p'), type=IntBaseType(String('intc')) ), Variable( Symbol('q'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ), Variable( Symbol('r'), type=IntBaseType(String('intc')) ) ), body=CodeBlock( Declaration( Variable( Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Return('b') ) ) def test_function_call(): c_src1 = ( 'int fun1(int x)' + '\n' + '{' + '\n' + 'return x;' + '\n' + '}' + '\n' + 'void caller()' + '\n' + '{' + '\n' + 'int x = fun1(2);' + '\n' + '}' ) c_src2 = ( 'int fun2(int a, int b, int c)' + '\n' + '{' + '\n' + 'return a;' + '\n' + '}' + '\n' + 'void caller()' + '\n' + '{' + '\n' + 'int y = fun2(2, 3, 4);' + '\n' + '}' ) c_src3 = ( 'int fun3(int a, int b, int c)' + '\n' + '{' + '\n' + 'return b;' + '\n' + '}' + '\n' + 'void caller()' + '\n' + '{' + '\n' + 'int p;' + '\n' + 'int q;' + '\n' + 'int r;' + '\n' + 'int z = fun3(p, q, r);' + '\n' + '}' ) c_src4 = ( 'int fun4(float a, float b, int c)' + '\n' + '{' + '\n' + 'return c;' + '\n' + '}' + '\n' + 'void caller()' + '\n' + '{' + '\n' + 'float x;' + '\n' + 'float y;' + '\n' + 'int z;' + '\n' + 'int i = fun4(x, y, z)' + '\n' + '}' ) c_src5 = ( 'int fun()' + '\n' + '{' + '\n' + 'return 1;' + '\n' + '}' + '\n' + 'void caller()' + '\n' + '{' + '\n' + 'int a = fun()' + '\n' + '}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() assert res1[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun1'), parameters=(Variable(Symbol('x'), type=IntBaseType(String('intc')) ), ), body=CodeBlock( Return('x') ) ) assert res1[1] == FunctionDefinition( NoneToken(), name=String('caller'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('x'), value=FunctionCall(String('fun1'), function_args=( Integer(2), ) ) ) ) ) ) assert res2[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun2'), parameters=(Variable(Symbol('a'), type=IntBaseType(String('intc')) ), Variable(Symbol('b'), type=IntBaseType(String('intc')) ), Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), body=CodeBlock( Return('a') ) ) assert res2[1] == FunctionDefinition( NoneToken(), name=String('caller'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('y'), value=FunctionCall( String('fun2'), function_args=( Integer(2), Integer(3), Integer(4) ) ) ) ) ) ) assert res3[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun3'), parameters=( Variable(Symbol('a'), type=IntBaseType(String('intc')) ), Variable(Symbol('b'), type=IntBaseType(String('intc')) ), Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), body=CodeBlock( Return('b') ) ) assert res3[1] == FunctionDefinition( NoneToken(), name=String('caller'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('p'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('q'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('r'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('z'), value=FunctionCall( String('fun3'), function_args=( Symbol('p'), Symbol('q'), Symbol('r') ) ) ) ) ) ) assert res4[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun4'), parameters=(Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ), Variable(Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ), Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), body=CodeBlock( Return('c') ) ) assert res4[1] == FunctionDefinition( NoneToken(), name=String('caller'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('x'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Declaration( Variable(Symbol('y'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Declaration( Variable(Symbol('z'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('i'), value=FunctionCall(String('fun4'), function_args=( Symbol('x'), Symbol('y'), Symbol('z') ) ) ) ) ) ) assert res5[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('fun'), parameters=(), body=CodeBlock( Return('') ) ) assert res5[1] == FunctionDefinition( NoneToken(), name=String('caller'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), value=FunctionCall(String('fun'), function_args=() ) ) ) ) ) def test_parse(): c_src1 = ( 'int a;' + '\n' + 'int b;' + '\n' ) c_src2 = ( 'void fun1()' + '\n' + '{' + '\n' + 'int a;' + '\n' + '}' ) f1 = open('..a.h', 'w') f2 = open('..b.h', 'w') f1.write(c_src1) f2. write(c_src2) f1.close() f2.close() res1 = SymPyExpression('..a.h', 'c').return_expr() res2 = SymPyExpression('..b.h', 'c').return_expr() os.remove('..a.h') os.remove('..b.h') assert res1[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ) assert res1[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('intc')) ) ) assert res2[0] == FunctionDefinition( NoneToken(), name=String('fun1'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')) ) ) ) ) def test_binary_operators(): c_src1 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = 1;' + '\n' + '}' ) c_src2 = ( 'void func()'+ '{' + '\n' + 'int a = 0;' + '\n' + 'a = a + 1;' + '\n' + 'a = 3*a - 10;' + '\n' + '}' ) c_src3 = ( 'void func()'+ '{' + '\n' + 'int a = 10;' + '\n' + 'a = 1 + a - 3 * 6;' + '\n' + '}' ) c_src4 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'int b;' + '\n' + 'a = 100;' + '\n' + 'b = a*a + a*a + a + 19*a + 1 + 24;' + '\n' + '}' ) c_src5 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'int b;' + '\n' + 'int c;' + '\n' + 'int d;' + '\n' + 'a = 1;' + '\n' + 'b = 2;' + '\n' + 'c = b;' + '\n' + 'd = ((a+b)*(a+c))*((c-d)*(a+c));' + '\n' + '}' ) c_src6 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'int b;' + '\n' + 'int c;' + '\n' + 'int d;' + '\n' + 'a = 1;' + '\n' + 'b = 2;' + '\n' + 'c = 3;' + '\n' + 'd = (a*a*a*a + 3*b*b + b + b + c*d);' + '\n' + '}' ) c_src7 = ( 'void func()'+ '{' + '\n' + 'float a;' + '\n' + 'a = 1.01;' + '\n' + '}' ) c_src8 = ( 'void func()'+ '{' + '\n' + 'float a;' + '\n' + 'a = 10.0 + 2.5;' + '\n' + '}' ) c_src9 = ( 'void func()'+ '{' + '\n' + 'float a;' + '\n' + 'a = 10.0 / 2.5;' + '\n' + '}' ) c_src10 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = 100 / 4;' + '\n' + '}' ) c_src11 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = 20 - 100 / 4 * 5 + 10;' + '\n' + '}' ) c_src12 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = (20 - 100) / 4 * (5 + 10);' + '\n' + '}' ) c_src13 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'int b;' + '\n' + 'float c;' + '\n' + 'c = b/a;' + '\n' + '}' ) c_src14 = ( 'void func()'+ '{' + '\n' + 'int a = 2;' + '\n' + 'int d = 5;' + '\n' + 'int n = 10;' + '\n' + 'int s;' + '\n' + 's = (a/2)*(2*a + (n-1)*d);' + '\n' + '}' ) c_src15 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = 1 % 2;' + '\n' + '}' ) c_src16 = ( 'void func()'+ '{' + '\n' + 'int a = 2;' + '\n' + 'int b;' + '\n' + 'b = a % 3;' + '\n' + '}' ) c_src17 = ( 'void func()'+ '{' + '\n' + 'int a = 100;' + '\n' + 'int b = 3;' + '\n' + 'int c;' + '\n' + 'c = a % b;' + '\n' + '}' ) c_src18 = ( 'void func()'+ '{' + '\n' + 'int a = 100;' + '\n' + 'int b = 3;' + '\n' + 'int mod = 1000000007;' + '\n' + 'int c;' + '\n' + 'c = (a + b * (100/a)) % mod;' + '\n' + '}' ) c_src19 = ( 'void func()'+ '{' + '\n' + 'int a = 100;' + '\n' + 'int b = 3;' + '\n' + 'int mod = 1000000007;' + '\n' + 'int c;' + '\n' + 'c = ((a % mod + b % mod) % mod *(' \ 'a % mod - b % mod) % mod) % mod;' + '\n' + '}' ) c_src20 = ( 'void func()'+ '{' + '\n' + 'bool a' + '\n' + 'bool b;' + '\n' + 'a = 1 == 2;' + '\n' + 'b = 1 != 2;' + '\n' + '}' ) c_src21 = ( 'void func()'+ '{' + '\n' + 'bool a;' + '\n' + 'bool b;' + '\n' + 'bool c;' + '\n' + 'bool d;' + '\n' + 'a = 1 == 2;' + '\n' + 'b = 1 <= 2;' + '\n' + 'c = 1 > 2;' + '\n' + 'd = 1 >= 2;' + '\n' + '}' ) c_src22 = ( 'void func()'+ '{' + '\n' + 'int a = 1;' + '\n' + 'int b = 2;' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'bool c5;' + '\n' + 'bool c6;' + '\n' + 'bool c7;' + '\n' + 'bool c8;' + '\n' + 'c1 = a == 1;' + '\n' + 'c2 = b == 2;' + '\n' + 'c3 = 1 != a;' + '\n' + 'c4 = 1 != b;' + '\n' + 'c5 = a < 0;' + '\n' + 'c6 = b <= 10;' + '\n' + 'c7 = a > 0;' + '\n' + 'c8 = b >= 11;' + '\n' + '}' ) c_src23 = ( 'void func()'+ '{' + '\n' + 'int a = 3;' + '\n' + 'int b = 4;' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'bool c5;' + '\n' + 'bool c6;' + '\n' + 'c1 = a == b;' + '\n' + 'c2 = a != b;' + '\n' + 'c3 = a < b;' + '\n' + 'c4 = a <= b;' + '\n' + 'c5 = a > b;' + '\n' + 'c6 = a >= b;' + '\n' + '}' ) c_src24 = ( 'void func()'+ '{' + '\n' + 'float a = 1.25' 'float b = 2.5;' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'c1 = a == 1.25;' + '\n' + 'c2 = b == 2.54;' + '\n' + 'c3 = 1.2 != a;' + '\n' + 'c4 = 1.5 != b;' + '\n' + '}' ) c_src25 = ( 'void func()'+ '{' + '\n' + 'float a = 1.25' + '\n' + 'float b = 2.5;' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'bool c5;' + '\n' + 'bool c6;' + '\n' + 'c1 = a == b;' + '\n' + 'c2 = a != b;' + '\n' + 'c3 = a < b;' + '\n' + 'c4 = a <= b;' + '\n' + 'c5 = a > b;' + '\n' + 'c6 = a >= b;' + '\n' + '}' ) c_src26 = ( 'void func()'+ '{' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'bool c5;' + '\n' + 'bool c6;' + '\n' + 'c1 = true == true;' + '\n' + 'c2 = true == false;' + '\n' + 'c3 = false == false;' + '\n' + 'c4 = true != true;' + '\n' + 'c5 = true != false;' + '\n' + 'c6 = false != false;' + '\n' + '}' ) c_src27 = ( 'void func()'+ '{' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'bool c5;' + '\n' + 'bool c6;' + '\n' + 'c1 = true && true;' + '\n' + 'c2 = true && false;' + '\n' + 'c3 = false && false;' + '\n' + 'c4 = true || true;' + '\n' + 'c5 = true || false;' + '\n' + 'c6 = false || false;' + '\n' + '}' ) c_src28 = ( 'void func()'+ '{' + '\n' + 'bool a;' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'c1 = a && true;' + '\n' + 'c2 = false && a;' + '\n' + 'c3 = true || a;' + '\n' + 'c4 = a || false;' + '\n' + '}' ) c_src29 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'c1 = a && 1;' + '\n' + 'c2 = a && 0;' + '\n' + 'c3 = a || 1;' + '\n' + 'c4 = 0 || a;' + '\n' + '}' ) c_src30 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'int b;' + '\n' + 'bool c;'+ '\n' + 'bool d;'+ '\n' + 'bool c1;' + '\n' + 'bool c2;' + '\n' + 'bool c3;' + '\n' + 'bool c4;' + '\n' + 'bool c5;' + '\n' + 'bool c6;' + '\n' + 'c1 = a && b;' + '\n' + 'c2 = a && c;' + '\n' + 'c3 = c && d;' + '\n' + 'c4 = a || b;' + '\n' + 'c5 = a || c;' + '\n' + 'c6 = c || d;' + '\n' + '}' ) c_src_raise1 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = -1;' + '\n' + '}' ) c_src_raise2 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = -+1;' + '\n' + '}' ) c_src_raise3 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = 2*-2;' + '\n' + '}' ) c_src_raise4 = ( 'void func()'+ '{' + '\n' + 'int a;' + '\n' + 'a = (int)2.0;' + '\n' + '}' ) c_src_raise5 = ( 'void func()'+ '{' + '\n' + 'int a=100;' + '\n' + 'a = (a==100)?(1):(0);' + '\n' + '}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() res6 = SymPyExpression(c_src6, 'c').return_expr() res7 = SymPyExpression(c_src7, 'c').return_expr() res8 = SymPyExpression(c_src8, 'c').return_expr() res9 = SymPyExpression(c_src9, 'c').return_expr() res10 = SymPyExpression(c_src10, 'c').return_expr() res11 = SymPyExpression(c_src11, 'c').return_expr() res12 = SymPyExpression(c_src12, 'c').return_expr() res13 = SymPyExpression(c_src13, 'c').return_expr() res14 = SymPyExpression(c_src14, 'c').return_expr() res15 = SymPyExpression(c_src15, 'c').return_expr() res16 = SymPyExpression(c_src16, 'c').return_expr() res17 = SymPyExpression(c_src17, 'c').return_expr() res18 = SymPyExpression(c_src18, 'c').return_expr() res19 = SymPyExpression(c_src19, 'c').return_expr() res20 = SymPyExpression(c_src20, 'c').return_expr() res21 = SymPyExpression(c_src21, 'c').return_expr() res22 = SymPyExpression(c_src22, 'c').return_expr() res23 = SymPyExpression(c_src23, 'c').return_expr() res24 = SymPyExpression(c_src24, 'c').return_expr() res25 = SymPyExpression(c_src25, 'c').return_expr() res26 = SymPyExpression(c_src26, 'c').return_expr() res27 = SymPyExpression(c_src27, 'c').return_expr() res28 = SymPyExpression(c_src28, 'c').return_expr() res29 = SymPyExpression(c_src29, 'c').return_expr() res30 = SymPyExpression(c_src30, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Assignment(Variable(Symbol('a')), Integer(1)) ) ) assert res2[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(0))), Assignment( Variable(Symbol('a')), Add(Symbol('a'), Integer(1)) ), Assignment(Variable(Symbol('a')), Add( Mul( Integer(3), Symbol('a')), Integer(-10) ) ) ) ) assert res3[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(10) ) ), Assignment( Variable(Symbol('a')), Add( Symbol('a'), Integer(-17) ) ) ) ) assert res4[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(100)), Assignment( Variable(Symbol('b')), Add( Mul( Integer(2), Pow( Symbol('a'), Integer(2)) ), Mul( Integer(20), Symbol('a')), Integer(25) ) ) ) ) assert res5[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(1)), Assignment( Variable(Symbol('b')), Integer(2) ), Assignment( Variable(Symbol('c')), Symbol('b')), Assignment( Variable(Symbol('d')), Mul( Add( Symbol('a'), Symbol('b')), Pow( Add( Symbol('a'), Symbol('c') ), Integer(2) ), Add( Symbol('c'), Mul( Integer(-1), Symbol('d') ) ) ) ) ) ) assert res6[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(1) ), Assignment( Variable(Symbol('b')), Integer(2) ), Assignment( Variable(Symbol('c')), Integer(3) ), Assignment( Variable(Symbol('d')), Add( Pow( Symbol('a'), Integer(4) ), Mul( Integer(3), Pow( Symbol('b'), Integer(2) ) ), Mul( Integer(2), Symbol('b') ), Mul( Symbol('c'), Symbol('d') ) ) ) ) ) assert res7[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Assignment( Variable(Symbol('a')), Float('1.01', precision=53) ) ) ) assert res8[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Assignment( Variable(Symbol('a')), Float('12.5', precision=53) ) ) ) assert res9[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Assignment( Variable(Symbol('a')), Float('4.0', precision=53) ) ) ) assert res10[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(25) ) ) ) assert res11[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(-95) ) ) ) assert res12[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(-300) ) ) ) assert res13[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('c'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Assignment( Variable(Symbol('c')), Mul( Pow( Symbol('a'), Integer(-1) ), Symbol('b') ) ) ) ) assert res14[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(2) ) ), Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')), value=Integer(5) ) ), Declaration( Variable(Symbol('n'), type=IntBaseType(String('intc')), value=Integer(10) ) ), Declaration( Variable(Symbol('s'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('s')), Mul( Rational(1, 2), Symbol('a'), Add( Mul( Integer(2), Symbol('a') ), Mul( Symbol('d'), Add( Symbol('n'), Integer(-1) ) ) ) ) ) ) ) assert res15[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('a')), Integer(1) ) ) ) assert res16[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(2) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('b')), Mod( Symbol('a'), Integer(3) ) ) ) ) assert res17[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(3) ) ), Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('c')), Mod( Symbol('a'), Symbol('b') ) ) ) ) assert res18[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(3) ) ), Declaration( Variable(Symbol('mod'), type=IntBaseType(String('intc')), value=Integer(1000000007) ) ), Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('c')), Mod( Add( Symbol('a'), Mul( Integer(100), Pow( Symbol('a'), Integer(-1) ), Symbol('b') ) ), Symbol('mod') ) ) ) ) assert res19[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(3) ) ), Declaration( Variable(Symbol('mod'), type=IntBaseType(String('intc')), value=Integer(1000000007) ) ), Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')) ) ), Assignment( Variable(Symbol('c')), Mod( Mul( Add( Symbol('a'), Mul(Integer(-1), Symbol('b') ) ), Add( Symbol('a'), Symbol('b') ) ), Symbol('mod') ) ) ) ) assert res20[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('b'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('a')), false ), Assignment( Variable(Symbol('b')), true ) ) ) assert res21[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('b'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('d'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('a')), false ), Assignment( Variable(Symbol('b')), true ), Assignment( Variable(Symbol('c')), false ), Assignment( Variable(Symbol('d')), false ) ) ) assert res22[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c5'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c6'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c7'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c8'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), Equality( Symbol('a'), Integer(1) ) ), Assignment( Variable(Symbol('c2')), Equality( Symbol('b'), Integer(2) ) ), Assignment( Variable(Symbol('c3')), Unequality( Integer(1), Symbol('a') ) ), Assignment( Variable(Symbol('c4')), Unequality( Integer(1), Symbol('b') ) ), Assignment( Variable(Symbol('c5')), StrictLessThan( Symbol('a'), Integer(0) ) ), Assignment( Variable(Symbol('c6')), LessThan( Symbol('b'), Integer(10) ) ), Assignment( Variable(Symbol('c7')), StrictGreaterThan( Symbol('a'), Integer(0) ) ), Assignment( Variable(Symbol('c8')), GreaterThan( Symbol('b'), Integer(11) ) ) ) ) assert res23[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(3) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(4) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c5'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c6'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), Equality( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c2')), Unequality( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c3')), StrictLessThan( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c4')), LessThan( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c5')), StrictGreaterThan( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c6')), GreaterThan( Symbol('a'), Symbol('b') ) ) ) ) assert res24[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), Equality( Symbol('a'), Float('1.25', precision=53) ) ), Assignment( Variable(Symbol('c3')), Unequality( Float('1.2', precision=53), Symbol('a') ) ) ) ) assert res25[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.25', precision=53) ) ), Declaration( Variable(Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.5', precision=53) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool') ) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c5'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c6'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), Equality( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c2')), Unequality( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c3')), StrictLessThan( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c4')), LessThan( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c5')), StrictGreaterThan( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c6')), GreaterThan( Symbol('a'), Symbol('b') ) ) ) ) assert res26[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c5'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c6'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), true ), Assignment( Variable(Symbol('c2')), false ), Assignment( Variable(Symbol('c3')), true ), Assignment( Variable(Symbol('c4')), false ), Assignment( Variable(Symbol('c5')), true ), Assignment( Variable(Symbol('c6')), false ) ) ) assert res27[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c5'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c6'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), true ), Assignment( Variable(Symbol('c2')), false ), Assignment( Variable(Symbol('c3')), false ), Assignment( Variable(Symbol('c4')), true ), Assignment( Variable(Symbol('c5')), true ), Assignment( Variable(Symbol('c6')), false) ) ) assert res28[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), Symbol('a') ), Assignment( Variable(Symbol('c2')), false ), Assignment( Variable(Symbol('c3')), true ), Assignment( Variable(Symbol('c4')), Symbol('a') ) ) ) assert res29[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), Symbol('a') ), Assignment( Variable(Symbol('c2')), false ), Assignment( Variable(Symbol('c3')), true ), Assignment( Variable(Symbol('c4')), Symbol('a') ) ) ) assert res30[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')) ) ), Declaration( Variable(Symbol('c'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('d'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c1'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c2'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c3'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c4'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c5'), type=Type(String('bool')) ) ), Declaration( Variable(Symbol('c6'), type=Type(String('bool')) ) ), Assignment( Variable(Symbol('c1')), And( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c2')), And( Symbol('a'), Symbol('c') ) ), Assignment( Variable(Symbol('c3')), And( Symbol('c'), Symbol('d') ) ), Assignment( Variable(Symbol('c4')), Or( Symbol('a'), Symbol('b') ) ), Assignment( Variable(Symbol('c5')), Or( Symbol('a'), Symbol('c') ) ), Assignment( Variable(Symbol('c6')), Or( Symbol('c'), Symbol('d') ) ) ) ) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise1, 'c')) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise2, 'c')) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise3, 'c')) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise4, 'c')) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise5, 'c')) @XFAIL def test_var_decl(): c_src1 = ( 'int b = 100;' + '\n' + 'int a = b;' + '\n' ) c_src2 = ( 'int a = 1;' + '\n' + 'int b = a + 1;' + '\n' ) c_src3 = ( 'float a = 10.0 + 2.5;' + '\n' + 'float b = a * 20.0;' + '\n' ) c_src4 = ( 'int a = 1 + 100 - 3 * 6;' + '\n' ) c_src5 = ( 'int a = (((1 + 100) * 12) - 3) * (6 - 10);' + '\n' ) c_src6 = ( 'int b = 2;' + '\n' + 'int c = 3;' + '\n' + 'int a = b + c * 4;' + '\n' ) c_src7 = ( 'int b = 1;' + '\n' + 'int c = b + 2;' + '\n' + 'int a = 10 * b * b * c;' + '\n' ) c_src8 = ( 'void func()'+ '{' + '\n' + 'int a = 1;' + '\n' + 'int b = 2;' + '\n' + 'int temp = a;' + '\n' + 'a = b;' + '\n' + 'b = temp;' + '\n' + '}' ) c_src9 = ( 'int a = 1;' + '\n' + 'int b = 2;' + '\n' + 'int c = a;' + '\n' + 'int d = a + b + c;' + '\n' + 'int e = a*a*a + 3*a*a*b + 3*a*b*b + b*b*b;' + '\n' 'int f = (a + b + c) * (a + b - c);' + '\n' + 'int g = (a + b + c + d)*(a + b + c + d)*(a * (b - c));' + '\n' ) c_src10 = ( 'float a = 10.0;' + '\n' + 'float b = 2.5;' + '\n' + 'float c = a*a + 2*a*b + b*b;' + '\n' ) c_src11 = ( 'float a = 10.0 / 2.5;' + '\n' ) c_src12 = ( 'int a = 100 / 4;' + '\n' ) c_src13 = ( 'int a = 20 - 100 / 4 * 5 + 10;' + '\n' ) c_src14 = ( 'int a = (20 - 100) / 4 * (5 + 10);' + '\n' ) c_src15 = ( 'int a = 4;' + '\n' + 'int b = 2;' + '\n' + 'float c = b/a;' + '\n' ) c_src16 = ( 'int a = 2;' + '\n' + 'int d = 5;' + '\n' + 'int n = 10;' + '\n' + 'int s = (a/2)*(2*a + (n-1)*d);' + '\n' ) c_src17 = ( 'int a = 1 % 2;' + '\n' ) c_src18 = ( 'int a = 2;' + '\n' + 'int b = a % 3;' + '\n' ) c_src19 = ( 'int a = 100;' + '\n' + 'int b = 3;' + '\n' + 'int c = a % b;' + '\n' ) c_src20 = ( 'int a = 100;' + '\n' + 'int b = 3;' + '\n' + 'int mod = 1000000007;' + '\n' + 'int c = (a + b * (100/a)) % mod;' + '\n' ) c_src21 = ( 'int a = 100;' + '\n' + 'int b = 3;' + '\n' + 'int mod = 1000000007;' + '\n' + 'int c = ((a % mod + b % mod) % mod *(' \ 'a % mod - b % mod) % mod) % mod;' + '\n' ) c_src22 = ( 'bool a = 1 == 2, b = 1 != 2;' ) c_src23 = ( 'bool a = 1 < 2, b = 1 <= 2, c = 1 > 2, d = 1 >= 2;' ) c_src24 = ( 'int a = 1, b = 2;' + '\n' + 'bool c1 = a == 1;' + '\n' + 'bool c2 = b == 2;' + '\n' + 'bool c3 = 1 != a;' + '\n' + 'bool c4 = 1 != b;' + '\n' + 'bool c5 = a < 0;' + '\n' + 'bool c6 = b <= 10;' + '\n' + 'bool c7 = a > 0;' + '\n' + 'bool c8 = b >= 11;' ) c_src25 = ( 'int a = 3, b = 4;' + '\n' + 'bool c1 = a == b;' + '\n' + 'bool c2 = a != b;' + '\n' + 'bool c3 = a < b;' + '\n' + 'bool c4 = a <= b;' + '\n' + 'bool c5 = a > b;' + '\n' + 'bool c6 = a >= b;' ) c_src26 = ( 'float a = 1.25, b = 2.5;' + '\n' + 'bool c1 = a == 1.25;' + '\n' + 'bool c2 = b == 2.54;' + '\n' + 'bool c3 = 1.2 != a;' + '\n' + 'bool c4 = 1.5 != b;' ) c_src27 = ( 'float a = 1.25, b = 2.5;' + '\n' + 'bool c1 = a == b;' + '\n' + 'bool c2 = a != b;' + '\n' + 'bool c3 = a < b;' + '\n' + 'bool c4 = a <= b;' + '\n' + 'bool c5 = a > b;' + '\n' + 'bool c6 = a >= b;' ) c_src28 = ( 'bool c1 = true == true;' + '\n' + 'bool c2 = true == false;' + '\n' + 'bool c3 = false == false;' + '\n' + 'bool c4 = true != true;' + '\n' + 'bool c5 = true != false;' + '\n' + 'bool c6 = false != false;' ) c_src29 = ( 'bool c1 = true && true;' + '\n' + 'bool c2 = true && false;' + '\n' + 'bool c3 = false && false;' + '\n' + 'bool c4 = true || true;' + '\n' + 'bool c5 = true || false;' + '\n' + 'bool c6 = false || false;' ) c_src30 = ( 'bool a = false;' + '\n' + 'bool c1 = a && true;' + '\n' + 'bool c2 = false && a;' + '\n' + 'bool c3 = true || a;' + '\n' + 'bool c4 = a || false;' ) c_src31 = ( 'int a = 1;' + '\n' + 'bool c1 = a && 1;' + '\n' + 'bool c2 = a && 0;' + '\n' + 'bool c3 = a || 1;' + '\n' + 'bool c4 = 0 || a;' ) c_src32 = ( 'int a = 1, b = 0;' + '\n' + 'bool c = false, d = true;'+ '\n' + 'bool c1 = a && b;' + '\n' + 'bool c2 = a && c;' + '\n' + 'bool c3 = c && d;' + '\n' + 'bool c4 = a || b;' + '\n' + 'bool c5 = a || c;' + '\n' + 'bool c6 = c || d;' ) c_src_raise1 = ( "char a = 'b';" ) c_src_raise2 = ( 'int a[] = {10, 20};' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() res6 = SymPyExpression(c_src6, 'c').return_expr() res7 = SymPyExpression(c_src7, 'c').return_expr() res8 = SymPyExpression(c_src8, 'c').return_expr() res9 = SymPyExpression(c_src9, 'c').return_expr() res10 = SymPyExpression(c_src10, 'c').return_expr() res11 = SymPyExpression(c_src11, 'c').return_expr() res12 = SymPyExpression(c_src12, 'c').return_expr() res13 = SymPyExpression(c_src13, 'c').return_expr() res14 = SymPyExpression(c_src14, 'c').return_expr() res15 = SymPyExpression(c_src15, 'c').return_expr() res16 = SymPyExpression(c_src16, 'c').return_expr() res17 = SymPyExpression(c_src17, 'c').return_expr() res18 = SymPyExpression(c_src18, 'c').return_expr() res19 = SymPyExpression(c_src19, 'c').return_expr() res20 = SymPyExpression(c_src20, 'c').return_expr() res21 = SymPyExpression(c_src21, 'c').return_expr() res22 = SymPyExpression(c_src22, 'c').return_expr() res23 = SymPyExpression(c_src23, 'c').return_expr() res24 = SymPyExpression(c_src24, 'c').return_expr() res25 = SymPyExpression(c_src25, 'c').return_expr() res26 = SymPyExpression(c_src26, 'c').return_expr() res27 = SymPyExpression(c_src27, 'c').return_expr() res28 = SymPyExpression(c_src28, 'c').return_expr() res29 = SymPyExpression(c_src29, 'c').return_expr() res30 = SymPyExpression(c_src30, 'c').return_expr() res31 = SymPyExpression(c_src31, 'c').return_expr() res32 = SymPyExpression(c_src32, 'c').return_expr() assert res1[0] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(100) ) ) assert res1[1] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Symbol('b') ) ) assert res2[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res2[1] == Declaration(Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Add( Symbol('a'), Integer(1) ) ) ) assert res3[0] == Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('12.5', precision=53) ) ) assert res3[1] == Declaration( Variable(Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Mul( Float('20.0', precision=53), Symbol('a') ) ) ) assert res4[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(83) ) ) assert res5[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(-4836) ) ) assert res6[0] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res6[1] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Integer(3) ) ) assert res6[2] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Add( Symbol('b'), Mul( Integer(4), Symbol('c') ) ) ) ) assert res7[0] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res7[1] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Add( Symbol('b'), Integer(2) ) ) ) assert res7[2] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Mul( Integer(10), Pow( Symbol('b'), Integer(2) ), Symbol('c') ) ) ) assert res8[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ), Declaration( Variable(Symbol('temp'), type=IntBaseType(String('intc')), value=Symbol('a') ) ), Assignment( Variable(Symbol('a')), Symbol('b') ), Assignment( Variable(Symbol('b')), Symbol('temp') ) ) ) assert res9[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res9[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res9[2] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Symbol('a') ) ) assert res9[3] == Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')), value=Add( Symbol('a'), Symbol('b'), Symbol('c') ) ) ) assert res9[4] == Declaration( Variable(Symbol('e'), type=IntBaseType(String('intc')), value=Add( Pow( Symbol('a'), Integer(3) ), Mul( Integer(3), Pow( Symbol('a'), Integer(2) ), Symbol('b') ), Mul( Integer(3), Symbol('a'), Pow( Symbol('b'), Integer(2) ) ), Pow( Symbol('b'), Integer(3) ) ) ) ) assert res9[5] == Declaration( Variable(Symbol('f'), type=IntBaseType(String('intc')), value=Mul( Add( Symbol('a'), Symbol('b'), Mul( Integer(-1), Symbol('c') ) ), Add( Symbol('a'), Symbol('b'), Symbol('c') ) ) ) ) assert res9[6] == Declaration( Variable(Symbol('g'), type=IntBaseType(String('intc')), value=Mul( Symbol('a'), Add( Symbol('b'), Mul( Integer(-1), Symbol('c') ) ), Pow( Add( Symbol('a'), Symbol('b'), Symbol('c'), Symbol('d') ), Integer(2) ) ) ) ) assert res10[0] == Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('10.0', precision=53) ) ) assert res10[1] == Declaration( Variable(Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.5', precision=53) ) ) assert res10[2] == Declaration( Variable(Symbol('c'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Add( Pow( Symbol('a'), Integer(2) ), Mul( Integer(2), Symbol('a'), Symbol('b') ), Pow( Symbol('b'), Integer(2) ) ) ) ) assert res11[0] == Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('4.0', precision=53) ) ) assert res12[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(25) ) ) assert res13[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(-95) ) ) assert res14[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(-300) ) ) assert res15[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(4) ) ) assert res15[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res15[2] == Declaration( Variable(Symbol('c'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Mul( Pow( Symbol('a'), Integer(-1) ), Symbol('b') ) ) ) assert res16[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res16[1] == Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')), value=Integer(5) ) ) assert res16[2] == Declaration( Variable(Symbol('n'), type=IntBaseType(String('intc')), value=Integer(10) ) ) assert res16[3] == Declaration( Variable(Symbol('s'), type=IntBaseType(String('intc')), value=Mul( Rational(1, 2), Symbol('a'), Add( Mul( Integer(2), Symbol('a') ), Mul( Symbol('d'), Add( Symbol('n'), Integer(-1) ) ) ) ) ) ) assert res17[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res18[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res18[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Mod( Symbol('a'), Integer(3) ) ) ) assert res19[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ) assert res19[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(3) ) ) assert res19[2] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Mod( Symbol('a'), Symbol('b') ) ) ) assert res20[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ) assert res20[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(3) ) ) assert res20[2] == Declaration( Variable(Symbol('mod'), type=IntBaseType(String('intc')), value=Integer(1000000007) ) ) assert res20[3] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Mod( Add( Symbol('a'), Mul( Integer(100), Pow( Symbol('a'), Integer(-1) ), Symbol('b') ) ), Symbol('mod') ) ) ) assert res21[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ) assert res21[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(3) ) ) assert res21[2] == Declaration( Variable(Symbol('mod'), type=IntBaseType(String('intc')), value=Integer(1000000007) ) ) assert res21[3] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Mod( Mul( Add( Symbol('a'), Mul( Integer(-1), Symbol('b') ) ), Add( Symbol('a'), Symbol('b') ) ), Symbol('mod') ) ) ) assert res22[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=false ) ) assert res22[1] == Declaration( Variable(Symbol('b'), type=Type(String('bool')), value=true ) ) assert res23[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=true ) ) assert res23[1] == Declaration( Variable(Symbol('b'), type=Type(String('bool')), value=true ) ) assert res23[2] == Declaration( Variable(Symbol('c'), type=Type(String('bool')), value=false ) ) assert res23[3] == Declaration( Variable(Symbol('d'), type=Type(String('bool')), value=false ) ) assert res24[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res24[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res24[2] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=Equality( Symbol('a'), Integer(1) ) ) ) assert res24[3] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=Equality( Symbol('b'), Integer(2) ) ) ) assert res24[4] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=Unequality( Integer(1), Symbol('a') ) ) ) assert res24[5] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=Unequality( Integer(1), Symbol('b') ) ) ) assert res24[6] == Declaration( Variable(Symbol('c5'), type=Type(String('bool')), value=StrictLessThan(Symbol('a'), Integer(0) ) ) ) assert res24[7] == Declaration( Variable(Symbol('c6'), type=Type(String('bool')), value=LessThan( Symbol('b'), Integer(10) ) ) ) assert res24[8] == Declaration( Variable(Symbol('c7'), type=Type(String('bool')), value=StrictGreaterThan( Symbol('a'), Integer(0) ) ) ) assert res24[9] == Declaration( Variable(Symbol('c8'), type=Type(String('bool')), value=GreaterThan( Symbol('b'), Integer(11) ) ) ) assert res25[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(3) ) ) assert res25[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(4) ) ) assert res25[2] == Declaration(Variable(Symbol('c1'), type=Type(String('bool')), value=Equality( Symbol('a'), Symbol('b') ) ) ) assert res25[3] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=Unequality( Symbol('a'), Symbol('b') ) ) ) assert res25[4] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=StrictLessThan( Symbol('a'), Symbol('b') ) ) ) assert res25[5] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=LessThan( Symbol('a'), Symbol('b') ) ) ) assert res25[6] == Declaration( Variable(Symbol('c5'), type=Type(String('bool')), value=StrictGreaterThan( Symbol('a'), Symbol('b') ) ) ) assert res25[7] == Declaration( Variable(Symbol('c6'), type=Type(String('bool')), value=GreaterThan( Symbol('a'), Symbol('b') ) ) ) assert res26[0] == Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.25', precision=53) ) ) assert res26[1] == Declaration( Variable(Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.5', precision=53) ) ) assert res26[2] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=Equality( Symbol('a'), Float('1.25', precision=53) ) ) ) assert res26[3] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=Equality( Symbol('b'), Float('2.54', precision=53) ) ) ) assert res26[4] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=Unequality( Float('1.2', precision=53), Symbol('a') ) ) ) assert res26[5] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=Unequality( Float('1.5', precision=53), Symbol('b') ) ) ) assert res27[0] == Declaration( Variable(Symbol('a'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('1.25', precision=53) ) ) assert res27[1] == Declaration( Variable(Symbol('b'), type=FloatType( String('float32'), nbits=Integer(32), nmant=Integer(23), nexp=Integer(8) ), value=Float('2.5', precision=53) ) ) assert res27[2] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=Equality( Symbol('a'), Symbol('b') ) ) ) assert res27[3] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=Unequality( Symbol('a'), Symbol('b') ) ) ) assert res27[4] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=StrictLessThan( Symbol('a'), Symbol('b') ) ) ) assert res27[5] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=LessThan( Symbol('a'), Symbol('b') ) ) ) assert res27[6] == Declaration( Variable(Symbol('c5'), type=Type(String('bool')), value=StrictGreaterThan( Symbol('a'), Symbol('b') ) ) ) assert res27[7] == Declaration( Variable(Symbol('c6'), type=Type(String('bool')), value=GreaterThan( Symbol('a'), Symbol('b') ) ) ) assert res28[0] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=true ) ) assert res28[1] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=false ) ) assert res28[2] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=true ) ) assert res28[3] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=false ) ) assert res28[4] == Declaration( Variable(Symbol('c5'), type=Type(String('bool')), value=true ) ) assert res28[5] == Declaration( Variable(Symbol('c6'), type=Type(String('bool')), value=false ) ) assert res29[0] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=true ) ) assert res29[1] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=false ) ) assert res29[2] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=false ) ) assert res29[3] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=true ) ) assert res29[4] == Declaration( Variable(Symbol('c5'), type=Type(String('bool')), value=true ) ) assert res29[5] == Declaration( Variable(Symbol('c6'), type=Type(String('bool')), value=false ) ) assert res30[0] == Declaration( Variable(Symbol('a'), type=Type(String('bool')), value=false ) ) assert res30[1] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=Symbol('a') ) ) assert res30[2] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=false ) ) assert res30[3] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=true ) ) assert res30[4] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=Symbol('a') ) ) assert res31[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res31[1] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=Symbol('a') ) ) assert res31[2] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=false ) ) assert res31[3] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=true ) ) assert res31[4] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=Symbol('a') ) ) assert res32[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res32[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(0) ) ) assert res32[2] == Declaration( Variable(Symbol('c'), type=Type(String('bool')), value=false ) ) assert res32[3] == Declaration( Variable(Symbol('d'), type=Type(String('bool')), value=true ) ) assert res32[4] == Declaration( Variable(Symbol('c1'), type=Type(String('bool')), value=And( Symbol('a'), Symbol('b') ) ) ) assert res32[5] == Declaration( Variable(Symbol('c2'), type=Type(String('bool')), value=And( Symbol('a'), Symbol('c') ) ) ) assert res32[6] == Declaration( Variable(Symbol('c3'), type=Type(String('bool')), value=And( Symbol('c'), Symbol('d') ) ) ) assert res32[7] == Declaration( Variable(Symbol('c4'), type=Type(String('bool')), value=Or( Symbol('a'), Symbol('b') ) ) ) assert res32[8] == Declaration( Variable(Symbol('c5'), type=Type(String('bool')), value=Or( Symbol('a'), Symbol('c') ) ) ) assert res32[9] == Declaration( Variable(Symbol('c6'), type=Type(String('bool')), value=Or( Symbol('c'), Symbol('d') ) ) ) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise1, 'c')) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise2, 'c')) def test_paren_expr(): c_src1 = ( 'int a = (1);' 'int b = (1 + 2 * 3);' ) c_src2 = ( 'int a = 1, b = 2, c = 3;' 'int d = (a);' 'int e = (a + 1);' 'int f = (a + b * c - d / e);' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() assert res1[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res1[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(7) ) ) assert res2[0] == Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(1) ) ) assert res2[1] == Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(2) ) ) assert res2[2] == Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Integer(3) ) ) assert res2[3] == Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')), value=Symbol('a') ) ) assert res2[4] == Declaration( Variable(Symbol('e'), type=IntBaseType(String('intc')), value=Add( Symbol('a'), Integer(1) ) ) ) assert res2[5] == Declaration( Variable(Symbol('f'), type=IntBaseType(String('intc')), value=Add( Symbol('a'), Mul( Symbol('b'), Symbol('c') ), Mul( Integer(-1), Symbol('d'), Pow( Symbol('e'), Integer(-1) ) ) ) ) ) def test_unary_operators(): c_src1 = ( 'void func()'+ '{' + '\n' + 'int a = 10;' + '\n' + 'int b = 20;' + '\n' + '++a;' + '\n' + '--b;' + '\n' + 'a++;' + '\n' + 'b--;' + '\n' + '}' ) c_src2 = ( 'void func()'+ '{' + '\n' + 'int a = 10;' + '\n' + 'int b = -100;' + '\n' + 'int c = +19;' + '\n' + 'int d = ++a;' + '\n' + 'int e = --b;' + '\n' + 'int f = a++;' + '\n' + 'int g = b--;' + '\n' + 'bool h = !false;' + '\n' + 'bool i = !d;' + '\n' + 'bool j = !0;' + '\n' + 'bool k = !10.0;' + '\n' + '}' ) c_src_raise1 = ( 'void func()'+ '{' + '\n' + 'int a = 10;' + '\n' + 'int b = ~a;' + '\n' + '}' ) c_src_raise2 = ( 'void func()'+ '{' + '\n' + 'int a = 10;' + '\n' + 'int b = *&a;' + '\n' + '}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(10) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(20) ) ), PreIncrement(Symbol('a')), PreDecrement(Symbol('b')), PostIncrement(Symbol('a')), PostDecrement(Symbol('b')) ) ) assert res2[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('a'), type=IntBaseType(String('intc')), value=Integer(10) ) ), Declaration( Variable(Symbol('b'), type=IntBaseType(String('intc')), value=Integer(-100) ) ), Declaration( Variable(Symbol('c'), type=IntBaseType(String('intc')), value=Integer(19) ) ), Declaration( Variable(Symbol('d'), type=IntBaseType(String('intc')), value=PreIncrement(Symbol('a')) ) ), Declaration( Variable(Symbol('e'), type=IntBaseType(String('intc')), value=PreDecrement(Symbol('b')) ) ), Declaration( Variable(Symbol('f'), type=IntBaseType(String('intc')), value=PostIncrement(Symbol('a')) ) ), Declaration( Variable(Symbol('g'), type=IntBaseType(String('intc')), value=PostDecrement(Symbol('b')) ) ), Declaration( Variable(Symbol('h'), type=Type(String('bool')), value=true ) ), Declaration( Variable(Symbol('i'), type=Type(String('bool')), value=Not(Symbol('d')) ) ), Declaration( Variable(Symbol('j'), type=Type(String('bool')), value=true ) ), Declaration( Variable(Symbol('k'), type=Type(String('bool')), value=false ) ) ) ) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise1, 'c')) raises(NotImplementedError, lambda: SymPyExpression(c_src_raise2, 'c')) def test_compound_assignment_operator(): c_src = ( 'void func()'+ '{' + '\n' + 'int a = 100;' + '\n' + 'a += 10;' + '\n' + 'a -= 10;' + '\n' + 'a *= 10;' + '\n' + 'a /= 10;' + '\n' + 'a %= 10;' + '\n' + '}' ) res = SymPyExpression(c_src, 'c').return_expr() assert res[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('intc')), value=Integer(100) ) ), AddAugmentedAssignment( Variable(Symbol('a')), Integer(10) ), SubAugmentedAssignment( Variable(Symbol('a')), Integer(10) ), MulAugmentedAssignment( Variable(Symbol('a')), Integer(10) ), DivAugmentedAssignment( Variable(Symbol('a')), Integer(10) ), ModAugmentedAssignment( Variable(Symbol('a')), Integer(10) ) ) ) def test_while_stmt(): c_src1 = ( 'void func()'+ '{' + '\n' + 'int i = 0;' + '\n' + 'while(i < 10)' + '\n' + '{' + '\n' + 'i++;' + '\n' + '}' '}' ) c_src2 = ( 'void func()'+ '{' + '\n' + 'int i = 0;' + '\n' + 'while(i < 10)' + '\n' + 'i++;' + '\n' + '}' ) c_src3 = ( 'void func()'+ '{' + '\n' + 'int i = 10;' + '\n' + 'int cnt = 0;' + '\n' + 'while(i > 0)' + '\n' + '{' + '\n' + 'i--;' + '\n' + 'cnt++;' + '\n' + '}' + '\n' + '}' ) c_src4 = ( 'int digit_sum(int n)'+ '{' + '\n' + 'int sum = 0;' + '\n' + 'while(n > 0)' + '\n' + '{' + '\n' + 'sum += (n % 10);' + '\n' + 'n /= 10;' + '\n' + '}' + '\n' + 'return sum;' + '\n' + '}' ) c_src5 = ( 'void func()'+ '{' + '\n' + 'while(1);' + '\n' + '}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable(Symbol('i'), type=IntBaseType(String('intc')), value=Integer(0) ) ), While( StrictLessThan( Symbol('i'), Integer(10) ), body=CodeBlock( PostIncrement( Symbol('i') ) ) ) ) ) assert res2[0] == res1[0] assert res3[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('i'), type=IntBaseType(String('intc')), value=Integer(10) ) ), Declaration( Variable( Symbol('cnt'), type=IntBaseType(String('intc')), value=Integer(0) ) ), While( StrictGreaterThan( Symbol('i'), Integer(0) ), body=CodeBlock( PostDecrement( Symbol('i') ), PostIncrement( Symbol('cnt') ) ) ) ) ) assert res4[0] == FunctionDefinition( IntBaseType(String('intc')), name=String('digit_sum'), parameters=( Variable( Symbol('n'), type=IntBaseType(String('intc')) ), ), body=CodeBlock( Declaration( Variable( Symbol('sum'), type=IntBaseType(String('intc')), value=Integer(0) ) ), While( StrictGreaterThan( Symbol('n'), Integer(0) ), body=CodeBlock( AddAugmentedAssignment( Variable( Symbol('sum') ), Mod( Symbol('n'), Integer(10) ) ), DivAugmentedAssignment( Variable( Symbol('n') ), Integer(10) ) ) ), Return('sum') ) ) assert res5[0] == FunctionDefinition( NoneToken(), name=String('func'), parameters=(), body=CodeBlock( While( Integer(1), body=CodeBlock( NoneToken() ) ) ) ) else: def test_raise(): from sympy.parsing.c.c_parser import CCodeConverter raises(ImportError, lambda: CCodeConverter()) raises(ImportError, lambda: SymPyExpression(' ', mode = 'c'))
460c466974e29d6371fe04bf424ab857178496f00111234fcc24ecfb12d77182
from sympy.parsing.mathematica import mathematica from sympy.core.sympify import sympify def test_mathematica(): d = { '- 6x': '-6*x', 'Sin[x]^2': 'sin(x)**2', '2(x-1)': '2*(x-1)', '3y+8': '3*y+8', 'ArcSin[2x+9(4-x)^2]/x': 'asin(2*x+9*(4-x)**2)/x', 'x+y': 'x+y', '355/113': '355/113', '2.718281828': '2.718281828', 'Sin[12]': 'sin(12)', 'Exp[Log[4]]': 'exp(log(4))', '(x+1)(x+3)': '(x+1)*(x+3)', 'Cos[ArcCos[3.6]]': 'cos(acos(3.6))', 'Cos[x]==Sin[y]': 'cos(x)==sin(y)', '2*Sin[x+y]': '2*sin(x+y)', 'Sin[x]+Cos[y]': 'sin(x)+cos(y)', 'Sin[Cos[x]]': 'sin(cos(x))', '2*Sqrt[x+y]': '2*sqrt(x+y)', # Test case from the issue 4259 '+Sqrt[2]': 'sqrt(2)', '-Sqrt[2]': '-sqrt(2)', '-1/Sqrt[2]': '-1/sqrt(2)', '-(1/Sqrt[3])': '-(1/sqrt(3))', '1/(2*Sqrt[5])': '1/(2*sqrt(5))', 'Mod[5,3]': 'Mod(5,3)', '-Mod[5,3]': '-Mod(5,3)', '(x+1)y': '(x+1)*y', 'x(y+1)': 'x*(y+1)', 'Sin[x]Cos[y]': 'sin(x)*cos(y)', 'Sin[x]**2Cos[y]**2': 'sin(x)**2*cos(y)**2', 'Cos[x]^2(1 - Cos[y]^2)': 'cos(x)**2*(1-cos(y)**2)', 'x y': 'x*y', '2 x': '2*x', 'x 8': 'x*8', '2 8': '2*8', '1 2 3': '1*2*3', ' - 2 * Sqrt[ 2 3 * ( 1 + 5 ) ] ': '-2*sqrt(2*3*(1+5))', 'Log[2,4]': 'log(4,2)', 'Log[Log[2,4],4]': 'log(4,log(4,2))', 'Exp[Sqrt[2]^2Log[2, 8]]': 'exp(sqrt(2)**2*log(8,2))', 'ArcSin[Cos[0]]': 'asin(cos(0))', 'Log2[16]': 'log(16,2)', 'Max[1,-2,3,-4]': 'Max(1,-2,3,-4)', 'Min[1,-2,3]': 'Min(1,-2,3)', 'Exp[I Pi/2]': 'exp(I*pi/2)', 'ArcTan[x,y]': 'atan2(y,x)', 'Pochhammer[x,y]': 'rf(x,y)', 'ExpIntegralEi[x]': 'Ei(x)', 'SinIntegral[x]': 'Si(x)', 'CosIntegral[x]': 'Ci(x)', 'AiryAi[x]': 'airyai(x)', 'AiryAiPrime[5]': 'airyaiprime(5)', 'AiryBi[x]' :'airybi(x)', 'AiryBiPrime[7]' :'airybiprime(7)', 'LogIntegral[4]':' li(4)', 'PrimePi[7]': 'primepi(7)', 'Prime[5]': 'prime(5)', 'PrimeQ[5]': 'isprime(5)' } for e in d: assert mathematica(e) == sympify(d[e])
b50b9415af18a9576c1cf39c52103094c281f14934f077a30e10c275af255ecd
import os from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.external import import_module from sympy.testing.pytest import skip from sympy.parsing.autolev import parse_autolev antlr4 = import_module("antlr4") if not antlr4: disabled = True FILE_DIR = os.path.dirname( os.path.dirname(os.path.abspath(os.path.realpath(__file__)))) def _test_examples(in_filename, out_filename, test_name=""): in_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', in_filename) correct_file_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', out_filename) with open(in_file_path) as f: generated_code = parse_autolev(f, include_numeric=True) with open(correct_file_path) as f: for idx, line1 in enumerate(f): if line1.startswith("#"): break try: line2 = generated_code.split('\n')[idx] assert line1.rstrip() == line2.rstrip() except Exception: msg = 'mismatch in ' + test_name + ' in line no: {0}' raise AssertionError(msg.format(idx+1)) def test_rule_tests(): l = ["ruletest1", "ruletest2", "ruletest3", "ruletest4", "ruletest5", "ruletest6", "ruletest7", "ruletest8", "ruletest9", "ruletest10", "ruletest11", "ruletest12"] for i in l: in_filepath = i + ".al" out_filepath = i + ".py" _test_examples(in_filepath, out_filepath, i) def test_pydy_examples(): l = ["mass_spring_damper", "chaos_pendulum", "double_pendulum", "non_min_pendulum"] for i in l: in_filepath = os.path.join("pydy-example-repo", i + ".al") out_filepath = os.path.join("pydy-example-repo", i + ".py") _test_examples(in_filepath, out_filepath, i) def test_autolev_tutorial(): dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', 'autolev-tutorial') if os.path.isdir(dir_path): l = ["tutor1", "tutor2", "tutor3", "tutor4", "tutor5", "tutor6", "tutor7"] for i in l: in_filepath = os.path.join("autolev-tutorial", i + ".al") out_filepath = os.path.join("autolev-tutorial", i + ".py") _test_examples(in_filepath, out_filepath, i) def test_dynamics_online(): dir_path = os.path.join(FILE_DIR, 'autolev', 'test-examples', 'dynamics-online') if os.path.isdir(dir_path): ch1 = ["1-4", "1-5", "1-6", "1-7", "1-8", "1-9_1", "1-9_2", "1-9_3"] ch2 = ["2-1", "2-2", "2-3", "2-4", "2-5", "2-6", "2-7", "2-8", "2-9", "circular"] ch3 = ["3-1_1", "3-1_2", "3-2_1", "3-2_2", "3-2_3", "3-2_4", "3-2_5", "3-3"] ch4 = ["4-1_1", "4-2_1", "4-4_1", "4-4_2", "4-5_1", "4-5_2"] chapters = [(ch1, "ch1"), (ch2, "ch2"), (ch3, "ch3"), (ch4, "ch4")] for ch, name in chapters: for i in ch: in_filepath = os.path.join("dynamics-online", name, i + ".al") out_filepath = os.path.join("dynamics-online", name, i + ".py") _test_examples(in_filepath, out_filepath, i) def test_output_01(): """Autolev example calculates the position, velocity, and acceleration of a point and expresses in a single reference frame:: (1) FRAMES C,D,F (2) VARIABLES FD'',DC'' (3) CONSTANTS R,L (4) POINTS O,E (5) SIMPROT(F,D,1,FD) -> (6) F_D = [1, 0, 0; 0, COS(FD), -SIN(FD); 0, SIN(FD), COS(FD)] (7) SIMPROT(D,C,2,DC) -> (8) D_C = [COS(DC), 0, SIN(DC); 0, 1, 0; -SIN(DC), 0, COS(DC)] (9) W_C_F> = EXPRESS(W_C_F>, F) -> (10) W_C_F> = FD'*F1> + COS(FD)*DC'*F2> + SIN(FD)*DC'*F3> (11) P_O_E>=R*D2>-L*C1> (12) P_O_E>=EXPRESS(P_O_E>, D) -> (13) P_O_E> = -L*COS(DC)*D1> + R*D2> + L*SIN(DC)*D3> (14) V_E_F>=EXPRESS(DT(P_O_E>,F),D) -> (15) V_E_F> = L*SIN(DC)*DC'*D1> - L*SIN(DC)*FD'*D2> + (R*FD'+L*COS(DC)*DC')*D3> (16) A_E_F>=EXPRESS(DT(V_E_F>,F),D) -> (17) A_E_F> = L*(COS(DC)*DC'^2+SIN(DC)*DC'')*D1> + (-R*FD'^2-2*L*COS(DC)*DC'*FD'-L*SIN(DC)*FD'')*D2> + (R*FD''+L*COS(DC)*DC''-L*SIN(DC)*DC'^2-L*SIN(DC)*FD'^2)*D3> """ if not antlr4: skip('Test skipped: antlr4 is not installed.') autolev_input = """\ FRAMES C,D,F VARIABLES FD'',DC'' CONSTANTS R,L POINTS O,E SIMPROT(F,D,1,FD) SIMPROT(D,C,2,DC) W_C_F>=EXPRESS(W_C_F>,F) P_O_E>=R*D2>-L*C1> P_O_E>=EXPRESS(P_O_E>,D) V_E_F>=EXPRESS(DT(P_O_E>,F),D) A_E_F>=EXPRESS(DT(V_E_F>,F),D)\ """ sympy_input = parse_autolev(autolev_input) g = {} l = {} exec(sympy_input, g, l) w_c_f = l['frame_c'].ang_vel_in(l['frame_f']) # P_O_E> means "the position of point E wrt to point O" p_o_e = l['point_e'].pos_from(l['point_o']) v_e_f = l['point_e'].vel(l['frame_f']) a_e_f = l['point_e'].acc(l['frame_f']) # NOTE : The Autolev outputs above were manually transformed into # equivalent SymPy physics vector expressions. Would be nice to automate # this transformation. expected_w_c_f = (l['fd'].diff()*l['frame_f'].x + cos(l['fd'])*l['dc'].diff()*l['frame_f'].y + sin(l['fd'])*l['dc'].diff()*l['frame_f'].z) assert (w_c_f - expected_w_c_f).simplify() == 0 expected_p_o_e = (-l['l']*cos(l['dc'])*l['frame_d'].x + l['r']*l['frame_d'].y + l['l']*sin(l['dc'])*l['frame_d'].z) assert (p_o_e - expected_p_o_e).simplify() == 0 expected_v_e_f = (l['l']*sin(l['dc'])*l['dc'].diff()*l['frame_d'].x - l['l']*sin(l['dc'])*l['fd'].diff()*l['frame_d'].y + (l['r']*l['fd'].diff() + l['l']*cos(l['dc'])*l['dc'].diff())*l['frame_d'].z) assert (v_e_f - expected_v_e_f).simplify() == 0 expected_a_e_f = (l['l']*(cos(l['dc'])*l['dc'].diff()**2 + sin(l['dc'])*l['dc'].diff().diff())*l['frame_d'].x + (-l['r']*l['fd'].diff()**2 - 2*l['l']*cos(l['dc'])*l['dc'].diff()*l['fd'].diff() - l['l']*sin(l['dc'])*l['fd'].diff().diff())*l['frame_d'].y + (l['r']*l['fd'].diff().diff() + l['l']*cos(l['dc'])*l['dc'].diff().diff() - l['l']*sin(l['dc'])*l['dc'].diff()**2 - l['l']*sin(l['dc'])*l['fd'].diff()**2)*l['frame_d'].z) assert (a_e_f - expected_a_e_f).simplify() == 0
049258e9ea2283d65fcd9ed3ce6085dd4e98f18e876dc7ca02cd42ae69386bc7
from sympy.parsing.maxima import parse_maxima from sympy.core.numbers import (E, Rational, oo) from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import log from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.abc import x n = Symbol('n', integer=True) def test_parser(): assert Abs(parse_maxima('float(1/3)') - 0.333333333) < 10**(-5) assert parse_maxima('13^26') == 91733330193268616658399616009 assert parse_maxima('sin(%pi/2) + cos(%pi/3)') == Rational(3, 2) assert parse_maxima('log(%e)') == 1 def test_injection(): parse_maxima('c: x+1', globals=globals()) # c created by parse_maxima assert c == x + 1 # noqa:F821 parse_maxima('g: sqrt(81)', globals=globals()) # g created by parse_maxima assert g == 9 # noqa:F821 def test_maxima_functions(): assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1 assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2 assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2 assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \ -1 + 2*cos(x)**2 + 2*cos(x)*sin(x) assert parse_maxima('solve(x^2-4,x)') == [-2, 2] assert parse_maxima('limit((1+1/x)^x,x,inf)') == E assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') is -oo assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x)) assert parse_maxima('sum(k, k, 1, n)', name_dict=dict( n=Symbol('n', integer=True), k=Symbol('k', integer=True) )) == (n**2 + n)/2 assert parse_maxima('product(k, k, 1, n)', name_dict=dict( n=Symbol('n', integer=True), k=Symbol('k', integer=True) )) == factorial(n) assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1 assert Abs( parse_maxima( 'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5)
b29e61cefe6c8955b7c549a1929d12d22680d02cfe3d50741ced730b4e29c58b
from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on @doctest_depends_on(modules=('antlr4',)) def parse_autolev(autolev_code, include_numeric=False): """Parses Autolev code (version 4.1) to SymPy code. Parameters ========= autolev_code : Can be an str or any object with a readlines() method (such as a file handle or StringIO). include_numeric : boolean, optional If True NumPy, PyDy, or other numeric code is included for numeric evaluation lines in the Autolev code. Returns ======= sympy_code : str Equivalent SymPy and/or numpy/pydy code as the input code. Example (Double Pendulum) ========================= >>> my_al_text = ("MOTIONVARIABLES' Q{2}', U{2}'", ... "CONSTANTS L,M,G", ... "NEWTONIAN N", ... "FRAMES A,B", ... "SIMPROT(N, A, 3, Q1)", ... "SIMPROT(N, B, 3, Q2)", ... "W_A_N>=U1*N3>", ... "W_B_N>=U2*N3>", ... "POINT O", ... "PARTICLES P,R", ... "P_O_P> = L*A1>", ... "P_P_R> = L*B1>", ... "V_O_N> = 0>", ... "V2PTS(N, A, O, P)", ... "V2PTS(N, B, P, R)", ... "MASS P=M, R=M", ... "Q1' = U1", ... "Q2' = U2", ... "GRAVITY(G*N1>)", ... "ZERO = FR() + FRSTAR()", ... "KANE()", ... "INPUT M=1,G=9.81,L=1", ... "INPUT Q1=.1,Q2=.2,U1=0,U2=0", ... "INPUT TFINAL=10, INTEGSTP=.01", ... "CODE DYNAMICS() some_filename.c") >>> my_al_text = '\\n'.join(my_al_text) >>> from sympy.parsing.autolev import parse_autolev >>> print(parse_autolev(my_al_text, include_numeric=True)) import sympy.physics.mechanics as _me import sympy as _sm import math as m import numpy as _np <BLANKLINE> q1, q2, u1, u2 = _me.dynamicsymbols('q1 q2 u1 u2') q1_d, q2_d, u1_d, u2_d = _me.dynamicsymbols('q1_ q2_ u1_ u2_', 1) l, m, g = _sm.symbols('l m g', real=True) frame_n = _me.ReferenceFrame('n') frame_a = _me.ReferenceFrame('a') frame_b = _me.ReferenceFrame('b') frame_a.orient(frame_n, 'Axis', [q1, frame_n.z]) frame_b.orient(frame_n, 'Axis', [q2, frame_n.z]) frame_a.set_ang_vel(frame_n, u1*frame_n.z) frame_b.set_ang_vel(frame_n, u2*frame_n.z) point_o = _me.Point('o') particle_p = _me.Particle('p', _me.Point('p_pt'), _sm.Symbol('m')) particle_r = _me.Particle('r', _me.Point('r_pt'), _sm.Symbol('m')) particle_p.point.set_pos(point_o, l*frame_a.x) particle_r.point.set_pos(particle_p.point, l*frame_b.x) point_o.set_vel(frame_n, 0) particle_p.point.v2pt_theory(point_o,frame_n,frame_a) particle_r.point.v2pt_theory(particle_p.point,frame_n,frame_b) particle_p.mass = m particle_r.mass = m force_p = particle_p.mass*(g*frame_n.x) force_r = particle_r.mass*(g*frame_n.x) kd_eqs = [q1_d - u1, q2_d - u2] forceList = [(particle_p.point,particle_p.mass*(g*frame_n.x)), (particle_r.point,particle_r.mass*(g*frame_n.x))] kane = _me.KanesMethod(frame_n, q_ind=[q1,q2], u_ind=[u1, u2], kd_eqs = kd_eqs) fr, frstar = kane.kanes_equations([particle_p, particle_r], forceList) zero = fr+frstar from pydy.system import System sys = System(kane, constants = {l:1, m:1, g:9.81}, specifieds={}, initial_conditions={q1:.1, q2:.2, u1:0, u2:0}, times = _np.linspace(0.0, 10, 10/.01)) <BLANKLINE> y=sys.integrate() <BLANKLINE> """ _autolev = import_module( 'sympy.parsing.autolev._parse_autolev_antlr', import_kwargs={'fromlist': ['X']}) if _autolev is not None: return _autolev.parse_autolev(autolev_code, include_numeric)
85160bb45bd805a41a3c286deecc6d007948ef3f75f18a0f9f811d323da6145e
from sympy.external import import_module autolevparser = import_module('sympy.parsing.autolev._antlr.autolevparser', import_kwargs={'fromlist': ['AutolevParser']}) autolevlexer = import_module('sympy.parsing.autolev._antlr.autolevlexer', import_kwargs={'fromlist': ['AutolevLexer']}) autolevlistener = import_module('sympy.parsing.autolev._antlr.autolevlistener', import_kwargs={'fromlist': ['AutolevListener']}) AutolevParser = getattr(autolevparser, 'AutolevParser', None) AutolevLexer = getattr(autolevlexer, 'AutolevLexer', None) AutolevListener = getattr(autolevlistener, 'AutolevListener', None) def parse_autolev(autolev_code, include_numeric): antlr4 = import_module('antlr4', warn_not_installed=True) if not antlr4: raise ImportError("Autolev parsing requires the antlr4 Python package," " provided by pip (antlr4-python2-runtime or" " antlr4-python3-runtime) or" " conda (antlr-python-runtime)") try: l = autolev_code.readlines() input_stream = antlr4.InputStream("".join(l)) except Exception: input_stream = antlr4.InputStream(autolev_code) if AutolevListener: from ._listener_autolev_antlr import MyListener lexer = AutolevLexer(input_stream) token_stream = antlr4.CommonTokenStream(lexer) parser = AutolevParser(token_stream) tree = parser.prog() my_listener = MyListener(include_numeric) walker = antlr4.ParseTreeWalker() walker.walk(my_listener, tree) return "".join(my_listener.output_code)
69be95e83d2e95bbce4071bf2a93f63b049a4cdeaf8ab6b19a95335830a3b67b
# Ported from latex2sympy by @augustt198 # https://github.com/augustt198/latex2sympy # See license in LICENSE.txt import sympy from sympy.external import import_module from sympy.printing.str import StrPrinter from sympy.physics.quantum.state import Bra, Ket from .errors import LaTeXParsingError LaTeXParser = LaTeXLexer = MathErrorListener = None try: LaTeXParser = import_module('sympy.parsing.latex._antlr.latexparser', import_kwargs={'fromlist': ['LaTeXParser']}).LaTeXParser LaTeXLexer = import_module('sympy.parsing.latex._antlr.latexlexer', import_kwargs={'fromlist': ['LaTeXLexer']}).LaTeXLexer except Exception: pass ErrorListener = import_module('antlr4.error.ErrorListener', warn_not_installed=True, import_kwargs={'fromlist': ['ErrorListener']} ) if ErrorListener: class MathErrorListener(ErrorListener.ErrorListener): # type: ignore def __init__(self, src): super(ErrorListener.ErrorListener, self).__init__() self.src = src def syntaxError(self, recog, symbol, line, col, msg, e): fmt = "%s\n%s\n%s" marker = "~" * col + "^" if msg.startswith("missing"): err = fmt % (msg, self.src, marker) elif msg.startswith("no viable"): err = fmt % ("I expected something else here", self.src, marker) elif msg.startswith("mismatched"): names = LaTeXParser.literalNames expected = [ names[i] for i in e.getExpectedTokens() if i < len(names) ] if len(expected) < 10: expected = " ".join(expected) err = (fmt % ("I expected one of these: " + expected, self.src, marker)) else: err = (fmt % ("I expected something else here", self.src, marker)) else: err = fmt % ("I don't understand this", self.src, marker) raise LaTeXParsingError(err) def parse_latex(sympy): antlr4 = import_module('antlr4', warn_not_installed=True) if None in [antlr4, MathErrorListener]: raise ImportError("LaTeX parsing requires the antlr4 Python package," " provided by pip (antlr4-python2-runtime or" " antlr4-python3-runtime) or" " conda (antlr-python-runtime)") matherror = MathErrorListener(sympy) stream = antlr4.InputStream(sympy) lex = LaTeXLexer(stream) lex.removeErrorListeners() lex.addErrorListener(matherror) tokens = antlr4.CommonTokenStream(lex) parser = LaTeXParser(tokens) # remove default console error listener parser.removeErrorListeners() parser.addErrorListener(matherror) relation = parser.math().relation() expr = convert_relation(relation) return expr def convert_relation(rel): if rel.expr(): return convert_expr(rel.expr()) lh = convert_relation(rel.relation(0)) rh = convert_relation(rel.relation(1)) if rel.LT(): return sympy.StrictLessThan(lh, rh) elif rel.LTE(): return sympy.LessThan(lh, rh) elif rel.GT(): return sympy.StrictGreaterThan(lh, rh) elif rel.GTE(): return sympy.GreaterThan(lh, rh) elif rel.EQUAL(): return sympy.Eq(lh, rh) elif rel.NEQ(): return sympy.Ne(lh, rh) def convert_expr(expr): return convert_add(expr.additive()) def convert_add(add): if add.ADD(): lh = convert_add(add.additive(0)) rh = convert_add(add.additive(1)) return sympy.Add(lh, rh, evaluate=False) elif add.SUB(): lh = convert_add(add.additive(0)) rh = convert_add(add.additive(1)) return sympy.Add(lh, sympy.Mul(-1, rh, evaluate=False), evaluate=False) else: return convert_mp(add.mp()) def convert_mp(mp): if hasattr(mp, 'mp'): mp_left = mp.mp(0) mp_right = mp.mp(1) else: mp_left = mp.mp_nofunc(0) mp_right = mp.mp_nofunc(1) if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT(): lh = convert_mp(mp_left) rh = convert_mp(mp_right) return sympy.Mul(lh, rh, evaluate=False) elif mp.DIV() or mp.CMD_DIV() or mp.COLON(): lh = convert_mp(mp_left) rh = convert_mp(mp_right) return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False) else: if hasattr(mp, 'unary'): return convert_unary(mp.unary()) else: return convert_unary(mp.unary_nofunc()) def convert_unary(unary): if hasattr(unary, 'unary'): nested_unary = unary.unary() else: nested_unary = unary.unary_nofunc() if hasattr(unary, 'postfix_nofunc'): first = unary.postfix() tail = unary.postfix_nofunc() postfix = [first] + tail else: postfix = unary.postfix() if unary.ADD(): return convert_unary(nested_unary) elif unary.SUB(): numabs = convert_unary(nested_unary) # Use Integer(-n) instead of Mul(-1, n) return -numabs elif postfix: return convert_postfix_list(postfix) def convert_postfix_list(arr, i=0): if i >= len(arr): raise LaTeXParsingError("Index out of bounds") res = convert_postfix(arr[i]) if isinstance(res, sympy.Expr): if i == len(arr) - 1: return res # nothing to multiply by else: if i > 0: left = convert_postfix(arr[i - 1]) right = convert_postfix(arr[i + 1]) if isinstance(left, sympy.Expr) and isinstance( right, sympy.Expr): left_syms = convert_postfix(arr[i - 1]).atoms(sympy.Symbol) right_syms = convert_postfix(arr[i + 1]).atoms( sympy.Symbol) # if the left and right sides contain no variables and the # symbol in between is 'x', treat as multiplication. if len(left_syms) == 0 and len(right_syms) == 0 and str( res) == "x": return convert_postfix_list(arr, i + 1) # multiply by next return sympy.Mul( res, convert_postfix_list(arr, i + 1), evaluate=False) else: # must be derivative wrt = res[0] if i == len(arr) - 1: raise LaTeXParsingError("Expected expression for derivative") else: expr = convert_postfix_list(arr, i + 1) return sympy.Derivative(expr, wrt) def do_subs(expr, at): if at.expr(): at_expr = convert_expr(at.expr()) syms = at_expr.atoms(sympy.Symbol) if len(syms) == 0: return expr elif len(syms) > 0: sym = next(iter(syms)) return expr.subs(sym, at_expr) elif at.equality(): lh = convert_expr(at.equality().expr(0)) rh = convert_expr(at.equality().expr(1)) return expr.subs(lh, rh) def convert_postfix(postfix): if hasattr(postfix, 'exp'): exp_nested = postfix.exp() else: exp_nested = postfix.exp_nofunc() exp = convert_exp(exp_nested) for op in postfix.postfix_op(): if op.BANG(): if isinstance(exp, list): raise LaTeXParsingError("Cannot apply postfix to derivative") exp = sympy.factorial(exp, evaluate=False) elif op.eval_at(): ev = op.eval_at() at_b = None at_a = None if ev.eval_at_sup(): at_b = do_subs(exp, ev.eval_at_sup()) if ev.eval_at_sub(): at_a = do_subs(exp, ev.eval_at_sub()) if at_b is not None and at_a is not None: exp = sympy.Add(at_b, -1 * at_a, evaluate=False) elif at_b is not None: exp = at_b elif at_a is not None: exp = at_a return exp def convert_exp(exp): if hasattr(exp, 'exp'): exp_nested = exp.exp() else: exp_nested = exp.exp_nofunc() if exp_nested: base = convert_exp(exp_nested) if isinstance(base, list): raise LaTeXParsingError("Cannot raise derivative to power") if exp.atom(): exponent = convert_atom(exp.atom()) elif exp.expr(): exponent = convert_expr(exp.expr()) return sympy.Pow(base, exponent, evaluate=False) else: if hasattr(exp, 'comp'): return convert_comp(exp.comp()) else: return convert_comp(exp.comp_nofunc()) def convert_comp(comp): if comp.group(): return convert_expr(comp.group().expr()) elif comp.abs_group(): return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False) elif comp.atom(): return convert_atom(comp.atom()) elif comp.frac(): return convert_frac(comp.frac()) elif comp.binom(): return convert_binom(comp.binom()) elif comp.floor(): return convert_floor(comp.floor()) elif comp.ceil(): return convert_ceil(comp.ceil()) elif comp.func(): return convert_func(comp.func()) def convert_atom(atom): if atom.LETTER(): subscriptName = '' if atom.subexpr(): subscript = None if atom.subexpr().expr(): # subscript is expr subscript = convert_expr(atom.subexpr().expr()) else: # subscript is atom subscript = convert_atom(atom.subexpr().atom()) subscriptName = '_{' + StrPrinter().doprint(subscript) + '}' return sympy.Symbol(atom.LETTER().getText() + subscriptName) elif atom.SYMBOL(): s = atom.SYMBOL().getText()[1:] if s == "infty": return sympy.oo else: if atom.subexpr(): subscript = None if atom.subexpr().expr(): # subscript is expr subscript = convert_expr(atom.subexpr().expr()) else: # subscript is atom subscript = convert_atom(atom.subexpr().atom()) subscriptName = StrPrinter().doprint(subscript) s += '_{' + subscriptName + '}' return sympy.Symbol(s) elif atom.NUMBER(): s = atom.NUMBER().getText().replace(",", "") return sympy.Number(s) elif atom.DIFFERENTIAL(): var = get_differential_var(atom.DIFFERENTIAL()) return sympy.Symbol('d' + var.name) elif atom.mathit(): text = rule2text(atom.mathit().mathit_text()) return sympy.Symbol(text) elif atom.bra(): val = convert_expr(atom.bra().expr()) return Bra(val) elif atom.ket(): val = convert_expr(atom.ket().expr()) return Ket(val) def rule2text(ctx): stream = ctx.start.getInputStream() # starting index of starting token startIdx = ctx.start.start # stopping index of stopping token stopIdx = ctx.stop.stop return stream.getText(startIdx, stopIdx) def convert_frac(frac): diff_op = False partial_op = False lower_itv = frac.lower.getSourceInterval() lower_itv_len = lower_itv[1] - lower_itv[0] + 1 if (frac.lower.start == frac.lower.stop and frac.lower.start.type == LaTeXLexer.DIFFERENTIAL): wrt = get_differential_var_str(frac.lower.start.text) diff_op = True elif (lower_itv_len == 2 and frac.lower.start.type == LaTeXLexer.SYMBOL and frac.lower.start.text == '\\partial' and (frac.lower.stop.type == LaTeXLexer.LETTER or frac.lower.stop.type == LaTeXLexer.SYMBOL)): partial_op = True wrt = frac.lower.stop.text if frac.lower.stop.type == LaTeXLexer.SYMBOL: wrt = wrt[1:] if diff_op or partial_op: wrt = sympy.Symbol(wrt) if (diff_op and frac.upper.start == frac.upper.stop and frac.upper.start.type == LaTeXLexer.LETTER and frac.upper.start.text == 'd'): return [wrt] elif (partial_op and frac.upper.start == frac.upper.stop and frac.upper.start.type == LaTeXLexer.SYMBOL and frac.upper.start.text == '\\partial'): return [wrt] upper_text = rule2text(frac.upper) expr_top = None if diff_op and upper_text.startswith('d'): expr_top = parse_latex(upper_text[1:]) elif partial_op and frac.upper.start.text == '\\partial': expr_top = parse_latex(upper_text[len('\\partial'):]) if expr_top: return sympy.Derivative(expr_top, wrt) expr_top = convert_expr(frac.upper) expr_bot = convert_expr(frac.lower) inverse_denom = sympy.Pow(expr_bot, -1, evaluate=False) if expr_top == 1: return inverse_denom else: return sympy.Mul(expr_top, inverse_denom, evaluate=False) def convert_binom(binom): expr_n = convert_expr(binom.n) expr_k = convert_expr(binom.k) return sympy.binomial(expr_n, expr_k, evaluate=False) def convert_floor(floor): val = convert_expr(floor.val) return sympy.floor(val, evaluate=False) def convert_ceil(ceil): val = convert_expr(ceil.val) return sympy.ceiling(val, evaluate=False) def convert_func(func): if func.func_normal(): if func.L_PAREN(): # function called with parenthesis arg = convert_func_arg(func.func_arg()) else: arg = convert_func_arg(func.func_arg_noparens()) name = func.func_normal().start.text[1:] # change arc<trig> -> a<trig> if name in [ "arcsin", "arccos", "arctan", "arccsc", "arcsec", "arccot" ]: name = "a" + name[3:] expr = getattr(sympy.functions, name)(arg, evaluate=False) if name in ["arsinh", "arcosh", "artanh"]: name = "a" + name[2:] expr = getattr(sympy.functions, name)(arg, evaluate=False) if name == "exp": expr = sympy.exp(arg, evaluate=False) if (name == "log" or name == "ln"): if func.subexpr(): if func.subexpr().expr(): base = convert_expr(func.subexpr().expr()) else: base = convert_atom(func.subexpr().atom()) elif name == "log": base = 10 elif name == "ln": base = sympy.E expr = sympy.log(arg, base, evaluate=False) func_pow = None should_pow = True if func.supexpr(): if func.supexpr().expr(): func_pow = convert_expr(func.supexpr().expr()) else: func_pow = convert_atom(func.supexpr().atom()) if name in [ "sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh", "tanh" ]: if func_pow == -1: name = "a" + name should_pow = False expr = getattr(sympy.functions, name)(arg, evaluate=False) if func_pow and should_pow: expr = sympy.Pow(expr, func_pow, evaluate=False) return expr elif func.LETTER() or func.SYMBOL(): if func.LETTER(): fname = func.LETTER().getText() elif func.SYMBOL(): fname = func.SYMBOL().getText()[1:] fname = str(fname) # can't be unicode if func.subexpr(): subscript = None if func.subexpr().expr(): # subscript is expr subscript = convert_expr(func.subexpr().expr()) else: # subscript is atom subscript = convert_atom(func.subexpr().atom()) subscriptName = StrPrinter().doprint(subscript) fname += '_{' + subscriptName + '}' input_args = func.args() output_args = [] while input_args.args(): # handle multiple arguments to function output_args.append(convert_expr(input_args.expr())) input_args = input_args.args() output_args.append(convert_expr(input_args.expr())) return sympy.Function(fname)(*output_args) elif func.FUNC_INT(): return handle_integral(func) elif func.FUNC_SQRT(): expr = convert_expr(func.base) if func.root: r = convert_expr(func.root) return sympy.root(expr, r, evaluate=False) else: return sympy.sqrt(expr, evaluate=False) elif func.FUNC_OVERLINE(): expr = convert_expr(func.base) return sympy.conjugate(expr, evaluate=False) elif func.FUNC_SUM(): return handle_sum_or_prod(func, "summation") elif func.FUNC_PROD(): return handle_sum_or_prod(func, "product") elif func.FUNC_LIM(): return handle_limit(func) def convert_func_arg(arg): if hasattr(arg, 'expr'): return convert_expr(arg.expr()) else: return convert_mp(arg.mp_nofunc()) def handle_integral(func): if func.additive(): integrand = convert_add(func.additive()) elif func.frac(): integrand = convert_frac(func.frac()) else: integrand = 1 int_var = None if func.DIFFERENTIAL(): int_var = get_differential_var(func.DIFFERENTIAL()) else: for sym in integrand.atoms(sympy.Symbol): s = str(sym) if len(s) > 1 and s[0] == 'd': if s[1] == '\\': int_var = sympy.Symbol(s[2:]) else: int_var = sympy.Symbol(s[1:]) int_sym = sym if int_var: integrand = integrand.subs(int_sym, 1) else: # Assume dx by default int_var = sympy.Symbol('x') if func.subexpr(): if func.subexpr().atom(): lower = convert_atom(func.subexpr().atom()) else: lower = convert_expr(func.subexpr().expr()) if func.supexpr().atom(): upper = convert_atom(func.supexpr().atom()) else: upper = convert_expr(func.supexpr().expr()) return sympy.Integral(integrand, (int_var, lower, upper)) else: return sympy.Integral(integrand, int_var) def handle_sum_or_prod(func, name): val = convert_mp(func.mp()) iter_var = convert_expr(func.subeq().equality().expr(0)) start = convert_expr(func.subeq().equality().expr(1)) if func.supexpr().expr(): # ^{expr} end = convert_expr(func.supexpr().expr()) else: # ^atom end = convert_atom(func.supexpr().atom()) if name == "summation": return sympy.Sum(val, (iter_var, start, end)) elif name == "product": return sympy.Product(val, (iter_var, start, end)) def handle_limit(func): sub = func.limit_sub() if sub.LETTER(): var = sympy.Symbol(sub.LETTER().getText()) elif sub.SYMBOL(): var = sympy.Symbol(sub.SYMBOL().getText()[1:]) else: var = sympy.Symbol('x') if sub.SUB(): direction = "-" else: direction = "+" approaching = convert_expr(sub.expr()) content = convert_mp(func.mp()) return sympy.Limit(content, var, approaching, direction) def get_differential_var(d): text = get_differential_var_str(d.getText()) return sympy.Symbol(text) def get_differential_var_str(text): for i in range(1, len(text)): c = text[i] if not (c == " " or c == "\r" or c == "\n" or c == "\t"): idx = i break text = text[idx:] if text[0] == "\\": text = text[1:] return text
30c4c6166ea43977ac678ec420ff25a69b029ee25b58c893e7b58b56e3fca284
from typing import Type from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import expand from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.polys.polyroots import roots from sympy.polys.polytools import (cancel, degree) from sympy.core.containers import Tuple from sympy.core.evalf import EvalfMixin from sympy.core.logic import fuzzy_and from sympy.core.numbers import Integer, ComplexInfinity from sympy.core.symbol import Dummy from sympy.core.sympify import sympify, _sympify from sympy.polys import Poly, rootof from sympy.series import limit from sympy.matrices import ImmutableMatrix, eye from sympy.matrices.expressions import MatMul, MatAdd from mpmath.libmp.libmpf import prec_to_dps __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix'] def _roots(poly, var): """ like roots, but works on higher-order polynomials. """ r = roots(poly, var, multiple=True) n = degree(poly) if len(r) != n: r = [rootof(poly, var, k) for k in range(n)] return r class LinearTimeInvariant(Basic, EvalfMixin): """A common class for all the Linear Time-Invariant Dynamical Systems.""" _clstype: Type # Users should not directly interact with this class. def __new__(cls, *system, **kwargs): if cls is LinearTimeInvariant: raise NotImplementedError('The LTICommon class is not meant to be used directly.') return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs) @classmethod def _check_args(cls, args): if not args: raise ValueError("Atleast 1 argument must be passed.") if not all(isinstance(arg, cls._clstype) for arg in args): raise TypeError(f"All arguments must be of type {cls._clstype}.") var_set = {arg.var for arg in args} if len(var_set) != 1: raise ValueError("All transfer functions should use the same complex variable" f" of the Laplace transform. {len(var_set)} different values found.") @property def is_SISO(self): """Returns `True` if the passed LTI system is SISO else returns False.""" return self._is_SISO class SISOLinearTimeInvariant(LinearTimeInvariant): """A common class for all the SISO Linear Time-Invariant Dynamical Systems.""" # Users should not directly interact with this class. _is_SISO = True class MIMOLinearTimeInvariant(LinearTimeInvariant): """A common class for all the MIMO Linear Time-Invariant Dynamical Systems.""" # Users should not directly interact with this class. _is_SISO = False SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant def _check_other_SISO(func): def wrapper(*args, **kwargs): if not isinstance(args[-1], SISOLinearTimeInvariant): return NotImplemented else: return func(*args, **kwargs) return wrapper def _check_other_MIMO(func): def wrapper(*args, **kwargs): if not isinstance(args[-1], MIMOLinearTimeInvariant): return NotImplemented else: return func(*args, **kwargs) return wrapper class TransferFunction(SISOLinearTimeInvariant): r""" A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and denominator polynomials of the ``TransferFunction`` respectively, and the third argument is a complex variable of the Laplace transform used by these polynomials of the transfer function. ``num`` and ``den`` can be either polynomials or numbers, whereas ``var`` has to be a Symbol. Explanation =========== Generally, a dynamical system representing a physical model can be described in terms of Linear Ordinary Differential Equations like - $\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y= a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$ Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative (not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater than $n$. It is not feasible to analyse the properties of such systems in their native form therefore, we use mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform of both the sides in the equation (at zero initial conditions), we get - $\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]= \mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$ Using the linearity property of Laplace transform and also considering zero initial conditions (i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation above gets translated to - $\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]= a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$ Now, applying Derivative property of Laplace transform, $\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]= a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$ Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above cannot be reached. Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio $\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer function. The numerator of the transfer function is, therefore, the Laplace transform of the output signal (The signals are represented as functions of time) and similarly, the denominator of the transfer function is the Laplace transform of the input signal. It is also a convention to denote the input and output signal's Laplace transform with capital alphabets like shown below. $H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$ $s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace transform of the system's impulse response. Transfer function, $H$, is represented as a rational function in $s$ like, $H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$ Parameters ========== num : Expr, Number The numerator polynomial of the transfer function. den : Expr, Number The denominator polynomial of the transfer function. var : Symbol Complex variable of the Laplace transform used by the polynomials of the transfer function. Raises ====== TypeError When ``var`` is not a Symbol or when ``num`` or ``den`` is not a number or a polynomial. ValueError When ``den`` is zero. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf1 TransferFunction(a + s, s**2 + s + 1, s) >>> tf1.num a + s >>> tf1.den s**2 + s + 1 >>> tf1.var s >>> tf1.args (a + s, s**2 + s + 1, s) Any complex variable can be used for ``var``. >>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) >>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf3 TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p) To negate a transfer function the ``-`` operator can be prepended: >>> tf4 = TransferFunction(-a + s, p**2 + s, p) >>> -tf4 TransferFunction(a - s, p**2 + s, p) >>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s) >>> -tf5 TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s) You can use a Float or an Integer (or other constants) as numerator and denominator: >>> tf6 = TransferFunction(1/2, 4, s) >>> tf6.num 0.500000000000000 >>> tf6.den 4 >>> tf6.var s >>> tf6.args (0.5, 4, s) You can take the integer power of a transfer function using the ``**`` operator: >>> tf7 = TransferFunction(s + a, s - a, s) >>> tf7**3 TransferFunction((a + s)**3, (-a + s)**3, s) >>> tf7**0 TransferFunction(1, 1, s) >>> tf8 = TransferFunction(p + 4, p - 3, p) >>> tf8**-1 TransferFunction(p - 3, p + 4, p) Addition, subtraction, and multiplication of transfer functions can form unevaluated ``Series`` or ``Parallel`` objects. >>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s) >>> tf10 = TransferFunction(s - p, s + 3, s) >>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s) >>> tf12 = TransferFunction(1 - s, s**2 + 4, s) >>> tf9 + tf10 Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - tf11 Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s)) >>> tf9 * tf10 Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - (tf9 + tf12) Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s)) >>> tf10 - (tf9 * tf12) Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s))) >>> tf11 * tf10 * tf9 Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s)) >>> tf9 * tf11 + tf10 * tf12 Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s))) >>> (tf9 + tf12) * (tf10 + tf11) Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s))) These unevaluated ``Series`` or ``Parallel`` objects can convert into the resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``. >>> ((tf9 + tf10) * tf12).doit() TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s) >>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction) TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s) See Also ======== Feedback, Series, Parallel References ========== .. [1] https://en.wikipedia.org/wiki/Transfer_function .. [2] https://en.wikipedia.org/wiki/Laplace_transform """ def __new__(cls, num, den, var): num, den = _sympify(num), _sympify(den) if not isinstance(var, Symbol): raise TypeError("Variable input must be a Symbol.") if den == 0: raise ValueError("TransferFunction cannot have a zero denominator.") if (((isinstance(num, Expr) and num.has(Symbol)) or num.is_number) and ((isinstance(den, Expr) and den.has(Symbol)) or den.is_number)): obj = super(TransferFunction, cls).__new__(cls, num, den, var) obj._num = num obj._den = den obj._var = var return obj else: raise TypeError("Unsupported type for numerator or denominator of TransferFunction.") @classmethod def from_rational_expression(cls, expr, var=None): r""" Creates a new ``TransferFunction`` efficiently from a rational expression. Parameters ========== expr : Expr, Number The rational expression representing the ``TransferFunction``. var : Symbol, optional Complex variable of the Laplace transform used by the polynomials of the transfer function. Raises ====== ValueError When ``expr`` is of type ``Number`` and optional parameter ``var`` is not passed. When ``expr`` has more than one variables and an optional parameter ``var`` is not passed. ZeroDivisionError When denominator of ``expr`` is zero or it has ``ComplexInfinity`` in its numerator. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> expr1 = (s + 5)/(3*s**2 + 2*s + 1) >>> tf1 = TransferFunction.from_rational_expression(expr1) >>> tf1 TransferFunction(s + 5, 3*s**2 + 2*s + 1, s) >>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables >>> tf2 = TransferFunction.from_rational_expression(expr2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) In case of conflict between two or more variables in a expression, SymPy will raise a ``ValueError``, if ``var`` is not passed by the user. >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1)) Traceback (most recent call last): ... ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually. This can be corrected by specifying the ``var`` parameter manually. >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s) >>> tf TransferFunction(a*s + a, s**2 + s + 1, s) ``var`` also need to be specified when ``expr`` is a ``Number`` >>> tf3 = TransferFunction.from_rational_expression(10, s) >>> tf3 TransferFunction(10, 1, s) """ expr = _sympify(expr) if var is None: _free_symbols = expr.free_symbols _len_free_symbols = len(_free_symbols) if _len_free_symbols == 1: var = list(_free_symbols)[0] elif _len_free_symbols == 0: raise ValueError("Positional argument `var` not found in the TransferFunction defined. Specify it manually.") else: raise ValueError("Conflicting values found for positional argument `var` ({}). Specify it manually.".format(_free_symbols)) _num, _den = expr.as_numer_denom() if _den == 0 or _num.has(ComplexInfinity): raise ZeroDivisionError("TransferFunction cannot have a zero denominator.") return cls(_num, _den, var) @property def num(self): """ Returns the numerator polynomial of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s) >>> G1.num p*s + s**2 + 3 >>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p) >>> G2.num (p - 3)*(p + 5) """ return self._num @property def den(self): """ Returns the denominator polynomial of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s) >>> G1.den p**3 - 2*p + 4 >>> G2 = TransferFunction(3, 4, s) >>> G2.den 4 """ return self._den @property def var(self): """ Returns the complex variable of the Laplace transform used by the polynomials of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G1.var p >>> G2 = TransferFunction(0, s - 5, s) >>> G2.var s """ return self._var def _eval_subs(self, old, new): arg_num = self.num.subs(old, new) arg_den = self.den.subs(old, new) argnew = TransferFunction(arg_num, arg_den, self.var) return self if old == self.var else argnew def _eval_evalf(self, prec): return TransferFunction( self.num._eval_evalf(prec), self.den._eval_evalf(prec), self.var) def _eval_simplify(self, **kwargs): tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom() num_, den_ = tf[0], tf[1] return TransferFunction(num_, den_, self.var) def expand(self): """ Returns the transfer function with numerator and denominator in expanded form. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s) >>> G1.expand() TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s) >>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p) >>> G2.expand() TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p) """ return TransferFunction(expand(self.num), expand(self.den), self.var) def dc_gain(self): """ Computes the gain of the response as the frequency approaches zero. The DC gain is infinite for systems with pure integrators. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + 3, s**2 - 9, s) >>> tf1.dc_gain() -1/3 >>> tf2 = TransferFunction(p**2, p - 3 + p**3, p) >>> tf2.dc_gain() 0 >>> tf3 = TransferFunction(a*p**2 - b, s + b, s) >>> tf3.dc_gain() (a*p**2 - b)/b >>> tf4 = TransferFunction(1, s, s) >>> tf4.dc_gain() oo """ m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) return limit(m, self.var, 0) def poles(self): """ Returns the poles of a transfer function. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.poles() [-5, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.poles() [I, I, -I, -I] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.poles() [-p/a] """ return _roots(Poly(self.den, self.var), self.var) def zeros(self): """ Returns the zeros of a transfer function. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.zeros() [-3, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.zeros() [1, 1] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.zeros() [0, 0] """ return _roots(Poly(self.num, self.var), self.var) def is_stable(self): """ Returns True if the transfer function is asymptotically stable; else False. This would not check the marginal or conditional stability of the system. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy import symbols >>> from sympy.physics.control.lti import TransferFunction >>> q, r = symbols('q, r', negative=True) >>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s) >>> tf1.is_stable() True >>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s) >>> tf2.is_stable() False >>> tf3 = TransferFunction(4, q*s - r, s) >>> tf3.is_stable() False >>> tf4 = TransferFunction(p + 1, a*p - s**2, p) >>> tf4.is_stable() is None # Not enough info about the symbols to determine stability True """ return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles()) def __add__(self, other): if isinstance(other, (TransferFunction, Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Parallel(self, other) elif isinstance(other, Parallel): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = list(other.args) return Parallel(self, *arg_list) else: raise ValueError("TransferFunction cannot be added with {}.". format(type(other))) def __radd__(self, other): return self + other def __sub__(self, other): if isinstance(other, (TransferFunction, Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Parallel(self, -other) elif isinstance(other, Parallel): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = [-i for i in list(other.args)] return Parallel(self, *arg_list) else: raise ValueError("{} cannot be subtracted from a TransferFunction." .format(type(other))) def __rsub__(self, other): return -self + other def __mul__(self, other): if isinstance(other, (TransferFunction, Parallel)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Series(self, other) elif isinstance(other, Series): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = list(other.args) return Series(self, *arg_list) else: raise ValueError("TransferFunction cannot be multiplied with {}." .format(type(other))) __rmul__ = __mul__ def __truediv__(self, other): if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], (Series, TransferFunction))): if not self.var == other.var: raise ValueError("Both TransferFunction and Parallel should use the" " same complex variable of the Laplace transform.") if other.args[1] == self: # plant and controller with unit feedback. return Feedback(self, other.args[0]) other_arg_list = list(other.args[1].args) if isinstance(other.args[1], Series) else other.args[1] if other_arg_list == other.args[1]: return Feedback(self, other_arg_list) elif self in other_arg_list: other_arg_list.remove(self) else: return Feedback(self, Series(*other_arg_list)) if len(other_arg_list) == 1: return Feedback(self, *other_arg_list) else: return Feedback(self, Series(*other_arg_list)) else: raise ValueError("TransferFunction cannot be divided by {}.". format(type(other))) __rtruediv__ = __truediv__ def __pow__(self, p): p = sympify(p) if not isinstance(p, Integer): raise ValueError("Exponent must be an Integer.") if p == 0: return TransferFunction(1, 1, self.var) elif p > 0: num_, den_ = self.num**p, self.den**p else: p = abs(p) num_, den_ = self.den**p, self.num**p return TransferFunction(num_, den_, self.var) def __neg__(self): return TransferFunction(-self.num, self.den, self.var) @property def is_proper(self): """ Returns True if degree of the numerator polynomial is less than or equal to degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf1.is_proper False >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p) >>> tf2.is_proper True """ return degree(self.num, self.var) <= degree(self.den, self.var) @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial is strictly less than degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_strictly_proper False >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf2.is_strictly_proper True """ return degree(self.num, self.var) < degree(self.den, self.var) @property def is_biproper(self): """ Returns True if degree of the numerator polynomial is equal to degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_biproper True >>> tf2 = TransferFunction(p**2, p + a, p) >>> tf2.is_biproper False """ return degree(self.num, self.var) == degree(self.den, self.var) def to_expr(self): """ Converts a ``TransferFunction`` object to SymPy Expr. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> from sympy import Expr >>> tf1 = TransferFunction(s, a*s**2 + 1, s) >>> tf1.to_expr() s/(a*s**2 + 1) >>> isinstance(_, Expr) True >>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p) >>> tf2.to_expr() 1/((b - p)*(3*b + p)) >>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s) >>> tf3.to_expr() ((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1))) """ if self.num != 1: return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) else: return Pow(self.den, -1, evaluate=False) def _flatten_args(args, _cls): temp_args = [] for arg in args: if isinstance(arg, _cls): temp_args.extend(arg.args) else: temp_args.append(arg) return tuple(temp_args) def _dummify_args(_arg, var): dummy_dict = {} dummy_arg_list = [] for arg in _arg: _s = Dummy() dummy_dict[_s] = var dummy_arg = arg.subs({var: _s}) dummy_arg_list.append(dummy_arg) return dummy_arg_list, dummy_dict class Series(SISOLinearTimeInvariant): r""" A class for representing a series configuration of SISO systems. Parameters ========== args : SISOLinearTimeInvariant SISO systems in a series configuration. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``Series(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, SISO in this case. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> S1 = Series(tf1, tf2) >>> S1 Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> S1.var s >>> S2 = Series(tf2, Parallel(tf3, -tf1)) >>> S2 Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> S2.var s >>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3)) >>> S3 Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> S3.var s You can get the resultant transfer function by using ``.doit()`` method: >>> S3 = Series(tf1, tf2, -tf3) >>> S3.doit() TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> S4 = Series(tf2, Parallel(tf1, -tf3)) >>> S4.doit() TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) Notes ===== All the transfer functions should use the same complex variable ``var`` of the Laplace transform. See Also ======== MIMOSeries, Parallel, TransferFunction, Feedback """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, Series) cls._check_args(args) obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Series(G1, G2).var p >>> Series(-G3, Parallel(G1, G2)).var p """ return self.args[0].var def doit(self, **kwargs): """ Returns the resultant transfer function obtained after evaluating the transfer functions in series configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Series(tf2, tf1).doit() TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s) >>> Series(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s) """ _num_arg = (arg.doit().num for arg in self.args) _den_arg = (arg.doit().den for arg in self.args) res_num = Mul(*_num_arg, evaluate=True) res_den = Mul(*_den_arg, evaluate=True) return TransferFunction(res_num, res_den, self.var) def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): return self.doit() @_check_other_SISO def __add__(self, other): if isinstance(other, Parallel): arg_list = list(other.args) return Parallel(self, *arg_list) return Parallel(self, other) __radd__ = __add__ @_check_other_SISO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_SISO def __mul__(self, other): arg_list = list(self.args) return Series(*arg_list, other) def __truediv__(self, other): if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") self_arg_list = set(list(self.args)) other_arg_list = set(list(other.args[1].args)) res = list(self_arg_list ^ other_arg_list) if len(res) == 0: return Feedback(self, other.args[0]) elif len(res) == 1: return Feedback(self, *res) else: return Feedback(self, Series(*res)) else: raise ValueError("This transfer function expression is invalid.") def __neg__(self): return Series(TransferFunction(-1, 1, self.var), self) def to_expr(self): """Returns the equivalent ``Expr`` object.""" return Mul(*(arg.to_expr() for arg in self.args), evaluate=False) @property def is_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> S1 = Series(-tf2, tf1) >>> S1.is_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_proper True """ return self.doit().is_proper @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s) >>> tf3 = TransferFunction(1, s**2 + s + 1, s) >>> S1 = Series(tf1, tf2) >>> S1.is_strictly_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_strictly_proper True """ return self.doit().is_strictly_proper @property def is_biproper(self): r""" Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p, s**2, s) >>> tf3 = TransferFunction(s**2, 1, s) >>> S1 = Series(tf1, -tf2) >>> S1.is_biproper False >>> S2 = Series(tf2, tf3) >>> S2.is_biproper True """ return self.doit().is_biproper def _mat_mul_compatible(*args): """To check whether shapes are compatible for matrix mul.""" return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1)) class MIMOSeries(MIMOLinearTimeInvariant): r""" A class for representing a series configuration of MIMO systems. Parameters ========== args : MIMOLinearTimeInvariant MIMO systems in a series configuration. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``MIMOSeries(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. ``num_outputs`` of the MIMO system is not equal to the ``num_inputs`` of its adjacent MIMO system. (Matrix multiplication constraint, basically) TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input >>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs >>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs >>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s) >>> MIMOSeries(tfm_c, tfm_b, tfm_a) MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),)))) >>> pprint(_, use_unicode=False) # For Better Visualization [5*s] [1 s] [---] [5 1 ] [- -] [ 1 ] [- ----] [1 1] [ ] *[1 2] *[ ] [ 5 ] [ 6*s ]{t} [5 1] [ - ] [- -] [ 1 ]{t} [s 1]{t} >>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit() TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s)))) >>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs). [ 4 4 ] [150*s + 25*s 150*s + 5*s] [------------- ------------] [ 3 2 ] [ 6*s 6*s ] [ ] [ 3 3 ] [ 150*s + 25 150*s + 5 ] [ ----------- ---------- ] [ 3 2 ] [ 6*s 6*s ]{t} Notes ===== All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. ``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``. See Also ======== Series, MIMOParallel """ def __new__(cls, *args, evaluate=False): cls._check_args(args) if _mat_mul_compatible(*args): obj = super().__new__(cls, *args) else: raise ValueError("Number of input signals do not match the number" " of output signals of adjacent systems for some args.") return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]]) >>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> MIMOSeries(tfm_2, tfm_1).var p """ return self.args[0].var @property def num_inputs(self): """Returns the number of input signals of the series system.""" return self.args[0].num_inputs @property def num_outputs(self): """Returns the number of output signals of the series system.""" return self.args[-1].num_outputs @property def shape(self): """Returns the shape of the equivalent MIMO system.""" return self.num_outputs, self.num_inputs def doit(self, cancel=False, **kwargs): """ Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a series configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]]) >>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]]) >>> MIMOSeries(tfm2, tfm1).doit() TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)))) """ _arg = (arg.doit()._expr_mat for arg in reversed(self.args)) if cancel: res = MatMul(*_arg, evaluate=True) return TransferFunctionMatrix.from_Matrix(res, self.var) _dummy_args, _dummy_dict = _dummify_args(_arg, self.var) res = MatMul(*_dummy_args, evaluate=True) temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var) return temp_tfm.subs(_dummy_dict) def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): return self.doit() @_check_other_MIMO def __add__(self, other): if isinstance(other, MIMOParallel): arg_list = list(other.args) return MIMOParallel(self, *arg_list) return MIMOParallel(self, other) __radd__ = __add__ @_check_other_MIMO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_MIMO def __mul__(self, other): if isinstance(other, MIMOSeries): self_arg_list = list(self.args) other_arg_list = list(other.args) return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A) arg_list = list(self.args) return MIMOSeries(other, *arg_list) def __neg__(self): arg_list = list(self.args) arg_list[0] = -arg_list[0] return MIMOSeries(*arg_list) class Parallel(SISOLinearTimeInvariant): r""" A class for representing a parallel configuration of SISO systems. Parameters ========== args : SISOLinearTimeInvariant SISO systems in a parallel arrangement. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``Parallel(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> P1 = Parallel(tf1, tf2) >>> P1 Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> P1.var s >>> P2 = Parallel(tf2, Series(tf3, -tf1)) >>> P2 Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> P2.var s >>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) >>> P3 Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> P3.var s You can get the resultant transfer function by using ``.doit()`` method: >>> Parallel(tf1, tf2, -tf3).doit() TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> Parallel(tf2, Series(tf1, -tf3)).doit() TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) Notes ===== All the transfer functions should use the same complex variable ``var`` of the Laplace transform. See Also ======== Series, TransferFunction, Feedback """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, Parallel) cls._check_args(args) obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Parallel(G1, G2).var p >>> Parallel(-G3, Series(G1, G2)).var p """ return self.args[0].var def doit(self, **kwargs): """ Returns the resultant transfer function obtained after evaluating the transfer functions in parallel configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Parallel(tf2, tf1).doit() TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) >>> Parallel(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) """ _arg = (arg.doit().to_expr() for arg in self.args) res = Add(*_arg).as_numer_denom() return TransferFunction(*res, self.var) def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): return self.doit() @_check_other_SISO def __add__(self, other): self_arg_list = list(self.args) return Parallel(*self_arg_list, other) __radd__ = __add__ @_check_other_SISO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_SISO def __mul__(self, other): if isinstance(other, Series): arg_list = list(other.args) return Series(self, *arg_list) return Series(self, other) def __neg__(self): return Series(TransferFunction(-1, 1, self.var), self) def to_expr(self): """Returns the equivalent ``Expr`` object.""" return Add(*(arg.to_expr() for arg in self.args), evaluate=False) @property def is_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(-tf2, tf1) >>> P1.is_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_proper True """ return self.doit().is_proper @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, tf2) >>> P1.is_strictly_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_strictly_proper True """ return self.doit().is_strictly_proper @property def is_biproper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p**2, p + s, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, -tf2) >>> P1.is_biproper True >>> P2 = Parallel(tf2, tf3) >>> P2.is_biproper False """ return self.doit().is_biproper class MIMOParallel(MIMOLinearTimeInvariant): r""" A class for representing a parallel configuration of MIMO systems. Parameters ========== args : MIMOLinearTimeInvariant MIMO Systems in a parallel arrangement. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``MIMOParallel(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. All MIMO systems passed do not have same shape. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel >>> from sympy import Matrix, pprint >>> expr_1 = 1/s >>> expr_2 = s/(s**2-1) >>> expr_3 = (2 + s)/(s**2 - 1) >>> expr_4 = 5 >>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s) >>> MIMOParallel(tfm_a, tfm_b, tfm_c) MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s))))) >>> pprint(_, use_unicode=False) # For Better Visualization [ 1 s ] [ s 1 ] [s + 2 5 ] [ - ------] [------ - ] [------ - ] [ s 2 ] [ 2 s ] [ 2 1 ] [ s - 1] [s - 1 ] [s - 1 ] [ ] + [ ] + [ ] [s + 2 5 ] [ 5 s + 2 ] [ 1 s ] [------ - ] [ - ------] [ - ------] [ 2 1 ] [ 1 2 ] [ s 2 ] [s - 1 ]{t} [ s - 1]{t} [ s - 1]{t} >>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit() TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s)))) >>> pprint(_, use_unicode=False) [ 2 2 / 2 \ ] [ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1] [ -------------------- -----------------------] [ / 2 \ / 2 \ ] [ s*\s - 1/ s*\s - 1/ ] [ ] [ 2 / 2 \ 2 ] [s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ] [--------------------------------- -------------- ] [ / 2 \ 2 ] [ s*\s - 1/ s - 1 ]{t} Notes ===== All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. See Also ======== Parallel, MIMOSeries """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, MIMOParallel) cls._check_args(args) if any(arg.shape != args[0].shape for arg in args): raise TypeError("Shape of all the args is not equal.") obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the systems. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(p**2, p**2 - 1, p) >>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]]) >>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]]) >>> MIMOParallel(tfm_a, tfm_b).var p """ return self.args[0].var @property def num_inputs(self): """Returns the number of input signals of the parallel system.""" return self.args[0].num_inputs @property def num_outputs(self): """Returns the number of output signals of the parallel system.""" return self.args[0].num_outputs @property def shape(self): """Returns the shape of the equivalent MIMO system.""" return self.num_outputs, self.num_inputs def doit(self, **kwargs): """ Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a parallel configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) >>> MIMOParallel(tfm_1, tfm_2).doit() TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)))) """ _arg = (arg.doit()._expr_mat for arg in self.args) res = MatAdd(*_arg, evaluate=True) return TransferFunctionMatrix.from_Matrix(res, self.var) def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): return self.doit() @_check_other_MIMO def __add__(self, other): self_arg_list = list(self.args) return MIMOParallel(*self_arg_list, other) __radd__ = __add__ @_check_other_MIMO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_MIMO def __mul__(self, other): if isinstance(other, MIMOSeries): arg_list = list(other.args) return MIMOSeries(*arg_list, self) return MIMOSeries(other, self) def __neg__(self): arg_list = [-arg for arg in list(self.args)] return MIMOParallel(*arg_list) class Feedback(SISOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two SISO input/output systems. The first argument, ``sys1``, is the feedforward part of the closed-loop system or in simple words, the dynamical model representing the process to be controlled. The second argument, ``sys2``, is the feedback system and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2`` can either be ``Series`` or ``TransferFunction`` objects. Parameters ========== sys1 : Series, TransferFunction The feedforward path system. sys2 : Series, TransferFunction, optional The feedback path system (often a feedback controller). It is the model sitting on the feedback path. If not specified explicitly, the sys2 is assumed to be unit (1.0) transfer function. sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform. When a combination of ``sys1`` and ``sys2`` yields zero denominator. TypeError When either ``sys1`` or ``sys2`` is not a ``Series`` or a ``TransferFunction`` object. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1 Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) >>> F1.var s >>> F1.args (TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively. >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) You can get the resultant closed loop transfer function obtained by negative feedback interconnection using ``.doit()`` method. >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> C = TransferFunction(5*s + 10, s + 10, s) >>> F2 = Feedback(G*C, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s) To negate a ``Feedback`` object, the ``-`` operator can be prepended: >>> -F1 Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1) >>> -F2 Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1) See Also ======== MIMOFeedback, Series, Parallel """ def __new__(cls, sys1, sys2=None, sign=-1): if not sys2: sys2 = TransferFunction(1, 1, sys1.var) if not (isinstance(sys1, (TransferFunction, Series)) and isinstance(sys2, (TransferFunction, Series))): raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.") if sign not in [-1, 1]: raise ValueError("Unsupported type for feedback. `sign` arg should " "either be 1 (positive feedback loop) or -1 (negative feedback loop).") if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign: raise ValueError("The equivalent system will have zero denominator.") if sys1.var != sys2.var: raise ValueError("Both `sys1` and `sys2` should be using the" " same complex variable.") return super().__new__(cls, sys1, sys2, _sympify(sign)) @property def sys1(self): """ Returns the feedforward system of the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys1 TransferFunction(1, 1, p) """ return self.args[0] @property def sys2(self): """ Returns the feedback controller of the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys2 Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p)) """ return self.args[1] @property def var(self): """ Returns the complex variable of the Laplace transform used by all the transfer functions involved in the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.var s >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.var p """ return self.sys1.var @property def sign(self): """ Returns the type of MIMO Feedback model. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): """ Returns the sensitivity function of the feedback loop. Sensitivity of a Feedback system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - p, p + 2, p) >>> F_1 = Feedback(P, C) >>> F_1.sensitivity 1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1) """ return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr()) def doit(self, cancel=False, expand=False, **kwargs): """ Returns the resultant transfer function obtained by the feedback interconnection. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> F2 = Feedback(G, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s) Use kwarg ``expand=True`` to expand the resultant transfer function. Use ``cancel=True`` to cancel out the common terms in numerator and denominator. >>> F2.doit(cancel=True, expand=True) TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s) >>> F2.doit(expand=True) TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s) """ arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1] # F_n and F_d are resultant TFs of num and den of Feedback. F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var) if self.sign == -1: F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit() else: F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit() _resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var) if cancel: _resultant_tf = _resultant_tf.simplify() if expand: _resultant_tf = _resultant_tf.expand() return _resultant_tf def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs): return self.doit() def __neg__(self): return Feedback(-self.sys1, -self.sys2, self.sign) def _is_invertible(a, b, sign): """ Checks whether a given pair of MIMO systems passed is invertible or not. """ _mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat) _det = _mat.det() return _det != 0 class MIMOFeedback(MIMOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two MIMO input/output systems. Parameters ========== sys1 : MIMOSeries, TransferFunctionMatrix The MIMO system placed on the feedforward path. sys2 : MIMOSeries, TransferFunctionMatrix The system placed on the feedback path (often a feedback controller). sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform. Forward path model should have an equal number of inputs/outputs to the feedback path outputs/inputs. When product of ``sys1`` and ``sys2`` is not a square matrix. When the equivalent MIMO system is not invertible. TypeError When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a ``TransferFunctionMatrix`` object. Examples ======== >>> from sympy import Matrix, pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback >>> plant_mat = Matrix([[1, 1/s], [0, 1]]) >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) >>> pprint(feedback, use_unicode=False) / [1 1] [10 0 ] \-1 [1 1] | [- -] [-- - ] | [- -] | [1 s] [1 1 ] | [1 s] |I + [ ] *[ ] | * [ ] | [0 1] [0 10] | [0 1] | [- -] [- --] | [- -] \ [1 1]{t} [1 1 ]{t}/ [1 1]{t} To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method. >>> pprint(feedback.doit(), use_unicode=False) [1 1 ] [-- -----] [11 121*s] [ ] [0 1 ] [- -- ] [1 11 ]{t} To negate the ``MIMOFeedback`` object, use ``-`` operator. >>> neg_feedback = -feedback >>> pprint(neg_feedback.doit(), use_unicode=False) [-1 -1 ] [--- -----] [ 11 121*s] [ ] [ 0 -1 ] [ - --- ] [ 1 11 ]{t} See Also ======== Feedback, MIMOSeries, MIMOParallel """ def __new__(cls, sys1, sys2, sign=-1): if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries)) and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))): raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.") if sys1.num_inputs != sys2.num_outputs or \ sys1.num_outputs != sys2.num_inputs: raise ValueError("Product of `sys1` and `sys2` " "must yield a square matrix.") if sign not in [-1, 1]: raise ValueError("Unsupported type for feedback. `sign` arg should " "either be 1 (positive feedback loop) or -1 (negative feedback loop).") if not _is_invertible(sys1, sys2, sign): raise ValueError("Non-Invertible system inputted.") if sys1.var != sys2.var: raise ValueError("Both `sys1` and `sys2` should be using the" " same complex variable.") return super().__new__(cls, sys1, sys2, _sympify(sign)) @property def sys1(self): r""" Returns the system placed on the feedforward path of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> F_1.sys1 TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [s + s + 1 1 ] [---------- - ] [ 2 s ] [s - s + 1 ] [ ] [ 2 ] [ 1 s + s + 1] [ - ----------] [ s 2 ] [ s - s + 1]{t} """ return self.args[0] @property def sys2(self): r""" Returns the feedback controller of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2) >>> F_1.sys2 TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [ s 1] [---------- -] [ 3 1] [s - s + 1 ] [ ] [ 1 1] [ - -] [ 1 s]{t} """ return self.args[1] @property def var(self): r""" Returns the complex variable of the Laplace transform used by all the transfer functions involved in the MIMO feedback loop. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_1.var p """ return self.sys1.var @property def sign(self): r""" Returns the type of feedback interconnection of two models. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): r""" Returns the sensitivity function matrix of the feedback loop. Sensitivity of a closed-loop system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy import pprint >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback >>> pprint(F_1.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] [---------------------------- -----------------------------] [ 4 3 2 5 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] [ ] [ 4 3 2 3 2 ] [ p - p - p + p 3*p - 6*p + 4*p - 1 ] [ -------------------------- -------------------------- ] [ 4 3 2 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] >>> pprint(F_2.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] [------------------------ --------------------------] [ 4 3 5 4 2 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] [ ] [ 4 3 2 4 3 ] [ p - p - p + p 2*p - 3*p + 2*p - 1 ] [ ------------------- --------------------- ] [ 4 3 4 3 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ] """ _sys1_mat = self.sys1.doit()._expr_mat _sys2_mat = self.sys2.doit()._expr_mat return (eye(self.sys1.num_inputs) - \ self.sign*_sys1_mat*_sys2_mat).inv() def doit(self, cancel=True, expand=False, **kwargs): r""" Returns the resultant transfer function matrix obtained by the feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s, 1 - s, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(5, 1, s) >>> tf4 = TransferFunction(s - 1, s, s) >>> tf5 = TransferFunction(0, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> pprint(F_1, use_unicode=False) / [ s 1 ] [5 0] \-1 [ s 1 ] | [----- - ] [- -] | [----- - ] | [1 - s s ] [1 1] | [1 - s s ] |I - [ ] *[ ] | * [ ] | [ 5 s - 1] [0 0] | [ 5 s - 1] | [ - -----] [- -] | [ - -----] \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} >>> pprint(F_1.doit(), use_unicode=False) [ -s 1 - s ] [ ------- ----------- ] [ 6*s - 1 s*(1 - 6*s) ] [ ] [25*s*(s - 1) + 5*(1 - s)*(6*s - 1) (s - 1)*(6*s + 24)] [---------------------------------- ------------------] [ (1 - s)*(6*s - 1) s*(6*s - 1) ]{t} If the user wants the resultant ``TransferFunctionMatrix`` object without canceling the common factors then the ``cancel`` kwarg should be passed ``False``. >>> pprint(F_1.doit(cancel=False), use_unicode=False) [ 25*s*(1 - s) 25 - 25*s ] [ -------------------- -------------- ] [ 25*(1 - 6*s)*(1 - s) 25*s*(1 - 6*s) ] [ ] [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] [----------------------------------- -----------------------------------] [ (1 - s)*(6*s - 1) 2 ] [ s *(6*s - 1) ]{t} If the user wants the expanded form of the resultant transfer function matrix, the ``expand`` kwarg should be passed as ``True``. >>> pprint(F_1.doit(expand=True), use_unicode=False) [ -s 1 - s ] [ ------- ---------- ] [ 6*s - 1 2 ] [ - 6*s + s ] [ ] [ 2 2 ] [- 5*s + 10*s - 5 6*s + 18*s - 24] [----------------- ----------------] [ 2 2 ] [ - 6*s + 7*s - 1 6*s - s ]{t} """ _mat = self.sensitivity * self.sys1.doit()._expr_mat _resultant_tfm = _to_TFM(_mat, self.var) if cancel: _resultant_tfm = _resultant_tfm.simplify() if expand: _resultant_tfm = _resultant_tfm.expand() return _resultant_tfm def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs): return self.doit() def __neg__(self): return MIMOFeedback(-self.sys1, -self.sys2, self.sign) def _to_TFM(mat, var): """Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently""" to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var) arg = [[to_tf(expr) for expr in row] for row in mat.tolist()] return TransferFunctionMatrix(arg) class TransferFunctionMatrix(MIMOLinearTimeInvariant): r""" A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function. It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``). There is only one argument, ``arg`` which is also the compulsory argument. ``arg`` is expected to be strictly of the type list of lists which holds the transfer functions or reducible to transfer functions. Parameters ========== arg : Nested ``List`` (strictly). Users are expected to input a nested list of ``TransferFunction``, ``Series`` and/or ``Parallel`` objects. Examples ======== .. note:: ``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects. >>> from sympy.abc import s, p, a >>> from sympy import pprint >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s) >>> tf_3 = TransferFunction(3, s + 2, s) >>> tf_4 = TransferFunction(-a + p, 9*s - 9, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),))) >>> tfm_1.var s >>> tfm_1.num_inputs 1 >>> tfm_1.num_outputs 3 >>> tfm_1.shape (3, 1) >>> tfm_1.args (((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),) >>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]]) >>> tfm_2 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t} TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions >>> tfm_2.transpose() TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(_, use_unicode=False) [ 4 ] [ a + s p - 3*p + 2 3 ] [---------- ------------ ----- ] [ 2 p + s s + 2 ] [s + s + 1 ] [ ] [ 4 ] [ -3 -a - s - p + 3*p - 2] [ ----- ---------- --------------] [ s + 2 2 p + s ] [ s + s + 1 ]{t} >>> tf_5 = TransferFunction(5, s, s) >>> tf_6 = TransferFunction(5*s, (2 + s**2), s) >>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s) >>> tf_8 = TransferFunction(5, 1, s) >>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]]) >>> tfm_3 TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s)))) >>> pprint(tfm_3, use_unicode=False) [ 5 5*s ] [ - ------] [ s 2 ] [ s + 2] [ ] [ 5 5 ] [---------- - ] [ / 2 \ 1 ] [s*\s + 2/ ]{t} >>> tfm_3.var s >>> tfm_3.shape (2, 2) >>> tfm_3.num_outputs 2 >>> tfm_3.num_inputs 2 >>> tfm_3.args (((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),) To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation. >>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes TransferFunction(5, s*(s**2 + 2), s) >>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col. TransferFunction(5, s, s) >>> tfm_3[:, 0] # gives the first column TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))) >>> pprint(_, use_unicode=False) [ 5 ] [ - ] [ s ] [ ] [ 5 ] [----------] [ / 2 \] [s*\s + 2/]{t} >>> tfm_3[0, :] # gives the first row TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),)) >>> pprint(_, use_unicode=False) [5 5*s ] [- ------] [s 2 ] [ s + 2]{t} To negate a transfer function matrix, ``-`` operator can be prepended: >>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]]) >>> -tfm_4 TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),))) >>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]]) >>> -tfm_5 TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s)))) ``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not mutate your original ``TransferFunctionMatrix``. >>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2. TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ a + s -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -a - s ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} >>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t} ``subs()`` also supports multiple substitutions. >>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1 TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ s + 1 -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -s - 1 ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using ``doit()``. >>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]]) >>> tfm_6 TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),)) >>> pprint(tfm_6, use_unicode=False) [ -a + p 3 -a + p 3 ] [-------*----- ------- + -----] [9*s - 9 s + 2 9*s - 9 s + 2]{t} >>> tfm_6.doit() TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),)) >>> pprint(_, use_unicode=False) [ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27] [----------------- ----------------------------] [(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t} >>> tf_9 = TransferFunction(1, s, s) >>> tf_10 = TransferFunction(1, s**2, s) >>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]]) >>> tfm_7 TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s))))) >>> pprint(tfm_7, use_unicode=False) [ 1 1 ] [---- - ] [ 2 s ] [s*s ] [ ] [ 1 1 1] [ -- -- + -] [ 2 2 s] [ s s ]{t} >>> tfm_7.doit() TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s)))) >>> pprint(_, use_unicode=False) [1 1 ] [-- - ] [ 3 s ] [s ] [ ] [ 2 ] [1 s + s] [-- ------] [ 2 3 ] [s s ]{t} Addition, subtraction, and multiplication of transfer function matrices can form unevaluated ``Series`` or ``Parallel`` objects. - For addition and subtraction: All the transfer function matrices must have the same shape. - For multiplication (C = A * B): The number of inputs of the first transfer function matrix (A) must be equal to the number of outputs of the second transfer function matrix (B). Also, use pretty-printing (``pprint``) to analyse better. >>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]]) >>> tfm_9 = TransferFunctionMatrix([[-tf_3]]) >>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]]) >>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]]) >>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]]) >>> tfm_8 + tfm_10 MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),)))) >>> pprint(_, use_unicode=False) [ 3 ] [ a + s ] [ ----- ] [ ---------- ] [ s + 2 ] [ 2 ] [ ] [ s + s + 1 ] [ 4 ] [ ] [p - 3*p + 2] [ 4 ] [------------] + [p - 3*p + 2] [ p + s ] [------------] [ ] [ p + s ] [ -a - s ] [ ] [ ---------- ] [ -a + p ] [ 2 ] [ ------- ] [ s + s + 1 ]{t} [ 9*s - 9 ]{t} >>> -tfm_10 - tfm_8 MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),)))) >>> pprint(_, use_unicode=False) [ -a - s ] [ -3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [- p + 3*p - 2] [- p + 3*p - 2] + [--------------] [--------------] [ p + s ] [ p + s ] [ ] [ ] [ a + s ] [ a - p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ ] *[------------] [ 4 ] [ p + s ] [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 * tfm_9 MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ -3 ] [ ] *[------------] *[-----] [ 4 ] [ p + s ] [s + 2]{t} [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_10 + tfm_8*tfm_9 MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))))) >>> pprint(_, use_unicode=False) [ a + s ] [ 3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [p - 3*p + 2] [ -3 ] [p - 3*p + 2] + [------------] *[-----] [------------] [ p + s ] [s + 2]{t} [ p + s ] [ ] [ ] [ -a - s ] [ -a + p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} These unevaluated ``Series`` or ``Parallel`` objects can convert into the resultant transfer function matrix using ``.doit()`` method or by ``.rewrite(TransferFunctionMatrix)``. >>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit() TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),))) >>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix) TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),))) See Also ======== TransferFunction, MIMOSeries, MIMOParallel, Feedback """ def __new__(cls, arg): expr_mat_arg = [] try: var = arg[0][0].var except TypeError: raise ValueError("`arg` param in TransferFunctionMatrix should " "strictly be a nested list containing TransferFunction objects.") for row_index, row in enumerate(arg): temp = [] for col_index, element in enumerate(row): if not isinstance(element, SISOLinearTimeInvariant): raise TypeError("Each element is expected to be of type `SISOLinearTimeInvariant`.") if var != element.var: raise ValueError("Conflicting value(s) found for `var`. All TransferFunction instances in " "TransferFunctionMatrix should use the same complex variable in Laplace domain.") temp.append(element.to_expr()) expr_mat_arg.append(temp) if isinstance(arg, (list, Tuple)): # Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False) obj = super(TransferFunctionMatrix, cls).__new__(cls, arg) obj._expr_mat = ImmutableMatrix(expr_mat_arg) return obj @classmethod def from_Matrix(cls, matrix, var): """ Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects. Parameters ========== matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements. var : Symbol Complex variable of the Laplace transform which will be used by the all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> M = Matrix([[s, 1/s], [1/(s+1), s]]) >>> M_tf = TransferFunctionMatrix.from_Matrix(M, s) >>> pprint(M_tf, use_unicode=False) [ s 1] [ - -] [ 1 s] [ ] [ 1 s] [----- -] [s + 1 1]{t} >>> M_tf.elem_poles() [[[], [0]], [[-1], []]] >>> M_tf.elem_zeros() [[[0], []], [[], [0]]] """ return _to_TFM(matrix, var) @property def var(self): """ Returns the complex variable used by all the transfer functions or ``Series``/``Parallel`` objects in a transfer function matrix. Examples ======== >>> from sympy.abc import p, s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(s + 1, s**2 + s + 1, s) >>> S1 = Series(G1, G2) >>> S2 = Series(-G3, Parallel(G2, -G1)) >>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> tfm1.var p >>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]]) >>> tfm2.var p >>> tfm3 = TransferFunctionMatrix([[G4]]) >>> tfm3.var s """ return self.args[0][0][0].var @property def num_inputs(self): """ Returns the number of inputs of the system. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> G1 = TransferFunction(s + 3, s**2 - 3, s) >>> G2 = TransferFunction(4, s**2, s) >>> G3 = TransferFunction(p**2 + s**2, p - 3, s) >>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]]) >>> tfm_1.num_inputs 3 See Also ======== num_outputs """ return self._expr_mat.shape[1] @property def num_outputs(self): """ Returns the number of outputs of the system. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix >>> M_1 = Matrix([[s], [1/s]]) >>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s) >>> print(TFM) TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),))) >>> TFM.num_outputs 2 See Also ======== num_inputs """ return self._expr_mat.shape[0] @property def shape(self): """ Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p) >>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p) >>> tf3 = TransferFunction(3, 4, p) >>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]]) >>> tfm1.shape (1, 2) >>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]]) >>> tfm2.shape (2, 2) """ return self._expr_mat.shape def __neg__(self): neg = -self._expr_mat return _to_TFM(neg, self.var) @_check_other_MIMO def __add__(self, other): if not isinstance(other, MIMOParallel): return MIMOParallel(self, other) other_arg_list = list(other.args) return MIMOParallel(self, *other_arg_list) @_check_other_MIMO def __sub__(self, other): return self + (-other) @_check_other_MIMO def __mul__(self, other): if not isinstance(other, MIMOSeries): return MIMOSeries(other, self) other_arg_list = list(other.args) return MIMOSeries(*other_arg_list, self) def __getitem__(self, key): trunc = self._expr_mat.__getitem__(key) if isinstance(trunc, ImmutableMatrix): return _to_TFM(trunc, self.var) return TransferFunction.from_rational_expression(trunc, self.var) def transpose(self): """Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers).""" transposed_mat = self._expr_mat.transpose() return _to_TFM(transposed_mat, self.var) def elem_poles(self): """ Returns the poles of each element of the ``TransferFunctionMatrix``. .. note:: Actual poles of a MIMO system are NOT the poles of individual elements. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_poles() [[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]] See Also ======== elem_zeros """ return [[element.poles() for element in row] for row in self.doit().args[0]] def elem_zeros(self): """ Returns the zeros of each element of the ``TransferFunctionMatrix``. .. note:: Actual zeros of a MIMO system are NOT the zeros of individual elements. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_zeros() [[[], [-6]], [[-3], [4, 5]]] See Also ======== elem_poles """ return [[element.zeros() for element in row] for row in self.doit().args[0]] def _flat(self): """Returns flattened list of args in TransferFunctionMatrix""" return [elem for tup in self.args[0] for elem in tup] def _eval_evalf(self, prec): """Calls evalf() on each transfer function in the transfer function matrix""" dps = prec_to_dps(prec) mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps)) return _to_TFM(mat, self.var) def _eval_simplify(self, **kwargs): """Simplifies the transfer function matrix""" simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False)) return _to_TFM(simp_mat, self.var) def expand(self, **hints): """Expands the transfer function matrix""" expand_mat = self._expr_mat.expand(**hints) return _to_TFM(expand_mat, self.var)
0ab3d849e745e3c16bc311ea80897a4943945c136635a322458d8b1da03f8940
from sympy.core.numbers import I from sympy.functions.elementary.exponential import (exp, log) from sympy.polys.partfrac import apart from sympy.core.symbol import Dummy from sympy.external import import_module from sympy.functions import arg, Abs from sympy.integrals.transforms import _fast_inverse_laplace from sympy.physics.control.lti import SISOLinearTimeInvariant from sympy.plotting.plot import LineOver1DRangeSeries from sympy.polys.polytools import Poly from sympy.printing.latex import latex __all__ = ['pole_zero_numerical_data', 'pole_zero_plot', 'step_response_numerical_data', 'step_response_plot', 'impulse_response_numerical_data', 'impulse_response_plot', 'ramp_response_numerical_data', 'ramp_response_plot', 'bode_magnitude_numerical_data', 'bode_phase_numerical_data', 'bode_magnitude_plot', 'bode_phase_plot', 'bode_plot'] matplotlib = import_module( 'matplotlib', import_kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) numpy = import_module('numpy') if matplotlib: plt = matplotlib.pyplot if numpy: np = numpy # Matplotlib already has numpy as a compulsory dependency. No need to install it separately. def _check_system(system): """Function to check whether the dynamical system passed for plots is compatible or not.""" if not isinstance(system, SISOLinearTimeInvariant): raise NotImplementedError("Only SISO LTI systems are currently supported.") sys = system.to_expr() len_free_symbols = len(sys.free_symbols) if len_free_symbols > 1: raise ValueError("Extra degree of freedom found. Make sure" " that there are no free symbols in the dynamical system other" " than the variable of Laplace transform.") if sys.has(exp): raise NotImplementedError("Time delay terms are not supported.") def pole_zero_numerical_data(system): """ Returns the numerical data of poles and zeros of the system. It is internally used by ``pole_zero_plot`` to get the data for plotting poles and zeros. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module. Parameters ========== system : SISOLinearTimeInvariant The system for which the pole-zero data is to be computed. Returns ======= tuple : (zeros, poles) zeros = Zeros of the system. NumPy array of complex numbers. poles = Poles of the system. NumPy array of complex numbers. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import pole_zero_numerical_data >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> pole_zero_numerical_data(tf1) # doctest: +SKIP ([-0.+1.j 0.-1.j], [-2. +0.j -0.5+0.8660254j -0.5-0.8660254j -1. +0.j ]) See Also ======== pole_zero_plot """ _check_system(system) system = system.doit() # Get the equivalent TransferFunction object. num_poly = Poly(system.num, system.var).all_coeffs() den_poly = Poly(system.den, system.var).all_coeffs() num_poly = np.array(num_poly, dtype=np.float64) den_poly = np.array(den_poly, dtype=np.float64) zeros = np.roots(num_poly) poles = np.roots(den_poly) return zeros, poles def pole_zero_plot(system, pole_color='blue', pole_markersize=10, zero_color='orange', zero_markersize=7, grid=True, show_axes=True, show=True, **kwargs): r""" Returns the Pole-Zero plot (also known as PZ Plot or PZ Map) of a system. A Pole-Zero plot is a graphical representation of a system's poles and zeros. It is plotted on a complex plane, with circular markers representing the system's zeros and 'x' shaped markers representing the system's poles. Parameters ========== system : SISOLinearTimeInvariant type systems The system for which the pole-zero plot is to be computed. pole_color : str, tuple, optional The color of the pole points on the plot. Default color is blue. The color can be provided as a matplotlib color string, or a 3-tuple of floats each in the 0-1 range. pole_markersize : Number, optional The size of the markers used to mark the poles in the plot. Default pole markersize is 10. zero_color : str, tuple, optional The color of the zero points on the plot. Default color is orange. The color can be provided as a matplotlib color string, or a 3-tuple of floats each in the 0-1 range. zero_markersize : Number, optional The size of the markers used to mark the zeros in the plot. Default zero markersize is 7. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import pole_zero_plot >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> pole_zero_plot(tf1) # doctest: +SKIP See Also ======== pole_zero_numerical_data References ========== .. [1] https://en.wikipedia.org/wiki/Pole%E2%80%93zero_plot """ zeros, poles = pole_zero_numerical_data(system) zero_real = np.real(zeros) zero_imag = np.imag(zeros) pole_real = np.real(poles) pole_imag = np.imag(poles) plt.plot(pole_real, pole_imag, 'x', mfc='none', markersize=pole_markersize, color=pole_color) plt.plot(zero_real, zero_imag, 'o', markersize=zero_markersize, color=zero_color) plt.xlabel('Real Axis') plt.ylabel('Imaginary Axis') plt.title(f'Poles and Zeros of ${latex(system)}$', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def step_response_numerical_data(system, prec=8, lower_limit=0, upper_limit=10, **kwargs): """ Returns the numerical values of the points in the step response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then ``adaptive`` kwarg should be passed ``False`` and ``nb_of_points`` must be passed as additional kwargs. Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries` for more details. Parameters ========== system : SISOLinearTimeInvariant The system for which the unit step response data is to be computed. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. kwargs : Additional keyword arguments are passed to the underlying :class:`sympy.plotting.plot.LineOver1DRangeSeries` class. Returns ======= tuple : (x, y) x = Time-axis values of the points in the step response. NumPy array. y = Amplitude-axis values of the points in the step response. NumPy array. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When ``lower_limit`` parameter is less than 0. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import step_response_numerical_data >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s) >>> step_response_numerical_data(tf1) # doctest: +SKIP ([0.0, 0.025413462339411542, 0.0484508722725343, ... , 9.670250533855183, 9.844291913708725, 10.0], [0.0, 0.023844582399907256, 0.042894276802320226, ..., 6.828770759094287e-12, 6.456457160755703e-12]) See Also ======== step_response_plot """ if lower_limit < 0: raise ValueError("Lower limit of time must be greater " "than or equal to zero.") _check_system(system) _x = Dummy("x") expr = system.to_expr()/(system.var) expr = apart(expr, system.var, full=True) _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec) return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit), **kwargs).get_points() def step_response_plot(system, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs): r""" Returns the unit step response of a continuous-time system. It is the response of the system when the input signal is a step function. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Step Response is to be computed. color : str, tuple, optional The color of the line. Default is Blue. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import step_response_plot >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s) >>> step_response_plot(tf1) # doctest: +SKIP See Also ======== impulse_response_plot, ramp_response_plot References ========== .. [1] https://www.mathworks.com/help/control/ref/lti.step.html """ x, y = step_response_numerical_data(system, prec=prec, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs) plt.plot(x, y, color=color) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title(f'Unit Step Response of ${latex(system)}$', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def impulse_response_numerical_data(system, prec=8, lower_limit=0, upper_limit=10, **kwargs): """ Returns the numerical values of the points in the impulse response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then ``adaptive`` kwarg should be passed ``False`` and ``nb_of_points`` must be passed as additional kwargs. Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries` for more details. Parameters ========== system : SISOLinearTimeInvariant The system for which the impulse response data is to be computed. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. kwargs : Additional keyword arguments are passed to the underlying :class:`sympy.plotting.plot.LineOver1DRangeSeries` class. Returns ======= tuple : (x, y) x = Time-axis values of the points in the impulse response. NumPy array. y = Amplitude-axis values of the points in the impulse response. NumPy array. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When ``lower_limit`` parameter is less than 0. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import impulse_response_numerical_data >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s) >>> impulse_response_numerical_data(tf1) # doctest: +SKIP ([0.0, 0.06616480200395854,... , 9.854500743565858, 10.0], [0.9999999799999999, 0.7042848373025861,...,7.170748906965121e-13, -5.1901263495547205e-12]) See Also ======== impulse_response_plot """ if lower_limit < 0: raise ValueError("Lower limit of time must be greater " "than or equal to zero.") _check_system(system) _x = Dummy("x") expr = system.to_expr() expr = apart(expr, system.var, full=True) _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec) return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit), **kwargs).get_points() def impulse_response_plot(system, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs): r""" Returns the unit impulse response (Input is the Dirac-Delta Function) of a continuous-time system. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Impulse Response is to be computed. color : str, tuple, optional The color of the line. Default is Blue. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import impulse_response_plot >>> tf1 = TransferFunction(8*s**2 + 18*s + 32, s**3 + 6*s**2 + 14*s + 24, s) >>> impulse_response_plot(tf1) # doctest: +SKIP See Also ======== step_response_plot, ramp_response_plot References ========== .. [1] https://www.mathworks.com/help/control/ref/lti.impulse.html """ x, y = impulse_response_numerical_data(system, prec=prec, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs) plt.plot(x, y, color=color) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title(f'Impulse Response of ${latex(system)}$', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def ramp_response_numerical_data(system, slope=1, prec=8, lower_limit=0, upper_limit=10, **kwargs): """ Returns the numerical values of the points in the ramp response plot of a SISO continuous-time system. By default, adaptive sampling is used. If the user wants to instead get an uniformly sampled response, then ``adaptive`` kwarg should be passed ``False`` and ``nb_of_points`` must be passed as additional kwargs. Refer to the parameters of class :class:`sympy.plotting.plot.LineOver1DRangeSeries` for more details. Parameters ========== system : SISOLinearTimeInvariant The system for which the ramp response data is to be computed. slope : Number, optional The slope of the input ramp function. Defaults to 1. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. kwargs : Additional keyword arguments are passed to the underlying :class:`sympy.plotting.plot.LineOver1DRangeSeries` class. Returns ======= tuple : (x, y) x = Time-axis values of the points in the ramp response plot. NumPy array. y = Amplitude-axis values of the points in the ramp response plot. NumPy array. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. When ``lower_limit`` parameter is less than 0. When ``slope`` is negative. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import ramp_response_numerical_data >>> tf1 = TransferFunction(s, s**2 + 5*s + 8, s) >>> ramp_response_numerical_data(tf1) # doctest: +SKIP (([0.0, 0.12166980856813935,..., 9.861246379582118, 10.0], [1.4504508011325967e-09, 0.006046440489058766,..., 0.12499999999568202, 0.12499999999661349])) See Also ======== ramp_response_plot """ if slope < 0: raise ValueError("Slope must be greater than or equal" " to zero.") if lower_limit < 0: raise ValueError("Lower limit of time must be greater " "than or equal to zero.") _check_system(system) _x = Dummy("x") expr = (slope*system.to_expr())/((system.var)**2) expr = apart(expr, system.var, full=True) _y = _fast_inverse_laplace(expr, system.var, _x).evalf(prec) return LineOver1DRangeSeries(_y, (_x, lower_limit, upper_limit), **kwargs).get_points() def ramp_response_plot(system, slope=1, color='b', prec=8, lower_limit=0, upper_limit=10, show_axes=False, grid=True, show=True, **kwargs): r""" Returns the ramp response of a continuous-time system. Ramp function is defined as the straight line passing through origin ($f(x) = mx$). The slope of the ramp function can be varied by the user and the default value is 1. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Ramp Response is to be computed. slope : Number, optional The slope of the input ramp function. Defaults to 1. color : str, tuple, optional The color of the line. Default is Blue. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. lower_limit : Number, optional The lower limit of the plot range. Defaults to 0. upper_limit : Number, optional The upper limit of the plot range. Defaults to 10. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import ramp_response_plot >>> tf1 = TransferFunction(s, (s+4)*(s+8), s) >>> ramp_response_plot(tf1, upper_limit=2) # doctest: +SKIP See Also ======== step_response_plot, ramp_response_plot References ========== .. [1] https://en.wikipedia.org/wiki/Ramp_function """ x, y = ramp_response_numerical_data(system, slope=slope, prec=prec, lower_limit=lower_limit, upper_limit=upper_limit, **kwargs) plt.plot(x, y, color=color) plt.xlabel('Time (s)') plt.ylabel('Amplitude') plt.title(f'Ramp Response of ${latex(system)}$ [Slope = {slope}]', pad=20) if grid: plt.grid() if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def bode_magnitude_numerical_data(system, initial_exp=-5, final_exp=5, **kwargs): """ Returns the numerical data of the Bode magnitude plot of the system. It is internally used by ``bode_magnitude_plot`` to get the data for plotting Bode magnitude plot. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module. Parameters ========== system : SISOLinearTimeInvariant The system for which the data is to be computed. initial_exp : Number, optional The initial exponent of 10 of the semilog plot. Defaults to -5. final_exp : Number, optional The final exponent of 10 of the semilog plot. Defaults to 5. Returns ======= tuple : (x, y) x = x-axis values of the Bode magnitude plot. y = y-axis values of the Bode magnitude plot. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import bode_magnitude_numerical_data >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> bode_magnitude_numerical_data(tf1) # doctest: +SKIP ([1e-05, 1.5148378120533502e-05,..., 68437.36188804005, 100000.0], [-6.020599914256786, -6.0205999155219505,..., -193.4117304087953, -200.00000000260573]) See Also ======== bode_magnitude_plot, bode_phase_numerical_data """ _check_system(system) expr = system.to_expr() _w = Dummy("w", real=True) w_expr = expr.subs({system.var: I*_w}) mag = 20*log(Abs(w_expr), 10) return LineOver1DRangeSeries(mag, (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points() def bode_magnitude_plot(system, initial_exp=-5, final_exp=5, color='b', show_axes=False, grid=True, show=True, **kwargs): r""" Returns the Bode magnitude plot of a continuous-time system. See ``bode_plot`` for all the parameters. """ x, y = bode_magnitude_numerical_data(system, initial_exp=initial_exp, final_exp=final_exp) plt.plot(x, y, color=color, **kwargs) plt.xscale('log') plt.xlabel('Frequency (Hz) [Log Scale]') plt.ylabel('Magnitude (dB)') plt.title(f'Bode Plot (Magnitude) of ${latex(system)}$', pad=20) if grid: plt.grid(True) if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def bode_phase_numerical_data(system, initial_exp=-5, final_exp=5, **kwargs): """ Returns the numerical data of the Bode phase plot of the system. It is internally used by ``bode_phase_plot`` to get the data for plotting Bode phase plot. Users can use this data to further analyse the dynamics of the system or plot using a different backend/plotting-module. Parameters ========== system : SISOLinearTimeInvariant The system for which the Bode phase plot data is to be computed. initial_exp : Number, optional The initial exponent of 10 of the semilog plot. Defaults to -5. final_exp : Number, optional The final exponent of 10 of the semilog plot. Defaults to 5. Returns ======= tuple : (x, y) x = x-axis values of the Bode phase plot. y = y-axis values of the Bode phase plot. Raises ====== NotImplementedError When a SISO LTI system is not passed. When time delay terms are present in the system. ValueError When more than one free symbol is present in the system. The only variable in the transfer function should be the variable of the Laplace transform. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import bode_phase_numerical_data >>> tf1 = TransferFunction(s**2 + 1, s**4 + 4*s**3 + 6*s**2 + 5*s + 2, s) >>> bode_phase_numerical_data(tf1) # doctest: +SKIP ([1e-05, 1.4472354033813751e-05, 2.035581932165858e-05,..., 47577.3248186011, 67884.09326036123, 100000.0], [-2.5000000000291665e-05, -3.6180885085e-05, -5.08895483066e-05,...,-3.1415085799262523, -3.14155265358979]) See Also ======== bode_magnitude_plot, bode_phase_numerical_data """ _check_system(system) expr = system.to_expr() _w = Dummy("w", real=True) w_expr = expr.subs({system.var: I*_w}) phase = arg(w_expr) return LineOver1DRangeSeries(phase, (_w, 10**initial_exp, 10**final_exp), xscale='log', **kwargs).get_points() def bode_phase_plot(system, initial_exp=-5, final_exp=5, color='b', show_axes=False, grid=True, show=True, **kwargs): r""" Returns the Bode phase plot of a continuous-time system. See ``bode_plot`` for all the parameters. """ x, y = bode_phase_numerical_data(system, initial_exp=initial_exp, final_exp=final_exp) plt.plot(x, y, color=color, **kwargs) plt.xscale('log') plt.xlabel('Frequency (Hz) [Log Scale]') plt.ylabel('Phase (rad)') plt.title(f'Bode Plot (Phase) of ${latex(system)}$', pad=20) if grid: plt.grid(True) if show_axes: plt.axhline(0, color='black') plt.axvline(0, color='black') if show: plt.show() return return plt def bode_plot(system, initial_exp=-5, final_exp=5, grid=True, show_axes=False, show=True, **kwargs): r""" Returns the Bode phase and magnitude plots of a continuous-time system. Parameters ========== system : SISOLinearTimeInvariant type The LTI SISO system for which the Bode Plot is to be computed. initial_exp : Number, optional The initial exponent of 10 of the semilog plot. Defaults to -5. final_exp : Number, optional The final exponent of 10 of the semilog plot. Defaults to 5. show : boolean, optional If ``True``, the plot will be displayed otherwise the equivalent matplotlib ``plot`` object will be returned. Defaults to True. prec : int, optional The decimal point precision for the point coordinate values. Defaults to 8. grid : boolean, optional If ``True``, the plot will have a grid. Defaults to True. show_axes : boolean, optional If ``True``, the coordinate axes will be shown. Defaults to False. Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction >>> from sympy.physics.control.control_plots import bode_plot >>> tf1 = TransferFunction(1*s**2 + 0.1*s + 7.5, 1*s**4 + 0.12*s**3 + 9*s**2, s) >>> bode_plot(tf1, initial_exp=0.2, final_exp=0.7) # doctest: +SKIP See Also ======== bode_magnitude_plot, bode_phase_plot """ plt.subplot(211) bode_magnitude_plot(system, initial_exp=initial_exp, final_exp=final_exp, show=False, grid=grid, show_axes=show_axes, **kwargs).title(f'Bode Plot of ${latex(system)}$', pad=20) plt.subplot(212) bode_phase_plot(system, initial_exp=initial_exp, final_exp=final_exp, show=False, grid=grid, show_axes=show_axes, **kwargs).title(None) if show: plt.show() return return plt
4ba7cf9246267d7f042c139cf44493fbc5e743582da523817ddd8ac0b18a758a
"""A cache for storing small matrices in multiple formats.""" from sympy.core.numbers import (I, Rational, pi) from sympy.core.power import Pow from sympy.functions.elementary.exponential import exp from sympy.matrices.dense import Matrix from sympy.physics.quantum.matrixutils import ( to_sympy, to_numpy, to_scipy_sparse ) class MatrixCache: """A cache for small matrices in different formats. This class takes small matrices in the standard ``sympy.Matrix`` format, and then converts these to both ``numpy.matrix`` and ``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for future recovery. """ def __init__(self, dtype='complex'): self._cache = {} self.dtype = dtype def cache_matrix(self, name, m): """Cache a matrix by its name. Parameters ---------- name : str A descriptive name for the matrix, like "identity2". m : list of lists The raw matrix data as a SymPy Matrix. """ try: self._sympy_matrix(name, m) except ImportError: pass try: self._numpy_matrix(name, m) except ImportError: pass try: self._scipy_sparse_matrix(name, m) except ImportError: pass def get_matrix(self, name, format): """Get a cached matrix by name and format. Parameters ---------- name : str A descriptive name for the matrix, like "identity2". format : str The format desired ('sympy', 'numpy', 'scipy.sparse') """ m = self._cache.get((name, format)) if m is not None: return m raise NotImplementedError( 'Matrix with name %s and format %s is not available.' % (name, format) ) def _store_matrix(self, name, format, m): self._cache[(name, format)] = m def _sympy_matrix(self, name, m): self._store_matrix(name, 'sympy', to_sympy(m)) def _numpy_matrix(self, name, m): m = to_numpy(m, dtype=self.dtype) self._store_matrix(name, 'numpy', m) def _scipy_sparse_matrix(self, name, m): # TODO: explore different sparse formats. But sparse.kron will use # coo in most cases, so we use that here. m = to_scipy_sparse(m, dtype=self.dtype) self._store_matrix(name, 'scipy.sparse', m) sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False) # Save the common matrices that we will need matrix_cache = MatrixCache() matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]])) matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) # |1><1| matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) # |0><0| matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) # |1><0| matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) # |0><1| matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]])) matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]])) matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]])) matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]])) matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]])) matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]])) matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]])) matrix_cache.cache_matrix( 'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])) matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]])) matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]]))
37acee57667106f33fe8b51a52103a4a3454bd9e4b791ca692dba024f0bc5ece
"""Shor's algorithm and helper functions. Todo: * Get the CMod gate working again using the new Gate API. * Fix everything. * Update docstrings and reformat. """ import math import random from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.functions.elementary.exponential import log from sympy.functions.elementary.miscellaneous import sqrt from sympy.core.numbers import igcd from sympy.ntheory import continued_fraction_periodic as continued_fraction from sympy.utilities.iterables import variations from sympy.physics.quantum.gate import Gate from sympy.physics.quantum.qubit import Qubit, measure_partial_oneshot from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qft import QFT from sympy.physics.quantum.qexpr import QuantumError class OrderFindingException(QuantumError): pass class CMod(Gate): """A controlled mod gate. This is black box controlled Mod function for use by shor's algorithm. TODO: implement a decompose property that returns how to do this in terms of elementary gates """ @classmethod def _eval_args(cls, args): # t = args[0] # a = args[1] # N = args[2] raise NotImplementedError('The CMod gate has not been completed.') @property def t(self): """Size of 1/2 input register. First 1/2 holds output.""" return self.label[0] @property def a(self): """Base of the controlled mod function.""" return self.label[1] @property def N(self): """N is the type of modular arithmetic we are doing.""" return self.label[2] def _apply_operator_Qubit(self, qubits, **options): """ This directly calculates the controlled mod of the second half of the register and puts it in the second This will look pretty when we get Tensor Symbolically working """ n = 1 k = 0 # Determine the value stored in high memory. for i in range(self.t): k += n*qubits[self.t + i] n *= 2 # The value to go in low memory will be out. out = int(self.a**k % self.N) # Create array for new qbit-ket which will have high memory unaffected outarray = list(qubits.args[0][:self.t]) # Place out in low memory for i in reversed(range(self.t)): outarray.append((out >> i) & 1) return Qubit(*outarray) def shor(N): """This function implements Shor's factoring algorithm on the Integer N The algorithm starts by picking a random number (a) and seeing if it is coprime with N. If it isn't, then the gcd of the two numbers is a factor and we are done. Otherwise, it begins the period_finding subroutine which finds the period of a in modulo N arithmetic. This period, if even, can be used to calculate factors by taking a**(r/2)-1 and a**(r/2)+1. These values are returned. """ a = random.randrange(N - 2) + 2 if igcd(N, a) != 1: return igcd(N, a) r = period_find(a, N) if r % 2 == 1: shor(N) answer = (igcd(a**(r/2) - 1, N), igcd(a**(r/2) + 1, N)) return answer def getr(x, y, N): fraction = continued_fraction(x, y) # Now convert into r total = ratioize(fraction, N) return total def ratioize(list, N): if list[0] > N: return S.Zero if len(list) == 1: return list[0] return list[0] + ratioize(list[1:], N) def period_find(a, N): """Finds the period of a in modulo N arithmetic This is quantum part of Shor's algorithm. It takes two registers, puts first in superposition of states with Hadamards so: ``|k>|0>`` with k being all possible choices. It then does a controlled mod and a QFT to determine the order of a. """ epsilon = .5 # picks out t's such that maintains accuracy within epsilon t = int(2*math.ceil(log(N, 2))) # make the first half of register be 0's |000...000> start = [0 for x in range(t)] # Put second half into superposition of states so we have |1>x|0> + |2>x|0> + ... |k>x>|0> + ... + |2**n-1>x|0> factor = 1/sqrt(2**t) qubits = 0 for arr in variations(range(2), t, repetition=True): qbitArray = list(arr) + start qubits = qubits + Qubit(*qbitArray) circuit = (factor*qubits).expand() # Controlled second half of register so that we have: # |1>x|a**1 %N> + |2>x|a**2 %N> + ... + |k>x|a**k %N >+ ... + |2**n-1=k>x|a**k % n> circuit = CMod(t, a, N)*circuit # will measure first half of register giving one of the a**k%N's circuit = qapply(circuit) for i in range(t): circuit = measure_partial_oneshot(circuit, i) # Now apply Inverse Quantum Fourier Transform on the second half of the register circuit = qapply(QFT(t, t*2).decompose()*circuit, floatingPoint=True) for i in range(t): circuit = measure_partial_oneshot(circuit, i + t) if isinstance(circuit, Qubit): register = circuit elif isinstance(circuit, Mul): register = circuit.args[-1] else: register = circuit.args[-1].args[-1] n = 1 answer = 0 for i in range(len(register)/2): answer += n*register[i + t] n = n << 1 if answer == 0: raise OrderFindingException( "Order finder returned 0. Happens with chance %f" % epsilon) #turn answer into r using continued fractions g = getr(answer, 2**t, N) return g
232eb2778d6510db82794e632d763b3b713f49cdd200708ddd7e5b134b108a25
"""An implementation of qubits and gates acting on them. Todo: * Update docstrings. * Update tests. * Implement apply using decompose. * Implement represent using decompose or something smarter. For this to work we first have to implement represent for SWAP. * Decide if we want upper index to be inclusive in the constructor. * Fix the printing of Rk gates in plotting. """ from sympy.core.expr import Expr from sympy.core.numbers import (I, Integer, pi) from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.matrices.dense import Matrix from sympy.functions import sqrt from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qexpr import QuantumError, QExpr from sympy.matrices import eye from sympy.physics.quantum.tensorproduct import matrix_tensor_product from sympy.physics.quantum.gate import ( Gate, HadamardGate, SwapGate, OneQubitGate, CGate, PhaseGate, TGate, ZGate ) __all__ = [ 'QFT', 'IQFT', 'RkGate', 'Rk' ] #----------------------------------------------------------------------------- # Fourier stuff #----------------------------------------------------------------------------- class RkGate(OneQubitGate): """This is the R_k gate of the QTF.""" gate_name = 'Rk' gate_name_latex = 'R' def __new__(cls, *args): if len(args) != 2: raise QuantumError( 'Rk gates only take two arguments, got: %r' % args ) # For small k, Rk gates simplify to other gates, using these # substitutions give us familiar results for the QFT for small numbers # of qubits. target = args[0] k = args[1] if k == 1: return ZGate(target) elif k == 2: return PhaseGate(target) elif k == 3: return TGate(target) args = cls._eval_args(args) inst = Expr.__new__(cls, *args) inst.hilbert_space = cls._eval_hilbert_space(args) return inst @classmethod def _eval_args(cls, args): # Fall back to this, because Gate._eval_args assumes that args is # all targets and can't contain duplicates. return QExpr._eval_args(args) @property def k(self): return self.label[1] @property def targets(self): return self.label[:1] @property def gate_name_plot(self): return r'$%s_%s$' % (self.gate_name_latex, str(self.k)) def get_target_matrix(self, format='sympy'): if format == 'sympy': return Matrix([[1, 0], [0, exp(Integer(2)*pi*I/(Integer(2)**self.k))]]) raise NotImplementedError( 'Invalid format for the R_k gate: %r' % format) Rk = RkGate class Fourier(Gate): """Superclass of Quantum Fourier and Inverse Quantum Fourier Gates.""" @classmethod def _eval_args(self, args): if len(args) != 2: raise QuantumError( 'QFT/IQFT only takes two arguments, got: %r' % args ) if args[0] >= args[1]: raise QuantumError("Start must be smaller than finish") return Gate._eval_args(args) def _represent_default_basis(self, **options): return self._represent_ZGate(None, **options) def _represent_ZGate(self, basis, **options): """ Represents the (I)QFT In the Z Basis """ nqubits = options.get('nqubits', 0) if nqubits == 0: raise QuantumError( 'The number of qubits must be given as nqubits.') if nqubits < self.min_qubits: raise QuantumError( 'The number of qubits %r is too small for the gate.' % nqubits ) size = self.size omega = self.omega #Make a matrix that has the basic Fourier Transform Matrix arrayFT = [[omega**( i*j % size)/sqrt(size) for i in range(size)] for j in range(size)] matrixFT = Matrix(arrayFT) #Embed the FT Matrix in a higher space, if necessary if self.label[0] != 0: matrixFT = matrix_tensor_product(eye(2**self.label[0]), matrixFT) if self.min_qubits < nqubits: matrixFT = matrix_tensor_product( matrixFT, eye(2**(nqubits - self.min_qubits))) return matrixFT @property def targets(self): return range(self.label[0], self.label[1]) @property def min_qubits(self): return self.label[1] @property def size(self): """Size is the size of the QFT matrix""" return 2**(self.label[1] - self.label[0]) @property def omega(self): return Symbol('omega') class QFT(Fourier): """The forward quantum Fourier transform.""" gate_name = 'QFT' gate_name_latex = 'QFT' def decompose(self): """Decomposes QFT into elementary gates.""" start = self.label[0] finish = self.label[1] circuit = 1 for level in reversed(range(start, finish)): circuit = HadamardGate(level)*circuit for i in range(level - start): circuit = CGate(level - i - 1, RkGate(level, i + 2))*circuit for i in range((finish - start)//2): circuit = SwapGate(i + start, finish - i - 1)*circuit return circuit def _apply_operator_Qubit(self, qubits, **options): return qapply(self.decompose()*qubits) def _eval_inverse(self): return IQFT(*self.args) @property def omega(self): return exp(2*pi*I/self.size) class IQFT(Fourier): """The inverse quantum Fourier transform.""" gate_name = 'IQFT' gate_name_latex = '{QFT^{-1}}' def decompose(self): """Decomposes IQFT into elementary gates.""" start = self.args[0] finish = self.args[1] circuit = 1 for i in range((finish - start)//2): circuit = SwapGate(i + start, finish - i - 1)*circuit for level in range(start, finish): for i in reversed(range(level - start)): circuit = CGate(level - i - 1, RkGate(level, -i - 2))*circuit circuit = HadamardGate(level)*circuit return circuit def _eval_inverse(self): return QFT(*self.args) @property def omega(self): return exp(-2*pi*I/self.size)
28e7875dbe7686f47521b78dc25354df428f883f71bfb4b56b6768c2442a04b3
"""Hermitian conjugation.""" from sympy.core import Expr, Mul from sympy.functions.elementary.complexes import adjoint __all__ = [ 'Dagger' ] class Dagger(adjoint): """General Hermitian conjugate operation. Explanation =========== Take the Hermetian conjugate of an argument [1]_. For matrices this operation is equivalent to transpose and complex conjugate [2]_. Parameters ========== arg : Expr The SymPy expression that we want to take the dagger of. Examples ======== Daggering various quantum objects: >>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.state import Ket, Bra >>> from sympy.physics.quantum.operator import Operator >>> Dagger(Ket('psi')) <psi| >>> Dagger(Bra('phi')) |phi> >>> Dagger(Operator('A')) Dagger(A) Inner and outer products:: >>> from sympy.physics.quantum import InnerProduct, OuterProduct >>> Dagger(InnerProduct(Bra('a'), Ket('b'))) <b|a> >>> Dagger(OuterProduct(Ket('a'), Bra('b'))) |b><a| Powers, sums and products:: >>> A = Operator('A') >>> B = Operator('B') >>> Dagger(A*B) Dagger(B)*Dagger(A) >>> Dagger(A+B) Dagger(A) + Dagger(B) >>> Dagger(A**2) Dagger(A)**2 Dagger also seamlessly handles complex numbers and matrices:: >>> from sympy import Matrix, I >>> m = Matrix([[1,I],[2,I]]) >>> m Matrix([ [1, I], [2, I]]) >>> Dagger(m) Matrix([ [ 1, 2], [-I, -I]]) References ========== .. [1] https://en.wikipedia.org/wiki/Hermitian_adjoint .. [2] https://en.wikipedia.org/wiki/Hermitian_transpose """ def __new__(cls, arg): if hasattr(arg, 'adjoint'): obj = arg.adjoint() elif hasattr(arg, 'conjugate') and hasattr(arg, 'transpose'): obj = arg.conjugate().transpose() if obj is not None: return obj return Expr.__new__(cls, arg) def __mul__(self, other): from sympy.physics.quantum import IdentityOperator if isinstance(other, IdentityOperator): return self return Mul(self, other) adjoint.__name__ = "Dagger" adjoint._sympyrepr = lambda a, b: "Dagger(%s)" % b._print(a.args[0])
93ca390f0af67a2dd1ce16fa679bb8a509cca27fe785f6a4e9f6db3eb466badb
from collections import deque from random import randint from sympy.external import import_module from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.numbers import Number from sympy.core.power import Pow from sympy.core.singleton import S from sympy.physics.quantum.represent import represent from sympy.physics.quantum.dagger import Dagger __all__ = [ # Public interfaces 'generate_gate_rules', 'generate_equivalent_ids', 'GateIdentity', 'bfs_identity_search', 'random_identity_search', # "Private" functions 'is_scalar_sparse_matrix', 'is_scalar_nonsparse_matrix', 'is_degenerate', 'is_reducible', ] np = import_module('numpy') scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def is_scalar_sparse_matrix(circuit, nqubits, identity_only, eps=1e-11): """Checks if a given scipy.sparse matrix is a scalar matrix. A scalar matrix is such that B = bI, where B is the scalar matrix, b is some scalar multiple, and I is the identity matrix. A scalar matrix would have only the element b along it's main diagonal and zeroes elsewhere. Parameters ========== circuit : Gate tuple Sequence of quantum gates representing a quantum circuit nqubits : int Number of qubits in the circuit identity_only : bool Check for only identity matrices eps : number The tolerance value for zeroing out elements in the matrix. Values in the range [-eps, +eps] will be changed to a zero. """ if not np or not scipy: pass matrix = represent(Mul(*circuit), nqubits=nqubits, format='scipy.sparse') # In some cases, represent returns a 1D scalar value in place # of a multi-dimensional scalar matrix if (isinstance(matrix, int)): return matrix == 1 if identity_only else True # If represent returns a matrix, check if the matrix is diagonal # and if every item along the diagonal is the same else: # Due to floating pointing operations, must zero out # elements that are "very" small in the dense matrix # See parameter for default value. # Get the ndarray version of the dense matrix dense_matrix = matrix.todense().getA() # Since complex values can't be compared, must split # the matrix into real and imaginary components # Find the real values in between -eps and eps bool_real = np.logical_and(dense_matrix.real > -eps, dense_matrix.real < eps) # Find the imaginary values between -eps and eps bool_imag = np.logical_and(dense_matrix.imag > -eps, dense_matrix.imag < eps) # Replaces values between -eps and eps with 0 corrected_real = np.where(bool_real, 0.0, dense_matrix.real) corrected_imag = np.where(bool_imag, 0.0, dense_matrix.imag) # Convert the matrix with real values into imaginary values corrected_imag = corrected_imag * complex(1j) # Recombine the real and imaginary components corrected_dense = corrected_real + corrected_imag # Check if it's diagonal row_indices = corrected_dense.nonzero()[0] col_indices = corrected_dense.nonzero()[1] # Check if the rows indices and columns indices are the same # If they match, then matrix only contains elements along diagonal bool_indices = row_indices == col_indices is_diagonal = bool_indices.all() first_element = corrected_dense[0][0] # If the first element is a zero, then can't rescale matrix # and definitely not diagonal if (first_element == 0.0 + 0.0j): return False # The dimensions of the dense matrix should still # be 2^nqubits if there are elements all along the # the main diagonal trace_of_corrected = (corrected_dense/first_element).trace() expected_trace = pow(2, nqubits) has_correct_trace = trace_of_corrected == expected_trace # If only looking for identity matrices # first element must be a 1 real_is_one = abs(first_element.real - 1.0) < eps imag_is_zero = abs(first_element.imag) < eps is_one = real_is_one and imag_is_zero is_identity = is_one if identity_only else True return bool(is_diagonal and has_correct_trace and is_identity) def is_scalar_nonsparse_matrix(circuit, nqubits, identity_only, eps=None): """Checks if a given circuit, in matrix form, is equivalent to a scalar value. Parameters ========== circuit : Gate tuple Sequence of quantum gates representing a quantum circuit nqubits : int Number of qubits in the circuit identity_only : bool Check for only identity matrices eps : number This argument is ignored. It is just for signature compatibility with is_scalar_sparse_matrix. Note: Used in situations when is_scalar_sparse_matrix has bugs """ matrix = represent(Mul(*circuit), nqubits=nqubits) # In some cases, represent returns a 1D scalar value in place # of a multi-dimensional scalar matrix if (isinstance(matrix, Number)): return matrix == 1 if identity_only else True # If represent returns a matrix, check if the matrix is diagonal # and if every item along the diagonal is the same else: # Added up the diagonal elements matrix_trace = matrix.trace() # Divide the trace by the first element in the matrix # if matrix is not required to be the identity matrix adjusted_matrix_trace = (matrix_trace/matrix[0] if not identity_only else matrix_trace) is_identity = matrix[0] == 1.0 if identity_only else True has_correct_trace = adjusted_matrix_trace == pow(2, nqubits) # The matrix is scalar if it's diagonal and the adjusted trace # value is equal to 2^nqubits return bool( matrix.is_diagonal() and has_correct_trace and is_identity) if np and scipy: is_scalar_matrix = is_scalar_sparse_matrix else: is_scalar_matrix = is_scalar_nonsparse_matrix def _get_min_qubits(a_gate): if isinstance(a_gate, Pow): return a_gate.base.min_qubits else: return a_gate.min_qubits def ll_op(left, right): """Perform a LL operation. A LL operation multiplies both left and right circuits with the dagger of the left circuit's leftmost gate, and the dagger is multiplied on the left side of both circuits. If a LL is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a LL is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a LL operation: >>> from sympy.physics.quantum.identitysearch import ll_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> ll_op((x, y, z), ()) ((Y(0), Z(0)), (X(0),)) >>> ll_op((y, z), (x,)) ((Z(0),), (Y(0), X(0))) """ if (len(left) > 0): ll_gate = left[0] ll_gate_is_unitary = is_scalar_matrix( (Dagger(ll_gate), ll_gate), _get_min_qubits(ll_gate), True) if (len(left) > 0 and ll_gate_is_unitary): # Get the new left side w/o the leftmost gate new_left = left[1:len(left)] # Add the leftmost gate to the left position on the right side new_right = (Dagger(ll_gate),) + right # Return the new gate rule return (new_left, new_right) return None def lr_op(left, right): """Perform a LR operation. A LR operation multiplies both left and right circuits with the dagger of the left circuit's rightmost gate, and the dagger is multiplied on the right side of both circuits. If a LR is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a LR is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a LR operation: >>> from sympy.physics.quantum.identitysearch import lr_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> lr_op((x, y, z), ()) ((X(0), Y(0)), (Z(0),)) >>> lr_op((x, y), (z,)) ((X(0),), (Z(0), Y(0))) """ if (len(left) > 0): lr_gate = left[len(left) - 1] lr_gate_is_unitary = is_scalar_matrix( (Dagger(lr_gate), lr_gate), _get_min_qubits(lr_gate), True) if (len(left) > 0 and lr_gate_is_unitary): # Get the new left side w/o the rightmost gate new_left = left[0:len(left) - 1] # Add the rightmost gate to the right position on the right side new_right = right + (Dagger(lr_gate),) # Return the new gate rule return (new_left, new_right) return None def rl_op(left, right): """Perform a RL operation. A RL operation multiplies both left and right circuits with the dagger of the right circuit's leftmost gate, and the dagger is multiplied on the left side of both circuits. If a RL is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a RL is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a RL operation: >>> from sympy.physics.quantum.identitysearch import rl_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> rl_op((x,), (y, z)) ((Y(0), X(0)), (Z(0),)) >>> rl_op((x, y), (z,)) ((Z(0), X(0), Y(0)), ()) """ if (len(right) > 0): rl_gate = right[0] rl_gate_is_unitary = is_scalar_matrix( (Dagger(rl_gate), rl_gate), _get_min_qubits(rl_gate), True) if (len(right) > 0 and rl_gate_is_unitary): # Get the new right side w/o the leftmost gate new_right = right[1:len(right)] # Add the leftmost gate to the left position on the left side new_left = (Dagger(rl_gate),) + left # Return the new gate rule return (new_left, new_right) return None def rr_op(left, right): """Perform a RR operation. A RR operation multiplies both left and right circuits with the dagger of the right circuit's rightmost gate, and the dagger is multiplied on the right side of both circuits. If a RR is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a RR is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a RR operation: >>> from sympy.physics.quantum.identitysearch import rr_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> rr_op((x, y), (z,)) ((X(0), Y(0), Z(0)), ()) >>> rr_op((x,), (y, z)) ((X(0), Z(0)), (Y(0),)) """ if (len(right) > 0): rr_gate = right[len(right) - 1] rr_gate_is_unitary = is_scalar_matrix( (Dagger(rr_gate), rr_gate), _get_min_qubits(rr_gate), True) if (len(right) > 0 and rr_gate_is_unitary): # Get the new right side w/o the rightmost gate new_right = right[0:len(right) - 1] # Add the rightmost gate to the right position on the right side new_left = left + (Dagger(rr_gate),) # Return the new gate rule return (new_left, new_right) return None def generate_gate_rules(gate_seq, return_as_muls=False): """Returns a set of gate rules. Each gate rules is represented as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary scalar value. This function uses the four operations (LL, LR, RL, RR) to generate the gate rules. A gate rule is an expression such as ABC = D or AB = CD, where A, B, C, and D are gates. Each value on either side of the equal sign represents a circuit. The four operations allow one to find a set of equivalent circuits from a gate identity. The letters denoting the operation tell the user what activities to perform on each expression. The first letter indicates which side of the equal sign to focus on. The second letter indicates which gate to focus on given the side. Once this information is determined, the inverse of the gate is multiplied on both circuits to create a new gate rule. For example, given the identity, ABCD = 1, a LL operation means look at the left value and multiply both left sides by the inverse of the leftmost gate A. If A is Hermitian, the inverse of A is still A. The resulting new rule is BCD = A. The following is a summary of the four operations. Assume that in the examples, all gates are Hermitian. LL : left circuit, left multiply ABCD = E -> AABCD = AE -> BCD = AE LR : left circuit, right multiply ABCD = E -> ABCDD = ED -> ABC = ED RL : right circuit, left multiply ABC = ED -> EABC = EED -> EABC = D RR : right circuit, right multiply AB = CD -> ABD = CDD -> ABD = C The number of gate rules generated is n*(n+1), where n is the number of gates in the sequence (unproven). Parameters ========== gate_seq : Gate tuple, Mul, or Number A variable length tuple or Mul of Gates whose product is equal to a scalar matrix return_as_muls : bool True to return a set of Muls; False to return a set of tuples Examples ======== Find the gate rules of the current circuit using tuples: >>> from sympy.physics.quantum.identitysearch import generate_gate_rules >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> generate_gate_rules((x, x)) {((X(0),), (X(0),)), ((X(0), X(0)), ())} >>> generate_gate_rules((x, y, z)) {((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))), ((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))), ((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))), ((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)), ((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()), ((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())} Find the gate rules of the current circuit using Muls: >>> generate_gate_rules(x*x, return_as_muls=True) {(1, 1)} >>> generate_gate_rules(x*y*z, return_as_muls=True) {(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)), (1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)), (Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)), (X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1), (Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)), (Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))} """ if isinstance(gate_seq, Number): if return_as_muls: return {(S.One, S.One)} else: return {((), ())} elif isinstance(gate_seq, Mul): gate_seq = gate_seq.args # Each item in queue is a 3-tuple: # i) first item is the left side of an equality # ii) second item is the right side of an equality # iii) third item is the number of operations performed # The argument, gate_seq, will start on the left side, and # the right side will be empty, implying the presence of an # identity. queue = deque() # A set of gate rules rules = set() # Maximum number of operations to perform max_ops = len(gate_seq) def process_new_rule(new_rule, ops): if new_rule is not None: new_left, new_right = new_rule if new_rule not in rules and (new_right, new_left) not in rules: rules.add(new_rule) # If haven't reached the max limit on operations if ops + 1 < max_ops: queue.append(new_rule + (ops + 1,)) queue.append((gate_seq, (), 0)) rules.add((gate_seq, ())) while len(queue) > 0: left, right, ops = queue.popleft() # Do a LL new_rule = ll_op(left, right) process_new_rule(new_rule, ops) # Do a LR new_rule = lr_op(left, right) process_new_rule(new_rule, ops) # Do a RL new_rule = rl_op(left, right) process_new_rule(new_rule, ops) # Do a RR new_rule = rr_op(left, right) process_new_rule(new_rule, ops) if return_as_muls: # Convert each rule as tuples into a rule as muls mul_rules = set() for rule in rules: left, right = rule mul_rules.add((Mul(*left), Mul(*right))) rules = mul_rules return rules def generate_equivalent_ids(gate_seq, return_as_muls=False): """Returns a set of equivalent gate identities. A gate identity is a quantum circuit such that the product of the gates in the circuit is equal to a scalar value. For example, XYZ = i, where X, Y, Z are the Pauli gates and i is the imaginary value, is considered a gate identity. This function uses the four operations (LL, LR, RL, RR) to generate the gate rules and, subsequently, to locate equivalent gate identities. Note that all equivalent identities are reachable in n operations from the starting gate identity, where n is the number of gates in the sequence. The max number of gate identities is 2n, where n is the number of gates in the sequence (unproven). Parameters ========== gate_seq : Gate tuple, Mul, or Number A variable length tuple or Mul of Gates whose product is equal to a scalar matrix. return_as_muls: bool True to return as Muls; False to return as tuples Examples ======== Find equivalent gate identities from the current circuit with tuples: >>> from sympy.physics.quantum.identitysearch import generate_equivalent_ids >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> generate_equivalent_ids((x, x)) {(X(0), X(0))} >>> generate_equivalent_ids((x, y, z)) {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)), (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))} Find equivalent gate identities from the current circuit with Muls: >>> generate_equivalent_ids(x*x, return_as_muls=True) {1} >>> generate_equivalent_ids(x*y*z, return_as_muls=True) {X(0)*Y(0)*Z(0), X(0)*Z(0)*Y(0), Y(0)*X(0)*Z(0), Y(0)*Z(0)*X(0), Z(0)*X(0)*Y(0), Z(0)*Y(0)*X(0)} """ if isinstance(gate_seq, Number): return {S.One} elif isinstance(gate_seq, Mul): gate_seq = gate_seq.args # Filter through the gate rules and keep the rules # with an empty tuple either on the left or right side # A set of equivalent gate identities eq_ids = set() gate_rules = generate_gate_rules(gate_seq) for rule in gate_rules: l, r = rule if l == (): eq_ids.add(r) elif r == (): eq_ids.add(l) if return_as_muls: convert_to_mul = lambda id_seq: Mul(*id_seq) eq_ids = set(map(convert_to_mul, eq_ids)) return eq_ids class GateIdentity(Basic): """Wrapper class for circuits that reduce to a scalar value. A gate identity is a quantum circuit such that the product of the gates in the circuit is equal to a scalar value. For example, XYZ = i, where X, Y, Z are the Pauli gates and i is the imaginary value, is considered a gate identity. Parameters ========== args : Gate tuple A variable length tuple of Gates that form an identity. Examples ======== Create a GateIdentity and look at its attributes: >>> from sympy.physics.quantum.identitysearch import GateIdentity >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> an_identity = GateIdentity(x, y, z) >>> an_identity.circuit X(0)*Y(0)*Z(0) >>> an_identity.equivalent_ids {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)), (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))} """ def __new__(cls, *args): # args should be a tuple - a variable length argument list obj = Basic.__new__(cls, *args) obj._circuit = Mul(*args) obj._rules = generate_gate_rules(args) obj._eq_ids = generate_equivalent_ids(args) return obj @property def circuit(self): return self._circuit @property def gate_rules(self): return self._rules @property def equivalent_ids(self): return self._eq_ids @property def sequence(self): return self.args def __str__(self): """Returns the string of gates in a tuple.""" return str(self.circuit) def is_degenerate(identity_set, gate_identity): """Checks if a gate identity is a permutation of another identity. Parameters ========== identity_set : set A Python set with GateIdentity objects. gate_identity : GateIdentity The GateIdentity to check for existence in the set. Examples ======== Check if the identity is a permutation of another identity: >>> from sympy.physics.quantum.identitysearch import ( ... GateIdentity, is_degenerate) >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> an_identity = GateIdentity(x, y, z) >>> id_set = {an_identity} >>> another_id = (y, z, x) >>> is_degenerate(id_set, another_id) True >>> another_id = (x, x) >>> is_degenerate(id_set, another_id) False """ # For now, just iteratively go through the set and check if the current # gate_identity is a permutation of an identity in the set for an_id in identity_set: if (gate_identity in an_id.equivalent_ids): return True return False def is_reducible(circuit, nqubits, begin, end): """Determines if a circuit is reducible by checking if its subcircuits are scalar values. Parameters ========== circuit : Gate tuple A tuple of Gates representing a circuit. The circuit to check if a gate identity is contained in a subcircuit. nqubits : int The number of qubits the circuit operates on. begin : int The leftmost gate in the circuit to include in a subcircuit. end : int The rightmost gate in the circuit to include in a subcircuit. Examples ======== Check if the circuit can be reduced: >>> from sympy.physics.quantum.identitysearch import is_reducible >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> is_reducible((x, y, z), 1, 0, 3) True Check if an interval in the circuit can be reduced: >>> is_reducible((x, y, z), 1, 1, 3) False >>> is_reducible((x, y, y), 1, 1, 3) True """ current_circuit = () # Start from the gate at "end" and go down to almost the gate at "begin" for ndx in reversed(range(begin, end)): next_gate = circuit[ndx] current_circuit = (next_gate,) + current_circuit # If a circuit as a matrix is equivalent to a scalar value if (is_scalar_matrix(current_circuit, nqubits, False)): return True return False def bfs_identity_search(gate_list, nqubits, max_depth=None, identity_only=False): """Constructs a set of gate identities from the list of possible gates. Performs a breadth first search over the space of gate identities. This allows the finding of the shortest gate identities first. Parameters ========== gate_list : list, Gate A list of Gates from which to search for gate identities. nqubits : int The number of qubits the quantum circuit operates on. max_depth : int The longest quantum circuit to construct from gate_list. identity_only : bool True to search for gate identities that reduce to identity; False to search for gate identities that reduce to a scalar. Examples ======== Find a list of gate identities: >>> from sympy.physics.quantum.identitysearch import bfs_identity_search >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> bfs_identity_search([x], 1, max_depth=2) {GateIdentity(X(0), X(0))} >>> bfs_identity_search([x, y, z], 1) {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)), GateIdentity(Z(0), Z(0)), GateIdentity(X(0), Y(0), Z(0))} Find a list of identities that only equal to 1: >>> bfs_identity_search([x, y, z], 1, identity_only=True) {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)), GateIdentity(Z(0), Z(0))} """ if max_depth is None or max_depth <= 0: max_depth = len(gate_list) id_only = identity_only # Start with an empty sequence (implicitly contains an IdentityGate) queue = deque([()]) # Create an empty set of gate identities ids = set() # Begin searching for gate identities in given space. while (len(queue) > 0): current_circuit = queue.popleft() for next_gate in gate_list: new_circuit = current_circuit + (next_gate,) # Determines if a (strict) subcircuit is a scalar matrix circuit_reducible = is_reducible(new_circuit, nqubits, 1, len(new_circuit)) # In many cases when the matrix is a scalar value, # the evaluated matrix will actually be an integer if (is_scalar_matrix(new_circuit, nqubits, id_only) and not is_degenerate(ids, new_circuit) and not circuit_reducible): ids.add(GateIdentity(*new_circuit)) elif (len(new_circuit) < max_depth and not circuit_reducible): queue.append(new_circuit) return ids def random_identity_search(gate_list, numgates, nqubits): """Randomly selects numgates from gate_list and checks if it is a gate identity. If the circuit is a gate identity, the circuit is returned; Otherwise, None is returned. """ gate_size = len(gate_list) circuit = () for i in range(numgates): next_gate = gate_list[randint(0, gate_size - 1)] circuit = circuit + (next_gate,) is_scalar = is_scalar_matrix(circuit, nqubits, False) return circuit if is_scalar else None
c3d6a3e5e70f151992096563998697c03e1ba50c5437ec32777413dca538bd9a
"""Abstract tensor product.""" from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.sympify import sympify from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, matrix_tensor_product ) from sympy.physics.quantum.trace import Tr __all__ = [ 'TensorProduct', 'tensor_product_simp' ] #----------------------------------------------------------------------------- # Tensor product #----------------------------------------------------------------------------- _combined_printing = False def combined_tensor_printing(combined): """Set flag controlling whether tensor products of states should be printed as a combined bra/ket or as an explicit tensor product of different bra/kets. This is a global setting for all TensorProduct class instances. Parameters ---------- combine : bool When true, tensor product states are combined into one ket/bra, and when false explicit tensor product notation is used between each ket/bra. """ global _combined_printing _combined_printing = combined class TensorProduct(Expr): """The tensor product of two or more arguments. For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker or tensor product matrix. For other objects a symbolic ``TensorProduct`` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics. Currently, the tensor product distinguishes between commutative and non-commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the ``TensorProduct``. Non-commutative arguments remain in the resulting ``TensorProduct``. Parameters ========== args : tuple A sequence of the objects to take the tensor product of. Examples ======== Start with a simple tensor product of SymPy matrices:: >>> from sympy import Matrix >>> from sympy.physics.quantum import TensorProduct >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> TensorProduct(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> TensorProduct(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) We can also construct tensor products of non-commutative symbols: >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> tp = TensorProduct(A, B) >>> tp AxB We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product): >>> from sympy.physics.quantum import Dagger >>> Dagger(tp) Dagger(A)xDagger(B) Expand can be used to distribute a tensor product across addition: >>> C = Symbol('C',commutative=False) >>> tp = TensorProduct(A+B,C) >>> tp (A + B)xC >>> tp.expand(tensorproduct=True) AxC + BxC """ is_commutative = False def __new__(cls, *args): if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)): return matrix_tensor_product(*args) c_part, new_args = cls.flatten(sympify(args)) c_part = Mul(*c_part) if len(new_args) == 0: return c_part elif len(new_args) == 1: return c_part * new_args[0] else: tp = Expr.__new__(cls, *new_args) return c_part * tp @classmethod def flatten(cls, args): # TODO: disallow nested TensorProducts. c_part = [] nc_parts = [] for arg in args: cp, ncp = arg.args_cnc() c_part.extend(list(cp)) nc_parts.append(Mul._from_args(ncp)) return c_part, nc_parts def _eval_adjoint(self): return TensorProduct(*[Dagger(i) for i in self.args]) def _eval_rewrite(self, rule, args, **hints): return TensorProduct(*args).expand(tensorproduct=True) def _sympystr(self, printer, *args): length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Pow, Mul)): s = s + '(' s = s + printer._print(self.args[i]) if isinstance(self.args[i], (Add, Pow, Mul)): s = s + ')' if i != length - 1: s = s + 'x' return s def _pretty(self, printer, *args): if (_combined_printing and (all(isinstance(arg, Ket) for arg in self.args) or all(isinstance(arg, Bra) for arg in self.args))): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print('', *args) length_i = len(self.args[i].args) for j in range(length_i): part_pform = printer._print(self.args[i].args[j], *args) next_pform = prettyForm(*next_pform.right(part_pform)) if j != length_i - 1: next_pform = prettyForm(*next_pform.right(', ')) if len(self.args[i].args) > 1: next_pform = prettyForm( *next_pform.parens(left='{', right='}')) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: pform = prettyForm(*pform.right(',' + ' ')) pform = prettyForm(*pform.left(self.args[0].lbracket)) pform = prettyForm(*pform.right(self.args[0].rbracket)) return pform length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (Add, Mul)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right('\N{N-ARY CIRCLED TIMES OPERATOR}' + ' ')) else: pform = prettyForm(*pform.right('x' + ' ')) return pform def _latex(self, printer, *args): if (_combined_printing and (all(isinstance(arg, Ket) for arg in self.args) or all(isinstance(arg, Bra) for arg in self.args))): def _label_wrap(label, nlabels): return label if nlabels == 1 else r"\left\{%s\right\}" % label s = r", ".join([_label_wrap(arg._print_label_latex(printer, *args), len(arg.args)) for arg in self.args]) return r"{%s%s%s}" % (self.args[0].lbracket_latex, s, self.args[0].rbracket_latex) length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Mul)): s = s + '\\left(' # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. s = s + '{' + printer._print(self.args[i], *args) + '}' if isinstance(self.args[i], (Add, Mul)): s = s + '\\right)' if i != length - 1: s = s + '\\otimes ' return s def doit(self, **hints): return TensorProduct(*[item.doit(**hints) for item in self.args]) def _eval_expand_tensorproduct(self, **hints): """Distribute TensorProducts across addition.""" args = self.args add_args = [] for i in range(len(args)): if isinstance(args[i], Add): for aa in args[i].args: tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:]) if isinstance(tp, TensorProduct): tp = tp._eval_expand_tensorproduct() add_args.append(tp) break if add_args: return Add(*add_args) else: return self def _eval_trace(self, **kwargs): indices = kwargs.get('indices', None) exp = tensor_product_simp(self) if indices is None or len(indices) == 0: return Mul(*[Tr(arg).doit() for arg in exp.args]) else: return Mul(*[Tr(value).doit() if idx in indices else value for idx, value in enumerate(exp.args)]) def tensor_product_simp_Mul(e): """Simplify a Mul with TensorProducts. Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s to a ``TensorProduct`` of ``Muls``. It currently only works for relatively simple cases where the initial ``Mul`` only has scalars and raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. Parameters ========== e : Expr A ``Mul`` of ``TensorProduct``s to be simplified. Returns ======= e : Expr A ``TensorProduct`` of ``Mul``s. Examples ======== This is an example of the type of simplification that this function performs:: >>> from sympy.physics.quantum.tensorproduct import \ tensor_product_simp_Mul, TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp_Mul(e) (A*C)x(B*D) """ # TODO: This won't work with Muls that have other composites of # TensorProducts, like an Add, Commutator, etc. # TODO: This only works for the equivalent of single Qbit gates. if not isinstance(e, Mul): return e c_part, nc_part = e.args_cnc() n_nc = len(nc_part) if n_nc == 0: return e elif n_nc == 1: if isinstance(nc_part[0], Pow): return Mul(*c_part) * tensor_product_simp_Pow(nc_part[0]) return e elif e.has(TensorProduct): current = nc_part[0] if not isinstance(current, TensorProduct): if isinstance(current, Pow): if isinstance(current.base, TensorProduct): current = tensor_product_simp_Pow(current) else: raise TypeError('TensorProduct expected, got: %r' % current) n_terms = len(current.args) new_args = list(current.args) for next in nc_part[1:]: # TODO: check the hilbert spaces of next and current here. if isinstance(next, TensorProduct): if n_terms != len(next.args): raise QuantumError( 'TensorProducts of different lengths: %r and %r' % (current, next) ) for i in range(len(new_args)): new_args[i] = new_args[i] * next.args[i] else: if isinstance(next, Pow): if isinstance(next.base, TensorProduct): new_tp = tensor_product_simp_Pow(next) for i in range(len(new_args)): new_args[i] = new_args[i] * new_tp.args[i] else: raise TypeError('TensorProduct expected, got: %r' % next) else: raise TypeError('TensorProduct expected, got: %r' % next) current = next return Mul(*c_part) * TensorProduct(*new_args) elif e.has(Pow): new_args = [ tensor_product_simp_Pow(nc) for nc in nc_part ] return tensor_product_simp_Mul(Mul(*c_part) * TensorProduct(*new_args)) else: return e def tensor_product_simp_Pow(e): """Evaluates ``Pow`` expressions whose base is ``TensorProduct``""" if not isinstance(e, Pow): return e if isinstance(e.base, TensorProduct): return TensorProduct(*[ b**e.exp for b in e.base.args]) else: return e def tensor_product_simp(e, **hints): """Try to simplify and combine TensorProducts. In general this will try to pull expressions inside of ``TensorProducts``. It currently only works for relatively simple cases where the products have only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators`` of ``TensorProducts``. It is best to see what it does by showing examples. Examples ======== >>> from sympy.physics.quantum import tensor_product_simp >>> from sympy.physics.quantum import TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) First see what happens to products of tensor products: >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp(e) (A*C)x(B*D) This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well: >>> tensor_product_simp(e**2) (A*C)x(B*D)**2 """ if isinstance(e, Add): return Add(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, Pow): if isinstance(e.base, TensorProduct): return tensor_product_simp_Pow(e) else: return tensor_product_simp(e.base) ** e.exp elif isinstance(e, Mul): return tensor_product_simp_Mul(e) elif isinstance(e, Commutator): return Commutator(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, AntiCommutator): return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args]) else: return e
4c7d263c5dc393d98be5f6b685eb9a9a90e9c16171c61dc709c838836b8d43f1
"""The anti-commutator: ``{A,B} = A*B + B*A``.""" from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.singleton import S from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.operator import Operator from sympy.physics.quantum.dagger import Dagger __all__ = [ 'AntiCommutator' ] #----------------------------------------------------------------------------- # Anti-commutator #----------------------------------------------------------------------------- class AntiCommutator(Expr): """The standard anticommutator, in an unevaluated state. Explanation =========== Evaluating an anticommutator is defined [1]_ as: ``{A, B} = A*B + B*A``. This class returns the anticommutator in an unevaluated form. To evaluate the anticommutator, use the ``.doit()`` method. Canonical ordering of an anticommutator is ``{A, B}`` for ``A < B``. The arguments of the anticommutator are put into canonical order using ``__cmp__``. If ``B < A``, then ``{A, B}`` is returned as ``{B, A}``. Parameters ========== A : Expr The first argument of the anticommutator {A,B}. B : Expr The second argument of the anticommutator {A,B}. Examples ======== >>> from sympy import symbols >>> from sympy.physics.quantum import AntiCommutator >>> from sympy.physics.quantum import Operator, Dagger >>> x, y = symbols('x,y') >>> A = Operator('A') >>> B = Operator('B') Create an anticommutator and use ``doit()`` to multiply them out. >>> ac = AntiCommutator(A,B); ac {A,B} >>> ac.doit() A*B + B*A The commutator orders it arguments in canonical order: >>> ac = AntiCommutator(B,A); ac {A,B} Commutative constants are factored out: >>> AntiCommutator(3*x*A,x*y*B) 3*x**2*y*{A,B} Adjoint operations applied to the anticommutator are properly applied to the arguments: >>> Dagger(AntiCommutator(A,B)) {Dagger(A),Dagger(B)} References ========== .. [1] https://en.wikipedia.org/wiki/Commutator """ is_commutative = False def __new__(cls, A, B): r = cls.eval(A, B) if r is not None: return r obj = Expr.__new__(cls, A, B) return obj @classmethod def eval(cls, a, b): if not (a and b): return S.Zero if a == b: return Integer(2)*a**2 if a.is_commutative or b.is_commutative: return Integer(2)*a*b # [xA,yB] -> xy*[A,B] ca, nca = a.args_cnc() cb, ncb = b.args_cnc() c_part = ca + cb if c_part: return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) # Canonical ordering of arguments #The Commutator [A,B] is on canonical form if A < B. if a.compare(b) == 1: return cls(b, a) def doit(self, **hints): """ Evaluate anticommutator """ A = self.args[0] B = self.args[1] if isinstance(A, Operator) and isinstance(B, Operator): try: comm = A._eval_anticommutator(B, **hints) except NotImplementedError: try: comm = B._eval_anticommutator(A, **hints) except NotImplementedError: comm = None if comm is not None: return comm.doit(**hints) return (A*B + B*A).doit(**hints) def _eval_adjoint(self): return AntiCommutator(Dagger(self.args[0]), Dagger(self.args[1])) def _sympyrepr(self, printer, *args): return "%s(%s,%s)" % ( self.__class__.__name__, printer._print( self.args[0]), printer._print(self.args[1]) ) def _sympystr(self, printer, *args): return "{%s,%s}" % ( printer._print(self.args[0]), printer._print(self.args[1])) def _pretty(self, printer, *args): pform = printer._print(self.args[0], *args) pform = prettyForm(*pform.right(prettyForm(','))) pform = prettyForm(*pform.right(printer._print(self.args[1], *args))) pform = prettyForm(*pform.parens(left='{', right='}')) return pform def _latex(self, printer, *args): return "\\left\\{%s,%s\\right\\}" % tuple([ printer._print(arg, *args) for arg in self.args])
e7378deb6b7fbf669beddb75c7bd56fe570183a704359e94d96943b70d5534aa
"""Dirac notation for states.""" from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.numbers import oo from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.miscellaneous import sqrt from sympy.integrals.integrals import integrate from sympy.printing.pretty.stringpict import stringPict from sympy.physics.quantum.qexpr import QExpr, dispatch_method __all__ = [ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra', 'OrthogonalState', 'Wavefunction' ] #----------------------------------------------------------------------------- # States, bras and kets. #----------------------------------------------------------------------------- # ASCII brackets _lbracket = "<" _rbracket = ">" _straight_bracket = "|" # Unicode brackets # MATHEMATICAL ANGLE BRACKETS _lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}" _rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}" # LIGHT VERTICAL BAR _straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}" # Other options for unicode printing of <, > and | for Dirac notation. # LEFT-POINTING ANGLE BRACKET # _lbracket = "\u2329" # _rbracket = "\u232A" # LEFT ANGLE BRACKET # _lbracket = "\u3008" # _rbracket = "\u3009" # VERTICAL LINE # _straight_bracket = "\u007C" class StateBase(QExpr): """Abstract base class for general abstract states in quantum mechanics. All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label. This is an abstract base class and you should not instantiate it directly, instead use State. """ @classmethod def _operators_to_state(self, ops, **options): """ Returns the eigenstate instance for the passed operators. This method should be overridden in subclasses. It will handle being passed either an Operator instance or set of Operator instances. It should return the corresponding state INSTANCE or simply raise a NotImplementedError. See cartesian.py for an example. """ raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!") def _state_to_operators(self, op_classes, **options): """ Returns the operators which this state instance is an eigenstate of. This method should be overridden in subclasses. It will be called on state instances and be passed the operator classes that we wish to make into instances. The state instance will then transform the classes appropriately, or raise a NotImplementedError if it cannot return operator instances. See cartesian.py for examples, """ raise NotImplementedError( "Cannot map this state to operators. Method not implemented!") @property def operators(self): """Return the operator(s) that this state is an eigenstate of""" from .operatorset import state_to_operators # import internally to avoid circular import errors return state_to_operators(self) def _enumerate_state(self, num_states, **options): raise NotImplementedError("Cannot enumerate this state!") def _represent_default_basis(self, **options): return self._represent(basis=self.operators) #------------------------------------------------------------------------- # Dagger/dual #------------------------------------------------------------------------- @property def dual(self): """Return the dual state of this one.""" return self.dual_class()._new_rawargs(self.hilbert_space, *self.args) @classmethod def dual_class(self): """Return the class used to construct the dual.""" raise NotImplementedError( 'dual_class must be implemented in a subclass' ) def _eval_adjoint(self): """Compute the dagger of this state using the dual.""" return self.dual #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _pretty_brackets(self, height, use_unicode=True): # Return pretty printed brackets for the state # Ideally, this could be done by pform.parens but it does not support the angled < and > # Setup for unicode vs ascii if use_unicode: lbracket, rbracket = self.lbracket_ucode, self.rbracket_ucode slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \ '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \ '\N{BOX DRAWINGS LIGHT VERTICAL}' else: lbracket, rbracket = self.lbracket, self.rbracket slash, bslash, vert = '/', '\\', '|' # If height is 1, just return brackets if height == 1: return stringPict(lbracket), stringPict(rbracket) # Make height even height += (height % 2) brackets = [] for bracket in lbracket, rbracket: # Create left bracket if bracket in {_lbracket, _lbracket_ucode}: bracket_args = [ ' ' * (height//2 - i - 1) + slash for i in range(height // 2)] bracket_args.extend( [' ' * i + bslash for i in range(height // 2)]) # Create right bracket elif bracket in {_rbracket, _rbracket_ucode}: bracket_args = [ ' ' * i + bslash for i in range(height // 2)] bracket_args.extend([ ' ' * ( height//2 - i - 1) + slash for i in range(height // 2)]) # Create straight bracket elif bracket in {_straight_bracket, _straight_bracket_ucode}: bracket_args = [vert] * height else: raise ValueError(bracket) brackets.append( stringPict('\n'.join(bracket_args), baseline=height//2)) return brackets def _sympystr(self, printer, *args): contents = self._print_contents(printer, *args) return '%s%s%s' % (self.lbracket, contents, self.rbracket) def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm # Get brackets pform = self._print_contents_pretty(printer, *args) lbracket, rbracket = self._pretty_brackets( pform.height(), printer._use_unicode) # Put together state pform = prettyForm(*pform.left(lbracket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): contents = self._print_contents_latex(printer, *args) # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. return '{%s%s%s}' % (self.lbracket_latex, contents, self.rbracket_latex) class KetBase(StateBase): """Base class for Kets. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket. """ lbracket = _straight_bracket rbracket = _rbracket lbracket_ucode = _straight_bracket_ucode rbracket_ucode = _rbracket_ucode lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle ' @classmethod def default_args(self): return ("psi",) @classmethod def dual_class(self): return BraBase def __mul__(self, other): """KetBase*other""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, BraBase): return OuterProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*KetBase""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, BraBase): return InnerProduct(other, self) else: return Expr.__rmul__(self, other) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_innerproduct(self, bra, **hints): """Evaluate the inner product between this ket and a bra. This is called to compute <bra|ket>, where the ket is ``self``. This method will dispatch to sub-methods having the format:: ``def _eval_innerproduct_BraClass(self, **hints):`` Subclasses should define these methods (one for each BraClass) to teach the ket how to take inner products with bras. """ return dispatch_method(self, '_eval_innerproduct', bra, **hints) def _apply_operator(self, op, **options): """Apply an Operator to this Ket. This method will dispatch to methods having the format:: ``def _apply_operator_OperatorName(op, **options):`` Subclasses should define these methods (one for each OperatorName) to teach the Ket how operators act on it. Parameters ========== op : Operator The Operator that is acting on the Ket. options : dict A dict of key/value pairs that control how the operator is applied to the Ket. """ return dispatch_method(self, '_apply_operator', op, **options) class BraBase(StateBase): """Base class for Bras. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra. """ lbracket = _lbracket rbracket = _straight_bracket lbracket_ucode = _lbracket_ucode rbracket_ucode = _straight_bracket_ucode lbracket_latex = r'\left\langle ' rbracket_latex = r'\right|' @classmethod def _operators_to_state(self, ops, **options): state = self.dual_class()._operators_to_state(ops, **options) return state.dual def _state_to_operators(self, op_classes, **options): return self.dual._state_to_operators(op_classes, **options) def _enumerate_state(self, num_states, **options): dual_states = self.dual._enumerate_state(num_states, **options) return [x.dual for x in dual_states] @classmethod def default_args(self): return self.dual_class().default_args() @classmethod def dual_class(self): return KetBase def __mul__(self, other): """BraBase*other""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, KetBase): return InnerProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*BraBase""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, KetBase): return OuterProduct(other, self) else: return Expr.__rmul__(self, other) def _represent(self, **options): """A default represent that uses the Ket's version.""" from sympy.physics.quantum.dagger import Dagger return Dagger(self.dual._represent(**options)) class State(StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class Ket(State, KetBase): """A general time-independent Ket in quantum mechanics. Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [1]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Ket and looking at its properties:: >>> from sympy.physics.quantum import Ket >>> from sympy import symbols, I >>> k = Ket('psi') >>> k |psi> >>> k.hilbert_space H >>> k.is_commutative False >>> k.label (psi,) Ket's know about their associated bra:: >>> k.dual <psi| >>> k.dual_class() <class 'sympy.physics.quantum.state.Bra'> Take a linear combination of two kets:: >>> k0 = Ket(0) >>> k1 = Ket(1) >>> 2*I*k0 - 4*k1 2*I*|0> - 4*|1> Compound labels are passed as tuples:: >>> n, m = symbols('n,m') >>> k = Ket(n,m) >>> k |nm> References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Bra class Bra(State, BraBase): """A general time-independent Bra in quantum mechanics. Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Bra and look at its properties:: >>> from sympy.physics.quantum import Bra >>> from sympy import symbols, I >>> b = Bra('psi') >>> b <psi| >>> b.hilbert_space H >>> b.is_commutative False Bra's know about their dual Ket's:: >>> b.dual |psi> >>> b.dual_class() <class 'sympy.physics.quantum.state.Ket'> Like Kets, Bras can have compound labels and be manipulated in a similar manner:: >>> n, m = symbols('n,m') >>> b = Bra(n,m) - I*Bra(m,n) >>> b -I*<mn| + <nm| Symbols in a Bra can be substituted using ``.subs``:: >>> b.subs(n,m) <mm| - I*<mm| References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Ket #----------------------------------------------------------------------------- # Time dependent states, bras and kets. #----------------------------------------------------------------------------- class TimeDepState(StateBase): """Base class for a general time-dependent quantum state. This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this class takes a second argument that is the time in addition to the usual label argument. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. """ #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def default_args(self): return ("psi", "t") #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label of the state.""" return self.args[:-1] @property def time(self): """The time of the state.""" return self.args[-1] #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print_time(self, printer, *args): return printer._print(self.time, *args) _print_time_repr = _print_time _print_time_latex = _print_time def _print_time_pretty(self, printer, *args): pform = printer._print(self.time, *args) return pform def _print_contents(self, printer, *args): label = self._print_label(printer, *args) time = self._print_time(printer, *args) return '%s;%s' % (label, time) def _print_label_repr(self, printer, *args): label = self._print_sequence(self.label, ',', printer, *args) time = self._print_time_repr(printer, *args) return '%s,%s' % (label, time) def _print_contents_pretty(self, printer, *args): label = self._print_label_pretty(printer, *args) time = self._print_time_pretty(printer, *args) return printer._print_seq((label, time), delimiter=';') def _print_contents_latex(self, printer, *args): label = self._print_sequence( self.label, self._label_separator, printer, *args) time = self._print_time_latex(printer, *args) return '%s;%s' % (label, time) class TimeDepKet(TimeDepState, KetBase): """General time-dependent Ket in quantum mechanics. This inherits from ``TimeDepState`` and ``KetBase`` and is the main class that should be used for Kets that vary with time. Its dual is a ``TimeDepBra``. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== Create a TimeDepKet and look at its attributes:: >>> from sympy.physics.quantum import TimeDepKet >>> k = TimeDepKet('psi', 't') >>> k |psi;t> >>> k.time t >>> k.label (psi,) >>> k.hilbert_space H TimeDepKets know about their dual bra:: >>> k.dual <psi;t| >>> k.dual_class() <class 'sympy.physics.quantum.state.TimeDepBra'> """ @classmethod def dual_class(self): return TimeDepBra class TimeDepBra(TimeDepState, BraBase): """General time-dependent Bra in quantum mechanics. This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== >>> from sympy.physics.quantum import TimeDepBra >>> b = TimeDepBra('psi', 't') >>> b <psi;t| >>> b.time t >>> b.label (psi,) >>> b.hilbert_space H >>> b.dual |psi;t> """ @classmethod def dual_class(self): return TimeDepKet class OrthogonalState(State, StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class OrthogonalKet(OrthogonalState, KetBase): """Orthogonal Ket in quantum mechanics. The inner product of two states with different labels will give zero, states with the same label will give one. >>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet >>> from sympy.abc import m, n >>> (OrthogonalBra(n)*OrthogonalKet(n)).doit() 1 >>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit() 0 >>> (OrthogonalBra(n)*OrthogonalKet(m)).doit() <n|m> """ @classmethod def dual_class(self): return OrthogonalBra def _eval_innerproduct(self, bra, **hints): if len(self.args) != len(bra.args): raise ValueError('Cannot multiply a ket that has a different number of labels.') for i in range(len(self.args)): diff = self.args[i] - bra.args[i] diff = diff.expand() if diff.is_zero is False: return 0 if diff.is_zero is None: return None return 1 class OrthogonalBra(OrthogonalState, BraBase): """Orthogonal Bra in quantum mechanics. """ @classmethod def dual_class(self): return OrthogonalKet class Wavefunction(Function): """Class for representations in continuous bases This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities. Parameters ========== expr : Expr The expression representing the functional form of the w.f. coords : Symbol or tuple The coordinates to be integrated over, and their bounds Examples ======== Particle in a box, specifying bounds in the more primitive way of using Piecewise: >>> from sympy import Symbol, Piecewise, pi, N >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = Symbol('x', real=True) >>> n = 1 >>> L = 1 >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) >>> f = Wavefunction(g, x) >>> f.norm 1 >>> f.is_normalized True >>> p = f.prob() >>> p(0) 0 >>> p(L) 0 >>> p(0.5) 2 >>> p(0.85*L) 2*sin(0.85*pi)**2 >>> N(p(0.85*L)) 0.412214747707527 Additionally, you can specify the bounds of the function and the indices in a more compact way: >>> from sympy import symbols, pi, diff >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> f(L+1) 0 >>> f(L-1) sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) >>> f(-1) 0 >>> f(0.85) sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) >>> f(0.85, n=1, L=1) sqrt(2)*sin(0.85*pi) >>> f.is_commutative False All arguments are automatically sympified, so you can define the variables as strings rather than symbols: >>> expr = x**2 >>> f = Wavefunction(expr, 'x') >>> type(f.variables[0]) <class 'sympy.core.symbol.Symbol'> Derivatives of Wavefunctions will return Wavefunctions: >>> diff(f, x) Wavefunction(2*x, x) """ #Any passed tuples for coordinates and their bounds need to be #converted to Tuples before Function's constructor is called, to #avoid errors from calling is_Float in the constructor def __new__(cls, *args, **options): new_args = [None for i in args] ct = 0 for arg in args: if isinstance(arg, tuple): new_args[ct] = Tuple(*arg) else: new_args[ct] = arg ct += 1 return super().__new__(cls, *new_args, **options) def __call__(self, *args, **options): var = self.variables if len(args) != len(var): raise NotImplementedError( "Incorrect number of arguments to function!") ct = 0 #If the passed value is outside the specified bounds, return 0 for v in var: lower, upper = self.limits[v] #Do the comparison to limits only if the passed symbol is actually #a symbol present in the limits; #Had problems with a comparison of x > L if isinstance(args[ct], Expr) and \ not (lower in args[ct].free_symbols or upper in args[ct].free_symbols): continue if (args[ct] < lower) == True or (args[ct] > upper) == True: return S.Zero ct += 1 expr = self.expr #Allows user to make a call like f(2, 4, m=1, n=1) for symbol in list(expr.free_symbols): if str(symbol) in options.keys(): val = options[str(symbol)] expr = expr.subs(symbol, val) return expr.subs(zip(var, args)) def _eval_derivative(self, symbol): expr = self.expr deriv = expr._eval_derivative(symbol) return Wavefunction(deriv, *self.args[1:]) def _eval_conjugate(self): return Wavefunction(conjugate(self.expr), *self.args[1:]) def _eval_transpose(self): return self @property def free_symbols(self): return self.expr.free_symbols @property def is_commutative(self): """ Override Function's is_commutative so that order is preserved in represented expressions """ return False @classmethod def eval(self, *args): return None @property def variables(self): """ Return the coordinates which the wavefunction depends on Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x,y = symbols('x,y') >>> f = Wavefunction(x*y, x, y) >>> f.variables (x, y) >>> g = Wavefunction(x*y, x) >>> g.variables (x,) """ var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]] return tuple(var) @property def limits(self): """ Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to ``(-oo, oo)``. Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, (x, 0, 1)) >>> f.limits {x: (0, 1)} >>> f = Wavefunction(x**2, x) >>> f.limits {x: (-oo, oo)} >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2)) >>> f.limits {x: (-oo, oo), y: (-1, 2)} """ limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo) for g in self._args[1:]] return dict(zip(self.variables, tuple(limits))) @property def expr(self): """ Return the expression which is the functional form of the Wavefunction Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, x) >>> f.expr x**2 """ return self._args[0] @property def is_normalized(self): """ Returns true if the Wavefunction is properly normalized Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.is_normalized True """ return (self.norm == 1.0) @property # type: ignore @cacheit def norm(self): """ Return the normalization of the specified functional form. This function integrates over the coordinates of the Wavefunction, with the bounds specified. Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm sqrt(2)*sqrt(L)/2 """ exp = self.expr*conjugate(self.expr) var = self.variables limits = self.limits for v in var: curr_limits = limits[v] exp = integrate(exp, (v, curr_limits[0], curr_limits[1])) return sqrt(exp) def normalize(self): """ Return a normalized version of the Wavefunction Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = symbols('x', real=True) >>> L = symbols('L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.normalize() Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L)) """ const = self.norm if const is oo: raise NotImplementedError("The function is not normalizable!") else: return Wavefunction((const)**(-1)*self.expr, *self.args[1:]) def prob(self): r""" Return the absolute magnitude of the w.f., `|\psi(x)|^2` Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', real=True) >>> n = symbols('n', integer=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.prob() Wavefunction(sin(pi*n*x/L)**2, x) """ return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
b268d3a00d258fa85edb677d47ad442f6152357173f684c817cc7950e77844db
"""Functions for reordering operator expressions.""" import warnings from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.physics.quantum import Operator, Commutator, AntiCommutator from sympy.physics.quantum.boson import BosonOp from sympy.physics.quantum.fermion import FermionOp __all__ = [ 'normal_order', 'normal_ordered_form' ] def _expand_powers(factors): """ Helper function for normal_ordered_form and normal_order: Expand a power expression to a multiplication expression so that that the expression can be handled by the normal ordering functions. """ new_factors = [] for factor in factors.args: if (isinstance(factor, Pow) and isinstance(factor.args[1], Integer) and factor.args[1] > 0): for n in range(factor.args[1]): new_factors.append(factor.args[0]) else: new_factors.append(factor) return new_factors def _normal_ordered_form_factor(product, independent=False, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_ordered_form_factor: Write multiplication expression with bosonic or fermionic operators on normally ordered form, using the bosonic and fermionic commutation relations. The resulting operator expression is equivalent to the argument, but will in general be a sum of operator products instead of a simple product. """ factors = _expand_powers(product) new_factors = [] n = 0 while n < len(factors) - 1: if isinstance(factors[n], BosonOp): # boson if not isinstance(factors[n + 1], BosonOp): new_factors.append(factors[n]) elif factors[n].is_annihilation == factors[n + 1].is_annihilation: if (independent and str(factors[n].name) > str(factors[n + 1].name)): new_factors.append(factors[n + 1]) new_factors.append(factors[n]) n += 1 else: new_factors.append(factors[n]) elif not factors[n].is_annihilation: new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: if independent: c = 0 else: c = Commutator(factors[n], factors[n + 1]) new_factors.append(factors[n + 1] * factors[n] + c) else: c = Commutator(factors[n], factors[n + 1]) new_factors.append( factors[n + 1] * factors[n] + c.doit()) n += 1 elif isinstance(factors[n], FermionOp): # fermion if not isinstance(factors[n + 1], FermionOp): new_factors.append(factors[n]) elif factors[n].is_annihilation == factors[n + 1].is_annihilation: if (independent and str(factors[n].name) > str(factors[n + 1].name)): new_factors.append(factors[n + 1]) new_factors.append(factors[n]) n += 1 else: new_factors.append(factors[n]) elif not factors[n].is_annihilation: new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: if independent: c = 0 else: c = AntiCommutator(factors[n], factors[n + 1]) new_factors.append(-factors[n + 1] * factors[n] + c) else: c = AntiCommutator(factors[n], factors[n + 1]) new_factors.append( -factors[n + 1] * factors[n] + c.doit()) n += 1 elif isinstance(factors[n], Operator): if isinstance(factors[n + 1], (BosonOp, FermionOp)): new_factors.append(factors[n + 1]) new_factors.append(factors[n]) n += 1 else: new_factors.append(factors[n]) else: new_factors.append(factors[n]) n += 1 if n == len(factors) - 1: new_factors.append(factors[-1]) if new_factors == factors: return product else: expr = Mul(*new_factors).expand() return normal_ordered_form(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth + 1, independent=independent) def _normal_ordered_form_terms(expr, independent=False, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_ordered_form: loop through each term in an addition expression and call _normal_ordered_form_factor to perform the factor to an normally ordered expression. """ new_terms = [] for term in expr.args: if isinstance(term, Mul): new_term = _normal_ordered_form_factor( term, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) new_terms.append(new_term) else: new_terms.append(term) return Add(*new_terms) def normal_ordered_form(expr, independent=False, recursive_limit=10, _recursive_depth=0): """Write an expression with bosonic or fermionic operators on normal ordered form, where each term is normally ordered. Note that this normal ordered form is equivalent to the original expression. Parameters ========== expr : expression The expression write on normal ordered form. recursive_limit : int (default 10) The number of allowed recursive applications of the function. Examples ======== >>> from sympy.physics.quantum import Dagger >>> from sympy.physics.quantum.boson import BosonOp >>> from sympy.physics.quantum.operatorordering import normal_ordered_form >>> a = BosonOp("a") >>> normal_ordered_form(a * Dagger(a)) 1 + Dagger(a)*a """ if _recursive_depth > recursive_limit: warnings.warn("Too many recursions, aborting") return expr if isinstance(expr, Add): return _normal_ordered_form_terms(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) elif isinstance(expr, Mul): return _normal_ordered_form_factor(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth, independent=independent) else: return expr def _normal_order_factor(product, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_order: Normal order a multiplication expression with bosonic or fermionic operators. In general the resulting operator expression will not be equivalent to original product. """ factors = _expand_powers(product) n = 0 new_factors = [] while n < len(factors) - 1: if (isinstance(factors[n], BosonOp) and factors[n].is_annihilation): # boson if not isinstance(factors[n + 1], BosonOp): new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: new_factors.append(factors[n + 1] * factors[n]) else: new_factors.append(factors[n + 1] * factors[n]) n += 1 elif (isinstance(factors[n], FermionOp) and factors[n].is_annihilation): # fermion if not isinstance(factors[n + 1], FermionOp): new_factors.append(factors[n]) else: if factors[n + 1].is_annihilation: new_factors.append(factors[n]) else: if factors[n].args[0] != factors[n + 1].args[0]: new_factors.append(-factors[n + 1] * factors[n]) else: new_factors.append(-factors[n + 1] * factors[n]) n += 1 else: new_factors.append(factors[n]) n += 1 if n == len(factors) - 1: new_factors.append(factors[-1]) if new_factors == factors: return product else: expr = Mul(*new_factors).expand() return normal_order(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth + 1) def _normal_order_terms(expr, recursive_limit=10, _recursive_depth=0): """ Helper function for normal_order: look through each term in an addition expression and call _normal_order_factor to perform the normal ordering on the factors. """ new_terms = [] for term in expr.args: if isinstance(term, Mul): new_term = _normal_order_factor(term, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth) new_terms.append(new_term) else: new_terms.append(term) return Add(*new_terms) def normal_order(expr, recursive_limit=10, _recursive_depth=0): """Normal order an expression with bosonic or fermionic operators. Note that this normal order is not equivalent to the original expression, but the creation and annihilation operators in each term in expr is reordered so that the expression becomes normal ordered. Parameters ========== expr : expression The expression to normal order. recursive_limit : int (default 10) The number of allowed recursive applications of the function. Examples ======== >>> from sympy.physics.quantum import Dagger >>> from sympy.physics.quantum.boson import BosonOp >>> from sympy.physics.quantum.operatorordering import normal_order >>> a = BosonOp("a") >>> normal_order(a * Dagger(a)) Dagger(a)*a """ if _recursive_depth > recursive_limit: warnings.warn("Too many recursions, aborting") return expr if isinstance(expr, Add): return _normal_order_terms(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth) elif isinstance(expr, Mul): return _normal_order_factor(expr, recursive_limit=recursive_limit, _recursive_depth=_recursive_depth) else: return expr
82a3fe0ee5b6f9073d063f6f0ba57d87703093603f976c68f3b1a251ea0e559a
"""Operators and states for 1D cartesian position and momentum. TODO: * Add 3D classes to mappings in operatorset.py """ from sympy.core.numbers import (I, pi) from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.delta_functions import DiracDelta from sympy.sets.sets import Interval from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import L2 from sympy.physics.quantum.operator import DifferentialOperator, HermitianOperator from sympy.physics.quantum.state import Ket, Bra, State __all__ = [ 'XOp', 'YOp', 'ZOp', 'PxOp', 'X', 'Y', 'Z', 'Px', 'XKet', 'XBra', 'PxKet', 'PxBra', 'PositionState3D', 'PositionKet3D', 'PositionBra3D' ] #------------------------------------------------------------------------- # Position operators #------------------------------------------------------------------------- class XOp(HermitianOperator): """1D cartesian position operator.""" @classmethod def default_args(self): return ("X",) @classmethod def _eval_hilbert_space(self, args): return L2(Interval(S.NegativeInfinity, S.Infinity)) def _eval_commutator_PxOp(self, other): return I*hbar def _apply_operator_XKet(self, ket): return ket.position*ket def _apply_operator_PositionKet3D(self, ket): return ket.position_x*ket def _represent_PxKet(self, basis, *, index=1, **options): states = basis._enumerate_state(2, start_index=index) coord1 = states[0].momentum coord2 = states[1].momentum d = DifferentialOperator(coord1) delta = DiracDelta(coord1 - coord2) return I*hbar*(d*delta) class YOp(HermitianOperator): """ Y cartesian coordinate operator (for 2D or 3D systems) """ @classmethod def default_args(self): return ("Y",) @classmethod def _eval_hilbert_space(self, args): return L2(Interval(S.NegativeInfinity, S.Infinity)) def _apply_operator_PositionKet3D(self, ket): return ket.position_y*ket class ZOp(HermitianOperator): """ Z cartesian coordinate operator (for 3D systems) """ @classmethod def default_args(self): return ("Z",) @classmethod def _eval_hilbert_space(self, args): return L2(Interval(S.NegativeInfinity, S.Infinity)) def _apply_operator_PositionKet3D(self, ket): return ket.position_z*ket #------------------------------------------------------------------------- # Momentum operators #------------------------------------------------------------------------- class PxOp(HermitianOperator): """1D cartesian momentum operator.""" @classmethod def default_args(self): return ("Px",) @classmethod def _eval_hilbert_space(self, args): return L2(Interval(S.NegativeInfinity, S.Infinity)) def _apply_operator_PxKet(self, ket): return ket.momentum*ket def _represent_XKet(self, basis, *, index=1, **options): states = basis._enumerate_state(2, start_index=index) coord1 = states[0].position coord2 = states[1].position d = DifferentialOperator(coord1) delta = DiracDelta(coord1 - coord2) return -I*hbar*(d*delta) X = XOp('X') Y = YOp('Y') Z = ZOp('Z') Px = PxOp('Px') #------------------------------------------------------------------------- # Position eigenstates #------------------------------------------------------------------------- class XKet(Ket): """1D cartesian position eigenket.""" @classmethod def _operators_to_state(self, op, **options): return self.__new__(self, *_lowercase_labels(op), **options) def _state_to_operators(self, op_class, **options): return op_class.__new__(op_class, *_uppercase_labels(self), **options) @classmethod def default_args(self): return ("x",) @classmethod def dual_class(self): return XBra @property def position(self): """The position of the state.""" return self.label[0] def _enumerate_state(self, num_states, **options): return _enumerate_continuous_1D(self, num_states, **options) def _eval_innerproduct_XBra(self, bra, **hints): return DiracDelta(self.position - bra.position) def _eval_innerproduct_PxBra(self, bra, **hints): return exp(-I*self.position*bra.momentum/hbar)/sqrt(2*pi*hbar) class XBra(Bra): """1D cartesian position eigenbra.""" @classmethod def default_args(self): return ("x",) @classmethod def dual_class(self): return XKet @property def position(self): """The position of the state.""" return self.label[0] class PositionState3D(State): """ Base class for 3D cartesian position eigenstates """ @classmethod def _operators_to_state(self, op, **options): return self.__new__(self, *_lowercase_labels(op), **options) def _state_to_operators(self, op_class, **options): return op_class.__new__(op_class, *_uppercase_labels(self), **options) @classmethod def default_args(self): return ("x", "y", "z") @property def position_x(self): """ The x coordinate of the state """ return self.label[0] @property def position_y(self): """ The y coordinate of the state """ return self.label[1] @property def position_z(self): """ The z coordinate of the state """ return self.label[2] class PositionKet3D(Ket, PositionState3D): """ 3D cartesian position eigenket """ def _eval_innerproduct_PositionBra3D(self, bra, **options): x_diff = self.position_x - bra.position_x y_diff = self.position_y - bra.position_y z_diff = self.position_z - bra.position_z return DiracDelta(x_diff)*DiracDelta(y_diff)*DiracDelta(z_diff) @classmethod def dual_class(self): return PositionBra3D # XXX: The type:ignore here is because mypy gives Definition of # "_state_to_operators" in base class "PositionState3D" is incompatible with # definition in base class "BraBase" class PositionBra3D(Bra, PositionState3D): # type: ignore """ 3D cartesian position eigenbra """ @classmethod def dual_class(self): return PositionKet3D #------------------------------------------------------------------------- # Momentum eigenstates #------------------------------------------------------------------------- class PxKet(Ket): """1D cartesian momentum eigenket.""" @classmethod def _operators_to_state(self, op, **options): return self.__new__(self, *_lowercase_labels(op), **options) def _state_to_operators(self, op_class, **options): return op_class.__new__(op_class, *_uppercase_labels(self), **options) @classmethod def default_args(self): return ("px",) @classmethod def dual_class(self): return PxBra @property def momentum(self): """The momentum of the state.""" return self.label[0] def _enumerate_state(self, *args, **options): return _enumerate_continuous_1D(self, *args, **options) def _eval_innerproduct_XBra(self, bra, **hints): return exp(I*self.momentum*bra.position/hbar)/sqrt(2*pi*hbar) def _eval_innerproduct_PxBra(self, bra, **hints): return DiracDelta(self.momentum - bra.momentum) class PxBra(Bra): """1D cartesian momentum eigenbra.""" @classmethod def default_args(self): return ("px",) @classmethod def dual_class(self): return PxKet @property def momentum(self): """The momentum of the state.""" return self.label[0] #------------------------------------------------------------------------- # Global helper functions #------------------------------------------------------------------------- def _enumerate_continuous_1D(*args, **options): state = args[0] num_states = args[1] state_class = state.__class__ index_list = options.pop('index_list', []) if len(index_list) == 0: start_index = options.pop('start_index', 1) index_list = list(range(start_index, start_index + num_states)) enum_states = [0 for i in range(len(index_list))] for i, ind in enumerate(index_list): label = state.args[0] enum_states[i] = state_class(str(label) + "_" + str(ind), **options) return enum_states def _lowercase_labels(ops): if not isinstance(ops, set): ops = [ops] return [str(arg.label[0]).lower() for arg in ops] def _uppercase_labels(ops): if not isinstance(ops, set): ops = [ops] new_args = [str(arg.label[0])[0].upper() + str(arg.label[0])[1:] for arg in ops] return new_args
7fc3be3d3c09d25ce28b17c07bc786b9a8cf31b9c085c77523b27fe70b9a9219
"""Utilities to deal with sympy.Matrix, numpy and scipy.sparse.""" from sympy.core.expr import Expr from sympy.core.numbers import I from sympy.core.singleton import S from sympy.matrices.matrices import MatrixBase from sympy.matrices import eye, zeros from sympy.external import import_module __all__ = [ 'numpy_ndarray', 'scipy_sparse_matrix', 'sympy_to_numpy', 'sympy_to_scipy_sparse', 'numpy_to_sympy', 'scipy_sparse_to_sympy', 'flatten_scalar', 'matrix_dagger', 'to_sympy', 'to_numpy', 'to_scipy_sparse', 'matrix_tensor_product', 'matrix_zeros' ] # Conditionally define the base classes for numpy and scipy.sparse arrays # for use in isinstance tests. np = import_module('numpy') if not np: class numpy_ndarray: pass else: numpy_ndarray = np.ndarray # type: ignore scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) if not scipy: class scipy_sparse_matrix: pass sparse = None else: sparse = scipy.sparse # Try to find spmatrix. if hasattr(sparse, 'base'): # Newer versions have it under scipy.sparse.base. scipy_sparse_matrix = sparse.base.spmatrix # type: ignore elif hasattr(sparse, 'sparse'): # Older versions have it under scipy.sparse.sparse. scipy_sparse_matrix = sparse.sparse.spmatrix # type: ignore def sympy_to_numpy(m, **options): """Convert a SymPy Matrix/complex number to a numpy matrix or scalar.""" if not np: raise ImportError dtype = options.get('dtype', 'complex') if isinstance(m, MatrixBase): return np.matrix(m.tolist(), dtype=dtype) elif isinstance(m, Expr): if m.is_Number or m.is_NumberSymbol or m == I: return complex(m) raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m) def sympy_to_scipy_sparse(m, **options): """Convert a SymPy Matrix/complex number to a numpy matrix or scalar.""" if not np or not sparse: raise ImportError dtype = options.get('dtype', 'complex') if isinstance(m, MatrixBase): return sparse.csr_matrix(np.matrix(m.tolist(), dtype=dtype)) elif isinstance(m, Expr): if m.is_Number or m.is_NumberSymbol or m == I: return complex(m) raise TypeError('Expected MatrixBase or complex scalar, got: %r' % m) def scipy_sparse_to_sympy(m, **options): """Convert a scipy.sparse matrix to a SymPy matrix.""" return MatrixBase(m.todense()) def numpy_to_sympy(m, **options): """Convert a numpy matrix to a SymPy matrix.""" return MatrixBase(m) def to_sympy(m, **options): """Convert a numpy/scipy.sparse matrix to a SymPy matrix.""" if isinstance(m, MatrixBase): return m elif isinstance(m, numpy_ndarray): return numpy_to_sympy(m) elif isinstance(m, scipy_sparse_matrix): return scipy_sparse_to_sympy(m) elif isinstance(m, Expr): return m raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def to_numpy(m, **options): """Convert a sympy/scipy.sparse matrix to a numpy matrix.""" dtype = options.get('dtype', 'complex') if isinstance(m, (MatrixBase, Expr)): return sympy_to_numpy(m, dtype=dtype) elif isinstance(m, numpy_ndarray): return m elif isinstance(m, scipy_sparse_matrix): return m.todense() raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def to_scipy_sparse(m, **options): """Convert a sympy/numpy matrix to a scipy.sparse matrix.""" dtype = options.get('dtype', 'complex') if isinstance(m, (MatrixBase, Expr)): return sympy_to_scipy_sparse(m, dtype=dtype) elif isinstance(m, numpy_ndarray): if not sparse: raise ImportError return sparse.csr_matrix(m) elif isinstance(m, scipy_sparse_matrix): return m raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % m) def flatten_scalar(e): """Flatten a 1x1 matrix to a scalar, return larger matrices unchanged.""" if isinstance(e, MatrixBase): if e.shape == (1, 1): e = e[0] if isinstance(e, (numpy_ndarray, scipy_sparse_matrix)): if e.shape == (1, 1): e = complex(e[0, 0]) return e def matrix_dagger(e): """Return the dagger of a sympy/numpy/scipy.sparse matrix.""" if isinstance(e, MatrixBase): return e.H elif isinstance(e, (numpy_ndarray, scipy_sparse_matrix)): return e.conjugate().transpose() raise TypeError('Expected sympy/numpy/scipy.sparse matrix, got: %r' % e) # TODO: Move this into sympy.matricies. def _sympy_tensor_product(*matrices): """Compute the kronecker product of a sequence of SymPy Matrices. """ from sympy.matrices.expressions.kronecker import matrix_kronecker_product return matrix_kronecker_product(*matrices) def _numpy_tensor_product(*product): """numpy version of tensor product of multiple arguments.""" if not np: raise ImportError answer = product[0] for item in product[1:]: answer = np.kron(answer, item) return answer def _scipy_sparse_tensor_product(*product): """scipy.sparse version of tensor product of multiple arguments.""" if not sparse: raise ImportError answer = product[0] for item in product[1:]: answer = sparse.kron(answer, item) # The final matrices will just be multiplied, so csr is a good final # sparse format. return sparse.csr_matrix(answer) def matrix_tensor_product(*product): """Compute the matrix tensor product of sympy/numpy/scipy.sparse matrices.""" if isinstance(product[0], MatrixBase): return _sympy_tensor_product(*product) elif isinstance(product[0], numpy_ndarray): return _numpy_tensor_product(*product) elif isinstance(product[0], scipy_sparse_matrix): return _scipy_sparse_tensor_product(*product) def _numpy_eye(n): """numpy version of complex eye.""" if not np: raise ImportError return np.matrix(np.eye(n, dtype='complex')) def _scipy_sparse_eye(n): """scipy.sparse version of complex eye.""" if not sparse: raise ImportError return sparse.eye(n, n, dtype='complex') def matrix_eye(n, **options): """Get the version of eye and tensor_product for a given format.""" format = options.get('format', 'sympy') if format == 'sympy': return eye(n) elif format == 'numpy': return _numpy_eye(n) elif format == 'scipy.sparse': return _scipy_sparse_eye(n) raise NotImplementedError('Invalid format: %r' % format) def _numpy_zeros(m, n, **options): """numpy version of zeros.""" dtype = options.get('dtype', 'float64') if not np: raise ImportError return np.zeros((m, n), dtype=dtype) def _scipy_sparse_zeros(m, n, **options): """scipy.sparse version of zeros.""" spmatrix = options.get('spmatrix', 'csr') dtype = options.get('dtype', 'float64') if not sparse: raise ImportError if spmatrix == 'lil': return sparse.lil_matrix((m, n), dtype=dtype) elif spmatrix == 'csr': return sparse.csr_matrix((m, n), dtype=dtype) def matrix_zeros(m, n, **options): """"Get a zeros matrix for a given format.""" format = options.get('format', 'sympy') if format == 'sympy': return zeros(m, n) elif format == 'numpy': return _numpy_zeros(m, n, **options) elif format == 'scipy.sparse': return _scipy_sparse_zeros(m, n, **options) raise NotImplementedError('Invaild format: %r' % format) def _numpy_matrix_to_zero(e): """Convert a numpy zero matrix to the zero scalar.""" if not np: raise ImportError test = np.zeros_like(e) if np.allclose(e, test): return 0.0 else: return e def _scipy_sparse_matrix_to_zero(e): """Convert a scipy.sparse zero matrix to the zero scalar.""" if not np: raise ImportError edense = e.todense() test = np.zeros_like(edense) if np.allclose(edense, test): return 0.0 else: return e def matrix_to_zero(e): """Convert a zero matrix to the scalar zero.""" if isinstance(e, MatrixBase): if zeros(*e.shape) == e: e = S.Zero elif isinstance(e, numpy_ndarray): e = _numpy_matrix_to_zero(e) elif isinstance(e, scipy_sparse_matrix): e = _scipy_sparse_matrix_to_zero(e) return e
661911ef84e10301e1da1a94e2e9500d00d751be2a185c6dc61dff71ebc72861
"""An implementation of gates that act on qubits. Gates are unitary operators that act on the space of qubits. Medium Term Todo: * Optimize Gate._apply_operators_Qubit to remove the creation of many intermediate Qubit objects. * Add commutation relationships to all operators and use this in gate_sort. * Fix gate_sort and gate_simp. * Get multi-target UGates plotting properly. * Get UGate to work with either sympy/numpy matrices and output either format. This should also use the matrix slots. """ from itertools import chain import random from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.numbers import (I, Integer) from sympy.core.power import Pow from sympy.core.numbers import Number from sympy.core.singleton import S as _S from sympy.core.sorting import default_sort_key from sympy.functions.elementary.miscellaneous import sqrt from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.operator import (UnitaryOperator, Operator, HermitianOperator) from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye from sympy.physics.quantum.matrixcache import matrix_cache from sympy.matrices.matrices import MatrixBase from sympy.utilities.iterables import is_sequence __all__ = [ 'Gate', 'CGate', 'UGate', 'OneQubitGate', 'TwoQubitGate', 'IdentityGate', 'HadamardGate', 'XGate', 'YGate', 'ZGate', 'TGate', 'PhaseGate', 'SwapGate', 'CNotGate', # Aliased gate names 'CNOT', 'SWAP', 'H', 'X', 'Y', 'Z', 'T', 'S', 'Phase', 'normalized', 'gate_sort', 'gate_simp', 'random_circuit', 'CPHASE', 'CGateS', ] #----------------------------------------------------------------------------- # Gate Super-Classes #----------------------------------------------------------------------------- _normalized = True def _max(*args, **kwargs): if "key" not in kwargs: kwargs["key"] = default_sort_key return max(*args, **kwargs) def _min(*args, **kwargs): if "key" not in kwargs: kwargs["key"] = default_sort_key return min(*args, **kwargs) def normalized(normalize): """Set flag controlling normalization of Hadamard gates by 1/sqrt(2). This is a global setting that can be used to simplify the look of various expressions, by leaving off the leading 1/sqrt(2) of the Hadamard gate. Parameters ---------- normalize : bool Should the Hadamard gate include the 1/sqrt(2) normalization factor? When True, the Hadamard gate will have the 1/sqrt(2). When False, the Hadamard gate will not have this factor. """ global _normalized _normalized = normalize def _validate_targets_controls(tandc): tandc = list(tandc) # Check for integers for bit in tandc: if not bit.is_Integer and not bit.is_Symbol: raise TypeError('Integer expected, got: %r' % tandc[bit]) # Detect duplicates if len(list(set(tandc))) != len(tandc): raise QuantumError( 'Target/control qubits in a gate cannot be duplicated' ) class Gate(UnitaryOperator): """Non-controlled unitary gate operator that acts on qubits. This is a general abstract gate that needs to be subclassed to do anything useful. Parameters ---------- label : tuple, int A list of the target qubits (as ints) that the gate will apply to. Examples ======== """ _label_separator = ',' gate_name = 'G' gate_name_latex = 'G' #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): args = Tuple(*UnitaryOperator._eval_args(args)) _validate_targets_controls(args) return args @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(_max(args) + 1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def nqubits(self): """The total number of qubits this gate acts on. For controlled gate subclasses this includes both target and control qubits, so that, for examples the CNOT gate acts on 2 qubits. """ return len(self.targets) @property def min_qubits(self): """The minimum number of qubits this gate needs to act on.""" return _max(self.targets) + 1 @property def targets(self): """A tuple of target qubits.""" return self.label @property def gate_name_plot(self): return r'$%s$' % self.gate_name_latex #------------------------------------------------------------------------- # Gate methods #------------------------------------------------------------------------- def get_target_matrix(self, format='sympy'): """The matrix rep. of the target part of the gate. Parameters ---------- format : str The format string ('sympy','numpy', etc.) """ raise NotImplementedError( 'get_target_matrix is not implemented in Gate.') #------------------------------------------------------------------------- # Apply #------------------------------------------------------------------------- def _apply_operator_IntQubit(self, qubits, **options): """Redirect an apply from IntQubit to Qubit""" return self._apply_operator_Qubit(qubits, **options) def _apply_operator_Qubit(self, qubits, **options): """Apply this gate to a Qubit.""" # Check number of qubits this gate acts on. if qubits.nqubits < self.min_qubits: raise QuantumError( 'Gate needs a minimum of %r qubits to act on, got: %r' % (self.min_qubits, qubits.nqubits) ) # If the controls are not met, just return if isinstance(self, CGate): if not self.eval_controls(qubits): return qubits targets = self.targets target_matrix = self.get_target_matrix(format='sympy') # Find which column of the target matrix this applies to. column_index = 0 n = 1 for target in targets: column_index += n*qubits[target] n = n << 1 column = target_matrix[:, int(column_index)] # Now apply each column element to the qubit. result = 0 for index in range(column.rows): # TODO: This can be optimized to reduce the number of Qubit # creations. We should simply manipulate the raw list of qubit # values and then build the new Qubit object once. # Make a copy of the incoming qubits. new_qubit = qubits.__class__(*qubits.args) # Flip the bits that need to be flipped. for bit in range(len(targets)): if new_qubit[targets[bit]] != (index >> bit) & 1: new_qubit = new_qubit.flip(targets[bit]) # The value in that row and column times the flipped-bit qubit # is the result for that part. result += column[index]*new_qubit return result #------------------------------------------------------------------------- # Represent #------------------------------------------------------------------------- def _represent_default_basis(self, **options): return self._represent_ZGate(None, **options) def _represent_ZGate(self, basis, **options): format = options.get('format', 'sympy') nqubits = options.get('nqubits', 0) if nqubits == 0: raise QuantumError( 'The number of qubits must be given as nqubits.') # Make sure we have enough qubits for the gate. if nqubits < self.min_qubits: raise QuantumError( 'The number of qubits %r is too small for the gate.' % nqubits ) target_matrix = self.get_target_matrix(format) targets = self.targets if isinstance(self, CGate): controls = self.controls else: controls = [] m = represent_zbasis( controls, targets, target_matrix, nqubits, format ) return m #------------------------------------------------------------------------- # Print methods #------------------------------------------------------------------------- def _sympystr(self, printer, *args): label = self._print_label(printer, *args) return '%s(%s)' % (self.gate_name, label) def _pretty(self, printer, *args): a = stringPict(self.gate_name) b = self._print_label_pretty(printer, *args) return self._print_subscript_pretty(a, b) def _latex(self, printer, *args): label = self._print_label(printer, *args) return '%s_{%s}' % (self.gate_name_latex, label) def plot_gate(self, axes, gate_idx, gate_grid, wire_grid): raise NotImplementedError('plot_gate is not implemented.') class CGate(Gate): """A general unitary gate with control qubits. A general control gate applies a target gate to a set of targets if all of the control qubits have a particular values (set by ``CGate.control_value``). Parameters ---------- label : tuple The label in this case has the form (controls, gate), where controls is a tuple/list of control qubits (as ints) and gate is a ``Gate`` instance that is the target operator. Examples ======== """ gate_name = 'C' gate_name_latex = 'C' # The values this class controls for. control_value = _S.One simplify_cgate = False #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): # _eval_args has the right logic for the controls argument. controls = args[0] gate = args[1] if not is_sequence(controls): controls = (controls,) controls = UnitaryOperator._eval_args(controls) _validate_targets_controls(chain(controls, gate.targets)) return (Tuple(*controls), gate) @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def nqubits(self): """The total number of qubits this gate acts on. For controlled gate subclasses this includes both target and control qubits, so that, for examples the CNOT gate acts on 2 qubits. """ return len(self.targets) + len(self.controls) @property def min_qubits(self): """The minimum number of qubits this gate needs to act on.""" return _max(_max(self.controls), _max(self.targets)) + 1 @property def targets(self): """A tuple of target qubits.""" return self.gate.targets @property def controls(self): """A tuple of control qubits.""" return tuple(self.label[0]) @property def gate(self): """The non-controlled gate that will be applied to the targets.""" return self.label[1] #------------------------------------------------------------------------- # Gate methods #------------------------------------------------------------------------- def get_target_matrix(self, format='sympy'): return self.gate.get_target_matrix(format) def eval_controls(self, qubit): """Return True/False to indicate if the controls are satisfied.""" return all(qubit[bit] == self.control_value for bit in self.controls) def decompose(self, **options): """Decompose the controlled gate into CNOT and single qubits gates.""" if len(self.controls) == 1: c = self.controls[0] t = self.gate.targets[0] if isinstance(self.gate, YGate): g1 = PhaseGate(t) g2 = CNotGate(c, t) g3 = PhaseGate(t) g4 = ZGate(t) return g1*g2*g3*g4 if isinstance(self.gate, ZGate): g1 = HadamardGate(t) g2 = CNotGate(c, t) g3 = HadamardGate(t) return g1*g2*g3 else: return self #------------------------------------------------------------------------- # Print methods #------------------------------------------------------------------------- def _print_label(self, printer, *args): controls = self._print_sequence(self.controls, ',', printer, *args) gate = printer._print(self.gate, *args) return '(%s),%s' % (controls, gate) def _pretty(self, printer, *args): controls = self._print_sequence_pretty( self.controls, ',', printer, *args) gate = printer._print(self.gate) gate_name = stringPict(self.gate_name) first = self._print_subscript_pretty(gate_name, controls) gate = self._print_parens_pretty(gate) final = prettyForm(*first.right(gate)) return final def _latex(self, printer, *args): controls = self._print_sequence(self.controls, ',', printer, *args) gate = printer._print(self.gate, *args) return r'%s_{%s}{\left(%s\right)}' % \ (self.gate_name_latex, controls, gate) def plot_gate(self, circ_plot, gate_idx): """ Plot the controlled gate. If *simplify_cgate* is true, simplify C-X and C-Z gates into their more familiar forms. """ min_wire = int(_min(chain(self.controls, self.targets))) max_wire = int(_max(chain(self.controls, self.targets))) circ_plot.control_line(gate_idx, min_wire, max_wire) for c in self.controls: circ_plot.control_point(gate_idx, int(c)) if self.simplify_cgate: if self.gate.gate_name == 'X': self.gate.plot_gate_plus(circ_plot, gate_idx) elif self.gate.gate_name == 'Z': circ_plot.control_point(gate_idx, self.targets[0]) else: self.gate.plot_gate(circ_plot, gate_idx) else: self.gate.plot_gate(circ_plot, gate_idx) #------------------------------------------------------------------------- # Miscellaneous #------------------------------------------------------------------------- def _eval_dagger(self): if isinstance(self.gate, HermitianOperator): return self else: return Gate._eval_dagger(self) def _eval_inverse(self): if isinstance(self.gate, HermitianOperator): return self else: return Gate._eval_inverse(self) def _eval_power(self, exp): if isinstance(self.gate, HermitianOperator): if exp == -1: return Gate._eval_power(self, exp) elif abs(exp) % 2 == 0: return self*(Gate._eval_inverse(self)) else: return self else: return Gate._eval_power(self, exp) class CGateS(CGate): """Version of CGate that allows gate simplifications. I.e. cnot looks like an oplus, cphase has dots, etc. """ simplify_cgate=True class UGate(Gate): """General gate specified by a set of targets and a target matrix. Parameters ---------- label : tuple A tuple of the form (targets, U), where targets is a tuple of the target qubits and U is a unitary matrix with dimension of len(targets). """ gate_name = 'U' gate_name_latex = 'U' #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): targets = args[0] if not is_sequence(targets): targets = (targets,) targets = Gate._eval_args(targets) _validate_targets_controls(targets) mat = args[1] if not isinstance(mat, MatrixBase): raise TypeError('Matrix expected, got: %r' % mat) dim = 2**len(targets) if not all(dim == shape for shape in mat.shape): raise IndexError( 'Number of targets must match the matrix size: %r %r' % (targets, mat) ) return (targets, mat) @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(_max(args[0]) + 1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def targets(self): """A tuple of target qubits.""" return tuple(self.label[0]) #------------------------------------------------------------------------- # Gate methods #------------------------------------------------------------------------- def get_target_matrix(self, format='sympy'): """The matrix rep. of the target part of the gate. Parameters ---------- format : str The format string ('sympy','numpy', etc.) """ return self.label[1] #------------------------------------------------------------------------- # Print methods #------------------------------------------------------------------------- def _pretty(self, printer, *args): targets = self._print_sequence_pretty( self.targets, ',', printer, *args) gate_name = stringPict(self.gate_name) return self._print_subscript_pretty(gate_name, targets) def _latex(self, printer, *args): targets = self._print_sequence(self.targets, ',', printer, *args) return r'%s_{%s}' % (self.gate_name_latex, targets) def plot_gate(self, circ_plot, gate_idx): circ_plot.one_qubit_box( self.gate_name_plot, gate_idx, int(self.targets[0]) ) class OneQubitGate(Gate): """A single qubit unitary gate base class.""" nqubits = _S.One def plot_gate(self, circ_plot, gate_idx): circ_plot.one_qubit_box( self.gate_name_plot, gate_idx, int(self.targets[0]) ) def _eval_commutator(self, other, **hints): if isinstance(other, OneQubitGate): if self.targets != other.targets or self.__class__ == other.__class__: return _S.Zero return Operator._eval_commutator(self, other, **hints) def _eval_anticommutator(self, other, **hints): if isinstance(other, OneQubitGate): if self.targets != other.targets or self.__class__ == other.__class__: return Integer(2)*self*other return Operator._eval_anticommutator(self, other, **hints) class TwoQubitGate(Gate): """A two qubit unitary gate base class.""" nqubits = Integer(2) #----------------------------------------------------------------------------- # Single Qubit Gates #----------------------------------------------------------------------------- class IdentityGate(OneQubitGate): """The single qubit identity gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = '1' gate_name_latex = '1' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('eye2', format) def _eval_commutator(self, other, **hints): return _S.Zero def _eval_anticommutator(self, other, **hints): return Integer(2)*other class HadamardGate(HermitianOperator, OneQubitGate): """The single qubit Hadamard gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== >>> from sympy import sqrt >>> from sympy.physics.quantum.qubit import Qubit >>> from sympy.physics.quantum.gate import HadamardGate >>> from sympy.physics.quantum.qapply import qapply >>> qapply(HadamardGate(0)*Qubit('1')) sqrt(2)*|0>/2 - sqrt(2)*|1>/2 >>> # Hadamard on bell state, applied on 2 qubits. >>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11')) >>> qapply(HadamardGate(0)*HadamardGate(1)*psi) sqrt(2)*|00>/2 + sqrt(2)*|11>/2 """ gate_name = 'H' gate_name_latex = 'H' def get_target_matrix(self, format='sympy'): if _normalized: return matrix_cache.get_matrix('H', format) else: return matrix_cache.get_matrix('Hsqrt2', format) def _eval_commutator_XGate(self, other, **hints): return I*sqrt(2)*YGate(self.targets[0]) def _eval_commutator_YGate(self, other, **hints): return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0])) def _eval_commutator_ZGate(self, other, **hints): return -I*sqrt(2)*YGate(self.targets[0]) def _eval_anticommutator_XGate(self, other, **hints): return sqrt(2)*IdentityGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return _S.Zero def _eval_anticommutator_ZGate(self, other, **hints): return sqrt(2)*IdentityGate(self.targets[0]) class XGate(HermitianOperator, OneQubitGate): """The single qubit X, or NOT, gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'X' gate_name_latex = 'X' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('X', format) def plot_gate(self, circ_plot, gate_idx): OneQubitGate.plot_gate(self,circ_plot,gate_idx) def plot_gate_plus(self, circ_plot, gate_idx): circ_plot.not_point( gate_idx, int(self.label[0]) ) def _eval_commutator_YGate(self, other, **hints): return Integer(2)*I*ZGate(self.targets[0]) def _eval_anticommutator_XGate(self, other, **hints): return Integer(2)*IdentityGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return _S.Zero def _eval_anticommutator_ZGate(self, other, **hints): return _S.Zero class YGate(HermitianOperator, OneQubitGate): """The single qubit Y gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'Y' gate_name_latex = 'Y' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('Y', format) def _eval_commutator_ZGate(self, other, **hints): return Integer(2)*I*XGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return Integer(2)*IdentityGate(self.targets[0]) def _eval_anticommutator_ZGate(self, other, **hints): return _S.Zero class ZGate(HermitianOperator, OneQubitGate): """The single qubit Z gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'Z' gate_name_latex = 'Z' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('Z', format) def _eval_commutator_XGate(self, other, **hints): return Integer(2)*I*YGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return _S.Zero class PhaseGate(OneQubitGate): """The single qubit phase, or S, gate. This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and does nothing if the state is ``|0>``. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'S' gate_name_latex = 'S' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('S', format) def _eval_commutator_ZGate(self, other, **hints): return _S.Zero def _eval_commutator_TGate(self, other, **hints): return _S.Zero class TGate(OneQubitGate): """The single qubit pi/8 gate. This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and does nothing if the state is ``|0>``. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'T' gate_name_latex = 'T' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('T', format) def _eval_commutator_ZGate(self, other, **hints): return _S.Zero def _eval_commutator_PhaseGate(self, other, **hints): return _S.Zero # Aliases for gate names. H = HadamardGate X = XGate Y = YGate Z = ZGate T = TGate Phase = S = PhaseGate #----------------------------------------------------------------------------- # 2 Qubit Gates #----------------------------------------------------------------------------- class CNotGate(HermitianOperator, CGate, TwoQubitGate): """Two qubit controlled-NOT. This gate performs the NOT or X gate on the target qubit if the control qubits all have the value 1. Parameters ---------- label : tuple A tuple of the form (control, target). Examples ======== >>> from sympy.physics.quantum.gate import CNOT >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import Qubit >>> c = CNOT(1,0) >>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left |11> """ gate_name = 'CNOT' gate_name_latex = 'CNOT' simplify_cgate = True #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): args = Gate._eval_args(args) return args @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(_max(args) + 1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def min_qubits(self): """The minimum number of qubits this gate needs to act on.""" return _max(self.label) + 1 @property def targets(self): """A tuple of target qubits.""" return (self.label[1],) @property def controls(self): """A tuple of control qubits.""" return (self.label[0],) @property def gate(self): """The non-controlled gate that will be applied to the targets.""" return XGate(self.label[1]) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- # The default printing of Gate works better than those of CGate, so we # go around the overridden methods in CGate. def _print_label(self, printer, *args): return Gate._print_label(self, printer, *args) def _pretty(self, printer, *args): return Gate._pretty(self, printer, *args) def _latex(self, printer, *args): return Gate._latex(self, printer, *args) #------------------------------------------------------------------------- # Commutator/AntiCommutator #------------------------------------------------------------------------- def _eval_commutator_ZGate(self, other, **hints): """[CNOT(i, j), Z(i)] == 0.""" if self.controls[0] == other.targets[0]: return _S.Zero else: raise NotImplementedError('Commutator not implemented: %r' % other) def _eval_commutator_TGate(self, other, **hints): """[CNOT(i, j), T(i)] == 0.""" return self._eval_commutator_ZGate(other, **hints) def _eval_commutator_PhaseGate(self, other, **hints): """[CNOT(i, j), S(i)] == 0.""" return self._eval_commutator_ZGate(other, **hints) def _eval_commutator_XGate(self, other, **hints): """[CNOT(i, j), X(j)] == 0.""" if self.targets[0] == other.targets[0]: return _S.Zero else: raise NotImplementedError('Commutator not implemented: %r' % other) def _eval_commutator_CNotGate(self, other, **hints): """[CNOT(i, j), CNOT(i,k)] == 0.""" if self.controls[0] == other.controls[0]: return _S.Zero else: raise NotImplementedError('Commutator not implemented: %r' % other) class SwapGate(TwoQubitGate): """Two qubit SWAP gate. This gate swap the values of the two qubits. Parameters ---------- label : tuple A tuple of the form (target1, target2). Examples ======== """ gate_name = 'SWAP' gate_name_latex = 'SWAP' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('SWAP', format) def decompose(self, **options): """Decompose the SWAP gate into CNOT gates.""" i, j = self.targets[0], self.targets[1] g1 = CNotGate(i, j) g2 = CNotGate(j, i) return g1*g2*g1 def plot_gate(self, circ_plot, gate_idx): min_wire = int(_min(self.targets)) max_wire = int(_max(self.targets)) circ_plot.control_line(gate_idx, min_wire, max_wire) circ_plot.swap_point(gate_idx, min_wire) circ_plot.swap_point(gate_idx, max_wire) def _represent_ZGate(self, basis, **options): """Represent the SWAP gate in the computational basis. The following representation is used to compute this: SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0| """ format = options.get('format', 'sympy') targets = [int(t) for t in self.targets] min_target = _min(targets) max_target = _max(targets) nqubits = options.get('nqubits', self.min_qubits) op01 = matrix_cache.get_matrix('op01', format) op10 = matrix_cache.get_matrix('op10', format) op11 = matrix_cache.get_matrix('op11', format) op00 = matrix_cache.get_matrix('op00', format) eye2 = matrix_cache.get_matrix('eye2', format) result = None for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)): product = nqubits*[eye2] product[nqubits - min_target - 1] = i product[nqubits - max_target - 1] = j new_result = matrix_tensor_product(*product) if result is None: result = new_result else: result = result + new_result return result # Aliases for gate names. CNOT = CNotGate SWAP = SwapGate def CPHASE(a,b): return CGateS((a,),Z(b)) #----------------------------------------------------------------------------- # Represent #----------------------------------------------------------------------------- def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'): """Represent a gate with controls, targets and target_matrix. This function does the low-level work of representing gates as matrices in the standard computational basis (ZGate). Currently, we support two main cases: 1. One target qubit and no control qubits. 2. One target qubits and multiple control qubits. For the base of multiple controls, we use the following expression [1]: 1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2}) Parameters ---------- controls : list, tuple A sequence of control qubits. targets : list, tuple A sequence of target qubits. target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse The matrix form of the transformation to be performed on the target qubits. The format of this matrix must match that passed into the `format` argument. nqubits : int The total number of qubits used for the representation. format : str The format of the final matrix ('sympy', 'numpy', 'scipy.sparse'). Examples ======== References ---------- [1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html. """ controls = [int(x) for x in controls] targets = [int(x) for x in targets] nqubits = int(nqubits) # This checks for the format as well. op11 = matrix_cache.get_matrix('op11', format) eye2 = matrix_cache.get_matrix('eye2', format) # Plain single qubit case if len(controls) == 0 and len(targets) == 1: product = [] bit = targets[0] # Fill product with [I1,Gate,I2] such that the unitaries, # I, cause the gate to be applied to the correct Qubit if bit != nqubits - 1: product.append(matrix_eye(2**(nqubits - bit - 1), format=format)) product.append(target_matrix) if bit != 0: product.append(matrix_eye(2**bit, format=format)) return matrix_tensor_product(*product) # Single target, multiple controls. elif len(targets) == 1 and len(controls) >= 1: target = targets[0] # Build the non-trivial part. product2 = [] for i in range(nqubits): product2.append(matrix_eye(2, format=format)) for control in controls: product2[nqubits - 1 - control] = op11 product2[nqubits - 1 - target] = target_matrix - eye2 return matrix_eye(2**nqubits, format=format) + \ matrix_tensor_product(*product2) # Multi-target, multi-control is not yet implemented. else: raise NotImplementedError( 'The representation of multi-target, multi-control gates ' 'is not implemented.' ) #----------------------------------------------------------------------------- # Gate manipulation functions. #----------------------------------------------------------------------------- def gate_simp(circuit): """Simplifies gates symbolically It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity """ # Bubble sort out gates that commute. circuit = gate_sort(circuit) # Do simplifications by subing a simplification into the first element # which can be simplified. We recursively call gate_simp with new circuit # as input more simplifications exist. if isinstance(circuit, Add): return sum(gate_simp(t) for t in circuit.args) elif isinstance(circuit, Mul): circuit_args = circuit.args elif isinstance(circuit, Pow): b, e = circuit.as_base_exp() circuit_args = (gate_simp(b)**e,) else: return circuit # Iterate through each element in circuit, simplify if possible. for i in range(len(circuit_args)): # H,X,Y or Z squared is 1. # T**2 = S, S**2 = Z if isinstance(circuit_args[i], Pow): if isinstance(circuit_args[i].base, (HadamardGate, XGate, YGate, ZGate)) \ and isinstance(circuit_args[i].exp, Number): # Build a new circuit taking replacing the # H,X,Y,Z squared with one. newargs = (circuit_args[:i] + (circuit_args[i].base**(circuit_args[i].exp % 2),) + circuit_args[i + 1:]) # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break elif isinstance(circuit_args[i].base, PhaseGate): # Build a new circuit taking old circuit but splicing # in simplification. newargs = circuit_args[:i] # Replace PhaseGate**2 with ZGate. newargs = newargs + (ZGate(circuit_args[i].base.args[0])** (Integer(circuit_args[i].exp/2)), circuit_args[i].base** (circuit_args[i].exp % 2)) # Append the last elements. newargs = newargs + circuit_args[i + 1:] # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break elif isinstance(circuit_args[i].base, TGate): # Build a new circuit taking all the old elements. newargs = circuit_args[:i] # Put an Phasegate in place of any TGate**2. newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])** Integer(circuit_args[i].exp/2), circuit_args[i].base** (circuit_args[i].exp % 2)) # Append the last elements. newargs = newargs + circuit_args[i + 1:] # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break return circuit def gate_sort(circuit): """Sorts the gates while keeping track of commutation relations This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation relations (e.g. things that apply to the same Qubit do not commute with each other) circuit is the Mul of gates that are to be sorted. """ # Make sure we have an Add or Mul. if isinstance(circuit, Add): return sum(gate_sort(t) for t in circuit.args) if isinstance(circuit, Pow): return gate_sort(circuit.base)**circuit.exp elif isinstance(circuit, Gate): return circuit if not isinstance(circuit, Mul): return circuit changes = True while changes: changes = False circ_array = circuit.args for i in range(len(circ_array) - 1): # Go through each element and switch ones that are in wrong order if isinstance(circ_array[i], (Gate, Pow)) and \ isinstance(circ_array[i + 1], (Gate, Pow)): # If we have a Pow object, look at only the base first_base, first_exp = circ_array[i].as_base_exp() second_base, second_exp = circ_array[i + 1].as_base_exp() # Use SymPy's hash based sorting. This is not mathematical # sorting, but is rather based on comparing hashes of objects. # See Basic.compare for details. if first_base.compare(second_base) > 0: if Commutator(first_base, second_base).doit() == 0: new_args = (circuit.args[:i] + (circuit.args[i + 1],) + (circuit.args[i],) + circuit.args[i + 2:]) circuit = Mul(*new_args) changes = True break if AntiCommutator(first_base, second_base).doit() == 0: new_args = (circuit.args[:i] + (circuit.args[i + 1],) + (circuit.args[i],) + circuit.args[i + 2:]) sign = _S.NegativeOne**(first_exp*second_exp) circuit = sign*Mul(*new_args) changes = True break return circuit #----------------------------------------------------------------------------- # Utility functions #----------------------------------------------------------------------------- def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)): """Return a random circuit of ngates and nqubits. This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates. Parameters ---------- ngates : int The number of gates in the circuit. nqubits : int The number of qubits in the circuit. gate_space : tuple A tuple of the gate classes that will be used in the circuit. Repeating gate classes multiple times in this tuple will increase the frequency they appear in the random circuit. """ qubit_space = range(nqubits) result = [] for i in range(ngates): g = random.choice(gate_space) if g == CNotGate or g == SwapGate: qubits = random.sample(qubit_space, 2) g = g(*qubits) else: qubit = random.choice(qubit_space) g = g(qubit) result.append(g) return Mul(*result) def zx_basis_transform(self, format='sympy'): """Transformation matrix from Z to X basis.""" return matrix_cache.get_matrix('ZX', format) def zy_basis_transform(self, format='sympy'): """Transformation matrix from Z to Y basis.""" return matrix_cache.get_matrix('ZY', format)
7aa8061cde62475f4bbb0088fdfc4b88c87d25964bb84d4274871465c24151c9
"""Logic for representing operators in state in various bases. TODO: * Get represent working with continuous hilbert spaces. * Document default basis functionality. """ from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.core.power import Pow from sympy.integrals.integrals import integrate from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.matrixutils import flatten_scalar from sympy.physics.quantum.state import KetBase, BraBase, StateBase from sympy.physics.quantum.operator import Operator, OuterProduct from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.operatorset import operators_to_state, state_to_operators __all__ = [ 'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result', 'get_basis', 'enumerate_states' ] #----------------------------------------------------------------------------- # Represent #----------------------------------------------------------------------------- def _sympy_to_scalar(e): """Convert from a SymPy scalar to a Python scalar.""" if isinstance(e, Expr): if e.is_Integer: return int(e) elif e.is_Float: return float(e) elif e.is_Rational: return float(e) elif e.is_Number or e.is_NumberSymbol or e == I: return complex(e) raise TypeError('Expected number, got: %r' % e) def represent(expr, **options): """Represent the quantum expression in the given basis. In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen: * Ket -> column vector or function * Bra -> row vector of function * Operator -> matrix or differential operator This function is the top-level interface for this action. This function walks the SymPy expression tree looking for ``QExpr`` instances that have a ``_represent`` method. This method is then called and the object is replaced by the representation returned by this method. By default, the ``_represent`` method will dispatch to other methods that handle the representation logic for a particular basis set. The naming convention for these methods is the following:: def _represent_FooBasis(self, e, basis, **options) This function will have the logic for representing instances of its class in the basis set having a class named ``FooBasis``. Parameters ========== expr : Expr The expression to represent. basis : Operator, basis set An object that contains the information about the basis set. If an operator is used, the basis is assumed to be the orthonormal eigenvectors of that operator. In general though, the basis argument can be any object that contains the basis set information. options : dict Key/value pairs of options that are passed to the underlying method that finds the representation. These options can be used to control how the representation is done. For example, this is where the size of the basis set would be set. Returns ======= e : Expr The SymPy expression of the represented quantum expression. Examples ======== Here we subclass ``Operator`` and ``Ket`` to create the z-spin operator and its spin 1/2 up eigenstate. By defining the ``_represent_SzOp`` method, the ket can be represented in the z-spin basis. >>> from sympy.physics.quantum import Operator, represent, Ket >>> from sympy import Matrix >>> class SzUpKet(Ket): ... def _represent_SzOp(self, basis, **options): ... return Matrix([1,0]) ... >>> class SzOp(Operator): ... pass ... >>> sz = SzOp('Sz') >>> up = SzUpKet('up') >>> represent(up, basis=sz) Matrix([ [1], [0]]) Here we see an example of representations in a continuous basis. We see that the result of representing various combinations of cartesian position operators and kets give us continuous expressions involving DiracDelta functions. >>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra >>> X = XOp() >>> x = XKet() >>> y = XBra('y') >>> represent(X*x) x*DiracDelta(x - x_2) >>> represent(X*x*y) x*DiracDelta(x - x_3)*DiracDelta(x_1 - y) """ format = options.get('format', 'sympy') if isinstance(expr, QExpr) and not isinstance(expr, OuterProduct): options['replace_none'] = False temp_basis = get_basis(expr, **options) if temp_basis is not None: options['basis'] = temp_basis try: return expr._represent(**options) except NotImplementedError as strerr: #If no _represent_FOO method exists, map to the #appropriate basis state and try #the other methods of representation options['replace_none'] = True if isinstance(expr, (KetBase, BraBase)): try: return rep_innerproduct(expr, **options) except NotImplementedError: raise NotImplementedError(strerr) elif isinstance(expr, Operator): try: return rep_expectation(expr, **options) except NotImplementedError: raise NotImplementedError(strerr) else: raise NotImplementedError(strerr) elif isinstance(expr, Add): result = represent(expr.args[0], **options) for args in expr.args[1:]: # scipy.sparse doesn't support += so we use plain = here. result = result + represent(args, **options) return result elif isinstance(expr, Pow): base, exp = expr.as_base_exp() if format in ('numpy', 'scipy.sparse'): exp = _sympy_to_scalar(exp) base = represent(base, **options) # scipy.sparse doesn't support negative exponents # and warns when inverting a matrix in csr format. if format == 'scipy.sparse' and exp < 0: from scipy.sparse.linalg import inv exp = - exp base = inv(base.tocsc()).tocsr() return base ** exp elif isinstance(expr, TensorProduct): new_args = [represent(arg, **options) for arg in expr.args] return TensorProduct(*new_args) elif isinstance(expr, Dagger): return Dagger(represent(expr.args[0], **options)) elif isinstance(expr, Commutator): A = represent(expr.args[0], **options) B = represent(expr.args[1], **options) return A*B - B*A elif isinstance(expr, AntiCommutator): A = represent(expr.args[0], **options) B = represent(expr.args[1], **options) return A*B + B*A elif isinstance(expr, InnerProduct): return represent(Mul(expr.bra, expr.ket), **options) elif not isinstance(expr, (Mul, OuterProduct)): # For numpy and scipy.sparse, we can only handle numerical prefactors. if format in ('numpy', 'scipy.sparse'): return _sympy_to_scalar(expr) return expr if not isinstance(expr, (Mul, OuterProduct)): raise TypeError('Mul expected, got: %r' % expr) if "index" in options: options["index"] += 1 else: options["index"] = 1 if not "unities" in options: options["unities"] = [] result = represent(expr.args[-1], **options) last_arg = expr.args[-1] for arg in reversed(expr.args[:-1]): if isinstance(last_arg, Operator): options["index"] += 1 options["unities"].append(options["index"]) elif isinstance(last_arg, BraBase) and isinstance(arg, KetBase): options["index"] += 1 elif isinstance(last_arg, KetBase) and isinstance(arg, Operator): options["unities"].append(options["index"]) elif isinstance(last_arg, KetBase) and isinstance(arg, BraBase): options["unities"].append(options["index"]) result = represent(arg, **options)*result last_arg = arg # All three matrix formats create 1 by 1 matrices when inner products of # vectors are taken. In these cases, we simply return a scalar. result = flatten_scalar(result) result = integrate_result(expr, result, **options) return result def rep_innerproduct(expr, **options): """ Returns an innerproduct like representation (e.g. ``<x'|x>``) for the given state. Attempts to calculate inner product with a bra from the specified basis. Should only be passed an instance of KetBase or BraBase Parameters ========== expr : KetBase or BraBase The expression to be represented Examples ======== >>> from sympy.physics.quantum.represent import rep_innerproduct >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> rep_innerproduct(XKet()) DiracDelta(x - x_1) >>> rep_innerproduct(XKet(), basis=PxOp()) sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi)) >>> rep_innerproduct(PxKet(), basis=XOp()) sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi)) """ if not isinstance(expr, (KetBase, BraBase)): raise TypeError("expr passed is not a Bra or Ket") basis = get_basis(expr, **options) if not isinstance(basis, StateBase): raise NotImplementedError("Can't form this representation!") if not "index" in options: options["index"] = 1 basis_kets = enumerate_states(basis, options["index"], 2) if isinstance(expr, BraBase): bra = expr ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0]) else: bra = (basis_kets[1].dual if basis_kets[0] == expr else basis_kets[0].dual) ket = expr prod = InnerProduct(bra, ket) result = prod.doit() format = options.get('format', 'sympy') return expr._format_represent(result, format) def rep_expectation(expr, **options): """ Returns an ``<x'|A|x>`` type representation for the given operator. Parameters ========== expr : Operator Operator to be represented in the specified basis Examples ======== >>> from sympy.physics.quantum.cartesian import XOp, PxOp, PxKet >>> from sympy.physics.quantum.represent import rep_expectation >>> rep_expectation(XOp()) x_1*DiracDelta(x_1 - x_2) >>> rep_expectation(XOp(), basis=PxOp()) <px_2|*X*|px_1> >>> rep_expectation(XOp(), basis=PxKet()) <px_2|*X*|px_1> """ if not "index" in options: options["index"] = 1 if not isinstance(expr, Operator): raise TypeError("The passed expression is not an operator") basis_state = get_basis(expr, **options) if basis_state is None or not isinstance(basis_state, StateBase): raise NotImplementedError("Could not get basis kets for this operator") basis_kets = enumerate_states(basis_state, options["index"], 2) bra = basis_kets[1].dual ket = basis_kets[0] return qapply(bra*expr*ket) def integrate_result(orig_expr, result, **options): """ Returns the result of integrating over any unities ``(|x><x|)`` in the given expression. Intended for integrating over the result of representations in continuous bases. This function integrates over any unities that may have been inserted into the quantum expression and returns the result. It uses the interval of the Hilbert space of the basis state passed to it in order to figure out the limits of integration. The unities option must be specified for this to work. Note: This is mostly used internally by represent(). Examples are given merely to show the use cases. Parameters ========== orig_expr : quantum expression The original expression which was to be represented result: Expr The resulting representation that we wish to integrate over Examples ======== >>> from sympy import symbols, DiracDelta >>> from sympy.physics.quantum.represent import integrate_result >>> from sympy.physics.quantum.cartesian import XOp, XKet >>> x_ket = XKet() >>> X_op = XOp() >>> x, x_1, x_2 = symbols('x, x_1, x_2') >>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2)) x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2) >>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2), ... unities=[1]) x*DiracDelta(x - x_2) """ if not isinstance(result, Expr): return result options['replace_none'] = True if not "basis" in options: arg = orig_expr.args[-1] options["basis"] = get_basis(arg, **options) elif not isinstance(options["basis"], StateBase): options["basis"] = get_basis(orig_expr, **options) basis = options.pop("basis", None) if basis is None: return result unities = options.pop("unities", []) if len(unities) == 0: return result kets = enumerate_states(basis, unities) coords = [k.label[0] for k in kets] for coord in coords: if coord in result.free_symbols: #TODO: Add support for sets of operators basis_op = state_to_operators(basis) start = basis_op.hilbert_space.interval.start end = basis_op.hilbert_space.interval.end result = integrate(result, (coord, start, end)) return result def get_basis(expr, *, basis=None, replace_none=True, **options): """ Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression. There are three behaviors: 1. The basis specified in options is already an instance of StateBase. If this is the case, it is simply returned. If the class is specified but not an instance, a default instance is returned. 2. The basis specified is an operator or set of operators. If this is the case, the operator_to_state mapping method is used. 3. No basis is specified. If expr is a state, then a default instance of its class is returned. If expr is an operator, then it is mapped to the corresponding state. If it is neither, then we cannot obtain the basis state. If the basis cannot be mapped, then it is not changed. This will be called from within represent, and represent will only pass QExpr's. TODO (?): Support for Muls and other types of expressions? Parameters ========== expr : Operator or StateBase Expression whose basis is sought Examples ======== >>> from sympy.physics.quantum.represent import get_basis >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> x = XKet() >>> X = XOp() >>> get_basis(x) |x> >>> get_basis(X) |x> >>> get_basis(x, basis=PxOp()) |px> >>> get_basis(x, basis=PxKet) |px> """ if basis is None and not replace_none: return None if basis is None: if isinstance(expr, KetBase): return _make_default(expr.__class__) elif isinstance(expr, BraBase): return _make_default(expr.dual_class()) elif isinstance(expr, Operator): state_inst = operators_to_state(expr) return (state_inst if state_inst is not None else None) else: return None elif (isinstance(basis, Operator) or (not isinstance(basis, StateBase) and issubclass(basis, Operator))): state = operators_to_state(basis) if state is None: return None elif isinstance(state, StateBase): return state else: return _make_default(state) elif isinstance(basis, StateBase): return basis elif issubclass(basis, StateBase): return _make_default(basis) else: return None def _make_default(expr): # XXX: Catching TypeError like this is a bad way of distinguishing # instances from classes. The logic using this function should be # rewritten somehow. try: expr = expr() except TypeError: return expr return expr def enumerate_states(*args, **options): """ Returns instances of the given state with dummy indices appended Operates in two different modes: 1. Two arguments are passed to it. The first is the base state which is to be indexed, and the second argument is a list of indices to append. 2. Three arguments are passed. The first is again the base state to be indexed. The second is the start index for counting. The final argument is the number of kets you wish to receive. Tries to call state._enumerate_state. If this fails, returns an empty list Parameters ========== args : list See list of operation modes above for explanation Examples ======== >>> from sympy.physics.quantum.cartesian import XBra, XKet >>> from sympy.physics.quantum.represent import enumerate_states >>> test = XKet('foo') >>> enumerate_states(test, 1, 3) [|foo_1>, |foo_2>, |foo_3>] >>> test2 = XBra('bar') >>> enumerate_states(test2, [4, 5, 10]) [<bar_4|, <bar_5|, <bar_10|] """ state = args[0] if len(args) not in (2, 3): raise NotImplementedError("Wrong number of arguments!") if not isinstance(state, StateBase): raise TypeError("First argument is not a state!") if len(args) == 3: num_states = args[2] options['start_index'] = args[1] else: num_states = len(args[1]) options['index_list'] = args[1] try: ret = state._enumerate_state(num_states, **options) except NotImplementedError: ret = [] return ret
eddb2bd565094db74156747fb6e84416fd9f65d3fcf47728665b2af61db033a6
"""Quantum mechanical operators. TODO: * Fix early 0 in apply_operators. * Debug and test apply_operators. * Get cse working with classes in this file. * Doctests and documentation of special methods for InnerProduct, Commutator, AntiCommutator, represent, apply_operators. """ from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import (Derivative, expand) from sympy.core.mul import Mul from sympy.core.numbers import oo from sympy.core.singleton import S from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.qexpr import QExpr, dispatch_method from sympy.matrices import eye __all__ = [ 'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator', 'OuterProduct', 'DifferentialOperator' ] #----------------------------------------------------------------------------- # Operators and outer products #----------------------------------------------------------------------------- class Operator(QExpr): """Base class for non-commuting quantum operators. An operator maps between quantum states [1]_. In quantum mechanics, observables (including, but not limited to, measured physical values) are represented as Hermitian operators [2]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== Create an operator and examine its attributes:: >>> from sympy.physics.quantum import Operator >>> from sympy import I >>> A = Operator('A') >>> A A >>> A.hilbert_space H >>> A.label (A,) >>> A.is_commutative False Create another operator and do some arithmetic operations:: >>> B = Operator('B') >>> C = 2*A*A + I*B >>> C 2*A**2 + I*B Operators do not commute:: >>> A.is_commutative False >>> B.is_commutative False >>> A*B == B*A False Polymonials of operators respect the commutation properties:: >>> e = (A+B)**3 >>> e.expand() A*B*A + A*B**2 + A**2*B + A**3 + B*A*B + B*A**2 + B**2*A + B**3 Operator inverses are handle symbolically:: >>> A.inv() A**(-1) >>> A*A.inv() 1 References ========== .. [1] https://en.wikipedia.org/wiki/Operator_%28physics%29 .. [2] https://en.wikipedia.org/wiki/Observable """ @classmethod def default_args(self): return ("O",) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- _label_separator = ',' def _print_operator_name(self, printer, *args): return self.__class__.__name__ _print_operator_name_latex = _print_operator_name def _print_operator_name_pretty(self, printer, *args): return prettyForm(self.__class__.__name__) def _print_contents(self, printer, *args): if len(self.label) == 1: return self._print_label(printer, *args) else: return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_contents_pretty(self, printer, *args): if len(self.label) == 1: return self._print_label_pretty(printer, *args) else: pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(label_pform)) return pform def _print_contents_latex(self, printer, *args): if len(self.label) == 1: return self._print_label_latex(printer, *args) else: return r'%s\left(%s\right)' % ( self._print_operator_name_latex(printer, *args), self._print_label_latex(printer, *args) ) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_commutator(self, other, **options): """Evaluate [self, other] if known, return None if not known.""" return dispatch_method(self, '_eval_commutator', other, **options) def _eval_anticommutator(self, other, **options): """Evaluate [self, other] if known.""" return dispatch_method(self, '_eval_anticommutator', other, **options) #------------------------------------------------------------------------- # Operator application #------------------------------------------------------------------------- def _apply_operator(self, ket, **options): return dispatch_method(self, '_apply_operator', ket, **options) def matrix_element(self, *args): raise NotImplementedError('matrix_elements is not defined') def inverse(self): return self._eval_inverse() inv = inverse def _eval_inverse(self): return self**(-1) def __mul__(self, other): if isinstance(other, IdentityOperator): return self return Mul(self, other) class HermitianOperator(Operator): """A Hermitian operator that satisfies H == Dagger(H). Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, HermitianOperator >>> H = HermitianOperator('H') >>> Dagger(H) H """ is_hermitian = True def _eval_inverse(self): if isinstance(self, UnitaryOperator): return self else: return Operator._eval_inverse(self) def _eval_power(self, exp): if isinstance(self, UnitaryOperator): if exp == -1: return Operator._eval_power(self, exp) elif abs(exp) % 2 == 0: return self*(Operator._eval_inverse(self)) else: return self else: return Operator._eval_power(self, exp) class UnitaryOperator(Operator): """A unitary operator that satisfies U*Dagger(U) == 1. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. For time-dependent operators, this will include the time. Examples ======== >>> from sympy.physics.quantum import Dagger, UnitaryOperator >>> U = UnitaryOperator('U') >>> U*Dagger(U) 1 """ def _eval_adjoint(self): return self._eval_inverse() class IdentityOperator(Operator): """An identity operator I that satisfies op * I == I * op == op for any operator op. Parameters ========== N : Integer Optional parameter that specifies the dimension of the Hilbert space of operator. This is used when generating a matrix representation. Examples ======== >>> from sympy.physics.quantum import IdentityOperator >>> IdentityOperator() I """ @property def dimension(self): return self.N @classmethod def default_args(self): return (oo,) def __init__(self, *args, **hints): if not len(args) in (0, 1): raise ValueError('0 or 1 parameters expected, got %s' % args) self.N = args[0] if (len(args) == 1 and args[0]) else oo def _eval_commutator(self, other, **hints): return S.Zero def _eval_anticommutator(self, other, **hints): return 2 * other def _eval_inverse(self): return self def _eval_adjoint(self): return self def _apply_operator(self, ket, **options): return ket def _eval_power(self, exp): return self def _print_contents(self, printer, *args): return 'I' def _print_contents_pretty(self, printer, *args): return prettyForm('I') def _print_contents_latex(self, printer, *args): return r'{\mathcal{I}}' def __mul__(self, other): if isinstance(other, (Operator, Dagger)): return other return Mul(self, other) def _represent_default_basis(self, **options): if not self.N or self.N == oo: raise NotImplementedError('Cannot represent infinite dimensional' + ' identity operator as a matrix') format = options.get('format', 'sympy') if format != 'sympy': raise NotImplementedError('Representation in format ' + '%s not implemented.' % format) return eye(self.N) class OuterProduct(Operator): """An unevaluated outer product between a ket and bra. This constructs an outer product between any subclass of ``KetBase`` and ``BraBase`` as ``|a><b|``. An ``OuterProduct`` inherits from Operator as they act as operators in quantum expressions. For reference see [1]_. Parameters ========== ket : KetBase The ket on the left side of the outer product. bar : BraBase The bra on the right side of the outer product. Examples ======== Create a simple outer product by hand and take its dagger:: >>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger >>> from sympy.physics.quantum import Operator >>> k = Ket('k') >>> b = Bra('b') >>> op = OuterProduct(k, b) >>> op |k><b| >>> op.hilbert_space H >>> op.ket |k> >>> op.bra <b| >>> Dagger(op) |b><k| In simple products of kets and bras outer products will be automatically identified and created:: >>> k*b |k><b| But in more complex expressions, outer products are not automatically created:: >>> A = Operator('A') >>> A*k*b A*|k>*<b| A user can force the creation of an outer product in a complex expression by using parentheses to group the ket and bra:: >>> A*(k*b) A*|k><b| References ========== .. [1] https://en.wikipedia.org/wiki/Outer_product """ is_commutative = False def __new__(cls, *args, **old_assumptions): from sympy.physics.quantum.state import KetBase, BraBase if len(args) != 2: raise ValueError('2 parameters expected, got %d' % len(args)) ket_expr = expand(args[0]) bra_expr = expand(args[1]) if (isinstance(ket_expr, (KetBase, Mul)) and isinstance(bra_expr, (BraBase, Mul))): ket_c, kets = ket_expr.args_cnc() bra_c, bras = bra_expr.args_cnc() if len(kets) != 1 or not isinstance(kets[0], KetBase): raise TypeError('KetBase subclass expected' ', got: %r' % Mul(*kets)) if len(bras) != 1 or not isinstance(bras[0], BraBase): raise TypeError('BraBase subclass expected' ', got: %r' % Mul(*bras)) if not kets[0].dual_class() == bras[0].__class__: raise TypeError( 'ket and bra are not dual classes: %r, %r' % (kets[0].__class__, bras[0].__class__) ) # TODO: make sure the hilbert spaces of the bra and ket are # compatible obj = Expr.__new__(cls, *(kets[0], bras[0]), **old_assumptions) obj.hilbert_space = kets[0].hilbert_space return Mul(*(ket_c + bra_c)) * obj op_terms = [] if isinstance(ket_expr, Add) and isinstance(bra_expr, Add): for ket_term in ket_expr.args: for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_term, bra_term, **old_assumptions)) elif isinstance(ket_expr, Add): for ket_term in ket_expr.args: op_terms.append(OuterProduct(ket_term, bra_expr, **old_assumptions)) elif isinstance(bra_expr, Add): for bra_term in bra_expr.args: op_terms.append(OuterProduct(ket_expr, bra_term, **old_assumptions)) else: raise TypeError( 'Expected ket and bra expression, got: %r, %r' % (ket_expr, bra_expr) ) return Add(*op_terms) @property def ket(self): """Return the ket on the left side of the outer product.""" return self.args[0] @property def bra(self): """Return the bra on the right side of the outer product.""" return self.args[1] def _eval_adjoint(self): return OuterProduct(Dagger(self.bra), Dagger(self.ket)) def _sympystr(self, printer, *args): return printer._print(self.ket) + printer._print(self.bra) def _sympyrepr(self, printer, *args): return '%s(%s,%s)' % (self.__class__.__name__, printer._print(self.ket, *args), printer._print(self.bra, *args)) def _pretty(self, printer, *args): pform = self.ket._pretty(printer, *args) return prettyForm(*pform.right(self.bra._pretty(printer, *args))) def _latex(self, printer, *args): k = printer._print(self.ket, *args) b = printer._print(self.bra, *args) return k + b def _represent(self, **options): k = self.ket._represent(**options) b = self.bra._represent(**options) return k*b def _eval_trace(self, **kwargs): # TODO if operands are tensorproducts this may be will be handled # differently. return self.ket._eval_trace(self.bra, **kwargs) class DifferentialOperator(Operator): """An operator for representing the differential operator, i.e. d/dx It is initialized by passing two arguments. The first is an arbitrary expression that involves a function, such as ``Derivative(f(x), x)``. The second is the function (e.g. ``f(x)``) which we are to replace with the ``Wavefunction`` that this ``DifferentialOperator`` is applied to. Parameters ========== expr : Expr The arbitrary expression which the appropriate Wavefunction is to be substituted into func : Expr A function (e.g. f(x)) which is to be replaced with the appropriate Wavefunction when this DifferentialOperator is applied Examples ======== You can define a completely arbitrary expression and specify where the Wavefunction is to be substituted >>> from sympy import Derivative, Function, Symbol >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy.physics.quantum.qapply import qapply >>> f = Function('f') >>> x = Symbol('x') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> w = Wavefunction(x**2, x) >>> d.function f(x) >>> d.variables (x,) >>> qapply(d*w) Wavefunction(2, x) """ @property def variables(self): """ Returns the variables with which the function in the specified arbitrary expression is evaluated Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Symbol, Function, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) >>> d.variables (x,) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.variables (x, y) """ return self.args[-1].args @property def function(self): """ Returns the function which is to be replaced with the Wavefunction Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.function f(x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.function f(x, y) """ return self.args[-1] @property def expr(self): """ Returns the arbitrary expression which is to have the Wavefunction substituted into it Examples ======== >>> from sympy.physics.quantum.operator import DifferentialOperator >>> from sympy import Function, Symbol, Derivative >>> x = Symbol('x') >>> f = Function('f') >>> d = DifferentialOperator(Derivative(f(x), x), f(x)) >>> d.expr Derivative(f(x), x) >>> y = Symbol('y') >>> d = DifferentialOperator(Derivative(f(x, y), x) + ... Derivative(f(x, y), y), f(x, y)) >>> d.expr Derivative(f(x, y), x) + Derivative(f(x, y), y) """ return self.args[0] @property def free_symbols(self): """ Return the free symbols of the expression. """ return self.expr.free_symbols def _apply_operator_Wavefunction(self, func): from sympy.physics.quantum.state import Wavefunction var = self.variables wf_vars = func.args[1:] f = self.function new_expr = self.expr.subs(f, func(*var)) new_expr = new_expr.doit() return Wavefunction(new_expr, *wf_vars) def _eval_derivative(self, symbol): new_expr = Derivative(self.expr, symbol) return DifferentialOperator(new_expr, self.args[-1]) #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print(self, printer, *args): return '%s(%s)' % ( self._print_operator_name(printer, *args), self._print_label(printer, *args) ) def _print_pretty(self, printer, *args): pform = self._print_operator_name_pretty(printer, *args) label_pform = self._print_label_pretty(printer, *args) label_pform = prettyForm( *label_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(label_pform)) return pform
96b3b93dba2c95f7ec851c44429f4bc2dcd60bbbd8d3d3466302192acdba0239
"""Qubits for quantum computing. Todo: * Finish implementing measurement logic. This should include POVM. * Update docstrings. * Update tests. """ import math from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.exponential import log from sympy.core.basic import sympify from sympy.external.gmpy import SYMPY_INTS from sympy.matrices import Matrix, zeros from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.state import Ket, Bra, State from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.represent import represent from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix ) from mpmath.libmp.libintmath import bitcount __all__ = [ 'Qubit', 'QubitBra', 'IntQubit', 'IntQubitBra', 'qubit_to_matrix', 'matrix_to_qubit', 'matrix_to_density', 'measure_all', 'measure_partial', 'measure_partial_oneshot', 'measure_all_oneshot' ] #----------------------------------------------------------------------------- # Qubit Classes #----------------------------------------------------------------------------- class QubitState(State): """Base class for Qubit and QubitBra.""" #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): # If we are passed a QubitState or subclass, we just take its qubit # values directly. if len(args) == 1 and isinstance(args[0], QubitState): return args[0].qubit_values # Turn strings into tuple of strings if len(args) == 1 and isinstance(args[0], str): args = tuple(args[0]) args = sympify(args) # Validate input (must have 0 or 1 input) for element in args: if element not in (S.Zero, S.One): raise ValueError( "Qubit values must be 0 or 1, got: %r" % element) return args @classmethod def _eval_hilbert_space(cls, args): return ComplexSpace(2)**len(args) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def dimension(self): """The number of Qubits in the state.""" return len(self.qubit_values) @property def nqubits(self): return self.dimension @property def qubit_values(self): """Returns the values of the qubits as a tuple.""" return self.label #------------------------------------------------------------------------- # Special methods #------------------------------------------------------------------------- def __len__(self): return self.dimension def __getitem__(self, bit): return self.qubit_values[int(self.dimension - bit - 1)] #------------------------------------------------------------------------- # Utility methods #------------------------------------------------------------------------- def flip(self, *bits): """Flip the bit(s) given.""" newargs = list(self.qubit_values) for i in bits: bit = int(self.dimension - i - 1) if newargs[bit] == 1: newargs[bit] = 0 else: newargs[bit] = 1 return self.__class__(*tuple(newargs)) class Qubit(QubitState, Ket): """A multi-qubit ket in the computational (z) basis. We use the normal convention that the least significant qubit is on the right, so ``|00001>`` has a 1 in the least significant qubit. Parameters ========== values : list, str The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011'). Examples ======== Create a qubit in a couple of different ways and look at their attributes: >>> from sympy.physics.quantum.qubit import Qubit >>> Qubit(0,0,0) |000> >>> q = Qubit('0101') >>> q |0101> >>> q.nqubits 4 >>> len(q) 4 >>> q.dimension 4 >>> q.qubit_values (0, 1, 0, 1) We can flip the value of an individual qubit: >>> q.flip(1) |0111> We can take the dagger of a Qubit to get a bra: >>> from sympy.physics.quantum.dagger import Dagger >>> Dagger(q) <0101| >>> type(Dagger(q)) <class 'sympy.physics.quantum.qubit.QubitBra'> Inner products work as expected: >>> ip = Dagger(q)*q >>> ip <0101|0101> >>> ip.doit() 1 """ @classmethod def dual_class(self): return QubitBra def _eval_innerproduct_QubitBra(self, bra, **hints): if self.label == bra.label: return S.One else: return S.Zero def _represent_default_basis(self, **options): return self._represent_ZGate(None, **options) def _represent_ZGate(self, basis, **options): """Represent this qubits in the computational basis (ZGate). """ _format = options.get('format', 'sympy') n = 1 definite_state = 0 for it in reversed(self.qubit_values): definite_state += n*it n = n*2 result = [0]*(2**self.dimension) result[int(definite_state)] = 1 if _format == 'sympy': return Matrix(result) elif _format == 'numpy': import numpy as np return np.matrix(result, dtype='complex').transpose() elif _format == 'scipy.sparse': from scipy import sparse return sparse.csr_matrix(result, dtype='complex').transpose() def _eval_trace(self, bra, **kwargs): indices = kwargs.get('indices', []) #sort index list to begin trace from most-significant #qubit sorted_idx = list(indices) if len(sorted_idx) == 0: sorted_idx = list(range(0, self.nqubits)) sorted_idx.sort() #trace out for each of index new_mat = self*bra for i in range(len(sorted_idx) - 1, -1, -1): # start from tracing out from leftmost qubit new_mat = self._reduced_density(new_mat, int(sorted_idx[i])) if (len(sorted_idx) == self.nqubits): #in case full trace was requested return new_mat[0] else: return matrix_to_density(new_mat) def _reduced_density(self, matrix, qubit, **options): """Compute the reduced density matrix by tracing out one qubit. The qubit argument should be of type Python int, since it is used in bit operations """ def find_index_that_is_projected(j, k, qubit): bit_mask = 2**qubit - 1 return ((j >> qubit) << (1 + qubit)) + (j & bit_mask) + (k << qubit) old_matrix = represent(matrix, **options) old_size = old_matrix.cols #we expect the old_size to be even new_size = old_size//2 new_matrix = Matrix().zeros(new_size) for i in range(new_size): for j in range(new_size): for k in range(2): col = find_index_that_is_projected(j, k, qubit) row = find_index_that_is_projected(i, k, qubit) new_matrix[i, j] += old_matrix[row, col] return new_matrix class QubitBra(QubitState, Bra): """A multi-qubit bra in the computational (z) basis. We use the normal convention that the least significant qubit is on the right, so ``|00001>`` has a 1 in the least significant qubit. Parameters ========== values : list, str The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011'). See also ======== Qubit: Examples using qubits """ @classmethod def dual_class(self): return Qubit class IntQubitState(QubitState): """A base class for qubits that work with binary representations.""" @classmethod def _eval_args(cls, args, nqubits=None): # The case of a QubitState instance if len(args) == 1 and isinstance(args[0], QubitState): return QubitState._eval_args(args) # otherwise, args should be integer elif not all(isinstance(a, (int, Integer)) for a in args): raise ValueError('values must be integers, got (%s)' % (tuple(type(a) for a in args),)) # use nqubits if specified if nqubits is not None: if not isinstance(nqubits, (int, Integer)): raise ValueError('nqubits must be an integer, got (%s)' % type(nqubits)) if len(args) != 1: raise ValueError( 'too many positional arguments (%s). should be (number, nqubits=n)' % (args,)) return cls._eval_args_with_nqubits(args[0], nqubits) # For a single argument, we construct the binary representation of # that integer with the minimal number of bits. if len(args) == 1 and args[0] > 1: #rvalues is the minimum number of bits needed to express the number rvalues = reversed(range(bitcount(abs(args[0])))) qubit_values = [(args[0] >> i) & 1 for i in rvalues] return QubitState._eval_args(qubit_values) # For two numbers, the second number is the number of bits # on which it is expressed, so IntQubit(0,5) == |00000>. elif len(args) == 2 and args[1] > 1: return cls._eval_args_with_nqubits(args[0], args[1]) else: return QubitState._eval_args(args) @classmethod def _eval_args_with_nqubits(cls, number, nqubits): need = bitcount(abs(number)) if nqubits < need: raise ValueError( 'cannot represent %s with %s bits' % (number, nqubits)) qubit_values = [(number >> i) & 1 for i in reversed(range(nqubits))] return QubitState._eval_args(qubit_values) def as_int(self): """Return the numerical value of the qubit.""" number = 0 n = 1 for i in reversed(self.qubit_values): number += n*i n = n << 1 return number def _print_label(self, printer, *args): return str(self.as_int()) def _print_label_pretty(self, printer, *args): label = self._print_label(printer, *args) return prettyForm(label) _print_label_repr = _print_label _print_label_latex = _print_label class IntQubit(IntQubitState, Qubit): """A qubit ket that store integers as binary numbers in qubit values. The differences between this class and ``Qubit`` are: * The form of the constructor. * The qubit values are printed as their corresponding integer, rather than the raw qubit values. The internal storage format of the qubit values in the same as ``Qubit``. Parameters ========== values : int, tuple If a single argument, the integer we want to represent in the qubit values. This integer will be represented using the fewest possible number of qubits. If a pair of integers and the second value is more than one, the first integer gives the integer to represent in binary form and the second integer gives the number of qubits to use. List of zeros and ones is also accepted to generate qubit by bit pattern. nqubits : int The integer that represents the number of qubits. This number should be passed with keyword ``nqubits=N``. You can use this in order to avoid ambiguity of Qubit-style tuple of bits. Please see the example below for more details. Examples ======== Create a qubit for the integer 5: >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.qubit import Qubit >>> q = IntQubit(5) >>> q |5> We can also create an ``IntQubit`` by passing a ``Qubit`` instance. >>> q = IntQubit(Qubit('101')) >>> q |5> >>> q.as_int() 5 >>> q.nqubits 3 >>> q.qubit_values (1, 0, 1) We can go back to the regular qubit form. >>> Qubit(q) |101> Please note that ``IntQubit`` also accepts a ``Qubit``-style list of bits. So, the code below yields qubits 3, not a single bit ``1``. >>> IntQubit(1, 1) |3> To avoid ambiguity, use ``nqubits`` parameter. Use of this keyword is recommended especially when you provide the values by variables. >>> IntQubit(1, nqubits=1) |1> >>> a = 1 >>> IntQubit(a, nqubits=1) |1> """ @classmethod def dual_class(self): return IntQubitBra def _eval_innerproduct_IntQubitBra(self, bra, **hints): return Qubit._eval_innerproduct_QubitBra(self, bra) class IntQubitBra(IntQubitState, QubitBra): """A qubit bra that store integers as binary numbers in qubit values.""" @classmethod def dual_class(self): return IntQubit #----------------------------------------------------------------------------- # Qubit <---> Matrix conversion functions #----------------------------------------------------------------------------- def matrix_to_qubit(matrix): """Convert from the matrix repr. to a sum of Qubit objects. Parameters ---------- matrix : Matrix, numpy.matrix, scipy.sparse The matrix to build the Qubit representation of. This works with SymPy matrices, numpy matrices and scipy.sparse sparse matrices. Examples ======== Represent a state and then go back to its qubit form: >>> from sympy.physics.quantum.qubit import matrix_to_qubit, Qubit >>> from sympy.physics.quantum.represent import represent >>> q = Qubit('01') >>> matrix_to_qubit(represent(q)) |01> """ # Determine the format based on the type of the input matrix format = 'sympy' if isinstance(matrix, numpy_ndarray): format = 'numpy' if isinstance(matrix, scipy_sparse_matrix): format = 'scipy.sparse' # Make sure it is of correct dimensions for a Qubit-matrix representation. # This logic should work with sympy, numpy or scipy.sparse matrices. if matrix.shape[0] == 1: mlistlen = matrix.shape[1] nqubits = log(mlistlen, 2) ket = False cls = QubitBra elif matrix.shape[1] == 1: mlistlen = matrix.shape[0] nqubits = log(mlistlen, 2) ket = True cls = Qubit else: raise QuantumError( 'Matrix must be a row/column vector, got %r' % matrix ) if not isinstance(nqubits, Integer): raise QuantumError('Matrix must be a row/column vector of size ' '2**nqubits, got: %r' % matrix) # Go through each item in matrix, if element is non-zero, make it into a # Qubit item times the element. result = 0 for i in range(mlistlen): if ket: element = matrix[i, 0] else: element = matrix[0, i] if format in ('numpy', 'scipy.sparse'): element = complex(element) if element != 0.0: # Form Qubit array; 0 in bit-locations where i is 0, 1 in # bit-locations where i is 1 qubit_array = [int(i & (1 << x) != 0) for x in range(nqubits)] qubit_array.reverse() result = result + element*cls(*qubit_array) # If SymPy simplified by pulling out a constant coefficient, undo that. if isinstance(result, (Mul, Add, Pow)): result = result.expand() return result def matrix_to_density(mat): """ Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: sum(EigenVal*|Eigenvect><Eigenvect|) """ from sympy.physics.quantum.density import Density eigen = mat.eigenvects() args = [[matrix_to_qubit(Matrix( [vector, ])), x[0]] for x in eigen for vector in x[2] if x[0] != 0] if (len(args) == 0): return S.Zero else: return Density(*args) def qubit_to_matrix(qubit, format='sympy'): """Converts an Add/Mul of Qubit objects into it's matrix representation This function is the inverse of ``matrix_to_qubit`` and is a shorthand for ``represent(qubit)``. """ return represent(qubit, format=format) #----------------------------------------------------------------------------- # Measurement #----------------------------------------------------------------------------- def measure_all(qubit, format='sympy', normalize=True): """Perform an ensemble measurement of all qubits. Parameters ========== qubit : Qubit, Add The qubit to measure. This can be any Qubit or a linear combination of them. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ======= result : list A list that consists of primitive states and their probabilities. Examples ======== >>> from sympy.physics.quantum.qubit import Qubit, measure_all >>> from sympy.physics.quantum.gate import H >>> from sympy.physics.quantum.qapply import qapply >>> c = H(0)*H(1)*Qubit('00') >>> c H(0)*H(1)*|00> >>> q = qapply(c) >>> measure_all(q) [(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)] """ m = qubit_to_matrix(qubit, format) if format == 'sympy': results = [] if normalize: m = m.normalized() size = max(m.shape) # Max of shape to account for bra or ket nqubits = int(math.log(size)/math.log(2)) for i in range(size): if m[i] != 0.0: results.append( (Qubit(IntQubit(i, nqubits=nqubits)), m[i]*conjugate(m[i])) ) return results else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def measure_partial(qubit, bits, format='sympy', normalize=True): """Perform a partial ensemble measure on the specified qubits. Parameters ========== qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. bits : tuple The qubits to measure. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ======= result : list A list that consists of primitive states and their probabilities. Examples ======== >>> from sympy.physics.quantum.qubit import Qubit, measure_partial >>> from sympy.physics.quantum.gate import H >>> from sympy.physics.quantum.qapply import qapply >>> c = H(0)*H(1)*Qubit('00') >>> c H(0)*H(1)*|00> >>> q = qapply(c) >>> measure_partial(q, (0,)) [(sqrt(2)*|00>/2 + sqrt(2)*|10>/2, 1/2), (sqrt(2)*|01>/2 + sqrt(2)*|11>/2, 1/2)] """ m = qubit_to_matrix(qubit, format) if isinstance(bits, (SYMPY_INTS, Integer)): bits = (int(bits),) if format == 'sympy': if normalize: m = m.normalized() possible_outcomes = _get_possible_outcomes(m, bits) # Form output from function. output = [] for outcome in possible_outcomes: # Calculate probability of finding the specified bits with # given values. prob_of_outcome = 0 prob_of_outcome += (outcome.H*outcome)[0] # If the output has a chance, append it to output with found # probability. if prob_of_outcome != 0: if normalize: next_matrix = matrix_to_qubit(outcome.normalized()) else: next_matrix = matrix_to_qubit(outcome) output.append(( next_matrix, prob_of_outcome )) return output else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def measure_partial_oneshot(qubit, bits, format='sympy'): """Perform a partial oneshot measurement on the specified qubits. A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns *one* of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities. Parameters ---------- qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. bits : tuple The qubits to measure. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ------- result : Qubit The qubit that the system collapsed to upon measurement. """ import random m = qubit_to_matrix(qubit, format) if format == 'sympy': m = m.normalized() possible_outcomes = _get_possible_outcomes(m, bits) # Form output from function random_number = random.random() total_prob = 0 for outcome in possible_outcomes: # Calculate probability of finding the specified bits # with given values total_prob += (outcome.H*outcome)[0] if total_prob >= random_number: return matrix_to_qubit(outcome.normalized()) else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def _get_possible_outcomes(m, bits): """Get the possible states that can be produced in a measurement. Parameters ---------- m : Matrix The matrix representing the state of the system. bits : tuple, list Which bits will be measured. Returns ------- result : list The list of possible states which can occur given this measurement. These are un-normalized so we can derive the probability of finding this state by taking the inner product with itself """ # This is filled with loads of dirty binary tricks...You have been warned size = max(m.shape) # Max of shape to account for bra or ket nqubits = int(math.log(size, 2) + .1) # Number of qubits possible # Make the output states and put in output_matrices, nothing in them now. # Each state will represent a possible outcome of the measurement # Thus, output_matrices[0] is the matrix which we get when all measured # bits return 0. and output_matrices[1] is the matrix for only the 0th # bit being true output_matrices = [] for i in range(1 << len(bits)): output_matrices.append(zeros(2**nqubits, 1)) # Bitmasks will help sort how to determine possible outcomes. # When the bit mask is and-ed with a matrix-index, # it will determine which state that index belongs to bit_masks = [] for bit in bits: bit_masks.append(1 << bit) # Make possible outcome states for i in range(2**nqubits): trueness = 0 # This tells us to which output_matrix this value belongs # Find trueness for j in range(len(bit_masks)): if i & bit_masks[j]: trueness += j + 1 # Put the value in the correct output matrix output_matrices[trueness][i] = m[i] return output_matrices def measure_all_oneshot(qubit, format='sympy'): """Perform a oneshot ensemble measurement on all qubits. A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns *one* of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities. Parameters ---------- qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ------- result : Qubit The qubit that the system collapsed to upon measurement. """ import random m = qubit_to_matrix(qubit) if format == 'sympy': m = m.normalized() random_number = random.random() total = 0 result = 0 for i in m: total += i*i.conjugate() if total > random_number: break result += 1 return Qubit(IntQubit(result, int(math.log(max(m.shape), 2) + .1))) else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" )
2b8b66c9660c960ce44d35e3b3cd8fcc40bc554e239b627a42273862600ced24
"""Symbolic inner product.""" from sympy.core.expr import Expr from sympy.functions.elementary.complexes import conjugate from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import KetBase, BraBase __all__ = [ 'InnerProduct' ] # InnerProduct is not an QExpr because it is really just a regular commutative # number. We have gone back and forth about this, but we gain a lot by having # it subclass Expr. The main challenges were getting Dagger to work # (we use _eval_conjugate) and represent (we can use atoms and subs). Having # it be an Expr, mean that there are no commutative QExpr subclasses, # which simplifies the design of everything. class InnerProduct(Expr): """An unevaluated inner product between a Bra and a Ket [1]. Parameters ========== bra : BraBase or subclass The bra on the left side of the inner product. ket : KetBase or subclass The ket on the right side of the inner product. Examples ======== Create an InnerProduct and check its properties: >>> from sympy.physics.quantum import Bra, Ket >>> b = Bra('b') >>> k = Ket('k') >>> ip = b*k >>> ip <b|k> >>> ip.bra <b| >>> ip.ket |k> In simple products of kets and bras inner products will be automatically identified and created:: >>> b*k <b|k> But in more complex expressions, there is ambiguity in whether inner or outer products should be created:: >>> k*b*k*b |k><b|*|k>*<b| A user can force the creation of a inner products in a complex expression by using parentheses to group the bra and ket:: >>> k*(b*k)*b <b|k>*|k>*<b| Notice how the inner product <b|k> moved to the left of the expression because inner products are commutative complex numbers. References ========== .. [1] https://en.wikipedia.org/wiki/Inner_product """ is_complex = True def __new__(cls, bra, ket): if not isinstance(ket, KetBase): raise TypeError('KetBase subclass expected, got: %r' % ket) if not isinstance(bra, BraBase): raise TypeError('BraBase subclass expected, got: %r' % ket) obj = Expr.__new__(cls, bra, ket) return obj @property def bra(self): return self.args[0] @property def ket(self): return self.args[1] def _eval_conjugate(self): return InnerProduct(Dagger(self.ket), Dagger(self.bra)) def _sympyrepr(self, printer, *args): return '%s(%s,%s)' % (self.__class__.__name__, printer._print(self.bra, *args), printer._print(self.ket, *args)) def _sympystr(self, printer, *args): sbra = printer._print(self.bra) sket = printer._print(self.ket) return '%s|%s' % (sbra[:-1], sket[1:]) def _pretty(self, printer, *args): # Print state contents bra = self.bra._print_contents_pretty(printer, *args) ket = self.ket._print_contents_pretty(printer, *args) # Print brackets height = max(bra.height(), ket.height()) use_unicode = printer._use_unicode lbracket, _ = self.bra._pretty_brackets(height, use_unicode) cbracket, rbracket = self.ket._pretty_brackets(height, use_unicode) # Build innerproduct pform = prettyForm(*bra.left(lbracket)) pform = prettyForm(*pform.right(cbracket)) pform = prettyForm(*pform.right(ket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): bra_label = self.bra._print_contents_latex(printer, *args) ket = printer._print(self.ket, *args) return r'\left\langle %s \right. %s' % (bra_label, ket) def doit(self, **hints): try: r = self.ket._eval_innerproduct(self.bra, **hints) except NotImplementedError: try: r = conjugate( self.bra.dual._eval_innerproduct(self.ket.dual, **hints) ) except NotImplementedError: r = None if r is not None: return r return self
011d95a39b96fe2e18bf837e617a5ee1e6795a06bd54c947b18ea43ac0065e87
from sympy.core.expr import Expr from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.matrices.dense import Matrix from sympy.printing.pretty.stringpict import prettyForm from sympy.core.containers import Tuple from sympy.utilities.iterables import is_sequence from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, to_sympy, to_numpy, to_scipy_sparse ) __all__ = [ 'QuantumError', 'QExpr' ] #----------------------------------------------------------------------------- # Error handling #----------------------------------------------------------------------------- class QuantumError(Exception): pass def _qsympify_sequence(seq): """Convert elements of a sequence to standard form. This is like sympify, but it performs special logic for arguments passed to QExpr. The following conversions are done: * (list, tuple, Tuple) => _qsympify_sequence each element and convert sequence to a Tuple. * basestring => Symbol * Matrix => Matrix * other => sympify Strings are passed to Symbol, not sympify to make sure that variables like 'pi' are kept as Symbols, not the SymPy built-in number subclasses. Examples ======== >>> from sympy.physics.quantum.qexpr import _qsympify_sequence >>> _qsympify_sequence((1,2,[3,4,[1,]])) (1, 2, (3, 4, (1,))) """ return tuple(__qsympify_sequence_helper(seq)) def __qsympify_sequence_helper(seq): """ Helper function for _qsympify_sequence This function does the actual work. """ #base case. If not a list, do Sympification if not is_sequence(seq): if isinstance(seq, Matrix): return seq elif isinstance(seq, str): return Symbol(seq) else: return sympify(seq) # base condition, when seq is QExpr and also # is iterable. if isinstance(seq, QExpr): return seq #if list, recurse on each item in the list result = [__qsympify_sequence_helper(item) for item in seq] return Tuple(*result) #----------------------------------------------------------------------------- # Basic Quantum Expression from which all objects descend #----------------------------------------------------------------------------- class QExpr(Expr): """A base class for all quantum object like operators and states.""" # In sympy, slots are for instance attributes that are computed # dynamically by the __new__ method. They are not part of args, but they # derive from args. # The Hilbert space a quantum Object belongs to. __slots__ = ('hilbert_space') is_commutative = False # The separator used in printing the label. _label_separator = '' @property def free_symbols(self): return {self} def __new__(cls, *args, **kwargs): """Construct a new quantum object. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the quantum object. For a state, this will be its symbol or its set of quantum numbers. Examples ======== >>> from sympy.physics.quantum.qexpr import QExpr >>> q = QExpr(0) >>> q 0 >>> q.label (0,) >>> q.hilbert_space H >>> q.args (0,) >>> q.is_commutative False """ # First compute args and call Expr.__new__ to create the instance args = cls._eval_args(args, **kwargs) if len(args) == 0: args = cls._eval_args(tuple(cls.default_args()), **kwargs) inst = Expr.__new__(cls, *args) # Now set the slots on the instance inst.hilbert_space = cls._eval_hilbert_space(args) return inst @classmethod def _new_rawargs(cls, hilbert_space, *args, **old_assumptions): """Create new instance of this class with hilbert_space and args. This is used to bypass the more complex logic in the ``__new__`` method in cases where you already have the exact ``hilbert_space`` and ``args``. This should be used when you are positive these arguments are valid, in their final, proper form and want to optimize the creation of the object. """ obj = Expr.__new__(cls, *args, **old_assumptions) obj.hilbert_space = hilbert_space return obj #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label is the unique set of identifiers for the object. Usually, this will include all of the information about the state *except* the time (in the case of time-dependent objects). This must be a tuple, rather than a Tuple. """ if len(self.args) == 0: # If there is no label specified, return the default return self._eval_args(list(self.default_args())) else: return self.args @property def is_symbolic(self): return True @classmethod def default_args(self): """If no arguments are specified, then this will return a default set of arguments to be run through the constructor. NOTE: Any classes that override this MUST return a tuple of arguments. Should be overridden by subclasses to specify the default arguments for kets and operators """ raise NotImplementedError("No default arguments for this class!") #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_adjoint(self): obj = Expr._eval_adjoint(self) if obj is None: obj = Expr.__new__(Dagger, self) if isinstance(obj, QExpr): obj.hilbert_space = self.hilbert_space return obj @classmethod def _eval_args(cls, args): """Process the args passed to the __new__ method. This simply runs args through _qsympify_sequence. """ return _qsympify_sequence(args) @classmethod def _eval_hilbert_space(cls, args): """Compute the Hilbert space instance from the args. """ from sympy.physics.quantum.hilbert import HilbertSpace return HilbertSpace() #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- # Utilities for printing: these operate on raw SymPy objects def _print_sequence(self, seq, sep, printer, *args): result = [] for item in seq: result.append(printer._print(item, *args)) return sep.join(result) def _print_sequence_pretty(self, seq, sep, printer, *args): pform = printer._print(seq[0], *args) for item in seq[1:]: pform = prettyForm(*pform.right(sep)) pform = prettyForm(*pform.right(printer._print(item, *args))) return pform # Utilities for printing: these operate prettyForm objects def _print_subscript_pretty(self, a, b): top = prettyForm(*b.left(' '*a.width())) bot = prettyForm(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_superscript_pretty(self, a, b): return a**b def _print_parens_pretty(self, pform, left='(', right=')'): return prettyForm(*pform.parens(left=left, right=right)) # Printing of labels (i.e. args) def _print_label(self, printer, *args): """Prints the label of the QExpr This method prints self.label, using self._label_separator to separate the elements. This method should not be overridden, instead, override _print_contents to change printing behavior. """ return self._print_sequence( self.label, self._label_separator, printer, *args ) def _print_label_repr(self, printer, *args): return self._print_sequence( self.label, ',', printer, *args ) def _print_label_pretty(self, printer, *args): return self._print_sequence_pretty( self.label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): return self._print_sequence( self.label, self._label_separator, printer, *args ) # Printing of contents (default to label) def _print_contents(self, printer, *args): """Printer for contents of QExpr Handles the printing of any unique identifying contents of a QExpr to print as its contents, such as any variables or quantum numbers. The default is to print the label, which is almost always the args. This should not include printing of any brackets or parenteses. """ return self._print_label(printer, *args) def _print_contents_pretty(self, printer, *args): return self._print_label_pretty(printer, *args) def _print_contents_latex(self, printer, *args): return self._print_label_latex(printer, *args) # Main printing methods def _sympystr(self, printer, *args): """Default printing behavior of QExpr objects Handles the default printing of a QExpr. To add other things to the printing of the object, such as an operator name to operators or brackets to states, the class should override the _print/_pretty/_latex functions directly and make calls to _print_contents where appropriate. This allows things like InnerProduct to easily control its printing the printing of contents. """ return self._print_contents(printer, *args) def _sympyrepr(self, printer, *args): classname = self.__class__.__name__ label = self._print_label_repr(printer, *args) return '%s(%s)' % (classname, label) def _pretty(self, printer, *args): pform = self._print_contents_pretty(printer, *args) return pform def _latex(self, printer, *args): return self._print_contents_latex(printer, *args) #------------------------------------------------------------------------- # Methods from Basic and Expr #------------------------------------------------------------------------- def doit(self, **kw_args): return self #------------------------------------------------------------------------- # Represent #------------------------------------------------------------------------- def _represent_default_basis(self, **options): raise NotImplementedError('This object does not have a default basis') def _represent(self, *, basis=None, **options): """Represent this object in a given basis. This method dispatches to the actual methods that perform the representation. Subclases of QExpr should define various methods to determine how the object will be represented in various bases. The format of these methods is:: def _represent_BasisName(self, basis, **options): Thus to define how a quantum object is represented in the basis of the operator Position, you would define:: def _represent_Position(self, basis, **options): Usually, basis object will be instances of Operator subclasses, but there is a chance we will relax this in the future to accommodate other types of basis sets that are not associated with an operator. If the ``format`` option is given it can be ("sympy", "numpy", "scipy.sparse"). This will ensure that any matrices that result from representing the object are returned in the appropriate matrix format. Parameters ========== basis : Operator The Operator whose basis functions will be used as the basis for representation. options : dict A dictionary of key/value pairs that give options and hints for the representation, such as the number of basis functions to be used. """ if basis is None: result = self._represent_default_basis(**options) else: result = dispatch_method(self, '_represent', basis, **options) # If we get a matrix representation, convert it to the right format. format = options.get('format', 'sympy') result = self._format_represent(result, format) return result def _format_represent(self, result, format): if format == 'sympy' and not isinstance(result, Matrix): return to_sympy(result) elif format == 'numpy' and not isinstance(result, numpy_ndarray): return to_numpy(result) elif format == 'scipy.sparse' and \ not isinstance(result, scipy_sparse_matrix): return to_scipy_sparse(result) return result def split_commutative_parts(e): """Split into commutative and non-commutative parts.""" c_part, nc_part = e.args_cnc() c_part = list(c_part) return c_part, nc_part def split_qexpr_parts(e): """Split an expression into Expr and noncommutative QExpr parts.""" expr_part = [] qexpr_part = [] for arg in e.args: if not isinstance(arg, QExpr): expr_part.append(arg) else: qexpr_part.append(arg) return expr_part, qexpr_part def dispatch_method(self, basename, arg, **options): """Dispatch a method to the proper handlers.""" method_name = '%s_%s' % (basename, arg.__class__.__name__) if hasattr(self, method_name): f = getattr(self, method_name) # This can raise and we will allow it to propagate. result = f(arg, **options) if result is not None: return result raise NotImplementedError( "%s.%s cannot handle: %r" % (self.__class__.__name__, basename, arg) )
d1e3d3d99a5f4a6ace665a00556dd658a56ad092f84a1e383b9749534fd58f0f
"""Grover's algorithm and helper functions. Todo: * W gate construction (or perhaps -W gate based on Mermin's book) * Generalize the algorithm for an unknown function that returns 1 on multiple qubit states, not just one. * Implement _represent_ZGate in OracleGate """ from sympy.core.numbers import pi from sympy.core.sympify import sympify from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import eye from sympy.core.numbers import NegativeOne from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.operator import UnitaryOperator from sympy.physics.quantum.gate import Gate from sympy.physics.quantum.qubit import IntQubit __all__ = [ 'OracleGate', 'WGate', 'superposition_basis', 'grover_iteration', 'apply_grover' ] def superposition_basis(nqubits): """Creates an equal superposition of the computational basis. Parameters ========== nqubits : int The number of qubits. Returns ======= state : Qubit An equal superposition of the computational basis with nqubits. Examples ======== Create an equal superposition of 2 qubits:: >>> from sympy.physics.quantum.grover import superposition_basis >>> superposition_basis(2) |0>/2 + |1>/2 + |2>/2 + |3>/2 """ amp = 1/sqrt(2**nqubits) return sum([amp*IntQubit(n, nqubits=nqubits) for n in range(2**nqubits)]) class OracleGate(Gate): """A black box gate. The gate marks the desired qubits of an unknown function by flipping the sign of the qubits. The unknown function returns true when it finds its desired qubits and false otherwise. Parameters ========== qubits : int Number of qubits. oracle : callable A callable function that returns a boolean on a computational basis. Examples ======== Apply an Oracle gate that flips the sign of ``|2>`` on different qubits:: >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.grover import OracleGate >>> f = lambda qubits: qubits == IntQubit(2) >>> v = OracleGate(2, f) >>> qapply(v*IntQubit(2)) -|2> >>> qapply(v*IntQubit(3)) |3> """ gate_name = 'V' gate_name_latex = 'V' #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): # TODO: args[1] is not a subclass of Basic if len(args) != 2: raise QuantumError( 'Insufficient/excessive arguments to Oracle. Please ' + 'supply the number of qubits and an unknown function.' ) sub_args = (args[0],) sub_args = UnitaryOperator._eval_args(sub_args) if not sub_args[0].is_Integer: raise TypeError('Integer expected, got: %r' % sub_args[0]) if not callable(args[1]): raise TypeError('Callable expected, got: %r' % args[1]) return (sub_args[0], args[1]) @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**args[0] #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def search_function(self): """The unknown function that helps find the sought after qubits.""" return self.label[1] @property def targets(self): """A tuple of target qubits.""" return sympify(tuple(range(self.args[0]))) #------------------------------------------------------------------------- # Apply #------------------------------------------------------------------------- def _apply_operator_Qubit(self, qubits, **options): """Apply this operator to a Qubit subclass. Parameters ========== qubits : Qubit The qubit subclass to apply this operator to. Returns ======= state : Expr The resulting quantum state. """ if qubits.nqubits != self.nqubits: raise QuantumError( 'OracleGate operates on %r qubits, got: %r' % (self.nqubits, qubits.nqubits) ) # If function returns 1 on qubits # return the negative of the qubits (flip the sign) if self.search_function(qubits): return -qubits else: return qubits #------------------------------------------------------------------------- # Represent #------------------------------------------------------------------------- def _represent_ZGate(self, basis, **options): """ Represent the OracleGate in the computational basis. """ nbasis = 2**self.nqubits # compute it only once matrixOracle = eye(nbasis) # Flip the sign given the output of the oracle function for i in range(nbasis): if self.search_function(IntQubit(i, nqubits=self.nqubits)): matrixOracle[i, i] = NegativeOne() return matrixOracle class WGate(Gate): """General n qubit W Gate in Grover's algorithm. The gate performs the operation ``2|phi><phi| - 1`` on some qubits. ``|phi> = (tensor product of n Hadamards)*(|0> with n qubits)`` Parameters ========== nqubits : int The number of qubits to operate on """ gate_name = 'W' gate_name_latex = 'W' @classmethod def _eval_args(cls, args): if len(args) != 1: raise QuantumError( 'Insufficient/excessive arguments to W gate. Please ' + 'supply the number of qubits to operate on.' ) args = UnitaryOperator._eval_args(args) if not args[0].is_Integer: raise TypeError('Integer expected, got: %r' % args[0]) return args #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def targets(self): return sympify(tuple(reversed(range(self.args[0])))) #------------------------------------------------------------------------- # Apply #------------------------------------------------------------------------- def _apply_operator_Qubit(self, qubits, **options): """ qubits: a set of qubits (Qubit) Returns: quantum object (quantum expression - QExpr) """ if qubits.nqubits != self.nqubits: raise QuantumError( 'WGate operates on %r qubits, got: %r' % (self.nqubits, qubits.nqubits) ) # See 'Quantum Computer Science' by David Mermin p.92 -> W|a> result # Return (2/(sqrt(2^n)))|phi> - |a> where |a> is the current basis # state and phi is the superposition of basis states (see function # create_computational_basis above) basis_states = superposition_basis(self.nqubits) change_to_basis = (2/sqrt(2**self.nqubits))*basis_states return change_to_basis - qubits def grover_iteration(qstate, oracle): """Applies one application of the Oracle and W Gate, WV. Parameters ========== qstate : Qubit A superposition of qubits. oracle : OracleGate The black box operator that flips the sign of the desired basis qubits. Returns ======= Qubit : The qubits after applying the Oracle and W gate. Examples ======== Perform one iteration of grover's algorithm to see a phase change:: >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.grover import OracleGate >>> from sympy.physics.quantum.grover import superposition_basis >>> from sympy.physics.quantum.grover import grover_iteration >>> numqubits = 2 >>> basis_states = superposition_basis(numqubits) >>> f = lambda qubits: qubits == IntQubit(2) >>> v = OracleGate(numqubits, f) >>> qapply(grover_iteration(basis_states, v)) |2> """ wgate = WGate(oracle.nqubits) return wgate*oracle*qstate def apply_grover(oracle, nqubits, iterations=None): """Applies grover's algorithm. Parameters ========== oracle : callable The unknown callable function that returns true when applied to the desired qubits and false otherwise. Returns ======= state : Expr The resulting state after Grover's algorithm has been iterated. Examples ======== Apply grover's algorithm to an even superposition of 2 qubits:: >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.grover import apply_grover >>> f = lambda qubits: qubits == IntQubit(2) >>> qapply(apply_grover(f, 2)) |2> """ if nqubits <= 0: raise QuantumError( 'Grover\'s algorithm needs nqubits > 0, received %r qubits' % nqubits ) if iterations is None: iterations = floor(sqrt(2**nqubits)*(pi/4)) v = OracleGate(nqubits, oracle) iterated = superposition_basis(nqubits) for iter in range(iterations): iterated = grover_iteration(iterated, v) iterated = qapply(iterated) return iterated
bc21fc73816ee6572b4f43ecb81a842bb7969f21ed091c15c78c128777f4ecc1
from itertools import product from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.function import expand from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.functions.elementary.exponential import log from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.operator import HermitianOperator from sympy.physics.quantum.represent import represent from sympy.physics.quantum.matrixutils import numpy_ndarray, scipy_sparse_matrix, to_numpy from sympy.physics.quantum.tensorproduct import TensorProduct, tensor_product_simp from sympy.physics.quantum.trace import Tr class Density(HermitianOperator): """Density operator for representing mixed states. TODO: Density operator support for Qubits Parameters ========== values : tuples/lists Each tuple/list should be of form (state, prob) or [state,prob] Examples ======== Create a density operator with 2 states represented by Kets. >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d Density((|0>, 0.5),(|1>, 0.5)) """ @classmethod def _eval_args(cls, args): # call this to qsympify the args args = super()._eval_args(args) for arg in args: # Check if arg is a tuple if not (isinstance(arg, Tuple) and len(arg) == 2): raise ValueError("Each argument should be of form [state,prob]" " or ( state, prob )") return args def states(self): """Return list of all states. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.states() (|0>, |1>) """ return Tuple(*[arg[0] for arg in self.args]) def probs(self): """Return list of all probabilities. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.probs() (0.5, 0.5) """ return Tuple(*[arg[1] for arg in self.args]) def get_state(self, index): """Return specific state by index. Parameters ========== index : index of state to be returned Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.states()[1] |1> """ state = self.args[index][0] return state def get_prob(self, index): """Return probability of specific state by index. Parameters =========== index : index of states whose probability is returned. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.probs()[1] 0.500000000000000 """ prob = self.args[index][1] return prob def apply_op(self, op): """op will operate on each individual state. Parameters ========== op : Operator Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> from sympy.physics.quantum.operator import Operator >>> A = Operator('A') >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.apply_op(A) Density((A*|0>, 0.5),(A*|1>, 0.5)) """ new_args = [(op*state, prob) for (state, prob) in self.args] return Density(*new_args) def doit(self, **hints): """Expand the density operator into an outer product format. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> from sympy.physics.quantum.operator import Operator >>> A = Operator('A') >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.doit() 0.5*|0><0| + 0.5*|1><1| """ terms = [] for (state, prob) in self.args: state = state.expand() # needed to break up (a+b)*c if (isinstance(state, Add)): for arg in product(state.args, repeat=2): terms.append(prob*self._generate_outer_prod(arg[0], arg[1])) else: terms.append(prob*self._generate_outer_prod(state, state)) return Add(*terms) def _generate_outer_prod(self, arg1, arg2): c_part1, nc_part1 = arg1.args_cnc() c_part2, nc_part2 = arg2.args_cnc() if (len(nc_part1) == 0 or len(nc_part2) == 0): raise ValueError('Atleast one-pair of' ' Non-commutative instance required' ' for outer product.') # Muls of Tensor Products should be expanded # before this function is called if (isinstance(nc_part1[0], TensorProduct) and len(nc_part1) == 1 and len(nc_part2) == 1): op = tensor_product_simp(nc_part1[0]*Dagger(nc_part2[0])) else: op = Mul(*nc_part1)*Dagger(Mul(*nc_part2)) return Mul(*c_part1)*Mul(*c_part2) * op def _represent(self, **options): return represent(self.doit(), **options) def _print_operator_name_latex(self, printer, *args): return r'\rho' def _print_operator_name_pretty(self, printer, *args): return prettyForm('\N{GREEK SMALL LETTER RHO}') def _eval_trace(self, **kwargs): indices = kwargs.get('indices', []) return Tr(self.doit(), indices).doit() def entropy(self): """ Compute the entropy of a density matrix. Refer to density.entropy() method for examples. """ return entropy(self) def entropy(density): """Compute the entropy of a matrix/density object. This computes -Tr(density*ln(density)) using the eigenvalue decomposition of density, which is given as either a Density instance or a matrix (numpy.ndarray, sympy.Matrix or scipy.sparse). Parameters ========== density : density matrix of type Density, SymPy matrix, scipy.sparse or numpy.ndarray Examples ======== >>> from sympy.physics.quantum.density import Density, entropy >>> from sympy.physics.quantum.spin import JzKet >>> from sympy import S >>> up = JzKet(S(1)/2,S(1)/2) >>> down = JzKet(S(1)/2,-S(1)/2) >>> d = Density((up,S(1)/2),(down,S(1)/2)) >>> entropy(d) log(2)/2 """ if isinstance(density, Density): density = represent(density) # represent in Matrix if isinstance(density, scipy_sparse_matrix): density = to_numpy(density) if isinstance(density, Matrix): eigvals = density.eigenvals().keys() return expand(-sum(e*log(e) for e in eigvals)) elif isinstance(density, numpy_ndarray): import numpy as np eigvals = np.linalg.eigvals(density) return -np.sum(eigvals*np.log(eigvals)) else: raise ValueError( "numpy.ndarray, scipy.sparse or SymPy matrix expected") def fidelity(state1, state2): """ Computes the fidelity [1]_ between two quantum states The arguments provided to this function should be a square matrix or a Density object. If it is a square matrix, it is assumed to be diagonalizable. Parameters ========== state1, state2 : a density matrix or Matrix Examples ======== >>> from sympy import S, sqrt >>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.spin import JzKet >>> from sympy.physics.quantum.density import fidelity >>> from sympy.physics.quantum.represent import represent >>> >>> up = JzKet(S(1)/2,S(1)/2) >>> down = JzKet(S(1)/2,-S(1)/2) >>> amp = 1/sqrt(2) >>> updown = (amp*up) + (amp*down) >>> >>> # represent turns Kets into matrices >>> up_dm = represent(up*Dagger(up)) >>> down_dm = represent(down*Dagger(down)) >>> updown_dm = represent(updown*Dagger(updown)) >>> >>> fidelity(up_dm, up_dm) 1 >>> fidelity(up_dm, down_dm) #orthogonal states 0 >>> fidelity(up_dm, updown_dm).evalf().round(3) 0.707 References ========== .. [1] https://en.wikipedia.org/wiki/Fidelity_of_quantum_states """ state1 = represent(state1) if isinstance(state1, Density) else state1 state2 = represent(state2) if isinstance(state2, Density) else state2 if not isinstance(state1, Matrix) or not isinstance(state2, Matrix): raise ValueError("state1 and state2 must be of type Density or Matrix " "received type=%s for state1 and type=%s for state2" % (type(state1), type(state2))) if state1.shape != state2.shape and state1.is_square: raise ValueError("The dimensions of both args should be equal and the " "matrix obtained should be a square matrix") sqrt_state1 = state1**S.Half return Tr((sqrt_state1*state2*sqrt_state1)**S.Half).doit()
4be55bdd50231795e378cd291d0d2a2edaff9f37f6ade2061e2d3b553a85d779
""" qasm.py - Functions to parse a set of qasm commands into a SymPy Circuit. Examples taken from Chuang's page: http://www.media.mit.edu/quanta/qasm2circ/ The code returns a circuit and an associated list of labels. >>> from sympy.physics.quantum.qasm import Qasm >>> q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*H(1) >>> q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*CNOT(0,1)*CNOT(1,0) """ __all__ = [ 'Qasm', ] from sympy.physics.quantum.gate import H, CNOT, X, Z, CGate, CGateS, SWAP, S, T,CPHASE from sympy.physics.quantum.circuitplot import Mz def read_qasm(lines): return Qasm(*lines.splitlines()) def read_qasm_file(filename): return Qasm(*open(filename).readlines()) def prod(c): p = 1 for ci in c: p *= ci return p def flip_index(i, n): """Reorder qubit indices from largest to smallest. >>> from sympy.physics.quantum.qasm import flip_index >>> flip_index(0, 2) 1 >>> flip_index(1, 2) 0 """ return n-i-1 def trim(line): """Remove everything following comment # characters in line. >>> from sympy.physics.quantum.qasm import trim >>> trim('nothing happens here') 'nothing happens here' >>> trim('something #happens here') 'something ' """ if not '#' in line: return line return line.split('#')[0] def get_index(target, labels): """Get qubit labels from the rest of the line,and return indices >>> from sympy.physics.quantum.qasm import get_index >>> get_index('q0', ['q0', 'q1']) 1 >>> get_index('q1', ['q0', 'q1']) 0 """ nq = len(labels) return flip_index(labels.index(target), nq) def get_indices(targets, labels): return [get_index(t, labels) for t in targets] def nonblank(args): for line in args: line = trim(line) if line.isspace(): continue yield line return def fullsplit(line): words = line.split() rest = ' '.join(words[1:]) return fixcommand(words[0]), [s.strip() for s in rest.split(',')] def fixcommand(c): """Fix Qasm command names. Remove all of forbidden characters from command c, and replace 'def' with 'qdef'. """ forbidden_characters = ['-'] c = c.lower() for char in forbidden_characters: c = c.replace(char, '') if c == 'def': return 'qdef' return c def stripquotes(s): """Replace explicit quotes in a string. >>> from sympy.physics.quantum.qasm import stripquotes >>> stripquotes("'S'") == 'S' True >>> stripquotes('"S"') == 'S' True >>> stripquotes('S') == 'S' True """ s = s.replace('"', '') # Remove second set of quotes? s = s.replace("'", '') return s class Qasm: """Class to form objects from Qasm lines >>> from sympy.physics.quantum.qasm import Qasm >>> q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*H(1) >>> q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*CNOT(0,1)*CNOT(1,0) """ def __init__(self, *args, **kwargs): self.defs = {} self.circuit = [] self.labels = [] self.inits = {} self.add(*args) self.kwargs = kwargs def add(self, *lines): for line in nonblank(lines): command, rest = fullsplit(line) if self.defs.get(command): #defs come first, since you can override built-in function = self.defs.get(command) indices = self.indices(rest) if len(indices) == 1: self.circuit.append(function(indices[0])) else: self.circuit.append(function(indices[:-1], indices[-1])) elif hasattr(self, command): function = getattr(self, command) function(*rest) else: print("Function %s not defined. Skipping" % command) def get_circuit(self): return prod(reversed(self.circuit)) def get_labels(self): return list(reversed(self.labels)) def plot(self): from sympy.physics.quantum.circuitplot import CircuitPlot circuit, labels = self.get_circuit(), self.get_labels() CircuitPlot(circuit, len(labels), labels=labels, inits=self.inits) def qubit(self, arg, init=None): self.labels.append(arg) if init: self.inits[arg] = init def indices(self, args): return get_indices(args, self.labels) def index(self, arg): return get_index(arg, self.labels) def nop(self, *args): pass def x(self, arg): self.circuit.append(X(self.index(arg))) def z(self, arg): self.circuit.append(Z(self.index(arg))) def h(self, arg): self.circuit.append(H(self.index(arg))) def s(self, arg): self.circuit.append(S(self.index(arg))) def t(self, arg): self.circuit.append(T(self.index(arg))) def measure(self, arg): self.circuit.append(Mz(self.index(arg))) def cnot(self, a1, a2): self.circuit.append(CNOT(*self.indices([a1, a2]))) def swap(self, a1, a2): self.circuit.append(SWAP(*self.indices([a1, a2]))) def cphase(self, a1, a2): self.circuit.append(CPHASE(*self.indices([a1, a2]))) def toffoli(self, a1, a2, a3): i1, i2, i3 = self.indices([a1, a2, a3]) self.circuit.append(CGateS((i1, i2), X(i3))) def cx(self, a1, a2): fi, fj = self.indices([a1, a2]) self.circuit.append(CGate(fi, X(fj))) def cz(self, a1, a2): fi, fj = self.indices([a1, a2]) self.circuit.append(CGate(fi, Z(fj))) def defbox(self, *args): print("defbox not supported yet. Skipping: ", args) def qdef(self, name, ncontrols, symbol): from sympy.physics.quantum.circuitplot import CreateOneQubitGate, CreateCGate ncontrols = int(ncontrols) command = fixcommand(name) symbol = stripquotes(symbol) if ncontrols > 0: self.defs[command] = CreateCGate(symbol) else: self.defs[command] = CreateOneQubitGate(symbol)
6636f67111a78950d5e9edf98233f8b84a48e30d02ed81902045d179aabfcfe1
"""1D quantum particle in a box.""" from sympy.core.numbers import pi from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.sets.sets import Interval from sympy.physics.quantum.operator import HermitianOperator from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum.constants import hbar from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.hilbert import L2 m = Symbol('m') L = Symbol('L') __all__ = [ 'PIABHamiltonian', 'PIABKet', 'PIABBra' ] class PIABHamiltonian(HermitianOperator): """Particle in a box Hamiltonian operator.""" @classmethod def _eval_hilbert_space(cls, label): return L2(Interval(S.NegativeInfinity, S.Infinity)) def _apply_operator_PIABKet(self, ket, **options): n = ket.label[0] return (n**2*pi**2*hbar**2)/(2*m*L**2)*ket class PIABKet(Ket): """Particle in a box eigenket.""" @classmethod def _eval_hilbert_space(cls, args): return L2(Interval(S.NegativeInfinity, S.Infinity)) @classmethod def dual_class(self): return PIABBra def _represent_default_basis(self, **options): return self._represent_XOp(None, **options) def _represent_XOp(self, basis, **options): x = Symbol('x') n = Symbol('n') subs_info = options.get('subs', {}) return sqrt(2/L)*sin(n*pi*x/L).subs(subs_info) def _eval_innerproduct_PIABBra(self, bra): return KroneckerDelta(bra.label[0], self.label[0]) class PIABBra(Bra): """Particle in a box eigenbra.""" @classmethod def _eval_hilbert_space(cls, label): return L2(Interval(S.NegativeInfinity, S.Infinity)) @classmethod def dual_class(self): return PIABKet
ec888d9c5631c62f447c494216d30b11071c6fa9c1fa321eab8c7722522accab
"""The commutator: [A,B] = A*B - B*A.""" from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.operator import Operator __all__ = [ 'Commutator' ] #----------------------------------------------------------------------------- # Commutator #----------------------------------------------------------------------------- class Commutator(Expr): """The standard commutator, in an unevaluated state. Explanation =========== Evaluating a commutator is defined [1]_ as: ``[A, B] = A*B - B*A``. This class returns the commutator in an unevaluated form. To evaluate the commutator, use the ``.doit()`` method. Canonical ordering of a commutator is ``[A, B]`` for ``A < B``. The arguments of the commutator are put into canonical order using ``__cmp__``. If ``B < A``, then ``[B, A]`` is returned as ``-[A, B]``. Parameters ========== A : Expr The first argument of the commutator [A,B]. B : Expr The second argument of the commutator [A,B]. Examples ======== >>> from sympy.physics.quantum import Commutator, Dagger, Operator >>> from sympy.abc import x, y >>> A = Operator('A') >>> B = Operator('B') >>> C = Operator('C') Create a commutator and use ``.doit()`` to evaluate it: >>> comm = Commutator(A, B) >>> comm [A,B] >>> comm.doit() A*B - B*A The commutator orders it arguments in canonical order: >>> comm = Commutator(B, A); comm -[A,B] Commutative constants are factored out: >>> Commutator(3*x*A, x*y*B) 3*x**2*y*[A,B] Using ``.expand(commutator=True)``, the standard commutator expansion rules can be applied: >>> Commutator(A+B, C).expand(commutator=True) [A,C] + [B,C] >>> Commutator(A, B+C).expand(commutator=True) [A,B] + [A,C] >>> Commutator(A*B, C).expand(commutator=True) [A,C]*B + A*[B,C] >>> Commutator(A, B*C).expand(commutator=True) [A,B]*C + B*[A,C] Adjoint operations applied to the commutator are properly applied to the arguments: >>> Dagger(Commutator(A, B)) -[Dagger(A),Dagger(B)] References ========== .. [1] https://en.wikipedia.org/wiki/Commutator """ is_commutative = False def __new__(cls, A, B): r = cls.eval(A, B) if r is not None: return r obj = Expr.__new__(cls, A, B) return obj @classmethod def eval(cls, a, b): if not (a and b): return S.Zero if a == b: return S.Zero if a.is_commutative or b.is_commutative: return S.Zero # [xA,yB] -> xy*[A,B] ca, nca = a.args_cnc() cb, ncb = b.args_cnc() c_part = ca + cb if c_part: return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) # Canonical ordering of arguments # The Commutator [A, B] is in canonical form if A < B. if a.compare(b) == 1: return S.NegativeOne*cls(b, a) def _expand_pow(self, A, B, sign): exp = A.exp if not exp.is_integer or not exp.is_constant() or abs(exp) <= 1: # nothing to do return self base = A.base if exp.is_negative: base = A.base**-1 exp = -exp comm = Commutator(base, B).expand(commutator=True) result = base**(exp - 1) * comm for i in range(1, exp): result += base**(exp - 1 - i) * comm * base**i return sign*result.expand() def _eval_expand_commutator(self, **hints): A = self.args[0] B = self.args[1] if isinstance(A, Add): # [A + B, C] -> [A, C] + [B, C] sargs = [] for term in A.args: comm = Commutator(term, B) if isinstance(comm, Commutator): comm = comm._eval_expand_commutator() sargs.append(comm) return Add(*sargs) elif isinstance(B, Add): # [A, B + C] -> [A, B] + [A, C] sargs = [] for term in B.args: comm = Commutator(A, term) if isinstance(comm, Commutator): comm = comm._eval_expand_commutator() sargs.append(comm) return Add(*sargs) elif isinstance(A, Mul): # [A*B, C] -> A*[B, C] + [A, C]*B a = A.args[0] b = Mul(*A.args[1:]) c = B comm1 = Commutator(b, c) comm2 = Commutator(a, c) if isinstance(comm1, Commutator): comm1 = comm1._eval_expand_commutator() if isinstance(comm2, Commutator): comm2 = comm2._eval_expand_commutator() first = Mul(a, comm1) second = Mul(comm2, b) return Add(first, second) elif isinstance(B, Mul): # [A, B*C] -> [A, B]*C + B*[A, C] a = A b = B.args[0] c = Mul(*B.args[1:]) comm1 = Commutator(a, b) comm2 = Commutator(a, c) if isinstance(comm1, Commutator): comm1 = comm1._eval_expand_commutator() if isinstance(comm2, Commutator): comm2 = comm2._eval_expand_commutator() first = Mul(comm1, c) second = Mul(b, comm2) return Add(first, second) elif isinstance(A, Pow): # [A**n, C] -> A**(n - 1)*[A, C] + A**(n - 2)*[A, C]*A + ... + [A, C]*A**(n-1) return self._expand_pow(A, B, 1) elif isinstance(B, Pow): # [A, C**n] -> C**(n - 1)*[C, A] + C**(n - 2)*[C, A]*C + ... + [C, A]*C**(n-1) return self._expand_pow(B, A, -1) # No changes, so return self return self def doit(self, **hints): """ Evaluate commutator """ A = self.args[0] B = self.args[1] if isinstance(A, Operator) and isinstance(B, Operator): try: comm = A._eval_commutator(B, **hints) except NotImplementedError: try: comm = -1*B._eval_commutator(A, **hints) except NotImplementedError: comm = None if comm is not None: return comm.doit(**hints) return (A*B - B*A).doit(**hints) def _eval_adjoint(self): return Commutator(Dagger(self.args[1]), Dagger(self.args[0])) def _sympyrepr(self, printer, *args): return "%s(%s,%s)" % ( self.__class__.__name__, printer._print( self.args[0]), printer._print(self.args[1]) ) def _sympystr(self, printer, *args): return "[%s,%s]" % ( printer._print(self.args[0]), printer._print(self.args[1])) def _pretty(self, printer, *args): pform = printer._print(self.args[0], *args) pform = prettyForm(*pform.right(prettyForm(','))) pform = prettyForm(*pform.right(printer._print(self.args[1], *args))) pform = prettyForm(*pform.parens(left='[', right=']')) return pform def _latex(self, printer, *args): return "\\left[%s,%s\\right]" % tuple([ printer._print(arg, *args) for arg in self.args])
42eb9cbe60040e6287855094151a8f15b7992b18975a13bc2d05003f224ff2dc
"""Quantum mechanical angular momemtum.""" from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.numbers import (I, Integer, Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import (binomial, factorial) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.simplify.simplify import simplify from sympy.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import pretty_symbol from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import (HermitianOperator, Operator, UnitaryOperator) from sympy.physics.quantum.state import Bra, Ket, State from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'Rotation', 'WignerD', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JzOp', 'J2Op', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j - i for i in range(int(2*j + 1))] #----------------------------------------------------------------------------- # Spin Operators #----------------------------------------------------------------------------- class SpinOpBase: """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (self.name, self._coord) def _print_contents_pretty(self, printer, *args): a = stringPict(str(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((self.name, self._coord)) def _represent_base(self, basis, **options): j = options.get('j', S.Half) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): ret = (hbar*state.m)*state # state is a linear combination of states elif isinstance(state, Sum): ret = self._apply_operator_Sum(state, **options) else: ret = qapply(self*state) if ret == self*state: raise NotImplementedError return ret.rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): # Uncoupling operator is only easily found for coordinate basis spin operators # TODO: add methods for uncoupling operators if not isinstance(self, (JxOp, JyOp, JzOp)): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n + 1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() # TODO: move this to qapply_Mul def _apply_operator_Sum(self, s, **options): new_func = qapply(self*s.function) if new_func == self*s.function: raise NotImplementedError return Sum(new_func, *s.limits) def _eval_trace(self, **options): #TODO: use options to use different j values #For now eval at default basis # is it efficient to represent each time # to do a trace? return self._represent_default_basis().trace() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One)) result *= KroneckerDelta(m, mp + 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One)) result *= KroneckerDelta(m, mp - 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class J2Op(SpinOpBase, HermitianOperator): """The J^2 operator.""" _coord = '2' def _eval_commutator_JxOp(self, other): return S.Zero def _eval_commutator_JyOp(self, other): return S.Zero def _eval_commutator_JzOp(self, other): return S.Zero def _eval_commutator_JplusOp(self, other): return S.Zero def _eval_commutator_JminusOp(self, other): return S.Zero def _apply_operator_JxKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JxKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def matrix_element(self, j, m, jp, mp): result = (hbar**2)*j*(j + 1) result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _print_contents_pretty(self, printer, *args): a = prettyForm(str(self.name)) b = prettyForm('2') return a**b def _print_contents_latex(self, printer, *args): return r'%s^2' % str(self.name) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2 def _eval_rewrite_as_plusminus(self, *args, **kwargs): a = args[0] return JzOp(a)**2 + \ S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a)) class Rotation(UnitaryOperator): """Wigner D operator in terms of Euler angles. Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then this new coordinate system is rotated about the new y'-axis, giving new x''-y''-z'' axes. Then this new coordinate system is rotated about the z''-axis. Conventions follow those laid out in [1]_. Parameters ========== alpha : Number, Symbol First Euler Angle beta : Number, Symbol Second Euler angle gamma : Number, Symbol Third Euler angle Examples ======== A simple example rotation operator: >>> from sympy import pi >>> from sympy.physics.quantum.spin import Rotation >>> Rotation(pi, 0, pi/2) R(pi,0,pi/2) With symbolic Euler angles and calculating the inverse rotation operator: >>> from sympy import symbols >>> a, b, c = symbols('a b c') >>> Rotation(a, b, c) R(a,b,c) >>> Rotation(a, b, c).inverse() R(-c,-b,-a) See Also ======== WignerD: Symbolic Wigner-D function D: Wigner-D function d: Wigner small-d function References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) != 3: raise ValueError('3 Euler angles required, got: %r' % args) return args @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def alpha(self): return self.label[0] @property def beta(self): return self.label[1] @property def gamma(self): return self.label[2] def _print_operator_name(self, printer, *args): return 'R' def _print_operator_name_pretty(self, printer, *args): if printer._use_unicode: return prettyForm('\N{SCRIPT CAPITAL R}' + ' ') else: return prettyForm("R ") def _print_operator_name_latex(self, printer, *args): return r'\mathcal{R}' def _eval_inverse(self): return Rotation(-self.gamma, -self.beta, -self.alpha) @classmethod def D(cls, j, m, mp, alpha, beta, gamma): """Wigner D-function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> alpha, beta, gamma = symbols('alpha beta gamma') >>> Rotation.D(1, 1, 0,pi, pi/2,-pi) WignerD(1, 1, 0, pi, pi/2, -pi) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, alpha, beta, gamma) @classmethod def d(cls, j, m, mp, beta): """Wigner small-d function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles given as 0. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis beta : Number, Symbol Second Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> beta = symbols('beta') >>> Rotation.d(1, 1, 0, pi/2) WignerD(1, 1, 0, 0, pi/2, 0) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, 0, beta, 0) def matrix_element(self, j, m, jp, mp): result = self.__class__.D( jp, m, mp, self.alpha, self.beta, self.gamma ) result *= KroneckerDelta(j, jp) return result def _represent_base(self, basis, **options): j = sympify(options.get('j', S.Half)) # TODO: move evaluation up to represent function/implement elsewhere evaluate = sympify(options.get('doit')) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) if evaluate: result[p, q] = me.doit() else: result[p, q] = me return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _apply_operator_uncoupled(self, state, ket, *, dummy=True, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp)) return Add(*s) else: if dummy: mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state(j, mp), (mp, -j, j)) def _apply_operator_JxKet(self, ket, **options): return self._apply_operator_uncoupled(JxKet, ket, **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_operator_uncoupled(JyKet, ket, **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_operator_uncoupled(JzKet, ket, **options) def _apply_operator_coupled(self, state, ket, *, dummy=True, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z*state(j, mp, jn, coupling)) return Add(*s) else: if dummy: mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g)*state( j, mp, jn, coupling), (mp, -j, j)) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_operator_coupled(JxKetCoupled, ket, **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_operator_coupled(JyKetCoupled, ket, **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_operator_coupled(JzKetCoupled, ket, **options) class WignerD(Expr): r"""Wigner-D function The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles `\alpha`, `\beta`, `\gamma`, the D-function is defined such that: .. math :: <j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma) Where the rotation operator is as defined by the Rotation class [1]_. The Wigner D-function defined in this way gives: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the Wigner small-d function, which is given by Rotation.d. The Wigner small-d function gives the component of the Wigner D-function that is determined by the second Euler angle. That is the Wigner D-function is: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the small-d function. The Wigner D-function is given by Rotation.D. Note that to evaluate the D-function, the j, m and mp parameters must be integer or half integer numbers. Parameters ========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Evaluate the Wigner-D matrix elements of a simple rotation: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi >>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0) >>> rot WignerD(1, 1, 0, pi, pi/2, 0) >>> rot.doit() sqrt(2)/2 Evaluate the Wigner-d matrix elements of a simple rotation >>> rot = Rotation.d(1, 1, 0, pi/2) >>> rot WignerD(1, 1, 0, 0, pi/2, 0) >>> rot.doit() -sqrt(2)/2 See Also ======== Rotation: Rotation operator References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, *args, **hints): if not len(args) == 6: raise ValueError('6 parameters expected, got %s' % args) args = sympify(args) evaluate = hints.get('evaluate', False) if evaluate: return Expr.__new__(cls, *args)._eval_wignerd() return Expr.__new__(cls, *args) @property def j(self): return self.args[0] @property def m(self): return self.args[1] @property def mp(self): return self.args[2] @property def alpha(self): return self.args[3] @property def beta(self): return self.args[4] @property def gamma(self): return self.args[5] def _latex(self, printer, *args): if self.alpha == 0 and self.gamma == 0: return r'd^{%s}_{%s,%s}\left(%s\right)' % \ ( printer._print(self.j), printer._print( self.m), printer._print(self.mp), printer._print(self.beta) ) return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \ ( printer._print( self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) ) def _pretty(self, printer, *args): top = printer._print(self.j) bot = printer._print(self.m) bot = prettyForm(*bot.right(',')) bot = prettyForm(*bot.right(printer._print(self.mp))) pad = max(top.width(), bot.width()) top = prettyForm(*top.left(' ')) bot = prettyForm(*bot.left(' ')) if pad > top.width(): top = prettyForm(*top.right(' '*(pad - top.width()))) if pad > bot.width(): bot = prettyForm(*bot.right(' '*(pad - bot.width()))) if self.alpha == 0 and self.gamma == 0: args = printer._print(self.beta) s = stringPict('d' + ' '*pad) else: args = printer._print(self.alpha) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.beta))) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.gamma))) s = stringPict('D' + ' '*pad) args = prettyForm(*args.parens()) s = prettyForm(*s.above(top)) s = prettyForm(*s.below(bot)) s = prettyForm(*s.right(args)) return s def doit(self, **hints): hints['evaluate'] = True return WignerD(*self.args, **hints) def _eval_wignerd(self): j = sympify(self.j) m = sympify(self.m) mp = sympify(self.mp) alpha = sympify(self.alpha) beta = sympify(self.beta) gamma = sympify(self.gamma) if alpha == 0 and beta == 0 and gamma == 0: return KroneckerDelta(m, mp) if not j.is_number: raise ValueError( 'j parameter must be numerical to evaluate, got %s' % j) r = 0 if beta == pi/2: # Varshalovich Equation (5), Section 4.16, page 113, setting # alpha=gamma=0. for k in range(2*j + 1): if k > j + mp or k > j - m or k < mp - m: continue r += (S.NegativeOne)**k*binomial(j + mp, k)*binomial(j - mp, k + m - mp) r *= (S.NegativeOne)**(m - mp) / 2**j*sqrt(factorial(j + m) * factorial(j - m) / (factorial(j + mp)*factorial(j - mp))) else: # Varshalovich Equation(5), Section 4.7.2, page 87, where we set # beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi, # then we use the Eq. (1), Section 4.4. page 79, to simplify: # d(j, m, mp, beta+pi) = (-1)**(j-mp)*d(j, m, -mp, beta) # This happens to be almost the same as in Eq.(10), Section 4.16, # except that we need to substitute -mp for mp. size, mvals = m_values(j) for mpp in mvals: r += Rotation.d(j, m, mpp, pi/2).doit()*(cos(-mpp*beta) + I*sin(-mpp*beta))*\ Rotation.d(j, mpp, -mp, pi/2).doit() # Empirical normalization factor so results match Varshalovich # Tables 4.3-4.12 # Note that this exact normalization does not follow from the # above equations r = r*I**(2*j - m - mp)*(-1)**(2*m) # Finally, simplify the whole expression r = simplify(r) r *= exp(-I*m*alpha)*exp(-I*mp*gamma) return r Jx = JxOp('J') Jy = JyOp('J') Jz = JzOp('J') J2 = J2Op('J') Jplus = JplusOp('J') Jminus = JminusOp('J') #----------------------------------------------------------------------------- # Spin States #----------------------------------------------------------------------------- class SpinState(State): """Base class for angular momentum states.""" _label_separator = ',' def __new__(cls, j, m): j = sympify(j) m = sympify(m) if j.is_number: if 2*j != int(2*j): raise ValueError( 'j must be integer or half-integer, got: %s' % j) if j < 0: raise ValueError('j must be >= 0, got: %s' % j) if m.is_number: if 2*m != int(2*m): raise ValueError( 'm must be integer or half-integer, got: %s' % m) if j.is_number and m.is_number: if abs(m) > j: raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m)) if int(j - m) != j - m: raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m)) return State.__new__(cls, j, m) @property def j(self): return self.label[0] @property def m(self): return self.label[1] @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2*label[0] + 1) def _represent_base(self, **options): j = self.j m = self.m alpha = sympify(options.get('alpha', 0)) beta = sympify(options.get('beta', 0)) gamma = sympify(options.get('gamma', 0)) size, mvals = m_values(j) result = zeros(size, 1) # breaks finding angles on L930 for p, mval in enumerate(mvals): if m.is_number: result[p, 0] = Rotation.D( self.j, mval, self.m, alpha, beta, gamma).doit() else: result[p, 0] = Rotation.D(self.j, mval, self.m, alpha, beta, gamma) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBra, **options) return self._rewrite_basis(Jx, JxKet, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBra, **options) return self._rewrite_basis(Jy, JyKet, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBra, **options) return self._rewrite_basis(Jz, JzKet, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = self.j args = self.args[2:] if j.is_number: if isinstance(self, CoupledSpinState): if j == int(j): start = j**2 else: start = (2*j - 1)*(2*j + 1)/4 else: start = 0 vect = represent(self, basis=basis, **options) result = Add( *[vect[start + i]*evect(j, j - i, *args) for i in range(2*j + 1)]) if isinstance(self, CoupledSpinState) and options.get('coupled') is False: return uncouple(result) return result else: i = 0 mi = symbols('mi') # make sure not to introduce a symbol already in the state while self.subs(mi, 0) != self: i += 1 mi = symbols('mi%d' % i) break # TODO: better way to get angles of rotation if isinstance(self, CoupledSpinState): test_args = (0, mi, (0, 0)) else: test_args = (0, mi) if isinstance(self, Ket): angles = represent( self.__class__(*test_args), basis=basis)[0].args[3:6] else: angles = represent(self.__class__( *test_args), basis=basis)[0].args[0].args[3:6] if angles == (0, 0, 0): return self else: state = evect(j, mi, *args) lt = Rotation.D(j, mi, self.m, *angles) return Sum(lt*state, (mi, -j, j)) def _eval_innerproduct_JxBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JxOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JyBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JyOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JzBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JzOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j)*KroneckerDelta(self.m, bra.m) return result def _eval_trace(self, bra, **hints): # One way to implement this method is to assume the basis set k is # passed. # Then we can apply the discrete form of Trace formula here # Tr(|i><j| ) = \Sum_k <k|i><j|k> #then we do qapply() on each each inner product and sum over them. # OR # Inner product of |i><j| = Trace(Outer Product). # we could just use this unless there are cases when this is not true return (bra*self).doit() class JxKet(SpinState, Ket): """Eigenket of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxBra @classmethod def coupled_class(self): return JxKetCoupled def _represent_default_basis(self, **options): return self._represent_JxOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_base(beta=pi/2, **options) class JxBra(SpinState, Bra): """Eigenbra of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxKet @classmethod def coupled_class(self): return JxBraCoupled class JyKet(SpinState, Ket): """Eigenket of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyBra @classmethod def coupled_class(self): return JyKetCoupled def _represent_default_basis(self, **options): return self._represent_JyOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBra(SpinState, Bra): """Eigenbra of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyKet @classmethod def coupled_class(self): return JyBraCoupled class JzKet(SpinState, Ket): """Eigenket of Jz. Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator Examples ======== *Normal States:* Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKet, JxKet >>> from sympy import symbols >>> JzKet(1, 0) |1,0> >>> j, m = symbols('j m') >>> JzKet(j, m) |j,m> Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's >>> JzKet(1,1).rewrite("Jx") |1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx, Jz >>> represent(JzKet(1,-1), basis=Jx) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2]]) Apply innerproducts between states: >>> from sympy.physics.quantum.innerproduct import InnerProduct >>> from sympy.physics.quantum.spin import JxBra >>> i = InnerProduct(JxBra(1,1), JzKet(1,1)) >>> i <1,1|1,1> >>> i.doit() 1/2 *Uncoupled States:* Define an uncoupled state as a TensorProduct between two Jz eigenkets: >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> TensorProduct(JzKet(1,0), JzKet(1,1)) |1,0>x|1,1> >>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2)) |j1,m1>x|j2,m2> A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis: >>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz') |1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2 The represent method for TensorProduct's gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates: >>> represent(TensorProduct(JzKet(1,0),JzKet(1,1))) Matrix([ [0], [0], [0], [1], [0], [0], [0], [0], [0]]) >>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2], [ 0], [ 0], [ 0], [ 0], [ 0], [ 0]]) See Also ======== JzKetCoupled: Coupled eigenstates sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states uncouple: Uncouples states given coupling parameters couple: Couples uncoupled states """ @classmethod def dual_class(self): return JzBra @classmethod def coupled_class(self): return JzKetCoupled def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(**options) class JzBra(SpinState, Bra): """Eigenbra of Jz. See the JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JzKet @classmethod def coupled_class(self): return JzBraCoupled # Method used primarily to create coupled_n and coupled_jn by __new__ in # CoupledSpinState # This same method is also used by the uncouple method, and is separated from # the CoupledSpinState class to maintain consistency in defining coupling def _build_coupled(jcoupling, length): n_list = [ [n + 1] for n in range(length) ] coupled_jn = [] coupled_n = [] for n1, n2, j_new in jcoupling: coupled_jn.append(j_new) coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) ) n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1]) n_list[n_sort[0] - 1] = n_sort return coupled_n, coupled_jn class CoupledSpinState(SpinState): """Base class for coupled angular momentum states.""" def __new__(cls, j, m, jn, *jcoupling): # Check j and m values using SpinState SpinState(j, m) # Build and check coupling scheme from arguments if len(jcoupling) == 0: # Use default coupling scheme jcoupling = [] for n in range(2, len(jn)): jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) ) jcoupling.append( (1, len(jn), j) ) elif len(jcoupling) == 1: # Use specified coupling scheme jcoupling = jcoupling[0] else: raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) ) # Check arguments have correct form if not isinstance(jn, (list, tuple, Tuple)): raise TypeError('jn must be Tuple, list or tuple, got %s' % jn.__class__.__name__) if not isinstance(jcoupling, (list, tuple, Tuple)): raise TypeError('jcoupling must be Tuple, list or tuple, got %s' % jcoupling.__class__.__name__) if not all(isinstance(term, (list, tuple, Tuple)) for term in jcoupling): raise TypeError( 'All elements of jcoupling must be list, tuple or Tuple') if not len(jn) - 1 == len(jcoupling): raise ValueError('jcoupling must have length of %d, got %d' % (len(jn) - 1, len(jcoupling))) if not all(len(x) == 3 for x in jcoupling): raise ValueError('All elements of jcoupling must have length 3') # Build sympified args j = sympify(j) m = sympify(m) jn = Tuple( *[sympify(ji) for ji in jn] ) jcoupling = Tuple( *[Tuple(sympify( n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] ) # Check values in coupling scheme give physical state if any(2*ji != int(2*ji) for ji in jn if ji.is_number): raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn) if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling): raise ValueError('Indices in jcoupling must be integers') if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling): raise ValueError('Indices must be between 1 and the number of coupled spin spaces') if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number): raise ValueError('All coupled j values in coupling scheme must be integer or half-integer') coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn)) jvals = list(jn) for n, (n1, n2) in enumerate(coupled_n): j1 = jvals[min(n1) - 1] j2 = jvals[min(n2) - 1] j3 = coupled_jn[n] if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number: if j1 + j2 < j3: raise ValueError('All couplings must have j1+j2 >= j3, ' 'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3)) if abs(j1 - j2) > j3: raise ValueError("All couplings must have |j1+j2| <= j3, " "in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3)) if int(j1 + j2) == j1 + j2: pass jvals[min(n1 + n2) - 1] = j3 if len(jcoupling) > 0 and jcoupling[-1][2] != j: raise ValueError('Last j value coupled together must be the final j of the state') # Return state return State.__new__(cls, j, m, jn, jcoupling) def _print_label(self, printer, *args): label = [printer._print(self.j), printer._print(self.m)] for i, ji in enumerate(self.jn, start=1): label.append('j%d=%s' % ( i, printer._print(ji) )) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): label.append('j(%s)=%s' % ( ','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn) )) return ','.join(label) def _print_label_pretty(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): symb = 'j%d' % i symb = pretty_symbol(symb) symb = prettyForm(symb + '=') item = prettyForm(*symb.right(printer._print(ji))) label.append(item) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2)) symb = prettyForm('j' + n + '=') item = prettyForm(*symb.right(printer._print(jn))) label.append(item) return self._print_sequence_pretty( label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): label = [ printer._print(self.j, *args), printer._print(self.m, *args) ] for i, ji in enumerate(self.jn, start=1): label.append('j_{%d}=%s' % (i, printer._print(ji, *args)) ) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(str(i) for i in sorted(n1 + n2)) label.append('j_{%s}=%s' % (n, printer._print(jn, *args)) ) return self._label_separator.join(label) @property def jn(self): return self.label[2] @property def coupling(self): return self.label[3] @property def coupled_jn(self): return _build_coupled(self.label[3], len(self.label[2]))[1] @property def coupled_n(self): return _build_coupled(self.label[3], len(self.label[2]))[0] @classmethod def _eval_hilbert_space(cls, label): j = Add(*label[2]) if j.is_number: return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ]) else: # TODO: Need hilbert space fix, see issue 5732 # Desired behavior: #ji = symbols('ji') #ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j)) # Temporary fix: return ComplexSpace(2*j + 1) def _represent_coupled_base(self, **options): evect = self.uncoupled_class() if not self.j.is_number: raise ValueError( 'State must not have symbolic j value to represent') if not self.hilbert_space.dimension.is_number: raise ValueError( 'State must not have symbolic j values to represent') result = zeros(self.hilbert_space.dimension, 1) if self.j == int(self.j): start = self.j**2 else: start = (2*self.j - 1)*(1 + 2*self.j)/4 result[start:start + 2*self.j + 1, 0] = evect( self.j, self.m)._represent_base(**options) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBraCoupled, **options) return self._rewrite_basis(Jx, JxKetCoupled, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBraCoupled, **options) return self._rewrite_basis(Jy, JyKetCoupled, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBraCoupled, **options) return self._rewrite_basis(Jz, JzKetCoupled, **options) class JxKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxBraCoupled @classmethod def uncoupled_class(self): return JxKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(beta=pi/2, **options) class JxBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxKetCoupled @classmethod def uncoupled_class(self): return JxBra class JyKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyBraCoupled @classmethod def uncoupled_class(self): return JyKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyKetCoupled @classmethod def uncoupled_class(self): return JyBra class JzKetCoupled(CoupledSpinState, Ket): r"""Coupled eigenket of Jz Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. The arguments for creating instances of JzKetCoupled are ``j``, ``m``, ``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options are the total angular momentum quantum numbers, as used for normal states (e.g. JzKet). The other required parameter in ``jn``, which is a tuple defining the `j_n` angular momentum quantum numbers of the product spaces. So for example, if a state represented the coupling of the product basis state `\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn`` for this state would be ``(j1,j2)``. The final option is ``jcoupling``, which is used to define how the spaces specified by ``jn`` are coupled, which includes both the order these spaces are coupled together and the quantum numbers that arise from these couplings. The ``jcoupling`` parameter itself is a list of lists, such that each of the sublists defines a single coupling between the spin spaces. If there are N coupled angular momentum spaces, that is ``jn`` has N elements, then there must be N-1 sublists. Each of these sublists making up the ``jcoupling`` parameter have length 3. The first two elements are the indices of the product spaces that are considered to be coupled together. For example, if we want to couple `j_1` and `j_4`, the indices would be 1 and 4. If a state has already been coupled, it is referenced by the smallest index that is coupled, so if `j_2` and `j_4` has already been coupled to some `j_{24}`, then this value can be coupled by referencing it with index 2. The final element of the sublist is the quantum number of the coupled state. So putting everything together, into a valid sublist for ``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space with quantum number `j_{12}` with the value ``j12``, the sublist would be ``(1,2,j12)``, N-1 of these sublists are used in the list for ``jcoupling``. Note the ``jcoupling`` parameter is optional, if it is not specified, the default coupling is taken. This default value is to coupled the spaces in order and take the quantum number of the coupling to be the maximum value. For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then, `j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally `j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would correspond to this is: ``((1,2,j1+j2),(1,3,j1+j2+j3))`` Parameters ========== args : tuple The arguments that must be passed are ``j``, ``m``, ``jn``, and ``jcoupling``. The ``j`` value is the total angular momentum. The ``m`` value is the eigenvalue of the Jz spin operator. The ``jn`` list are the j values of argular momentum spaces coupled together. The ``jcoupling`` parameter is an optional parameter defining how the spaces are coupled together. See the above description for how these coupling parameters are defined. Examples ======== Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKetCoupled >>> from sympy import symbols >>> JzKetCoupled(1, 0, (1, 1)) |1,0,j1=1,j2=1> >>> j, m, j1, j2 = symbols('j m j1 j2') >>> JzKetCoupled(j, m, (j1, j2)) |j,m,j1=j1,j2=j2> Defining coupled spin states for more than 2 coupled spaces with various coupling parameters: >>> JzKetCoupled(2, 1, (1, 1, 1)) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) ) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) ) |2,1,j1=1,j2=1,j3=1,j(2,3)=1> Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled >>> JzKetCoupled(1,1,(1,1)).rewrite("Jx") |1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2 The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function: >>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False) -sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx >>> from sympy import S >>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx) Matrix([ [ 0], [ 1/2], [sqrt(2)/2], [ 1/2]]) See Also ======== JzKet: Normal spin eigenstates uncouple: Uncoupling of coupling spin states couple: Coupling of uncoupled spin states """ @classmethod def dual_class(self): return JzBraCoupled @classmethod def uncoupled_class(self): return JzKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(**options) class JzBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jz. See the JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JzKetCoupled @classmethod def uncoupled_class(self): return JzBra #----------------------------------------------------------------------------- # Coupling/uncoupling #----------------------------------------------------------------------------- def couple(expr, jcoupling_list=None): """ Couple a tensor product of spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState determined by Clebsch-Gordan angular momentum coupling coefficients. Parameters ========== expr : Expr An expression involving TensorProducts of spin states to be coupled. Each state must be a subclass of SpinState and they all must be the same class. jcoupling_list : list or tuple Elements of this list are sub-lists of length 2 specifying the order of the coupling of the spin spaces. The length of this must be N-1, where N is the number of states in the tensor product to be coupled. The elements of this sublist are the same as the first two elements of each sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this parameter is not specified, the default value is taken, which couples the first and second product basis spaces, then couples this new coupled space to the third product space, etc Examples ======== Couple a tensor product of numerical states for two spaces: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2 Numerical coupling of three spaces using the default coupling method, i.e. first and second spaces couple, then this couples to the third space: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0))) sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 Perform this same coupling, but we define the coupling to first couple the first and third spaces: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) ) sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2)) """ a = expr.atoms(TensorProduct) for tp in a: # Allow other tensor products to be in expression if not all(isinstance(state, SpinState) for state in tp.args): continue # If tensor product has all spin states, raise error for invalid tensor product state if not all(state.__class__ is tp.args[0].__class__ for state in tp.args): raise TypeError('All states must be the same basis') expr = expr.subs(tp, _couple(tp, jcoupling_list)) return expr def _couple(tp, jcoupling_list): states = tp.args coupled_evect = states[0].coupled_class() # Define default coupling if none is specified if jcoupling_list is None: jcoupling_list = [] for n in range(1, len(states)): jcoupling_list.append( (1, n + 1) ) # Check jcoupling_list valid if not len(jcoupling_list) == len(states) - 1: raise TypeError('jcoupling_list must be length %d, got %d' % (len(states) - 1, len(jcoupling_list))) if not all( len(coupling) == 2 for coupling in jcoupling_list): raise ValueError('Each coupling must define 2 spaces') if any(n1 == n2 for n1, n2 in jcoupling_list): raise ValueError('Spin spaces cannot couple to themselves') if all(sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list): j_test = [0]*len(states) for n1, n2 in jcoupling_list: if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1: raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value') j_test[max(n1, n2) - 1] = -1 # j values of states to be coupled together jn = [state.j for state in states] mn = [state.m for state in states] # Create coupling_list, which defines all the couplings between all # the spaces from jcoupling_list coupling_list = [] n_list = [ [i + 1] for i in range(len(states)) ] for j_coupling in jcoupling_list: # Least n for all j_n which is coupled as first and second spaces n1, n2 = j_coupling # List of all n's coupled in first and second spaces j1_n = list(n_list[n1 - 1]) j2_n = list(n_list[n2 - 1]) coupling_list.append( (j1_n, j2_n) ) # Set new j_n to be coupling of all j_n in both first and second spaces n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n) if all(state.j.is_number and state.m.is_number for state in states): # Numerical coupling # Iterate over difference between maximum possible j value of each coupling and the actual value diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] + coupling[1] ] ) for coupling in coupling_list ] result = [] for diff in range(diff_max[-1] + 1): # Determine available configurations n = len(coupling_list) tot = binomial(diff + n - 1, diff) for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) # Skip the configuration if non-physical # This is a lazy check for physical states given the loose restrictions of diff_max if any(d > m for d, m in zip(diff_list, diff_max)): continue # Determine term cg_terms = [] coupled_j = list(jn) jcoupling = [] for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list): j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] j3 = j1 + j2 - coupling_diff coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) # Better checks that state is physical if any(abs(term[5]) > term[4] for term in cg_terms): continue if any(term[0] + term[2] < term[4] for term in cg_terms): continue if any(abs(term[0] - term[2]) > term[4] for term in cg_terms): continue coeff = Mul( *[ CG(*term).doit() for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) result.append(coeff*state) return Add(*result) else: # Symbolic coupling cg_terms = [] jcoupling = [] sum_terms = [] coupled_j = list(jn) for j1_n, j2_n in coupling_list: j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] if len(j1_n + j2_n) == len(states): j3 = symbols('j') else: j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n]) j3 = symbols(j3_name) coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) sum_terms.append((j3, m3, j1 + j2)) coeff = Mul( *[ CG(*term) for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) return Sum(coeff*state, *sum_terms) def uncouple(expr, jn=None, jcoupling_list=None): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== expr : Expr The expression containing states that are to be coupled. If the states are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters must be defined. If the states are a subclass of CoupledSpinState, ``jn`` and ``jcoupling`` will be taken from the state. jn : list or tuple The list of the j-values that are coupled. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jn`` parameter of JzKetCoupled. jcoupling_list : list or tuple The list defining how the j-values are coupled together. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jcoupling`` parameter of JzKetCoupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2))) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a numerical state of three coupled spaces using a CoupledSpinState state: >>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) )) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Perform the same calculation using a SpinState state: >>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) ) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, (j1, j2))) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), (j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ a = expr.atoms(SpinState) for state in a: expr = expr.subs(state, _uncouple(state, jn, jcoupling_list)) return expr def _uncouple(state, jn, jcoupling_list): if isinstance(state, CoupledSpinState): jn = state.jn coupled_n = state.coupled_n coupled_jn = state.coupled_jn evect = state.uncoupled_class() elif isinstance(state, SpinState): if jn is None: raise ValueError("Must specify j-values for coupled state") if not isinstance(jn, (list, tuple)): raise TypeError("jn must be list or tuple") if jcoupling_list is None: # Use default jcoupling_list = [] for i in range(1, len(jn)): jcoupling_list.append( (1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) ) if not isinstance(jcoupling_list, (list, tuple)): raise TypeError("jcoupling must be a list or tuple") if not len(jcoupling_list) == len(jn) - 1: raise ValueError("Must specify 2 fewer coupling terms than the number of j values") coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn)) evect = state.__class__ else: raise TypeError("state must be a spin state") j = state.j m = state.m coupling_list = [] j_list = list(jn) # Create coupling, which defines all the couplings between all the spaces for j3, (n1, n2) in zip(coupled_jn, coupled_n): # j's which are coupled as first and second spaces j1 = j_list[n1[0] - 1] j2 = j_list[n2[0] - 1] # Build coupling list coupling_list.append( (n1, n2, j1, j2, j3) ) # Set new value in j_list j_list[min(n1 + n2) - 1] = j3 if j.is_number and m.is_number: diff_max = [ 2*x for x in jn ] diff = Add(*jn) - m n = len(jn) tot = binomial(diff + n - 1, diff) result = [] for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) if any(d > p for d, p in zip(diff_list, diff_max)): continue cg_terms = [] for coupling in coupling_list: j1_n, j2_n, j1, j2, j3 = coupling m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] ) m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] ) state = TensorProduct( *[ evect(j, j - d) for j, d in zip(jn, diff_list) ] ) result.append(coeff*state) return Add(*result) else: # Symbolic coupling m_str = "m1:%d" % (len(jn) + 1) mvals = symbols(m_str) cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ] cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ]) cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms]) sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ] state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] ) return Sum(cg_coeff*state, *sum_terms) def _confignum_to_difflist(config_num, diff, list_len): # Determines configuration of diffs into list_len number of slots diff_list = [] for n in range(list_len): prev_diff = diff # Number of spots after current one rem_spots = list_len - n - 1 # Number of configurations of distributing diff among the remaining spots rem_configs = binomial(diff + rem_spots - 1, diff) while config_num >= rem_configs: config_num -= rem_configs diff -= 1 rem_configs = binomial(diff + rem_spots - 1, diff) diff_list.append(prev_diff - diff) return diff_list
8d161a7dc48736544aec3d6197eba9443e12648602985a503aa7c450d590e895
"""Matplotlib based plotting of quantum circuits. Todo: * Optimize printing of large circuits. * Get this to work with single gates. * Do a better job checking the form of circuits to make sure it is a Mul of Gates. * Get multi-target gates plotting. * Get initial and final states to plot. * Get measurements to plot. Might need to rethink measurement as a gate issue. * Get scale and figsize to be handled in a better way. * Write some tests/examples! """ from typing import List, Dict as tDict from sympy.core.mul import Mul from sympy.external import import_module from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS from sympy.core.core import BasicMeta from sympy.core.assumptions import ManagedProperties __all__ = [ 'CircuitPlot', 'circuit_plot', 'labeller', 'Mz', 'Mx', 'CreateOneQubitGate', 'CreateCGate', ] np = import_module('numpy') matplotlib = import_module( 'matplotlib', import_kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) # This is raised in environments that have no display. if np and matplotlib: pyplot = matplotlib.pyplot Line2D = matplotlib.lines.Line2D Circle = matplotlib.patches.Circle #from matplotlib import rc #rc('text',usetex=True) class CircuitPlot: """A class for managing a circuit plot.""" scale = 1.0 fontsize = 20.0 linewidth = 1.0 control_radius = 0.05 not_radius = 0.15 swap_delta = 0.05 labels = [] # type: List[str] inits = {} # type: tDict[str, str] label_buffer = 0.5 def __init__(self, c, nqubits, **kwargs): if not np or not matplotlib: raise ImportError('numpy or matplotlib not available.') self.circuit = c self.ngates = len(self.circuit.args) self.nqubits = nqubits self.update(kwargs) self._create_grid() self._create_figure() self._plot_wires() self._plot_gates() self._finish() def update(self, kwargs): """Load the kwargs into the instance dict.""" self.__dict__.update(kwargs) def _create_grid(self): """Create the grid of wires.""" scale = self.scale wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float) gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float) self._wire_grid = wire_grid self._gate_grid = gate_grid def _create_figure(self): """Create the main matplotlib figure.""" self._figure = pyplot.figure( figsize=(self.ngates*self.scale, self.nqubits*self.scale), facecolor='w', edgecolor='w' ) ax = self._figure.add_subplot( 1, 1, 1, frameon=True ) ax.set_axis_off() offset = 0.5*self.scale ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset) ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset) ax.set_aspect('equal') self._axes = ax def _plot_wires(self): """Plot the wires of the circuit diagram.""" xstart = self._gate_grid[0] xstop = self._gate_grid[-1] xdata = (xstart - self.scale, xstop + self.scale) for i in range(self.nqubits): ydata = (self._wire_grid[i], self._wire_grid[i]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) if self.labels: init_label_buffer = 0 if self.inits.get(self.labels[i]): init_label_buffer = 0.25 self._axes.text( xdata[0]-self.label_buffer-init_label_buffer,ydata[0], render_label(self.labels[i],self.inits), size=self.fontsize, color='k',ha='center',va='center') self._plot_measured_wires() def _plot_measured_wires(self): ismeasured = self._measurements() xstop = self._gate_grid[-1] dy = 0.04 # amount to shift wires when doubled # Plot doubled wires after they are measured for im in ismeasured: xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale) ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) # Also double any controlled lines off these wires for i,g in enumerate(self._gates()): if isinstance(g, (CGate, CGateS)): wires = g.controls + g.targets for wire in wires: if wire in ismeasured and \ self._gate_grid[i] > self._gate_grid[ismeasured[wire]]: ydata = min(wires), max(wires) xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def _gates(self): """Create a list of all gates in the circuit plot.""" gates = [] if isinstance(self.circuit, Mul): for g in reversed(self.circuit.args): if isinstance(g, Gate): gates.append(g) elif isinstance(self.circuit, Gate): gates.append(self.circuit) return gates def _plot_gates(self): """Iterate through the gates and plot each of them.""" for i, gate in enumerate(self._gates()): gate.plot_gate(self, i) def _measurements(self): """Return a dict {i:j} where i is the index of the wire that has been measured, and j is the gate where the wire is measured. """ ismeasured = {} for i,g in enumerate(self._gates()): if getattr(g,'measurement',False): for target in g.targets: if target in ismeasured: if ismeasured[target] > i: ismeasured[target] = i else: ismeasured[target] = i return ismeasured def _finish(self): # Disable clipping to make panning work well for large circuits. for o in self._figure.findobj(): o.set_clip_on(False) def one_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a single qubit gate.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def two_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a two qubit gate. Doesn't work yet. """ # x = self._gate_grid[gate_idx] # y = self._wire_grid[wire_idx]+0.5 print(self._gate_grid) print(self._wire_grid) # unused: # obj = self._axes.text( # x, y, t, # color='k', # ha='center', # va='center', # bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), # size=self.fontsize # ) def control_line(self, gate_idx, min_wire, max_wire): """Draw a vertical control line.""" xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx]) ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def control_point(self, gate_idx, wire_idx): """Draw a control point.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.control_radius c = Circle( (x, y), radius*self.scale, ec='k', fc='k', fill=True, lw=self.linewidth ) self._axes.add_patch(c) def not_point(self, gate_idx, wire_idx): """Draw a NOT gates as the circle with plus in the middle.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.not_radius c = Circle( (x, y), radius, ec='k', fc='w', fill=False, lw=self.linewidth ) self._axes.add_patch(c) l = Line2D( (x, x), (y - radius, y + radius), color='k', lw=self.linewidth ) self._axes.add_line(l) def swap_point(self, gate_idx, wire_idx): """Draw a swap point as a cross.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] d = self.swap_delta l1 = Line2D( (x - d, x + d), (y - d, y + d), color='k', lw=self.linewidth ) l2 = Line2D( (x - d, x + d), (y + d, y - d), color='k', lw=self.linewidth ) self._axes.add_line(l1) self._axes.add_line(l2) def circuit_plot(c, nqubits, **kwargs): """Draw the circuit diagram for the circuit with nqubits. Parameters ========== c : circuit The circuit to plot. Should be a product of Gate instances. nqubits : int The number of qubits to include in the circuit. Must be at least as big as the largest `min_qubits`` of the gates. """ return CircuitPlot(c, nqubits, **kwargs) def render_label(label, inits={}): """Slightly more flexible way to render labels. >>> from sympy.physics.quantum.circuitplot import render_label >>> render_label('q0') '$\\\\left|q0\\\\right\\\\rangle$' >>> render_label('q0', {'q0':'0'}) '$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$' """ init = inits.get(label) if init: return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init) return r'$\left|%s\right\rangle$' % label def labeller(n, symbol='q'): """Autogenerate labels for wires of quantum circuits. Parameters ========== n : int number of qubits in the circuit. symbol : string A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc. >>> from sympy.physics.quantum.circuitplot import labeller >>> labeller(2) ['q_1', 'q_0'] >>> labeller(3,'j') ['j_2', 'j_1', 'j_0'] """ return ['%s_%d' % (symbol,n-i-1) for i in range(n)] class Mz(OneQubitGate): """Mock-up of a z measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mz' gate_name_latex='M_z' class Mx(OneQubitGate): """Mock-up of an x measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mx' gate_name_latex='M_x' class CreateOneQubitGate(ManagedProperties): def __new__(mcl, name, latexname=None): if not latexname: latexname = name return BasicMeta.__new__(mcl, name + "Gate", (OneQubitGate,), {'gate_name': name, 'gate_name_latex': latexname}) def CreateCGate(name, latexname=None): """Use a lexical closure to make a controlled gate. """ if not latexname: latexname = name onequbitgate = CreateOneQubitGate(name, latexname) def ControlledGate(ctrls,target): return CGate(tuple(ctrls),onequbitgate(target)) return ControlledGate
1f06787e5b57a287b6e38f8657fe533fd599cbbeb0c8fd3cf84c4cf8d7eea4ef
from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.sorting import default_sort_key from sympy.core.sympify import sympify from sympy.matrices import Matrix def _is_scalar(e): """ Helper method used in Tr""" # sympify to set proper attributes e = sympify(e) if isinstance(e, Expr): if (e.is_Integer or e.is_Float or e.is_Rational or e.is_Number or (e.is_Symbol and e.is_commutative) ): return True return False def _cycle_permute(l): """ Cyclic permutations based on canonical ordering Explanation =========== This method does the sort based ascii values while a better approach would be to used lexicographic sort. TODO: Handle condition such as symbols have subscripts/superscripts in case of lexicographic sort """ if len(l) == 1: return l min_item = min(l, key=default_sort_key) indices = [i for i, x in enumerate(l) if x == min_item] le = list(l) le.extend(l) # duplicate and extend string for easy processing # adding the first min_item index back for easier looping indices.append(len(l) + indices[0]) # create sublist of items with first item as min_item and last_item # in each of the sublist is item just before the next occurrence of # minitem in the cycle formed. sublist = [[le[indices[i]:indices[i + 1]]] for i in range(len(indices) - 1)] # we do comparison of strings by comparing elements # in each sublist idx = sublist.index(min(sublist)) ordered_l = le[indices[idx]:indices[idx] + len(l)] return ordered_l def _rearrange_args(l): """ this just moves the last arg to first position to enable expansion of args A,B,A ==> A**2,B """ if len(l) == 1: return l x = list(l[-1:]) x.extend(l[0:-1]) return Mul(*x).args class Tr(Expr): """ Generic Trace operation than can trace over: a) SymPy matrix b) operators c) outer products Parameters ========== o : operator, matrix, expr i : tuple/list indices (optional) Examples ======== # TODO: Need to handle printing a) Trace(A+B) = Tr(A) + Tr(B) b) Trace(scalar*Operator) = scalar*Trace(Operator) >>> from sympy.physics.quantum.trace import Tr >>> from sympy import symbols, Matrix >>> a, b = symbols('a b', commutative=True) >>> A, B = symbols('A B', commutative=False) >>> Tr(a*A,[2]) a*Tr(A) >>> m = Matrix([[1,2],[1,1]]) >>> Tr(m) 2 """ def __new__(cls, *args): """ Construct a Trace object. Parameters ========== args = SymPy expression indices = tuple/list if indices, optional """ # expect no indices,int or a tuple/list/Tuple if (len(args) == 2): if not isinstance(args[1], (list, Tuple, tuple)): indices = Tuple(args[1]) else: indices = Tuple(*args[1]) expr = args[0] elif (len(args) == 1): indices = Tuple() expr = args[0] else: raise ValueError("Arguments to Tr should be of form " "(expr[, [indices]])") if isinstance(expr, Matrix): return expr.trace() elif hasattr(expr, 'trace') and callable(expr.trace): #for any objects that have trace() defined e.g numpy return expr.trace() elif isinstance(expr, Add): return Add(*[Tr(arg, indices) for arg in expr.args]) elif isinstance(expr, Mul): c_part, nc_part = expr.args_cnc() if len(nc_part) == 0: return Mul(*c_part) else: obj = Expr.__new__(cls, Mul(*nc_part), indices ) #this check is needed to prevent cached instances #being returned even if len(c_part)==0 return Mul(*c_part)*obj if len(c_part) > 0 else obj elif isinstance(expr, Pow): if (_is_scalar(expr.args[0]) and _is_scalar(expr.args[1])): return expr else: return Expr.__new__(cls, expr, indices) else: if (_is_scalar(expr)): return expr return Expr.__new__(cls, expr, indices) @property def kind(self): expr = self.args[0] expr_kind = expr.kind return expr_kind.element_kind def doit(self, **kwargs): """ Perform the trace operation. #TODO: Current version ignores the indices set for partial trace. >>> from sympy.physics.quantum.trace import Tr >>> from sympy.physics.quantum.operator import OuterProduct >>> from sympy.physics.quantum.spin import JzKet, JzBra >>> t = Tr(OuterProduct(JzKet(1,1), JzBra(1,1))) >>> t.doit() 1 """ if hasattr(self.args[0], '_eval_trace'): return self.args[0]._eval_trace(indices=self.args[1]) return self @property def is_number(self): # TODO : improve this implementation return True #TODO: Review if the permute method is needed # and if it needs to return a new instance def permute(self, pos): """ Permute the arguments cyclically. Parameters ========== pos : integer, if positive, shift-right, else shift-left Examples ======== >>> from sympy.physics.quantum.trace import Tr >>> from sympy import symbols >>> A, B, C, D = symbols('A B C D', commutative=False) >>> t = Tr(A*B*C*D) >>> t.permute(2) Tr(C*D*A*B) >>> t.permute(-2) Tr(C*D*A*B) """ if pos > 0: pos = pos % len(self.args[0].args) else: pos = -(abs(pos) % len(self.args[0].args)) args = list(self.args[0].args[-pos:] + self.args[0].args[0:-pos]) return Tr(Mul(*(args))) def _hashable_content(self): if isinstance(self.args[0], Mul): args = _cycle_permute(_rearrange_args(self.args[0].args)) else: args = [self.args[0]] return tuple(args) + (self.args[1], )
c5fa6a4ba7b5ec863a66f4abd9e570559db7cdaba43c8c521aa87bf95a8b8ce4
#TODO: # -Implement Clebsch-Gordan symmetries # -Improve simplification method # -Implement new simpifications """Clebsch-Gordon Coefficients.""" from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import expand from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Wild, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j from sympy.printing.precedence import PRECEDENCE __all__ = [ 'CG', 'Wigner3j', 'Wigner6j', 'Wigner9j', 'cg_simp' ] #----------------------------------------------------------------------------- # CG Coefficients #----------------------------------------------------------------------------- class Wigner3j(Expr): """Class for the Wigner-3j symbols. Explanation =========== Wigner 3j-symbols are coefficients determined by the coupling of two angular momenta. When created, they are expressed as symbolic quantities that, for numerical parameters, can be evaluated using the ``.doit()`` method [1]_. Parameters ========== j1, m1, j2, m2, j3, m3 : Number, Symbol Terms determining the angular momentum of coupled angular momentum systems. Examples ======== Declare a Wigner-3j coefficient and calculate its value >>> from sympy.physics.quantum.cg import Wigner3j >>> w3j = Wigner3j(6,0,4,0,2,0) >>> w3j Wigner3j(6, 0, 4, 0, 2, 0) >>> w3j.doit() sqrt(715)/143 See Also ======== CG: Clebsch-Gordan coefficients References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, j1, m1, j2, m2, j3, m3): args = map(sympify, (j1, m1, j2, m2, j3, m3)) return Expr.__new__(cls, *args) @property def j1(self): return self.args[0] @property def m1(self): return self.args[1] @property def j2(self): return self.args[2] @property def m2(self): return self.args[3] @property def j3(self): return self.args[4] @property def m3(self): return self.args[5] @property def is_symbolic(self): return not all(arg.is_number for arg in self.args) # This is modified from the _print_Matrix method def _pretty(self, printer, *args): m = ((printer._print(self.j1), printer._print(self.m1)), (printer._print(self.j2), printer._print(self.m2)), (printer._print(self.j3), printer._print(self.m3))) hsep = 2 vsep = 1 maxw = [-1]*3 for j in range(3): maxw[j] = max([ m[j][i].width() for i in range(2) ]) D = None for i in range(2): D_row = None for j in range(3): s = m[j][i] wdelta = maxw[j] - s.width() wleft = wdelta //2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) if D_row is None: D_row = s continue D_row = prettyForm(*D_row.right(' '*hsep)) D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row continue for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens()) return D def _latex(self, printer, *args): label = map(printer._print, (self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)) return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \ tuple(label) def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3) class CG(Wigner3j): r"""Class for Clebsch-Gordan coefficient. Explanation =========== Clebsch-Gordan coefficients describe the angular momentum coupling between two systems. The coefficients give the expansion of a coupled total angular momentum state and an uncoupled tensor product state. The Clebsch-Gordan coefficients are defined as [1]_: .. math :: C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle Parameters ========== j1, m1, j2, m2 : Number, Symbol Angular momenta of states 1 and 2. j3, m3: Number, Symbol Total angular momentum of the coupled system. Examples ======== Define a Clebsch-Gordan coefficient and evaluate its value >>> from sympy.physics.quantum.cg import CG >>> from sympy import S >>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1) >>> cg CG(3/2, 3/2, 1/2, -1/2, 1, 1) >>> cg.doit() sqrt(3)/2 >>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit() sqrt(2)/2 Compare [2]_. See Also ======== Wigner3j: Wigner-3j symbols References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. .. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions <https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_ in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020). """ precedence = PRECEDENCE["Pow"] - 1 def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3) def _pretty(self, printer, *args): bot = printer._print_seq( (self.j1, self.m1, self.j2, self.m2), delimiter=',') top = printer._print_seq((self.j3, self.m3), delimiter=',') pad = max(top.width(), bot.width()) bot = prettyForm(*bot.left(' ')) top = prettyForm(*top.left(' ')) if not pad == bot.width(): bot = prettyForm(*bot.right(' '*(pad - bot.width()))) if not pad == top.width(): top = prettyForm(*top.right(' '*(pad - top.width()))) s = stringPict('C' + ' '*pad) s = prettyForm(*s.below(bot)) s = prettyForm(*s.above(top)) return s def _latex(self, printer, *args): label = map(printer._print, (self.j3, self.m3, self.j1, self.m1, self.j2, self.m2)) return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label) class Wigner6j(Expr): """Class for the Wigner-6j symbols See Also ======== Wigner3j: Wigner-3j symbols """ def __new__(cls, j1, j2, j12, j3, j, j23): args = map(sympify, (j1, j2, j12, j3, j, j23)) return Expr.__new__(cls, *args) @property def j1(self): return self.args[0] @property def j2(self): return self.args[1] @property def j12(self): return self.args[2] @property def j3(self): return self.args[3] @property def j(self): return self.args[4] @property def j23(self): return self.args[5] @property def is_symbolic(self): return not all(arg.is_number for arg in self.args) # This is modified from the _print_Matrix method def _pretty(self, printer, *args): m = ((printer._print(self.j1), printer._print(self.j3)), (printer._print(self.j2), printer._print(self.j)), (printer._print(self.j12), printer._print(self.j23))) hsep = 2 vsep = 1 maxw = [-1]*3 for j in range(3): maxw[j] = max([ m[j][i].width() for i in range(2) ]) D = None for i in range(2): D_row = None for j in range(3): s = m[j][i] wdelta = maxw[j] - s.width() wleft = wdelta //2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) if D_row is None: D_row = s continue D_row = prettyForm(*D_row.right(' '*hsep)) D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row continue for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens(left='{', right='}')) return D def _latex(self, printer, *args): label = map(printer._print, (self.j1, self.j2, self.j12, self.j3, self.j, self.j23)) return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \ tuple(label) def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23) class Wigner9j(Expr): """Class for the Wigner-9j symbols See Also ======== Wigner3j: Wigner-3j symbols """ def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j): args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j)) return Expr.__new__(cls, *args) @property def j1(self): return self.args[0] @property def j2(self): return self.args[1] @property def j12(self): return self.args[2] @property def j3(self): return self.args[3] @property def j4(self): return self.args[4] @property def j34(self): return self.args[5] @property def j13(self): return self.args[6] @property def j24(self): return self.args[7] @property def j(self): return self.args[8] @property def is_symbolic(self): return not all(arg.is_number for arg in self.args) # This is modified from the _print_Matrix method def _pretty(self, printer, *args): m = ( (printer._print( self.j1), printer._print(self.j3), printer._print(self.j13)), (printer._print( self.j2), printer._print(self.j4), printer._print(self.j24)), (printer._print(self.j12), printer._print(self.j34), printer._print(self.j))) hsep = 2 vsep = 1 maxw = [-1]*3 for j in range(3): maxw[j] = max([ m[j][i].width() for i in range(3) ]) D = None for i in range(3): D_row = None for j in range(3): s = m[j][i] wdelta = maxw[j] - s.width() wleft = wdelta //2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) if D_row is None: D_row = s continue D_row = prettyForm(*D_row.right(' '*hsep)) D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row continue for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens(left='{', right='}')) return D def _latex(self, printer, *args): label = map(printer._print, (self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)) return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \ tuple(label) def doit(self, **hints): if self.is_symbolic: raise ValueError("Coefficients must be numerical") return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j) def cg_simp(e): """Simplify and combine CG coefficients. Explanation =========== This function uses various symmetry and properties of sums and products of Clebsch-Gordan coefficients to simplify statements involving these terms [1]_. Examples ======== Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to 2*a+1 >>> from sympy.physics.quantum.cg import CG, cg_simp >>> a = CG(1,1,0,0,1,1) >>> b = CG(1,0,0,0,1,0) >>> c = CG(1,-1,0,0,1,-1) >>> cg_simp(a+b+c) 3 See Also ======== CG: Clebsh-Gordan coefficients References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ if isinstance(e, Add): return _cg_simp_add(e) elif isinstance(e, Sum): return _cg_simp_sum(e) elif isinstance(e, Mul): return Mul(*[cg_simp(arg) for arg in e.args]) elif isinstance(e, Pow): return Pow(cg_simp(e.base), e.exp) else: return e def _cg_simp_add(e): #TODO: Improve simplification method """Takes a sum of terms involving Clebsch-Gordan coefficients and simplifies the terms. Explanation =========== First, we create two lists, cg_part, which is all the terms involving CG coefficients, and other_part, which is all other terms. The cg_part list is then passed to the simplification methods, which return the new cg_part and any additional terms that are added to other_part """ cg_part = [] other_part = [] e = expand(e) for arg in e.args: if arg.has(CG): if isinstance(arg, Sum): other_part.append(_cg_simp_sum(arg)) elif isinstance(arg, Mul): terms = 1 for term in arg.args: if isinstance(term, Sum): terms *= _cg_simp_sum(term) else: terms *= term if terms.has(CG): cg_part.append(terms) else: other_part.append(terms) else: cg_part.append(arg) else: other_part.append(arg) cg_part, other = _check_varsh_871_1(cg_part) other_part.append(other) cg_part, other = _check_varsh_871_2(cg_part) other_part.append(other) cg_part, other = _check_varsh_872_9(cg_part) other_part.append(other) return Add(*cg_part) + Add(*other_part) def _check_varsh_871_1(term_list): # Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0) a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt')) expr = lt*CG(a, alpha, b, 0, a, alpha) simp = (2*a + 1)*KroneckerDelta(b, 0) sign = lt/abs(lt) build_expr = 2*a + 1 index_expr = a + alpha return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr) def _check_varsh_871_2(term_list): # Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a)) a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt')) expr = lt*CG(a, alpha, a, -alpha, c, 0) simp = sqrt(2*a + 1)*KroneckerDelta(c, 0) sign = (-1)**(a - alpha)*lt/abs(lt) build_expr = 2*a + 1 index_expr = a + alpha return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr) def _check_varsh_872_9(term_list): # Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b)) a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, ( 'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt')) # Case alpha==alphap, beta==betap # For numerical alpha,beta expr = lt*CG(a, alpha, b, beta, c, gamma)**2 simp = 1 sign = lt/abs(lt) x = abs(a - b) y = abs(alpha + beta) build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x)) index_expr = a + b - c term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr) # For symbolic alpha,beta x = abs(a - b) y = a + b build_expr = (y + 1 - x)*(x + y + 1) index_expr = (c - x)*(x + c) + c + gamma term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr) # Case alpha!=alphap or beta!=betap # Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term # For numerical alpha,alphap,beta,betap expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma) simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap) sign = sympify(1) x = abs(a - b) y = abs(alpha + beta) build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x)) index_expr = a + b - c term_list, other3 = _check_cg_simp(expr, simp, sign, sympify(1), term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr) # For symbolic alpha,alphap,beta,betap x = abs(a - b) y = a + b build_expr = (y + 1 - x)*(x + y + 1) index_expr = (c - x)*(x + c) + c + gamma term_list, other4 = _check_cg_simp(expr, simp, sign, sympify(1), term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr) return term_list, other1 + other2 + other4 def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr): """ Checks for simplifications that can be made, returning a tuple of the simplified list of terms and any terms generated by simplification. Parameters ========== expr: expression The expression with Wild terms that will be matched to the terms in the sum simp: expression The expression with Wild terms that is substituted in place of the CG terms in the case of simplification sign: expression The expression with Wild terms denoting the sign that is on expr that must match lt: expression The expression with Wild terms that gives the leading term of the matched expr term_list: list A list of all of the terms is the sum to be simplified variables: list A list of all the variables that appears in expr dep_variables: list A list of the variables that must match for all the terms in the sum, i.e. the dependent variables build_index_expr: expression Expression with Wild terms giving the number of elements in cg_index index_expr: expression Expression with Wild terms giving the index terms have when storing them to cg_index """ other_part = 0 i = 0 while i < len(term_list): sub_1 = _check_cg(term_list[i], expr, len(variables)) if sub_1 is None: i += 1 continue if not sympify(build_index_expr.subs(sub_1)).is_number: i += 1 continue sub_dep = [(x, sub_1[x]) for x in dep_variables] cg_index = [None]*build_index_expr.subs(sub_1) for j in range(i, len(term_list)): sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep))) if sub_2 is None: continue if not sympify(index_expr.subs(sub_dep).subs(sub_2)).is_number: continue cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2) if not any(i is None for i in cg_index): min_lt = min(*[ abs(term[2]) for term in cg_index ]) indices = [ term[0] for term in cg_index] indices.sort() indices.reverse() [ term_list.pop(j) for j in indices ] for term in cg_index: if abs(term[2]) > min_lt: term_list.append( (term[2] - min_lt*term[3])*term[1] ) other_part += min_lt*(sign*simp).subs(sub_1) else: i += 1 return term_list, other_part def _check_cg(cg_term, expr, length, sign=None): """Checks whether a term matches the given expression""" # TODO: Check for symmetries matches = cg_term.match(expr) if matches is None: return if sign is not None: if not isinstance(sign, tuple): raise TypeError('sign must be a tuple') if not sign[0] == (sign[1]).subs(matches): return if len(matches) == length: return matches def _cg_simp_sum(e): e = _check_varsh_sum_871_1(e) e = _check_varsh_sum_871_2(e) e = _check_varsh_sum_872_4(e) return e def _check_varsh_sum_871_1(e): a = Wild('a') alpha = symbols('alpha') b = Wild('b') match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a))) if match is not None and len(match) == 2: return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match) return e def _check_varsh_sum_871_2(e): a = Wild('a') alpha = symbols('alpha') c = Wild('c') match = e.match( Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a))) if match is not None and len(match) == 2: return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match) return e def _check_varsh_sum_872_4(e): alpha = symbols('alpha') beta = symbols('beta') a = Wild('a') b = Wild('b') c = Wild('c') cp = Wild('cp') gamma = Wild('gamma') gammap = Wild('gammap') cg1 = CG(a, alpha, b, beta, c, gamma) cg2 = CG(a, alpha, b, beta, cp, gammap) match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b))) if match1 is not None and len(match1) == 6: return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1) match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b))) if match2 is not None and len(match2) == 4: return S.One return e def _cg_list(term): if isinstance(term, CG): return (term,), 1, 1 cg = [] coeff = 1 if not isinstance(term, (Mul, Pow)): raise NotImplementedError('term must be CG, Add, Mul or Pow') if isinstance(term, Pow) and sympify(term.exp).is_number: if sympify(term.exp).is_number: [ cg.append(term.base) for _ in range(term.exp) ] else: return (term,), 1, 1 if isinstance(term, Mul): for arg in term.args: if isinstance(arg, CG): cg.append(arg) else: coeff *= arg return cg, coeff, coeff/abs(coeff)
b2f733359f3ad4147d2a2320dd0bbcc8edcb8023e451d36c667b296875639fbf
"""Fermionic quantum operators.""" from sympy.core.numbers import Integer from sympy.core.singleton import S from sympy.physics.quantum import Operator from sympy.physics.quantum import HilbertSpace, Ket, Bra from sympy.functions.special.tensor_functions import KroneckerDelta __all__ = [ 'FermionOp', 'FermionFockKet', 'FermionFockBra' ] class FermionOp(Operator): """A fermionic operator that satisfies {c, Dagger(c)} == 1. Parameters ========== name : str A string that labels the fermionic mode. annihilation : bool A bool that indicates if the fermionic operator is an annihilation (True, default value) or creation operator (False) Examples ======== >>> from sympy.physics.quantum import Dagger, AntiCommutator >>> from sympy.physics.quantum.fermion import FermionOp >>> c = FermionOp("c") >>> AntiCommutator(c, Dagger(c)).doit() 1 """ @property def name(self): return self.args[0] @property def is_annihilation(self): return bool(self.args[1]) @classmethod def default_args(self): return ("c", True) def __new__(cls, *args, **hints): if not len(args) in [1, 2]: raise ValueError('1 or 2 parameters expected, got %s' % args) if len(args) == 1: args = (args[0], S.One) if len(args) == 2: args = (args[0], Integer(args[1])) return Operator.__new__(cls, *args) def _eval_commutator_FermionOp(self, other, **hints): if 'independent' in hints and hints['independent']: # [c, d] = 0 return S.Zero return None def _eval_anticommutator_FermionOp(self, other, **hints): if self.name == other.name: # {a^\dagger, a} = 1 if not self.is_annihilation and other.is_annihilation: return S.One elif 'independent' in hints and hints['independent']: # {c, d} = 2 * c * d, because [c, d] = 0 for independent operators return 2 * self * other return None def _eval_anticommutator_BosonOp(self, other, **hints): # because fermions and bosons commute return 2 * self * other def _eval_commutator_BosonOp(self, other, **hints): return S.Zero def _eval_adjoint(self): return FermionOp(str(self.name), not self.is_annihilation) def _print_contents_latex(self, printer, *args): if self.is_annihilation: return r'{%s}' % str(self.name) else: return r'{{%s}^\dagger}' % str(self.name) def _print_contents(self, printer, *args): if self.is_annihilation: return r'%s' % str(self.name) else: return r'Dagger(%s)' % str(self.name) def _print_contents_pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if self.is_annihilation: return pform else: return pform**prettyForm('\N{DAGGER}') class FermionFockKet(Ket): """Fock state ket for a fermionic mode. Parameters ========== n : Number The Fock state number. """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Ket.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return FermionFockBra @classmethod def _eval_hilbert_space(cls, label): return HilbertSpace() def _eval_innerproduct_FermionFockBra(self, bra, **hints): return KroneckerDelta(self.n, bra.n) def _apply_operator_FermionOp(self, op, **options): if op.is_annihilation: if self.n == 1: return FermionFockKet(0) else: return S.Zero else: if self.n == 0: return FermionFockKet(1) else: return S.Zero class FermionFockBra(Bra): """Fock state bra for a fermionic mode. Parameters ========== n : Number The Fock state number. """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Bra.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return FermionFockKet
5c0f58c42373be3d06d2fdb0f2933105194aac10afa41e75fff7fab1292fc6c2
"""Primitive circuit operations on quantum circuits.""" from functools import reduce from sympy.core.sorting import default_sort_key from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.utilities import numbered_symbols from sympy.physics.quantum.gate import Gate __all__ = [ 'kmp_table', 'find_subcircuit', 'replace_subcircuit', 'convert_to_symbolic_indices', 'convert_to_real_indices', 'random_reduce', 'random_insert' ] def kmp_table(word): """Build the 'partial match' table of the Knuth-Morris-Pratt algorithm. Note: This is applicable to strings or quantum circuits represented as tuples. """ # Current position in subcircuit pos = 2 # Beginning position of candidate substring that # may reappear later in word cnd = 0 # The 'partial match' table that helps one determine # the next location to start substring search table = list() table.append(-1) table.append(0) while pos < len(word): if word[pos - 1] == word[cnd]: cnd = cnd + 1 table.append(cnd) pos = pos + 1 elif cnd > 0: cnd = table[cnd] else: table.append(0) pos = pos + 1 return table def find_subcircuit(circuit, subcircuit, start=0, end=0): """Finds the subcircuit in circuit, if it exists. Explanation =========== If the subcircuit exists, the index of the start of the subcircuit in circuit is returned; otherwise, -1 is returned. The algorithm that is implemented is the Knuth-Morris-Pratt algorithm. Parameters ========== circuit : tuple, Gate or Mul A tuple of Gates or Mul representing a quantum circuit subcircuit : tuple, Gate or Mul A tuple of Gates or Mul to find in circuit start : int The location to start looking for subcircuit. If start is the same or past end, -1 is returned. end : int The last place to look for a subcircuit. If end is less than 1 (one), then the length of circuit is taken to be end. Examples ======== Find the first instance of a subcircuit: >>> from sympy.physics.quantum.circuitutils import find_subcircuit >>> from sympy.physics.quantum.gate import X, Y, Z, H >>> circuit = X(0)*Z(0)*Y(0)*H(0) >>> subcircuit = Z(0)*Y(0) >>> find_subcircuit(circuit, subcircuit) 1 Find the first instance starting at a specific position: >>> find_subcircuit(circuit, subcircuit, start=1) 1 >>> find_subcircuit(circuit, subcircuit, start=2) -1 >>> circuit = circuit*subcircuit >>> find_subcircuit(circuit, subcircuit, start=2) 4 Find the subcircuit within some interval: >>> find_subcircuit(circuit, subcircuit, start=2, end=2) -1 """ if isinstance(circuit, Mul): circuit = circuit.args if isinstance(subcircuit, Mul): subcircuit = subcircuit.args if len(subcircuit) == 0 or len(subcircuit) > len(circuit): return -1 if end < 1: end = len(circuit) # Location in circuit pos = start # Location in the subcircuit index = 0 # 'Partial match' table table = kmp_table(subcircuit) while (pos + index) < end: if subcircuit[index] == circuit[pos + index]: index = index + 1 else: pos = pos + index - table[index] index = table[index] if table[index] > -1 else 0 if index == len(subcircuit): return pos return -1 def replace_subcircuit(circuit, subcircuit, replace=None, pos=0): """Replaces a subcircuit with another subcircuit in circuit, if it exists. Explanation =========== If multiple instances of subcircuit exists, the first instance is replaced. The position to being searching from (if different from 0) may be optionally given. If subcircuit cannot be found, circuit is returned. Parameters ========== circuit : tuple, Gate or Mul A quantum circuit. subcircuit : tuple, Gate or Mul The circuit to be replaced. replace : tuple, Gate or Mul The replacement circuit. pos : int The location to start search and replace subcircuit, if it exists. This may be used if it is known beforehand that multiple instances exist, and it is desirable to replace a specific instance. If a negative number is given, pos will be defaulted to 0. Examples ======== Find and remove the subcircuit: >>> from sympy.physics.quantum.circuitutils import replace_subcircuit >>> from sympy.physics.quantum.gate import X, Y, Z, H >>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0) >>> subcircuit = Z(0)*Y(0) >>> replace_subcircuit(circuit, subcircuit) (X(0), H(0), X(0), H(0), Y(0)) Remove the subcircuit given a starting search point: >>> replace_subcircuit(circuit, subcircuit, pos=1) (X(0), H(0), X(0), H(0), Y(0)) >>> replace_subcircuit(circuit, subcircuit, pos=2) (X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0)) Replace the subcircuit: >>> replacement = H(0)*Z(0) >>> replace_subcircuit(circuit, subcircuit, replace=replacement) (X(0), H(0), Z(0), H(0), X(0), H(0), Y(0)) """ if pos < 0: pos = 0 if isinstance(circuit, Mul): circuit = circuit.args if isinstance(subcircuit, Mul): subcircuit = subcircuit.args if isinstance(replace, Mul): replace = replace.args elif replace is None: replace = () # Look for the subcircuit starting at pos loc = find_subcircuit(circuit, subcircuit, start=pos) # If subcircuit was found if loc > -1: # Get the gates to the left of subcircuit left = circuit[0:loc] # Get the gates to the right of subcircuit right = circuit[loc + len(subcircuit):len(circuit)] # Recombine the left and right side gates into a circuit circuit = left + replace + right return circuit def _sympify_qubit_map(mapping): new_map = {} for key in mapping: new_map[key] = sympify(mapping[key]) return new_map def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None): """Returns the circuit with symbolic indices and the dictionary mapping symbolic indices to real indices. The mapping is 1 to 1 and onto (bijective). Parameters ========== seq : tuple, Gate/Integer/tuple or Mul A tuple of Gate, Integer, or tuple objects, or a Mul start : Symbol An optional starting symbolic index gen : object An optional numbered symbol generator qubit_map : dict An existing mapping of symbolic indices to real indices All symbolic indices have the format 'i#', where # is some number >= 0. """ if isinstance(seq, Mul): seq = seq.args # A numbered symbol generator index_gen = numbered_symbols(prefix='i', start=-1) cur_ndx = next(index_gen) # keys are symbolic indices; values are real indices ndx_map = {} def create_inverse_map(symb_to_real_map): rev_items = lambda item: tuple([item[1], item[0]]) return dict(map(rev_items, symb_to_real_map.items())) if start is not None: if not isinstance(start, Symbol): msg = 'Expected Symbol for starting index, got %r.' % start raise TypeError(msg) cur_ndx = start if gen is not None: if not isinstance(gen, numbered_symbols().__class__): msg = 'Expected a generator, got %r.' % gen raise TypeError(msg) index_gen = gen if qubit_map is not None: if not isinstance(qubit_map, dict): msg = ('Expected dict for existing map, got ' + '%r.' % qubit_map) raise TypeError(msg) ndx_map = qubit_map ndx_map = _sympify_qubit_map(ndx_map) # keys are real indices; keys are symbolic indices inv_map = create_inverse_map(ndx_map) sym_seq = () for item in seq: # Nested items, so recurse if isinstance(item, Gate): result = convert_to_symbolic_indices(item.args, qubit_map=ndx_map, start=cur_ndx, gen=index_gen) sym_item, new_map, cur_ndx, index_gen = result ndx_map.update(new_map) inv_map = create_inverse_map(ndx_map) elif isinstance(item, (tuple, Tuple)): result = convert_to_symbolic_indices(item, qubit_map=ndx_map, start=cur_ndx, gen=index_gen) sym_item, new_map, cur_ndx, index_gen = result ndx_map.update(new_map) inv_map = create_inverse_map(ndx_map) elif item in inv_map: sym_item = inv_map[item] else: cur_ndx = next(gen) ndx_map[cur_ndx] = item inv_map[item] = cur_ndx sym_item = cur_ndx if isinstance(item, Gate): sym_item = item.__class__(*sym_item) sym_seq = sym_seq + (sym_item,) return sym_seq, ndx_map, cur_ndx, index_gen def convert_to_real_indices(seq, qubit_map): """Returns the circuit with real indices. Parameters ========== seq : tuple, Gate/Integer/tuple or Mul A tuple of Gate, Integer, or tuple objects or a Mul qubit_map : dict A dictionary mapping symbolic indices to real indices. Examples ======== Change the symbolic indices to real integers: >>> from sympy import symbols >>> from sympy.physics.quantum.circuitutils import convert_to_real_indices >>> from sympy.physics.quantum.gate import X, Y, H >>> i0, i1 = symbols('i:2') >>> index_map = {i0 : 0, i1 : 1} >>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map) (X(0), Y(1), H(0), X(1)) """ if isinstance(seq, Mul): seq = seq.args if not isinstance(qubit_map, dict): msg = 'Expected dict for qubit_map, got %r.' % qubit_map raise TypeError(msg) qubit_map = _sympify_qubit_map(qubit_map) real_seq = () for item in seq: # Nested items, so recurse if isinstance(item, Gate): real_item = convert_to_real_indices(item.args, qubit_map) elif isinstance(item, (tuple, Tuple)): real_item = convert_to_real_indices(item, qubit_map) else: real_item = qubit_map[item] if isinstance(item, Gate): real_item = item.__class__(*real_item) real_seq = real_seq + (real_item,) return real_seq def random_reduce(circuit, gate_ids, seed=None): """Shorten the length of a quantum circuit. Explanation =========== random_reduce looks for circuit identities in circuit, randomly chooses one to remove, and returns a shorter yet equivalent circuit. If no identities are found, the same circuit is returned. Parameters ========== circuit : Gate tuple of Mul A tuple of Gates representing a quantum circuit gate_ids : list, GateIdentity List of gate identities to find in circuit seed : int or list seed used for _randrange; to override the random selection, provide a list of integers: the elements of gate_ids will be tested in the order given by the list """ from sympy.testing.randtest import _randrange if not gate_ids: return circuit if isinstance(circuit, Mul): circuit = circuit.args ids = flatten_ids(gate_ids) # Create the random integer generator with the seed randrange = _randrange(seed) # Look for an identity in the circuit while ids: i = randrange(len(ids)) id = ids.pop(i) if find_subcircuit(circuit, id) != -1: break else: # no identity was found return circuit # return circuit with the identity removed return replace_subcircuit(circuit, id) def random_insert(circuit, choices, seed=None): """Insert a circuit into another quantum circuit. Explanation =========== random_insert randomly chooses a location in the circuit to insert a randomly selected circuit from amongst the given choices. Parameters ========== circuit : Gate tuple or Mul A tuple or Mul of Gates representing a quantum circuit choices : list Set of circuit choices seed : int or list seed used for _randrange; to override the random selections, give a list two integers, [i, j] where i is the circuit location where choice[j] will be inserted. Notes ===== Indices for insertion should be [0, n] if n is the length of the circuit. """ from sympy.testing.randtest import _randrange if not choices: return circuit if isinstance(circuit, Mul): circuit = circuit.args # get the location in the circuit and the element to insert from choices randrange = _randrange(seed) loc = randrange(len(circuit) + 1) choice = choices[randrange(len(choices))] circuit = list(circuit) circuit[loc: loc] = choice return tuple(circuit) # Flatten the GateIdentity objects (with gate rules) into one single list def flatten_ids(ids): collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids, key=default_sort_key) ids = reduce(collapse, ids, []) ids.sort(key=default_sort_key) return ids
b95af75491eb2b396d7180bbc24b8cc6ba7e50346569128af36aa576f8c16d93
"""Hilbert spaces for quantum mechanics. Authors: * Brian Granger * Matt Curry """ from functools import reduce from sympy.core.basic import Basic from sympy.core.numbers import oo from sympy.core.sympify import sympify from sympy.sets.sets import Interval from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError __all__ = [ 'HilbertSpaceError', 'HilbertSpace', 'TensorProductHilbertSpace', 'TensorPowerHilbertSpace', 'DirectSumHilbertSpace', 'ComplexSpace', 'L2', 'FockSpace' ] #----------------------------------------------------------------------------- # Main objects #----------------------------------------------------------------------------- class HilbertSpaceError(QuantumError): pass #----------------------------------------------------------------------------- # Main objects #----------------------------------------------------------------------------- class HilbertSpace(Basic): """An abstract Hilbert space for quantum mechanics. In short, a Hilbert space is an abstract vector space that is complete with inner products defined [1]_. Examples ======== >>> from sympy.physics.quantum.hilbert import HilbertSpace >>> hs = HilbertSpace() >>> hs H References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space """ def __new__(cls): obj = Basic.__new__(cls) return obj @property def dimension(self): """Return the Hilbert dimension of the space.""" raise NotImplementedError('This Hilbert space has no dimension.') def __add__(self, other): return DirectSumHilbertSpace(self, other) def __radd__(self, other): return DirectSumHilbertSpace(other, self) def __mul__(self, other): return TensorProductHilbertSpace(self, other) def __rmul__(self, other): return TensorProductHilbertSpace(other, self) def __pow__(self, other, mod=None): if mod is not None: raise ValueError('The third argument to __pow__ is not supported \ for Hilbert spaces.') return TensorPowerHilbertSpace(self, other) def __contains__(self, other): """Is the operator or state in this Hilbert space. This is checked by comparing the classes of the Hilbert spaces, not the instances. This is to allow Hilbert Spaces with symbolic dimensions. """ if other.hilbert_space.__class__ == self.__class__: return True else: return False def _sympystr(self, printer, *args): return 'H' def _pretty(self, printer, *args): ustr = '\N{LATIN CAPITAL LETTER H}' return prettyForm(ustr) def _latex(self, printer, *args): return r'\mathcal{H}' class ComplexSpace(HilbertSpace): """Finite dimensional Hilbert space of complex vectors. The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate of the vector on the right. A classic example of this type of Hilbert space is spin-1/2, which is ``ComplexSpace(2)``. Generalizing to spin-s, the space is ``ComplexSpace(2*s+1)``. Quantum computing with N qubits is done with the direct product space ``ComplexSpace(2)**N``. Examples ======== >>> from sympy import symbols >>> from sympy.physics.quantum.hilbert import ComplexSpace >>> c1 = ComplexSpace(2) >>> c1 C(2) >>> c1.dimension 2 >>> n = symbols('n') >>> c2 = ComplexSpace(n) >>> c2 C(n) >>> c2.dimension n """ def __new__(cls, dimension): dimension = sympify(dimension) r = cls.eval(dimension) if isinstance(r, Basic): return r obj = Basic.__new__(cls, dimension) return obj @classmethod def eval(cls, dimension): if len(dimension.atoms()) == 1: if not (dimension.is_Integer and dimension > 0 or dimension is oo or dimension.is_Symbol): raise TypeError('The dimension of a ComplexSpace can only' 'be a positive integer, oo, or a Symbol: %r' % dimension) else: for dim in dimension.atoms(): if not (dim.is_Integer or dim is oo or dim.is_Symbol): raise TypeError('The dimension of a ComplexSpace can only' ' contain integers, oo, or a Symbol: %r' % dim) @property def dimension(self): return self.args[0] def _sympyrepr(self, printer, *args): return "%s(%s)" % (self.__class__.__name__, printer._print(self.dimension, *args)) def _sympystr(self, printer, *args): return "C(%s)" % printer._print(self.dimension, *args) def _pretty(self, printer, *args): ustr = '\N{LATIN CAPITAL LETTER C}' pform_exp = printer._print(self.dimension, *args) pform_base = prettyForm(ustr) return pform_base**pform_exp def _latex(self, printer, *args): return r'\mathcal{C}^{%s}' % printer._print(self.dimension, *args) class L2(HilbertSpace): """The Hilbert space of square integrable functions on an interval. An L2 object takes in a single SymPy Interval argument which represents the interval its functions (vectors) are defined on. Examples ======== >>> from sympy import Interval, oo >>> from sympy.physics.quantum.hilbert import L2 >>> hs = L2(Interval(0,oo)) >>> hs L2(Interval(0, oo)) >>> hs.dimension oo >>> hs.interval Interval(0, oo) """ def __new__(cls, interval): if not isinstance(interval, Interval): raise TypeError('L2 interval must be an Interval instance: %r' % interval) obj = Basic.__new__(cls, interval) return obj @property def dimension(self): return oo @property def interval(self): return self.args[0] def _sympyrepr(self, printer, *args): return "L2(%s)" % printer._print(self.interval, *args) def _sympystr(self, printer, *args): return "L2(%s)" % printer._print(self.interval, *args) def _pretty(self, printer, *args): pform_exp = prettyForm('2') pform_base = prettyForm('L') return pform_base**pform_exp def _latex(self, printer, *args): interval = printer._print(self.interval, *args) return r'{\mathcal{L}^2}\left( %s \right)' % interval class FockSpace(HilbertSpace): """The Hilbert space for second quantization. Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [1]_. This is a mess, so we have a class to represent it directly. Examples ======== >>> from sympy.physics.quantum.hilbert import FockSpace >>> hs = FockSpace() >>> hs F >>> hs.dimension oo References ========== .. [1] https://en.wikipedia.org/wiki/Fock_space """ def __new__(cls): obj = Basic.__new__(cls) return obj @property def dimension(self): return oo def _sympyrepr(self, printer, *args): return "FockSpace()" def _sympystr(self, printer, *args): return "F" def _pretty(self, printer, *args): ustr = '\N{LATIN CAPITAL LETTER F}' return prettyForm(ustr) def _latex(self, printer, *args): return r'\mathcal{F}' class TensorProductHilbertSpace(HilbertSpace): """A tensor product of Hilbert spaces [1]_. The tensor product between Hilbert spaces is represented by the operator ``*`` Products of the same Hilbert space will be combined into tensor powers. A ``TensorProductHilbertSpace`` object takes in an arbitrary number of ``HilbertSpace`` objects as its arguments. In addition, multiplication of ``HilbertSpace`` objects will automatically return this tensor product object. Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> c = ComplexSpace(2) >>> f = FockSpace() >>> hs = c*f >>> hs C(2)*F >>> hs.dimension oo >>> hs.spaces (C(2), F) >>> c1 = ComplexSpace(2) >>> n = symbols('n') >>> c2 = ComplexSpace(n) >>> hs = c1*c2 >>> hs C(2)*C(n) >>> hs.dimension 2*n References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r obj = Basic.__new__(cls, *args) return obj @classmethod def eval(cls, args): """Evaluates the direct product.""" new_args = [] recall = False #flatten arguments for arg in args: if isinstance(arg, TensorProductHilbertSpace): new_args.extend(arg.args) recall = True elif isinstance(arg, (HilbertSpace, TensorPowerHilbertSpace)): new_args.append(arg) else: raise TypeError('Hilbert spaces can only be multiplied by \ other Hilbert spaces: %r' % arg) #combine like arguments into direct powers comb_args = [] prev_arg = None for new_arg in new_args: if prev_arg is not None: if isinstance(new_arg, TensorPowerHilbertSpace) and \ isinstance(prev_arg, TensorPowerHilbertSpace) and \ new_arg.base == prev_arg.base: prev_arg = new_arg.base**(new_arg.exp + prev_arg.exp) elif isinstance(new_arg, TensorPowerHilbertSpace) and \ new_arg.base == prev_arg: prev_arg = prev_arg**(new_arg.exp + 1) elif isinstance(prev_arg, TensorPowerHilbertSpace) and \ new_arg == prev_arg.base: prev_arg = new_arg**(prev_arg.exp + 1) elif new_arg == prev_arg: prev_arg = new_arg**2 else: comb_args.append(prev_arg) prev_arg = new_arg elif prev_arg is None: prev_arg = new_arg comb_args.append(prev_arg) if recall: return TensorProductHilbertSpace(*comb_args) elif len(comb_args) == 1: return TensorPowerHilbertSpace(comb_args[0].base, comb_args[0].exp) else: return None @property def dimension(self): arg_list = [arg.dimension for arg in self.args] if oo in arg_list: return oo else: return reduce(lambda x, y: x*y, arg_list) @property def spaces(self): """A tuple of the Hilbert spaces in this tensor product.""" return self.args def _spaces_printer(self, printer, *args): spaces_strs = [] for arg in self.args: s = printer._print(arg, *args) if isinstance(arg, DirectSumHilbertSpace): s = '(%s)' % s spaces_strs.append(s) return spaces_strs def _sympyrepr(self, printer, *args): spaces_reprs = self._spaces_printer(printer, *args) return "TensorProductHilbertSpace(%s)" % ','.join(spaces_reprs) def _sympystr(self, printer, *args): spaces_strs = self._spaces_printer(printer, *args) return '*'.join(spaces_strs) def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(' ' + '\N{N-ARY CIRCLED TIMES OPERATOR}' + ' ')) else: pform = prettyForm(*pform.right(' x ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): arg_s = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): arg_s = r'\left(%s\right)' % arg_s s = s + arg_s if i != length - 1: s = s + r'\otimes ' return s class DirectSumHilbertSpace(HilbertSpace): """A direct sum of Hilbert spaces [1]_. This class uses the ``+`` operator to represent direct sums between different Hilbert spaces. A ``DirectSumHilbertSpace`` object takes in an arbitrary number of ``HilbertSpace`` objects as its arguments. Also, addition of ``HilbertSpace`` objects will automatically return a direct sum object. Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> c = ComplexSpace(2) >>> f = FockSpace() >>> hs = c+f >>> hs C(2)+F >>> hs.dimension oo >>> list(hs.spaces) [C(2), F] References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Direct_sums """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r obj = Basic.__new__(cls, *args) return obj @classmethod def eval(cls, args): """Evaluates the direct product.""" new_args = [] recall = False #flatten arguments for arg in args: if isinstance(arg, DirectSumHilbertSpace): new_args.extend(arg.args) recall = True elif isinstance(arg, HilbertSpace): new_args.append(arg) else: raise TypeError('Hilbert spaces can only be summed with other \ Hilbert spaces: %r' % arg) if recall: return DirectSumHilbertSpace(*new_args) else: return None @property def dimension(self): arg_list = [arg.dimension for arg in self.args] if oo in arg_list: return oo else: return reduce(lambda x, y: x + y, arg_list) @property def spaces(self): """A tuple of the Hilbert spaces in this direct sum.""" return self.args def _sympyrepr(self, printer, *args): spaces_reprs = [printer._print(arg, *args) for arg in self.args] return "DirectSumHilbertSpace(%s)" % ','.join(spaces_reprs) def _sympystr(self, printer, *args): spaces_strs = [printer._print(arg, *args) for arg in self.args] return '+'.join(spaces_strs) def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(' \N{CIRCLED PLUS} ')) else: pform = prettyForm(*pform.right(' + ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): arg_s = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): arg_s = r'\left(%s\right)' % arg_s s = s + arg_s if i != length - 1: s = s + r'\oplus ' return s class TensorPowerHilbertSpace(HilbertSpace): """An exponentiated Hilbert space [1]_. Tensor powers (repeated tensor products) are represented by the operator ``**`` Identical Hilbert spaces that are multiplied together will be automatically combined into a single tensor power object. Any Hilbert space, product, or sum may be raised to a tensor power. The ``TensorPowerHilbertSpace`` takes two arguments: the Hilbert space; and the tensor power (number). Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> n = symbols('n') >>> c = ComplexSpace(2) >>> hs = c**n >>> hs C(2)**n >>> hs.dimension 2**n >>> c = ComplexSpace(2) >>> c*c C(2)**2 >>> f = FockSpace() >>> c*f*f C(2)*F**2 References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r return Basic.__new__(cls, *r) @classmethod def eval(cls, args): new_args = args[0], sympify(args[1]) exp = new_args[1] #simplify hs**1 -> hs if exp == 1: return args[0] #simplify hs**0 -> 1 if exp == 0: return sympify(1) #check (and allow) for hs**(x+42+y...) case if len(exp.atoms()) == 1: if not (exp.is_Integer and exp >= 0 or exp.is_Symbol): raise ValueError('Hilbert spaces can only be raised to \ positive integers or Symbols: %r' % exp) else: for power in exp.atoms(): if not (power.is_Integer or power.is_Symbol): raise ValueError('Tensor powers can only contain integers \ or Symbols: %r' % power) return new_args @property def base(self): return self.args[0] @property def exp(self): return self.args[1] @property def dimension(self): if self.base.dimension is oo: return oo else: return self.base.dimension**self.exp def _sympyrepr(self, printer, *args): return "TensorPowerHilbertSpace(%s,%s)" % (printer._print(self.base, *args), printer._print(self.exp, *args)) def _sympystr(self, printer, *args): return "%s**%s" % (printer._print(self.base, *args), printer._print(self.exp, *args)) def _pretty(self, printer, *args): pform_exp = printer._print(self.exp, *args) if printer._use_unicode: pform_exp = prettyForm(*pform_exp.left(prettyForm('\N{N-ARY CIRCLED TIMES OPERATOR}'))) else: pform_exp = prettyForm(*pform_exp.left(prettyForm('x'))) pform_base = printer._print(self.base, *args) return pform_base**pform_exp def _latex(self, printer, *args): base = printer._print(self.base, *args) exp = printer._print(self.exp, *args) return r'{%s}^{\otimes %s}' % (base, exp)
79586cf5c897a2e3836ff9c992c195861170cbdb5fc18858a29e5dd3897930da
"""Bosonic quantum operators.""" from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.quantum import Operator from sympy.physics.quantum import HilbertSpace, FockSpace, Ket, Bra, IdentityOperator from sympy.functions.special.tensor_functions import KroneckerDelta __all__ = [ 'BosonOp', 'BosonFockKet', 'BosonFockBra', 'BosonCoherentKet', 'BosonCoherentBra' ] class BosonOp(Operator): """A bosonic operator that satisfies [a, Dagger(a)] == 1. Parameters ========== name : str A string that labels the bosonic mode. annihilation : bool A bool that indicates if the bosonic operator is an annihilation (True, default value) or creation operator (False) Examples ======== >>> from sympy.physics.quantum import Dagger, Commutator >>> from sympy.physics.quantum.boson import BosonOp >>> a = BosonOp("a") >>> Commutator(a, Dagger(a)).doit() 1 """ @property def name(self): return self.args[0] @property def is_annihilation(self): return bool(self.args[1]) @classmethod def default_args(self): return ("a", True) def __new__(cls, *args, **hints): if not len(args) in [1, 2]: raise ValueError('1 or 2 parameters expected, got %s' % args) if len(args) == 1: args = (args[0], S.One) if len(args) == 2: args = (args[0], Integer(args[1])) return Operator.__new__(cls, *args) def _eval_commutator_BosonOp(self, other, **hints): if self.name == other.name: # [a^\dagger, a] = -1 if not self.is_annihilation and other.is_annihilation: return S.NegativeOne elif 'independent' in hints and hints['independent']: # [a, b] = 0 return S.Zero return None def _eval_commutator_FermionOp(self, other, **hints): return S.Zero def _eval_anticommutator_BosonOp(self, other, **hints): if 'independent' in hints and hints['independent']: # {a, b} = 2 * a * b, because [a, b] = 0 return 2 * self * other return None def _eval_adjoint(self): return BosonOp(str(self.name), not self.is_annihilation) def __mul__(self, other): if other == IdentityOperator(2): return self if isinstance(other, Mul): args1 = tuple(arg for arg in other.args if arg.is_commutative) args2 = tuple(arg for arg in other.args if not arg.is_commutative) x = self for y in args2: x = x * y return Mul(*args1) * x return Mul(self, other) def _print_contents_latex(self, printer, *args): if self.is_annihilation: return r'{%s}' % str(self.name) else: return r'{{%s}^\dagger}' % str(self.name) def _print_contents(self, printer, *args): if self.is_annihilation: return r'%s' % str(self.name) else: return r'Dagger(%s)' % str(self.name) def _print_contents_pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if self.is_annihilation: return pform else: return pform**prettyForm('\N{DAGGER}') class BosonFockKet(Ket): """Fock state ket for a bosonic mode. Parameters ========== n : Number The Fock state number. """ def __new__(cls, n): return Ket.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return BosonFockBra @classmethod def _eval_hilbert_space(cls, label): return FockSpace() def _eval_innerproduct_BosonFockBra(self, bra, **hints): return KroneckerDelta(self.n, bra.n) def _apply_operator_BosonOp(self, op, **options): if op.is_annihilation: return sqrt(self.n) * BosonFockKet(self.n - 1) else: return sqrt(self.n + 1) * BosonFockKet(self.n + 1) class BosonFockBra(Bra): """Fock state bra for a bosonic mode. Parameters ========== n : Number The Fock state number. """ def __new__(cls, n): return Bra.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return BosonFockKet @classmethod def _eval_hilbert_space(cls, label): return FockSpace() class BosonCoherentKet(Ket): """Coherent state ket for a bosonic mode. Parameters ========== alpha : Number, Symbol The complex amplitude of the coherent state. """ def __new__(cls, alpha): return Ket.__new__(cls, alpha) @property def alpha(self): return self.label[0] @classmethod def dual_class(self): return BosonCoherentBra @classmethod def _eval_hilbert_space(cls, label): return HilbertSpace() def _eval_innerproduct_BosonCoherentBra(self, bra, **hints): if self.alpha == bra.alpha: return S.One else: return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 - 2 * conjugate(bra.alpha) * self.alpha)/2) def _apply_operator_BosonOp(self, op, **options): if op.is_annihilation: return self.alpha * self else: return None class BosonCoherentBra(Bra): """Coherent state bra for a bosonic mode. Parameters ========== alpha : Number, Symbol The complex amplitude of the coherent state. """ def __new__(cls, alpha): return Bra.__new__(cls, alpha) @property def alpha(self): return self.label[0] @classmethod def dual_class(self): return BosonCoherentKet def _apply_operator_BosonOp(self, op, **options): if not op.is_annihilation: return self.alpha * self else: return None
10b0a5d536f12e7367c41cc282f4c40840d8e0e107925f5b4f1a0ea488bf1ae5
"""Pauli operators and states""" from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.core.power import Pow from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp from sympy.physics.quantum import Operator, Ket, Bra from sympy.physics.quantum import ComplexSpace from sympy.matrices import Matrix from sympy.functions.special.tensor_functions import KroneckerDelta __all__ = [ 'SigmaX', 'SigmaY', 'SigmaZ', 'SigmaMinus', 'SigmaPlus', 'SigmaZKet', 'SigmaZBra', 'qsimplify_pauli' ] class SigmaOpBase(Operator): """Pauli sigma operator, base class""" @property def name(self): return self.args[0] @property def use_name(self): return bool(self.args[0]) is not False @classmethod def default_args(self): return (False,) def __new__(cls, *args, **hints): return Operator.__new__(cls, *args, **hints) def _eval_commutator_BosonOp(self, other, **hints): return S.Zero class SigmaX(SigmaOpBase): """Pauli sigma x operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaX >>> sx = SigmaX() >>> sx SigmaX() >>> represent(sx) Matrix([ [0, 1], [1, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args, **hints) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return S.Zero else: return 2 * I * SigmaZ(self.name) def _eval_commutator_SigmaZ(self, other, **hints): if self.name != other.name: return S.Zero else: return - 2 * I * SigmaY(self.name) def _eval_commutator_BosonOp(self, other, **hints): return S.Zero def _eval_anticommutator_SigmaY(self, other, **hints): return S.Zero def _eval_anticommutator_SigmaZ(self, other, **hints): return S.Zero def _eval_adjoint(self): return self def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_x^{(%s)}}' % str(self.name) else: return r'{\sigma_x}' def _print_contents(self, printer, *args): return 'SigmaX()' def _eval_power(self, e): if e.is_Integer and e.is_positive: return SigmaX(self.name).__pow__(int(e) % 2) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, 1], [1, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaY(SigmaOpBase): """Pauli sigma y operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaY >>> sy = SigmaY() >>> sy SigmaY() >>> represent(sy) Matrix([ [0, -I], [I, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaZ(self, other, **hints): if self.name != other.name: return S.Zero else: return 2 * I * SigmaX(self.name) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return S.Zero else: return - 2 * I * SigmaZ(self.name) def _eval_anticommutator_SigmaX(self, other, **hints): return S.Zero def _eval_anticommutator_SigmaZ(self, other, **hints): return S.Zero def _eval_adjoint(self): return self def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_y^{(%s)}}' % str(self.name) else: return r'{\sigma_y}' def _print_contents(self, printer, *args): return 'SigmaY()' def _eval_power(self, e): if e.is_Integer and e.is_positive: return SigmaY(self.name).__pow__(int(e) % 2) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, -I], [I, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaZ(SigmaOpBase): """Pauli sigma z operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent >>> from sympy.physics.quantum.pauli import SigmaZ >>> sz = SigmaZ() >>> sz ** 3 SigmaZ() >>> represent(sz) Matrix([ [1, 0], [0, -1]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return S.Zero else: return 2 * I * SigmaY(self.name) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return S.Zero else: return - 2 * I * SigmaX(self.name) def _eval_anticommutator_SigmaX(self, other, **hints): return S.Zero def _eval_anticommutator_SigmaY(self, other, **hints): return S.Zero def _eval_adjoint(self): return self def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_z^{(%s)}}' % str(self.name) else: return r'{\sigma_z}' def _print_contents(self, printer, *args): return 'SigmaZ()' def _eval_power(self, e): if e.is_Integer and e.is_positive: return SigmaZ(self.name).__pow__(int(e) % 2) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[1, 0], [0, -1]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaMinus(SigmaOpBase): """Pauli sigma minus operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent, Dagger >>> from sympy.physics.quantum.pauli import SigmaMinus >>> sm = SigmaMinus() >>> sm SigmaMinus() >>> Dagger(sm) SigmaPlus() >>> represent(sm) Matrix([ [0, 0], [1, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return S.Zero else: return -SigmaZ(self.name) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return S.Zero else: return I * SigmaZ(self.name) def _eval_commutator_SigmaZ(self, other, **hints): return 2 * self def _eval_commutator_SigmaMinus(self, other, **hints): return SigmaZ(self.name) def _eval_anticommutator_SigmaZ(self, other, **hints): return S.Zero def _eval_anticommutator_SigmaX(self, other, **hints): return S.One def _eval_anticommutator_SigmaY(self, other, **hints): return I * S.NegativeOne def _eval_anticommutator_SigmaPlus(self, other, **hints): return S.One def _eval_adjoint(self): return SigmaPlus(self.name) def _eval_power(self, e): if e.is_Integer and e.is_positive: return S.Zero def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_-^{(%s)}}' % str(self.name) else: return r'{\sigma_-}' def _print_contents(self, printer, *args): return 'SigmaMinus()' def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, 0], [1, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaPlus(SigmaOpBase): """Pauli sigma plus operator Parameters ========== name : str An optional string that labels the operator. Pauli operators with different names commute. Examples ======== >>> from sympy.physics.quantum import represent, Dagger >>> from sympy.physics.quantum.pauli import SigmaPlus >>> sp = SigmaPlus() >>> sp SigmaPlus() >>> Dagger(sp) SigmaMinus() >>> represent(sp) Matrix([ [0, 1], [0, 0]]) """ def __new__(cls, *args, **hints): return SigmaOpBase.__new__(cls, *args) def _eval_commutator_SigmaX(self, other, **hints): if self.name != other.name: return S.Zero else: return SigmaZ(self.name) def _eval_commutator_SigmaY(self, other, **hints): if self.name != other.name: return S.Zero else: return I * SigmaZ(self.name) def _eval_commutator_SigmaZ(self, other, **hints): if self.name != other.name: return S.Zero else: return -2 * self def _eval_commutator_SigmaMinus(self, other, **hints): return SigmaZ(self.name) def _eval_anticommutator_SigmaZ(self, other, **hints): return S.Zero def _eval_anticommutator_SigmaX(self, other, **hints): return S.One def _eval_anticommutator_SigmaY(self, other, **hints): return I def _eval_anticommutator_SigmaMinus(self, other, **hints): return S.One def _eval_adjoint(self): return SigmaMinus(self.name) def _eval_mul(self, other): return self * other def _eval_power(self, e): if e.is_Integer and e.is_positive: return S.Zero def _print_contents_latex(self, printer, *args): if self.use_name: return r'{\sigma_+^{(%s)}}' % str(self.name) else: return r'{\sigma_+}' def _print_contents(self, printer, *args): return 'SigmaPlus()' def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[0, 1], [0, 0]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaZKet(Ket): """Ket for a two-level system quantum system. Parameters ========== n : Number The state number (0 or 1). """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Ket.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return SigmaZBra @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2) def _eval_innerproduct_SigmaZBra(self, bra, **hints): return KroneckerDelta(self.n, bra.n) def _apply_operator_SigmaZ(self, op, **options): if self.n == 0: return self else: return S.NegativeOne * self def _apply_operator_SigmaX(self, op, **options): return SigmaZKet(1) if self.n == 0 else SigmaZKet(0) def _apply_operator_SigmaY(self, op, **options): return I * SigmaZKet(1) if self.n == 0 else (-I) * SigmaZKet(0) def _apply_operator_SigmaMinus(self, op, **options): if self.n == 0: return SigmaZKet(1) else: return S.Zero def _apply_operator_SigmaPlus(self, op, **options): if self.n == 0: return S.Zero else: return SigmaZKet(0) def _represent_default_basis(self, **options): format = options.get('format', 'sympy') if format == 'sympy': return Matrix([[1], [0]]) if self.n == 0 else Matrix([[0], [1]]) else: raise NotImplementedError('Representation in format ' + format + ' not implemented.') class SigmaZBra(Bra): """Bra for a two-level quantum system. Parameters ========== n : Number The state number (0 or 1). """ def __new__(cls, n): if n not in (0, 1): raise ValueError("n must be 0 or 1") return Bra.__new__(cls, n) @property def n(self): return self.label[0] @classmethod def dual_class(self): return SigmaZKet def _qsimplify_pauli_product(a, b): """ Internal helper function for simplifying products of Pauli operators. """ if not (isinstance(a, SigmaOpBase) and isinstance(b, SigmaOpBase)): return Mul(a, b) if a.name != b.name: # Pauli matrices with different labels commute; sort by name if a.name < b.name: return Mul(a, b) else: return Mul(b, a) elif isinstance(a, SigmaX): if isinstance(b, SigmaX): return S.One if isinstance(b, SigmaY): return I * SigmaZ(a.name) if isinstance(b, SigmaZ): return - I * SigmaY(a.name) if isinstance(b, SigmaMinus): return (S.Half + SigmaZ(a.name)/2) if isinstance(b, SigmaPlus): return (S.Half - SigmaZ(a.name)/2) elif isinstance(a, SigmaY): if isinstance(b, SigmaX): return - I * SigmaZ(a.name) if isinstance(b, SigmaY): return S.One if isinstance(b, SigmaZ): return I * SigmaX(a.name) if isinstance(b, SigmaMinus): return -I * (S.One + SigmaZ(a.name))/2 if isinstance(b, SigmaPlus): return I * (S.One - SigmaZ(a.name))/2 elif isinstance(a, SigmaZ): if isinstance(b, SigmaX): return I * SigmaY(a.name) if isinstance(b, SigmaY): return - I * SigmaX(a.name) if isinstance(b, SigmaZ): return S.One if isinstance(b, SigmaMinus): return - SigmaMinus(a.name) if isinstance(b, SigmaPlus): return SigmaPlus(a.name) elif isinstance(a, SigmaMinus): if isinstance(b, SigmaX): return (S.One - SigmaZ(a.name))/2 if isinstance(b, SigmaY): return - I * (S.One - SigmaZ(a.name))/2 if isinstance(b, SigmaZ): # (SigmaX(a.name) - I * SigmaY(a.name))/2 return SigmaMinus(b.name) if isinstance(b, SigmaMinus): return S.Zero if isinstance(b, SigmaPlus): return S.Half - SigmaZ(a.name)/2 elif isinstance(a, SigmaPlus): if isinstance(b, SigmaX): return (S.One + SigmaZ(a.name))/2 if isinstance(b, SigmaY): return I * (S.One + SigmaZ(a.name))/2 if isinstance(b, SigmaZ): #-(SigmaX(a.name) + I * SigmaY(a.name))/2 return -SigmaPlus(a.name) if isinstance(b, SigmaMinus): return (S.One + SigmaZ(a.name))/2 if isinstance(b, SigmaPlus): return S.Zero else: return a * b def qsimplify_pauli(e): """ Simplify an expression that includes products of pauli operators. Parameters ========== e : expression An expression that contains products of Pauli operators that is to be simplified. Examples ======== >>> from sympy.physics.quantum.pauli import SigmaX, SigmaY >>> from sympy.physics.quantum.pauli import qsimplify_pauli >>> sx, sy = SigmaX(), SigmaY() >>> sx * sy SigmaX()*SigmaY() >>> qsimplify_pauli(sx * sy) I*SigmaZ() """ if isinstance(e, Operator): return e if isinstance(e, (Add, Pow, exp)): t = type(e) return t(*(qsimplify_pauli(arg) for arg in e.args)) if isinstance(e, Mul): c, nc = e.args_cnc() nc_s = [] while nc: curr = nc.pop(0) while (len(nc) and isinstance(curr, SigmaOpBase) and isinstance(nc[0], SigmaOpBase) and curr.name == nc[0].name): x = nc.pop(0) y = _qsimplify_pauli_product(curr, x) c1, nc1 = y.args_cnc() curr = Mul(*nc1) c = c + c1 nc_s.append(curr) return Mul(*c) * Mul(*nc_s) return e
5862ba0be3350d219db30ae11990c8c2afa2f15ef9e9c90da0e1ddd66cc9624e
"""Simple Harmonic Oscillator 1-Dimension""" from sympy.core.numbers import (I, Integer) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.operator import Operator from sympy.physics.quantum.state import Bra, Ket, State from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.cartesian import X, Px from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.matrixutils import matrix_zeros #------------------------------------------------------------------------------ class SHOOp(Operator): """A base class for the SHO Operators. We are limiting the number of arguments to be 1. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) == 1: return args else: raise ValueError("Too many arguments") @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(S.Infinity) class RaisingOp(SHOOp): """The Raising Operator or a^dagger. When a^dagger acts on a state it raises the state up by one. Taking the adjoint of a^dagger returns 'a', the Lowering Operator. a^dagger can be rewritten in terms of position and momentum. We can represent a^dagger as a matrix, which will be its default basis. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. Examples ======== Create a Raising Operator and rewrite it in terms of position and momentum, and show that taking its adjoint returns 'a': >>> from sympy.physics.quantum.sho1d import RaisingOp >>> from sympy.physics.quantum import Dagger >>> ad = RaisingOp('a') >>> ad.rewrite('xp').doit() sqrt(2)*(m*omega*X - I*Px)/(2*sqrt(hbar)*sqrt(m*omega)) >>> Dagger(ad) a Taking the commutator of a^dagger with other Operators: >>> from sympy.physics.quantum import Commutator >>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp >>> from sympy.physics.quantum.sho1d import NumberOp >>> ad = RaisingOp('a') >>> a = LoweringOp('a') >>> N = NumberOp('N') >>> Commutator(ad, a).doit() -1 >>> Commutator(ad, N).doit() -RaisingOp(a) Apply a^dagger to a state: >>> from sympy.physics.quantum import qapply >>> from sympy.physics.quantum.sho1d import RaisingOp, SHOKet >>> ad = RaisingOp('a') >>> k = SHOKet('k') >>> qapply(ad*k) sqrt(k + 1)*|k + 1> Matrix Representation >>> from sympy.physics.quantum.sho1d import RaisingOp >>> from sympy.physics.quantum.represent import represent >>> ad = RaisingOp('a') >>> represent(ad, basis=N, ndim=4, format='sympy') Matrix([ [0, 0, 0, 0], [1, 0, 0, 0], [0, sqrt(2), 0, 0], [0, 0, sqrt(3), 0]]) """ def _eval_rewrite_as_xp(self, *args, **kwargs): return (S.One/sqrt(Integer(2)*hbar*m*omega))*( S.NegativeOne*I*Px + m*omega*X) def _eval_adjoint(self): return LoweringOp(*self.args) def _eval_commutator_LoweringOp(self, other): return S.NegativeOne def _eval_commutator_NumberOp(self, other): return S.NegativeOne*self def _apply_operator_SHOKet(self, ket): temp = ket.n + S.One return sqrt(temp)*SHOKet(temp) def _represent_default_basis(self, **options): return self._represent_NumberOp(None, **options) def _represent_XOp(self, basis, **options): # This logic is good but the underlying position # representation logic is broken. # temp = self.rewrite('xp').doit() # result = represent(temp, basis=X) # return result raise NotImplementedError('Position representation is not implemented') def _represent_NumberOp(self, basis, **options): ndim_info = options.get('ndim', 4) format = options.get('format','sympy') matrix = matrix_zeros(ndim_info, ndim_info, **options) for i in range(ndim_info - 1): value = sqrt(i + 1) if format == 'scipy.sparse': value = float(value) matrix[i + 1, i] = value if format == 'scipy.sparse': matrix = matrix.tocsr() return matrix #-------------------------------------------------------------------------- # Printing Methods #-------------------------------------------------------------------------- def _print_contents(self, printer, *args): arg0 = printer._print(self.args[0], *args) return '%s(%s)' % (self.__class__.__name__, arg0) def _print_contents_pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) pform = pform**prettyForm('\N{DAGGER}') return pform def _print_contents_latex(self, printer, *args): arg = printer._print(self.args[0]) return '%s^{\\dagger}' % arg class LoweringOp(SHOOp): """The Lowering Operator or 'a'. When 'a' acts on a state it lowers the state up by one. Taking the adjoint of 'a' returns a^dagger, the Raising Operator. 'a' can be rewritten in terms of position and momentum. We can represent 'a' as a matrix, which will be its default basis. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. Examples ======== Create a Lowering Operator and rewrite it in terms of position and momentum, and show that taking its adjoint returns a^dagger: >>> from sympy.physics.quantum.sho1d import LoweringOp >>> from sympy.physics.quantum import Dagger >>> a = LoweringOp('a') >>> a.rewrite('xp').doit() sqrt(2)*(m*omega*X + I*Px)/(2*sqrt(hbar)*sqrt(m*omega)) >>> Dagger(a) RaisingOp(a) Taking the commutator of 'a' with other Operators: >>> from sympy.physics.quantum import Commutator >>> from sympy.physics.quantum.sho1d import LoweringOp, RaisingOp >>> from sympy.physics.quantum.sho1d import NumberOp >>> a = LoweringOp('a') >>> ad = RaisingOp('a') >>> N = NumberOp('N') >>> Commutator(a, ad).doit() 1 >>> Commutator(a, N).doit() a Apply 'a' to a state: >>> from sympy.physics.quantum import qapply >>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet >>> a = LoweringOp('a') >>> k = SHOKet('k') >>> qapply(a*k) sqrt(k)*|k - 1> Taking 'a' of the lowest state will return 0: >>> from sympy.physics.quantum import qapply >>> from sympy.physics.quantum.sho1d import LoweringOp, SHOKet >>> a = LoweringOp('a') >>> k = SHOKet(0) >>> qapply(a*k) 0 Matrix Representation >>> from sympy.physics.quantum.sho1d import LoweringOp >>> from sympy.physics.quantum.represent import represent >>> a = LoweringOp('a') >>> represent(a, basis=N, ndim=4, format='sympy') Matrix([ [0, 1, 0, 0], [0, 0, sqrt(2), 0], [0, 0, 0, sqrt(3)], [0, 0, 0, 0]]) """ def _eval_rewrite_as_xp(self, *args, **kwargs): return (S.One/sqrt(Integer(2)*hbar*m*omega))*( I*Px + m*omega*X) def _eval_adjoint(self): return RaisingOp(*self.args) def _eval_commutator_RaisingOp(self, other): return S.One def _eval_commutator_NumberOp(self, other): return self def _apply_operator_SHOKet(self, ket): temp = ket.n - Integer(1) if ket.n is S.Zero: return S.Zero else: return sqrt(ket.n)*SHOKet(temp) def _represent_default_basis(self, **options): return self._represent_NumberOp(None, **options) def _represent_XOp(self, basis, **options): # This logic is good but the underlying position # representation logic is broken. # temp = self.rewrite('xp').doit() # result = represent(temp, basis=X) # return result raise NotImplementedError('Position representation is not implemented') def _represent_NumberOp(self, basis, **options): ndim_info = options.get('ndim', 4) format = options.get('format', 'sympy') matrix = matrix_zeros(ndim_info, ndim_info, **options) for i in range(ndim_info - 1): value = sqrt(i + 1) if format == 'scipy.sparse': value = float(value) matrix[i,i + 1] = value if format == 'scipy.sparse': matrix = matrix.tocsr() return matrix class NumberOp(SHOOp): """The Number Operator is simply a^dagger*a It is often useful to write a^dagger*a as simply the Number Operator because the Number Operator commutes with the Hamiltonian. And can be expressed using the Number Operator. Also the Number Operator can be applied to states. We can represent the Number Operator as a matrix, which will be its default basis. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. Examples ======== Create a Number Operator and rewrite it in terms of the ladder operators, position and momentum operators, and Hamiltonian: >>> from sympy.physics.quantum.sho1d import NumberOp >>> N = NumberOp('N') >>> N.rewrite('a').doit() RaisingOp(a)*a >>> N.rewrite('xp').doit() -1/2 + (m**2*omega**2*X**2 + Px**2)/(2*hbar*m*omega) >>> N.rewrite('H').doit() -1/2 + H/(hbar*omega) Take the Commutator of the Number Operator with other Operators: >>> from sympy.physics.quantum import Commutator >>> from sympy.physics.quantum.sho1d import NumberOp, Hamiltonian >>> from sympy.physics.quantum.sho1d import RaisingOp, LoweringOp >>> N = NumberOp('N') >>> H = Hamiltonian('H') >>> ad = RaisingOp('a') >>> a = LoweringOp('a') >>> Commutator(N,H).doit() 0 >>> Commutator(N,ad).doit() RaisingOp(a) >>> Commutator(N,a).doit() -a Apply the Number Operator to a state: >>> from sympy.physics.quantum import qapply >>> from sympy.physics.quantum.sho1d import NumberOp, SHOKet >>> N = NumberOp('N') >>> k = SHOKet('k') >>> qapply(N*k) k*|k> Matrix Representation >>> from sympy.physics.quantum.sho1d import NumberOp >>> from sympy.physics.quantum.represent import represent >>> N = NumberOp('N') >>> represent(N, basis=N, ndim=4, format='sympy') Matrix([ [0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]]) """ def _eval_rewrite_as_a(self, *args, **kwargs): return ad*a def _eval_rewrite_as_xp(self, *args, **kwargs): return (S.One/(Integer(2)*m*hbar*omega))*(Px**2 + ( m*omega*X)**2) - S.Half def _eval_rewrite_as_H(self, *args, **kwargs): return H/(hbar*omega) - S.Half def _apply_operator_SHOKet(self, ket): return ket.n*ket def _eval_commutator_Hamiltonian(self, other): return S.Zero def _eval_commutator_RaisingOp(self, other): return other def _eval_commutator_LoweringOp(self, other): return S.NegativeOne*other def _represent_default_basis(self, **options): return self._represent_NumberOp(None, **options) def _represent_XOp(self, basis, **options): # This logic is good but the underlying position # representation logic is broken. # temp = self.rewrite('xp').doit() # result = represent(temp, basis=X) # return result raise NotImplementedError('Position representation is not implemented') def _represent_NumberOp(self, basis, **options): ndim_info = options.get('ndim', 4) format = options.get('format', 'sympy') matrix = matrix_zeros(ndim_info, ndim_info, **options) for i in range(ndim_info): value = i if format == 'scipy.sparse': value = float(value) matrix[i,i] = value if format == 'scipy.sparse': matrix = matrix.tocsr() return matrix class Hamiltonian(SHOOp): """The Hamiltonian Operator. The Hamiltonian is used to solve the time-independent Schrodinger equation. The Hamiltonian can be expressed using the ladder operators, as well as by position and momentum. We can represent the Hamiltonian Operator as a matrix, which will be its default basis. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the operator. Examples ======== Create a Hamiltonian Operator and rewrite it in terms of the ladder operators, position and momentum, and the Number Operator: >>> from sympy.physics.quantum.sho1d import Hamiltonian >>> H = Hamiltonian('H') >>> H.rewrite('a').doit() hbar*omega*(1/2 + RaisingOp(a)*a) >>> H.rewrite('xp').doit() (m**2*omega**2*X**2 + Px**2)/(2*m) >>> H.rewrite('N').doit() hbar*omega*(1/2 + N) Take the Commutator of the Hamiltonian and the Number Operator: >>> from sympy.physics.quantum import Commutator >>> from sympy.physics.quantum.sho1d import Hamiltonian, NumberOp >>> H = Hamiltonian('H') >>> N = NumberOp('N') >>> Commutator(H,N).doit() 0 Apply the Hamiltonian Operator to a state: >>> from sympy.physics.quantum import qapply >>> from sympy.physics.quantum.sho1d import Hamiltonian, SHOKet >>> H = Hamiltonian('H') >>> k = SHOKet('k') >>> qapply(H*k) hbar*k*omega*|k> + hbar*omega*|k>/2 Matrix Representation >>> from sympy.physics.quantum.sho1d import Hamiltonian >>> from sympy.physics.quantum.represent import represent >>> H = Hamiltonian('H') >>> represent(H, basis=N, ndim=4, format='sympy') Matrix([ [hbar*omega/2, 0, 0, 0], [ 0, 3*hbar*omega/2, 0, 0], [ 0, 0, 5*hbar*omega/2, 0], [ 0, 0, 0, 7*hbar*omega/2]]) """ def _eval_rewrite_as_a(self, *args, **kwargs): return hbar*omega*(ad*a + S.Half) def _eval_rewrite_as_xp(self, *args, **kwargs): return (S.One/(Integer(2)*m))*(Px**2 + (m*omega*X)**2) def _eval_rewrite_as_N(self, *args, **kwargs): return hbar*omega*(N + S.Half) def _apply_operator_SHOKet(self, ket): return (hbar*omega*(ket.n + S.Half))*ket def _eval_commutator_NumberOp(self, other): return S.Zero def _represent_default_basis(self, **options): return self._represent_NumberOp(None, **options) def _represent_XOp(self, basis, **options): # This logic is good but the underlying position # representation logic is broken. # temp = self.rewrite('xp').doit() # result = represent(temp, basis=X) # return result raise NotImplementedError('Position representation is not implemented') def _represent_NumberOp(self, basis, **options): ndim_info = options.get('ndim', 4) format = options.get('format', 'sympy') matrix = matrix_zeros(ndim_info, ndim_info, **options) for i in range(ndim_info): value = i + S.Half if format == 'scipy.sparse': value = float(value) matrix[i,i] = value if format == 'scipy.sparse': matrix = matrix.tocsr() return hbar*omega*matrix #------------------------------------------------------------------------------ class SHOState(State): """State class for SHO states""" @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(S.Infinity) @property def n(self): return self.args[0] class SHOKet(SHOState, Ket): """1D eigenket. Inherits from SHOState and Ket. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket This is usually its quantum numbers or its symbol. Examples ======== Ket's know about their associated bra: >>> from sympy.physics.quantum.sho1d import SHOKet >>> k = SHOKet('k') >>> k.dual <k| >>> k.dual_class() <class 'sympy.physics.quantum.sho1d.SHOBra'> Take the Inner Product with a bra: >>> from sympy.physics.quantum import InnerProduct >>> from sympy.physics.quantum.sho1d import SHOKet, SHOBra >>> k = SHOKet('k') >>> b = SHOBra('b') >>> InnerProduct(b,k).doit() KroneckerDelta(b, k) Vector representation of a numerical state ket: >>> from sympy.physics.quantum.sho1d import SHOKet, NumberOp >>> from sympy.physics.quantum.represent import represent >>> k = SHOKet(3) >>> N = NumberOp('N') >>> represent(k, basis=N, ndim=4) Matrix([ [0], [0], [0], [1]]) """ @classmethod def dual_class(self): return SHOBra def _eval_innerproduct_SHOBra(self, bra, **hints): result = KroneckerDelta(self.n, bra.n) return result def _represent_default_basis(self, **options): return self._represent_NumberOp(None, **options) def _represent_NumberOp(self, basis, **options): ndim_info = options.get('ndim', 4) format = options.get('format', 'sympy') options['spmatrix'] = 'lil' vector = matrix_zeros(ndim_info, 1, **options) if isinstance(self.n, Integer): if self.n >= ndim_info: return ValueError("N-Dimension too small") if format == 'scipy.sparse': vector[int(self.n), 0] = 1.0 vector = vector.tocsr() elif format == 'numpy': vector[int(self.n), 0] = 1.0 else: vector[self.n, 0] = S.One return vector else: return ValueError("Not Numerical State") class SHOBra(SHOState, Bra): """A time-independent Bra in SHO. Inherits from SHOState and Bra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket This is usually its quantum numbers or its symbol. Examples ======== Bra's know about their associated ket: >>> from sympy.physics.quantum.sho1d import SHOBra >>> b = SHOBra('b') >>> b.dual |b> >>> b.dual_class() <class 'sympy.physics.quantum.sho1d.SHOKet'> Vector representation of a numerical state bra: >>> from sympy.physics.quantum.sho1d import SHOBra, NumberOp >>> from sympy.physics.quantum.represent import represent >>> b = SHOBra(3) >>> N = NumberOp('N') >>> represent(b, basis=N, ndim=4) Matrix([[0, 0, 0, 1]]) """ @classmethod def dual_class(self): return SHOKet def _represent_default_basis(self, **options): return self._represent_NumberOp(None, **options) def _represent_NumberOp(self, basis, **options): ndim_info = options.get('ndim', 4) format = options.get('format', 'sympy') options['spmatrix'] = 'lil' vector = matrix_zeros(1, ndim_info, **options) if isinstance(self.n, Integer): if self.n >= ndim_info: return ValueError("N-Dimension too small") if format == 'scipy.sparse': vector[0, int(self.n)] = 1.0 vector = vector.tocsr() elif format == 'numpy': vector[0, int(self.n)] = 1.0 else: vector[0, self.n] = S.One return vector else: return ValueError("Not Numerical State") ad = RaisingOp('a') a = LoweringOp('a') H = Hamiltonian('H') N = NumberOp('N') omega = Symbol('omega') m = Symbol('m')
e66ef33c1870ee00e39e3f3ad24b42dedeb96bdc2c85114efc7f1780bcac590a
"""Logic for applying operators to states. Todo: * Sometimes the final result needs to be expanded, we should do this by hand. """ from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.sympify import sympify from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.operator import OuterProduct, Operator from sympy.physics.quantum.state import State, KetBase, BraBase, Wavefunction from sympy.physics.quantum.tensorproduct import TensorProduct __all__ = [ 'qapply' ] #----------------------------------------------------------------------------- # Main code #----------------------------------------------------------------------------- def qapply(e, **options): """Apply operators to states in a quantum expression. Parameters ========== e : Expr The expression containing operators and states. This expression tree will be walked to find operators acting on states symbolically. options : dict A dict of key/value pairs that determine how the operator actions are carried out. The following options are valid: * ``dagger``: try to apply Dagger operators to the left (default: False). * ``ip_doit``: call ``.doit()`` in inner products when they are encountered (default: True). Returns ======= e : Expr The original expression, but with the operators applied to states. Examples ======== >>> from sympy.physics.quantum import qapply, Ket, Bra >>> b = Bra('b') >>> k = Ket('k') >>> A = k * b >>> A |k><b| >>> qapply(A * b.dual / (b * b.dual)) |k> >>> qapply(k.dual * A / (k.dual * k), dagger=True) <b| >>> qapply(k.dual * A / (k.dual * k)) <k|*|k><b|/<k|k> """ from sympy.physics.quantum.density import Density dagger = options.get('dagger', False) if e == 0: return S.Zero # This may be a bit aggressive but ensures that everything gets expanded # to its simplest form before trying to apply operators. This includes # things like (A+B+C)*|a> and A*(|a>+|b>) and all Commutators and # TensorProducts. The only problem with this is that if we can't apply # all the Operators, we have just expanded everything. # TODO: don't expand the scalars in front of each Mul. e = e.expand(commutator=True, tensorproduct=True) # If we just have a raw ket, return it. if isinstance(e, KetBase): return e # We have an Add(a, b, c, ...) and compute # Add(qapply(a), qapply(b), ...) elif isinstance(e, Add): result = 0 for arg in e.args: result += qapply(arg, **options) return result.expand() # For a Density operator call qapply on its state elif isinstance(e, Density): new_args = [(qapply(state, **options), prob) for (state, prob) in e.args] return Density(*new_args) # For a raw TensorProduct, call qapply on its args. elif isinstance(e, TensorProduct): return TensorProduct(*[qapply(t, **options) for t in e.args]) # For a Pow, call qapply on its base. elif isinstance(e, Pow): return qapply(e.base, **options)**e.exp # We have a Mul where there might be actual operators to apply to kets. elif isinstance(e, Mul): c_part, nc_part = e.args_cnc() c_mul = Mul(*c_part) nc_mul = Mul(*nc_part) if isinstance(nc_mul, Mul): result = c_mul*qapply_Mul(nc_mul, **options) else: result = c_mul*qapply(nc_mul, **options) if result == e and dagger: return Dagger(qapply_Mul(Dagger(e), **options)) else: return result # In all other cases (State, Operator, Pow, Commutator, InnerProduct, # OuterProduct) we won't ever have operators to apply to kets. else: return e def qapply_Mul(e, **options): ip_doit = options.get('ip_doit', True) args = list(e.args) # If we only have 0 or 1 args, we have nothing to do and return. if len(args) <= 1 or not isinstance(e, Mul): return e rhs = args.pop() lhs = args.pop() # Make sure we have two non-commutative objects before proceeding. if (sympify(rhs).is_commutative and not isinstance(rhs, Wavefunction)) or \ (sympify(lhs).is_commutative and not isinstance(lhs, Wavefunction)): return e # For a Pow with an integer exponent, apply one of them and reduce the # exponent by one. if isinstance(lhs, Pow) and lhs.exp.is_Integer: args.append(lhs.base**(lhs.exp - 1)) lhs = lhs.base # Pull OuterProduct apart if isinstance(lhs, OuterProduct): args.append(lhs.ket) lhs = lhs.bra # Call .doit() on Commutator/AntiCommutator. if isinstance(lhs, (Commutator, AntiCommutator)): comm = lhs.doit() if isinstance(comm, Add): return qapply( e.func(*(args + [comm.args[0], rhs])) + e.func(*(args + [comm.args[1], rhs])), **options ) else: return qapply(e.func(*args)*comm*rhs, **options) # Apply tensor products of operators to states if isinstance(lhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in lhs.args) and \ isinstance(rhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in rhs.args) and \ len(lhs.args) == len(rhs.args): result = TensorProduct(*[qapply(lhs.args[n]*rhs.args[n], **options) for n in range(len(lhs.args))]).expand(tensorproduct=True) return qapply_Mul(e.func(*args), **options)*result # Now try to actually apply the operator and build an inner product. try: result = lhs._apply_operator(rhs, **options) except (NotImplementedError, AttributeError): try: result = rhs._apply_operator(lhs, **options) except (NotImplementedError, AttributeError): if isinstance(lhs, BraBase) and isinstance(rhs, KetBase): result = InnerProduct(lhs, rhs) if ip_doit: result = result.doit() else: result = None # TODO: I may need to expand before returning the final result. if result == 0: return S.Zero elif result is None: if len(args) == 0: # We had two args to begin with so args=[]. return e else: return qapply_Mul(e.func(*(args + [lhs])), **options)*rhs elif isinstance(result, InnerProduct): return result*qapply_Mul(e.func(*args), **options) else: # result is a scalar times a Mul, Add or TensorProduct return qapply(e.func(*args)*result, **options)
527e9ea78eedca07f555da7ef06d964bab93f850aa381470ac351da2715dfef0
from sympy.core.backend import eye, Matrix, zeros from sympy.physics.mechanics import dynamicsymbols from sympy.physics.mechanics.functions import find_dynamicsymbols __all__ = ['SymbolicSystem'] class SymbolicSystem: """SymbolicSystem is a class that contains all the information about a system in a symbolic format such as the equations of motions and the bodies and loads in the system. There are three ways that the equations of motion can be described for Symbolic System: [1] Explicit form where the kinematics and dynamics are combined x' = F_1(x, t, r, p) [2] Implicit form where the kinematics and dynamics are combined M_2(x, p) x' = F_2(x, t, r, p) [3] Implicit form where the kinematics and dynamics are separate M_3(q, p) u' = F_3(q, u, t, r, p) q' = G(q, u, t, r, p) where x : states, e.g. [q, u] t : time r : specified (exogenous) inputs p : constants q : generalized coordinates u : generalized speeds F_1 : right hand side of the combined equations in explicit form F_2 : right hand side of the combined equations in implicit form F_3 : right hand side of the dynamical equations in implicit form M_2 : mass matrix of the combined equations in implicit form M_3 : mass matrix of the dynamical equations in implicit form G : right hand side of the kinematical differential equations Parameters ========== coord_states : ordered iterable of functions of time This input will either be a collection of the coordinates or states of the system depending on whether or not the speeds are also given. If speeds are specified this input will be assumed to be the coordinates otherwise this input will be assumed to be the states. right_hand_side : Matrix This variable is the right hand side of the equations of motion in any of the forms. The specific form will be assumed depending on whether a mass matrix or coordinate derivatives are given. speeds : ordered iterable of functions of time, optional This is a collection of the generalized speeds of the system. If given it will be assumed that the first argument (coord_states) will represent the generalized coordinates of the system. mass_matrix : Matrix, optional The matrix of the implicit forms of the equations of motion (forms [2] and [3]). The distinction between the forms is determined by whether or not the coordinate derivatives are passed in. If they are given form [3] will be assumed otherwise form [2] is assumed. coordinate_derivatives : Matrix, optional The right hand side of the kinematical equations in explicit form. If given it will be assumed that the equations of motion are being entered in form [3]. alg_con : Iterable, optional The indexes of the rows in the equations of motion that contain algebraic constraints instead of differential equations. If the equations are input in form [3], it will be assumed the indexes are referencing the mass_matrix/right_hand_side combination and not the coordinate_derivatives. output_eqns : Dictionary, optional Any output equations that are desired to be tracked are stored in a dictionary where the key corresponds to the name given for the specific equation and the value is the equation itself in symbolic form coord_idxs : Iterable, optional If coord_states corresponds to the states rather than the coordinates this variable will tell SymbolicSystem which indexes of the states correspond to generalized coordinates. speed_idxs : Iterable, optional If coord_states corresponds to the states rather than the coordinates this variable will tell SymbolicSystem which indexes of the states correspond to generalized speeds. bodies : iterable of Body/Rigidbody objects, optional Iterable containing the bodies of the system loads : iterable of load instances (described below), optional Iterable containing the loads of the system where forces are given by (point of application, force vector) and torques are given by (reference frame acting upon, torque vector). Ex [(point, force), (ref_frame, torque)] Attributes ========== coordinates : Matrix, shape(n, 1) This is a matrix containing the generalized coordinates of the system speeds : Matrix, shape(m, 1) This is a matrix containing the generalized speeds of the system states : Matrix, shape(o, 1) This is a matrix containing the state variables of the system alg_con : List This list contains the indices of the algebraic constraints in the combined equations of motion. The presence of these constraints requires that a DAE solver be used instead of an ODE solver. If the system is given in form [3] the alg_con variable will be adjusted such that it is a representation of the combined kinematics and dynamics thus make sure it always matches the mass matrix entered. dyn_implicit_mat : Matrix, shape(m, m) This is the M matrix in form [3] of the equations of motion (the mass matrix or generalized inertia matrix of the dynamical equations of motion in implicit form). dyn_implicit_rhs : Matrix, shape(m, 1) This is the F vector in form [3] of the equations of motion (the right hand side of the dynamical equations of motion in implicit form). comb_implicit_mat : Matrix, shape(o, o) This is the M matrix in form [2] of the equations of motion. This matrix contains a block diagonal structure where the top left block (the first rows) represent the matrix in the implicit form of the kinematical equations and the bottom right block (the last rows) represent the matrix in the implicit form of the dynamical equations. comb_implicit_rhs : Matrix, shape(o, 1) This is the F vector in form [2] of the equations of motion. The top part of the vector represents the right hand side of the implicit form of the kinemaical equations and the bottom of the vector represents the right hand side of the implicit form of the dynamical equations of motion. comb_explicit_rhs : Matrix, shape(o, 1) This vector represents the right hand side of the combined equations of motion in explicit form (form [1] from above). kin_explicit_rhs : Matrix, shape(m, 1) This is the right hand side of the explicit form of the kinematical equations of motion as can be seen in form [3] (the G matrix). output_eqns : Dictionary If output equations were given they are stored in a dictionary where the key corresponds to the name given for the specific equation and the value is the equation itself in symbolic form bodies : Tuple If the bodies in the system were given they are stored in a tuple for future access loads : Tuple If the loads in the system were given they are stored in a tuple for future access. This includes forces and torques where forces are given by (point of application, force vector) and torques are given by (reference frame acted upon, torque vector). Example ======= As a simple example, the dynamics of a simple pendulum will be input into a SymbolicSystem object manually. First some imports will be needed and then symbols will be set up for the length of the pendulum (l), mass at the end of the pendulum (m), and a constant for gravity (g). :: >>> from sympy import Matrix, sin, symbols >>> from sympy.physics.mechanics import dynamicsymbols, SymbolicSystem >>> l, m, g = symbols('l m g') The system will be defined by an angle of theta from the vertical and a generalized speed of omega will be used where omega = theta_dot. :: >>> theta, omega = dynamicsymbols('theta omega') Now the equations of motion are ready to be formed and passed to the SymbolicSystem object. :: >>> kin_explicit_rhs = Matrix([omega]) >>> dyn_implicit_mat = Matrix([l**2 * m]) >>> dyn_implicit_rhs = Matrix([-g * l * m * sin(theta)]) >>> symsystem = SymbolicSystem([theta], dyn_implicit_rhs, [omega], ... dyn_implicit_mat) Notes ===== m : number of generalized speeds n : number of generalized coordinates o : number of states """ def __init__(self, coord_states, right_hand_side, speeds=None, mass_matrix=None, coordinate_derivatives=None, alg_con=None, output_eqns={}, coord_idxs=None, speed_idxs=None, bodies=None, loads=None): """Initializes a SymbolicSystem object""" # Extract information on speeds, coordinates and states if speeds is None: self._states = Matrix(coord_states) if coord_idxs is None: self._coordinates = None else: coords = [coord_states[i] for i in coord_idxs] self._coordinates = Matrix(coords) if speed_idxs is None: self._speeds = None else: speeds_inter = [coord_states[i] for i in speed_idxs] self._speeds = Matrix(speeds_inter) else: self._coordinates = Matrix(coord_states) self._speeds = Matrix(speeds) self._states = self._coordinates.col_join(self._speeds) # Extract equations of motion form if coordinate_derivatives is not None: self._kin_explicit_rhs = coordinate_derivatives self._dyn_implicit_rhs = right_hand_side self._dyn_implicit_mat = mass_matrix self._comb_implicit_rhs = None self._comb_implicit_mat = None self._comb_explicit_rhs = None elif mass_matrix is not None: self._kin_explicit_rhs = None self._dyn_implicit_rhs = None self._dyn_implicit_mat = None self._comb_implicit_rhs = right_hand_side self._comb_implicit_mat = mass_matrix self._comb_explicit_rhs = None else: self._kin_explicit_rhs = None self._dyn_implicit_rhs = None self._dyn_implicit_mat = None self._comb_implicit_rhs = None self._comb_implicit_mat = None self._comb_explicit_rhs = right_hand_side # Set the remainder of the inputs as instance attributes if alg_con is not None and coordinate_derivatives is not None: alg_con = [i + len(coordinate_derivatives) for i in alg_con] self._alg_con = alg_con self.output_eqns = output_eqns # Change the body and loads iterables to tuples if they are not tuples # already if not isinstance(bodies, tuple) and bodies is not None: bodies = tuple(bodies) if not isinstance(loads, tuple) and loads is not None: loads = tuple(loads) self._bodies = bodies self._loads = loads @property def coordinates(self): """Returns the column matrix of the generalized coordinates""" if self._coordinates is None: raise AttributeError("The coordinates were not specified.") else: return self._coordinates @property def speeds(self): """Returns the column matrix of generalized speeds""" if self._speeds is None: raise AttributeError("The speeds were not specified.") else: return self._speeds @property def states(self): """Returns the column matrix of the state variables""" return self._states @property def alg_con(self): """Returns a list with the indices of the rows containing algebraic constraints in the combined form of the equations of motion""" return self._alg_con @property def dyn_implicit_mat(self): """Returns the matrix, M, corresponding to the dynamic equations in implicit form, M x' = F, where the kinematical equations are not included""" if self._dyn_implicit_mat is None: raise AttributeError("dyn_implicit_mat is not specified for " "equations of motion form [1] or [2].") else: return self._dyn_implicit_mat @property def dyn_implicit_rhs(self): """Returns the column matrix, F, corresponding to the dynamic equations in implicit form, M x' = F, where the kinematical equations are not included""" if self._dyn_implicit_rhs is None: raise AttributeError("dyn_implicit_rhs is not specified for " "equations of motion form [1] or [2].") else: return self._dyn_implicit_rhs @property def comb_implicit_mat(self): """Returns the matrix, M, corresponding to the equations of motion in implicit form (form [2]), M x' = F, where the kinematical equations are included""" if self._comb_implicit_mat is None: if self._dyn_implicit_mat is not None: num_kin_eqns = len(self._kin_explicit_rhs) num_dyn_eqns = len(self._dyn_implicit_rhs) zeros1 = zeros(num_kin_eqns, num_dyn_eqns) zeros2 = zeros(num_dyn_eqns, num_kin_eqns) inter1 = eye(num_kin_eqns).row_join(zeros1) inter2 = zeros2.row_join(self._dyn_implicit_mat) self._comb_implicit_mat = inter1.col_join(inter2) return self._comb_implicit_mat else: raise AttributeError("comb_implicit_mat is not specified for " "equations of motion form [1].") else: return self._comb_implicit_mat @property def comb_implicit_rhs(self): """Returns the column matrix, F, corresponding to the equations of motion in implicit form (form [2]), M x' = F, where the kinematical equations are included""" if self._comb_implicit_rhs is None: if self._dyn_implicit_rhs is not None: kin_inter = self._kin_explicit_rhs dyn_inter = self._dyn_implicit_rhs self._comb_implicit_rhs = kin_inter.col_join(dyn_inter) return self._comb_implicit_rhs else: raise AttributeError("comb_implicit_mat is not specified for " "equations of motion in form [1].") else: return self._comb_implicit_rhs def compute_explicit_form(self): """If the explicit right hand side of the combined equations of motion is to provided upon initialization, this method will calculate it. This calculation can potentially take awhile to compute.""" if self._comb_explicit_rhs is not None: raise AttributeError("comb_explicit_rhs is already formed.") inter1 = getattr(self, 'kin_explicit_rhs', None) if inter1 is not None: inter2 = self._dyn_implicit_mat.LUsolve(self._dyn_implicit_rhs) out = inter1.col_join(inter2) else: out = self._comb_implicit_mat.LUsolve(self._comb_implicit_rhs) self._comb_explicit_rhs = out @property def comb_explicit_rhs(self): """Returns the right hand side of the equations of motion in explicit form, x' = F, where the kinematical equations are included""" if self._comb_explicit_rhs is None: raise AttributeError("Please run .combute_explicit_form before " "attempting to access comb_explicit_rhs.") else: return self._comb_explicit_rhs @property def kin_explicit_rhs(self): """Returns the right hand side of the kinematical equations in explicit form, q' = G""" if self._kin_explicit_rhs is None: raise AttributeError("kin_explicit_rhs is not specified for " "equations of motion form [1] or [2].") else: return self._kin_explicit_rhs def dynamic_symbols(self): """Returns a column matrix containing all of the symbols in the system that depend on time""" # Create a list of all of the expressions in the equations of motion if self._comb_explicit_rhs is None: eom_expressions = (self.comb_implicit_mat[:] + self.comb_implicit_rhs[:]) else: eom_expressions = (self._comb_explicit_rhs[:]) functions_of_time = set() for expr in eom_expressions: functions_of_time = functions_of_time.union( find_dynamicsymbols(expr)) functions_of_time = functions_of_time.union(self._states) return tuple(functions_of_time) def constant_symbols(self): """Returns a column matrix containing all of the symbols in the system that do not depend on time""" # Create a list of all of the expressions in the equations of motion if self._comb_explicit_rhs is None: eom_expressions = (self.comb_implicit_mat[:] + self.comb_implicit_rhs[:]) else: eom_expressions = (self._comb_explicit_rhs[:]) constants = set() for expr in eom_expressions: constants = constants.union(expr.free_symbols) constants.remove(dynamicsymbols._t) return tuple(constants) @property def bodies(self): """Returns the bodies in the system""" if self._bodies is None: raise AttributeError("bodies were not specified for the system.") else: return self._bodies @property def loads(self): """Returns the loads in the system""" if self._loads is None: raise AttributeError("loads were not specified for the system.") else: return self._loads
c0925fd56913419e5bdb84b3260bbb396c816da7dbe22e33a897c2e9d846c324
from sympy.core.backend import zeros, Matrix, diff, eye from sympy.core.sorting import default_sort_key from sympy.solvers.solvers import solve_linear_system_LU from sympy.physics.vector import (ReferenceFrame, dynamicsymbols, partial_velocity) from sympy.physics.mechanics.method import _Methods from sympy.physics.mechanics.particle import Particle from sympy.physics.mechanics.rigidbody import RigidBody from sympy.physics.mechanics.functions import (msubs, find_dynamicsymbols, _f_list_parser) from sympy.physics.mechanics.linearize import Linearizer from sympy.utilities.iterables import iterable __all__ = ['KanesMethod'] class KanesMethod(_Methods): """Kane's method object. Explanation =========== This object is used to do the "book-keeping" as you go through and form equations of motion in the way Kane presents in: Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill The attributes are for equations in the form [M] udot = forcing. Attributes ========== q, u : Matrix Matrices of the generalized coordinates and speeds bodies : iterable Iterable of Point and RigidBody objects in the system. loads : iterable Iterable of (Point, vector) or (ReferenceFrame, vector) tuples describing the forces on the system. auxiliary : Matrix If applicable, the set of auxiliary Kane's equations used to solve for non-contributing forces. mass_matrix : Matrix The system's mass matrix forcing : Matrix The system's forcing vector mass_matrix_full : Matrix The "mass matrix" for the u's and q's forcing_full : Matrix The "forcing vector" for the u's and q's Examples ======== This is a simple example for a one degree of freedom translational spring-mass-damper. In this example, we first need to do the kinematics. This involves creating generalized speeds and coordinates and their derivatives. Then we create a point and set its velocity in a frame. >>> from sympy import symbols >>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame >>> from sympy.physics.mechanics import Point, Particle, KanesMethod >>> q, u = dynamicsymbols('q u') >>> qd, ud = dynamicsymbols('q u', 1) >>> m, c, k = symbols('m c k') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, u * N.x) Next we need to arrange/store information in the way that KanesMethod requires. The kinematic differential equations need to be stored in a dict. A list of forces/torques must be constructed, where each entry in the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the Vectors represent the Force or Torque. Next a particle needs to be created, and it needs to have a point and mass assigned to it. Finally, a list of all bodies and particles needs to be created. >>> kd = [qd - u] >>> FL = [(P, (-k * q - c * u) * N.x)] >>> pa = Particle('pa', P, m) >>> BL = [pa] Finally we can generate the equations of motion. First we create the KanesMethod object and supply an inertial frame, coordinates, generalized speeds, and the kinematic differential equations. Additional quantities such as configuration and motion constraints, dependent coordinates and speeds, and auxiliary speeds are also supplied here (see the online documentation). Next we form FR* and FR to complete: Fr + Fr* = 0. We have the equations of motion at this point. It makes sense to rearrange them though, so we calculate the mass matrix and the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is the mass matrix, udot is a vector of the time derivatives of the generalized speeds, and forcing is a vector representing "forcing" terms. >>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd) >>> (fr, frstar) = KM.kanes_equations(BL, FL) >>> MM = KM.mass_matrix >>> forcing = KM.forcing >>> rhs = MM.inv() * forcing >>> rhs Matrix([[(-c*u(t) - k*q(t))/m]]) >>> KM.linearize(A_and_B=True)[0] Matrix([ [ 0, 1], [-k/m, -c/m]]) Please look at the documentation pages for more information on how to perform linearization and how to deal with dependent coordinates & speeds, and how do deal with bringing non-contributing forces into evidence. """ def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None, configuration_constraints=None, u_dependent=None, velocity_constraints=None, acceleration_constraints=None, u_auxiliary=None, bodies=None, forcelist=None): """Please read the online documentation. """ if not q_ind: q_ind = [dynamicsymbols('dummy_q')] kd_eqs = [dynamicsymbols('dummy_kd')] if not isinstance(frame, ReferenceFrame): raise TypeError('An inertial ReferenceFrame must be supplied') self._inertial = frame self._fr = None self._frstar = None self._forcelist = forcelist self._bodylist = bodies self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent, u_auxiliary) self._initialize_kindiffeq_matrices(kd_eqs) self._initialize_constraint_matrices(configuration_constraints, velocity_constraints, acceleration_constraints) def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux): """Initialize the coordinate and speed vectors.""" none_handler = lambda x: Matrix(x) if x else Matrix() # Initialize generalized coordinates q_dep = none_handler(q_dep) if not iterable(q_ind): raise TypeError('Generalized coordinates must be an iterable.') if not iterable(q_dep): raise TypeError('Dependent coordinates must be an iterable.') q_ind = Matrix(q_ind) self._qdep = q_dep self._q = Matrix([q_ind, q_dep]) self._qdot = self.q.diff(dynamicsymbols._t) # Initialize generalized speeds u_dep = none_handler(u_dep) if not iterable(u_ind): raise TypeError('Generalized speeds must be an iterable.') if not iterable(u_dep): raise TypeError('Dependent speeds must be an iterable.') u_ind = Matrix(u_ind) self._udep = u_dep self._u = Matrix([u_ind, u_dep]) self._udot = self.u.diff(dynamicsymbols._t) self._uaux = none_handler(u_aux) def _initialize_constraint_matrices(self, config, vel, acc): """Initializes constraint matrices.""" # Define vector dimensions o = len(self.u) m = len(self._udep) p = o - m none_handler = lambda x: Matrix(x) if x else Matrix() # Initialize configuration constraints config = none_handler(config) if len(self._qdep) != len(config): raise ValueError('There must be an equal number of dependent ' 'coordinates and configuration constraints.') self._f_h = none_handler(config) # Initialize velocity and acceleration constraints vel = none_handler(vel) acc = none_handler(acc) if len(vel) != m: raise ValueError('There must be an equal number of dependent ' 'speeds and velocity constraints.') if acc and (len(acc) != m): raise ValueError('There must be an equal number of dependent ' 'speeds and acceleration constraints.') if vel: u_zero = {i: 0 for i in self.u} udot_zero = {i: 0 for i in self._udot} # When calling kanes_equations, another class instance will be # created if auxiliary u's are present. In this case, the # computation of kinetic differential equation matrices will be # skipped as this was computed during the original KanesMethod # object, and the qd_u_map will not be available. if self._qdot_u_map is not None: vel = msubs(vel, self._qdot_u_map) self._f_nh = msubs(vel, u_zero) self._k_nh = (vel - self._f_nh).jacobian(self.u) # If no acceleration constraints given, calculate them. if not acc: _f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u + self._f_nh.diff(dynamicsymbols._t)) if self._qdot_u_map is not None: _f_dnh = msubs(_f_dnh, self._qdot_u_map) self._f_dnh = _f_dnh self._k_dnh = self._k_nh else: if self._qdot_u_map is not None: acc = msubs(acc, self._qdot_u_map) self._f_dnh = msubs(acc, udot_zero) self._k_dnh = (acc - self._f_dnh).jacobian(self._udot) # Form of non-holonomic constraints is B*u + C = 0. # We partition B into independent and dependent columns: # Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds # to independent speeds as: udep = Ars*uind, neglecting the C term. B_ind = self._k_nh[:, :p] B_dep = self._k_nh[:, p:o] self._Ars = -B_dep.LUsolve(B_ind) else: self._f_nh = Matrix() self._k_nh = Matrix() self._f_dnh = Matrix() self._k_dnh = Matrix() self._Ars = Matrix() def _initialize_kindiffeq_matrices(self, kdeqs): """Initialize the kinematic differential equation matrices.""" if kdeqs: if len(self.q) != len(kdeqs): raise ValueError('There must be an equal number of kinematic ' 'differential equations and coordinates.') kdeqs = Matrix(kdeqs) u = self.u qdot = self._qdot # Dictionaries setting things to zero u_zero = {i: 0 for i in u} uaux_zero = {i: 0 for i in self._uaux} qdot_zero = {i: 0 for i in qdot} f_k = msubs(kdeqs, u_zero, qdot_zero) k_ku = (msubs(kdeqs, qdot_zero) - f_k).jacobian(u) k_kqdot = (msubs(kdeqs, u_zero) - f_k).jacobian(qdot) f_k = k_kqdot.LUsolve(f_k) k_ku = k_kqdot.LUsolve(k_ku) k_kqdot = eye(len(qdot)) self._qdot_u_map = solve_linear_system_LU( Matrix([k_kqdot.T, -(k_ku * u + f_k).T]).T, qdot) self._f_k = msubs(f_k, uaux_zero) self._k_ku = msubs(k_ku, uaux_zero) self._k_kqdot = k_kqdot else: self._qdot_u_map = None self._f_k = Matrix() self._k_ku = Matrix() self._k_kqdot = Matrix() def _form_fr(self, fl): """Form the generalized active force.""" if fl is not None and (len(fl) == 0 or not iterable(fl)): raise ValueError('Force pairs must be supplied in an ' 'non-empty iterable or None.') N = self._inertial # pull out relevant velocities for constructing partial velocities vel_list, f_list = _f_list_parser(fl, N) vel_list = [msubs(i, self._qdot_u_map) for i in vel_list] f_list = [msubs(i, self._qdot_u_map) for i in f_list] # Fill Fr with dot product of partial velocities and forces o = len(self.u) b = len(f_list) FR = zeros(o, 1) partials = partial_velocity(vel_list, self.u, N) for i in range(o): FR[i] = sum(partials[j][i] & f_list[j] for j in range(b)) # In case there are dependent speeds if self._udep: p = o - len(self._udep) FRtilde = FR[:p, 0] FRold = FR[p:o, 0] FRtilde += self._Ars.T * FRold FR = FRtilde self._forcelist = fl self._fr = FR return FR def _form_frstar(self, bl): """Form the generalized inertia force.""" if not iterable(bl): raise TypeError('Bodies must be supplied in an iterable.') t = dynamicsymbols._t N = self._inertial # Dicts setting things to zero udot_zero = {i: 0 for i in self._udot} uaux_zero = {i: 0 for i in self._uaux} uauxdot = [diff(i, t) for i in self._uaux] uauxdot_zero = {i: 0 for i in uauxdot} # Dictionary of q' and q'' to u and u' q_ddot_u_map = {k.diff(t): v.diff(t) for (k, v) in self._qdot_u_map.items()} q_ddot_u_map.update(self._qdot_u_map) # Fill up the list of partials: format is a list with num elements # equal to number of entries in body list. Each of these elements is a # list - either of length 1 for the translational components of # particles or of length 2 for the translational and rotational # components of rigid bodies. The inner most list is the list of # partial velocities. def get_partial_velocity(body): if isinstance(body, RigidBody): vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)] elif isinstance(body, Particle): vlist = [body.point.vel(N),] else: raise TypeError('The body list may only contain either ' 'RigidBody or Particle as list elements.') v = [msubs(vel, self._qdot_u_map) for vel in vlist] return partial_velocity(v, self.u, N) partials = [get_partial_velocity(body) for body in bl] # Compute fr_star in two components: # fr_star = -(MM*u' + nonMM) o = len(self.u) MM = zeros(o, o) nonMM = zeros(o, 1) zero_uaux = lambda expr: msubs(expr, uaux_zero) zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero) for i, body in enumerate(bl): if isinstance(body, RigidBody): M = zero_uaux(body.mass) I = zero_uaux(body.central_inertia) vel = zero_uaux(body.masscenter.vel(N)) omega = zero_uaux(body.frame.ang_vel_in(N)) acc = zero_udot_uaux(body.masscenter.acc(N)) inertial_force = (M.diff(t) * vel + M * acc) inertial_torque = zero_uaux((I.dt(body.frame) & omega) + msubs(I & body.frame.ang_acc_in(N), udot_zero) + (omega ^ (I & omega))) for j in range(o): tmp_vel = zero_uaux(partials[i][0][j]) tmp_ang = zero_uaux(I & partials[i][1][j]) for k in range(o): # translational MM[j, k] += M * (tmp_vel & partials[i][0][k]) # rotational MM[j, k] += (tmp_ang & partials[i][1][k]) nonMM[j] += inertial_force & partials[i][0][j] nonMM[j] += inertial_torque & partials[i][1][j] else: M = zero_uaux(body.mass) vel = zero_uaux(body.point.vel(N)) acc = zero_udot_uaux(body.point.acc(N)) inertial_force = (M.diff(t) * vel + M * acc) for j in range(o): temp = zero_uaux(partials[i][0][j]) for k in range(o): MM[j, k] += M * (temp & partials[i][0][k]) nonMM[j] += inertial_force & partials[i][0][j] # Compose fr_star out of MM and nonMM MM = zero_uaux(msubs(MM, q_ddot_u_map)) nonMM = msubs(msubs(nonMM, q_ddot_u_map), udot_zero, uauxdot_zero, uaux_zero) fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM) # If there are dependent speeds, we need to find fr_star_tilde if self._udep: p = o - len(self._udep) fr_star_ind = fr_star[:p, 0] fr_star_dep = fr_star[p:o, 0] fr_star = fr_star_ind + (self._Ars.T * fr_star_dep) # Apply the same to MM MMi = MM[:p, :] MMd = MM[p:o, :] MM = MMi + (self._Ars.T * MMd) self._bodylist = bl self._frstar = fr_star self._k_d = MM self._f_d = -msubs(self._fr + self._frstar, udot_zero) return fr_star def to_linearizer(self): """Returns an instance of the Linearizer class, initiated from the data in the KanesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more efficient recalculation (i.e. about varying operating points).""" if (self._fr is None) or (self._frstar is None): raise ValueError('Need to compute Fr, Fr* first.') # Get required equation components. The Kane's method class breaks # these into pieces. Need to reassemble f_c = self._f_h if self._f_nh and self._k_nh: f_v = self._f_nh + self._k_nh*Matrix(self.u) else: f_v = Matrix() if self._f_dnh and self._k_dnh: f_a = self._f_dnh + self._k_dnh*Matrix(self._udot) else: f_a = Matrix() # Dicts to sub to zero, for splitting up expressions u_zero = {i: 0 for i in self.u} ud_zero = {i: 0 for i in self._udot} qd_zero = {i: 0 for i in self._qdot} qd_u_zero = {i: 0 for i in Matrix([self._qdot, self.u])} # Break the kinematic differential eqs apart into f_0 and f_1 f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot) f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u) # Break the dynamic differential eqs into f_2 and f_3 f_2 = msubs(self._frstar, qd_u_zero) f_3 = msubs(self._frstar, ud_zero) + self._fr f_4 = zeros(len(f_2), 1) # Get the required vector components q = self.q u = self.u if self._qdep: q_i = q[:-len(self._qdep)] else: q_i = q q_d = self._qdep if self._udep: u_i = u[:-len(self._udep)] else: u_i = u u_d = self._udep # Form dictionary to set auxiliary speeds & their derivatives to 0. uaux = self._uaux uauxdot = uaux.diff(dynamicsymbols._t) uaux_zero = {i: 0 for i in Matrix([uaux, uauxdot])} # Checking for dynamic symbols outside the dynamic differential # equations; throws error if there is. sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot])) if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot, self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]): raise ValueError('Cannot have dynamicsymbols outside dynamic \ forcing vector.') # Find all other dynamic symbols, forming the forcing vector r. # Sort r to make it canonical. r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list)) r.sort(key=default_sort_key) # Check for any derivatives of variables in r that are also found in r. for i in r: if diff(i, dynamicsymbols._t) in r: raise ValueError('Cannot have derivatives of specified \ quantities when linearizing forcing terms.') return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i, q_d, u_i, u_d, r) # TODO : Remove `new_method` after 1.1 has been released. def linearize(self, *, new_method=None, **kwargs): """ Linearize the equations of motion about a symbolic operating point. Explanation =========== If kwarg A_and_B is False (default), returns M, A, B, r for the linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r. If kwarg A_and_B is True, returns A, B, r for the linearized form dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default A_and_B=False, returning M, A, and B. Values may then be substituted in to these matrices, and the state space form found as A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat. In both cases, r is found as all dynamicsymbols in the equations of motion that are not part of q, u, q', or u'. They are sorted in canonical form. The operating points may be also entered using the ``op_point`` kwarg. This takes a dictionary of {symbol: value}, or a an iterable of such dictionaries. The values may be numeric or symbolic. The more values you can specify beforehand, the faster this computation will run. For more documentation, please see the ``Linearizer`` class.""" linearizer = self.to_linearizer() result = linearizer.linearize(**kwargs) return result + (linearizer.r,) def kanes_equations(self, bodies=None, loads=None): """ Method to form Kane's equations, Fr + Fr* = 0. Explanation =========== Returns (Fr, Fr*). In the case where auxiliary generalized speeds are present (say, s auxiliary speeds, o generalized speeds, and m motion constraints) the length of the returned vectors will be o - m + s in length. The first o - m equations will be the constrained Kane's equations, then the s auxiliary Kane's equations. These auxiliary equations can be accessed with the auxiliary_eqs(). Parameters ========== bodies : iterable An iterable of all RigidBody's and Particle's in the system. A system must have at least one body. loads : iterable Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector) tuples which represent the force at a point or torque on a frame. Must be either a non-empty iterable of tuples or None which corresponds to a system with no constraints. """ if bodies is None: bodies = self.bodies if loads is None and self._forcelist is not None: loads = self._forcelist if loads == []: loads = None if not self._k_kqdot: raise AttributeError('Create an instance of KanesMethod with ' 'kinematic differential equations to use this method.') fr = self._form_fr(loads) frstar = self._form_frstar(bodies) if self._uaux: if not self._udep: km = KanesMethod(self._inertial, self.q, self._uaux, u_auxiliary=self._uaux) else: km = KanesMethod(self._inertial, self.q, self._uaux, u_auxiliary=self._uaux, u_dependent=self._udep, velocity_constraints=(self._k_nh * self.u + self._f_nh)) km._qdot_u_map = self._qdot_u_map self._km = km fraux = km._form_fr(loads) frstaraux = km._form_frstar(bodies) self._aux_eq = fraux + frstaraux self._fr = fr.col_join(fraux) self._frstar = frstar.col_join(frstaraux) return (self._fr, self._frstar) def _form_eoms(self): fr, frstar = self.kanes_equations(self.bodylist, self.forcelist) return fr + frstar def rhs(self, inv_method=None): """Returns the system's equations of motion in first order form. The output is the right hand side of:: x' = |q'| =: f(q, u, r, p, t) |u'| The right hand side is what is needed by most numerical ODE integrators. Parameters ========== inv_method : str The specific sympy inverse matrix calculation method to use. For a list of valid methods, see :meth:`~sympy.matrices.matrices.MatrixBase.inv` """ rhs = zeros(len(self.q) + len(self.u), 1) kdes = self.kindiffdict() for i, q_i in enumerate(self.q): rhs[i] = kdes[q_i.diff()] if inv_method is None: rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing) else: rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method, try_block_diag=True) * self.forcing) return rhs def kindiffdict(self): """Returns a dictionary mapping q' to u.""" if not self._qdot_u_map: raise AttributeError('Create an instance of KanesMethod with ' 'kinematic differential equations to use this method.') return self._qdot_u_map @property def auxiliary_eqs(self): """A matrix containing the auxiliary equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') if not self._uaux: raise ValueError('No auxiliary speeds have been declared.') return self._aux_eq @property def mass_matrix(self): """The mass matrix of the system.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') return Matrix([self._k_d, self._k_dnh]) @property def mass_matrix_full(self): """The mass matrix of the system, augmented by the kinematic differential equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') o = len(self.u) n = len(self.q) return ((self._k_kqdot).row_join(zeros(n, o))).col_join((zeros(o, n)).row_join(self.mass_matrix)) @property def forcing(self): """The forcing vector of the system.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') return -Matrix([self._f_d, self._f_dnh]) @property def forcing_full(self): """The forcing vector of the system, augmented by the kinematic differential equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') f1 = self._k_ku * Matrix(self.u) + self._f_k return -Matrix([f1, self._f_d, self._f_dnh]) @property def q(self): return self._q @property def u(self): return self._u @property def bodylist(self): return self._bodylist @property def forcelist(self): return self._forcelist @property def bodies(self): return self._bodylist @property def loads(self): return self._forcelist
9ceafc644b9ef74c5e3bc32974230b225b6f50494dc49bc14503290c1ef0eb45
from sympy.utilities import dict_merge from sympy.utilities.iterables import iterable from sympy.physics.vector import (Dyadic, Vector, ReferenceFrame, Point, dynamicsymbols) from sympy.physics.vector.printing import (vprint, vsprint, vpprint, vlatex, init_vprinting) from sympy.physics.mechanics.particle import Particle from sympy.physics.mechanics.rigidbody import RigidBody from sympy.simplify.simplify import simplify from sympy.core.backend import (Matrix, sympify, Mul, Derivative, sin, cos, tan, AppliedUndef, S) __all__ = ['inertia', 'inertia_of_point_mass', 'linear_momentum', 'angular_momentum', 'kinetic_energy', 'potential_energy', 'Lagrangian', 'mechanics_printing', 'mprint', 'msprint', 'mpprint', 'mlatex', 'msubs', 'find_dynamicsymbols'] # These are functions that we've moved and renamed during extracting the # basic vector calculus code from the mechanics packages. mprint = vprint msprint = vsprint mpprint = vpprint mlatex = vlatex def mechanics_printing(**kwargs): """ Initializes time derivative printing for all SymPy objects in mechanics module. """ init_vprinting(**kwargs) mechanics_printing.__doc__ = init_vprinting.__doc__ def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0): """Simple way to create inertia Dyadic object. Explanation =========== If you don't know what a Dyadic is, just treat this like the inertia tensor. Then, do the easy thing and define it in a body-fixed frame. Parameters ========== frame : ReferenceFrame The frame the inertia is defined in ixx : Sympifyable the xx element in the inertia dyadic iyy : Sympifyable the yy element in the inertia dyadic izz : Sympifyable the zz element in the inertia dyadic ixy : Sympifyable the xy element in the inertia dyadic iyz : Sympifyable the yz element in the inertia dyadic izx : Sympifyable the zx element in the inertia dyadic Examples ======== >>> from sympy.physics.mechanics import ReferenceFrame, inertia >>> N = ReferenceFrame('N') >>> inertia(N, 1, 2, 3) (N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z) """ if not isinstance(frame, ReferenceFrame): raise TypeError('Need to define the inertia in a frame') ol = sympify(ixx) * (frame.x | frame.x) ol += sympify(ixy) * (frame.x | frame.y) ol += sympify(izx) * (frame.x | frame.z) ol += sympify(ixy) * (frame.y | frame.x) ol += sympify(iyy) * (frame.y | frame.y) ol += sympify(iyz) * (frame.y | frame.z) ol += sympify(izx) * (frame.z | frame.x) ol += sympify(iyz) * (frame.z | frame.y) ol += sympify(izz) * (frame.z | frame.z) return ol def inertia_of_point_mass(mass, pos_vec, frame): """Inertia dyadic of a point mass relative to point O. Parameters ========== mass : Sympifyable Mass of the point mass pos_vec : Vector Position from point O to point mass frame : ReferenceFrame Reference frame to express the dyadic in Examples ======== >>> from sympy import symbols >>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass >>> N = ReferenceFrame('N') >>> r, m = symbols('r m') >>> px = r * N.x >>> inertia_of_point_mass(m, px, N) m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z) """ return mass * (((frame.x | frame.x) + (frame.y | frame.y) + (frame.z | frame.z)) * (pos_vec & pos_vec) - (pos_vec | pos_vec)) def linear_momentum(frame, *body): """Linear momentum of the system. Explanation =========== This function returns the linear momentum of a system of Particle's and/or RigidBody's. The linear momentum of a system is equal to the vector sum of the linear momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The linear momentum of the system, L, is equal to the vector sum of the linear momentum of the particle, L1, and the linear momentum of the rigid body, L2, i.e. L = L1 + L2 Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose linear momentum is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = Point('Ac') >>> Ac.set_vel(N, 25 * N.y) >>> I = outer(N.x, N.x) >>> A = RigidBody('A', Ac, N, 20, (I, Ac)) >>> linear_momentum(N, A, Pa) 10*N.x + 500*N.y """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please specify a valid ReferenceFrame') else: linear_momentum_sys = Vector(0) for e in body: if isinstance(e, (RigidBody, Particle)): linear_momentum_sys += e.linear_momentum(frame) else: raise TypeError('*body must have only Particle or RigidBody') return linear_momentum_sys def angular_momentum(point, frame, *body): """Angular momentum of a system. Explanation =========== This function returns the angular momentum of a system of Particle's and/or RigidBody's. The angular momentum of such a system is equal to the vector sum of the angular momentum of its constituents. Consider a system, S, comprised of a rigid body, A, and a particle, P. The angular momentum of the system, H, is equal to the vector sum of the angular momentum of the particle, H1, and the angular momentum of the rigid body, H2, i.e. H = H1 + H2 Parameters ========== point : Point The point about which angular momentum of the system is desired. frame : ReferenceFrame The frame in which angular momentum is desired. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose angular momentum is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> angular_momentum(O, N, Pa, A) 10*N.z """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please enter a valid ReferenceFrame') if not isinstance(point, Point): raise TypeError('Please specify a valid Point') else: angular_momentum_sys = Vector(0) for e in body: if isinstance(e, (RigidBody, Particle)): angular_momentum_sys += e.angular_momentum(point, frame) else: raise TypeError('*body must have only Particle or RigidBody') return angular_momentum_sys def kinetic_energy(frame, *body): """Kinetic energy of a multibody system. Explanation =========== This function returns the kinetic energy of a system of Particle's and/or RigidBody's. The kinetic energy of such a system is equal to the sum of the kinetic energies of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The kinetic energy of the system, T, is equal to the vector sum of the kinetic energy of the particle, T1, and the kinetic energy of the rigid body, T2, i.e. T = T1 + T2 Kinetic energy is a scalar. Parameters ========== frame : ReferenceFrame The frame in which the velocity or angular velocity of the body is defined. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose kinetic energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> kinetic_energy(N, Pa, A) 350 """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please enter a valid ReferenceFrame') ke_sys = S.Zero for e in body: if isinstance(e, (RigidBody, Particle)): ke_sys += e.kinetic_energy(frame) else: raise TypeError('*body must have only Particle or RigidBody') return ke_sys def potential_energy(*body): """Potential energy of a multibody system. Explanation =========== This function returns the potential energy of a system of Particle's and/or RigidBody's. The potential energy of such a system is equal to the sum of the potential energy of its constituents. Consider a system, S, comprising a rigid body, A, and a particle, P. The potential energy of the system, V, is equal to the vector sum of the potential energy of the particle, V1, and the potential energy of the rigid body, V2, i.e. V = V1 + V2 Potential energy is a scalar. Parameters ========== body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose potential energy is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, potential_energy >>> from sympy import symbols >>> M, m, g, h = symbols('M m g h') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> Pa = Particle('Pa', P, m) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> a = ReferenceFrame('a') >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, M, (I, Ac)) >>> Pa.potential_energy = m * g * h >>> A.potential_energy = M * g * h >>> potential_energy(Pa, A) M*g*h + g*h*m """ pe_sys = S.Zero for e in body: if isinstance(e, (RigidBody, Particle)): pe_sys += e.potential_energy else: raise TypeError('*body must have only Particle or RigidBody') return pe_sys def gravity(acceleration, *bodies): """ Returns a list of gravity forces given the acceleration due to gravity and any number of particles or rigidbodies. Example ======= >>> from sympy.physics.mechanics import ReferenceFrame, Point, Particle, outer, RigidBody >>> from sympy.physics.mechanics.functions import gravity >>> from sympy import symbols >>> N = ReferenceFrame('N') >>> m, M, g = symbols('m M g') >>> F1, F2 = symbols('F1 F2') >>> po = Point('po') >>> pa = Particle('pa', po, m) >>> A = ReferenceFrame('A') >>> P = Point('P') >>> I = outer(A.x, A.x) >>> B = RigidBody('B', P, A, M, (I, P)) >>> forceList = [(po, F1), (P, F2)] >>> forceList.extend(gravity(g*N.y, pa, B)) >>> forceList [(po, F1), (P, F2), (po, g*m*N.y), (P, M*g*N.y)] """ gravity_force = [] if not bodies: raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.") for e in bodies: point = getattr(e, 'masscenter', None) if point is None: point = e.point gravity_force.append((point, e.mass*acceleration)) return gravity_force def center_of_mass(point, *bodies): """ Returns the position vector from the given point to the center of mass of the given bodies(particles or rigidbodies). Example ======= >>> from sympy import symbols, S >>> from sympy.physics.vector import Point >>> from sympy.physics.mechanics import Particle, ReferenceFrame, RigidBody, outer >>> from sympy.physics.mechanics.functions import center_of_mass >>> a = ReferenceFrame('a') >>> m = symbols('m', real=True) >>> p1 = Particle('p1', Point('p1_pt'), S(1)) >>> p2 = Particle('p2', Point('p2_pt'), S(2)) >>> p3 = Particle('p3', Point('p3_pt'), S(3)) >>> p4 = Particle('p4', Point('p4_pt'), m) >>> b_f = ReferenceFrame('b_f') >>> b_cm = Point('b_cm') >>> mb = symbols('mb') >>> b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm)) >>> p2.point.set_pos(p1.point, a.x) >>> p3.point.set_pos(p1.point, a.x + a.y) >>> p4.point.set_pos(p1.point, a.y) >>> b.masscenter.set_pos(p1.point, a.y + a.z) >>> point_o=Point('o') >>> point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b)) >>> expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z >>> point_o.pos_from(p1.point) 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z """ if not bodies: raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.") total_mass = 0 vec = Vector(0) for i in bodies: total_mass += i.mass masscenter = getattr(i, 'masscenter', None) if masscenter is None: masscenter = i.point vec += i.mass*masscenter.pos_from(point) return vec/total_mass def Lagrangian(frame, *body): """Lagrangian of a multibody system. Explanation =========== This function returns the Lagrangian of a system of Particle's and/or RigidBody's. The Lagrangian of such a system is equal to the difference between the kinetic energies and potential energies of its constituents. If T and V are the kinetic and potential energies of a system then it's Lagrangian, L, is defined as L = T - V The Lagrangian is a scalar. Parameters ========== frame : ReferenceFrame The frame in which the velocity or angular velocity of the body is defined to determine the kinetic energy. body1, body2, body3... : Particle and/or RigidBody The body (or bodies) whose Lagrangian is required. Examples ======== >>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame >>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian >>> from sympy import symbols >>> M, m, g, h = symbols('M m g h') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> O.set_vel(N, 0 * N.x) >>> P = O.locatenew('P', 1 * N.x) >>> P.set_vel(N, 10 * N.x) >>> Pa = Particle('Pa', P, 1) >>> Ac = O.locatenew('Ac', 2 * N.y) >>> Ac.set_vel(N, 5 * N.y) >>> a = ReferenceFrame('a') >>> a.set_ang_vel(N, 10 * N.z) >>> I = outer(N.z, N.z) >>> A = RigidBody('A', Ac, a, 20, (I, Ac)) >>> Pa.potential_energy = m * g * h >>> A.potential_energy = M * g * h >>> Lagrangian(N, Pa, A) -M*g*h - g*h*m + 350 """ if not isinstance(frame, ReferenceFrame): raise TypeError('Please supply a valid ReferenceFrame') for e in body: if not isinstance(e, (RigidBody, Particle)): raise TypeError('*body must have only Particle or RigidBody') return kinetic_energy(frame, *body) - potential_energy(*body) def find_dynamicsymbols(expression, exclude=None, reference_frame=None): """Find all dynamicsymbols in expression. Explanation =========== If the optional ``exclude`` kwarg is used, only dynamicsymbols not in the iterable ``exclude`` are returned. If we intend to apply this function on a vector, the optional ``reference_frame`` is also used to inform about the corresponding frame with respect to which the dynamic symbols of the given vector is to be determined. Parameters ========== expression : SymPy expression exclude : iterable of dynamicsymbols, optional reference_frame : ReferenceFrame, optional The frame with respect to which the dynamic symbols of the given vector is to be determined. Examples ======== >>> from sympy.physics.mechanics import dynamicsymbols, find_dynamicsymbols >>> from sympy.physics.mechanics import ReferenceFrame >>> x, y = dynamicsymbols('x, y') >>> expr = x + x.diff()*y >>> find_dynamicsymbols(expr) {x(t), y(t), Derivative(x(t), t)} >>> find_dynamicsymbols(expr, exclude=[x, y]) {Derivative(x(t), t)} >>> a, b, c = dynamicsymbols('a, b, c') >>> A = ReferenceFrame('A') >>> v = a * A.x + b * A.y + c * A.z >>> find_dynamicsymbols(v, reference_frame=A) {a(t), b(t), c(t)} """ t_set = {dynamicsymbols._t} if exclude: if iterable(exclude): exclude_set = set(exclude) else: raise TypeError("exclude kwarg must be iterable") else: exclude_set = set() if isinstance(expression, Vector): if reference_frame is None: raise ValueError("You must provide reference_frame when passing a " "vector expression, got %s." % reference_frame) else: expression = expression.to_matrix(reference_frame) return {i for i in expression.atoms(AppliedUndef, Derivative) if i.free_symbols == t_set} - exclude_set def msubs(expr, *sub_dicts, smart=False, **kwargs): """A custom subs for use on expressions derived in physics.mechanics. Traverses the expression tree once, performing the subs found in sub_dicts. Terms inside ``Derivative`` expressions are ignored: Examples ======== >>> from sympy.physics.mechanics import dynamicsymbols, msubs >>> x = dynamicsymbols('x') >>> msubs(x.diff() + x, {x: 1}) Derivative(x(t), t) + 1 Note that sub_dicts can be a single dictionary, or several dictionaries: >>> x, y, z = dynamicsymbols('x, y, z') >>> sub1 = {x: 1, y: 2} >>> sub2 = {z: 3, x.diff(): 4} >>> msubs(x.diff() + x + y + z, sub1, sub2) 10 If smart=True (default False), also checks for conditions that may result in ``nan``, but if simplified would yield a valid expression. For example: >>> from sympy import sin, tan >>> (sin(x)/tan(x)).subs(x, 0) nan >>> msubs(sin(x)/tan(x), {x: 0}, smart=True) 1 It does this by first replacing all ``tan`` with ``sin/cos``. Then each node is traversed. If the node is a fraction, subs is first evaluated on the denominator. If this results in 0, simplification of the entire fraction is attempted. Using this selective simplification, only subexpressions that result in 1/0 are targeted, resulting in faster performance. """ sub_dict = dict_merge(*sub_dicts) if smart: func = _smart_subs elif hasattr(expr, 'msubs'): return expr.msubs(sub_dict) else: func = lambda expr, sub_dict: _crawl(expr, _sub_func, sub_dict) if isinstance(expr, (Matrix, Vector, Dyadic)): return expr.applyfunc(lambda x: func(x, sub_dict)) else: return func(expr, sub_dict) def _crawl(expr, func, *args, **kwargs): """Crawl the expression tree, and apply func to every node.""" val = func(expr, *args, **kwargs) if val is not None: return val new_args = (_crawl(arg, func, *args, **kwargs) for arg in expr.args) return expr.func(*new_args) def _sub_func(expr, sub_dict): """Perform direct matching substitution, ignoring derivatives.""" if expr in sub_dict: return sub_dict[expr] elif not expr.args or expr.is_Derivative: return expr def _tan_repl_func(expr): """Replace tan with sin/cos.""" if isinstance(expr, tan): return sin(*expr.args) / cos(*expr.args) elif not expr.args or expr.is_Derivative: return expr def _smart_subs(expr, sub_dict): """Performs subs, checking for conditions that may result in `nan` or `oo`, and attempts to simplify them out. The expression tree is traversed twice, and the following steps are performed on each expression node: - First traverse: Replace all `tan` with `sin/cos`. - Second traverse: If node is a fraction, check if the denominator evaluates to 0. If so, attempt to simplify it out. Then if node is in sub_dict, sub in the corresponding value.""" expr = _crawl(expr, _tan_repl_func) def _recurser(expr, sub_dict): # Decompose the expression into num, den num, den = _fraction_decomp(expr) if den != 1: # If there is a non trivial denominator, we need to handle it denom_subbed = _recurser(den, sub_dict) if denom_subbed.evalf() == 0: # If denom is 0 after this, attempt to simplify the bad expr expr = simplify(expr) else: # Expression won't result in nan, find numerator num_subbed = _recurser(num, sub_dict) return num_subbed / denom_subbed # We have to crawl the tree manually, because `expr` may have been # modified in the simplify step. First, perform subs as normal: val = _sub_func(expr, sub_dict) if val is not None: return val new_args = (_recurser(arg, sub_dict) for arg in expr.args) return expr.func(*new_args) return _recurser(expr, sub_dict) def _fraction_decomp(expr): """Return num, den such that expr = num/den""" if not isinstance(expr, Mul): return expr, 1 num = [] den = [] for a in expr.args: if a.is_Pow and a.args[1] < 0: den.append(1 / a) else: num.append(a) if not den: return expr, 1 num = Mul(*num) den = Mul(*den) return num, den def _f_list_parser(fl, ref_frame): """Parses the provided forcelist composed of items of the form (obj, force). Returns a tuple containing: vel_list: The velocity (ang_vel for Frames, vel for Points) in the provided reference frame. f_list: The forces. Used internally in the KanesMethod and LagrangesMethod classes. """ def flist_iter(): for pair in fl: obj, force = pair if isinstance(obj, ReferenceFrame): yield obj.ang_vel_in(ref_frame), force elif isinstance(obj, Point): yield obj.vel(ref_frame), force else: raise TypeError('First entry in each forcelist pair must ' 'be a point or frame.') if not fl: vel_list, f_list = (), () else: unzip = lambda l: list(zip(*l)) if l[0] else [(), ()] vel_list, f_list = unzip(list(flist_iter())) return vel_list, f_list
c6cf30ea9625cb8bbda4d95be0430bdd87bd05aa762d0968fa2bdf4546d68220
# coding=utf-8 from abc import ABC, abstractmethod from sympy.core.numbers import pi from sympy.physics.mechanics.body import Body from sympy.physics.vector import Vector, dynamicsymbols, cross from sympy.physics.vector.frame import ReferenceFrame import warnings __all__ = ['Joint', 'PinJoint', 'PrismaticJoint'] class Joint(ABC): """Abstract base class for all specific joints. Explanation =========== A joint subtracts degrees of freedom from a body. This is the base class for all specific joints and holds all common methods acting as an interface for all joints. Custom joint can be created by inheriting Joint class and defining all abstract functions. The abstract methods are: - ``_generate_coordinates`` - ``_generate_speeds`` - ``_orient_frames`` - ``_set_angular_velocity`` - ``_set_linar_velocity`` Parameters ========== name : string A unique name for the joint. parent : Body The parent body of joint. child : Body The child body of joint. coordinates: List of dynamicsymbols, optional Generalized coordinates of the joint. speeds : List of dynamicsymbols, optional Generalized speeds of joint. parent_joint_pos : Vector, optional Vector from the parent body's mass center to the point where the parent and child are connected. The default value is the zero vector. child_joint_pos : Vector, optional Vector from the child body's mass center to the point where the parent and child are connected. The default value is the zero vector. parent_axis : Vector, optional Axis fixed in the parent body which aligns with an axis fixed in the child body. The default is x axis in parent's reference frame. child_axis : Vector, optional Axis fixed in the child body which aligns with an axis fixed in the parent body. The default is x axis in child's reference frame. Attributes ========== name : string The joint's name. parent : Body The joint's parent body. child : Body The joint's child body. coordinates : list List of the joint's generalized coordinates. speeds : list List of the joint's generalized speeds. parent_point : Point The point fixed in the parent body that represents the joint. child_point : Point The point fixed in the child body that represents the joint. parent_axis : Vector The axis fixed in the parent frame that represents the joint. child_axis : Vector The axis fixed in the child frame that represents the joint. kdes : list Kinematical differential equations of the joint. Notes ===== The direction cosine matrix between the child and parent is formed using a simple rotation about an axis that is normal to both ``child_axis`` and ``parent_axis``. In general, the normal axis is formed by crossing the ``child_axis`` into the ``parent_axis`` except if the child and parent axes are in exactly opposite directions. In that case the rotation vector is chosen using the rules in the following table where ``C`` is the child reference frame and ``P`` is the parent reference frame: .. list-table:: :header-rows: 1 * - ``child_axis`` - ``parent_axis`` - ``rotation_axis`` * - ``-C.x`` - ``P.x`` - ``P.z`` * - ``-C.y`` - ``P.y`` - ``P.x`` * - ``-C.z`` - ``P.z`` - ``P.y`` * - ``-C.x-C.y`` - ``P.x+P.y`` - ``P.z`` * - ``-C.y-C.z`` - ``P.y+P.z`` - ``P.x`` * - ``-C.x-C.z`` - ``P.x+P.z`` - ``P.y`` * - ``-C.x-C.y-C.z`` - ``P.x+P.y+P.z`` - ``(P.x+P.y+P.z) × P.x`` """ def __init__(self, name, parent, child, coordinates=None, speeds=None, parent_joint_pos=None, child_joint_pos=None, parent_axis=None, child_axis=None): if not isinstance(name, str): raise TypeError('Supply a valid name.') self._name = name if not isinstance(parent, Body): raise TypeError('Parent must be an instance of Body.') self._parent = parent if not isinstance(child, Body): raise TypeError('Parent must be an instance of Body.') self._child = child self._coordinates = self._generate_coordinates(coordinates) self._speeds = self._generate_speeds(speeds) self._kdes = self._generate_kdes() self._parent_axis = self._axis(parent, parent_axis) self._child_axis = self._axis(child, child_axis) self._parent_point = self._locate_joint_pos(parent, parent_joint_pos) self._child_point = self._locate_joint_pos(child, child_joint_pos) self._orient_frames() self._set_angular_velocity() self._set_linear_velocity() def __str__(self): return self.name def __repr__(self): return self.__str__() @property def name(self): return self._name @property def parent(self): """Parent body of Joint.""" return self._parent @property def child(self): """Child body of Joint.""" return self._child @property def coordinates(self): """List generalized coordinates of the joint.""" return self._coordinates @property def speeds(self): """List generalized coordinates of the joint..""" return self._speeds @property def kdes(self): """Kinematical differential equations of the joint.""" return self._kdes @property def parent_axis(self): """The axis of parent frame.""" return self._parent_axis @property def child_axis(self): """The axis of child frame.""" return self._child_axis @property def parent_point(self): """The joint's point where parent body is connected to the joint.""" return self._parent_point @property def child_point(self): """The joint's point where child body is connected to the joint.""" return self._child_point @abstractmethod def _generate_coordinates(self, coordinates): """Generate list generalized coordinates of the joint.""" pass @abstractmethod def _generate_speeds(self, speeds): """Generate list generalized speeds of the joint.""" pass @abstractmethod def _orient_frames(self): """Orient frames as per the joint.""" pass @abstractmethod def _set_angular_velocity(self): pass @abstractmethod def _set_linear_velocity(self): pass def _generate_kdes(self): kdes = [] t = dynamicsymbols._t for i in range(len(self.coordinates)): kdes.append(-self.coordinates[i].diff(t) + self.speeds[i]) return kdes def _axis(self, body, ax): if ax is None: ax = body.frame.x return ax if not isinstance(ax, Vector): raise TypeError("Axis must be of type Vector.") if not ax.dt(body.frame) == 0: msg = ('Axis cannot be time-varying when viewed from the ' 'associated body.') raise ValueError(msg) return ax def _locate_joint_pos(self, body, joint_pos): if joint_pos is None: joint_pos = Vector(0) if not isinstance(joint_pos, Vector): raise ValueError('Joint Position must be supplied as Vector.') if not joint_pos.dt(body.frame) == 0: msg = ('Position Vector cannot be time-varying when viewed from ' 'the associated body.') raise ValueError(msg) point_name = self._name + '_' + body.name + '_joint' return body.masscenter.locatenew(point_name, joint_pos) def _alignment_rotation(self, parent, child): # Returns the axis and angle between two axis(vectors). angle = parent.angle_between(child) axis = cross(child, parent).normalize() return angle, axis def _generate_vector(self): parent_frame = self.parent.frame components = self.parent_axis.to_matrix(parent_frame) x, y, z = components[0], components[1], components[2] if x != 0: if y!=0: if z!=0: return cross(self.parent_axis, parent_frame.x) if z!=0: return parent_frame.y return parent_frame.z if x == 0: if y!=0: if z!=0: return parent_frame.x return parent_frame.x return parent_frame.y def _set_orientation(self): #Helper method for `orient_axis()` self.child.frame.orient_axis(self.parent.frame, self.parent_axis, 0) angle, axis = self._alignment_rotation(self.parent_axis, self.child_axis) with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) if axis != Vector(0) or angle == pi: if angle == pi: axis = self._generate_vector() int_frame = ReferenceFrame('int_frame') int_frame.orient_axis(self.child.frame, self.child_axis, 0) int_frame.orient_axis(self.parent.frame, axis, angle) return int_frame return self.parent.frame class PinJoint(Joint): """Pin (Revolute) Joint. Explanation =========== A pin joint is defined such that the joint rotation axis is fixed in both the child and parent and the location of the joint is relative to the mass center of each body. The child rotates an angle, θ, from the parent about the rotation axis and has a simple angular speed, ω, relative to the parent. The direction cosine matrix between the child and parent is formed using a simple rotation about an axis that is normal to both ``child_axis`` and ``parent_axis``, see the Notes section for a detailed explanation of this. Parameters ========== name : string A unique name for the joint. parent : Body The parent body of joint. child : Body The child body of joint. coordinates: dynamicsymbol, optional Generalized coordinates of the joint. speeds : dynamicsymbol, optional Generalized speeds of joint. parent_joint_pos : Vector, optional Vector from the parent body's mass center to the point where the parent and child are connected. The default value is the zero vector. child_joint_pos : Vector, optional Vector from the child body's mass center to the point where the parent and child are connected. The default value is the zero vector. parent_axis : Vector, optional Axis fixed in the parent body which aligns with an axis fixed in the child body. The default is x axis in parent's reference frame. child_axis : Vector, optional Axis fixed in the child body which aligns with an axis fixed in the parent body. The default is x axis in child's reference frame. Attributes ========== name : string The joint's name. parent : Body The joint's parent body. child : Body The joint's child body. coordinates : list List of the joint's generalized coordinates. speeds : list List of the joint's generalized speeds. parent_point : Point The point fixed in the parent body that represents the joint. child_point : Point The point fixed in the child body that represents the joint. parent_axis : Vector The axis fixed in the parent frame that represents the joint. child_axis : Vector The axis fixed in the child frame that represents the joint. kdes : list Kinematical differential equations of the joint. Examples ========= A single pin joint is created from two bodies and has the following basic attributes: >>> from sympy.physics.mechanics import Body, PinJoint >>> parent = Body('P') >>> parent P >>> child = Body('C') >>> child C >>> joint = PinJoint('PC', parent, child) >>> joint PinJoint: PC parent: P child: C >>> joint.name 'PC' >>> joint.parent P >>> joint.child C >>> joint.parent_point PC_P_joint >>> joint.child_point PC_C_joint >>> joint.parent_axis P_frame.x >>> joint.child_axis C_frame.x >>> joint.coordinates [theta_PC(t)] >>> joint.speeds [omega_PC(t)] >>> joint.child.frame.ang_vel_in(joint.parent.frame) omega_PC(t)*P_frame.x >>> joint.child.frame.dcm(joint.parent.frame) Matrix([ [1, 0, 0], [0, cos(theta_PC(t)), sin(theta_PC(t))], [0, -sin(theta_PC(t)), cos(theta_PC(t))]]) >>> joint.child_point.pos_from(joint.parent_point) 0 To further demonstrate the use of the pin joint, the kinematics of simple double pendulum that rotates about the Z axis of each connected body can be created as follows. >>> from sympy import symbols, trigsimp >>> from sympy.physics.mechanics import Body, PinJoint >>> l1, l2 = symbols('l1 l2') First create bodies to represent the fixed ceiling and one to represent each pendulum bob. >>> ceiling = Body('C') >>> upper_bob = Body('U') >>> lower_bob = Body('L') The first joint will connect the upper bob to the ceiling by a distance of ``l1`` and the joint axis will be about the Z axis for each body. >>> ceiling_joint = PinJoint('P1', ceiling, upper_bob, ... child_joint_pos=-l1*upper_bob.frame.x, ... parent_axis=ceiling.frame.z, ... child_axis=upper_bob.frame.z) The second joint will connect the lower bob to the upper bob by a distance of ``l2`` and the joint axis will also be about the Z axis for each body. >>> pendulum_joint = PinJoint('P2', upper_bob, lower_bob, ... child_joint_pos=-l2*lower_bob.frame.x, ... parent_axis=upper_bob.frame.z, ... child_axis=lower_bob.frame.z) Once the joints are established the kinematics of the connected bodies can be accessed. First the direction cosine matrices of pendulum link relative to the ceiling are found: >>> upper_bob.frame.dcm(ceiling.frame) Matrix([ [ cos(theta_P1(t)), sin(theta_P1(t)), 0], [-sin(theta_P1(t)), cos(theta_P1(t)), 0], [ 0, 0, 1]]) >>> trigsimp(lower_bob.frame.dcm(ceiling.frame)) Matrix([ [ cos(theta_P1(t) + theta_P2(t)), sin(theta_P1(t) + theta_P2(t)), 0], [-sin(theta_P1(t) + theta_P2(t)), cos(theta_P1(t) + theta_P2(t)), 0], [ 0, 0, 1]]) The position of the lower bob's masscenter is found with: >>> lower_bob.masscenter.pos_from(ceiling.masscenter) l1*U_frame.x + l2*L_frame.x The angular velocities of the two pendulum links can be computed with respect to the ceiling. >>> upper_bob.frame.ang_vel_in(ceiling.frame) omega_P1(t)*C_frame.z >>> lower_bob.frame.ang_vel_in(ceiling.frame) omega_P1(t)*C_frame.z + omega_P2(t)*U_frame.z And finally, the linear velocities of the two pendulum bobs can be computed with respect to the ceiling. >>> upper_bob.masscenter.vel(ceiling.frame) l1*omega_P1(t)*U_frame.y >>> lower_bob.masscenter.vel(ceiling.frame) l1*omega_P1(t)*U_frame.y + l2*(omega_P1(t) + omega_P2(t))*L_frame.y """ def __init__(self, name, parent, child, coordinates=None, speeds=None, parent_joint_pos=None, child_joint_pos=None, parent_axis=None, child_axis=None): super().__init__(name, parent, child, coordinates, speeds, parent_joint_pos, child_joint_pos, parent_axis, child_axis) def __str__(self): return (f'PinJoint: {self.name} parent: {self.parent} ' f'child: {self.child}') def _generate_coordinates(self, coordinate): coordinates = [] if coordinate is None: theta = dynamicsymbols('theta' + '_' + self._name) coordinate = theta coordinates.append(coordinate) return coordinates def _generate_speeds(self, speed): speeds = [] if speed is None: omega = dynamicsymbols('omega' + '_' + self._name) speed = omega speeds.append(speed) return speeds def _orient_frames(self): frame = self._set_orientation() self.child.frame.orient_axis(frame, self.parent_axis, self.coordinates[0]) def _set_angular_velocity(self): self.child.frame.set_ang_vel(self.parent.frame, self.speeds[0] * self.parent_axis.normalize()) def _set_linear_velocity(self): self.parent_point.set_vel(self.parent.frame, 0) self.child_point.set_vel(self.parent.frame, 0) self.child_point.set_pos(self.parent_point, 0) self.child.masscenter.v2pt_theory(self.parent.masscenter, self.parent.frame, self.child.frame) class PrismaticJoint(Joint): """Prismatic (Sliding) Joint. Explanation =========== It is defined such that the child body translates with respect to the parent body along the body fixed parent axis. The location of the joint is defined by two points in each body which coincides when the generalized coordinate is zero. The direction cosine matrix between the child and parent is formed using a simple rotation about an axis that is normal to both ``child_axis`` and ``parent_axis``, see the Notes section for a detailed explanation of this. Parameters ========== name : string A unique name for the joint. parent : Body The parent body of joint. child : Body The child body of joint. coordinates: dynamicsymbol, optional Generalized coordinates of the joint. speeds : dynamicsymbol, optional Generalized speeds of joint. parent_joint_pos : Vector, optional Vector from the parent body's mass center to the point where the parent and child are connected. The default value is the zero vector. child_joint_pos : Vector, optional Vector from the child body's mass center to the point where the parent and child are connected. The default value is the zero vector. parent_axis : Vector, optional Axis fixed in the parent body which aligns with an axis fixed in the child body. The default is x axis in parent's reference frame. child_axis : Vector, optional Axis fixed in the child body which aligns with an axis fixed in the parent body. The default is x axis in child's reference frame. Attributes ========== name : string The joint's name. parent : Body The joint's parent body. child : Body The joint's child body. coordinates : list List of the joint's generalized coordinates. speeds : list List of the joint's generalized speeds. parent_point : Point The point fixed in the parent body that represents the joint. child_point : Point The point fixed in the child body that represents the joint. parent_axis : Vector The axis fixed in the parent frame that represents the joint. child_axis : Vector The axis fixed in the child frame that represents the joint. kdes : list Kinematical differential equations of the joint. Examples ========= A single prismatic joint is created from two bodies and has the following basic attributes: >>> from sympy.physics.mechanics import Body, PrismaticJoint >>> parent = Body('P') >>> parent P >>> child = Body('C') >>> child C >>> joint = PrismaticJoint('PC', parent, child) >>> joint PrismaticJoint: PC parent: P child: C >>> joint.name 'PC' >>> joint.parent P >>> joint.child C >>> joint.parent_point PC_P_joint >>> joint.child_point PC_C_joint >>> joint.parent_axis P_frame.x >>> joint.child_axis C_frame.x >>> joint.coordinates [x_PC(t)] >>> joint.speeds [v_PC(t)] >>> joint.child.frame.ang_vel_in(joint.parent.frame) 0 >>> joint.child.frame.dcm(joint.parent.frame) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> joint.child_point.pos_from(joint.parent_point) x_PC(t)*P_frame.x To further demonstrate the use of the prismatic joint, the kinematics of two masses sliding, one moving relative to a fixed body and the other relative to the moving body. about the X axis of each connected body can be created as follows. >>> from sympy.physics.mechanics import PrismaticJoint, Body First create bodies to represent the fixed ceiling and one to represent a particle. >>> wall = Body('W') >>> Part1 = Body('P1') >>> Part2 = Body('P2') The first joint will connect the particle to the ceiling and the joint axis will be about the X axis for each body. >>> J1 = PrismaticJoint('J1', wall, Part1) The second joint will connect the second particle to the first particle and the joint axis will also be about the X axis for each body. >>> J2 = PrismaticJoint('J2', Part1, Part2) Once the joint is established the kinematics of the connected bodies can be accessed. First the direction cosine matrices of Part relative to the ceiling are found: >>> Part1.dcm(wall) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> Part2.dcm(wall) Matrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1]]) The position of the particles' masscenter is found with: >>> Part1.masscenter.pos_from(wall.masscenter) x_J1(t)*W_frame.x >>> Part2.masscenter.pos_from(wall.masscenter) x_J1(t)*W_frame.x + x_J2(t)*P1_frame.x The angular velocities of the two particle links can be computed with respect to the ceiling. >>> Part1.ang_vel_in(wall) 0 >>> Part2.ang_vel_in(wall) 0 And finally, the linear velocities of the two particles can be computed with respect to the ceiling. >>> Part1.masscenter_vel(wall) v_J1(t)*W_frame.x >>> Part2.masscenter.vel(wall.frame) v_J1(t)*W_frame.x + v_J2(t)*P1_frame.x """ def __init__(self, name, parent, child, coordinates=None, speeds=None, parent_joint_pos=None, child_joint_pos=None, parent_axis=None, child_axis=None): super().__init__(name, parent, child, coordinates, speeds, parent_joint_pos, child_joint_pos, parent_axis, child_axis) def __str__(self): return (f'PrismaticJoint: {self.name} parent: {self.parent} ' f'child: {self.child}') def _generate_coordinates(self, coordinate): coordinates = [] if coordinate is None: x = dynamicsymbols('x' + '_' + self._name) coordinate = x coordinates.append(coordinate) return coordinates def _generate_speeds(self, speed): speeds = [] if speed is None: y = dynamicsymbols('v' + '_' + self._name) speed = y speeds.append(speed) return speeds def _orient_frames(self): frame = self._set_orientation() self.child.frame.orient_axis(frame, self.parent_axis, 0) def _set_angular_velocity(self): self.child.frame.set_ang_vel(self.parent.frame, 0) def _set_linear_velocity(self): self.parent_point.set_vel(self.parent.frame, 0) self.child_point.set_vel(self.child.frame, 0) self.child_point.set_pos(self.parent_point, self.coordinates[0] * self.parent_axis.normalize()) self.child_point.set_vel(self.parent.frame, self.speeds[0] * self.parent_axis.normalize()) self.child.masscenter.set_vel(self.parent.frame, self.speeds[0] * self.parent_axis.normalize())
cae60972d5efc4a73731b9f7d66d1f7433f005daf14ab61c05fb0e05d239bbef
__all__ = ['Linearizer'] from sympy.core.backend import Matrix, eye, zeros from sympy.core.symbol import Dummy from sympy.utilities.iterables import flatten from sympy.physics.vector import dynamicsymbols from sympy.physics.mechanics.functions import msubs from collections import namedtuple from collections.abc import Iterable class Linearizer: """This object holds the general model form for a dynamic system. This model is used for computing the linearized form of the system, while properly dealing with constraints leading to dependent coordinates and speeds. Attributes ========== f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : Matrix Matrices holding the general system form. q, u, r : Matrix Matrices holding the generalized coordinates, speeds, and input vectors. q_i, u_i : Matrix Matrices of the independent generalized coordinates and speeds. q_d, u_d : Matrix Matrices of the dependent generalized coordinates and speeds. perm_mat : Matrix Permutation matrix such that [q_ind, u_ind]^T = perm_mat*[q, u]^T """ def __init__(self, f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i=None, q_d=None, u_i=None, u_d=None, r=None, lams=None): """ Parameters ========== f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a : array_like System of equations holding the general system form. Supply empty array or Matrix if the parameter doesn't exist. q : array_like The generalized coordinates. u : array_like The generalized speeds q_i, u_i : array_like, optional The independent generalized coordinates and speeds. q_d, u_d : array_like, optional The dependent generalized coordinates and speeds. r : array_like, optional The input variables. lams : array_like, optional The lagrange multipliers """ # Generalized equation form self.f_0 = Matrix(f_0) self.f_1 = Matrix(f_1) self.f_2 = Matrix(f_2) self.f_3 = Matrix(f_3) self.f_4 = Matrix(f_4) self.f_c = Matrix(f_c) self.f_v = Matrix(f_v) self.f_a = Matrix(f_a) # Generalized equation variables self.q = Matrix(q) self.u = Matrix(u) none_handler = lambda x: Matrix(x) if x else Matrix() self.q_i = none_handler(q_i) self.q_d = none_handler(q_d) self.u_i = none_handler(u_i) self.u_d = none_handler(u_d) self.r = none_handler(r) self.lams = none_handler(lams) # Derivatives of generalized equation variables self._qd = self.q.diff(dynamicsymbols._t) self._ud = self.u.diff(dynamicsymbols._t) # If the user doesn't actually use generalized variables, and the # qd and u vectors have any intersecting variables, this can cause # problems. We'll fix this with some hackery, and Dummy variables dup_vars = set(self._qd).intersection(self.u) self._qd_dup = Matrix([var if var not in dup_vars else Dummy() for var in self._qd]) # Derive dimesion terms l = len(self.f_c) m = len(self.f_v) n = len(self.q) o = len(self.u) s = len(self.r) k = len(self.lams) dims = namedtuple('dims', ['l', 'm', 'n', 'o', 's', 'k']) self._dims = dims(l, m, n, o, s, k) self._Pq = None self._Pqi = None self._Pqd = None self._Pu = None self._Pui = None self._Pud = None self._C_0 = None self._C_1 = None self._C_2 = None self.perm_mat = None self._setup_done = False def _setup(self): # Calculations here only need to be run once. They are moved out of # the __init__ method to increase the speed of Linearizer creation. self._form_permutation_matrices() self._form_block_matrices() self._form_coefficient_matrices() self._setup_done = True def _form_permutation_matrices(self): """Form the permutation matrices Pq and Pu.""" # Extract dimension variables l, m, n, o, s, k = self._dims # Compute permutation matrices if n != 0: self._Pq = permutation_matrix(self.q, Matrix([self.q_i, self.q_d])) if l > 0: self._Pqi = self._Pq[:, :-l] self._Pqd = self._Pq[:, -l:] else: self._Pqi = self._Pq self._Pqd = Matrix() if o != 0: self._Pu = permutation_matrix(self.u, Matrix([self.u_i, self.u_d])) if m > 0: self._Pui = self._Pu[:, :-m] self._Pud = self._Pu[:, -m:] else: self._Pui = self._Pu self._Pud = Matrix() # Compute combination permutation matrix for computing A and B P_col1 = Matrix([self._Pqi, zeros(o + k, n - l)]) P_col2 = Matrix([zeros(n, o - m), self._Pui, zeros(k, o - m)]) if P_col1: if P_col2: self.perm_mat = P_col1.row_join(P_col2) else: self.perm_mat = P_col1 else: self.perm_mat = P_col2 def _form_coefficient_matrices(self): """Form the coefficient matrices C_0, C_1, and C_2.""" # Extract dimension variables l, m, n, o, s, k = self._dims # Build up the coefficient matrices C_0, C_1, and C_2 # If there are configuration constraints (l > 0), form C_0 as normal. # If not, C_0 is I_(nxn). Note that this works even if n=0 if l > 0: f_c_jac_q = self.f_c.jacobian(self.q) self._C_0 = (eye(n) - self._Pqd * (f_c_jac_q * self._Pqd).LUsolve(f_c_jac_q)) * self._Pqi else: self._C_0 = eye(n) # If there are motion constraints (m > 0), form C_1 and C_2 as normal. # If not, C_1 is 0, and C_2 is I_(oxo). Note that this works even if # o = 0. if m > 0: f_v_jac_u = self.f_v.jacobian(self.u) temp = f_v_jac_u * self._Pud if n != 0: f_v_jac_q = self.f_v.jacobian(self.q) self._C_1 = -self._Pud * temp.LUsolve(f_v_jac_q) else: self._C_1 = zeros(o, n) self._C_2 = (eye(o) - self._Pud * temp.LUsolve(f_v_jac_u)) * self._Pui else: self._C_1 = zeros(o, n) self._C_2 = eye(o) def _form_block_matrices(self): """Form the block matrices for composing M, A, and B.""" # Extract dimension variables l, m, n, o, s, k = self._dims # Block Matrix Definitions. These are only defined if under certain # conditions. If undefined, an empty matrix is used instead if n != 0: self._M_qq = self.f_0.jacobian(self._qd) self._A_qq = -(self.f_0 + self.f_1).jacobian(self.q) else: self._M_qq = Matrix() self._A_qq = Matrix() if n != 0 and m != 0: self._M_uqc = self.f_a.jacobian(self._qd_dup) self._A_uqc = -self.f_a.jacobian(self.q) else: self._M_uqc = Matrix() self._A_uqc = Matrix() if n != 0 and o - m + k != 0: self._M_uqd = self.f_3.jacobian(self._qd_dup) self._A_uqd = -(self.f_2 + self.f_3 + self.f_4).jacobian(self.q) else: self._M_uqd = Matrix() self._A_uqd = Matrix() if o != 0 and m != 0: self._M_uuc = self.f_a.jacobian(self._ud) self._A_uuc = -self.f_a.jacobian(self.u) else: self._M_uuc = Matrix() self._A_uuc = Matrix() if o != 0 and o - m + k != 0: self._M_uud = self.f_2.jacobian(self._ud) self._A_uud = -(self.f_2 + self.f_3).jacobian(self.u) else: self._M_uud = Matrix() self._A_uud = Matrix() if o != 0 and n != 0: self._A_qu = -self.f_1.jacobian(self.u) else: self._A_qu = Matrix() if k != 0 and o - m + k != 0: self._M_uld = self.f_4.jacobian(self.lams) else: self._M_uld = Matrix() if s != 0 and o - m + k != 0: self._B_u = -self.f_3.jacobian(self.r) else: self._B_u = Matrix() def linearize(self, op_point=None, A_and_B=False, simplify=False): """Linearize the system about the operating point. Note that q_op, u_op, qd_op, ud_op must satisfy the equations of motion. These may be either symbolic or numeric. Parameters ========== op_point : dict or iterable of dicts, optional Dictionary or iterable of dictionaries containing the operating point conditions. These will be substituted in to the linearized system before the linearization is complete. Leave blank if you want a completely symbolic form. Note that any reduction in symbols (whether substituted for numbers or expressions with a common parameter) will result in faster runtime. A_and_B : bool, optional If A_and_B=False (default), (M, A, B) is returned for forming [M]*[q, u]^T = [A]*[q_ind, u_ind]^T + [B]r. If A_and_B=True, (A, B) is returned for forming dx = [A]x + [B]r, where x = [q_ind, u_ind]^T. simplify : bool, optional Determines if returned values are simplified before return. For large expressions this may be time consuming. Default is False. Potential Issues ================ Note that the process of solving with A_and_B=True is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default A_and_B=False, returning M, A, and B. More values may then be substituted in to these matrices later on. The state space form can then be found as A = P.T*M.LUsolve(A), B = P.T*M.LUsolve(B), where P = Linearizer.perm_mat. """ # Run the setup if needed: if not self._setup_done: self._setup() # Compose dict of operating conditions if isinstance(op_point, dict): op_point_dict = op_point elif isinstance(op_point, Iterable): op_point_dict = {} for op in op_point: op_point_dict.update(op) else: op_point_dict = {} # Extract dimension variables l, m, n, o, s, k = self._dims # Rename terms to shorten expressions M_qq = self._M_qq M_uqc = self._M_uqc M_uqd = self._M_uqd M_uuc = self._M_uuc M_uud = self._M_uud M_uld = self._M_uld A_qq = self._A_qq A_uqc = self._A_uqc A_uqd = self._A_uqd A_qu = self._A_qu A_uuc = self._A_uuc A_uud = self._A_uud B_u = self._B_u C_0 = self._C_0 C_1 = self._C_1 C_2 = self._C_2 # Build up Mass Matrix # |M_qq 0_nxo 0_nxk| # M = |M_uqc M_uuc 0_mxk| # |M_uqd M_uud M_uld| if o != 0: col2 = Matrix([zeros(n, o), M_uuc, M_uud]) if k != 0: col3 = Matrix([zeros(n + m, k), M_uld]) if n != 0: col1 = Matrix([M_qq, M_uqc, M_uqd]) if o != 0 and k != 0: M = col1.row_join(col2).row_join(col3) elif o != 0: M = col1.row_join(col2) else: M = col1 elif k != 0: M = col2.row_join(col3) else: M = col2 M_eq = msubs(M, op_point_dict) # Build up state coefficient matrix A # |(A_qq + A_qu*C_1)*C_0 A_qu*C_2| # A = |(A_uqc + A_uuc*C_1)*C_0 A_uuc*C_2| # |(A_uqd + A_uud*C_1)*C_0 A_uud*C_2| # Col 1 is only defined if n != 0 if n != 0: r1c1 = A_qq if o != 0: r1c1 += (A_qu * C_1) r1c1 = r1c1 * C_0 if m != 0: r2c1 = A_uqc if o != 0: r2c1 += (A_uuc * C_1) r2c1 = r2c1 * C_0 else: r2c1 = Matrix() if o - m + k != 0: r3c1 = A_uqd if o != 0: r3c1 += (A_uud * C_1) r3c1 = r3c1 * C_0 else: r3c1 = Matrix() col1 = Matrix([r1c1, r2c1, r3c1]) else: col1 = Matrix() # Col 2 is only defined if o != 0 if o != 0: if n != 0: r1c2 = A_qu * C_2 else: r1c2 = Matrix() if m != 0: r2c2 = A_uuc * C_2 else: r2c2 = Matrix() if o - m + k != 0: r3c2 = A_uud * C_2 else: r3c2 = Matrix() col2 = Matrix([r1c2, r2c2, r3c2]) else: col2 = Matrix() if col1: if col2: Amat = col1.row_join(col2) else: Amat = col1 else: Amat = col2 Amat_eq = msubs(Amat, op_point_dict) # Build up the B matrix if there are forcing variables # |0_(n + m)xs| # B = |B_u | if s != 0 and o - m + k != 0: Bmat = zeros(n + m, s).col_join(B_u) Bmat_eq = msubs(Bmat, op_point_dict) else: Bmat_eq = Matrix() # kwarg A_and_B indicates to return A, B for forming the equation # dx = [A]x + [B]r, where x = [q_indnd, u_indnd]^T, if A_and_B: A_cont = self.perm_mat.T * M_eq.LUsolve(Amat_eq) if Bmat_eq: B_cont = self.perm_mat.T * M_eq.LUsolve(Bmat_eq) else: # Bmat = Matrix([]), so no need to sub B_cont = Bmat_eq if simplify: A_cont.simplify() B_cont.simplify() return A_cont, B_cont # Otherwise return M, A, B for forming the equation # [M]dx = [A]x + [B]r, where x = [q, u]^T else: if simplify: M_eq.simplify() Amat_eq.simplify() Bmat_eq.simplify() return M_eq, Amat_eq, Bmat_eq def permutation_matrix(orig_vec, per_vec): """Compute the permutation matrix to change order of orig_vec into order of per_vec. Parameters ========== orig_vec : array_like Symbols in original ordering. per_vec : array_like Symbols in new ordering. Returns ======= p_matrix : Matrix Permutation matrix such that orig_vec == (p_matrix * per_vec). """ if not isinstance(orig_vec, (list, tuple)): orig_vec = flatten(orig_vec) if not isinstance(per_vec, (list, tuple)): per_vec = flatten(per_vec) if set(orig_vec) != set(per_vec): raise ValueError("orig_vec and per_vec must be the same length, " + "and contain the same symbols.") ind_list = [orig_vec.index(i) for i in per_vec] p_matrix = zeros(len(orig_vec)) for i, j in enumerate(ind_list): p_matrix[i, j] = 1 return p_matrix
458ac31d161caad5a1a4fb1987967f326b203355fffe3892bfef0fa2ee94ecac
from sympy.core.backend import diff, zeros, Matrix, eye, sympify from sympy.core.sorting import default_sort_key from sympy.physics.vector import dynamicsymbols, ReferenceFrame from sympy.physics.mechanics.method import _Methods from sympy.physics.mechanics.functions import (find_dynamicsymbols, msubs, _f_list_parser) from sympy.physics.mechanics.linearize import Linearizer from sympy.utilities.iterables import iterable __all__ = ['LagrangesMethod'] class LagrangesMethod(_Methods): """Lagrange's method object. Explanation =========== This object generates the equations of motion in a two step procedure. The first step involves the initialization of LagrangesMethod by supplying the Lagrangian and the generalized coordinates, at the bare minimum. If there are any constraint equations, they can be supplied as keyword arguments. The Lagrange multipliers are automatically generated and are equal in number to the constraint equations. Similarly any non-conservative forces can be supplied in an iterable (as described below and also shown in the example) along with a ReferenceFrame. This is also discussed further in the __init__ method. Attributes ========== q, u : Matrix Matrices of the generalized coordinates and speeds loads : iterable Iterable of (Point, vector) or (ReferenceFrame, vector) tuples describing the forces on the system. bodies : iterable Iterable containing the rigid bodies and particles of the system. mass_matrix : Matrix The system's mass matrix forcing : Matrix The system's forcing vector mass_matrix_full : Matrix The "mass matrix" for the qdot's, qdoubledot's, and the lagrange multipliers (lam) forcing_full : Matrix The forcing vector for the qdot's, qdoubledot's and lagrange multipliers (lam) Examples ======== This is a simple example for a one degree of freedom translational spring-mass-damper. In this example, we first need to do the kinematics. This involves creating generalized coordinates and their derivatives. Then we create a point and set its velocity in a frame. >>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian >>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point >>> from sympy.physics.mechanics import dynamicsymbols >>> from sympy import symbols >>> q = dynamicsymbols('q') >>> qd = dynamicsymbols('q', 1) >>> m, k, b = symbols('m k b') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, qd * N.x) We need to then prepare the information as required by LagrangesMethod to generate equations of motion. First we create the Particle, which has a point attached to it. Following this the lagrangian is created from the kinetic and potential energies. Then, an iterable of nonconservative forces/torques must be constructed, where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple, with the Vectors representing the nonconservative forces or torques. >>> Pa = Particle('Pa', P, m) >>> Pa.potential_energy = k * q**2 / 2.0 >>> L = Lagrangian(N, Pa) >>> fl = [(P, -b * qd * N.x)] Finally we can generate the equations of motion. First we create the LagrangesMethod object. To do this one must supply the Lagrangian, and the generalized coordinates. The constraint equations, the forcelist, and the inertial frame may also be provided, if relevant. Next we generate Lagrange's equations of motion, such that: Lagrange's equations of motion = 0. We have the equations of motion at this point. >>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N) >>> print(l.form_lagranges_equations()) Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]]) We can also solve for the states using the 'rhs' method. >>> print(l.rhs()) Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]]) Please refer to the docstrings on each method for more details. """ def __init__(self, Lagrangian, qs, forcelist=None, bodies=None, frame=None, hol_coneqs=None, nonhol_coneqs=None): """Supply the following for the initialization of LagrangesMethod. Lagrangian : Sympifyable qs : array_like The generalized coordinates hol_coneqs : array_like, optional The holonomic constraint equations nonhol_coneqs : array_like, optional The nonholonomic constraint equations forcelist : iterable, optional Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector) tuples which represent the force at a point or torque on a frame. This feature is primarily to account for the nonconservative forces and/or moments. bodies : iterable, optional Takes an iterable containing the rigid bodies and particles of the system. frame : ReferenceFrame, optional Supply the inertial frame. This is used to determine the generalized forces due to non-conservative forces. """ self._L = Matrix([sympify(Lagrangian)]) self.eom = None self._m_cd = Matrix() # Mass Matrix of differentiated coneqs self._m_d = Matrix() # Mass Matrix of dynamic equations self._f_cd = Matrix() # Forcing part of the diff coneqs self._f_d = Matrix() # Forcing part of the dynamic equations self.lam_coeffs = Matrix() # The coeffecients of the multipliers forcelist = forcelist if forcelist else [] if not iterable(forcelist): raise TypeError('Force pairs must be supplied in an iterable.') self._forcelist = forcelist if frame and not isinstance(frame, ReferenceFrame): raise TypeError('frame must be a valid ReferenceFrame') self._bodies = bodies self.inertial = frame self.lam_vec = Matrix() self._term1 = Matrix() self._term2 = Matrix() self._term3 = Matrix() self._term4 = Matrix() # Creating the qs, qdots and qdoubledots if not iterable(qs): raise TypeError('Generalized coordinates must be an iterable') self._q = Matrix(qs) self._qdots = self.q.diff(dynamicsymbols._t) self._qdoubledots = self._qdots.diff(dynamicsymbols._t) mat_build = lambda x: Matrix(x) if x else Matrix() hol_coneqs = mat_build(hol_coneqs) nonhol_coneqs = mat_build(nonhol_coneqs) self.coneqs = Matrix([hol_coneqs.diff(dynamicsymbols._t), nonhol_coneqs]) self._hol_coneqs = hol_coneqs def form_lagranges_equations(self): """Method to form Lagrange's equations of motion. Returns a vector of equations of motion using Lagrange's equations of the second kind. """ qds = self._qdots qdd_zero = {i: 0 for i in self._qdoubledots} n = len(self.q) # Internally we represent the EOM as four terms: # EOM = term1 - term2 - term3 - term4 = 0 # First term self._term1 = self._L.jacobian(qds) self._term1 = self._term1.diff(dynamicsymbols._t).T # Second term self._term2 = self._L.jacobian(self.q).T # Third term if self.coneqs: coneqs = self.coneqs m = len(coneqs) # Creating the multipliers self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1))) self.lam_coeffs = -coneqs.jacobian(qds) self._term3 = self.lam_coeffs.T * self.lam_vec # Extracting the coeffecients of the qdds from the diff coneqs diffconeqs = coneqs.diff(dynamicsymbols._t) self._m_cd = diffconeqs.jacobian(self._qdoubledots) # The remaining terms i.e. the 'forcing' terms in diff coneqs self._f_cd = -diffconeqs.subs(qdd_zero) else: self._term3 = zeros(n, 1) # Fourth term if self.forcelist: N = self.inertial self._term4 = zeros(n, 1) for i, qd in enumerate(qds): flist = zip(*_f_list_parser(self.forcelist, N)) self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist) else: self._term4 = zeros(n, 1) # Form the dynamic mass and forcing matrices without_lam = self._term1 - self._term2 - self._term4 self._m_d = without_lam.jacobian(self._qdoubledots) self._f_d = -without_lam.subs(qdd_zero) # Form the EOM self.eom = without_lam - self._term3 return self.eom def _form_eoms(self): return self.form_lagranges_equations() @property def mass_matrix(self): """Returns the mass matrix, which is augmented by the Lagrange multipliers, if necessary. Explanation =========== If the system is described by 'n' generalized coordinates and there are no constraint equations then an n X n matrix is returned. If there are 'n' generalized coordinates and 'm' constraint equations have been supplied during initialization then an n X (n+m) matrix is returned. The (n + m - 1)th and (n + m)th columns contain the coefficients of the Lagrange multipliers. """ if self.eom is None: raise ValueError('Need to compute the equations of motion first') if self.coneqs: return (self._m_d).row_join(self.lam_coeffs.T) else: return self._m_d @property def mass_matrix_full(self): """Augments the coefficients of qdots to the mass_matrix.""" if self.eom is None: raise ValueError('Need to compute the equations of motion first') n = len(self.q) m = len(self.coneqs) row1 = eye(n).row_join(zeros(n, n + m)) row2 = zeros(n, n).row_join(self.mass_matrix) if self.coneqs: row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m)) return row1.col_join(row2).col_join(row3) else: return row1.col_join(row2) @property def forcing(self): """Returns the forcing vector from 'lagranges_equations' method.""" if self.eom is None: raise ValueError('Need to compute the equations of motion first') return self._f_d @property def forcing_full(self): """Augments qdots to the forcing vector above.""" if self.eom is None: raise ValueError('Need to compute the equations of motion first') if self.coneqs: return self._qdots.col_join(self.forcing).col_join(self._f_cd) else: return self._qdots.col_join(self.forcing) def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None): """Returns an instance of the Linearizer class, initiated from the data in the LagrangesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more efficient recalculation (i.e. about varying operating points). Parameters ========== q_ind, qd_ind : array_like, optional The independent generalized coordinates and speeds. q_dep, qd_dep : array_like, optional The dependent generalized coordinates and speeds. """ # Compose vectors t = dynamicsymbols._t q = self.q u = self._qdots ud = u.diff(t) # Get vector of lagrange multipliers lams = self.lam_vec mat_build = lambda x: Matrix(x) if x else Matrix() q_i = mat_build(q_ind) q_d = mat_build(q_dep) u_i = mat_build(qd_ind) u_d = mat_build(qd_dep) # Compose general form equations f_c = self._hol_coneqs f_v = self.coneqs f_a = f_v.diff(t) f_0 = u f_1 = -u f_2 = self._term1 f_3 = -(self._term2 + self._term4) f_4 = -self._term3 # Check that there are an appropriate number of independent and # dependent coordinates if len(q_d) != len(f_c) or len(u_d) != len(f_v): raise ValueError(("Must supply {:} dependent coordinates, and " + "{:} dependent speeds").format(len(f_c), len(f_v))) if set(Matrix([q_i, q_d])) != set(q): raise ValueError("Must partition q into q_ind and q_dep, with " + "no extra or missing symbols.") if set(Matrix([u_i, u_d])) != set(u): raise ValueError("Must partition qd into qd_ind and qd_dep, " + "with no extra or missing symbols.") # Find all other dynamic symbols, forming the forcing vector r. # Sort r to make it canonical. insyms = set(Matrix([q, u, ud, lams])) r = list(find_dynamicsymbols(f_3, insyms)) r.sort(key=default_sort_key) # Check for any derivatives of variables in r that are also found in r. for i in r: if diff(i, dynamicsymbols._t) in r: raise ValueError('Cannot have derivatives of specified \ quantities when linearizing forcing terms.') return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i, q_d, u_i, u_d, r, lams) def linearize(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None, **kwargs): """Linearize the equations of motion about a symbolic operating point. Explanation =========== If kwarg A_and_B is False (default), returns M, A, B, r for the linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r. If kwarg A_and_B is True, returns A, B, r for the linearized form dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default A_and_B=False, returning M, A, and B. Values may then be substituted in to these matrices, and the state space form found as A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat. In both cases, r is found as all dynamicsymbols in the equations of motion that are not part of q, u, q', or u'. They are sorted in canonical form. The operating points may be also entered using the ``op_point`` kwarg. This takes a dictionary of {symbol: value}, or a an iterable of such dictionaries. The values may be numeric or symbolic. The more values you can specify beforehand, the faster this computation will run. For more documentation, please see the ``Linearizer`` class.""" linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep) result = linearizer.linearize(**kwargs) return result + (linearizer.r,) def solve_multipliers(self, op_point=None, sol_type='dict'): """Solves for the values of the lagrange multipliers symbolically at the specified operating point. Parameters ========== op_point : dict or iterable of dicts, optional Point at which to solve at. The operating point is specified as a dictionary or iterable of dictionaries of {symbol: value}. The value may be numeric or symbolic itself. sol_type : str, optional Solution return type. Valid options are: - 'dict': A dict of {symbol : value} (default) - 'Matrix': An ordered column matrix of the solution """ # Determine number of multipliers k = len(self.lam_vec) if k == 0: raise ValueError("System has no lagrange multipliers to solve for.") # Compose dict of operating conditions if isinstance(op_point, dict): op_point_dict = op_point elif iterable(op_point): op_point_dict = {} for op in op_point: op_point_dict.update(op) elif op_point is None: op_point_dict = {} else: raise TypeError("op_point must be either a dictionary or an " "iterable of dictionaries.") # Compose the system to be solved mass_matrix = self.mass_matrix.col_join(-self.lam_coeffs.row_join( zeros(k, k))) force_matrix = self.forcing.col_join(self._f_cd) # Sub in the operating point mass_matrix = msubs(mass_matrix, op_point_dict) force_matrix = msubs(force_matrix, op_point_dict) # Solve for the multipliers sol_list = mass_matrix.LUsolve(-force_matrix)[-k:] if sol_type == 'dict': return dict(zip(self.lam_vec, sol_list)) elif sol_type == 'Matrix': return Matrix(sol_list) else: raise ValueError("Unknown sol_type {:}.".format(sol_type)) def rhs(self, inv_method=None, **kwargs): """Returns equations that can be solved numerically. Parameters ========== inv_method : str The specific sympy inverse matrix calculation method to use. For a list of valid methods, see :meth:`~sympy.matrices.matrices.MatrixBase.inv` """ if inv_method is None: self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full) else: self._rhs = (self.mass_matrix_full.inv(inv_method, try_block_diag=True) * self.forcing_full) return self._rhs @property def q(self): return self._q @property def u(self): return self._qdots @property def bodies(self): return self._bodies @property def forcelist(self): return self._forcelist @property def loads(self): return self._forcelist
230b0a6986512880df95338a084e9f8df27abadf8cccf7e3b5c191710a8a027e
# isort:skip_file """ Dimensional analysis and unit systems. This module defines dimension/unit systems and physical quantities. It is based on a group-theoretical construction where dimensions are represented as vectors (coefficients being the exponents), and units are defined as a dimension to which we added a scale. Quantities are built from a factor and a unit, and are the basic objects that one will use when doing computations. All objects except systems and prefixes can be used in SymPy expressions. Note that as part of a CAS, various objects do not combine automatically under operations. Details about the implementation can be found in the documentation, and we will not repeat all the explanations we gave there concerning our approach. Ideas about future developments can be found on the `Github wiki <https://github.com/sympy/sympy/wiki/Unit-systems>`_, and you should consult this page if you are willing to help. Useful functions: - ``find_unit``: easily lookup pre-defined units. - ``convert_to(expr, newunit)``: converts an expression into the same expression expressed in another unit. """ from .dimensions import Dimension, DimensionSystem from .unitsystem import UnitSystem from .util import convert_to from .quantities import Quantity from .definitions.dimension_definitions import ( amount_of_substance, acceleration, action, capacitance, charge, conductance, current, energy, force, frequency, impedance, inductance, length, luminous_intensity, magnetic_density, magnetic_flux, mass, momentum, power, pressure, temperature, time, velocity, voltage, volume ) Unit = Quantity speed = velocity luminosity = luminous_intensity magnetic_flux_density = magnetic_density amount = amount_of_substance from .prefixes import ( # 10-power based: yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto, # 2-power based: kibi, mebi, gibi, tebi, pebi, exbi, ) from .definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, l, liter, liters, dl, deciliter, deciliters, cl, centiliter, centiliters, ml, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, G, gravitational_constant, c, speed_of_light, elementary_charge, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, amu, amus, atomic_mass_unit, atomic_mass_constant, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, ) from .systems import ( mks, mksa, si ) def find_unit(quantity, unit_system="SI"): """ Return a list of matching units or dimension names. - If ``quantity`` is a string -- units/dimensions containing the string `quantity`. - If ``quantity`` is a unit or dimension -- units having matching base units or dimensions. Examples ======== >>> from sympy.physics import units as u >>> u.find_unit('charge') ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit(u.charge) ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit("ampere") ['ampere', 'amperes'] >>> u.find_unit('volt') ['volt', 'volts', 'electronvolt', 'electronvolts', 'planck_voltage'] >>> u.find_unit(u.inch**3)[:5] ['l', 'cl', 'dl', 'ml', 'liter'] """ unit_system = UnitSystem.get_unit_system(unit_system) import sympy.physics.units as u rv = [] if isinstance(quantity, str): rv = [i for i in dir(u) if quantity in i and isinstance(getattr(u, i), Quantity)] dim = getattr(u, quantity) if isinstance(dim, Dimension): rv.extend(find_unit(dim)) else: for i in sorted(dir(u)): other = getattr(u, i) if not isinstance(other, Quantity): continue if isinstance(quantity, Quantity): if quantity.dimension == other.dimension: rv.append(str(i)) elif isinstance(quantity, Dimension): if other.dimension == quantity: rv.append(str(i)) elif other.dimension == Dimension(unit_system.get_dimensional_expr(quantity)): rv.append(str(i)) return sorted(set(rv), key=lambda x: (len(x), x)) # NOTE: the old units module had additional variables: # 'density', 'illuminance', 'resistance'. # They were not dimensions, but units (old Unit class). __all__ = [ 'Dimension', 'DimensionSystem', 'UnitSystem', 'convert_to', 'Quantity', 'amount_of_substance', 'acceleration', 'action', 'capacitance', 'charge', 'conductance', 'current', 'energy', 'force', 'frequency', 'impedance', 'inductance', 'length', 'luminous_intensity', 'magnetic_density', 'magnetic_flux', 'mass', 'momentum', 'power', 'pressure', 'temperature', 'time', 'velocity', 'voltage', 'volume', 'Unit', 'speed', 'luminosity', 'magnetic_flux_density', 'amount', 'yotta', 'zetta', 'exa', 'peta', 'tera', 'giga', 'mega', 'kilo', 'hecto', 'deca', 'deci', 'centi', 'milli', 'micro', 'nano', 'pico', 'femto', 'atto', 'zepto', 'yocto', 'kibi', 'mebi', 'gibi', 'tebi', 'pebi', 'exbi', 'percent', 'percents', 'permille', 'rad', 'radian', 'radians', 'deg', 'degree', 'degrees', 'sr', 'steradian', 'steradians', 'mil', 'angular_mil', 'angular_mils', 'm', 'meter', 'meters', 'kg', 'kilogram', 'kilograms', 's', 'second', 'seconds', 'A', 'ampere', 'amperes', 'K', 'kelvin', 'kelvins', 'mol', 'mole', 'moles', 'cd', 'candela', 'candelas', 'g', 'gram', 'grams', 'mg', 'milligram', 'milligrams', 'ug', 'microgram', 'micrograms', 'newton', 'newtons', 'N', 'joule', 'joules', 'J', 'watt', 'watts', 'W', 'pascal', 'pascals', 'Pa', 'pa', 'hertz', 'hz', 'Hz', 'coulomb', 'coulombs', 'C', 'volt', 'volts', 'v', 'V', 'ohm', 'ohms', 'siemens', 'S', 'mho', 'mhos', 'farad', 'farads', 'F', 'henry', 'henrys', 'H', 'tesla', 'teslas', 'T', 'weber', 'webers', 'Wb', 'wb', 'optical_power', 'dioptre', 'D', 'lux', 'lx', 'katal', 'kat', 'gray', 'Gy', 'becquerel', 'Bq', 'km', 'kilometer', 'kilometers', 'dm', 'decimeter', 'decimeters', 'cm', 'centimeter', 'centimeters', 'mm', 'millimeter', 'millimeters', 'um', 'micrometer', 'micrometers', 'micron', 'microns', 'nm', 'nanometer', 'nanometers', 'pm', 'picometer', 'picometers', 'ft', 'foot', 'feet', 'inch', 'inches', 'yd', 'yard', 'yards', 'mi', 'mile', 'miles', 'nmi', 'nautical_mile', 'nautical_miles', 'l', 'liter', 'liters', 'dl', 'deciliter', 'deciliters', 'cl', 'centiliter', 'centiliters', 'ml', 'milliliter', 'milliliters', 'ms', 'millisecond', 'milliseconds', 'us', 'microsecond', 'microseconds', 'ns', 'nanosecond', 'nanoseconds', 'ps', 'picosecond', 'picoseconds', 'minute', 'minutes', 'h', 'hour', 'hours', 'day', 'days', 'anomalistic_year', 'anomalistic_years', 'sidereal_year', 'sidereal_years', 'tropical_year', 'tropical_years', 'common_year', 'common_years', 'julian_year', 'julian_years', 'draconic_year', 'draconic_years', 'gaussian_year', 'gaussian_years', 'full_moon_cycle', 'full_moon_cycles', 'year', 'years', 'G', 'gravitational_constant', 'c', 'speed_of_light', 'elementary_charge', 'hbar', 'planck', 'eV', 'electronvolt', 'electronvolts', 'avogadro_number', 'avogadro', 'avogadro_constant', 'boltzmann', 'boltzmann_constant', 'stefan', 'stefan_boltzmann_constant', 'R', 'molar_gas_constant', 'faraday_constant', 'josephson_constant', 'von_klitzing_constant', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant', 'gee', 'gees', 'acceleration_due_to_gravity', 'u0', 'magnetic_constant', 'vacuum_permeability', 'e0', 'electric_constant', 'vacuum_permittivity', 'Z0', 'vacuum_impedance', 'coulomb_constant', 'electric_force_constant', 'atmosphere', 'atmospheres', 'atm', 'kPa', 'bar', 'bars', 'pound', 'pounds', 'psi', 'dHg0', 'mmHg', 'torr', 'mmu', 'mmus', 'milli_mass_unit', 'quart', 'quarts', 'ly', 'lightyear', 'lightyears', 'au', 'astronomical_unit', 'astronomical_units', 'planck_mass', 'planck_time', 'planck_temperature', 'planck_length', 'planck_charge', 'planck_area', 'planck_volume', 'planck_momentum', 'planck_energy', 'planck_force', 'planck_power', 'planck_density', 'planck_energy_density', 'planck_intensity', 'planck_angular_frequency', 'planck_pressure', 'planck_current', 'planck_voltage', 'planck_impedance', 'planck_acceleration', 'bit', 'bits', 'byte', 'kibibyte', 'kibibytes', 'mebibyte', 'mebibytes', 'gibibyte', 'gibibytes', 'tebibyte', 'tebibytes', 'pebibyte', 'pebibytes', 'exbibyte', 'exbibytes', 'mks', 'mksa', 'si', ]
9dd4800a5d6255d8af5d4bfec5166467bf3099fedf1be2fd4188892410343cc4
""" Unit system for physical quantities; include definition of constants. """ from typing import Dict as tDict from sympy.core.add import Add from sympy.core.function import (Derivative, Function) from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.physics.units.dimensions import _QuantityMapper from sympy.utilities.exceptions import SymPyDeprecationWarning from .dimensions import Dimension class UnitSystem(_QuantityMapper): """ UnitSystem represents a coherent set of units. A unit system is basically a dimension system with notions of scales. Many of the methods are defined in the same way. It is much better if all base units have a symbol. """ _unit_systems = {} # type: tDict[str, UnitSystem] def __init__(self, base_units, units=(), name="", descr="", dimension_system=None): UnitSystem._unit_systems[name] = self self.name = name self.descr = descr self._base_units = base_units self._dimension_system = dimension_system self._units = tuple(set(base_units) | set(units)) self._base_units = tuple(base_units) super().__init__() def __str__(self): """ Return the name of the system. If it does not exist, then it makes a list of symbols (or names) of the base dimensions. """ if self.name != "": return self.name else: return "UnitSystem((%s))" % ", ".join( str(d) for d in self._base_units) def __repr__(self): return '<UnitSystem: %s>' % repr(self._base_units) def extend(self, base, units=(), name="", description="", dimension_system=None): """Extend the current system into a new one. Take the base and normal units of the current system to merge them to the base and normal units given in argument. If not provided, name and description are overridden by empty strings. """ base = self._base_units + tuple(base) units = self._units + tuple(units) return UnitSystem(base, units, name, description, dimension_system) def print_unit_base(self, unit): """ Useless method. DO NOT USE, use instead ``convert_to``. Give the string expression of a unit in term of the basis. Units are displayed by decreasing power. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="print_unit_base", useinstead="convert_to", ).warn() from sympy.physics.units import convert_to return convert_to(unit, self._base_units) def get_dimension_system(self): return self._dimension_system def get_quantity_dimension(self, unit): qdm = self.get_dimension_system()._quantity_dimension_map if unit in qdm: return qdm[unit] return super().get_quantity_dimension(unit) def get_quantity_scale_factor(self, unit): qsfm = self.get_dimension_system()._quantity_scale_factors if unit in qsfm: return qsfm[unit] return super().get_quantity_scale_factor(unit) @staticmethod def get_unit_system(unit_system): if isinstance(unit_system, UnitSystem): return unit_system if unit_system not in UnitSystem._unit_systems: raise ValueError( "Unit system is not supported. Currently" "supported unit systems are {}".format( ", ".join(sorted(UnitSystem._unit_systems)) ) ) return UnitSystem._unit_systems[unit_system] @staticmethod def get_default_unit_system(): return UnitSystem._unit_systems["SI"] @property def dim(self): """ Give the dimension of the system. That is return the number of units forming the basis. """ return len(self._base_units) @property def is_consistent(self): """ Check if the underlying dimension system is consistent. """ # test is performed in DimensionSystem return self.get_dimension_system().is_consistent def get_dimensional_expr(self, expr): from sympy.physics.units import Quantity if isinstance(expr, Mul): return Mul(*[self.get_dimensional_expr(i) for i in expr.args]) elif isinstance(expr, Pow): return self.get_dimensional_expr(expr.base) ** expr.exp elif isinstance(expr, Add): return self.get_dimensional_expr(expr.args[0]) elif isinstance(expr, Derivative): dim = self.get_dimensional_expr(expr.expr) for independent, count in expr.variable_count: dim /= self.get_dimensional_expr(independent)**count return dim elif isinstance(expr, Function): args = [self.get_dimensional_expr(arg) for arg in expr.args] if all(i == 1 for i in args): return S.One return expr.func(*args) elif isinstance(expr, Quantity): return self.get_quantity_dimension(expr).name return S.One def _collect_factor_and_dimension(self, expr): """ Return tuple with scale factor expression and dimension expression. """ from sympy.physics.units import Quantity if isinstance(expr, Quantity): return expr.scale_factor, expr.dimension elif isinstance(expr, Mul): factor = 1 dimension = Dimension(1) for arg in expr.args: arg_factor, arg_dim = self._collect_factor_and_dimension(arg) factor *= arg_factor dimension *= arg_dim return factor, dimension elif isinstance(expr, Pow): factor, dim = self._collect_factor_and_dimension(expr.base) exp_factor, exp_dim = self._collect_factor_and_dimension(expr.exp) if self.get_dimension_system().is_dimensionless(exp_dim): exp_dim = 1 return factor ** exp_factor, dim ** (exp_factor * exp_dim) elif isinstance(expr, Add): factor, dim = self._collect_factor_and_dimension(expr.args[0]) for addend in expr.args[1:]: addend_factor, addend_dim = \ self._collect_factor_and_dimension(addend) if dim != addend_dim: raise ValueError( 'Dimension of "{}" is {}, ' 'but it should be {}'.format( addend, addend_dim, dim)) factor += addend_factor return factor, dim elif isinstance(expr, Derivative): factor, dim = self._collect_factor_and_dimension(expr.args[0]) for independent, count in expr.variable_count: ifactor, idim = self._collect_factor_and_dimension(independent) factor /= ifactor**count dim /= idim**count return factor, dim elif isinstance(expr, Function): fds = [self._collect_factor_and_dimension( arg) for arg in expr.args] return (expr.func(*(f[0] for f in fds)), expr.func(*(d[1] for d in fds))) elif isinstance(expr, Dimension): return S.One, expr else: return expr, Dimension(1)
846310907a07cdcf50d7f22a176b7b7d850952b85c03b8b9a8a7d1152009db2c
""" Definition of physical dimensions. Unit systems will be constructed on top of these dimensions. Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning. """ from typing import Dict as tDict import collections from functools import reduce from sympy.core.basic import Basic from sympy.core.containers import (Dict, Tuple) from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.matrices.dense import Matrix from sympy.functions.elementary.trigonometric import TrigonometricFunction from sympy.core.expr import Expr from sympy.core.power import Pow from sympy.utilities.exceptions import SymPyDeprecationWarning class _QuantityMapper: _quantity_scale_factors_global = {} # type: tDict[Expr, Expr] _quantity_dimensional_equivalence_map_global = {} # type: tDict[Expr, Expr] _quantity_dimension_global = {} # type: tDict[Expr, Expr] def __init__(self, *args, **kwargs): self._quantity_dimension_map = {} self._quantity_scale_factors = {} def set_quantity_dimension(self, unit, dimension): from sympy.physics.units import Quantity dimension = sympify(dimension) if not isinstance(dimension, Dimension): if dimension == 1: dimension = Dimension(1) else: raise ValueError("expected dimension or 1") elif isinstance(dimension, Quantity): dimension = self.get_quantity_dimension(dimension) self._quantity_dimension_map[unit] = dimension def set_quantity_scale_factor(self, unit, scale_factor): from sympy.physics.units import Quantity from sympy.physics.units.prefixes import Prefix scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) # replace all quantities by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Quantity), lambda x: self.get_quantity_scale_factor(x) ) self._quantity_scale_factors[unit] = scale_factor def get_quantity_dimension(self, unit): from sympy.physics.units import Quantity # First look-up the local dimension map, then the global one: if unit in self._quantity_dimension_map: return self._quantity_dimension_map[unit] if unit in self._quantity_dimension_global: return self._quantity_dimension_global[unit] if unit in self._quantity_dimensional_equivalence_map_global: dep_unit = self._quantity_dimensional_equivalence_map_global[unit] if isinstance(dep_unit, Quantity): return self.get_quantity_dimension(dep_unit) else: return Dimension(self.get_dimensional_expr(dep_unit)) if isinstance(unit, Quantity): return Dimension(unit.name) else: return Dimension(1) def get_quantity_scale_factor(self, unit): if unit in self._quantity_scale_factors: return self._quantity_scale_factors[unit] if unit in self._quantity_scale_factors_global: mul_factor, other_unit = self._quantity_scale_factors_global[unit] return mul_factor*self.get_quantity_scale_factor(other_unit) return S.One class Dimension(Expr): """ This class represent the dimension of a physical quantities. The ``Dimension`` constructor takes as parameters a name and an optional symbol. For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these quantites. >>> from sympy.physics.units import Dimension >>> length = Dimension('length') >>> length Dimension(length) >>> time = Dimension('time') >>> time Dimension(time) Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension. >>> velocity = length / time >>> velocity Dimension(length/time) It is possible to use a dimension system object to get the dimensionsal dependencies of a dimension, for example the dimension system used by the SI units convention can be used: >>> from sympy.physics.units.systems.si import dimsys_SI >>> dimsys_SI.get_dimensional_dependencies(velocity) {'length': 1, 'time': -1} >>> length + length Dimension(length) >>> l2 = length**2 >>> l2 Dimension(length**2) >>> dimsys_SI.get_dimensional_dependencies(l2) {'length': 2} """ _op_priority = 13.0 # XXX: This doesn't seem to be used anywhere... _dimensional_dependencies = dict() # type: ignore is_commutative = True is_number = False # make sqrt(M**2) --> M is_positive = True is_real = True def __new__(cls, name, symbol=None): if isinstance(name, str): name = Symbol(name) else: name = sympify(name) if not isinstance(name, Expr): raise TypeError("Dimension name needs to be a valid math expression") if isinstance(symbol, str): symbol = Symbol(symbol) elif symbol is not None: assert isinstance(symbol, Symbol) if symbol is not None: obj = Expr.__new__(cls, name, symbol) else: obj = Expr.__new__(cls, name) obj._name = name obj._symbol = symbol return obj @property def name(self): return self._name @property def symbol(self): return self._symbol def __hash__(self): return Expr.__hash__(self) def __eq__(self, other): if isinstance(other, Dimension): return self.name == other.name return False def __str__(self): """ Display the string representation of the dimension. """ if self.symbol is None: return "Dimension(%s)" % (self.name) else: return "Dimension(%s, %s)" % (self.name, self.symbol) def __repr__(self): return self.__str__() def __neg__(self): return self def __add__(self, other): from sympy.physics.units.quantities import Quantity other = sympify(other) if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension) and self == other: return self return super().__add__(other) return self def __radd__(self, other): return self.__add__(other) def __sub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __rsub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __pow__(self, other): return self._eval_power(other) def _eval_power(self, other): other = sympify(other) return Dimension(self.name**other) def __mul__(self, other): from sympy.physics.units.quantities import Quantity if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension): return Dimension(self.name*other.name) if not other.free_symbols: # other.is_number cannot be used return self return super().__mul__(other) return self def __rmul__(self, other): return self.__mul__(other) def __truediv__(self, other): return self*Pow(other, -1) def __rtruediv__(self, other): return other * pow(self, -1) @classmethod def _from_dimensional_dependencies(cls, dependencies): return reduce(lambda x, y: x * y, ( Dimension(d)**e for d, e in dependencies.items() ), 1) @classmethod def _get_dimensional_dependencies_for_name(cls, name): from sympy.physics.units.systems.si import dimsys_default SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="do not call from `Dimension` objects.", useinstead="DimensionSystem" ).warn() return dimsys_default.get_dimensional_dependencies(name) @property def is_dimensionless(self): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if self.name == 1: return True from sympy.physics.units.systems.si import dimsys_default SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="wrong class", ).warn() dimensional_dependencies=dimsys_default return dimensional_dependencies.get_dimensional_dependencies(self) == {} def has_integer_powers(self, dim_sys): """ Check if the dimension object has only integer powers. All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined. """ return all(dpow.is_Integer for dpow in dim_sys.get_dimensional_dependencies(self).values()) # Create dimensions according to the base units in MKSA. # For other unit systems, they can be derived by transforming the base # dimensional dependency dictionary. class DimensionSystem(Basic, _QuantityMapper): r""" DimensionSystem represents a coherent set of dimensions. The constructor takes three parameters: - base dimensions; - derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time); - dependency of dimensions: how the derived dimensions depend on the base dimensions. Optionally either the ``derived_dims`` or the ``dimensional_dependencies`` may be omitted. """ def __new__(cls, base_dims, derived_dims=(), dimensional_dependencies={}, name=None, descr=None): dimensional_dependencies = dict(dimensional_dependencies) if (name is not None) or (descr is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, useinstead="do not define a `name` or `descr`", ).warn() def parse_dim(dim): if isinstance(dim, str): dim = Dimension(Symbol(dim)) elif isinstance(dim, Dimension): pass elif isinstance(dim, Symbol): dim = Dimension(dim) else: raise TypeError("%s wrong type" % dim) return dim base_dims = [parse_dim(i) for i in base_dims] derived_dims = [parse_dim(i) for i in derived_dims] for dim in base_dims: dim = dim.name if (dim in dimensional_dependencies and (len(dimensional_dependencies[dim]) != 1 or dimensional_dependencies[dim].get(dim, None) != 1)): raise IndexError("Repeated value in base dimensions") dimensional_dependencies[dim] = Dict({dim: 1}) def parse_dim_name(dim): if isinstance(dim, Dimension): return dim.name elif isinstance(dim, str): return Symbol(dim) elif isinstance(dim, Symbol): return dim else: raise TypeError("unrecognized type %s for %s" % (type(dim), dim)) for dim in dimensional_dependencies.keys(): dim = parse_dim(dim) if (dim not in derived_dims) and (dim not in base_dims): derived_dims.append(dim) def parse_dict(d): return Dict({parse_dim_name(i): j for i, j in d.items()}) # Make sure everything is a SymPy type: dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in dimensional_dependencies.items()} for dim in derived_dims: if dim in base_dims: raise ValueError("Dimension %s both in base and derived" % dim) if dim.name not in dimensional_dependencies: # TODO: should this raise a warning? dimensional_dependencies[dim.name] = Dict({dim.name: 1}) base_dims.sort(key=default_sort_key) derived_dims.sort(key=default_sort_key) base_dims = Tuple(*base_dims) derived_dims = Tuple(*derived_dims) dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()}) obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies) return obj @property def base_dims(self): return self.args[0] @property def derived_dims(self): return self.args[1] @property def dimensional_dependencies(self): return self.args[2] def _get_dimensional_dependencies_for_name(self, name): if isinstance(name, Dimension): name = name.name if isinstance(name, str): name = Symbol(name) if name.is_Symbol: # Dimensions not included in the dependencies are considered # as base dimensions: return dict(self.dimensional_dependencies.get(name, {name: 1})) if name.is_number or name.is_NumberSymbol: return {} get_for_name = self._get_dimensional_dependencies_for_name if name.is_Mul: ret = collections.defaultdict(int) dicts = [get_for_name(i) for i in name.args] for d in dicts: for k, v in d.items(): ret[k] += v return {k: v for (k, v) in ret.items() if v != 0} if name.is_Add: dicts = [get_for_name(i) for i in name.args] if all(d == dicts[0] for d in dicts[1:]): return dicts[0] raise TypeError("Only equivalent dimensions can be added or subtracted.") if name.is_Pow: dim_base = get_for_name(name.base) dim_exp = get_for_name(name.exp) if dim_exp == {} or name.exp.is_Symbol: return {k: v*name.exp for (k, v) in dim_base.items()} else: raise TypeError("The exponent for the power operator must be a Symbol or dimensionless.") if name.is_Function: args = (Dimension._from_dimensional_dependencies( get_for_name(arg)) for arg in name.args) result = name.func(*args) dicts = [get_for_name(i) for i in name.args] if isinstance(result, Dimension): return self.get_dimensional_dependencies(result) elif result.func == name.func: if isinstance(name, TrigonometricFunction): if dicts[0] in ({}, {Symbol('angle'): 1}): return {} else: raise TypeError("The input argument for the function {} must be dimensionless or have dimensions of angle.".format(name.func)) else: if all( (item == {} for item in dicts) ): return {} else: raise TypeError("The input arguments for the function {} must be dimensionless.".format(name.func)) else: return get_for_name(result) raise TypeError("Type {} not implemented for get_dimensional_dependencies".format(type(name))) def get_dimensional_dependencies(self, name, mark_dimensionless=False): dimdep = self._get_dimensional_dependencies_for_name(name) if mark_dimensionless and dimdep == {}: return {'dimensionless': 1} return {str(i): j for i, j in dimdep.items()} def equivalent_dims(self, dim1, dim2): deps1 = self.get_dimensional_dependencies(dim1) deps2 = self.get_dimensional_dependencies(dim2) return deps1 == deps2 def extend(self, new_base_dims, new_derived_dims=(), new_dim_deps=None, name=None, description=None): if (name is not None) or (description is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="name and descriptions of DimensionSystem", useinstead="do not specify `name` or `description`", ).warn() deps = dict(self.dimensional_dependencies) if new_dim_deps: deps.update(new_dim_deps) new_dim_sys = DimensionSystem( tuple(self.base_dims) + tuple(new_base_dims), tuple(self.derived_dims) + tuple(new_derived_dims), deps ) new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map) new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors) return new_dim_sys @staticmethod def sort_dims(dims): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Sort dimensions given in argument using their str function. This function will ensure that we get always the same tuple for a given set of dimensions. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="sort_dims", useinstead="sorted(..., key=default_sort_key)", ).warn() return tuple(sorted(dims, key=str)) def __getitem__(self, key): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Shortcut to the get_dim method, using key access. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="the get [ ] operator", useinstead="the dimension definition", ).warn() d = self.get_dim(key) #TODO: really want to raise an error? if d is None: raise KeyError(key) return d def __call__(self, unit): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Wrapper to the method print_dim_base """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="call DimensionSystem", useinstead="the dimension definition", ).warn() return self.print_dim_base(unit) def is_dimensionless(self, dimension): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if dimension.name == 1: return True return self.get_dimensional_dependencies(dimension) == {} @property def list_can_dims(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. List all canonical dimension names. """ dimset = set() for i in self.base_dims: dimset.update(set(self.get_dimensional_dependencies(i).keys())) return tuple(sorted(dimset, key=str)) @property def inv_can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Compute the inverse transformation matrix from the base to the canonical dimension basis. It corresponds to the matrix where columns are the vector of base dimensions in canonical basis. This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis. """ matrix = reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in self.base_dims]) return matrix @property def can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Return the canonical transformation matrix from the canonical to the base dimension basis. It is the inverse of the matrix computed with inv_can_transf_matrix(). """ #TODO: the inversion will fail if the system is inconsistent, for # example if the matrix is not a square return reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)] ).inv() def dim_can_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Dimensional representation in terms of the canonical base dimensions. """ vec = [] for d in self.list_can_dims: vec.append(self.get_dimensional_dependencies(dim).get(d, 0)) return Matrix(vec) def dim_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Vector representation in terms of the base dimensions. """ return self.can_transf_matrix * Matrix(self.dim_can_vector(dim)) def print_dim_base(self, dim): """ Give the string expression of a dimension in term of the basis symbols. """ dims = self.dim_vector(dim) symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims] res = S.One for (s, p) in zip(symbols, dims): res *= s**p return res @property def dim(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Give the dimension of the system. That is return the number of dimensions forming the basis. """ return len(self.base_dims) @property def is_consistent(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Check if the system is well defined. """ # not enough or too many base dimensions compared to independent # dimensions # in vector language: the set of vectors do not form a basis return self.inv_can_transf_matrix.is_square
9b77514c8984bc46c5fac99e0ec47cea479e7887c2acb56ee7809f738336fee8
""" Module defining unit prefixe class and some constants. Constant dict for SI and binary prefixes are defined as PREFIXES and BIN_PREFIXES. """ from sympy.core.expr import Expr from sympy.core.sympify import sympify class Prefix(Expr): """ This class represent prefixes, with their name, symbol and factor. Prefixes are used to create derived units from a given unit. They should always be encapsulated into units. The factor is constructed from a base (default is 10) to some power, and it gives the total multiple or fraction. For example the kilometer km is constructed from the meter (factor 1) and the kilo (10 to the power 3, i.e. 1000). The base can be changed to allow e.g. binary prefixes. A prefix multiplied by something will always return the product of this other object times the factor, except if the other object: - is a prefix and they can be combined into a new prefix; - defines multiplication with prefixes (which is the case for the Unit class). """ _op_priority = 13.0 is_commutative = True def __new__(cls, name, abbrev, exponent, base=sympify(10)): name = sympify(name) abbrev = sympify(abbrev) exponent = sympify(exponent) base = sympify(base) obj = Expr.__new__(cls, name, abbrev, exponent, base) obj._name = name obj._abbrev = abbrev obj._scale_factor = base**exponent obj._exponent = exponent obj._base = base return obj @property def name(self): return self._name @property def abbrev(self): return self._abbrev @property def scale_factor(self): return self._scale_factor @property def base(self): return self._base def __str__(self): # TODO: add proper printers and tests: if self.base == 10: return "Prefix(%r, %r, %r)" % ( str(self.name), str(self.abbrev), self._exponent) else: return "Prefix(%r, %r, %r, %r)" % ( str(self.name), str(self.abbrev), self._exponent, self.base) __repr__ = __str__ def __mul__(self, other): from sympy.physics.units import Quantity if not isinstance(other, (Quantity, Prefix)): return super().__mul__(other) fact = self.scale_factor * other.scale_factor if fact == 1: return 1 elif isinstance(other, Prefix): # simplify prefix for p in PREFIXES: if PREFIXES[p].scale_factor == fact: return PREFIXES[p] return fact return self.scale_factor * other def __truediv__(self, other): if not hasattr(other, "scale_factor"): return super().__truediv__(other) fact = self.scale_factor / other.scale_factor if fact == 1: return 1 elif isinstance(other, Prefix): for p in PREFIXES: if PREFIXES[p].scale_factor == fact: return PREFIXES[p] return fact return self.scale_factor / other def __rtruediv__(self, other): if other == 1: for p in PREFIXES: if PREFIXES[p].scale_factor == 1 / self.scale_factor: return PREFIXES[p] return other / self.scale_factor def prefix_unit(unit, prefixes): """ Return a list of all units formed by unit and the given prefixes. You can use the predefined PREFIXES or BIN_PREFIXES, but you can also pass as argument a subdict of them if you don't want all prefixed units. >>> from sympy.physics.units.prefixes import (PREFIXES, ... prefix_unit) >>> from sympy.physics.units import m >>> pref = {"m": PREFIXES["m"], "c": PREFIXES["c"], "d": PREFIXES["d"]} >>> prefix_unit(m, pref) # doctest: +SKIP [millimeter, centimeter, decimeter] """ from sympy.physics.units.quantities import Quantity from sympy.physics.units import UnitSystem prefixed_units = [] for prefix_abbr, prefix in prefixes.items(): quantity = Quantity( "%s%s" % (prefix.name, unit.name), abbrev=("%s%s" % (prefix.abbrev, unit.abbrev)) ) UnitSystem._quantity_dimensional_equivalence_map_global[quantity] = unit UnitSystem._quantity_scale_factors_global[quantity] = (prefix.scale_factor, unit) prefixed_units.append(quantity) return prefixed_units yotta = Prefix('yotta', 'Y', 24) zetta = Prefix('zetta', 'Z', 21) exa = Prefix('exa', 'E', 18) peta = Prefix('peta', 'P', 15) tera = Prefix('tera', 'T', 12) giga = Prefix('giga', 'G', 9) mega = Prefix('mega', 'M', 6) kilo = Prefix('kilo', 'k', 3) hecto = Prefix('hecto', 'h', 2) deca = Prefix('deca', 'da', 1) deci = Prefix('deci', 'd', -1) centi = Prefix('centi', 'c', -2) milli = Prefix('milli', 'm', -3) micro = Prefix('micro', 'mu', -6) nano = Prefix('nano', 'n', -9) pico = Prefix('pico', 'p', -12) femto = Prefix('femto', 'f', -15) atto = Prefix('atto', 'a', -18) zepto = Prefix('zepto', 'z', -21) yocto = Prefix('yocto', 'y', -24) # http://physics.nist.gov/cuu/Units/prefixes.html PREFIXES = { 'Y': yotta, 'Z': zetta, 'E': exa, 'P': peta, 'T': tera, 'G': giga, 'M': mega, 'k': kilo, 'h': hecto, 'da': deca, 'd': deci, 'c': centi, 'm': milli, 'mu': micro, 'n': nano, 'p': pico, 'f': femto, 'a': atto, 'z': zepto, 'y': yocto, } kibi = Prefix('kibi', 'Y', 10, 2) mebi = Prefix('mebi', 'Y', 20, 2) gibi = Prefix('gibi', 'Y', 30, 2) tebi = Prefix('tebi', 'Y', 40, 2) pebi = Prefix('pebi', 'Y', 50, 2) exbi = Prefix('exbi', 'Y', 60, 2) # http://physics.nist.gov/cuu/Units/binary.html BIN_PREFIXES = { 'Ki': kibi, 'Mi': mebi, 'Gi': gibi, 'Ti': tebi, 'Pi': pebi, 'Ei': exbi, }
0d978e0cc246d686efaca1a5eea85b772c24510bca3fe23364f953c1996790fd
""" Several methods to simplify expressions involving unit objects. """ from functools import reduce from collections.abc import Iterable from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.sorting import ordered from sympy.core.sympify import sympify from sympy.matrices.common import NonInvertibleMatrixError from sympy.physics.units.dimensions import Dimension from sympy.physics.units.prefixes import Prefix from sympy.physics.units.quantities import Quantity from sympy.utilities.iterables import sift def _get_conversion_matrix_for_expr(expr, target_units, unit_system): from sympy.matrices.dense import Matrix dimension_system = unit_system.get_dimension_system() expr_dim = Dimension(unit_system.get_dimensional_expr(expr)) dim_dependencies = dimension_system.get_dimensional_dependencies(expr_dim, mark_dimensionless=True) target_dims = [Dimension(unit_system.get_dimensional_expr(x)) for x in target_units] canon_dim_units = [i for x in target_dims for i in dimension_system.get_dimensional_dependencies(x, mark_dimensionless=True)] canon_expr_units = {i for i in dim_dependencies} if not canon_expr_units.issubset(set(canon_dim_units)): return None seen = set() canon_dim_units = [i for i in canon_dim_units if not (i in seen or seen.add(i))] camat = Matrix([[dimension_system.get_dimensional_dependencies(i, mark_dimensionless=True).get(j, 0) for i in target_dims] for j in canon_dim_units]) exprmat = Matrix([dim_dependencies.get(k, 0) for k in canon_dim_units]) try: res_exponents = camat.solve(exprmat) except NonInvertibleMatrixError: return None return res_exponents def convert_to(expr, target_units, unit_system="SI"): """ Convert ``expr`` to the same expression with all of its units and quantities represented as factors of ``target_units``, whenever the dimension is compatible. ``target_units`` may be a single unit/quantity, or a collection of units/quantities. Examples ======== >>> from sympy.physics.units import speed_of_light, meter, gram, second, day >>> from sympy.physics.units import mile, newton, kilogram, atomic_mass_constant >>> from sympy.physics.units import kilometer, centimeter >>> from sympy.physics.units import gravitational_constant, hbar >>> from sympy.physics.units import convert_to >>> convert_to(mile, kilometer) 25146*kilometer/15625 >>> convert_to(mile, kilometer).n() 1.609344*kilometer >>> convert_to(speed_of_light, meter/second) 299792458*meter/second >>> convert_to(day, second) 86400*second >>> 3*newton 3*newton >>> convert_to(3*newton, kilogram*meter/second**2) 3*kilogram*meter/second**2 >>> convert_to(atomic_mass_constant, gram) 1.660539060e-24*gram Conversion to multiple units: >>> convert_to(speed_of_light, [meter, second]) 299792458*meter/second >>> convert_to(3*newton, [centimeter, gram, second]) 300000*centimeter*gram/second**2 Conversion to Planck units: >>> convert_to(atomic_mass_constant, [gravitational_constant, speed_of_light, hbar]).n() 7.62963087839509e-20*hbar**0.5*speed_of_light**0.5/gravitational_constant**0.5 """ from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) if not isinstance(target_units, (Iterable, Tuple)): target_units = [target_units] if isinstance(expr, Add): return Add.fromiter(convert_to(i, target_units, unit_system) for i in expr.args) expr = sympify(expr) if not isinstance(expr, Quantity) and expr.has(Quantity): expr = expr.replace(lambda x: isinstance(x, Quantity), lambda x: x.convert_to(target_units, unit_system)) def get_total_scale_factor(expr): if isinstance(expr, Mul): return reduce(lambda x, y: x * y, [get_total_scale_factor(i) for i in expr.args]) elif isinstance(expr, Pow): return get_total_scale_factor(expr.base) ** expr.exp elif isinstance(expr, Quantity): return unit_system.get_quantity_scale_factor(expr) return expr depmat = _get_conversion_matrix_for_expr(expr, target_units, unit_system) if depmat is None: return expr expr_scale_factor = get_total_scale_factor(expr) return expr_scale_factor * Mul.fromiter((1/get_total_scale_factor(u) * u) ** p for u, p in zip(target_units, depmat)) def quantity_simplify(expr): """Return an equivalent expression in which prefixes are replaced with numerical values and all units of a given dimension are the unified in a canonical manner. Examples ======== >>> from sympy.physics.units.util import quantity_simplify >>> from sympy.physics.units.prefixes import kilo >>> from sympy.physics.units import foot, inch >>> quantity_simplify(kilo*foot*inch) 250*foot**2/3 >>> quantity_simplify(foot - 6*inch) foot/2 """ if expr.is_Atom or not expr.has(Prefix, Quantity): return expr # replace all prefixes with numerical values p = expr.atoms(Prefix) expr = expr.xreplace({p: p.scale_factor for p in p}) # replace all quantities of given dimension with a canonical # quantity, chosen from those in the expression d = sift(expr.atoms(Quantity), lambda i: i.dimension) for k in d: if len(d[k]) == 1: continue v = list(ordered(d[k])) ref = v[0]/v[0].scale_factor expr = expr.xreplace({vi: ref*vi.scale_factor for vi in v[1:]}) return expr def check_dimensions(expr, unit_system="SI"): """Return expr if units in addends have the same base dimensions, else raise a ValueError.""" # the case of adding a number to a dimensional quantity # is ignored for the sake of SymPy core routines, so this # function will raise an error now if such an addend is # found. # Also, when doing substitutions, multiplicative constants # might be introduced, so remove those now from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) def addDict(dict1, dict2): """Merge dictionaries by adding values of common keys and removing keys with value of 0.""" dict3 = {**dict1, **dict2} for key, value in dict3.items(): if key in dict1 and key in dict2: dict3[key] = value + dict1[key] return {key:val for key, val in dict3.items() if val != 0} adds = expr.atoms(Add) DIM_OF = unit_system.get_dimension_system().get_dimensional_dependencies for a in adds: deset = set() for ai in a.args: if ai.is_number: deset.add(()) continue dims = [] skip = False dimdict = {} for i in Mul.make_args(ai): if i.has(Quantity): i = Dimension(unit_system.get_dimensional_expr(i)) if i.has(Dimension): dimdict = addDict(dimdict, DIM_OF(i)) elif i.free_symbols: skip = True break dims.extend(dimdict.items()) if not skip: deset.add(tuple(sorted(dims))) if len(deset) > 1: raise ValueError( "addends have incompatible dimensions: {}".format(deset)) # clear multiplicative constants on Dimensions which may be # left after substitution reps = {} for m in expr.atoms(Mul): if any(isinstance(i, Dimension) for i in m.args): reps[m] = m.func(*[ i for i in m.args if not i.is_number]) return expr.xreplace(reps)
bcc09e3e0e093fbe42485056a127846852df06f041efe9e4b54be1deec1a42fb
""" Physical quantities. """ from sympy.core.expr import AtomicExpr from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.physics.units.dimensions import _QuantityMapper from sympy.physics.units.prefixes import Prefix from sympy.utilities.exceptions import SymPyDeprecationWarning class Quantity(AtomicExpr): """ Physical quantity: can be a unit of measure, a constant or a generic quantity. """ is_commutative = True is_real = True is_number = False is_nonzero = True _diff_wrt = True def __new__(cls, name, abbrev=None, dimension=None, scale_factor=None, latex_repr=None, pretty_unicode_repr=None, pretty_ascii_repr=None, mathml_presentation_repr=None, **assumptions): if not isinstance(name, Symbol): name = Symbol(name) # For Quantity(name, dim, scale, abbrev) to work like in the # old version of SymPy: if not isinstance(abbrev, str) and not \ isinstance(abbrev, Symbol): dimension, scale_factor, abbrev = abbrev, dimension, scale_factor if dimension is not None: SymPyDeprecationWarning( deprecated_since_version="1.3", issue=14319, feature="Quantity arguments", useinstead="unit_system.set_quantity_dimension_map", ).warn() if scale_factor is not None: SymPyDeprecationWarning( deprecated_since_version="1.3", issue=14319, feature="Quantity arguments", useinstead="SI_quantity_scale_factors", ).warn() if abbrev is None: abbrev = name elif isinstance(abbrev, str): abbrev = Symbol(abbrev) obj = AtomicExpr.__new__(cls, name, abbrev) obj._name = name obj._abbrev = abbrev obj._latex_repr = latex_repr obj._unicode_repr = pretty_unicode_repr obj._ascii_repr = pretty_ascii_repr obj._mathml_repr = mathml_presentation_repr if dimension is not None: # TODO: remove after deprecation: obj.set_dimension(dimension) if scale_factor is not None: # TODO: remove after deprecation: obj.set_scale_factor(scale_factor) return obj def set_dimension(self, dimension, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="Moving method to UnitSystem class", useinstead="unit_system.set_quantity_dimension or {}.set_global_relative_scale_factor".format(self), ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) unit_system.set_quantity_dimension(self, dimension) def set_scale_factor(self, scale_factor, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="Moving method to UnitSystem class", useinstead="unit_system.set_quantity_scale_factor or {}.set_global_relative_scale_factor".format(self), ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) unit_system.set_quantity_scale_factor(self, scale_factor) def set_global_dimension(self, dimension): _QuantityMapper._quantity_dimension_global[self] = dimension def set_global_relative_scale_factor(self, scale_factor, reference_quantity): """ Setting a scale factor that is valid across all unit system. """ from sympy.physics.units import UnitSystem scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) scale_factor = sympify(scale_factor) UnitSystem._quantity_scale_factors_global[self] = (scale_factor, reference_quantity) UnitSystem._quantity_dimensional_equivalence_map_global[self] = reference_quantity @property def name(self): return self._name @property def dimension(self): from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_default_unit_system() return unit_system.get_quantity_dimension(self) @property def abbrev(self): """ Symbol representing the unit name. Prepend the abbreviation with the prefix symbol if it is defines. """ return self._abbrev @property def scale_factor(self): """ Overall magnitude of the quantity as compared to the canonical units. """ from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_default_unit_system() return unit_system.get_quantity_scale_factor(self) def _eval_is_positive(self): return True def _eval_is_constant(self): return True def _eval_Abs(self): return self def _eval_subs(self, old, new): if isinstance(new, Quantity) and self != old: return self @staticmethod def get_dimensional_expr(expr, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="get_dimensional_expr() is now associated with UnitSystem objects. " \ "The dimensional relations depend on the unit system used.", useinstead="unit_system.get_dimensional_expr" ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) return unit_system.get_dimensional_expr(expr) @staticmethod def _collect_factor_and_dimension(expr, unit_system="SI"): """Return tuple with scale factor expression and dimension expression.""" SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="This method has been moved to the UnitSystem class.", useinstead="unit_system._collect_factor_and_dimension", ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) return unit_system._collect_factor_and_dimension(expr) def _latex(self, printer): if self._latex_repr: return self._latex_repr else: return r'\text{{{}}}'.format(self.args[1] \ if len(self.args) >= 2 else self.args[0]) def convert_to(self, other, unit_system="SI"): """ Convert the quantity to another quantity of same dimensions. Examples ======== >>> from sympy.physics.units import speed_of_light, meter, second >>> speed_of_light speed_of_light >>> speed_of_light.convert_to(meter/second) 299792458*meter/second >>> from sympy.physics.units import liter >>> liter.convert_to(meter**3) meter**3/1000 """ from .util import convert_to return convert_to(self, other, unit_system) @property def free_symbols(self): """Return free symbols from quantity.""" return set()
38fa1599c8c170bef61cfd37984caadd5a2295c7a0b4fd4fe51006e93b77665a
""" Module to handle gamma matrices expressed as tensor objects. Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex >>> from sympy.tensor.tensor import tensor_indices >>> i = tensor_indices('i', LorentzIndex) >>> G(i) GammaMatrix(i) Note that there is already an instance of GammaMatrixHead in four dimensions: GammaMatrix, which is simply declare as >>> from sympy.physics.hep.gamma_matrices import GammaMatrix >>> from sympy.tensor.tensor import tensor_indices >>> i = tensor_indices('i', LorentzIndex) >>> GammaMatrix(i) GammaMatrix(i) To access the metric tensor >>> LorentzIndex.metric metric(LorentzIndex,LorentzIndex) """ from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.matrices.dense import eye from sympy.matrices.expressions.trace import trace from sympy.tensor.tensor import TensorIndexType, TensorIndex,\ TensMul, TensAdd, tensor_mul, Tensor, TensorHead, TensorSymmetry # DiracSpinorIndex = TensorIndexType('DiracSpinorIndex', dim=4, dummy_name="S") LorentzIndex = TensorIndexType('LorentzIndex', dim=4, dummy_name="L") GammaMatrix = TensorHead("GammaMatrix", [LorentzIndex], TensorSymmetry.no_symmetry(1), comm=None) def extract_type_tens(expression, component): """ Extract from a ``TensExpr`` all tensors with `component`. Returns two tensor expressions: * the first contains all ``Tensor`` of having `component`. * the second contains all remaining. """ if isinstance(expression, Tensor): sp = [expression] elif isinstance(expression, TensMul): sp = expression.args else: raise ValueError('wrong type') # Collect all gamma matrices of the same dimension new_expr = S.One residual_expr = S.One for i in sp: if isinstance(i, Tensor) and i.component == component: new_expr *= i else: residual_expr *= i return new_expr, residual_expr def simplify_gamma_expression(expression): extracted_expr, residual_expr = extract_type_tens(expression, GammaMatrix) res_expr = _simplify_single_line(extracted_expr) return res_expr * residual_expr def simplify_gpgp(ex, sort=True): """ simplify products ``G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)`` Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ LorentzIndex, simplify_gpgp >>> from sympy.tensor.tensor import tensor_indices, tensor_heads >>> p, q = tensor_heads('p, q', [LorentzIndex]) >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex) >>> ps = p(i0)*G(-i0) >>> qs = q(i0)*G(-i0) >>> simplify_gpgp(ps*qs*qs) GammaMatrix(-L_0)*p(L_0)*q(L_1)*q(-L_1) """ def _simplify_gpgp(ex): components = ex.components a = [] comp_map = [] for i, comp in enumerate(components): comp_map.extend([i]*comp.rank) dum = [(i[0], i[1], comp_map[i[0]], comp_map[i[1]]) for i in ex.dum] for i in range(len(components)): if components[i] != GammaMatrix: continue for dx in dum: if dx[2] == i: p_pos1 = dx[3] elif dx[3] == i: p_pos1 = dx[2] else: continue comp1 = components[p_pos1] if comp1.comm == 0 and comp1.rank == 1: a.append((i, p_pos1)) if not a: return ex elim = set() tv = [] hit = True coeff = S.One ta = None while hit: hit = False for i, ai in enumerate(a[:-1]): if ai[0] in elim: continue if ai[0] != a[i + 1][0] - 1: continue if components[ai[1]] != components[a[i + 1][1]]: continue elim.add(ai[0]) elim.add(ai[1]) elim.add(a[i + 1][0]) elim.add(a[i + 1][1]) if not ta: ta = ex.split() mu = TensorIndex('mu', LorentzIndex) hit = True if i == 0: coeff = ex.coeff tx = components[ai[1]](mu)*components[ai[1]](-mu) if len(a) == 2: tx *= 4 # eye(4) tv.append(tx) break if tv: a = [x for j, x in enumerate(ta) if j not in elim] a.extend(tv) t = tensor_mul(*a)*coeff # t = t.replace(lambda x: x.is_Matrix, lambda x: 1) return t else: return ex if sort: ex = ex.sorted_components() # this would be better off with pattern matching while 1: t = _simplify_gpgp(ex) if t != ex: ex = t else: return t def gamma_trace(t): """ trace of a single line of gamma matrices Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ gamma_trace, LorentzIndex >>> from sympy.tensor.tensor import tensor_indices, tensor_heads >>> p, q = tensor_heads('p, q', [LorentzIndex]) >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex) >>> ps = p(i0)*G(-i0) >>> qs = q(i0)*G(-i0) >>> gamma_trace(G(i0)*G(i1)) 4*metric(i0, i1) >>> gamma_trace(ps*ps) - 4*p(i0)*p(-i0) 0 >>> gamma_trace(ps*qs + ps*ps) - 4*p(i0)*p(-i0) - 4*p(i0)*q(-i0) 0 """ if isinstance(t, TensAdd): res = TensAdd(*[_trace_single_line(x) for x in t.args]) return res t = _simplify_single_line(t) res = _trace_single_line(t) return res def _simplify_single_line(expression): """ Simplify single-line product of gamma matrices. Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ LorentzIndex, _simplify_single_line >>> from sympy.tensor.tensor import tensor_indices, TensorHead >>> p = TensorHead('p', [LorentzIndex]) >>> i0,i1 = tensor_indices('i0:2', LorentzIndex) >>> _simplify_single_line(G(i0)*G(i1)*p(-i1)*G(-i0)) + 2*G(i0)*p(-i0) 0 """ t1, t2 = extract_type_tens(expression, GammaMatrix) if t1 != 1: t1 = kahane_simplify(t1) res = t1*t2 return res def _trace_single_line(t): """ Evaluate the trace of a single gamma matrix line inside a ``TensExpr``. Notes ===== If there are ``DiracSpinorIndex.auto_left`` and ``DiracSpinorIndex.auto_right`` indices trace over them; otherwise traces are not implied (explain) Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ LorentzIndex, _trace_single_line >>> from sympy.tensor.tensor import tensor_indices, TensorHead >>> p = TensorHead('p', [LorentzIndex]) >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex) >>> _trace_single_line(G(i0)*G(i1)) 4*metric(i0, i1) >>> _trace_single_line(G(i0)*p(-i0)*G(i1)*p(-i1)) - 4*p(i0)*p(-i0) 0 """ def _trace_single_line1(t): t = t.sorted_components() components = t.components ncomps = len(components) g = LorentzIndex.metric # gamma matirices are in a[i:j] hit = 0 for i in range(ncomps): if components[i] == GammaMatrix: hit = 1 break for j in range(i + hit, ncomps): if components[j] != GammaMatrix: break else: j = ncomps numG = j - i if numG == 0: tcoeff = t.coeff return t.nocoeff if tcoeff else t if numG % 2 == 1: return TensMul.from_data(S.Zero, [], [], []) elif numG > 4: # find the open matrix indices and connect them: a = t.split() ind1 = a[i].get_indices()[0] ind2 = a[i + 1].get_indices()[0] aa = a[:i] + a[i + 2:] t1 = tensor_mul(*aa)*g(ind1, ind2) t1 = t1.contract_metric(g) args = [t1] sign = 1 for k in range(i + 2, j): sign = -sign ind2 = a[k].get_indices()[0] aa = a[:i] + a[i + 1:k] + a[k + 1:] t2 = sign*tensor_mul(*aa)*g(ind1, ind2) t2 = t2.contract_metric(g) t2 = simplify_gpgp(t2, False) args.append(t2) t3 = TensAdd(*args) t3 = _trace_single_line(t3) return t3 else: a = t.split() t1 = _gamma_trace1(*a[i:j]) a2 = a[:i] + a[j:] t2 = tensor_mul(*a2) t3 = t1*t2 if not t3: return t3 t3 = t3.contract_metric(g) return t3 t = t.expand() if isinstance(t, TensAdd): a = [_trace_single_line1(x)*x.coeff for x in t.args] return TensAdd(*a) elif isinstance(t, (Tensor, TensMul)): r = t.coeff*_trace_single_line1(t) return r else: return trace(t) def _gamma_trace1(*a): gctr = 4 # FIXME specific for d=4 g = LorentzIndex.metric if not a: return gctr n = len(a) if n%2 == 1: #return TensMul.from_data(S.Zero, [], [], []) return S.Zero if n == 2: ind0 = a[0].get_indices()[0] ind1 = a[1].get_indices()[0] return gctr*g(ind0, ind1) if n == 4: ind0 = a[0].get_indices()[0] ind1 = a[1].get_indices()[0] ind2 = a[2].get_indices()[0] ind3 = a[3].get_indices()[0] return gctr*(g(ind0, ind1)*g(ind2, ind3) - \ g(ind0, ind2)*g(ind1, ind3) + g(ind0, ind3)*g(ind1, ind2)) def kahane_simplify(expression): r""" This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices. Parameters ========== `expression` the tensor expression containing the gamma matrices to simplify. Notes ===== If spinor indices are given, the matrices must be given in the order given in the product. Algorithm ========= The idea behind the algorithm is to use some well-known identities, i.e., for contractions enclosing an even number of `\gamma` matrices `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2 (\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}} )` for an odd number of `\gamma` matrices `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N+1}} \gamma_\mu = -2 \gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_{1}}` Instead of repeatedly applying these identities to cancel out all contracted indices, it is possible to recognize the links that would result from such an operation, the problem is thus reduced to a simple rearrangement of free gamma matrices. Examples ======== When using, always remember that the original expression coefficient has to be handled separately >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex >>> from sympy.physics.hep.gamma_matrices import kahane_simplify >>> from sympy.tensor.tensor import tensor_indices >>> i0, i1, i2 = tensor_indices('i0:3', LorentzIndex) >>> ta = G(i0)*G(-i0) >>> kahane_simplify(ta) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) >>> tb = G(i0)*G(i1)*G(-i0) >>> kahane_simplify(tb) -2*GammaMatrix(i1) >>> t = G(i0)*G(-i0) >>> kahane_simplify(t) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) >>> t = G(i0)*G(-i0) >>> kahane_simplify(t) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) If there are no contractions, the same expression is returned >>> tc = G(i0)*G(i1) >>> kahane_simplify(tc) GammaMatrix(i0)*GammaMatrix(i1) References ========== [1] Algorithm for Reducing Contracted Products of gamma Matrices, Joseph Kahane, Journal of Mathematical Physics, Vol. 9, No. 10, October 1968. """ if isinstance(expression, Mul): return expression if isinstance(expression, TensAdd): return TensAdd(*[kahane_simplify(arg) for arg in expression.args]) if isinstance(expression, Tensor): return expression assert isinstance(expression, TensMul) gammas = expression.args for gamma in gammas: assert gamma.component == GammaMatrix free = expression.free # spinor_free = [_ for _ in expression.free_in_args if _[1] != 0] # if len(spinor_free) == 2: # spinor_free.sort(key=lambda x: x[2]) # assert spinor_free[0][1] == 1 and spinor_free[-1][1] == 2 # assert spinor_free[0][2] == 0 # elif spinor_free: # raise ValueError('spinor indices do not match') dum = [] for dum_pair in expression.dum: if expression.index_types[dum_pair[0]] == LorentzIndex: dum.append((dum_pair[0], dum_pair[1])) dum = sorted(dum) if len(dum) == 0: # or GammaMatrixHead: # no contractions in `expression`, just return it. return expression # find the `first_dum_pos`, i.e. the position of the first contracted # gamma matrix, Kahane's algorithm as described in his paper requires the # gamma matrix expression to start with a contracted gamma matrix, this is # a workaround which ignores possible initial free indices, and re-adds # them later. first_dum_pos = min(map(min, dum)) # for p1, p2, a1, a2 in expression.dum_in_args: # if p1 != 0 or p2 != 0: # # only Lorentz indices, skip Dirac indices: # continue # first_dum_pos = min(p1, p2) # break total_number = len(free) + len(dum)*2 number_of_contractions = len(dum) free_pos = [None]*total_number for i in free: free_pos[i[1]] = i[0] # `index_is_free` is a list of booleans, to identify index position # and whether that index is free or dummy. index_is_free = [False]*total_number for i, indx in enumerate(free): index_is_free[indx[1]] = True # `links` is a dictionary containing the graph described in Kahane's paper, # to every key correspond one or two values, representing the linked indices. # All values in `links` are integers, negative numbers are used in the case # where it is necessary to insert gamma matrices between free indices, in # order to make Kahane's algorithm work (see paper). links = dict() for i in range(first_dum_pos, total_number): links[i] = [] # `cum_sign` is a step variable to mark the sign of every index, see paper. cum_sign = -1 # `cum_sign_list` keeps storage for all `cum_sign` (every index). cum_sign_list = [None]*total_number block_free_count = 0 # multiply `resulting_coeff` by the coefficient parameter, the rest # of the algorithm ignores a scalar coefficient. resulting_coeff = S.One # initialize a list of lists of indices. The outer list will contain all # additive tensor expressions, while the inner list will contain the # free indices (rearranged according to the algorithm). resulting_indices = [[]] # start to count the `connected_components`, which together with the number # of contractions, determines a -1 or +1 factor to be multiplied. connected_components = 1 # First loop: here we fill `cum_sign_list`, and draw the links # among consecutive indices (they are stored in `links`). Links among # non-consecutive indices will be drawn later. for i, is_free in enumerate(index_is_free): # if `expression` starts with free indices, they are ignored here; # they are later added as they are to the beginning of all # `resulting_indices` list of lists of indices. if i < first_dum_pos: continue if is_free: block_free_count += 1 # if previous index was free as well, draw an arch in `links`. if block_free_count > 1: links[i - 1].append(i) links[i].append(i - 1) else: # Change the sign of the index (`cum_sign`) if the number of free # indices preceding it is even. cum_sign *= 1 if (block_free_count % 2) else -1 if block_free_count == 0 and i != first_dum_pos: # check if there are two consecutive dummy indices: # in this case create virtual indices with negative position, # these "virtual" indices represent the insertion of two # gamma^0 matrices to separate consecutive dummy indices, as # Kahane's algorithm requires dummy indices to be separated by # free indices. The product of two gamma^0 matrices is unity, # so the new expression being examined is the same as the # original one. if cum_sign == -1: links[-1-i] = [-1-i+1] links[-1-i+1] = [-1-i] if (i - cum_sign) in links: if i != first_dum_pos: links[i].append(i - cum_sign) if block_free_count != 0: if i - cum_sign < len(index_is_free): if index_is_free[i - cum_sign]: links[i - cum_sign].append(i) block_free_count = 0 cum_sign_list[i] = cum_sign # The previous loop has only created links between consecutive free indices, # it is necessary to properly create links among dummy (contracted) indices, # according to the rules described in Kahane's paper. There is only one exception # to Kahane's rules: the negative indices, which handle the case of some # consecutive free indices (Kahane's paper just describes dummy indices # separated by free indices, hinting that free indices can be added without # altering the expression result). for i in dum: # get the positions of the two contracted indices: pos1 = i[0] pos2 = i[1] # create Kahane's upper links, i.e. the upper arcs between dummy # (i.e. contracted) indices: links[pos1].append(pos2) links[pos2].append(pos1) # create Kahane's lower links, this corresponds to the arcs below # the line described in the paper: # first we move `pos1` and `pos2` according to the sign of the indices: linkpos1 = pos1 + cum_sign_list[pos1] linkpos2 = pos2 + cum_sign_list[pos2] # otherwise, perform some checks before creating the lower arcs: # make sure we are not exceeding the total number of indices: if linkpos1 >= total_number: continue if linkpos2 >= total_number: continue # make sure we are not below the first dummy index in `expression`: if linkpos1 < first_dum_pos: continue if linkpos2 < first_dum_pos: continue # check if the previous loop created "virtual" indices between dummy # indices, in such a case relink `linkpos1` and `linkpos2`: if (-1-linkpos1) in links: linkpos1 = -1-linkpos1 if (-1-linkpos2) in links: linkpos2 = -1-linkpos2 # move only if not next to free index: if linkpos1 >= 0 and not index_is_free[linkpos1]: linkpos1 = pos1 if linkpos2 >=0 and not index_is_free[linkpos2]: linkpos2 = pos2 # create the lower arcs: if linkpos2 not in links[linkpos1]: links[linkpos1].append(linkpos2) if linkpos1 not in links[linkpos2]: links[linkpos2].append(linkpos1) # This loop starts from the `first_dum_pos` index (first dummy index) # walks through the graph deleting the visited indices from `links`, # it adds a gamma matrix for every free index in encounters, while it # completely ignores dummy indices and virtual indices. pointer = first_dum_pos previous_pointer = 0 while True: if pointer in links: next_ones = links.pop(pointer) else: break if previous_pointer in next_ones: next_ones.remove(previous_pointer) previous_pointer = pointer if next_ones: pointer = next_ones[0] else: break if pointer == previous_pointer: break if pointer >=0 and free_pos[pointer] is not None: for ri in resulting_indices: ri.append(free_pos[pointer]) # The following loop removes the remaining connected components in `links`. # If there are free indices inside a connected component, it gives a # contribution to the resulting expression given by the factor # `gamma_a gamma_b ... gamma_z + gamma_z ... gamma_b gamma_a`, in Kahanes's # paper represented as {gamma_a, gamma_b, ... , gamma_z}, # virtual indices are ignored. The variable `connected_components` is # increased by one for every connected component this loop encounters. # If the connected component has virtual and dummy indices only # (no free indices), it contributes to `resulting_indices` by a factor of two. # The multiplication by two is a result of the # factor {gamma^0, gamma^0} = 2 I, as it appears in Kahane's paper. # Note: curly brackets are meant as in the paper, as a generalized # multi-element anticommutator! while links: connected_components += 1 pointer = min(links.keys()) previous_pointer = pointer # the inner loop erases the visited indices from `links`, and it adds # all free indices to `prepend_indices` list, virtual indices are # ignored. prepend_indices = [] while True: if pointer in links: next_ones = links.pop(pointer) else: break if previous_pointer in next_ones: if len(next_ones) > 1: next_ones.remove(previous_pointer) previous_pointer = pointer if next_ones: pointer = next_ones[0] if pointer >= first_dum_pos and free_pos[pointer] is not None: prepend_indices.insert(0, free_pos[pointer]) # if `prepend_indices` is void, it means there are no free indices # in the loop (and it can be shown that there must be a virtual index), # loops of virtual indices only contribute by a factor of two: if len(prepend_indices) == 0: resulting_coeff *= 2 # otherwise, add the free indices in `prepend_indices` to # the `resulting_indices`: else: expr1 = prepend_indices expr2 = list(reversed(prepend_indices)) resulting_indices = [expri + ri for ri in resulting_indices for expri in (expr1, expr2)] # sign correction, as described in Kahane's paper: resulting_coeff *= -1 if (number_of_contractions - connected_components + 1) % 2 else 1 # power of two factor, as described in Kahane's paper: resulting_coeff *= 2**(number_of_contractions) # If `first_dum_pos` is not zero, it means that there are trailing free gamma # matrices in front of `expression`, so multiply by them: for i in range(0, first_dum_pos): [ri.insert(0, free_pos[i]) for ri in resulting_indices] resulting_expr = S.Zero for i in resulting_indices: temp_expr = S.One for j in i: temp_expr *= GammaMatrix(j) resulting_expr += temp_expr t = resulting_coeff * resulting_expr t1 = None if isinstance(t, TensAdd): t1 = t.args[0] elif isinstance(t, TensMul): t1 = t if t1: pass else: t = eye(4)*t return t
004a4c1bcd17b2bce0c6c5741f8d4d650d0daccebb34e6e646eca911edcc5741
from sympy.core.function import Derivative from sympy.core.function import UndefinedFunction, AppliedUndef from sympy.core.symbol import Symbol from sympy.interactive.printing import init_printing from sympy.printing.latex import LatexPrinter from sympy.printing.pretty.pretty import PrettyPrinter from sympy.printing.pretty.pretty_symbology import center_accent from sympy.printing.str import StrPrinter from sympy.printing.precedence import PRECEDENCE __all__ = ['vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting'] class VectorStrPrinter(StrPrinter): """String Printer for vector expressions. """ def _print_Derivative(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t if (bool(sum([i == t for i in e.variables])) & isinstance(type(e.args[0]), UndefinedFunction)): ol = str(e.args[0].func) for i, v in enumerate(e.variables): ol += dynamicsymbols._str return ol else: return StrPrinter().doprint(e) def _print_Function(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t if isinstance(type(e), UndefinedFunction): return StrPrinter().doprint(e).replace("(%s)" % t, '') return e.func.__name__ + "(%s)" % self.stringify(e.args, ", ") class VectorStrReprPrinter(VectorStrPrinter): """String repr printer for vector expressions.""" def _print_str(self, s): return repr(s) class VectorLatexPrinter(LatexPrinter): """Latex Printer for vector expressions. """ def _print_Function(self, expr, exp=None): from sympy.physics.vector.functions import dynamicsymbols func = expr.func.__name__ t = dynamicsymbols._t if hasattr(self, '_print_' + func) and \ not isinstance(type(expr), UndefinedFunction): return getattr(self, '_print_' + func)(expr, exp) elif isinstance(type(expr), UndefinedFunction) and (expr.args == (t,)): # treat this function like a symbol expr = Symbol(func) if exp is not None: # copied from LatexPrinter._helper_print_standard_power, which # we can't call because we only have exp as a string. base = self.parenthesize(expr, PRECEDENCE['Pow']) base = self.parenthesize_super(base) return r"%s^{%s}" % (base, exp) else: return super()._print(expr) else: return super()._print_Function(expr, exp) def _print_Derivative(self, der_expr): from sympy.physics.vector.functions import dynamicsymbols # make sure it is in the right form der_expr = der_expr.doit() if not isinstance(der_expr, Derivative): return r"\left(%s\right)" % self.doprint(der_expr) # check if expr is a dynamicsymbol t = dynamicsymbols._t expr = der_expr.expr red = expr.atoms(AppliedUndef) syms = der_expr.variables test1 = not all(True for i in red if i.free_symbols == {t}) test2 = not all(t == i for i in syms) if test1 or test2: return super()._print_Derivative(der_expr) # done checking dots = len(syms) base = self._print_Function(expr) base_split = base.split('_', 1) base = base_split[0] if dots == 1: base = r"\dot{%s}" % base elif dots == 2: base = r"\ddot{%s}" % base elif dots == 3: base = r"\dddot{%s}" % base elif dots == 4: base = r"\ddddot{%s}" % base else: # Fallback to standard printing return super()._print_Derivative(der_expr) if len(base_split) != 1: base += '_' + base_split[1] return base class VectorPrettyPrinter(PrettyPrinter): """Pretty Printer for vectorialexpressions. """ def _print_Derivative(self, deriv): from sympy.physics.vector.functions import dynamicsymbols # XXX use U('PARTIAL DIFFERENTIAL') here ? t = dynamicsymbols._t dot_i = 0 syms = list(reversed(deriv.variables)) while len(syms) > 0: if syms[-1] == t: syms.pop() dot_i += 1 else: return super()._print_Derivative(deriv) if not (isinstance(type(deriv.expr), UndefinedFunction) and (deriv.expr.args == (t,))): return super()._print_Derivative(deriv) else: pform = self._print_Function(deriv.expr) # the following condition would happen with some sort of non-standard # dynamic symbol I guess, so we'll just print the SymPy way if len(pform.picture) > 1: return super()._print_Derivative(deriv) # There are only special symbols up to fourth-order derivatives if dot_i >= 5: return super()._print_Derivative(deriv) # Deal with special symbols dots = {0 : "", 1 : "\N{COMBINING DOT ABOVE}", 2 : "\N{COMBINING DIAERESIS}", 3 : "\N{COMBINING THREE DOTS ABOVE}", 4 : "\N{COMBINING FOUR DOTS ABOVE}"} d = pform.__dict__ #if unicode is false then calculate number of apostrophes needed and add to output if not self._use_unicode: apostrophes = "" for i in range(0, dot_i): apostrophes += "'" d['picture'][0] += apostrophes + "(t)" else: d['picture'] = [center_accent(d['picture'][0], dots[dot_i])] return pform def _print_Function(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t # XXX works only for applied functions func = e.func args = e.args func_name = func.__name__ pform = self._print_Symbol(Symbol(func_name)) # If this function is an Undefined function of t, it is probably a # dynamic symbol, so we'll skip the (t). The rest of the code is # identical to the normal PrettyPrinter code if not (isinstance(func, UndefinedFunction) and (args == (t,))): return super()._print_Function(e) return pform def vprint(expr, **settings): r"""Function for printing of expressions generated in the sympy.physics vector package. Extends SymPy's StrPrinter, takes the same setting accepted by SymPy's :func:`~.sstr`, and is equivalent to ``print(sstr(foo))``. Parameters ========== expr : valid SymPy object SymPy expression to print. settings : args Same as the settings accepted by SymPy's sstr(). Examples ======== >>> from sympy.physics.vector import vprint, dynamicsymbols >>> u1 = dynamicsymbols('u1') >>> print(u1) u1(t) >>> vprint(u1) u1 """ outstr = vsprint(expr, **settings) import builtins if (outstr != 'None'): builtins._ = outstr print(outstr) def vsstrrepr(expr, **settings): """Function for displaying expression representation's with vector printing enabled. Parameters ========== expr : valid SymPy object SymPy expression to print. settings : args Same as the settings accepted by SymPy's sstrrepr(). """ p = VectorStrReprPrinter(settings) return p.doprint(expr) def vsprint(expr, **settings): r"""Function for displaying expressions generated in the sympy.physics vector package. Returns the output of vprint() as a string. Parameters ========== expr : valid SymPy object SymPy expression to print settings : args Same as the settings accepted by SymPy's sstr(). Examples ======== >>> from sympy.physics.vector import vsprint, dynamicsymbols >>> u1, u2 = dynamicsymbols('u1 u2') >>> u2d = dynamicsymbols('u2', level=1) >>> print("%s = %s" % (u1, u2 + u2d)) u1(t) = u2(t) + Derivative(u2(t), t) >>> print("%s = %s" % (vsprint(u1), vsprint(u2 + u2d))) u1 = u2 + u2' """ string_printer = VectorStrPrinter(settings) return string_printer.doprint(expr) def vpprint(expr, **settings): r"""Function for pretty printing of expressions generated in the sympy.physics vector package. Mainly used for expressions not inside a vector; the output of running scripts and generating equations of motion. Takes the same options as SymPy's :func:`~.pretty_print`; see that function for more information. Parameters ========== expr : valid SymPy object SymPy expression to pretty print settings : args Same as those accepted by SymPy's pretty_print. """ pp = VectorPrettyPrinter(settings) # Note that this is copied from sympy.printing.pretty.pretty_print: # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] from sympy.printing.pretty.pretty_symbology import pretty_use_unicode uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def vlatex(expr, **settings): r"""Function for printing latex representation of sympy.physics.vector objects. For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the same options as SymPy's :func:`~.latex`; see that function for more information; Parameters ========== expr : valid SymPy object SymPy expression to represent in LaTeX form settings : args Same as latex() Examples ======== >>> from sympy.physics.vector import vlatex, ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> q1, q2 = dynamicsymbols('q1 q2') >>> q1d, q2d = dynamicsymbols('q1 q2', 1) >>> q1dd, q2dd = dynamicsymbols('q1 q2', 2) >>> vlatex(N.x + N.y) '\\mathbf{\\hat{n}_x} + \\mathbf{\\hat{n}_y}' >>> vlatex(q1 + q2) 'q_{1} + q_{2}' >>> vlatex(q1d) '\\dot{q}_{1}' >>> vlatex(q1 * q2d) 'q_{1} \\dot{q}_{2}' >>> vlatex(q1dd * q1 / q1d) '\\frac{q_{1} \\ddot{q}_{1}}{\\dot{q}_{1}}' """ latex_printer = VectorLatexPrinter(settings) return latex_printer.doprint(expr) def init_vprinting(**kwargs): """Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of displaying as ``Derivative(f(t),t)``, it will display ``f'``. This is only actually needed for when derivatives are present and are not in a physics.vector.Vector or physics.vector.Dyadic object. This function is a light wrapper to :func:`~.init_printing`. Any keyword arguments for it are valid here. {0} Examples ======== >>> from sympy import Function, symbols >>> t, x = symbols('t, x') >>> omega = Function('omega') >>> omega(x).diff() Derivative(omega(x), x) >>> omega(t).diff() Derivative(omega(t), t) Now use the string printer: >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> omega(x).diff() Derivative(omega(x), x) >>> omega(t).diff() omega' """ kwargs['str_printer'] = vsstrrepr kwargs['pretty_printer'] = vpprint kwargs['latex_printer'] = vlatex init_printing(**kwargs) params = init_printing.__doc__.split('Examples\n ========')[0] # type: ignore init_vprinting.__doc__ = init_vprinting.__doc__.format(params) # type: ignore
65ad5ee5f0ccef10a4cf4074319f71f97dcd6eabe4ce4c268a50dff856b22bb3
from sympy.core.backend import (S, sympify, expand, sqrt, Add, zeros, acos, ImmutableMatrix as Matrix, _simplify_matrix) from sympy.simplify.trigsimp import trigsimp from sympy.printing.defaults import Printable from sympy.utilities.misc import filldedent from sympy.core.evalf import EvalfMixin from mpmath.libmp.libmpf import prec_to_dps __all__ = ['Vector'] class Vector(Printable, EvalfMixin): """The class used to define vectors. It along with ReferenceFrame are the building blocks of describing a classical mechanics system in PyDy and sympy.physics.vector. Attributes ========== simp : Boolean Let certain methods use trigsimp on their outputs """ simp = False is_number = False def __init__(self, inlist): """This is the constructor for the Vector class. You shouldn't be calling this, it should only be used by other functions. You should be treating Vectors like you would with if you were doing the math by hand, and getting the first 3 from the standard basis vectors from a ReferenceFrame. The only exception is to create a zero vector: zv = Vector(0) """ self.args = [] if inlist == 0: inlist = [] if isinstance(inlist, dict): d = inlist else: d = {} for inp in inlist: if inp[1] in d: d[inp[1]] += inp[0] else: d[inp[1]] = inp[0] for k, v in d.items(): if v != Matrix([0, 0, 0]): self.args.append((v, k)) @property def func(self): """Returns the class Vector. """ return Vector def __hash__(self): return hash(tuple(self.args)) def __add__(self, other): """The add operator for Vector. """ if other == 0: return self other = _check_vector(other) return Vector(self.args + other.args) def __and__(self, other): """Dot product of two vectors. Returns a scalar, the dot product of the two Vectors Parameters ========== other : Vector The Vector which we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> dot(N.x, N.x) 1 >>> dot(N.x, N.y) 0 >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> dot(N.y, A.y) cos(q1) """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) out = S.Zero for i, v1 in enumerate(self.args): for j, v2 in enumerate(other.args): out += ((v2[0].T) * (v2[1].dcm(v1[1])) * (v1[0]))[0] if Vector.simp: return trigsimp(sympify(out), recursive=True) else: return sympify(out) def __truediv__(self, other): """This uses mul and inputs self and 1 divided by other. """ return self.__mul__(sympify(1) / other) def __eq__(self, other): """Tests for equality. It is very import to note that this is only as good as the SymPy equality test; False does not always mean they are not equivalent Vectors. If other is 0, and self is empty, returns True. If other is 0 and self is not empty, returns False. If none of the above, only accepts other as a Vector. """ if other == 0: other = Vector(0) try: other = _check_vector(other) except TypeError: return False if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False frame = self.args[0][1] for v in frame: if expand((self - other) & v) != 0: return False return True def __mul__(self, other): """Multiplies the Vector by a sympifyable expression. Parameters ========== other : Sympifyable The scalar to multiply this Vector with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> b = Symbol('b') >>> V = 10 * b * N.x >>> print(V) 10*b*N.x """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1]) return Vector(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def __or__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def _latex(self, printer): """Latex Printing method. """ ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].latex_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].latex_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + ar[i][1].latex_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer): """Pretty Printing method. """ from sympy.printing.pretty.stringpict import prettyForm e = self class Fake: def render(self, *args, **kwargs): ar = e.args # just to shorten things if len(ar) == 0: return str(0) pforms = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: pform = printer._print(ar[i][1].pretty_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: pform = printer._print(ar[i][1].pretty_vecs[j]) pform = prettyForm(*pform.left(" - ")) bin = prettyForm.NEG pform = prettyForm(binding=bin, *pform) elif ar[i][0][j] != 0: # If the basis vector coeff is not 1 or -1, # we might wrap it in parentheses, for readability. pform = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): tmp = pform.parens() pform = prettyForm(tmp[0], tmp[1]) pform = prettyForm(*pform.right(" ", ar[i][1].pretty_vecs[j])) else: continue pforms.append(pform) pform = prettyForm.__add__(*pforms) kwargs["wrap_line"] = kwargs.get("wrap_line") kwargs["num_columns"] = kwargs.get("num_columns") out_str = pform.render(*args, **kwargs) mlines = [line.rstrip() for line in out_str.split("\n")] return "\n".join(mlines) return Fake() def __ror__(self, other): """Outer product between two Vectors. A rank increasing operation, which returns a Dyadic from two Vectors Parameters ========== other : Vector The Vector to take the outer product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> outer(N.x, N.x) (N.x|N.x) """ from sympy.physics.vector.dyadic import Dyadic other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(other.args): for i2, v2 in enumerate(self.args): # it looks this way because if we are in the same frame and # use the enumerate function on the same frame in a nested # fashion, then bad things happen ol += Dyadic([(v[0][0] * v2[0][0], v[1].x, v2[1].x)]) ol += Dyadic([(v[0][0] * v2[0][1], v[1].x, v2[1].y)]) ol += Dyadic([(v[0][0] * v2[0][2], v[1].x, v2[1].z)]) ol += Dyadic([(v[0][1] * v2[0][0], v[1].y, v2[1].x)]) ol += Dyadic([(v[0][1] * v2[0][1], v[1].y, v2[1].y)]) ol += Dyadic([(v[0][1] * v2[0][2], v[1].y, v2[1].z)]) ol += Dyadic([(v[0][2] * v2[0][0], v[1].z, v2[1].x)]) ol += Dyadic([(v[0][2] * v2[0][1], v[1].z, v2[1].y)]) ol += Dyadic([(v[0][2] * v2[0][2], v[1].z, v2[1].z)]) return ol def __rsub__(self, other): return (-1 * self) + other def _sympystr(self, printer, order=True): """Printing method. """ if not order or len(self.args) == 1: ar = list(self.args) elif len(self.args) == 0: return printer._print(0) else: d = {v[1]: v[0] for v in self.args} keys = sorted(d.keys(), key=lambda x: x.index) ar = [] for key in keys: ar.append((d[key], key)) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): for j in 0, 1, 2: # if the coef of the basis vector is 1, we skip the 1 if ar[i][0][j] == 1: ol.append(' + ' + ar[i][1].str_vecs[j]) # if the coef of the basis vector is -1, we skip the 1 elif ar[i][0][j] == -1: ol.append(' - ' + ar[i][1].str_vecs[j]) elif ar[i][0][j] != 0: # If the coefficient of the basis vector is not 1 or -1; # also, we might wrap it in parentheses, for readability. arg_str = printer._print(ar[i][0][j]) if isinstance(ar[i][0][j], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*' + ar[i][1].str_vecs[j]) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subtraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """The cross product operator for two Vectors. Returns a Vector, expressed in the same ReferenceFrames as self. Parameters ========== other : Vector The Vector which we are crossing with Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> N.x ^ N.y N.z >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> A.x ^ N.y N.z >>> N.y ^ A.x - sin(q1)*A.y - cos(q1)*A.z """ from sympy.physics.vector.dyadic import Dyadic if isinstance(other, Dyadic): return NotImplemented other = _check_vector(other) if other.args == []: return Vector(0) def _det(mat): """This is needed as a little method for to find the determinant of a list in python; needs to work for a 3x3 list. SymPy's Matrix will not take in Vector, so need a custom function. You shouldn't be calling this. """ return (mat[0][0] * (mat[1][1] * mat[2][2] - mat[1][2] * mat[2][1]) + mat[0][1] * (mat[1][2] * mat[2][0] - mat[1][0] * mat[2][2]) + mat[0][2] * (mat[1][0] * mat[2][1] - mat[1][1] * mat[2][0])) outlist = [] ar = other.args # For brevity for i, v in enumerate(ar): tempx = v[1].x tempy = v[1].y tempz = v[1].z tempm = ([[tempx, tempy, tempz], [self & tempx, self & tempy, self & tempz], [Vector([ar[i]]) & tempx, Vector([ar[i]]) & tempy, Vector([ar[i]]) & tempz]]) outlist += _det(tempm).args return Vector(outlist) __radd__ = __add__ __rand__ = __and__ __rmul__ = __mul__ def separate(self): """ The constituents of this vector in different reference frames, as per its definition. Returns a dict mapping each ReferenceFrame to the corresponding constituent Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> R1 = ReferenceFrame('R1') >>> R2 = ReferenceFrame('R2') >>> v = R1.x + R2.x >>> v.separate() == {R1: R1.x, R2: R2.x} True """ components = {} for x in self.args: components[x[1]] = Vector([x]) return components def dot(self, other): return self & other dot.__doc__ = __and__.__doc__ def cross(self, other): return self ^ other cross.__doc__ = __xor__.__doc__ def outer(self, other): return self | other outer.__doc__ = __or__.__doc__ def diff(self, var, frame, var_in_dcm=True): """Returns the partial derivative of the vector with respect to a variable in the provided reference frame. Parameters ========== var : Symbol What the partial derivative is taken with respect to. frame : ReferenceFrame The reference frame that the partial derivative is taken in. var_in_dcm : boolean If true, the differentiation algorithm assumes that the variable may be present in any of the direction cosine matrices that relate the frame to the frames of any component of the vector. But if it is known that the variable is not present in the direction cosine matrices, false can be set to skip full reexpression in the desired frame. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.vector import dynamicsymbols, ReferenceFrame >>> from sympy.physics.vector import Vector >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> Vector.simp = True >>> t = Symbol('t') >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.diff(t, N) - q1'*A.z >>> B = ReferenceFrame('B') >>> u1, u2 = dynamicsymbols('u1, u2') >>> v = u1 * A.x + u2 * B.y >>> v.diff(u2, N, var_in_dcm=False) B.y """ from sympy.physics.vector.frame import _check_frame var = sympify(var) _check_frame(frame) inlist = [] for vector_component in self.args: measure_number = vector_component[0] component_frame = vector_component[1] if component_frame == frame: inlist += [(measure_number.diff(var), frame)] else: # If the direction cosine matrix relating the component frame # with the derivative frame does not contain the variable. if not var_in_dcm or (frame.dcm(component_frame).diff(var) == zeros(3, 3)): inlist += [(measure_number.diff(var), component_frame)] else: # else express in the frame reexp_vec_comp = Vector([vector_component]).express(frame) deriv = reexp_vec_comp.args[0][0].diff(var) inlist += Vector([(deriv, frame)]).express(component_frame).args return Vector(inlist) def express(self, otherframe, variables=False): """ Returns a Vector equivalent to this one, expressed in otherframe. Uses the global express method. Parameters ========== otherframe : ReferenceFrame The frame for this Vector to be described in variables : boolean If True, the coordinate symbols(if present) in this Vector are re-expressed in terms otherframe Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> q1 = dynamicsymbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.y]) >>> A.x.express(N) cos(q1)*N.x - sin(q1)*N.z """ from sympy.physics.vector import express return express(self, otherframe, variables=variables) def to_matrix(self, reference_frame): """Returns the matrix form of the vector with respect to the given frame. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,1) The matrix that gives the 1D vector. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> a, b, c = symbols('a, b, c') >>> N = ReferenceFrame('N') >>> vector = a * N.x + b * N.y + c * N.z >>> vector.to_matrix(N) Matrix([ [a], [b], [c]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> vector.to_matrix(A) Matrix([ [ a], [ b*cos(beta) + c*sin(beta)], [-b*sin(beta) + c*cos(beta)]]) """ return Matrix([self.dot(unit_vec) for unit_vec in reference_frame]).reshape(3, 1) def doit(self, **hints): """Calls .doit() on each term in the Vector""" d = {} for v in self.args: d[v[1]] = v[0].applyfunc(lambda x: x.doit(**hints)) return Vector(d) def dt(self, otherframe): """ Returns a Vector which is the time derivative of the self Vector, taken in frame otherframe. Calls the global time_derivative method Parameters ========== otherframe : ReferenceFrame The frame to calculate the time derivative in """ from sympy.physics.vector import time_derivative return time_derivative(self, otherframe) def simplify(self): """Returns a simplified Vector.""" d = {} for v in self.args: d[v[1]] = _simplify_matrix(v[0]) return Vector(d) def subs(self, *args, **kwargs): """Substitution on the Vector. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = N.x * s >>> a.subs({s: 2}) 2*N.x """ d = {} for v in self.args: d[v[1]] = v[0].subs(*args, **kwargs) return Vector(d) def magnitude(self): """Returns the magnitude (Euclidean norm) of self. Warnings ======== Python ignores the leading negative sign so that might give wrong results. ``-A.x.magnitude()`` would be treated as ``-(A.x.magnitude())``, instead of ``(-A.x).magnitude()``. """ return sqrt(self & self) def normalize(self): """Returns a Vector of magnitude 1, codirectional with self.""" return Vector(self.args + []) / self.magnitude() def applyfunc(self, f): """Apply a function to each component of a vector.""" if not callable(f): raise TypeError("`f` must be callable.") d = {} for v in self.args: d[v[1]] = v[0].applyfunc(f) return Vector(d) def angle_between(self, vec): """ Returns the smallest angle between Vector 'vec' and self. Parameter ========= vec : Vector The Vector between which angle is needed. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> A = ReferenceFrame("A") >>> v1 = A.x >>> v2 = A.y >>> v1.angle_between(v2) pi/2 >>> v3 = A.x + A.y + A.z >>> v1.angle_between(v3) acos(sqrt(3)/3) Warnings ======== Python ignores the leading negative sign so that might give wrong results. ``-A.x.angle_between()`` would be treated as ``-(A.x.angle_between())``, instead of ``(-A.x).angle_between()``. """ vec1 = self.normalize() vec2 = vec.normalize() angle = acos(vec1.dot(vec2)) return angle def free_symbols(self, reference_frame): """ Returns the free symbols in the measure numbers of the vector expressed in the given reference frame. Parameter ========= reference_frame : ReferenceFrame The frame with respect to which the free symbols of the given vector is to be determined. """ return self.to_matrix(reference_frame).free_symbols def _eval_evalf(self, prec): if not self.args: return self new_args = [] dps = prec_to_dps(prec) for mat, frame in self.args: new_args.append([mat.evalf(n=dps), frame]) return Vector(new_args) def xreplace(self, rule): """ Replace occurrences of objects within the measure numbers of the vector. Parameters ========== rule : dict-like Expresses a replacement rule. Returns ======= Vector Result of the replacement. Examples ======== >>> from sympy import symbols, pi >>> from sympy.physics.vector import ReferenceFrame >>> A = ReferenceFrame('A') >>> x, y, z = symbols('x y z') >>> ((1 + x*y) * A.x).xreplace({x: pi}) (pi*y + 1)*A.x >>> ((1 + x*y) * A.x).xreplace({x: pi, y: 2}) (1 + 2*pi)*A.x Replacements occur only if an entire node in the expression tree is matched: >>> ((x*y + z) * A.x).xreplace({x*y: pi}) (z + pi)*A.x >>> ((x*y*z) * A.x).xreplace({x*y: pi}) x*y*z*A.x """ new_args = [] for mat, frame in self.args: mat = mat.xreplace(rule) new_args.append([mat, frame]) return Vector(new_args) class VectorTypeError(TypeError): def __init__(self, other, want): msg = filldedent("Expected an instance of %s, but received object " "'%s' of %s." % (type(want), other, type(other))) super().__init__(msg) def _check_vector(other): if not isinstance(other, Vector): raise TypeError('A Vector must be supplied') return other
e6a4b29b171da25186f068b70f57b3fd1551874cf308a011f18949b1ccdf9b0c
from functools import reduce from sympy.core.backend import (sympify, diff, sin, cos, Matrix, symbols, Function, S, Symbol) from sympy.integrals.integrals import integrate from sympy.simplify.trigsimp import trigsimp from .vector import Vector, _check_vector from .frame import CoordinateSym, _check_frame from .dyadic import Dyadic from .printing import vprint, vsprint, vpprint, vlatex, init_vprinting from sympy.utilities.iterables import iterable from sympy.utilities.misc import translate __all__ = ['cross', 'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations', 'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting'] def cross(vec1, vec2): """Cross product convenience wrapper for Vector.cross(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Cross product is between two vectors') return vec1 ^ vec2 cross.__doc__ += Vector.cross.__doc__ # type: ignore def dot(vec1, vec2): """Dot product convenience wrapper for Vector.dot(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Dot product is between two vectors') return vec1 & vec2 dot.__doc__ += Vector.dot.__doc__ # type: ignore def express(expr, frame, frame2=None, variables=False): """ Global function for 'express' functionality. Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame. Refer to the local methods of Vector and Dyadic for details. If 'variables' is True, then the coordinate variables (CoordinateSym instances) of other frames present in the vector/scalar field or dyadic expression are also substituted in terms of the base scalars of this frame. Parameters ========== expr : Vector/Dyadic/scalar(sympyfiable) The expression to re-express in ReferenceFrame 'frame' frame: ReferenceFrame The reference frame to express expr in frame2 : ReferenceFrame The other frame required for re-expression(only for Dyadic expr) variables : boolean Specifies whether to substitute the coordinate variables present in expr, in terms of those of frame Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> from sympy.physics.vector import express >>> express(d, B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) >>> express(B.x, N) cos(q)*N.x + sin(q)*N.y >>> express(N[0], B, variables=True) B_x*cos(q) - B_y*sin(q) """ _check_frame(frame) if expr == 0: return expr if isinstance(expr, Vector): #Given expr is a Vector if variables: #If variables attribute is True, substitute #the coordinate variables in the Vector frame_list = [x[-1] for x in expr.args] subs_dict = {} for f in frame_list: subs_dict.update(f.variable_map(frame)) expr = expr.subs(subs_dict) #Re-express in this frame outvec = Vector([]) for i, v in enumerate(expr.args): if v[1] != frame: temp = frame.dcm(v[1]) * v[0] if Vector.simp: temp = temp.applyfunc(lambda x: trigsimp(x, method='fu')) outvec += Vector([(temp, frame)]) else: outvec += Vector([v]) return outvec if isinstance(expr, Dyadic): if frame2 is None: frame2 = frame _check_frame(frame2) ol = Dyadic(0) for i, v in enumerate(expr.args): ol += express(v[0], frame, variables=variables) * \ (express(v[1], frame, variables=variables) | express(v[2], frame2, variables=variables)) return ol else: if variables: #Given expr is a scalar field frame_set = set() expr = sympify(expr) #Substitute all the coordinate variables for x in expr.free_symbols: if isinstance(x, CoordinateSym)and x.frame != frame: frame_set.add(x.frame) subs_dict = {} for f in frame_set: subs_dict.update(f.variable_map(frame)) return expr.subs(subs_dict) return expr def time_derivative(expr, frame, order=1): """ Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame. References ========== https://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames Parameters ========== expr : Vector/Dyadic/sympifyable The expression whose time derivative is to be calculated frame : ReferenceFrame The reference frame to calculate the time derivative in order : integer The order of the derivative to be calculated Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> from sympy import Symbol >>> q1 = Symbol('q1') >>> u1 = dynamicsymbols('u1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> v = u1 * N.x >>> A.set_ang_vel(N, 10*A.x) >>> from sympy.physics.vector import time_derivative >>> time_derivative(v, N) u1'*N.x >>> time_derivative(u1*A[0], N) N_x*u1' >>> B = N.orientnew('B', 'Axis', [u1, N.z]) >>> from sympy.physics.vector import outer >>> d = outer(N.x, N.x) >>> time_derivative(d, B) - u1'*(N.y|N.x) - u1'*(N.x|N.y) """ t = dynamicsymbols._t _check_frame(frame) if order == 0: return expr if order % 1 != 0 or order < 0: raise ValueError("Unsupported value of order entered") if isinstance(expr, Vector): outlist = [] for i, v in enumerate(expr.args): if v[1] == frame: outlist += [(express(v[0], frame, variables=True).diff(t), frame)] else: outlist += (time_derivative(Vector([v]), v[1]) + \ (v[1].ang_vel_in(frame) ^ Vector([v]))).args outvec = Vector(outlist) return time_derivative(outvec, frame, order - 1) if isinstance(expr, Dyadic): ol = Dyadic(0) for i, v in enumerate(expr.args): ol += (v[0].diff(t) * (v[1] | v[2])) ol += (v[0] * (time_derivative(v[1], frame) | v[2])) ol += (v[0] * (v[1] | time_derivative(v[2], frame))) return time_derivative(ol, frame, order - 1) else: return diff(express(expr, frame, variables=True), t, order) def outer(vec1, vec2): """Outer product convenience wrapper for Vector.outer():\n""" if not isinstance(vec1, Vector): raise TypeError('Outer product is between two Vectors') return vec1 | vec2 outer.__doc__ += Vector.outer.__doc__ # type: ignore def kinematic_equations(speeds, coords, rot_type, rot_order=''): """Gives equations relating the qdot's to u's for a rotation type. Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, the angular velocity of B in A is assumed to be in the form: speed[0]*B.x + speed[1]*B.y + speed[2]*B.z Parameters ========== speeds : list of length 3 The body fixed angular velocity measure numbers. coords : list of length 3 or 4 The coordinates used to define the orientation of the two frames. rot_type : str The type of rotation used to create the equations. Body, Space, or Quaternion only rot_order : str or int If applicable, the order of a series of rotations. Examples ======== >>> from sympy.physics.vector import dynamicsymbols >>> from sympy.physics.vector import kinematic_equations, vprint >>> u1, u2, u3 = dynamicsymbols('u1 u2 u3') >>> q1, q2, q3 = dynamicsymbols('q1 q2 q3') >>> vprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'), ... order=None) [-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3'] """ # Code below is checking and sanitizing input approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '1', '2', '3', '') # make sure XYZ => 123 and rot_type is in lower case rot_order = translate(str(rot_order), 'XYZxyz', '123123') rot_type = rot_type.lower() if not isinstance(speeds, (list, tuple)): raise TypeError('Need to supply speeds in a list') if len(speeds) != 3: raise TypeError('Need to supply 3 body-fixed speeds') if not isinstance(coords, (list, tuple)): raise TypeError('Need to supply coordinates in a list') if rot_type in ['body', 'space']: if rot_order not in approved_orders: raise ValueError('Not an acceptable rotation order') if len(coords) != 3: raise ValueError('Need 3 coordinates for body or space') # Actual hard-coded kinematic differential equations w1, w2, w3 = speeds if w1 == w2 == w3 == 0: return [S.Zero]*3 q1, q2, q3 = coords q1d, q2d, q3d = [diff(i, dynamicsymbols._t) for i in coords] s1, s2, s3 = [sin(q1), sin(q2), sin(q3)] c1, c2, c3 = [cos(q1), cos(q2), cos(q3)] if rot_type == 'body': if rot_order == '123': return [q1d - (w1 * c3 - w2 * s3) / c2, q2d - w1 * s3 - w2 * c3, q3d - (-w1 * c3 + w2 * s3) * s2 / c2 - w3] if rot_order == '231': return [q1d - (w2 * c3 - w3 * s3) / c2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (- w2 * c3 + w3 * s3) * s2 / c2] if rot_order == '312': return [q1d - (-w1 * s3 + w3 * c3) / c2, q2d - w1 * c3 - w3 * s3, q3d - (w1 * s3 - w3 * c3) * s2 / c2 - w2] if rot_order == '132': return [q1d - (w1 * c3 + w3 * s3) / c2, q2d + w1 * s3 - w3 * c3, q3d - (w1 * c3 + w3 * s3) * s2 / c2 - w2] if rot_order == '213': return [q1d - (w1 * s3 + w2 * c3) / c2, q2d - w1 * c3 + w2 * s3, q3d - (w1 * s3 + w2 * c3) * s2 / c2 - w3] if rot_order == '321': return [q1d - (w2 * s3 + w3 * c3) / c2, q2d - w2 * c3 + w3 * s3, q3d - w1 - (w2 * s3 + w3 * c3) * s2 / c2] if rot_order == '121': return [q1d - (w2 * s3 + w3 * c3) / s2, q2d - w2 * c3 + w3 * s3, q3d - w1 + (w2 * s3 + w3 * c3) * c2 / s2] if rot_order == '131': return [q1d - (-w2 * c3 + w3 * s3) / s2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (w2 * c3 - w3 * s3) * c2 / s2] if rot_order == '212': return [q1d - (w1 * s3 - w3 * c3) / s2, q2d - w1 * c3 - w3 * s3, q3d - (-w1 * s3 + w3 * c3) * c2 / s2 - w2] if rot_order == '232': return [q1d - (w1 * c3 + w3 * s3) / s2, q2d + w1 * s3 - w3 * c3, q3d + (w1 * c3 + w3 * s3) * c2 / s2 - w2] if rot_order == '313': return [q1d - (w1 * s3 + w2 * c3) / s2, q2d - w1 * c3 + w2 * s3, q3d + (w1 * s3 + w2 * c3) * c2 / s2 - w3] if rot_order == '323': return [q1d - (-w1 * c3 + w2 * s3) / s2, q2d - w1 * s3 - w2 * c3, q3d - (w1 * c3 - w2 * s3) * c2 / s2 - w3] if rot_type == 'space': if rot_order == '123': return [q1d - w1 - (w2 * s1 + w3 * c1) * s2 / c2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / c2] if rot_order == '231': return [q1d - (w1 * c1 + w3 * s1) * s2 / c2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / c2] if rot_order == '312': return [q1d - (w1 * s1 + w2 * c1) * s2 / c2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / c2] if rot_order == '132': return [q1d - w1 - (-w2 * c1 + w3 * s1) * s2 / c2, q2d - w2 * s1 - w3 * c1, q3d - (w2 * c1 - w3 * s1) / c2] if rot_order == '213': return [q1d - (w1 * s1 - w3 * c1) * s2 / c2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (-w1 * s1 + w3 * c1) / c2] if rot_order == '321': return [q1d - (-w1 * c1 + w2 * s1) * s2 / c2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (w1 * c1 - w2 * s1) / c2] if rot_order == '121': return [q1d - w1 + (w2 * s1 + w3 * c1) * c2 / s2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / s2] if rot_order == '131': return [q1d - w1 - (w2 * c1 - w3 * s1) * c2 / s2, q2d - w2 * s1 - w3 * c1, q3d - (-w2 * c1 + w3 * s1) / s2] if rot_order == '212': return [q1d - (-w1 * s1 + w3 * c1) * c2 / s2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (w1 * s1 - w3 * c1) / s2] if rot_order == '232': return [q1d + (w1 * c1 + w3 * s1) * c2 / s2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / s2] if rot_order == '313': return [q1d + (w1 * s1 + w2 * c1) * c2 / s2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / s2] if rot_order == '323': return [q1d - (w1 * c1 - w2 * s1) * c2 / s2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (-w1 * c1 + w2 * s1) / s2] elif rot_type == 'quaternion': if rot_order != '': raise ValueError('Cannot have rotation order for quaternion') if len(coords) != 4: raise ValueError('Need 4 coordinates for quaternion') # Actual hard-coded kinematic differential equations e0, e1, e2, e3 = coords w = Matrix(speeds + [0]) E = Matrix([[e0, -e3, e2, e1], [e3, e0, -e1, e2], [-e2, e1, e0, e3], [-e1, -e2, -e3, e0]]) edots = Matrix([diff(i, dynamicsymbols._t) for i in [e1, e2, e3, e0]]) return list(edots.T - 0.5 * w.T * E.T) else: raise ValueError('Not an approved rotation type for this function') def get_motion_params(frame, **kwargs): """ Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame. If a higher order differential function is provided, the lower order functions are used as boundary conditions. For example, given the acceleration, the velocity and position parameters are taken as boundary conditions. The values of time at which the boundary conditions are specified are taken from timevalue1(for position boundary condition) and timevalue2(for velocity boundary condition). If any of the boundary conditions are not provided, they are taken to be zero by default (zero vectors, in case of vectorial inputs). If the boundary conditions are also functions of time, they are converted to constants by substituting the time values in the dynamicsymbols._t time Symbol. This function can also be used for calculating rotational motion parameters. Have a look at the Parameters and Examples for more clarity. Parameters ========== frame : ReferenceFrame The frame to express the motion parameters in acceleration : Vector Acceleration of the object/frame as a function of time velocity : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 position : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 timevalue1 : sympyfiable Value of time for position boundary condition timevalue2 : sympyfiable Value of time for velocity boundary condition Examples ======== >>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> from sympy import symbols >>> R = ReferenceFrame('R') >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3') >>> v = v1*R.x + v2*R.y + v3*R.z >>> get_motion_params(R, position = v) (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z) >>> a, b, c = symbols('a b c') >>> v = a*R.x + b*R.y + c*R.z >>> get_motion_params(R, velocity = v) (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z) >>> parameters = get_motion_params(R, acceleration = v) >>> parameters[1] a*t*R.x + b*t*R.y + c*t*R.z >>> parameters[2] a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z """ ##Helper functions def _process_vector_differential(vectdiff, condition, \ variable, ordinate, frame): """ Helper function for get_motion methods. Finds derivative of vectdiff wrt variable, and its integral using the specified boundary condition at value of variable = ordinate. Returns a tuple of - (derivative, function and integral) wrt vectdiff """ #Make sure boundary condition is independent of 'variable' if condition != 0: condition = express(condition, frame, variables=True) #Special case of vectdiff == 0 if vectdiff == Vector(0): return (0, 0, condition) #Express vectdiff completely in condition's frame to give vectdiff1 vectdiff1 = express(vectdiff, frame) #Find derivative of vectdiff vectdiff2 = time_derivative(vectdiff, frame) #Integrate and use boundary condition vectdiff0 = Vector(0) lims = (variable, ordinate, variable) for dim in frame: function1 = vectdiff1.dot(dim) abscissa = dim.dot(condition).subs({variable : ordinate}) # Indefinite integral of 'function1' wrt 'variable', using # the given initial condition (ordinate, abscissa). vectdiff0 += (integrate(function1, lims) + abscissa) * dim #Return tuple return (vectdiff2, vectdiff, vectdiff0) ##Function body _check_frame(frame) #Decide mode of operation based on user's input if 'acceleration' in kwargs: mode = 2 elif 'velocity' in kwargs: mode = 1 else: mode = 0 #All the possible parameters in kwargs #Not all are required for every case #If not specified, set to default values(may or may not be used in #calculations) conditions = ['acceleration', 'velocity', 'position', 'timevalue', 'timevalue1', 'timevalue2'] for i, x in enumerate(conditions): if x not in kwargs: if i < 3: kwargs[x] = Vector(0) else: kwargs[x] = S.Zero elif i < 3: _check_vector(kwargs[x]) else: kwargs[x] = sympify(kwargs[x]) if mode == 2: vel = _process_vector_differential(kwargs['acceleration'], kwargs['velocity'], dynamicsymbols._t, kwargs['timevalue2'], frame)[2] pos = _process_vector_differential(vel, kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame)[2] return (kwargs['acceleration'], vel, pos) elif mode == 1: return _process_vector_differential(kwargs['velocity'], kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame) else: vel = time_derivative(kwargs['position'], frame) acc = time_derivative(vel, frame) return (acc, vel, kwargs['position']) def partial_velocity(vel_vecs, gen_speeds, frame): """Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors. The output is a list of lists. The outer list has a number of elements equal to the number of supplied velocity vectors. The inner lists are, for each velocity vector, the partial derivatives of that velocity vector with respect to the generalized speeds supplied. Parameters ========== vel_vecs : iterable An iterable of velocity vectors (angular or linear). gen_speeds : iterable An iterable of generalized speeds. frame : ReferenceFrame The reference frame that the partial derivatives are going to be taken in. Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import dynamicsymbols >>> from sympy.physics.vector import partial_velocity >>> u = dynamicsymbols('u') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, u * N.x) >>> vel_vecs = [P.vel(N)] >>> gen_speeds = [u] >>> partial_velocity(vel_vecs, gen_speeds, N) [[N.x]] """ if not iterable(vel_vecs): raise TypeError('Velocity vectors must be contained in an iterable.') if not iterable(gen_speeds): raise TypeError('Generalized speeds must be contained in an iterable') vec_partials = [] for vec in vel_vecs: partials = [] for speed in gen_speeds: partials.append(vec.diff(speed, frame, var_in_dcm=False)) vec_partials.append(partials) return vec_partials def dynamicsymbols(names, level=0,**assumptions): """Uses symbols and Function for functions of time. Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable, the default being Symbol('t'). Parameters ========== names : str Names of the dynamic symbols you want to create; works the same way as inputs to symbols level : int Level of differentiation of the returned function; d/dt once of t, twice of t, etc. assumptions : - real(bool) : This is used to set the dynamicsymbol as real, by default is False. - positive(bool) : This is used to set the dynamicsymbol as positive, by default is False. - commutative(bool) : This is used to set the commutative property of a dynamicsymbol, by default is True. - integer(bool) : This is used to set the dynamicsymbol as integer, by default is False. Examples ======== >>> from sympy.physics.vector import dynamicsymbols >>> from sympy import diff, Symbol >>> q1 = dynamicsymbols('q1') >>> q1 q1(t) >>> q2 = dynamicsymbols('q2', real=True) >>> q2.is_real True >>> q3 = dynamicsymbols('q3', positive=True) >>> q3.is_positive True >>> q4, q5 = dynamicsymbols('q4,q5', commutative=False) >>> bool(q4*q5 != q5*q4) True >>> q6 = dynamicsymbols('q6', integer=True) >>> q6.is_integer True >>> diff(q1, Symbol('t')) Derivative(q1(t), t) """ esses = symbols(names, cls=Function,**assumptions) t = dynamicsymbols._t if iterable(esses): esses = [reduce(diff, [t] * level, e(t)) for e in esses] return esses else: return reduce(diff, [t] * level, esses(t)) dynamicsymbols._t = Symbol('t') # type: ignore dynamicsymbols._str = '\'' # type: ignore
0d5cff0af28b67b874b53a268487ec5db26ccd66518c3582cc3077c8516888e9
from sympy.core.function import diff from sympy.core.singleton import S from sympy.integrals.integrals import integrate from sympy.physics.vector import Vector, express from sympy.physics.vector.frame import _check_frame from sympy.physics.vector.vector import _check_vector __all__ = ['curl', 'divergence', 'gradient', 'is_conservative', 'is_solenoidal', 'scalar_potential', 'scalar_potential_difference'] def curl(vect, frame): """ Returns the curl of a vector field computed wrt the coordinate symbols of the given frame. Parameters ========== vect : Vector The vector operand frame : ReferenceFrame The reference frame to calculate the curl in Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import curl >>> R = ReferenceFrame('R') >>> v1 = R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z >>> curl(v1, R) 0 >>> v2 = R[0]*R[1]*R[2]*R.x >>> curl(v2, R) R_x*R_y*R.y - R_x*R_z*R.z """ _check_vector(vect) if vect == 0: return Vector(0) vect = express(vect, frame, variables=True) #A mechanical approach to avoid looping overheads vectx = vect.dot(frame.x) vecty = vect.dot(frame.y) vectz = vect.dot(frame.z) outvec = Vector(0) outvec += (diff(vectz, frame[1]) - diff(vecty, frame[2])) * frame.x outvec += (diff(vectx, frame[2]) - diff(vectz, frame[0])) * frame.y outvec += (diff(vecty, frame[0]) - diff(vectx, frame[1])) * frame.z return outvec def divergence(vect, frame): """ Returns the divergence of a vector field computed wrt the coordinate symbols of the given frame. Parameters ========== vect : Vector The vector operand frame : ReferenceFrame The reference frame to calculate the divergence in Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import divergence >>> R = ReferenceFrame('R') >>> v1 = R[0]*R[1]*R[2] * (R.x+R.y+R.z) >>> divergence(v1, R) R_x*R_y + R_x*R_z + R_y*R_z >>> v2 = 2*R[1]*R[2]*R.y >>> divergence(v2, R) 2*R_z """ _check_vector(vect) if vect == 0: return S.Zero vect = express(vect, frame, variables=True) vectx = vect.dot(frame.x) vecty = vect.dot(frame.y) vectz = vect.dot(frame.z) out = S.Zero out += diff(vectx, frame[0]) out += diff(vecty, frame[1]) out += diff(vectz, frame[2]) return out def gradient(scalar, frame): """ Returns the vector gradient of a scalar field computed wrt the coordinate symbols of the given frame. Parameters ========== scalar : sympifiable The scalar field to take the gradient of frame : ReferenceFrame The frame to calculate the gradient in Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import gradient >>> R = ReferenceFrame('R') >>> s1 = R[0]*R[1]*R[2] >>> gradient(s1, R) R_y*R_z*R.x + R_x*R_z*R.y + R_x*R_y*R.z >>> s2 = 5*R[0]**2*R[2] >>> gradient(s2, R) 10*R_x*R_z*R.x + 5*R_x**2*R.z """ _check_frame(frame) outvec = Vector(0) scalar = express(scalar, frame, variables=True) for i, x in enumerate(frame): outvec += diff(scalar, frame[i]) * x return outvec def is_conservative(field): """ Checks if a field is conservative. Parameters ========== field : Vector The field to check for conservative property Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import is_conservative >>> R = ReferenceFrame('R') >>> is_conservative(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z) True >>> is_conservative(R[2] * R.y) False """ #Field is conservative irrespective of frame #Take the first frame in the result of the #separate method of Vector if field == Vector(0): return True frame = list(field.separate())[0] return curl(field, frame).simplify() == Vector(0) def is_solenoidal(field): """ Checks if a field is solenoidal. Parameters ========== field : Vector The field to check for solenoidal property Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import is_solenoidal >>> R = ReferenceFrame('R') >>> is_solenoidal(R[1]*R[2]*R.x + R[0]*R[2]*R.y + R[0]*R[1]*R.z) True >>> is_solenoidal(R[1] * R.y) False """ #Field is solenoidal irrespective of frame #Take the first frame in the result of the #separate method in Vector if field == Vector(0): return True frame = list(field.separate())[0] return divergence(field, frame).simplify() is S.Zero def scalar_potential(field, frame): """ Returns the scalar potential function of a field in a given frame (without the added integration constant). Parameters ========== field : Vector The vector field whose scalar potential function is to be calculated frame : ReferenceFrame The frame to do the calculation in Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy.physics.vector import scalar_potential, gradient >>> R = ReferenceFrame('R') >>> scalar_potential(R.z, R) == R[2] True >>> scalar_field = 2*R[0]**2*R[1]*R[2] >>> grad_field = gradient(scalar_field, R) >>> scalar_potential(grad_field, R) 2*R_x**2*R_y*R_z """ #Check whether field is conservative if not is_conservative(field): raise ValueError("Field is not conservative") if field == Vector(0): return S.Zero #Express the field exntirely in frame #Substitute coordinate variables also _check_frame(frame) field = express(field, frame, variables=True) #Make a list of dimensions of the frame dimensions = [x for x in frame] #Calculate scalar potential function temp_function = integrate(field.dot(dimensions[0]), frame[0]) for i, dim in enumerate(dimensions[1:]): partial_diff = diff(temp_function, frame[i + 1]) partial_diff = field.dot(dim) - partial_diff temp_function += integrate(partial_diff, frame[i + 1]) return temp_function def scalar_potential_difference(field, frame, point1, point2, origin): """ Returns the scalar potential difference between two points in a certain frame, wrt a given field. If a scalar field is provided, its values at the two points are considered. If a conservative vector field is provided, the values of its scalar potential function at the two points are used. Returns (potential at position 2) - (potential at position 1) Parameters ========== field : Vector/sympyfiable The field to calculate wrt frame : ReferenceFrame The frame to do the calculations in point1 : Point The initial Point in given frame position2 : Point The second Point in the given frame origin : Point The Point to use as reference point for position vector calculation Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Point >>> from sympy.physics.vector import scalar_potential_difference >>> R = ReferenceFrame('R') >>> O = Point('O') >>> P = O.locatenew('P', R[0]*R.x + R[1]*R.y + R[2]*R.z) >>> vectfield = 4*R[0]*R[1]*R.x + 2*R[0]**2*R.y >>> scalar_potential_difference(vectfield, R, O, P, O) 2*R_x**2*R_y >>> Q = O.locatenew('O', 3*R.x + R.y + 2*R.z) >>> scalar_potential_difference(vectfield, R, P, Q, O) -2*R_x**2*R_y + 18 """ _check_frame(frame) if isinstance(field, Vector): #Get the scalar potential function scalar_fn = scalar_potential(field, frame) else: #Field is a scalar scalar_fn = field #Express positions in required frame position1 = express(point1.pos_from(origin), frame, variables=True) position2 = express(point2.pos_from(origin), frame, variables=True) #Get the two positions as substitution dicts for coordinate variables subs_dict1 = {} subs_dict2 = {} for i, x in enumerate(frame): subs_dict1[frame[i]] = x.dot(position1) subs_dict2[frame[i]] = x.dot(position2) return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
b31580572899eebf8081195f89dbc721f0d6e3bbfc066cd8bab301f8f011528f
from sympy.core.backend import (diff, expand, sin, cos, sympify, eye, symbols, ImmutableMatrix as Matrix, MatrixBase) from sympy.core.symbol import (Dummy, Symbol) from sympy.simplify.trigsimp import trigsimp from sympy.solvers.solvers import solve from sympy.physics.vector.vector import Vector, _check_vector from sympy.utilities.misc import translate from warnings import warn __all__ = ['CoordinateSym', 'ReferenceFrame'] class CoordinateSym(Symbol): """ A coordinate symbol/base scalar associated wrt a Reference Frame. Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame as 'frame[index]'. CoordinateSyms having the same frame and index parameters are equal (even though they may be instantiated separately). Parameters ========== name : string The display name of the CoordinateSym frame : ReferenceFrame The reference frame this base scalar belongs to index : 0, 1 or 2 The index of the dimension denoted by this coordinate variable Examples ======== >>> from sympy.physics.vector import ReferenceFrame, CoordinateSym >>> A = ReferenceFrame('A') >>> A[1] A_y >>> type(A[0]) <class 'sympy.physics.vector.frame.CoordinateSym'> >>> a_y = CoordinateSym('a_y', A, 1) >>> a_y == A[1] True """ def __new__(cls, name, frame, index): # We can't use the cached Symbol.__new__ because this class depends on # frame and index, which are not passed to Symbol.__xnew__. assumptions = {} super()._sanitize(assumptions, cls) obj = super().__xnew__(cls, name, **assumptions) _check_frame(frame) if index not in range(0, 3): raise ValueError("Invalid index specified") obj._id = (frame, index) return obj @property def frame(self): return self._id[0] def __eq__(self, other): #Check if the other object is a CoordinateSym of the same frame #and same index if isinstance(other, CoordinateSym): if other._id == self._id: return True return False def __ne__(self, other): return not self == other def __hash__(self): return tuple((self._id[0].__hash__(), self._id[1])).__hash__() class ReferenceFrame: """A reference frame in classical mechanics. ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame's x, y, and z directions. It also can have a rotation relative to a parent frame; this rotation is defined by a direction cosine matrix relating this frame's basis vectors to the parent frame's basis vectors. It can also have an angular velocity vector, defined in another frame. """ _count = 0 def __init__(self, name, indices=None, latexs=None, variables=None): """ReferenceFrame initialization method. A ReferenceFrame has a set of orthonormal basis vectors, along with orientations relative to other ReferenceFrames and angular velocities relative to other ReferenceFrames. Parameters ========== indices : tuple of str Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice. latexs : tuple of str Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> N = ReferenceFrame('N') >>> N.x N.x >>> O = ReferenceFrame('O', indices=('1', '2', '3')) >>> O.x O['1'] >>> O['1'] O['1'] >>> P = ReferenceFrame('P', latexs=('A1', 'A2', 'A3')) >>> vlatex(P.x) 'A1' symbols() can be used to create multiple Reference Frames in one step, for example: >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> A, B, C = symbols('A B C', cls=ReferenceFrame) >>> D, E = symbols('D E', cls=ReferenceFrame, indices=('1', '2', '3')) >>> A[0] A_x >>> D.x D['1'] >>> E.y E['2'] >>> type(A) == type(D) True """ if not isinstance(name, str): raise TypeError('Need to supply a valid name') # The if statements below are for custom printing of basis-vectors for # each frame. # First case, when custom indices are supplied if indices is not None: if not isinstance(indices, (tuple, list)): raise TypeError('Supply the indices as a list') if len(indices) != 3: raise ValueError('Supply 3 indices') for i in indices: if not isinstance(i, str): raise TypeError('Indices must be strings') self.str_vecs = [(name + '[\'' + indices[0] + '\']'), (name + '[\'' + indices[1] + '\']'), (name + '[\'' + indices[2] + '\']')] self.pretty_vecs = [(name.lower() + "_" + indices[0]), (name.lower() + "_" + indices[1]), (name.lower() + "_" + indices[2])] self.latex_vecs = [(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[0])), (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[1])), (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[2]))] self.indices = indices # Second case, when no custom indices are supplied else: self.str_vecs = [(name + '.x'), (name + '.y'), (name + '.z')] self.pretty_vecs = [name.lower() + "_x", name.lower() + "_y", name.lower() + "_z"] self.latex_vecs = [(r"\mathbf{\hat{%s}_x}" % name.lower()), (r"\mathbf{\hat{%s}_y}" % name.lower()), (r"\mathbf{\hat{%s}_z}" % name.lower())] self.indices = ['x', 'y', 'z'] # Different step, for custom latex basis vectors if latexs is not None: if not isinstance(latexs, (tuple, list)): raise TypeError('Supply the indices as a list') if len(latexs) != 3: raise ValueError('Supply 3 indices') for i in latexs: if not isinstance(i, str): raise TypeError('Latex entries must be strings') self.latex_vecs = latexs self.name = name self._var_dict = {} #The _dcm_dict dictionary will only store the dcms of adjacent parent-child #relationships. The _dcm_cache dictionary will store calculated dcm along with #all content of _dcm_dict for faster retrieval of dcms. self._dcm_dict = {} self._dcm_cache = {} self._ang_vel_dict = {} self._ang_acc_dict = {} self._dlist = [self._dcm_dict, self._ang_vel_dict, self._ang_acc_dict] self._cur = 0 self._x = Vector([(Matrix([1, 0, 0]), self)]) self._y = Vector([(Matrix([0, 1, 0]), self)]) self._z = Vector([(Matrix([0, 0, 1]), self)]) #Associate coordinate symbols wrt this frame if variables is not None: if not isinstance(variables, (tuple, list)): raise TypeError('Supply the variable names as a list/tuple') if len(variables) != 3: raise ValueError('Supply 3 variable names') for i in variables: if not isinstance(i, str): raise TypeError('Variable names must be strings') else: variables = [name + '_x', name + '_y', name + '_z'] self.varlist = (CoordinateSym(variables[0], self, 0), \ CoordinateSym(variables[1], self, 1), \ CoordinateSym(variables[2], self, 2)) ReferenceFrame._count += 1 self.index = ReferenceFrame._count def __getitem__(self, ind): """ Returns basis vector for the provided index, if the index is a string. If the index is a number, returns the coordinate variable correspon- -ding to that index. """ if not isinstance(ind, str): if ind < 3: return self.varlist[ind] else: raise ValueError("Invalid index provided") if self.indices[0] == ind: return self.x if self.indices[1] == ind: return self.y if self.indices[2] == ind: return self.z else: raise ValueError('Not a defined index') def __iter__(self): return iter([self.x, self.y, self.z]) def __str__(self): """Returns the name of the frame. """ return self.name __repr__ = __str__ def _dict_list(self, other, num): """Returns an inclusive list of reference frames that connect this reference frame to the provided reference frame. Parameters ========== other : ReferenceFrame The other reference frame to look for a connecting relationship to. num : integer ``0``, ``1``, and ``2`` will look for orientation, angular velocity, and angular acceleration relationships between the two frames, respectively. Returns ======= list Inclusive list of reference frames that connect this reference frame to the other reference frame. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> A = ReferenceFrame('A') >>> B = ReferenceFrame('B') >>> C = ReferenceFrame('C') >>> D = ReferenceFrame('D') >>> B.orient_axis(A, A.x, 1.0) >>> C.orient_axis(B, B.x, 1.0) >>> D.orient_axis(C, C.x, 1.0) >>> D._dict_list(A, 0) [D, C, B, A] Raises ====== ValueError When no path is found between the two reference frames or ``num`` is an incorrect value. """ connect_type = {0: 'orientation', 1: 'angular velocity', 2: 'angular acceleration'} if num not in connect_type.keys(): raise ValueError('Valid values for num are 0, 1, or 2.') possible_connecting_paths = [[self]] oldlist = [[]] while possible_connecting_paths != oldlist: oldlist = possible_connecting_paths[:] # make a copy for frame_list in possible_connecting_paths: frames_adjacent_to_last = frame_list[-1]._dlist[num].keys() for adjacent_frame in frames_adjacent_to_last: if adjacent_frame not in frame_list: connecting_path = frame_list + [adjacent_frame] if connecting_path not in possible_connecting_paths: possible_connecting_paths.append(connecting_path) for connecting_path in oldlist: if connecting_path[-1] != other: possible_connecting_paths.remove(connecting_path) possible_connecting_paths.sort(key=len) if len(possible_connecting_paths) != 0: return possible_connecting_paths[0] # selects the shortest path msg = 'No connecting {} path found between {} and {}.' raise ValueError(msg.format(connect_type[num], self.name, other.name)) def _w_diff_dcm(self, otherframe): """Angular velocity from time differentiating the DCM. """ from sympy.physics.vector.functions import dynamicsymbols dcm2diff = otherframe.dcm(self) diffed = dcm2diff.diff(dynamicsymbols._t) angvelmat = diffed * dcm2diff.T w1 = trigsimp(expand(angvelmat[7]), recursive=True) w2 = trigsimp(expand(angvelmat[2]), recursive=True) w3 = trigsimp(expand(angvelmat[3]), recursive=True) return Vector([(Matrix([w1, w2, w3]), otherframe)]) def variable_map(self, otherframe): """ Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe. If Vector.simp is True, returns a simplified version of the mapped values. Else, returns them without simplification. Simplification of the expressions may take time. Parameters ========== otherframe : ReferenceFrame The other frame to map the variables to Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> A = ReferenceFrame('A') >>> q = dynamicsymbols('q') >>> B = A.orientnew('B', 'Axis', [q, A.z]) >>> A.variable_map(B) {A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z} """ _check_frame(otherframe) if (otherframe, Vector.simp) in self._var_dict: return self._var_dict[(otherframe, Vector.simp)] else: vars_matrix = self.dcm(otherframe) * Matrix(otherframe.varlist) mapping = {} for i, x in enumerate(self): if Vector.simp: mapping[self.varlist[i]] = trigsimp(vars_matrix[i], method='fu') else: mapping[self.varlist[i]] = vars_matrix[i] self._var_dict[(otherframe, Vector.simp)] = mapping return mapping def ang_acc_in(self, otherframe): """Returns the angular acceleration Vector of the ReferenceFrame. Effectively returns the Vector: ^N alpha ^B which represent the angular acceleration of B in N, where B is self, and N is otherframe. Parameters ========== otherframe : ReferenceFrame The ReferenceFrame which the angular acceleration is returned in. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x """ _check_frame(otherframe) if otherframe in self._ang_acc_dict: return self._ang_acc_dict[otherframe] else: return self.ang_vel_in(otherframe).dt(otherframe) def ang_vel_in(self, otherframe): """Returns the angular velocity Vector of the ReferenceFrame. Effectively returns the Vector: ^N omega ^B which represent the angular velocity of B in N, where B is self, and N is otherframe. Parameters ========== otherframe : ReferenceFrame The ReferenceFrame which the angular velocity is returned in. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x """ _check_frame(otherframe) flist = self._dict_list(otherframe, 1) outvec = Vector(0) for i in range(len(flist) - 1): outvec += flist[i]._ang_vel_dict[flist[i + 1]] return outvec def dcm(self, otherframe): r"""Returns the direction cosine matrix relative to the provided reference frame. The returned matrix can be used to express the orthogonal unit vectors of this frame in terms of the orthogonal unit vectors of ``otherframe``. Parameters ========== otherframe : ReferenceFrame The reference frame which the direction cosine matrix of this frame is formed relative to. Examples ======== The following example rotates the reference frame A relative to N by a simple rotation and then calculates the direction cosine matrix of N relative to A. >>> from sympy import symbols, sin, cos >>> from sympy.physics.vector import ReferenceFrame >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', (q1, N.x)) >>> N.dcm(A) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]]) The second row of the above direction cosine matrix represents the ``N.y`` unit vector in N expressed in A. Like so: >>> Ny = 0*A.x + cos(q1)*A.y - sin(q1)*A.z Thus, expressing ``N.y`` in A should return the same result: >>> N.y.express(A) cos(q1)*A.y - sin(q1)*A.z Notes ===== It is import to know what form of the direction cosine matrix is returned. If ``B.dcm(A)`` is called, it means the "direction cosine matrix of B relative to A". This is the matrix :math:`^{\mathbf{A}} \mathbf{R} ^{\mathbf{B}}` shown in the following relationship: .. math:: \begin{bmatrix} \hat{\mathbf{b}}_1 \\ \hat{\mathbf{b}}_2 \\ \hat{\mathbf{b}}_3 \end{bmatrix} = {}^A\mathbf{R}^B \begin{bmatrix} \hat{\mathbf{a}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{a}}_3 \end{bmatrix}. :math:`{}^A\mathbf{R}^B` is the matrix that expresses the B unit vectors in terms of the A unit vectors. """ _check_frame(otherframe) # Check if the dcm wrt that frame has already been calculated if otherframe in self._dcm_cache: return self._dcm_cache[otherframe] flist = self._dict_list(otherframe, 0) outdcm = eye(3) for i in range(len(flist) - 1): outdcm = outdcm * flist[i]._dcm_dict[flist[i + 1]] # After calculation, store the dcm in dcm cache for faster future # retrieval self._dcm_cache[otherframe] = outdcm otherframe._dcm_cache[self] = outdcm.T return outdcm def _dcm(self, parent, parent_orient): # If parent.oreint(self) is already defined,then # update the _dcm_dict of parent while over write # all content of self._dcm_dict and self._dcm_cache # with new dcm relation. # Else update _dcm_cache and _dcm_dict of both # self and parent. frames = self._dcm_cache.keys() dcm_dict_del = [] dcm_cache_del = [] if parent in frames: for frame in frames: if frame in self._dcm_dict: dcm_dict_del += [frame] dcm_cache_del += [frame] # Reset the _dcm_cache of this frame, and remove it from the # _dcm_caches of the frames it is linked to. Also remove it from the # _dcm_dict of its parent for frame in dcm_dict_del: del frame._dcm_dict[self] for frame in dcm_cache_del: del frame._dcm_cache[self] # Reset the _dcm_dict self._dcm_dict = self._dlist[0] = {} # Reset the _dcm_cache self._dcm_cache = {} else: #Check for loops and raise warning accordingly. visited = [] queue = list(frames) cont = True #Flag to control queue loop. while queue and cont: node = queue.pop(0) if node not in visited: visited.append(node) neighbors = node._dcm_dict.keys() for neighbor in neighbors: if neighbor == parent: warn('Loops are defined among the orientation of frames.' + \ ' This is likely not desired and may cause errors in your calculations.') cont = False break queue.append(neighbor) # Add the dcm relationship to _dcm_dict self._dcm_dict.update({parent: parent_orient.T}) parent._dcm_dict.update({self: parent_orient}) # Update the dcm cache self._dcm_cache.update({parent: parent_orient.T}) parent._dcm_cache.update({self: parent_orient}) def orient_axis(self, parent, axis, angle): """Sets the orientation of this reference frame with respect to a parent reference frame by rotating through an angle about an axis fixed in the parent reference frame. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. axis : Vector Vector fixed in the parent frame about about which this frame is rotated. It need not be a unit vector and the rotation follows the right hand rule. angle : sympifiable Angle in radians by which it the frame is to be rotated. Warns ====== UserWarning If the orientation creates a kinematic loop. Examples ======== Setup variables for the examples: >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B.orient_axis(N, N.x, q1) The ``orient_axis()`` method generates a direction cosine matrix and its transpose which defines the orientation of B relative to N and vice versa. Once orient is called, ``dcm()`` outputs the appropriate direction cosine matrix: >>> B.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) >>> N.dcm(B) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]]) The following two lines show that the sense of the rotation can be defined by negating the vector direction or the angle. Both lines produce the same result. >>> B.orient_axis(N, -N.x, q1) >>> B.orient_axis(N, N.x, -q1) """ from sympy.physics.vector.functions import dynamicsymbols _check_frame(parent) if not isinstance(axis, Vector) and isinstance(angle, Vector): axis, angle = angle, axis axis = _check_vector(axis) amount = sympify(angle) theta = amount parent_orient_axis = [] if not axis.dt(parent) == 0: raise ValueError('Axis cannot be time-varying.') unit_axis = axis.express(parent).normalize() unit_col = unit_axis.args[0][0] parent_orient_axis = ( (eye(3) - unit_col * unit_col.T) * cos(theta) + Matrix([[0, -unit_col[2], unit_col[1]], [unit_col[2], 0, -unit_col[0]], [-unit_col[1], unit_col[0], 0]]) * sin(theta) + unit_col * unit_col.T) self._dcm(parent, parent_orient_axis) thetad = (amount).diff(dynamicsymbols._t) wvec = thetad*axis.express(parent).normalize() self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def orient_explicit(self, parent, dcm): """Sets the orientation of this reference frame relative to a parent reference frame by explicitly setting the direction cosine matrix. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. dcm : Matrix, shape(3, 3) Direction cosine matrix that specifies the relative rotation between the two reference frames. Warns ====== UserWarning If the orientation creates a kinematic loop. Examples ======== Setup variables for the examples: >>> from sympy import symbols, Matrix, sin, cos >>> from sympy.physics.vector import ReferenceFrame >>> q1 = symbols('q1') >>> A = ReferenceFrame('A') >>> B = ReferenceFrame('B') >>> N = ReferenceFrame('N') A simple rotation of ``A`` relative to ``N`` about ``N.x`` is defined by the following direction cosine matrix: >>> dcm = Matrix([[1, 0, 0], ... [0, cos(q1), -sin(q1)], ... [0, sin(q1), cos(q1)]]) >>> A.orient_explicit(N, dcm) >>> A.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) This is equivalent to using ``orient_axis()``: >>> B.orient_axis(N, N.x, q1) >>> B.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) **Note carefully that** ``N.dcm(B)`` **(the transpose) would be passed into** ``orient_explicit()`` **for** ``A.dcm(N)`` **to match** ``B.dcm(N)``: >>> A.orient_explicit(N, N.dcm(B)) >>> A.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) """ _check_frame(parent) # amounts must be a Matrix type object # (e.g. sympy.matrices.dense.MutableDenseMatrix). if not isinstance(dcm, MatrixBase): raise TypeError("Amounts must be a SymPy Matrix type object.") parent_orient_dcm = [] parent_orient_dcm = dcm self._dcm(parent, parent_orient_dcm) wvec = self._w_diff_dcm(parent) self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def _rot(self, axis, angle): """DCM for simple axis 1,2,or 3 rotations.""" if axis == 1: return Matrix([[1, 0, 0], [0, cos(angle), -sin(angle)], [0, sin(angle), cos(angle)]]) elif axis == 2: return Matrix([[cos(angle), 0, sin(angle)], [0, 1, 0], [-sin(angle), 0, cos(angle)]]) elif axis == 3: return Matrix([[cos(angle), -sin(angle), 0], [sin(angle), cos(angle), 0], [0, 0, 1]]) def orient_body_fixed(self, parent, angles, rotation_order): """Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive body fixed simple axis rotations. Each subsequent axis of rotation is about the "body fixed" unit vectors of a new intermediate reference frame. This type of rotation is also referred to rotating through the `Euler and Tait-Bryan Angles`_. .. _Euler and Tait-Bryan Angles: https://en.wikipedia.org/wiki/Euler_angles Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. angles : 3-tuple of sympifiable Three angles in radians used for the successive rotations. rotation_order : 3 character string or 3 digit integer Order of the rotations about each intermediate reference frames' unit vectors. The Euler rotation about the X, Z', X'' axes can be specified by the strings ``'XZX'``, ``'131'``, or the integer ``131``. There are 12 unique valid rotation orders (6 Euler and 6 Tait-Bryan): zxz, xyx, yzy, zyz, xzx, yxy, xyz, yzx, zxy, xzy, zyx, and yxz. Warns ====== UserWarning If the orientation creates a kinematic loop. Examples ======== Setup variables for the examples: >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q1, q2, q3 = symbols('q1, q2, q3') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B1 = ReferenceFrame('B1') >>> B2 = ReferenceFrame('B2') >>> B3 = ReferenceFrame('B3') For example, a classic Euler Angle rotation can be done by: >>> B.orient_body_fixed(N, (q1, q2, q3), 'XYX') >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]]) This rotates reference frame B relative to reference frame N through ``q1`` about ``N.x``, then rotates B again through ``q2`` about ``B.y``, and finally through ``q3`` about ``B.x``. It is equivalent to three successive ``orient_axis()`` calls: >>> B1.orient_axis(N, N.x, q1) >>> B2.orient_axis(B1, B1.y, q2) >>> B3.orient_axis(B2, B2.x, q3) >>> B3.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]]) Acceptable rotation orders are of length 3, expressed in as a string ``'XYZ'`` or ``'123'`` or integer ``123``. Rotations about an axis twice in a row are prohibited. >>> B.orient_body_fixed(N, (q1, q2, 0), 'ZXZ') >>> B.orient_body_fixed(N, (q1, q2, 0), '121') >>> B.orient_body_fixed(N, (q1, q2, q3), 123) """ _check_frame(parent) amounts = list(angles) for i, v in enumerate(amounts): if not isinstance(v, Vector): amounts[i] = sympify(v) approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') # make sure XYZ => 123 rot_order = translate(str(rotation_order), 'XYZxyz', '123123') if rot_order not in approved_orders: raise TypeError('The rotation order is not a valid order.') parent_orient_body = [] if not (len(amounts) == 3 & len(rot_order) == 3): raise TypeError('Body orientation takes 3 values & 3 orders') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) parent_orient_body = (self._rot(a1, amounts[0]) * self._rot(a2, amounts[1]) * self._rot(a3, amounts[2])) self._dcm(parent, parent_orient_body) try: from sympy.polys.polyerrors import CoercionFailed from sympy.physics.vector.functions import kinematic_equations q1, q2, q3 = amounts u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy) templist = kinematic_equations([u1, u2, u3], [q1, q2, q3], 'body', rot_order) templist = [expand(i) for i in templist] td = solve(templist, [u1, u2, u3]) u1 = expand(td[u1]) u2 = expand(td[u2]) u3 = expand(td[u3]) wvec = u1 * self.x + u2 * self.y + u3 * self.z except (CoercionFailed, AssertionError): wvec = self._w_diff_dcm(parent) self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def orient_space_fixed(self, parent, angles, rotation_order): """Rotates this reference frame relative to the parent reference frame by right hand rotating through three successive space fixed simple axis rotations. Each subsequent axis of rotation is about the "space fixed" unit vectors of the parent reference frame. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. angles : 3-tuple of sympifiable Three angles in radians used for the successive rotations. rotation_order : 3 character string or 3 digit integer Order of the rotations about the parent reference frame's unit vectors. The order can be specified by the strings ``'XZX'``, ``'131'``, or the integer ``131``. There are 12 unique valid rotation orders. Warns ====== UserWarning If the orientation creates a kinematic loop. Examples ======== Setup variables for the examples: >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q1, q2, q3 = symbols('q1, q2, q3') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B1 = ReferenceFrame('B1') >>> B2 = ReferenceFrame('B2') >>> B3 = ReferenceFrame('B3') >>> B.orient_space_fixed(N, (q1, q2, q3), '312') >>> B.dcm(N) Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]]) is equivalent to: >>> B1.orient_axis(N, N.z, q1) >>> B2.orient_axis(B1, N.x, q2) >>> B3.orient_axis(B2, N.y, q3) >>> B3.dcm(N).simplify() Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]]) It is worth noting that space-fixed and body-fixed rotations are related by the order of the rotations, i.e. the reverse order of body fixed will give space fixed and vice versa. >>> B.orient_space_fixed(N, (q1, q2, q3), '231') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]]) >>> B.orient_body_fixed(N, (q3, q2, q1), '132') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]]) """ _check_frame(parent) amounts = list(angles) for i, v in enumerate(amounts): if not isinstance(v, Vector): amounts[i] = sympify(v) approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') # make sure XYZ => 123 rot_order = translate(str(rotation_order), 'XYZxyz', '123123') if rot_order not in approved_orders: raise TypeError('The supplied order is not an approved type') parent_orient_space = [] if not (len(amounts) == 3 & len(rot_order) == 3): raise TypeError('Space orientation takes 3 values & 3 orders') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) parent_orient_space = (self._rot(a3, amounts[2]) * self._rot(a2, amounts[1]) * self._rot(a1, amounts[0])) self._dcm(parent, parent_orient_space) try: from sympy.polys.polyerrors import CoercionFailed from sympy.physics.vector.functions import kinematic_equations q1, q2, q3 = amounts u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy) templist = kinematic_equations([u1, u2, u3], [q1, q2, q3], 'space', rot_order) templist = [expand(i) for i in templist] td = solve(templist, [u1, u2, u3]) u1 = expand(td[u1]) u2 = expand(td[u2]) u3 = expand(td[u3]) wvec = u1 * self.x + u2 * self.y + u3 * self.z except (CoercionFailed, AssertionError): wvec = self._w_diff_dcm(parent) self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def orient_quaternion(self, parent, numbers): """Sets the orientation of this reference frame relative to a parent reference frame via an orientation quaternion. An orientation quaternion is defined as a finite rotation a unit vector, ``(lambda_x, lambda_y, lambda_z)``, by an angle ``theta``. The orientation quaternion is described by four parameters: - ``q0 = cos(theta/2)`` - ``q1 = lambda_x*sin(theta/2)`` - ``q2 = lambda_y*sin(theta/2)`` - ``q3 = lambda_z*sin(theta/2)`` See `Quaternions and Spatial Rotation <https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_ on Wikipedia for more information. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. numbers : 4-tuple of sympifiable The four quaternion scalar numbers as defined above: ``q0``, ``q1``, ``q2``, ``q3``. Warns ====== UserWarning If the orientation creates a kinematic loop. Examples ======== Setup variables for the examples: >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') Set the orientation: >>> B.orient_quaternion(N, (q0, q1, q2, q3)) >>> B.dcm(N) Matrix([ [q0**2 + q1**2 - q2**2 - q3**2, 2*q0*q3 + 2*q1*q2, -2*q0*q2 + 2*q1*q3], [ -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2, 2*q0*q1 + 2*q2*q3], [ 2*q0*q2 + 2*q1*q3, -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]]) """ from sympy.physics.vector.functions import dynamicsymbols _check_frame(parent) numbers = list(numbers) for i, v in enumerate(numbers): if not isinstance(v, Vector): numbers[i] = sympify(v) parent_orient_quaternion = [] if not (isinstance(numbers, (list, tuple)) & (len(numbers) == 4)): raise TypeError('Amounts are a list or tuple of length 4') q0, q1, q2, q3 = numbers parent_orient_quaternion = ( Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2 * (q1 * q2 - q0 * q3), 2 * (q0 * q2 + q1 * q3)], [2 * (q1 * q2 + q0 * q3), q0**2 - q1**2 + q2**2 - q3**2, 2 * (q2 * q3 - q0 * q1)], [2 * (q1 * q3 - q0 * q2), 2 * (q0 * q1 + q2 * q3), q0**2 - q1**2 - q2**2 + q3**2]])) self._dcm(parent, parent_orient_quaternion) t = dynamicsymbols._t q0, q1, q2, q3 = numbers q0d = diff(q0, t) q1d = diff(q1, t) q2d = diff(q2, t) q3d = diff(q3, t) w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1) w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2) w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3) wvec = Vector([(Matrix([w1, w2, w3]), self)]) self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def orient(self, parent, rot_type, amounts, rot_order=''): """Sets the orientation of this reference frame relative to another (parent) reference frame. .. note:: It is now recommended to use the ``.orient_axis, .orient_body_fixed, .orient_space_fixed, .orient_quaternion`` methods for the different rotation types. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. rot_type : str The method used to generate the direction cosine matrix. Supported methods are: - ``'Axis'``: simple rotations about a single common axis - ``'DCM'``: for setting the direction cosine matrix directly - ``'Body'``: three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles" - ``'Space'``: three successive rotations about the parent frames' unit vectors - ``'Quaternion'``: rotations defined by four parameters which result in a singularity free direction cosine matrix amounts : Expressions defining the rotation angles or direction cosine matrix. These must match the ``rot_type``. See examples below for details. The input types are: - ``'Axis'``: 2-tuple (expr/sym/func, Vector) - ``'DCM'``: Matrix, shape(3,3) - ``'Body'``: 3-tuple of expressions, symbols, or functions - ``'Space'``: 3-tuple of expressions, symbols, or functions - ``'Quaternion'``: 4-tuple of expressions, symbols, or functions rot_order : str or int, optional If applicable, the order of the successive of rotations. The string ``'123'`` and integer ``123`` are equivalent, for example. Required for ``'Body'`` and ``'Space'``. Warns ====== UserWarning If the orientation creates a kinematic loop. """ _check_frame(parent) approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') rot_order = translate(str(rot_order), 'XYZxyz', '123123') rot_type = rot_type.upper() if rot_order not in approved_orders: raise TypeError('The supplied order is not an approved type') if rot_type == 'AXIS': self.orient_axis(parent, amounts[1], amounts[0]) elif rot_type == 'DCM': self.orient_explicit(parent, amounts) elif rot_type == 'BODY': self.orient_body_fixed(parent, amounts, rot_order) elif rot_type == 'SPACE': self.orient_space_fixed(parent, amounts, rot_order) elif rot_type == 'QUATERNION': self.orient_quaternion(parent, amounts) else: raise NotImplementedError('That is not an implemented rotation') def orientnew(self, newname, rot_type, amounts, rot_order='', variables=None, indices=None, latexs=None): r"""Returns a new reference frame oriented with respect to this reference frame. See ``ReferenceFrame.orient()`` for detailed examples of how to orient reference frames. Parameters ========== newname : str Name for the new reference frame. rot_type : str The method used to generate the direction cosine matrix. Supported methods are: - ``'Axis'``: simple rotations about a single common axis - ``'DCM'``: for setting the direction cosine matrix directly - ``'Body'``: three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles" - ``'Space'``: three successive rotations about the parent frames' unit vectors - ``'Quaternion'``: rotations defined by four parameters which result in a singularity free direction cosine matrix amounts : Expressions defining the rotation angles or direction cosine matrix. These must match the ``rot_type``. See examples below for details. The input types are: - ``'Axis'``: 2-tuple (expr/sym/func, Vector) - ``'DCM'``: Matrix, shape(3,3) - ``'Body'``: 3-tuple of expressions, symbols, or functions - ``'Space'``: 3-tuple of expressions, symbols, or functions - ``'Quaternion'``: 4-tuple of expressions, symbols, or functions rot_order : str or int, optional If applicable, the order of the successive of rotations. The string ``'123'`` and integer ``123`` are equivalent, for example. Required for ``'Body'`` and ``'Space'``. indices : tuple of str Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice. latexs : tuple of str Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') Create a new reference frame A rotated relative to N through a simple rotation. >>> A = N.orientnew('A', 'Axis', (q0, N.x)) Create a new reference frame B rotated relative to N through body-fixed rotations. >>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123') Create a new reference frame C rotated relative to N through a simple rotation with unique indices and LaTeX printing. >>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'), ... latexs=(r'\hat{\mathbf{c}}_1',r'\hat{\mathbf{c}}_2', ... r'\hat{\mathbf{c}}_3')) >>> C['1'] C['1'] >>> print(vlatex(C['1'])) \hat{\mathbf{c}}_1 """ newframe = self.__class__(newname, variables=variables, indices=indices, latexs=latexs) approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') rot_order = translate(str(rot_order), 'XYZxyz', '123123') rot_type = rot_type.upper() if rot_order not in approved_orders: raise TypeError('The supplied order is not an approved type') if rot_type == 'AXIS': newframe.orient_axis(self, amounts[1], amounts[0]) elif rot_type == 'DCM': newframe.orient_explicit(self, amounts) elif rot_type == 'BODY': newframe.orient_body_fixed(self, amounts, rot_order) elif rot_type == 'SPACE': newframe.orient_space_fixed(self, amounts, rot_order) elif rot_type == 'QUATERNION': newframe.orient_quaternion(self, amounts) else: raise NotImplementedError('That is not an implemented rotation') return newframe def set_ang_acc(self, otherframe, value): """Define the angular acceleration Vector in a ReferenceFrame. Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent. Parameters ========== otherframe : ReferenceFrame A ReferenceFrame to define the angular acceleration in value : Vector The Vector representing angular acceleration Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(otherframe) self._ang_acc_dict.update({otherframe: value}) otherframe._ang_acc_dict.update({self: -value}) def set_ang_vel(self, otherframe, value): """Define the angular velocity vector in a ReferenceFrame. Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent. Parameters ========== otherframe : ReferenceFrame A ReferenceFrame to define the angular velocity in value : Vector The Vector representing angular velocity Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(otherframe) self._ang_vel_dict.update({otherframe: value}) otherframe._ang_vel_dict.update({self: -value}) @property def x(self): """The basis Vector for the ReferenceFrame, in the x direction. """ return self._x @property def y(self): """The basis Vector for the ReferenceFrame, in the y direction. """ return self._y @property def z(self): """The basis Vector for the ReferenceFrame, in the z direction. """ return self._z def partial_velocity(self, frame, *gen_speeds): """Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds. Parameters ========== frame : ReferenceFrame The frame with which the angular velocity is defined in. gen_speeds : functions of time The generalized speeds. Returns ======= partial_velocities : tuple of Vector The partial angular velocity vectors corresponding to the provided generalized speeds. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> u1, u2 = dynamicsymbols('u1, u2') >>> A.set_ang_vel(N, u1 * A.x + u2 * N.y) >>> A.partial_velocity(N, u1) A.x >>> A.partial_velocity(N, u1, u2) (A.x, N.y) """ partials = [self.ang_vel_in(frame).diff(speed, frame, var_in_dcm=False) for speed in gen_speeds] if len(partials) == 1: return partials[0] else: return tuple(partials) def _check_frame(other): from .vector import VectorTypeError if not isinstance(other, ReferenceFrame): raise VectorTypeError(other, ReferenceFrame('A'))
2ee2c6ee8c8f64e5b2e1445c96a9da59bd3cdf8506c2da03c54adc77f427f891
from sympy.core.backend import sympify, Add, ImmutableMatrix as Matrix from sympy.core.evalf import EvalfMixin from sympy.printing.defaults import Printable from mpmath.libmp.libmpf import prec_to_dps __all__ = ['Dyadic'] class Dyadic(Printable, EvalfMixin): """A Dyadic object. See: https://en.wikipedia.org/wiki/Dyadic_tensor Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill A more powerful way to represent a rigid body's inertia. While it is more complex, by choosing Dyadic components to be in body fixed basis vectors, the resulting matrix is equivalent to the inertia tensor. """ is_number = False def __init__(self, inlist): """ Just like Vector's init, you shouldn't call this unless creating a zero dyadic. zd = Dyadic(0) Stores a Dyadic as a list of lists; the inner list has the measure number and the two unit vectors; the outerlist holds each unique unit vector pair. """ self.args = [] if inlist == 0: inlist = [] while len(inlist) != 0: added = 0 for i, v in enumerate(self.args): if ((str(inlist[0][1]) == str(self.args[i][1])) and (str(inlist[0][2]) == str(self.args[i][2]))): self.args[i] = (self.args[i][0] + inlist[0][0], inlist[0][1], inlist[0][2]) inlist.remove(inlist[0]) added = 1 break if added != 1: self.args.append(inlist[0]) inlist.remove(inlist[0]) i = 0 # This code is to remove empty parts from the list while i < len(self.args): if ((self.args[i][0] == 0) | (self.args[i][1] == 0) | (self.args[i][2] == 0)): self.args.remove(self.args[i]) i -= 1 i += 1 @property def func(self): """Returns the class Dyadic. """ return Dyadic def __add__(self, other): """The add operator for Dyadic. """ other = _check_dyadic(other) return Dyadic(self.args + other.args) def __and__(self, other): """The inner product operator for a Dyadic and a Dyadic or Vector. Parameters ========== other : Dyadic or Vector The other Dyadic or Vector to take the inner product with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> D1 = outer(N.x, N.y) >>> D2 = outer(N.y, N.y) >>> D1.dot(D2) (N.x|N.y) >>> D1.dot(N.y) N.x """ from sympy.physics.vector.vector import Vector, _check_vector if isinstance(other, Dyadic): other = _check_dyadic(other) ol = Dyadic(0) for i, v in enumerate(self.args): for i2, v2 in enumerate(other.args): ol += v[0] * v2[0] * (v[2] & v2[1]) * (v[1] | v2[2]) else: other = _check_vector(other) ol = Vector(0) for i, v in enumerate(self.args): ol += v[0] * v[1] * (v[2] & other) return ol def __truediv__(self, other): """Divides the Dyadic by a sympifyable expression. """ return self.__mul__(1 / other) def __eq__(self, other): """Tests for equality. Is currently weak; needs stronger comparison testing """ if other == 0: other = Dyadic(0) other = _check_dyadic(other) if (self.args == []) and (other.args == []): return True elif (self.args == []) or (other.args == []): return False return set(self.args) == set(other.args) def __mul__(self, other): """Multiplies the Dyadic by a sympifyable expression. Parameters ========== other : Sympafiable The scalar to multiply this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> 5 * d 5*(N.x|N.x) """ newlist = [v for v in self.args] for i, v in enumerate(newlist): newlist[i] = (sympify(other) * newlist[i][0], newlist[i][1], newlist[i][2]) return Dyadic(newlist) def __ne__(self, other): return not self == other def __neg__(self): return self * -1 def _latex(self, printer): ar = self.args # just to shorten things if len(ar) == 0: return str(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.append(' + ' + printer._print(ar[i][1]) + r"\otimes " + printer._print(ar[i][2])) # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.append(' - ' + printer._print(ar[i][1]) + r"\otimes " + printer._print(ar[i][2])) # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: arg_str = printer._print(ar[i][0]) if isinstance(ar[i][0], Add): arg_str = '(%s)' % arg_str if arg_str.startswith('-'): arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + printer._print(ar[i][1]) + r"\otimes " + printer._print(ar[i][2])) outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def _pretty(self, printer): e = self class Fake: baseline = 0 def render(self, *args, **kwargs): ar = e.args # just to shorten things mpp = printer if len(ar) == 0: return str(0) bar = "\N{CIRCLED TIMES}" if printer._use_unicode else "|" ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.extend([" + ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.extend([" - ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: if isinstance(ar[i][0], Add): arg_str = mpp._print( ar[i][0]).parens()[0] else: arg_str = mpp.doprint(ar[i][0]) if arg_str.startswith("-"): arg_str = arg_str[1:] str_start = " - " else: str_start = " + " ol.extend([str_start, arg_str, " ", mpp.doprint(ar[i][1]), bar, mpp.doprint(ar[i][2])]) outstr = "".join(ol) if outstr.startswith(" + "): outstr = outstr[3:] elif outstr.startswith(" "): outstr = outstr[1:] return outstr return Fake() def __rand__(self, other): """The inner product operator for a Vector or Dyadic, and a Dyadic This is for: Vector dot Dyadic Parameters ========== other : Vector The vector we are dotting with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dot, outer >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> dot(N.x, d) N.x """ from sympy.physics.vector.vector import Vector, _check_vector other = _check_vector(other) ol = Vector(0) for i, v in enumerate(self.args): ol += v[0] * v[2] * (v[1] & other) return ol def __rsub__(self, other): return (-1 * self) + other def __rxor__(self, other): """For a cross product in the form: Vector x Dyadic Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(N.y, d) - (N.z|N.x) """ from sympy.physics.vector.vector import _check_vector other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): ol += v[0] * ((other ^ v[1]) | v[2]) return ol def _sympystr(self, printer): """Printing method. """ ar = self.args # just to shorten things if len(ar) == 0: return printer._print(0) ol = [] # output list, to be concatenated to a string for i, v in enumerate(ar): # if the coef of the dyadic is 1, we skip the 1 if ar[i][0] == 1: ol.append(' + (' + printer._print(ar[i][1]) + '|' + printer._print(ar[i][2]) + ')') # if the coef of the dyadic is -1, we skip the 1 elif ar[i][0] == -1: ol.append(' - (' + printer._print(ar[i][1]) + '|' + printer._print(ar[i][2]) + ')') # If the coefficient of the dyadic is not 1 or -1, # we might wrap it in parentheses, for readability. elif ar[i][0] != 0: arg_str = printer._print(ar[i][0]) if isinstance(ar[i][0], Add): arg_str = "(%s)" % arg_str if arg_str[0] == '-': arg_str = arg_str[1:] str_start = ' - ' else: str_start = ' + ' ol.append(str_start + arg_str + '*(' + printer._print(ar[i][1]) + '|' + printer._print(ar[i][2]) + ')') outstr = ''.join(ol) if outstr.startswith(' + '): outstr = outstr[3:] elif outstr.startswith(' '): outstr = outstr[1:] return outstr def __sub__(self, other): """The subtraction operator. """ return self.__add__(other * -1) def __xor__(self, other): """For a cross product in the form: Dyadic x Vector. Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, cross >>> N = ReferenceFrame('N') >>> d = outer(N.x, N.x) >>> cross(d, N.y) (N.x|N.z) """ from sympy.physics.vector.vector import _check_vector other = _check_vector(other) ol = Dyadic(0) for i, v in enumerate(self.args): ol += v[0] * (v[1] | (v[2] ^ other)) return ol __radd__ = __add__ __rmul__ = __mul__ def express(self, frame1, frame2=None): """Expresses this Dyadic in alternate frame(s) The first frame is the list side expression, the second frame is the right side; if Dyadic is in form A.x|B.y, you can express it in two different frames. If no second frame is given, the Dyadic is expressed in only one frame. Calls the global express function Parameters ========== frame1 : ReferenceFrame The frame to express the left side of the Dyadic in frame2 : ReferenceFrame If provided, the frame to express the right side of the Dyadic in Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.express(B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) """ from sympy.physics.vector.functions import express return express(self, frame1, frame2) def to_matrix(self, reference_frame, second_reference_frame=None): """Returns the matrix form of the dyadic with respect to one or two reference frames. Parameters ---------- reference_frame : ReferenceFrame The reference frame that the rows and columns of the matrix correspond to. If a second reference frame is provided, this only corresponds to the rows of the matrix. second_reference_frame : ReferenceFrame, optional, default=None The reference frame that the columns of the matrix correspond to. Returns ------- matrix : ImmutableMatrix, shape(3,3) The matrix that gives the 2D tensor form. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, Vector >>> Vector.simp = True >>> from sympy.physics.mechanics import inertia >>> Ixx, Iyy, Izz, Ixy, Iyz, Ixz = symbols('Ixx, Iyy, Izz, Ixy, Iyz, Ixz') >>> N = ReferenceFrame('N') >>> inertia_dyadic = inertia(N, Ixx, Iyy, Izz, Ixy, Iyz, Ixz) >>> inertia_dyadic.to_matrix(N) Matrix([ [Ixx, Ixy, Ixz], [Ixy, Iyy, Iyz], [Ixz, Iyz, Izz]]) >>> beta = symbols('beta') >>> A = N.orientnew('A', 'Axis', (beta, N.x)) >>> inertia_dyadic.to_matrix(A) Matrix([ [ Ixx, Ixy*cos(beta) + Ixz*sin(beta), -Ixy*sin(beta) + Ixz*cos(beta)], [ Ixy*cos(beta) + Ixz*sin(beta), Iyy*cos(2*beta)/2 + Iyy/2 + Iyz*sin(2*beta) - Izz*cos(2*beta)/2 + Izz/2, -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2], [-Ixy*sin(beta) + Ixz*cos(beta), -Iyy*sin(2*beta)/2 + Iyz*cos(2*beta) + Izz*sin(2*beta)/2, -Iyy*cos(2*beta)/2 + Iyy/2 - Iyz*sin(2*beta) + Izz*cos(2*beta)/2 + Izz/2]]) """ if second_reference_frame is None: second_reference_frame = reference_frame return Matrix([i.dot(self).dot(j) for i in reference_frame for j in second_reference_frame]).reshape(3, 3) def doit(self, **hints): """Calls .doit() on each term in the Dyadic""" return sum([Dyadic([(v[0].doit(**hints), v[1], v[2])]) for v in self.args], Dyadic(0)) def dt(self, frame): """Take the time derivative of this Dyadic in a frame. This function calls the global time_derivative method Parameters ========== frame : ReferenceFrame The frame to take the time derivative in Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> from sympy.physics.vector import init_vprinting >>> init_vprinting(pretty_print=False) >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> d.dt(B) - q'*(N.y|N.x) - q'*(N.x|N.y) """ from sympy.physics.vector.functions import time_derivative return time_derivative(self, frame) def simplify(self): """Returns a simplified Dyadic.""" out = Dyadic(0) for v in self.args: out += Dyadic([(v[0].simplify(), v[1], v[2])]) return out def subs(self, *args, **kwargs): """Substitution on the Dyadic. Examples ======== >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import Symbol >>> N = ReferenceFrame('N') >>> s = Symbol('s') >>> a = s*(N.x|N.x) >>> a.subs({s: 2}) 2*(N.x|N.x) """ return sum([Dyadic([(v[0].subs(*args, **kwargs), v[1], v[2])]) for v in self.args], Dyadic(0)) def applyfunc(self, f): """Apply a function to each component of a Dyadic.""" if not callable(f): raise TypeError("`f` must be callable.") out = Dyadic(0) for a, b, c in self.args: out += f(a) * (b|c) return out dot = __and__ cross = __xor__ def _eval_evalf(self, prec): if not self.args: return self new_args = [] dps = prec_to_dps(prec) for inlist in self.args: new_inlist = list(inlist) new_inlist[0] = inlist[0].evalf(n=dps) new_args.append(tuple(new_inlist)) return Dyadic(new_args) def xreplace(self, rule): """ Replace occurrences of objects within the measure numbers of the Dyadic. Parameters ========== rule : dict-like Expresses a replacement rule. Returns ======= Dyadic Result of the replacement. Examples ======== >>> from sympy import symbols, pi >>> from sympy.physics.vector import ReferenceFrame, outer >>> N = ReferenceFrame('N') >>> D = outer(N.x, N.x) >>> x, y, z = symbols('x y z') >>> ((1 + x*y) * D).xreplace({x: pi}) (pi*y + 1)*(N.x|N.x) >>> ((1 + x*y) * D).xreplace({x: pi, y: 2}) (1 + 2*pi)*(N.x|N.x) Replacements occur only if an entire node in the expression tree is matched: >>> ((x*y + z) * D).xreplace({x*y: pi}) (z + pi)*(N.x|N.x) >>> ((x*y*z) * D).xreplace({x*y: pi}) x*y*z*(N.x|N.x) """ new_args = [] for inlist in self.args: new_inlist = list(inlist) new_inlist[0] = new_inlist[0].xreplace(rule) new_args.append(tuple(new_inlist)) return Dyadic(new_args) def _check_dyadic(other): if not isinstance(other, Dyadic): raise TypeError('A Dyadic must be supplied') return other
b72b2110cb0b34f478898ce801b3c665167e7bff2dec60cfff1ca347285ea5e4
from sympy.core.numbers import I from sympy.core.symbol import symbols from sympy.physics.paulialgebra import Pauli from sympy.testing.pytest import XFAIL from sympy.physics.quantum import TensorProduct sigma1 = Pauli(1) sigma2 = Pauli(2) sigma3 = Pauli(3) tau1 = symbols("tau1", commutative = False) def test_Pauli(): assert sigma1 == sigma1 assert sigma1 != sigma2 assert sigma1*sigma2 == I*sigma3 assert sigma3*sigma1 == I*sigma2 assert sigma2*sigma3 == I*sigma1 assert sigma1*sigma1 == 1 assert sigma2*sigma2 == 1 assert sigma3*sigma3 == 1 assert sigma1**0 == 1 assert sigma1**1 == sigma1 assert sigma1**2 == 1 assert sigma1**3 == sigma1 assert sigma1**4 == 1 assert sigma3**2 == 1 assert sigma1*2*sigma1 == 2 def test_evaluate_pauli_product(): from sympy.physics.paulialgebra import evaluate_pauli_product assert evaluate_pauli_product(I*sigma2*sigma3) == -sigma1 # Check issue 6471 assert evaluate_pauli_product(-I*4*sigma1*sigma2) == 4*sigma3 assert evaluate_pauli_product( 1 + I*sigma1*sigma2*sigma1*sigma2 + \ I*sigma1*sigma2*tau1*sigma1*sigma3 + \ ((tau1**2).subs(tau1, I*sigma1)) + \ sigma3*((tau1**2).subs(tau1, I*sigma1)) + \ TensorProduct(I*sigma1*sigma2*sigma1*sigma2, 1) ) == 1 -I + I*sigma3*tau1*sigma2 - 1 - sigma3 - I*TensorProduct(1,1) @XFAIL def test_Pauli_should_work(): assert sigma1*sigma3*sigma1 == -sigma3
2c3f5653e639956edb54ceccc82912196f4c5361598558cc079664f38f3fab53
from sympy.core.numbers import (Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.integrals.integrals import integrate from sympy.simplify.simplify import simplify from sympy.abc import omega, m, x from sympy.physics.qho_1d import psi_n, E_n, coherent_state from sympy.physics.quantum.constants import hbar nu = m * omega / hbar def test_wavefunction(): Psi = { 0: (nu/pi)**Rational(1, 4) * exp(-nu * x**2 /2), 1: (nu/pi)**Rational(1, 4) * sqrt(2*nu) * x * exp(-nu * x**2 /2), 2: (nu/pi)**Rational(1, 4) * (2 * nu * x**2 - 1)/sqrt(2) * exp(-nu * x**2 /2), 3: (nu/pi)**Rational(1, 4) * sqrt(nu/3) * (2 * nu * x**3 - 3 * x) * exp(-nu * x**2 /2) } for n in Psi: assert simplify(psi_n(n, x, m, omega) - Psi[n]) == 0 def test_norm(n=1): # Maximum "n" which is tested: for i in range(n + 1): assert integrate(psi_n(i, x, 1, 1)**2, (x, -oo, oo)) == 1 def test_orthogonality(n=1): # Maximum "n" which is tested: for i in range(n + 1): for j in range(i + 1, n + 1): assert integrate( psi_n(i, x, 1, 1)*psi_n(j, x, 1, 1), (x, -oo, oo)) == 0 def test_energies(n=1): # Maximum "n" which is tested: for i in range(n + 1): assert E_n(i, omega) == hbar * omega * (i + S.Half) def test_coherent_state(n=10): # Maximum "n" which is tested: # test whether coherent state is the eigenstate of annihilation operator alpha = Symbol("alpha") for i in range(n + 1): assert simplify(sqrt(n + 1) * coherent_state(n + 1, alpha)) == simplify(alpha * coherent_state(n, alpha))
8ac4b6627227208357ce4f1bcb7a5888bdf0563e7a168a50bfc74ac2682ae947
from sympy.core.numbers import (I, pi) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.functions.special.spherical_harmonics import Ynm from sympy.matrices.dense import Matrix from sympy.physics.wigner import (clebsch_gordan, wigner_9j, wigner_6j, gaunt, racah, dot_rot_grad_Ynm, wigner_3j, wigner_d_small, wigner_d) from sympy.core.numbers import Rational # for test cases, refer : https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients def test_clebsch_gordan_docs(): assert clebsch_gordan(Rational(3, 2), S.Half, 2, Rational(3, 2), S.Half, 2) == 1 assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(3, 2), Rational(-1, 2), 1) == sqrt(3)/2 assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(-1, 2), S.Half, 0) == -sqrt(2)/2 def test_clebsch_gordan1(): j_1 = S.Half j_2 = S.Half m = 1 j = 1 m_1 = S.Half m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.Half j_2 = S.Half m = -1 j = 1 m_1 = Rational(-1, 2) m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = S.Half m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 0 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = S.Half m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 0 m_1 = S.Half m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = Rational(-1, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 0 m_1 = Rational(-1, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -sqrt(2)/2 def test_clebsch_gordan2(): j_1 = S.One j_2 = S.Half m = Rational(3, 2) j = Rational(3, 2) m_1 = 1 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.One j_2 = S.Half m = S.Half j = Rational(3, 2) m_1 = 1 m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = S.Half m_1 = 1 m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = S.Half m_1 = 0 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -1/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = Rational(3, 2) m_1 = 0 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/sqrt(3) j_1 = S.One j_2 = S.One m = S(2) j = S(2) m_1 = 1 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.One j_2 = S.One m = 1 j = S(2) m_1 = 1 m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = S(2) m_1 = 0 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = 1 m_1 = 1 m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = 1 m_1 = 0 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -1/sqrt(2) def test_clebsch_gordan3(): j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(3) j = S(3) m_1 = Rational(3, 2) m_2 = Rational(3, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(2) j = S(2) m_1 = Rational(3, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(2) j = S(3) m_1 = Rational(3, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) def test_clebsch_gordan4(): j_1 = S(2) j_2 = S(2) m = S(4) j = S(4) m_1 = S(2) m_2 = S(2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S(2) j_2 = S(2) m = S(3) j = S(3) m_1 = S(2) m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S(2) j_2 = S(2) m = S(2) j = S(3) m_1 = 1 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 0 def test_clebsch_gordan5(): j_1 = Rational(5, 2) j_2 = S.One m = Rational(7, 2) j = Rational(7, 2) m_1 = Rational(5, 2) m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = Rational(5, 2) j_2 = S.One m = Rational(5, 2) j = Rational(5, 2) m_1 = Rational(5, 2) m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(5)/sqrt(7) j_1 = Rational(5, 2) j_2 = S.One m = Rational(3, 2) j = Rational(3, 2) m_1 = S.Half m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(15) def test_wigner(): def tn(a, b): return (a - b).n(64) < S('1e-64') assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), Rational(1, 18)) assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt( 70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105)) assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52) assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), Rational(-12219, 965770)) # regression test for #8747 half = S.Half assert wigner_9j(0, 0, 0, 0, half, half, 0, half, half) == half assert (wigner_9j(3, 5, 4, 7 * half, 5 * half, 4, 9 * half, 9 * half, 0) == -sqrt(Rational(361, 205821000))) assert (wigner_9j(1, 4, 3, 5 * half, 4, 5 * half, 5 * half, 2, 7 * half) == -sqrt(Rational(3971, 373403520))) assert (wigner_9j(4, 9 * half, 5 * half, 2, 4, 4, 5, 7 * half, 7 * half) == -sqrt(Rational(3481, 5042614500))) def test_gaunt(): def tn(a, b): return (a - b).n(64) < S('1e-64') assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi)) assert isinstance(gaunt(1, 1, 0, -1, 1, 0).args[0], Rational) assert isinstance(gaunt(0, 1, 1, 0, -1, 1).args[0], Rational) assert tn(gaunt( 10, 10, 12, 9, 3, -12, prec=64), (Rational(-98, 62031)) * sqrt(6279)/sqrt(pi)) def gaunt_ref(l1, l2, l3, m1, m2, m3): return ( sqrt((2 * l1 + 1) * (2 * l2 + 1) * (2 * l3 + 1) / (4 * pi)) * wigner_3j(l1, l2, l3, 0, 0, 0) * wigner_3j(l1, l2, l3, m1, m2, m3) ) threshold = 1e-10 l_max = 3 l3_max = 24 for l1 in range(l_max + 1): for l2 in range(l_max + 1): for l3 in range(l3_max + 1): for m1 in range(-l1, l1 + 1): for m2 in range(-l2, l2 + 1): for m3 in range(-l3, l3 + 1): args = l1, l2, l3, m1, m2, m3 g = gaunt(*args) g0 = gaunt_ref(*args) assert abs(g - g0) < threshold if m1 + m2 + m3 != 0: assert abs(g) < threshold if (l1 + l2 + l3) % 2: assert abs(g) < threshold def test_racah(): assert racah(3,3,3,3,3,3) == Rational(-1,14) assert racah(2,2,2,2,2,2) == Rational(-3,70) assert racah(7,8,7,1,7,7, prec=4).is_Float assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924 assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4') def test_dot_rota_grad_SH(): theta, phi = symbols("theta phi") assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) != \ sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi)) assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() == \ sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi)) assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) != \ 0 assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() == \ 0 assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() == \ 15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi)) assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() == \ sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi) assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() == \ 3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi)) assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit().expand() == \ -sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \ 45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi)) def test_wigner_d(): half = S(1)/2 alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) d = wigner_d_small(half, beta).subs({beta: pi/2}) d_ = Matrix([[1, 1], [-1, 1]])/sqrt(2) assert d == d_ D = wigner_d(half, alpha, beta, gamma) assert D[0, 0] == exp(I*alpha/2)*exp(I*gamma/2)*cos(beta/2) assert D[0, 1] == exp(I*alpha/2)*exp(-I*gamma/2)*sin(beta/2) assert D[1, 0] == -exp(-I*alpha/2)*exp(I*gamma/2)*sin(beta/2) assert D[1, 1] == exp(-I*alpha/2)*exp(-I*gamma/2)*cos(beta/2)
928851211e89a2313f1966279732ec30c81d86829df3085acecd26abb7024d07
from sympy.core.numbers import (I, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.integrals.integrals import integrate from sympy.simplify.simplify import simplify from sympy.physics.hydrogen import R_nl, E_nl, E_nl_dirac, Psi_nlm from sympy.testing.pytest import raises n, r, Z = symbols('n r Z') def feq(a, b, max_relative_error=1e-12, max_absolute_error=1e-12): a = float(a) b = float(b) # if the numbers are close enough (absolutely), then they are equal if abs(a - b) < max_absolute_error: return True # if not, they can still be equal if their relative error is small if abs(b) > abs(a): relative_error = abs((a - b)/b) else: relative_error = abs((a - b)/a) return relative_error <= max_relative_error def test_wavefunction(): a = 1/Z R = { (1, 0): 2*sqrt(1/a**3) * exp(-r/a), (2, 0): sqrt(1/(2*a**3)) * exp(-r/(2*a)) * (1 - r/(2*a)), (2, 1): S.Half * sqrt(1/(6*a**3)) * exp(-r/(2*a)) * r/a, (3, 0): Rational(2, 3) * sqrt(1/(3*a**3)) * exp(-r/(3*a)) * (1 - 2*r/(3*a) + Rational(2, 27) * (r/a)**2), (3, 1): Rational(4, 27) * sqrt(2/(3*a**3)) * exp(-r/(3*a)) * (1 - r/(6*a)) * r/a, (3, 2): Rational(2, 81) * sqrt(2/(15*a**3)) * exp(-r/(3*a)) * (r/a)**2, (4, 0): Rational(1, 4) * sqrt(1/a**3) * exp(-r/(4*a)) * (1 - 3*r/(4*a) + Rational(1, 8) * (r/a)**2 - Rational(1, 192) * (r/a)**3), (4, 1): Rational(1, 16) * sqrt(5/(3*a**3)) * exp(-r/(4*a)) * (1 - r/(4*a) + Rational(1, 80) * (r/a)**2) * (r/a), (4, 2): Rational(1, 64) * sqrt(1/(5*a**3)) * exp(-r/(4*a)) * (1 - r/(12*a)) * (r/a)**2, (4, 3): Rational(1, 768) * sqrt(1/(35*a**3)) * exp(-r/(4*a)) * (r/a)**3, } for n, l in R: assert simplify(R_nl(n, l, r, Z) - R[(n, l)]) == 0 def test_norm(): # Maximum "n" which is tested: n_max = 2 # it works, but is slow, for n_max > 2 for n in range(n_max + 1): for l in range(n): assert integrate(R_nl(n, l, r)**2 * r**2, (r, 0, oo)) == 1 def test_psi_nlm(): r=S('r') phi=S('phi') theta=S('theta') assert (Psi_nlm(1, 0, 0, r, phi, theta) == exp(-r) / sqrt(pi)) assert (Psi_nlm(2, 1, -1, r, phi, theta)) == S.Half * exp(-r / (2)) * r \ * (sin(theta) * exp(-I * phi) / (4 * sqrt(pi))) assert (Psi_nlm(3, 2, 1, r, phi, theta, 2) == -sqrt(2) * sin(theta) \ * exp(I * phi) * cos(theta) / (4 * sqrt(pi)) * S(2) / 81 \ * sqrt(2 * 2 ** 3) * exp(-2 * r / (3)) * (r * 2) ** 2) def test_hydrogen_energies(): assert E_nl(n, Z) == -Z**2/(2*n**2) assert E_nl(n) == -1/(2*n**2) assert E_nl(1, 47) == -S(47)**2/(2*1**2) assert E_nl(2, 47) == -S(47)**2/(2*2**2) assert E_nl(1) == -S.One/(2*1**2) assert E_nl(2) == -S.One/(2*2**2) assert E_nl(3) == -S.One/(2*3**2) assert E_nl(4) == -S.One/(2*4**2) assert E_nl(100) == -S.One/(2*100**2) raises(ValueError, lambda: E_nl(0)) def test_hydrogen_energies_relat(): # First test exact formulas for small "c" so that we get nice expressions: assert E_nl_dirac(2, 0, Z=1, c=1) == 1/sqrt(2) - 1 assert simplify(E_nl_dirac(2, 0, Z=1, c=2) - ( (8*sqrt(3) + 16) / sqrt(16*sqrt(3) + 32) - 4)) == 0 assert simplify(E_nl_dirac(2, 0, Z=1, c=3) - ( (54*sqrt(2) + 81) / sqrt(108*sqrt(2) + 162) - 9)) == 0 # Now test for almost the correct speed of light, without floating point # numbers: assert simplify(E_nl_dirac(2, 0, Z=1, c=137) - ( (352275361 + 10285412 * sqrt(1173)) / sqrt(704550722 + 20570824 * sqrt(1173)) - 18769)) == 0 assert simplify(E_nl_dirac(2, 0, Z=82, c=137) - ( (352275361 + 2571353 * sqrt(12045)) / sqrt(704550722 + 5142706*sqrt(12045)) - 18769)) == 0 # Test using exact speed of light, and compare against the nonrelativistic # energies: for n in range(1, 5): for l in range(n): assert feq(E_nl_dirac(n, l), E_nl(n), 1e-5, 1e-5) if l > 0: assert feq(E_nl_dirac(n, l, False), E_nl(n), 1e-5, 1e-5) Z = 2 for n in range(1, 5): for l in range(n): assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-4, 1e-4) if l > 0: assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-4, 1e-4) Z = 3 for n in range(1, 5): for l in range(n): assert feq(E_nl_dirac(n, l, Z=Z), E_nl(n, Z), 1e-3, 1e-3) if l > 0: assert feq(E_nl_dirac(n, l, False, Z), E_nl(n, Z), 1e-3, 1e-3) # Test the exceptions: raises(ValueError, lambda: E_nl_dirac(0, 0)) raises(ValueError, lambda: E_nl_dirac(1, -1)) raises(ValueError, lambda: E_nl_dirac(1, 0, False))
0e16bc890461cf12dc97b4ca480e903f4a6711c068aad8ff39beadc74d523302
from sympy.physics.matrices import msigma, mgamma, minkowski_tensor, pat_matrix, mdft from sympy.core.numbers import (I, Rational) from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import (Matrix, eye, zeros) from sympy.testing.pytest import warns_deprecated_sympy def test_parallel_axis_theorem(): # This tests the parallel axis theorem matrix by comparing to test # matrices. # First case, 1 in all directions. mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2))) assert pat_matrix(1, 1, 1, 1) == mat1 assert pat_matrix(2, 1, 1, 1) == 2*mat1 # Second case, 1 in x, 0 in all others mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1))) assert pat_matrix(1, 1, 0, 0) == mat2 assert pat_matrix(2, 1, 0, 0) == 2*mat2 # Third case, 1 in y, 0 in all others mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1))) assert pat_matrix(1, 0, 1, 0) == mat3 assert pat_matrix(2, 0, 1, 0) == 2*mat3 # Fourth case, 1 in z, 0 in all others mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0))) assert pat_matrix(1, 0, 0, 1) == mat4 assert pat_matrix(2, 0, 0, 1) == 2*mat4 def test_Pauli(): #this and the following test are testing both Pauli and Dirac matrices #and also that the general Matrix class works correctly in a real world #situation sigma1 = msigma(1) sigma2 = msigma(2) sigma3 = msigma(3) assert sigma1 == sigma1 assert sigma1 != sigma2 # sigma*I -> I*sigma (see #354) assert sigma1*sigma2 == sigma3*I assert sigma3*sigma1 == sigma2*I assert sigma2*sigma3 == sigma1*I assert sigma1*sigma1 == eye(2) assert sigma2*sigma2 == eye(2) assert sigma3*sigma3 == eye(2) assert sigma1*2*sigma1 == 2*eye(2) assert sigma1*sigma3*sigma1 == -sigma3 def test_Dirac(): gamma0 = mgamma(0) gamma1 = mgamma(1) gamma2 = mgamma(2) gamma3 = mgamma(3) gamma5 = mgamma(5) # gamma*I -> I*gamma (see #354) assert gamma5 == gamma0 * gamma1 * gamma2 * gamma3 * I assert gamma1 * gamma2 + gamma2 * gamma1 == zeros(4) assert gamma0 * gamma0 == eye(4) * minkowski_tensor[0, 0] assert gamma2 * gamma2 != eye(4) * minkowski_tensor[0, 0] assert gamma2 * gamma2 == eye(4) * minkowski_tensor[2, 2] assert mgamma(5, True) == \ mgamma(0, True)*mgamma(1, True)*mgamma(2, True)*mgamma(3, True)*I def test_mdft(): with warns_deprecated_sympy(): assert mdft(1) == Matrix([[1]]) with warns_deprecated_sympy(): assert mdft(2) == 1/sqrt(2)*Matrix([[1,1],[1,-1]]) with warns_deprecated_sympy(): assert mdft(4) == Matrix([[S.Half, S.Half, S.Half, S.Half], [S.Half, -I/2, Rational(-1,2), I/2], [S.Half, Rational(-1,2), S.Half, Rational(-1,2)], [S.Half, I/2, Rational(-1,2), -I/2]])
688b357f77a8ea16f812b454f31aebfe1ff2853991c7e7d082ff67dbb49fb0b3
from sympy.core import symbols, Rational, Function, diff from sympy.physics.sho import R_nl, E_nl from sympy.simplify.simplify import simplify def test_sho_R_nl(): omega, r = symbols('omega r') l = symbols('l', integer=True) u = Function('u') # check that it obeys the Schrodinger equation for n in range(5): schreq = ( -diff(u(r), r, 2)/2 + ((l*(l + 1))/(2*r**2) + omega**2*r**2/2 - E_nl(n, l, omega))*u(r) ) result = schreq.subs(u(r), r*R_nl(n, l, omega/2, r)) assert simplify(result.doit()) == 0 def test_energy(): n, l, hw = symbols('n l hw') assert simplify(E_nl(n, l, hw) - (2*n + l + Rational(3, 2))*hw) == 0
2374f2284ef811c71872edada237370d41f2b759f90fccfb46d947f58261d3fa
from sympy.physics.secondquant import ( Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis, matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta, AnnihilateBoson, CreateBoson, BosonicOperator, F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion, evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks, PermutationOperator, simplify_index_permutations, _sort_anticommuting_fermions, _get_ordered_dummies, substitute_dummies, FockStateBosonKet, ContractionAppliesOnlyToFermions ) from sympy.concrete.summations import Sum from sympy.core.function import (Function, expand) from sympy.core.numbers import (I, Rational) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.miscellaneous import sqrt from sympy.printing.repr import srepr from sympy.simplify.simplify import simplify from sympy.testing.pytest import slow, raises from sympy.printing.latex import latex def test_PermutationOperator(): p, q, r, s = symbols('p,q,r,s') f, g, h, i = map(Function, 'fghi') P = PermutationOperator assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p) assert P(p, q).get_permuted(f(p, q)) == -f(q, p) assert P(p, q).get_permuted(f(p)) == f(p) expr = (f(p)*g(q)*h(r)*i(s) - f(q)*g(p)*h(r)*i(s) - f(p)*g(q)*h(s)*i(r) + f(q)*g(p)*h(s)*i(r)) perms = [P(p, q), P(r, s)] assert (simplify_index_permutations(expr, perms) == P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s)) assert latex(P(p, q)) == 'P(pq)' def test_index_permutations_with_dummies(): a, b, c, d = symbols('a b c d') p, q, r, s = symbols('p q r s', cls=Dummy) f, g = map(Function, 'fg') P = PermutationOperator # No dummy substitution necessary expr = f(a, b, p, q) - f(b, a, p, q) assert simplify_index_permutations( expr, [P(a, b)]) == P(a, b)*f(a, b, p, q) # Cases where dummy substitution is needed expected = P(a, b)*substitute_dummies(f(a, b, p, q)) expr = f(a, b, p, q) - f(b, a, q, p) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) expr = f(a, b, q, p) - f(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) # A case where nothing can be done expr = f(a, b, q, p) - g(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expr == result def test_dagger(): i, j, n, m = symbols('i,j,n,m') assert Dagger(1) == 1 assert Dagger(1.0) == 1.0 assert Dagger(2*I) == -2*I assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0 assert Dagger(BKet([n])) == BBra([n]) assert Dagger(B(0)) == Bd(0) assert Dagger(Bd(0)) == B(0) assert Dagger(B(n)) == Bd(n) assert Dagger(Bd(n)) == B(n) assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1) assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n) assert Dagger(B(n)**10) == Dagger(B(n))**10 assert Dagger('a') == Dagger(Symbol('a')) assert Dagger(Dagger('a')) == Symbol('a') def test_operator(): i, j = symbols('i,j') o = BosonicOperator(i) assert o.state == i assert o.is_symbolic o = BosonicOperator(1) assert o.state == 1 assert not o.is_symbolic def test_create(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert latex(o) == "{b^\\dagger_{i}}" assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert latex(o) == "b_{i}" assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1]) o = B(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_basic_state(): i, j, n, m = symbols('i,j,n,m') s = BosonState([0, 1, 2, 3, 4]) assert len(s) == 5 assert s.args[0] == tuple(range(5)) assert s.up(0) == BosonState([1, 1, 2, 3, 4]) assert s.down(4) == BosonState([0, 1, 2, 3, 3]) for i in range(5): assert s.up(i).down(i) == s assert s.down(0) == 0 for i in range(5): assert s[i] == i s = BosonState([n, m]) assert s.down(0) == BosonState([n - 1, m]) assert s.up(0) == BosonState([n + 1, m]) def test_basic_apply(): n = symbols("n") e = B(0)*BKet([n]) assert apply_operators(e) == sqrt(n)*BKet([n - 1]) e = Bd(0)*BKet([n]) assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1]) def test_complex_apply(): n, m = symbols("n,m") o = Bd(0)*B(0)*Bd(1)*B(0) e = apply_operators(o*BKet([n, m])) answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m]) assert expand(e) == expand(answer) def test_number_operator(): n = symbols("n") o = Bd(0)*B(0) e = apply_operators(o*BKet([n])) assert e == n*BKet([n]) def test_inner_product(): i, j, k, l = symbols('i,j,k,l') s1 = BBra([0]) s2 = BKet([1]) assert InnerProduct(s1, Dagger(s1)) == 1 assert InnerProduct(s1, s2) == 0 s1 = BBra([i, j]) s2 = BKet([k, l]) r = InnerProduct(s1, s2) assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l) def test_symbolic_matrix_elements(): n, m = symbols('n,m') s1 = BBra([n]) s2 = BKet([m]) o = B(0) e = apply_operators(s1*o*s2) assert e == sqrt(m)*KroneckerDelta(n, m - 1) def test_matrix_elements(): b = VarBosonicBasis(5) o = B(0) m = matrix_rep(o, b) for i in range(4): assert m[i, i + 1] == sqrt(i + 1) o = Bd(0) m = matrix_rep(o, b) for i in range(4): assert m[i + 1, i] == sqrt(i + 1) def test_fixed_bosonic_basis(): b = FixedBosonicBasis(2, 2) # assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] state = b.state(1) assert state == FockStateBosonKet((1, 1)) assert b.index(state) == 1 assert b.state(1) == b[1] assert len(b) == 3 assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' @slow def test_sho(): n, m = symbols('n,m') h_n = Bd(n)*B(n)*(n + S.Half) H = Sum(h_n, (n, 0, 5)) o = H.doit(deep=False) b = FixedBosonicBasis(2, 6) m = matrix_rep(o, b) # We need to double check these energy values to make sure that they # are correct and have the proper degeneracies! diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11] for i in range(len(diag)): assert diag[i] == m[i, i] def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), B(0)) assert c == 0 c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c*BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c*BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2*NO(Fd(m)*F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2*NO(Fd(m)*F(m)) C = Commutator X, Y, Z = symbols('X,Y,Z', commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') D = KroneckerDelta assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a)) assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a) assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0 c1 = Commutator(F(a), Fd(a)) assert Commutator.eval(c1, c1) == 0 c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) assert latex(c) == r'\left[{a^\dagger_{a}} a_{i},{a^\dagger_{b}} a_{j}\right]' assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))' assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]' def test_create_f(): i, j, n, m = symbols('i,j,n,m') o = Fd(i) assert isinstance(o, CreateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Fd(1) assert o.apply_operator(FKet([n])) == FKet([1, n]) assert o.apply_operator(FKet([n])) == -FKet([n, 1]) o = Fd(n) assert o.apply_operator(FKet([])) == FKet([n]) vacuum = FKet([], fermi_level=4) assert vacuum == FKet([], fermi_level=4) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4) assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4) assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p) assert repr(Fd(p)) == 'CreateFermion(p)' assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))" assert latex(Fd(p)) == r'{a^\dagger_{p}}' def test_annihilate_f(): i, j, n, m = symbols('i,j,n,m') o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) assert str(F(p)) == 'f(p)' assert repr(F(p)) == 'AnnihilateFermion(p)' assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" assert latex(F(p)) == 'a_{p}' def test_create_b(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate_b(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) def test_wicks(): p, q, r, s = symbols('p,q,r,s', above_fermi=True) # Testing for particles only str = F(p)*Fd(q) assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q) str = Fd(p)*F(q) assert wicks(str) == NO(Fd(p)*F(q)) str = F(p)*Fd(q)*F(r)*Fd(s) nstr = wicks(str) fasit = NO( KroneckerDelta(p, q)*KroneckerDelta(r, s) + KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s) + KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q) - KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q) - AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s)) assert nstr == fasit assert (p*q*nstr).expand() == wicks(p*q*str) assert (nstr*p*q*2).expand() == wicks(str*p*q*2) # Testing CC equations particles and holes i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s', cls=Dummy) assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) == NO(F(a)*F(i)*F(j)*Fd(b)) + KroneckerDelta(a, b)*NO(F(i)*F(j))) assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) == NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) - KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k))) expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l)) assert (expr == -KroneckerDelta(i, k)*NO(Fd(j)*F(l)) - KroneckerDelta(j, l)*NO(Fd(i)*F(k)) - KroneckerDelta(i, k)*KroneckerDelta(j, l) + KroneckerDelta(i, l)*NO(Fd(j)*F(k)) + NO(Fd(i)*Fd(j)*F(k)*F(l))) expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d)) assert (expr == -KroneckerDelta(a, c)*NO(F(b)*Fd(d)) - KroneckerDelta(b, d)*NO(F(a)*Fd(c)) - KroneckerDelta(a, c)*KroneckerDelta(b, d) + KroneckerDelta(a, d)*NO(F(b)*Fd(c)) + NO(F(a)*F(b)*Fd(c)*Fd(d))) def test_NO(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) == NO(Fd(p)*F(q)) + NO(Fd(a)*F(b))) assert (NO(Fd(i)*NO(F(j)*Fd(a))) == NO(Fd(i)*F(j)*Fd(a))) assert NO(1) == 1 assert NO(i) == i assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) == NO(Fd(a)*Fd(b)*F(c)) + NO(Fd(a)*Fd(b)*F(d))) assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b) assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i) assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) == NO(Fd(a)*F(q)) + NO(Fd(i)*F(q))) assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) == NO(Fd(p)*F(a)) + NO(Fd(p)*F(i))) expr = NO(Fd(p)*F(q))._remove_brackets() assert wicks(expr) == NO(expr) assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a)) no = NO(Fd(a)*F(i)*F(b)*Fd(j)) l1 = [ ind for ind in no.iter_q_creators() ] assert l1 == [0, 1] l2 = [ ind for ind in no.iter_q_annihilators() ] assert l2 == [3, 2] no = NO(Fd(a)*Fd(i)) assert no.has_q_creators == 1 assert no.has_q_annihilators == -1 assert str(no) == ':CreateFermion(a)*CreateFermion(i):' assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))' assert latex(no) == r'\left\{{a^\dagger_{a}} {a^\dagger_{i}}\right\}' raises(NotImplementedError, lambda: NO(Bd(p)*F(q))) def test_sorting(): i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) p, q = symbols('p,q') # p, q assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) # i, p assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) # a, p assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) # i, a assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0) def test_contraction(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b))) def test_evaluate_deltas(): i, j, k = symbols('i,j,k') r = KroneckerDelta(i, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, k) r = KroneckerDelta(i, 0) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k) r = KroneckerDelta(1, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(1, k) r = KroneckerDelta(j, 2) * KroneckerDelta(k, j) assert evaluate_deltas(r) == KroneckerDelta(2, k) r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1) assert evaluate_deltas(r) == 0 r = (KroneckerDelta(0, i) * KroneckerDelta(0, j) * KroneckerDelta(1, j) * KroneckerDelta(1, j)) assert evaluate_deltas(r) == 0 def test_Tensors(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s') AT = AntiSymmetricTensor assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j)) assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i)) assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i)) assert AT('t', (a, a), (i, j)) == 0 assert AT('t', (a, b), (i, i)) == 0 assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j)) assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j)) tabij = AT('t', (a, b), (i, j)) assert tabij.has(a) assert tabij.has(b) assert tabij.has(i) assert tabij.has(j) assert tabij.subs(b, c) == AT('t', (a, c), (i, j)) assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j)) assert tabij.symbol == Symbol('t') assert latex(tabij) == '{t^{ab}_{ij}}' assert str(tabij) == 't((_a, _b),(_i, _j))' assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j)) assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j)) def test_fully_contracted(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) Fock = (AntiSymmetricTensor('f', (p,), (q,))* NO(Fd(p)*F(q))) V = (AntiSymmetricTensor('v', (p, q), (r, s))* NO(Fd(p)*Fd(q)*F(s)*F(r)))/4 Fai = wicks(NO(Fd(i)*F(a))*Fock, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Fai == AntiSymmetricTensor('f', (a,), (i,)) Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j)) def test_substitute_dummies_without_dummies(): i, j = symbols('i,j') assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2 assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1 def test_substitute_dummies_NO_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j)) - att(j, i)*NO(Fd(j)*F(i))) == 0 def test_substitute_dummies_SQ_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*Fd(i)*F(j) - att(j, i)*Fd(j)*F(i)) == 0 def test_substitute_dummies_new_indices(): i, j = symbols('i j', below_fermi=True, cls=Dummy) a, b = symbols('a b', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) f = Function('f') assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0 def test_substitute_dummies_substitution_order(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) f = Function('f') from sympy.utilities.iterables import variations for permut in variations([i, j, k, l], 4): assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0 def test_dummy_order_inner_outer_lines_VT1T1T1(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k), v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l), v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k), v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 exprs = [ # permut t <=> swapping external lines, not equivalent # except if v has certain symmetries. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut v <=> swapping external lines, not equivalent # except if v has certain symmetries. # # Note that in contrast to above, these permutations have identical # dummy order. That is because the proximity to external indices # has higher influence on the canonical dummy ordering than the # position of a dummy on the factors. In fact, the terms here are # similar in structure as the result of the dummy substitutions above. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut t and v <=> swapping internal lines, equivalent. # Canonical dummy order is different, and a consistent # substitution reveals the equivalence. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_get_subNO(): p, q, r = symbols('p,q,r') assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q)) def test_equivalent_internal_lines_VT1T1(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Different dummy order. Not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, i)*t(b, j), v(i, j, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(i, j, a, b)*t(b, i)*t(a, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, j)*t(b, i), v(i, j, b, a)*t(b, i)*t(a, j), v(j, i, b, a)*t(b, j)*t(a, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(ijcd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) # v(abcd)t(abij)t(jicd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(cdij) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Same dummy order, not equivalent. # # This test show that the dummy order may not be sensitive to all # index permutations. The following expressions have identical # structure as the resulting terms from of the dummy substitutions # in the test above. Here, all expressions have the same dummy # order, so they cannot be simplified by means of dummy # substitution. In order to simplify further, it is necessary to # exploit symmetries in the objects, for instance if t or v is # antisymmetric. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, i, j), v(i, j, b, a)*t(a, b, i, j), v(j, i, b, a)*t(a, b, i, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. v(i, j, a, b)*t(a, b, i, j), v(i, j, a, b)*t(b, a, i, j), v(i, j, a, b)*t(a, b, j, i), v(i, j, a, b)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, j, i), v(i, j, b, a)*t(b, a, i, j), v(j, i, b, a)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_well_defined(): aa, bb = symbols('a b', above_fermi=True) k, l, m = symbols('k l m', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) A = Function('A') B = Function('B') C = Function('C') dums = _get_ordered_dummies # We go through all key components in the order of increasing priority, # and consider only fully orderable expressions. Non-orderable expressions # are tested elsewhere. # pos in first factor determines sort order assert dums(A(k, l)*B(l, k)) == [k, l] assert dums(A(l, k)*B(l, k)) == [l, k] assert dums(A(k, l)*B(k, l)) == [k, l] assert dums(A(l, k)*B(k, l)) == [l, k] # factors involving the index assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m] # same, but with factor order determined by non-dummies assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] # index range assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p] assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p] assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p] assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p] assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p] assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p] assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p] assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p] assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p] assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p] assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p] assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p] def test_dummy_order_ambiguous(): aa, bb = symbols('a b', above_fermi=True) i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy) a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy) A = Function('A') B = Function('B') from sympy.utilities.iterables import variations # A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def atv(*args): return AntiSymmetricTensor('v', args[:2], args[2:] ) def att(*args): if len(args) == 4: return AntiSymmetricTensor('t', args[:2], args[2:] ) elif len(args) == 2: return AntiSymmetricTensor('t', (args[0],), (args[1],)) def test_dummy_order_inner_outer_lines_VT1T1T1_AT(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k), atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l), atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k), atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 # non-equivalent substitutions (change of sign) exprs = [ # permut t <=> swapping external lines atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == -substitute_dummies(permut) # equivalent substitutions exprs = [ atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), # permut t <=> swapping external lines atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT1T1_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Different dummy order. Not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, i)*att(b, j), atv(i, j, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(i, j, a, b)*att(b, i)*att(a, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, j)*att(b, i), atv(i, j, b, a)*att(b, i)*att(a, j), atv(j, i, b, a)*att(b, j)*att(a, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2_AT(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(ijcd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # atv(abcd)att(abij)att(jicd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(cdij) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, i, j), atv(i, j, b, a)*att(a, b, i, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. atv(i, j, a, b)*att(a, b, i, j), atv(i, j, a, b)*att(b, a, i, j), atv(i, j, a, b)*att(a, b, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, j, i), atv(i, j, b, a)*att(b, a, i, j), atv(j, i, b, a)*att(b, a, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs_AT(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_issue_19661(): a = Symbol('0') assert latex(Commutator(Bd(a)**2, B(a)) ) == '- \\left[b_{0},{b^\\dagger_{0}}^{2}\\right]' def test_canonical_ordering_AntiSymmetricTensor(): v = symbols("v") c, d = symbols(('c','d'), above_fermi=True, cls=Dummy) k, l = symbols(('k','l'), below_fermi=True, cls=Dummy) # formerly, the left gave either the left or the right assert AntiSymmetricTensor(v, (k, l), (d, c) ) == -AntiSymmetricTensor(v, (l, k), (d, c))
5d271040ef51851ae5a92208fd9cb2394a44fb3b3eef0a61485099ab63ae1671
from sympy.physics.pring import wavefunction, energy from sympy.core.numbers import (I, pi) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.integrals.integrals import integrate from sympy.simplify.simplify import simplify from sympy.abc import m, x, r from sympy.physics.quantum.constants import hbar def test_wavefunction(): Psi = { 0: (1/sqrt(2 * pi)), 1: (1/sqrt(2 * pi)) * exp(I * x), 2: (1/sqrt(2 * pi)) * exp(2 * I * x), 3: (1/sqrt(2 * pi)) * exp(3 * I * x) } for n in Psi: assert simplify(wavefunction(n, x) - Psi[n]) == 0 def test_norm(n=1): # Maximum "n" which is tested: for i in range(n + 1): assert integrate( wavefunction(i, x) * wavefunction(-i, x), (x, 0, 2 * pi)) == 1 def test_orthogonality(n=1): # Maximum "n" which is tested: for i in range(n + 1): for j in range(i+1, n+1): assert integrate( wavefunction(i, x) * wavefunction(j, x), (x, 0, 2 * pi)) == 0 def test_energy(n=1): # Maximum "n" which is tested: for i in range(n+1): assert simplify( energy(i, m, r) - ((i**2 * hbar**2) / (2 * m * r**2))) == 0
db62d48b85679fe170e8815e7f15b4ef93390809782c03b91fbec5db961f4dae
""" This module can be used to solve 2D beam bending problems with singularity functions in mechanics. """ from sympy.core import S, Symbol, diff, symbols from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.function import (Derivative, Function) from sympy.core.mul import Mul from sympy.core.relational import Eq from sympy.core.sympify import sympify from sympy.solvers import linsolve from sympy.solvers.ode.ode import dsolve from sympy.solvers.solvers import solve from sympy.printing import sstr from sympy.functions import SingularityFunction, Piecewise, factorial from sympy.integrals import integrate from sympy.series import limit from sympy.plotting import plot, PlotGrid from sympy.geometry.entity import GeometryEntity from sympy.external import import_module from sympy.sets.sets import Interval from sympy.utilities.lambdify import lambdify from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.iterables import iterable numpy = import_module('numpy', import_kwargs={'fromlist':['arange']}) class Beam: """ A Beam is a structural element that is capable of withstanding load primarily by resisting against bending. Beams are characterized by their cross sectional profile(Second moment of area), their length and their material. .. note:: A consistent sign convention must be used while solving a beam bending problem; the results will automatically follow the chosen sign convention. However, the chosen sign convention must respect the rule that, on the positive side of beam's axis (in respect to current section), a loading force giving positive shear yields a negative moment, as below (the curved arrow shows the positive moment and rotation): .. image:: allowed-sign-conventions.png Examples ======== There is a beam of length 4 meters. A constant distributed load of 6 N/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. The deflection of the beam at the end is restricted. Using the sign convention of downwards forces being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols, Piecewise >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(4, E, I) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(6, 2, 0) >>> b.apply_load(R2, 4, -1) >>> b.bc_deflection = [(0, 0), (4, 0)] >>> b.boundary_conditions {'deflection': [(0, 0), (4, 0)], 'slope': []} >>> b.load R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0) >>> b.solve_for_reaction_loads(R1, R2) >>> b.load -3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1) >>> b.shear_force() 3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0) >>> b.bending_moment() 3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1) >>> b.slope() (-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I) >>> b.deflection() (7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I) >>> b.deflection().rewrite(Piecewise) (7*x - Piecewise((x**3, x > 0), (0, True))/2 - 3*Piecewise(((x - 4)**3, x > 4), (0, True))/2 + Piecewise(((x - 2)**4, x > 2), (0, True))/4)/(E*I) """ def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. It can also be a continuous function of position along the beam. second_moment : Sympifyable or Geometry object Describes the cross-section of the beam via a SymPy expression representing the Beam's second moment of area. It is a geometrical property of an area which reflects how its points are distributed with respect to its neutral axis. It can also be a continuous function of position along the beam. Alternatively ``second_moment`` can be a shape object such as a ``Polygon`` from the geometry module representing the shape of the cross-section of the beam. In such cases, it is assumed that the x-axis of the shape object is aligned with the bending axis of the beam. The second moment of area will be computed from the shape object internally. area : Symbol/float Represents the cross-section area of beam variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. base_char : String, optional A String that will be used as base character to generate sequential symbols for integration constants in cases where boundary conditions are not sufficient to solve them. """ self.length = length self.elastic_modulus = elastic_modulus if isinstance(second_moment, GeometryEntity): self.cross_section = second_moment else: self.cross_section = None self.second_moment = second_moment self.variable = variable self._base_char = base_char self._boundary_conditions = {'deflection': [], 'slope': []} self._load = 0 self._area = area self._applied_supports = [] self._support_as_loads = [] self._applied_loads = [] self._reaction_loads = {} self._ild_reactions = {} self._ild_shear = 0 self._ild_moment = 0 # _original_load is a copy of _load equations with unsubstituted reaction # forces. It is used for calculating reaction forces in case of I.L.D. self._original_load = 0 self._composite_type = None self._hinge_position = None def __str__(self): shape_description = self._cross_section if self._cross_section else self._second_moment str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description)) return str_sol @property def reaction_loads(self): """ Returns the reaction forces in a dictionary.""" return self._reaction_loads @property def ild_shear(self): """ Returns the I.L.D. shear equation.""" return self._ild_shear @property def ild_reactions(self): """ Returns the I.L.D. reaction forces in a dictionary.""" return self._ild_reactions @property def ild_moment(self): """ Returns the I.L.D. moment equation.""" return self._ild_moment @property def length(self): """Length of the Beam.""" return self._length @length.setter def length(self, l): self._length = sympify(l) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def variable(self): """ A symbol that can be used as a variable along the length of the beam while representing load distribution, shear force curve, bending moment, slope curve and the deflection curve. By default, it is set to ``Symbol('x')``, but this property is mutable. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I, A = symbols('E, I, A') >>> x, y, z = symbols('x, y, z') >>> b = Beam(4, E, I) >>> b.variable x >>> b.variable = y >>> b.variable y >>> b = Beam(4, E, I, A, z) >>> b.variable z """ return self._variable @variable.setter def variable(self, v): if isinstance(v, Symbol): self._variable = v else: raise TypeError("""The variable should be a Symbol object.""") @property def elastic_modulus(self): """Young's Modulus of the Beam. """ return self._elastic_modulus @elastic_modulus.setter def elastic_modulus(self, e): self._elastic_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): self._cross_section = None if isinstance(i, GeometryEntity): raise ValueError("To update cross-section geometry use `cross_section` attribute") else: self._second_moment = sympify(i) @property def cross_section(self): """Cross-section of the beam""" return self._cross_section @cross_section.setter def cross_section(self, s): if s: self._second_moment = s.second_moment_of_area()[0] self._cross_section = s @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has three keywords namely moment, slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value). Examples ======== There is a beam of length 4 meters. The bending moment at 0 should be 4 and at 4 it should be 0. The slope of the beam should be 1 at 0. The deflection should be 2 at 0. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.bc_deflection = [(0, 2)] >>> b.bc_slope = [(0, 1)] >>> b.boundary_conditions {'deflection': [(0, 2)], 'slope': [(0, 1)]} Here the deflection of the beam should be ``2`` at ``0``. Similarly, the slope of the beam should be ``1`` at ``0``. """ return self._boundary_conditions @property def bc_slope(self): return self._boundary_conditions['slope'] @bc_slope.setter def bc_slope(self, s_bcs): self._boundary_conditions['slope'] = s_bcs @property def bc_deflection(self): return self._boundary_conditions['deflection'] @bc_deflection.setter def bc_deflection(self, d_bcs): self._boundary_conditions['deflection'] = d_bcs def join(self, beam, via="fixed"): """ This method joins two beams to make a new composite beam system. Passed Beam class instance is attached to the right end of calling object. This method can be used to form beams having Discontinuous values of Elastic modulus or Second moment. Parameters ========== beam : Beam class object The Beam object which would be connected to the right of calling object. via : String States the way two Beam object would get connected - For axially fixed Beams, via="fixed" - For Beams connected via hinge, via="hinge" Examples ======== There is a cantilever beam of length 4 meters. For first 2 meters its moment of inertia is `1.5*I` and `I` for the other end. A pointload of magnitude 4 N is applied from the top at its free end. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b1 = Beam(2, E, 1.5*I) >>> b2 = Beam(2, E, I) >>> b = b1.join(b2, "fixed") >>> b.apply_load(20, 4, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 0, -2) >>> b.bc_slope = [(0, 0)] >>> b.bc_deflection = [(0, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.load 80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1) >>> b.slope() (-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0) - 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I) + 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I) """ x = self.variable E = self.elastic_modulus new_length = self.length + beam.length if self.second_moment != beam.second_moment: new_second_moment = Piecewise((self.second_moment, x<=self.length), (beam.second_moment, x<=new_length)) else: new_second_moment = self.second_moment if via == "fixed": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "fixed" return new_beam if via == "hinge": new_beam = Beam(new_length, E, new_second_moment, x) new_beam._composite_type = "hinge" new_beam._hinge_position = self.length return new_beam def apply_support(self, loc, type="fixed"): """ This method applies support to a particular beam object. Parameters ========== loc : Sympifyable Location of point at which support is applied. type : String Determines type of Beam support applied. To apply support structure with - zero degree of freedom, type = "fixed" - one degree of freedom, type = "pin" - two degrees of freedom, type = "roller" Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(30, E, I) >>> b.apply_support(10, 'roller') >>> b.apply_support(30, 'roller') >>> b.apply_load(-8, 0, -1) >>> b.apply_load(120, 30, -2) >>> R_10, R_30 = symbols('R_10, R_30') >>> b.solve_for_reaction_loads(R_10, R_30) >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ loc = sympify(loc) self._applied_supports.append((loc, type)) if type in ("pin", "roller"): reaction_load = Symbol('R_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.bc_deflection.append((loc, 0)) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self.apply_load(reaction_load, loc, -1) self.apply_load(reaction_moment, loc, -2) self.bc_deflection.append((loc, 0)) self.bc_slope.append((loc, 0)) self._support_as_loads.append((reaction_moment, loc, -2, None)) self._support_as_loads.append((reaction_load, loc, -1, None)) def apply_load(self, value, start, order, end=None): """ This method adds up the loads given to a particular beam object. Parameters ========== value : Sympifyable The value inserted should have the units [Force/(Distance**(n+1)] where n is the order of applied load. Units for applied loads: - For moments, unit = kN*m - For point loads, unit = kN - For constant distributed load, unit = kN/m - For ramp loads, unit = kN/m/m - For parabolic ramp loads, unit = kN/m/m/m - ... so on. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order = -2 - For point loads, order =-1 - For constant distributed load, order = 0 - For ramp loads, order = 1 - For parabolic ramp loads, order = 2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) self._applied_loads.append((value, start, order, end)) self._load += value*SingularityFunction(x, start, order) self._original_load += value*SingularityFunction(x, start, order) if end: # load has an end point within the length of the beam. self._handle_end(x, value, start, order, end, type="apply") def remove_load(self, value, start, order, end=None): """ This method removes a particular load present on the beam object. Returns a ValueError if the load passed as an argument is not present on the beam. Parameters ========== value : Sympifyable The magnitude of an applied load. start : Sympifyable The starting point of the applied load. For point moments and point forces this is the location of application. order : Integer The order of the applied load. - For moments, order= -2 - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. end : Sympifyable, optional An optional argument that can be used if the load has an end point within the length of the beam. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 2 meters to 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 2, 2, end=3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2) >>> b.remove_load(-2, 2, 2, end = 3) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if (value, start, order, end) in self._applied_loads: self._load -= value*SingularityFunction(x, start, order) self._original_load -= value*SingularityFunction(x, start, order) self._applied_loads.remove((value, start, order, end)) else: msg = "No such load distribution exists on the beam object." raise ValueError(msg) if end: # load has an end point within the length of the beam. self._handle_end(x, value, start, order, end, type="remove") def _handle_end(self, x, value, start, order, end, type): """ This functions handles the optional `end` value in the `apply_load` and `remove_load` functions. When the value of end is not NULL, this function will be executed. """ if order.is_negative: msg = ("If 'end' is provided the 'order' of the load cannot " "be negative, i.e. 'end' is only valid for distributed " "loads.") raise ValueError(msg) # NOTE : A Taylor series can be used to define the summation of # singularity functions that subtract from the load past the end # point such that it evaluates to zero past 'end'. f = value*x**order if type == "apply": # iterating for "apply_load" method for i in range(0, order + 1): self._load -= (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) self._original_load -= (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) elif type == "remove": # iterating for "remove_load" method for i in range(0, order + 1): self._load += (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) self._original_load += (f.diff(x, i).subs(x, end - start) * SingularityFunction(x, end, i)/factorial(i)) @property def load(self): """ Returns a Singularity Function expression which represents the load distribution curve of the Beam object. Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A point load of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point and a parabolic ramp load of magnitude 2 N/m is applied below the beam starting from 3 meters away from the starting point of the beam. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(-2, 3, 2) >>> b.load -3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2) """ return self._load @property def applied_loads(self): """ Returns a list of all loads applied on the beam object. Each load in the list is a tuple of form (value, start, order, end). Examples ======== There is a beam of length 4 meters. A moment of magnitude 3 Nm is applied in the clockwise direction at the starting point of the beam. A pointload of magnitude 4 N is applied from the top of the beam at 2 meters from the starting point. Another pointload of magnitude 5 N is applied at same position. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(4, E, I) >>> b.apply_load(-3, 0, -2) >>> b.apply_load(4, 2, -1) >>> b.apply_load(5, 2, -1) >>> b.load -3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1) >>> b.applied_loads [(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)] """ return self._applied_loads def _solve_hinge_beams(self, *reactions): """Method to find integration constants and reactional variables in a composite beam connected via hinge. This method resolves the composite Beam into its sub-beams and then equations of shear force, bending moment, slope and deflection are evaluated for both of them separately. These equations are then solved for unknown reactions and integration constants using the boundary conditions applied on the Beam. Equal deflection of both sub-beams at the hinge joint gives us another equation to solve the system. Examples ======== A combined beam, with constant fkexural rigidity E*I, is formed by joining a Beam of length 2*l to the right of another Beam of length l. The whole beam is fixed at both of its both end. A point load of magnitude P is also applied from the top at a distance of 2*l from starting point. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> l=symbols('l', positive=True) >>> b1=Beam(l, E, I) >>> b2=Beam(2*l, E, I) >>> b=b1.join(b2,"hinge") >>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P') >>> b.apply_load(A1,0,-1) >>> b.apply_load(M1,0,-2) >>> b.apply_load(P,2*l,-1) >>> b.apply_load(A2,3*l,-1) >>> b.apply_load(M2,3*l,-2) >>> b.bc_slope=[(0,0), (3*l, 0)] >>> b.bc_deflection=[(0,0), (3*l, 0)] >>> b.solve_for_reaction_loads(M1, A1, M2, A2) >>> b.reaction_loads {A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9} >>> b.slope() (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) + (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2 - 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I) >>> b.deflection() (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I) - (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) + (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6 - 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I) """ x = self.variable l = self._hinge_position E = self._elastic_modulus I = self._second_moment if isinstance(I, Piecewise): I1 = I.args[0][0] I2 = I.args[1][0] else: I1 = I2 = I load_1 = 0 # Load equation on first segment of composite beam load_2 = 0 # Load equation on second segment of composite beam # Distributing load on both segments for load in self.applied_loads: if load[1] < l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) if load[2] == 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) elif load[2] > 0: load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0) elif load[1] == l: load_1 += load[0]*SingularityFunction(x, load[1], load[2]) load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) elif load[1] > l: load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2]) if load[2] == 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) elif load[2] > 0: load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0) h = Symbol('h') # Force due to hinge load_1 += h*SingularityFunction(x, l, -1) load_2 -= h*SingularityFunction(x, 0, -1) eq = [] shear_1 = integrate(load_1, x) shear_curve_1 = limit(shear_1, x, l) eq.append(shear_curve_1) bending_1 = integrate(shear_1, x) moment_curve_1 = limit(bending_1, x, l) eq.append(moment_curve_1) shear_2 = integrate(load_2, x) shear_curve_2 = limit(shear_2, x, self.length - l) eq.append(shear_curve_2) bending_2 = integrate(shear_2, x) moment_curve_2 = limit(bending_2, x, self.length - l) eq.append(moment_curve_2) C1 = Symbol('C1') C2 = Symbol('C2') C3 = Symbol('C3') C4 = Symbol('C4') slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1) def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2) slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3) def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4) for position, value in self.bc_slope: if position<l: eq.append(slope_1.subs(x, position) - value) else: eq.append(slope_2.subs(x, position - l) - value) for position, value in self.bc_deflection: if position<l: eq.append(def_1.subs(x, position) - value) else: eq.append(def_2.subs(x, position - l) - value) eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions)) reaction_values = list(constants[0])[5:] self._reaction_loads = dict(zip(reactions, reaction_values)) self._load = self._load.subs(self._reaction_loads) # Substituting constants and reactional load and moments with their corresponding values slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads) def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads) slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads) def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads) self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0) self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0) def solve_for_reaction_loads(self, *reactions): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) # Reaction force at x = 10 >>> b.apply_load(R2, 30, -1) # Reaction force at x = 30 >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.load R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1) - 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2) >>> b.solve_for_reaction_loads(R1, R2) >>> b.reaction_loads {R1: 6, R2: 2} >>> b.load -8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1) + 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1) """ if self._composite_type == "hinge": return self._solve_hinge_beams(*reactions) x = self.variable l = self.length C3 = Symbol('C3') C4 = Symbol('C4') shear_curve = limit(self.shear_force(), x, l) moment_curve = limit(self.bending_moment(), x, l) slope_eqs = [] deflection_eqs = [] slope_curve = integrate(self.bending_moment(), x) + C3 for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value slope_eqs.append(eqs) deflection_curve = integrate(slope_curve, x) + C4 for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value deflection_eqs.append(eqs) solution = list((linsolve([shear_curve, moment_curve] + slope_eqs + deflection_eqs, (C3, C4) + reactions).args)[0]) solution = solution[2:] self._reaction_loads = dict(zip(reactions, solution)) self._load = self._load.subs(self._reaction_loads) def shear_force(self): """ Returns a Singularity Function expression which represents the shear force curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.shear_force() 8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0) """ x = self.variable return -integrate(self.load, x) def max_shear_force(self): """Returns maximum Shear force and its coordinate in the Beam object.""" shear_curve = self.shear_force() x = self.variable terms = shear_curve.args singularity = [] # Points at which shear function changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of shear force shear_values = [] # List of values of shear force in each interval for i, s in enumerate(singularity): if s == 0: continue try: shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(shear_slope, x) val = [] for point in points: val.append(abs(shear_curve.subs(x, point))) points.extend([singularity[i-1], s]) val += [abs(limit(shear_curve, x, singularity[i-1], '+')), abs(limit(shear_curve, x, s, '-'))] max_shear = max(val) shear_values.append(max_shear) intervals.append(points[val.index(max_shear)]) # If shear force in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as # solve can't represent Interval solutions. except NotImplementedError: initial_shear = limit(shear_curve, x, singularity[i-1], '+') final_shear = limit(shear_curve, x, s, '-') # If shear_curve has a constant slope(it is a line). if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear: shear_values.extend([initial_shear, final_shear]) intervals.extend([singularity[i-1], s]) else: # shear_curve has same value in whole Interval shear_values.append(final_shear) intervals.append(Interval(singularity[i-1], s)) shear_values = list(map(abs, shear_values)) maximum_shear = max(shear_values) point = intervals[shear_values.index(maximum_shear)] return (point, maximum_shear) def bending_moment(self): """ Returns a Singularity Function expression which represents the bending moment curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.bending_moment() 8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1) """ x = self.variable return integrate(self.shear_force(), x) def max_bmoment(self): """Returns maximum Shear force and its coordinate in the Beam object.""" bending_curve = self.bending_moment() x = self.variable terms = bending_curve.args singularity = [] # Points at which bending moment changes for term in terms: if isinstance(term, Mul): term = term.args[-1] # SingularityFunction in the term singularity.append(term.args[1]) singularity.sort() singularity = list(set(singularity)) intervals = [] # List of Intervals with discrete value of bending moment moment_values = [] # List of values of bending moment in each interval for i, s in enumerate(singularity): if s == 0: continue try: moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True)) points = solve(moment_slope, x) val = [] for point in points: val.append(abs(bending_curve.subs(x, point))) points.extend([singularity[i-1], s]) val += [abs(limit(bending_curve, x, singularity[i-1], '+')), abs(limit(bending_curve, x, s, '-'))] max_moment = max(val) moment_values.append(max_moment) intervals.append(points[val.index(max_moment)]) # If bending moment in a particular Interval has zero or constant # slope, then above block gives NotImplementedError as solve # can't represent Interval solutions. except NotImplementedError: initial_moment = limit(bending_curve, x, singularity[i-1], '+') final_moment = limit(bending_curve, x, s, '-') # If bending_curve has a constant slope(it is a line). if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment: moment_values.extend([initial_moment, final_moment]) intervals.extend([singularity[i-1], s]) else: # bending_curve has same value in whole Interval moment_values.append(final_moment) intervals.append(Interval(singularity[i-1], s)) moment_values = list(map(abs, moment_values)) maximum_moment = max(moment_values) point = intervals[moment_values.index(maximum_moment)] return (point, maximum_moment) def point_cflexure(self): """ Returns a Set of point(s) with zero bending moment and where bending moment curve of the beam object changes its sign from negative to positive or vice versa. Examples ======== There is is 10 meter long overhanging beam. There are two simple supports below the beam. One at the start and another one at a distance of 6 meters from the start. Point loads of magnitude 10KN and 20KN are applied at 2 meters and 4 meters from start respectively. A Uniformly distribute load of magnitude of magnitude 3KN/m is also applied on top starting from 6 meters away from starting point till end. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> b = Beam(10, E, I) >>> b.apply_load(-4, 0, -1) >>> b.apply_load(-46, 6, -1) >>> b.apply_load(10, 2, -1) >>> b.apply_load(20, 4, -1) >>> b.apply_load(3, 6, 0) >>> b.point_cflexure() [10/3] """ # To restrict the range within length of the Beam moment_curve = Piecewise((float("nan"), self.variable<=0), (self.bending_moment(), self.variable<self.length), (float("nan"), True)) points = solve(moment_curve.rewrite(Piecewise), self.variable, domain=S.Reals) return points def slope(self): """ Returns a Singularity Function expression which represents the slope the elastic curve of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.slope() (-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2) + 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_slope if not self._boundary_conditions['slope']: return diff(self.deflection(), x) if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args slope = 0 prev_slope = 0 prev_end = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) if i != len(args) - 1: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \ (prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0) else: slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) return slope C3 = Symbol('C3') slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3 bc_eqs = [] for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C3)) slope_curve = slope_curve.subs({C3: constants[0][0]}) return slope_curve def deflection(self): """ Returns a Singularity Function expression which represents the elastic curve or deflection of the Beam object. Examples ======== There is a beam of length 30 meters. A moment of magnitude 120 Nm is applied in the clockwise direction at the end of the beam. A pointload of magnitude 8 N is applied from the top of the beam at the starting point. There are two simple supports below the beam. One at the end and another one at a distance of 10 meters from the start. The deflection is restricted at both the supports. Using the sign convention of upward forces and clockwise moment being positive. >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> E, I = symbols('E, I') >>> R1, R2 = symbols('R1, R2') >>> b = Beam(30, E, I) >>> b.apply_load(-8, 0, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(120, 30, -2) >>> b.bc_deflection = [(10, 0), (30, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.deflection() (4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3) + 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I) """ x = self.variable E = self.elastic_modulus I = self.second_moment if self._composite_type == "hinge": return self._hinge_beam_deflection if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']: if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char constants = symbols(base_char + '3:5') return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1] elif not self._boundary_conditions['deflection']: base_char = self._base_char constant = symbols(base_char + '4') return integrate(self.slope(), x) + constant elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']: if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection base_char = self._base_char C3, C4 = symbols(base_char + '3:5') # Integration constants slope_curve = -integrate(self.bending_moment(), x) + C3 deflection_curve = integrate(slope_curve, x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, (C3, C4))) deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]}) return S.One/(E*I)*deflection_curve if isinstance(I, Piecewise) and self._composite_type == "fixed": args = I.args prev_slope = 0 prev_def = 0 prev_end = 0 deflection = 0 for i in range(len(args)): if i != 0: prev_end = args[i-1][1].args[1] slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x)) recent_segment_slope = prev_slope + slope_value deflection_value = integrate(recent_segment_slope, (x, prev_end, x)) if i != len(args) - 1: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \ - (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0) else: deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) prev_slope = slope_value.subs(x, args[i][1].args[1]) prev_def = deflection_value.subs(x, args[i][1].args[1]) return deflection C4 = Symbol('C4') deflection_curve = integrate(self.slope(), x) + C4 bc_eqs = [] for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value bc_eqs.append(eqs) constants = list(linsolve(bc_eqs, C4)) deflection_curve = deflection_curve.subs({C4: constants[0][0]}) return deflection_curve def max_deflection(self): """ Returns point of max deflection and its corresponding deflection value in a Beam object. """ # To restrict the range within length of the Beam slope_curve = Piecewise((float("nan"), self.variable<=0), (self.slope(), self.variable<self.length), (float("nan"), True)) points = solve(slope_curve.rewrite(Piecewise), self.variable, domain=S.Reals) deflection_curve = self.deflection() deflections = [deflection_curve.subs(self.variable, x) for x in points] deflections = list(map(abs, deflections)) if len(deflections) != 0: max_def = max(deflections) return (points[deflections.index(max_def)], max_def) else: return None def shear_stress(self): """ Returns an expression representing the Shear Stress curve of the Beam object. """ return self.shear_force()/self._area def plot_shear_stress(self, subs=None): """ Returns a plot of shear stress present in the beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters and area of cross section 2 square meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6), 2) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_shear_stress() Plot object containing: [0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0) - 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0) + 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0) """ shear_stress = self.shear_stress() x = self.variable length = self.length if subs is None: subs = {} for sym in shear_stress.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('value of %s was not passed.' %sym) if length in subs: length = subs[length] # Returns Plot of Shear Stress return plot (shear_stress.subs(subs), (x, 0, length), title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$', line_color='r') def plot_shear_force(self, subs=None): """ Returns a plot for Shear force present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_shear_force() Plot object containing: [0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0) - 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0) + 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0) """ shear_force = self.shear_force() if subs is None: subs = {} for sym in shear_force.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force', xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g') def plot_bending_moment(self, subs=None): """ Returns a plot for Bending moment present in the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_bending_moment() Plot object containing: [0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1) - 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1) + 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0) """ bending_moment = self.bending_moment() if subs is None: subs = {} for sym in bending_moment.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment', xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b') def plot_slope(self, subs=None): """ Returns a plot for slope of deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_slope() Plot object containing: [0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2) + 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2) - 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0) """ slope = self.slope() if subs is None: subs = {} for sym in slope.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(slope.subs(subs), (self.variable, 0, length), title='Slope', xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m') def plot_deflection(self, subs=None): """ Returns a plot for deflection curve of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> b.plot_deflection() Plot object containing: [0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3) + 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4) - 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4) for x over (0.0, 8.0) """ deflection = self.deflection() if subs is None: subs = {} for sym in deflection.atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(deflection.subs(subs), (self.variable, 0, length), title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$', line_color='r') def plot_loading_results(self, subs=None): """ Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object. Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 8 meters. A constant distributed load of 10 KN/m is applied from half of the beam till the end. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. A pointload of magnitude 5 KN is also applied from top of the beam, at a distance of 4 meters from the starting point. Take E = 200 GPa and I = 400*(10**-6) meter**4. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> b = Beam(8, 200*(10**9), 400*(10**-6)) >>> b.apply_load(5000, 2, -1) >>> b.apply_load(R1, 0, -1) >>> b.apply_load(R2, 8, -1) >>> b.apply_load(10000, 4, 0, end=8) >>> b.bc_deflection = [(0, 0), (8, 0)] >>> b.solve_for_reaction_loads(R1, R2) >>> axes = b.plot_loading_results() """ length = self.length variable = self.variable if subs is None: subs = {} for sym in self.deflection().atoms(Symbol): if sym == self.variable: continue if sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if length in subs: length = subs[length] ax1 = plot(self.shear_force().subs(subs), (variable, 0, length), title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g', show=False) ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length), title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b', show=False) ax3 = plot(self.slope().subs(subs), (variable, 0, length), title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m', show=False) ax4 = plot(self.deflection().subs(subs), (variable, 0, length), title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$', line_color='r', show=False) return PlotGrid(4, 1, ax1, ax2, ax3, ax4) def _solve_for_ild_equations(self): """ Helper function for I.L.D. It takes the unsubstituted copy of the load equation and uses it to calculate shear force and bending moment equations. """ x = self.variable shear_force = -integrate(self._original_load, x) bending_moment = integrate(shear_force, x) return shear_force, bending_moment def solve_for_ild_reactions(self, value, *reactions): """ Determines the Influence Line Diagram equations for reaction forces under the effect of a moving load. Parameters ========== value : Integer Magnitude of moving load reactions : The reaction forces applied on the beam. Examples ======== There is a beam of length 10 meters. There are two simple supports below the beam, one at the starting point and another at the ending point of the beam. Calculate the I.L.D. equations for reaction forces under the effect of a moving load of magnitude 1kN. .. image:: ildreaction.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_10 = symbols('R_0, R_10') >>> b = Beam(10, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(10, 'roller') >>> b.solve_for_ild_reactions(1,R_0,R_10) >>> b.ild_reactions {R_0: x/10 - 1, R_10: -x/10} """ shear_force, bending_moment = self._solve_for_ild_equations() x = self.variable l = self.length C3 = Symbol('C3') C4 = Symbol('C4') shear_curve = limit(shear_force, x, l) - value moment_curve = limit(bending_moment, x, l) - value*(l-x) slope_eqs = [] deflection_eqs = [] slope_curve = integrate(bending_moment, x) + C3 for position, value in self._boundary_conditions['slope']: eqs = slope_curve.subs(x, position) - value slope_eqs.append(eqs) deflection_curve = integrate(slope_curve, x) + C4 for position, value in self._boundary_conditions['deflection']: eqs = deflection_curve.subs(x, position) - value deflection_eqs.append(eqs) solution = list((linsolve([shear_curve, moment_curve] + slope_eqs + deflection_eqs, (C3, C4) + reactions).args)[0]) solution = solution[2:] # Determining the equations and solving them. self._ild_reactions = dict(zip(reactions, solution)) def plot_ild_reactions(self, subs=None): """ Plots the Influence Line Diagram of Reaction Forces under the effect of a moving load. This function should be called after calling solve_for_ild_reactions(). Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 10 meters. A point load of magnitude 5KN is also applied from top of the beam, at a distance of 4 meters from the starting point. There are two simple supports below the beam, located at the starting point and at a distance of 7 meters from the starting point. Plot the I.L.D. equations for reactions at both support points under the effect of a moving load of magnitude 1kN. Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_7 = symbols('R_0, R_7') >>> b = Beam(10, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(7, 'roller') >>> b.apply_load(5,4,-1) >>> b.solve_for_ild_reactions(1,R_0,R_7) >>> b.ild_reactions {R_0: x/7 - 22/7, R_7: -x/7 - 20/7} >>> b.plot_ild_reactions() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0) Plot[1]:Plot object containing: [0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0) """ if not self._ild_reactions: raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.") x = self.variable ildplots = [] if subs is None: subs = {} for reaction in self._ild_reactions: for sym in self._ild_reactions[reaction].atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for sym in self._length.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for reaction in self._ild_reactions: ildplots.append(plot(self._ild_reactions[reaction].subs(subs), (x, 0, self._length.subs(subs)), title='I.L.D. for Reactions', xlabel=x, ylabel=reaction, line_color='blue', show=False)) return PlotGrid(len(ildplots), 1, *ildplots) def solve_for_ild_shear(self, distance, value, *reactions): """ Determines the Influence Line Diagram equations for shear at a specified point under the effect of a moving load. Parameters ========== distance : Integer Distance of the point from the start of the beam for which equations are to be determined value : Integer Magnitude of moving load reactions : The reaction forces applied on the beam. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Calculate the I.L.D. equations for Shear at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_shear(4, 1, R_0, R_8) >>> b.ild_shear Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) """ x = self.variable l = self.length shear_force, _ = self._solve_for_ild_equations() shear_curve1 = value - limit(shear_force, x, distance) shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value for reaction in reactions: shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction]) shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction]) shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance)) self._ild_shear = shear_eq def plot_ild_shear(self,subs=None): """ Plots the Influence Line Diagram for Shear under the effect of a moving load. This function should be called after calling solve_for_ild_shear(). Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Plot the I.L.D. for Shear at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_shear(4, 1, R_0, R_8) >>> b.ild_shear Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) >>> b.plot_ild_shear() Plot object containing: [0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0) """ if not self._ild_shear: raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.") x = self.variable l = self._length if subs is None: subs = {} for sym in self._ild_shear.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for sym in self._length.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear', xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True) def solve_for_ild_moment(self, distance, value, *reactions): """ Determines the Influence Line Diagram equations for moment at a specified point under the effect of a moving load. Parameters ========== distance : Integer Distance of the point from the start of the beam for which equations are to be determined value : Integer Magnitude of moving load reactions : The reaction forces applied on the beam. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Calculate the I.L.D. equations for Moment at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_moment(4, 1, R_0, R_8) >>> b.ild_moment Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) """ x = self.variable l = self.length _, moment = self._solve_for_ild_equations() moment_curve1 = value*(distance-x) - limit(moment, x, distance) moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x) for reaction in reactions: moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction]) moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction]) moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance)) self._ild_moment = moment_eq def plot_ild_moment(self,subs=None): """ Plots the Influence Line Diagram for Moment under the effect of a moving load. This function should be called after calling solve_for_ild_moment(). Parameters ========== subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 12 meters. There are two simple supports below the beam, one at the starting point and another at a distance of 8 meters. Plot the I.L.D. for Moment at a distance of 4 meters under the effect of a moving load of magnitude 1kN. .. image:: ildshear.png Using the sign convention of downwards forces being positive. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy import symbols >>> from sympy.physics.continuum_mechanics.beam import Beam >>> E, I = symbols('E, I') >>> R_0, R_8 = symbols('R_0, R_8') >>> b = Beam(12, E, I) >>> b.apply_support(0, 'roller') >>> b.apply_support(8, 'roller') >>> b.solve_for_ild_reactions(1, R_0, R_8) >>> b.solve_for_ild_moment(4, 1, R_0, R_8) >>> b.ild_moment Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) >>> b.plot_ild_moment() Plot object containing: [0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0) """ if not self._ild_moment: raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.") x = self.variable if subs is None: subs = {} for sym in self._ild_moment.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) for sym in self._length.atoms(Symbol): if sym != x and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment', xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True) @doctest_depends_on(modules=('numpy',)) def draw(self, pictorial=True): """ Returns a plot object representing the beam diagram of the beam. .. note:: The user must be careful while entering load values. The draw function assumes a sign convention which is used for plotting loads. Given a right handed coordinate system with XYZ coordinates, the beam's length is assumed to be along the positive X axis. The draw function recognizes positve loads(with n>-2) as loads acting along negative Y direction and positve moments acting along positive Z direction. Parameters ========== pictorial: Boolean (default=True) Setting ``pictorial=True`` would simply create a pictorial (scaled) view of the beam diagram not with the exact dimensions. Although setting ``pictorial=False`` would create a beam diagram with the exact dimensions on the plot Examples ======== .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam >>> from sympy import symbols >>> R1, R2 = symbols('R1, R2') >>> E, I = symbols('E, I') >>> b = Beam(50, 20, 30) >>> b.apply_load(10, 2, -1) >>> b.apply_load(R1, 10, -1) >>> b.apply_load(R2, 30, -1) >>> b.apply_load(90, 5, 0, 23) >>> b.apply_load(10, 30, 1, 50) >>> b.apply_support(50, "pin") >>> b.apply_support(0, "fixed") >>> b.apply_support(20, "roller") >>> p = b.draw() >>> p Plot object containing: [0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0) + SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0) - SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0) [1]: cartesian line: 5 for x over (0.0, 50.0) >>> p.show() """ if not numpy: raise ImportError("To use this function numpy module is required") x = self.variable # checking whether length is an expression in terms of any Symbol. if isinstance(self.length, Expr): l = list(self.length.atoms(Symbol)) # assigning every Symbol a default value of 10 l = {i:10 for i in l} length = self.length.subs(l) else: l = {} length = self.length height = length/10 rectangles = [] rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"}) annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l) support_markers, support_rectangles = self._draw_supports(length, l) rectangles += support_rectangles markers += support_markers sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length), xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations, markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False) return sing_plot def _draw_load(self, pictorial, length, l): loads = list(set(self.applied_loads) - set(self._support_as_loads)) height = length/10 x = self.variable annotations = [] markers = [] load_args = [] scaled_load = 0 load_args1 = [] scaled_load1 = 0 load_eq = 0 # For positive valued higher order loads load_eq1 = 0 # For negative valued higher order loads fill = None plus = 0 # For positive valued higher order loads minus = 0 # For negative valued higher order loads for load in loads: # check if the position of load is in terms of the beam length. if l: pos = load[1].subs(l) else: pos = load[1] # point loads if load[2] == -1: if isinstance(load[0], Symbol) or load[0].is_negative: annotations.append({'text':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')}) else: annotations.append({'text':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')}) # moment loads elif load[2] == -2: if load[0].is_negative: markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15}) else: markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15}) # higher order loads elif load[2] >= 0: # `fill` will be assigned only when higher order loads are present value, start, order, end = load # Positive loads have their seperate equations if(value>0): plus = 1 # if pictorial is True we remake the load equation again with # some constant magnitude values. if pictorial: value = 10**(1-order) if order > 0 else length/2 scaled_load += value*SingularityFunction(x, start, order) if end: f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order for i in range(0, order + 1): scaled_load -= (f2.diff(x, i).subs(x, end - start)* SingularityFunction(x, end, i)/factorial(i)) if pictorial: if isinstance(scaled_load, Add): load_args = scaled_load.args else: # when the load equation consists of only a single term load_args = (scaled_load,) load_eq = [i.subs(l) for i in load_args] else: if isinstance(self.load, Add): load_args = self.load.args else: load_args = (self.load,) load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0] load_eq = Add(*load_eq) # filling higher order loads with colour expr = height + load_eq.rewrite(Piecewise) y1 = lambdify(x, expr, 'numpy') # For loads with negative value else: minus = 1 # if pictorial is True we remake the load equation again with # some constant magnitude values. if pictorial: value = 10**(1-order) if order > 0 else length/2 scaled_load1 += value*SingularityFunction(x, start, order) if end: f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order for i in range(0, order + 1): scaled_load1 -= (f2.diff(x, i).subs(x, end - start)* SingularityFunction(x, end, i)/factorial(i)) if pictorial: if isinstance(scaled_load1, Add): load_args1 = scaled_load1.args else: # when the load equation consists of only a single term load_args1 = (scaled_load1,) load_eq1 = [i.subs(l) for i in load_args1] else: if isinstance(self.load, Add): load_args1 = self.load.args1 else: load_args1 = (self.load,) load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0] load_eq1 = -Add(*load_eq1)-height # filling higher order loads with colour expr = height + load_eq1.rewrite(Piecewise) y1_ = lambdify(x, expr, 'numpy') y = numpy.arange(0, float(length), 0.001) y2 = float(height) if(plus == 1 and minus == 1): fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'} elif(plus == 1): fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'} else: fill = {'x': y, 'y1': y1_(y), 'y2': y2, 'color':'darkkhaki'} return annotations, markers, load_eq, load_eq1, fill def _draw_supports(self, length, l): height = float(length/10) support_markers = [] support_rectangles = [] for support in self._applied_supports: if l: pos = support[0].subs(l) else: pos = support[0] if support[1] == "pin": support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"}) elif support[1] == "roller": support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"}) elif support[1] == "fixed": if pos == 0: support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'}) else: support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'}) return support_markers, support_rectangles class Beam3D(Beam): """ This class handles loads applied in any direction of a 3D space along with unequal values of Second moment along different axes. .. note:: A consistent sign convention must be used while solving a beam bending problem; the results will automatically follow the chosen sign convention. This class assumes that any kind of distributed load/moment is applied through out the span of a beam. Examples ======== There is a beam of l meters long. A constant distributed load of magnitude q is applied along y-axis from start till the end of beam. A constant distributed moment of magnitude m is also applied along z-axis from start till the end of beam. Beam is fixed at both of its end. So, deflection of the beam at the both ends is restricted. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols, simplify, collect, factor >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> x, q, m = symbols('x, q, m') >>> b.apply_load(q, 0, 0, dir="y") >>> b.apply_moment_load(m, 0, -1, dir="z") >>> b.shear_force() [0, -q*x, 0] >>> b.bending_moment() [0, 0, -m*x + q*x**2/2] >>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])] >>> b.solve_slope_deflection() >>> factor(b.slope()) [0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q - 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))] >>> dx, dy, dz = b.deflection() >>> dy = collect(simplify(dy), x) >>> dx == dz == 0 True >>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) ... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q)) ... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2) ... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I))) True References ========== .. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf """ def __init__(self, length, elastic_modulus, shear_modulus, second_moment, area, variable=Symbol('x')): """Initializes the class. Parameters ========== length : Sympifyable A Symbol or value representing the Beam's length. elastic_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of Elasticity. It is a measure of the stiffness of the Beam material. shear_modulus : Sympifyable A SymPy expression representing the Beam's Modulus of rigidity. It is a measure of rigidity of the Beam material. second_moment : Sympifyable or list A list of two elements having SymPy expression representing the Beam's Second moment of area. First value represent Second moment across y-axis and second across z-axis. Single SymPy expression can be passed if both values are same area : Sympifyable A SymPy expression representing the Beam's cross-sectional area in a plane prependicular to length of the Beam. variable : Symbol, optional A Symbol object that will be used as the variable along the beam while representing the load, shear, moment, slope and deflection curve. By default, it is set to ``Symbol('x')``. """ super().__init__(length, elastic_modulus, second_moment, variable) self.shear_modulus = shear_modulus self._area = area self._load_vector = [0, 0, 0] self._moment_load_vector = [0, 0, 0] self._load_Singularity = [0, 0, 0] self._slope = [0, 0, 0] self._deflection = [0, 0, 0] @property def shear_modulus(self): """Young's Modulus of the Beam. """ return self._shear_modulus @shear_modulus.setter def shear_modulus(self, e): self._shear_modulus = sympify(e) @property def second_moment(self): """Second moment of area of the Beam. """ return self._second_moment @second_moment.setter def second_moment(self, i): if isinstance(i, list): i = [sympify(x) for x in i] self._second_moment = i else: self._second_moment = sympify(i) @property def area(self): """Cross-sectional area of the Beam. """ return self._area @area.setter def area(self, a): self._area = sympify(a) @property def load_vector(self): """ Returns a three element list representing the load vector. """ return self._load_vector @property def moment_load_vector(self): """ Returns a three element list representing moment loads on Beam. """ return self._moment_load_vector @property def boundary_conditions(self): """ Returns a dictionary of boundary conditions applied on the beam. The dictionary has two keywords namely slope and deflection. The value of each keyword is a list of tuple, where each tuple contains location and value of a boundary condition in the format (location, value). Further each value is a list corresponding to slope or deflection(s) values along three axes at that location. Examples ======== There is a beam of length 4 meters. The slope at 0 should be 4 along the x-axis and 0 along others. At the other end of beam, deflection along all the three axes should be zero. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.bc_slope = [(0, (4, 0, 0))] >>> b.bc_deflection = [(4, [0, 0, 0])] >>> b.boundary_conditions {'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]} Here the deflection of the beam should be ``0`` along all the three axes at ``4``. Similarly, the slope of the beam should be ``4`` along x-axis and ``0`` along y and z axis at ``0``. """ return self._boundary_conditions def polar_moment(self): """ Returns the polar moment of area of the beam about the X axis with respect to the centroid. Examples ======== >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A = symbols('l, E, G, I, A') >>> b = Beam3D(l, E, G, I, A) >>> b.polar_moment() 2*I >>> I1 = [9, 15] >>> b = Beam3D(l, E, G, I1, A) >>> b.polar_moment() 24 """ if not iterable(self.second_moment): return 2*self.second_moment return sum(self.second_moment) def apply_load(self, value, start, order, dir="y"): """ This method adds up the force load to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied load. dir : String Axis along which load is applied. order : Integer The order of the applied load. - For point loads, order=-1 - For constant distributed load, order=0 - For ramp loads, order=1 - For parabolic ramp loads, order=2 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -1: self._load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -1: self._load_vector[1] += value self._load_Singularity[1] += value*SingularityFunction(x, start, order) else: if not order == -1: self._load_vector[2] += value self._load_Singularity[2] += value*SingularityFunction(x, start, order) def apply_moment_load(self, value, start, order, dir="y"): """ This method adds up the moment loads to a particular beam object. Parameters ========== value : Sympifyable The magnitude of an applied moment. dir : String Axis along which moment is applied. order : Integer The order of the applied load. - For point moments, order=-2 - For constant distributed moment, order=-1 - For ramp moments, order=0 - For parabolic ramp moments, order=1 - ... so on. """ x = self.variable value = sympify(value) start = sympify(start) order = sympify(order) if dir == "x": if not order == -2: self._moment_load_vector[0] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) elif dir == "y": if not order == -2: self._moment_load_vector[1] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) else: if not order == -2: self._moment_load_vector[2] += value self._load_Singularity[0] += value*SingularityFunction(x, start, order) def apply_support(self, loc, type="fixed"): if type in ("pin", "roller"): reaction_load = Symbol('R_'+str(loc)) self._reaction_loads[reaction_load] = reaction_load self.bc_deflection.append((loc, [0, 0, 0])) else: reaction_load = Symbol('R_'+str(loc)) reaction_moment = Symbol('M_'+str(loc)) self._reaction_loads[reaction_load] = [reaction_load, reaction_moment] self.bc_deflection.append((loc, [0, 0, 0])) self.bc_slope.append((loc, [0, 0, 0])) def solve_for_reaction_loads(self, *reaction): """ Solves for the reaction forces. Examples ======== There is a beam of length 30 meters. It it supported by rollers at of its end. A constant distributed load of magnitude 8 N is applied from start till its end along y-axis. Another linear load having slope equal to 9 is applied along z-axis. >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(30, E, G, I, A, x) >>> b.apply_load(8, start=0, order=0, dir="y") >>> b.apply_load(9*x, start=0, order=0, dir="z") >>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="y") >>> b.apply_load(R2, start=30, order=-1, dir="y") >>> b.apply_load(R3, start=0, order=-1, dir="z") >>> b.apply_load(R4, start=30, order=-1, dir="z") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.reaction_loads {R1: -120, R2: -120, R3: -1350, R4: -2700} """ x = self.variable l = self.length q = self._load_Singularity shear_curves = [integrate(load, x) for load in q] moment_curves = [integrate(shear, x) for shear in shear_curves] for i in range(3): react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))] if len(react) == 0: continue shear_curve = limit(shear_curves[i], x, l) moment_curve = limit(moment_curves[i], x, l) sol = list((linsolve([shear_curve, moment_curve], react).args)[0]) sol_dict = dict(zip(react, sol)) reaction_loads = self._reaction_loads # Check if any of the evaluated rection exists in another direction # and if it exists then it should have same value. for key in sol_dict: if key in reaction_loads and sol_dict[key] != reaction_loads[key]: raise ValueError("Ambiguous solution for %s in different directions." % key) self._reaction_loads.update(sol_dict) def shear_force(self): """ Returns a list of three expressions which represents the shear force curve of the Beam object along all three axes. """ x = self.variable q = self._load_vector return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)] def axial_force(self): """ Returns expression of Axial shear force present inside the Beam object. """ return self.shear_force()[0] def shear_stress(self): """ Returns a list of three expressions which represents the shear stress curve of the Beam object along all three axes. """ return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area] def axial_stress(self): """ Returns expression of Axial stress present inside the Beam object. """ return self.axial_force()/self._area def bending_moment(self): """ Returns a list of three expressions which represents the bending moment curve of the Beam object along all three axes. """ x = self.variable m = self._moment_load_vector shear = self.shear_force() return [integrate(-m[0], x), integrate(-m[1] + shear[2], x), integrate(-m[2] - shear[1], x) ] def torsional_moment(self): """ Returns expression of Torsional moment present inside the Beam object. """ return self.bending_moment()[0] def solve_slope_deflection(self): x = self.variable l = self.length E = self.elastic_modulus G = self.shear_modulus I = self.second_moment if isinstance(I, list): I_y, I_z = I[0], I[1] else: I_y = I_z = I A = self._area load = self._load_vector moment = self._moment_load_vector defl = Function('defl') theta = Function('theta') # Finding deflection along x-axis(and corresponding slope value by differentiating it) # Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0 eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0] def_x = dsolve(Eq(eq, 0), defl(x)).args[1] # Solving constants originated from dsolve C1 = Symbol('C1') C2 = Symbol('C2') constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0]) def_x = def_x.subs({C1:constants[0], C2:constants[1]}) slope_x = def_x.diff(x) self._deflection[0] = def_x self._slope[0] = slope_x # Finding deflection along y-axis and slope across z-axis. System of equation involved: # 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0 # 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0 C_i = Symbol('C_i') # Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2] slope_z = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0]) slope_z = slope_z.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z def_y = dsolve(Eq(eq2, 0), defl(x)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0]) self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]}) self._slope[2] = slope_z.subs(C_i, constants[1]) # Finding deflection along z-axis and slope across y-axis. System of equation involved: # 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0 # 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0 # Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1) eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1] slope_y = dsolve(Eq(eq1, 0)).args[1] # Solve for constants originated from using dsolve on eq1 constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0]) slope_y = slope_y.subs({C1:constants[0], C2:constants[1]}) # Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y def_z = dsolve(Eq(eq2,0)).args[1] # Solve for constants originated from using dsolve on eq2 constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0]) self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]}) self._slope[1] = slope_y.subs(C_i, constants[1]) def slope(self): """ Returns a three element list representing slope of deflection curve along all the three axes. """ return self._slope def deflection(self): """ Returns a three element list representing deflection curve along all the three axes. """ return self._deflection def _plot_shear_force(self, dir, subs=None): shear_force = self.shear_force() if dir == 'x': dir_num = 0 color = 'r' elif dir == 'y': dir_num = 1 color = 'g' elif dir == 'z': dir_num = 2 color = 'b' if subs is None: subs = {} for sym in shear_force[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color) def plot_shear_force(self, dir="all", subs=None): """ Returns a plot for Shear force along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which shear force plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_shear_force() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -6*x**2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -15*x for x over (0.0, 20.0) """ dir = dir.lower() # For shear force along x direction if dir == "x": Px = self._plot_shear_force('x', subs) return Px.show() # For shear force along y direction elif dir == "y": Py = self._plot_shear_force('y', subs) return Py.show() # For shear force along z direction elif dir == "z": Pz = self._plot_shear_force('z', subs) return Pz.show() # For shear force along all direction else: Px = self._plot_shear_force('x', subs) Py = self._plot_shear_force('y', subs) Pz = self._plot_shear_force('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _plot_bending_moment(self, dir, subs=None): bending_moment = self.bending_moment() if dir == 'x': dir_num = 0 color = 'g' elif dir == 'y': dir_num = 1 color = 'c' elif dir == 'z': dir_num = 2 color = 'm' if subs is None: subs = {} for sym in bending_moment[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color) def plot_bending_moment(self, dir="all", subs=None): """ Returns a plot for bending moment along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which bending moment plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_bending_moment() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: 2*x**3 for x over (0.0, 20.0) """ dir = dir.lower() # For bending moment along x direction if dir == "x": Px = self._plot_bending_moment('x', subs) return Px.show() # For bending moment along y direction elif dir == "y": Py = self._plot_bending_moment('y', subs) return Py.show() # For bending moment along z direction elif dir == "z": Pz = self._plot_bending_moment('z', subs) return Pz.show() # For bending moment along all direction else: Px = self._plot_bending_moment('x', subs) Py = self._plot_bending_moment('y', subs) Pz = self._plot_bending_moment('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _plot_slope(self, dir, subs=None): slope = self.slope() if dir == 'x': dir_num = 0 color = 'b' elif dir == 'y': dir_num = 1 color = 'm' elif dir == 'z': dir_num = 2 color = 'g' if subs is None: subs = {} for sym in slope[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color) def plot_slope(self, dir="all", subs=None): """ Returns a plot for Slope along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which Slope plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as keys and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.plot_slope() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0) """ dir = dir.lower() # For Slope along x direction if dir == "x": Px = self._plot_slope('x', subs) return Px.show() # For Slope along y direction elif dir == "y": Py = self._plot_slope('y', subs) return Py.show() # For Slope along z direction elif dir == "z": Pz = self._plot_slope('z', subs) return Pz.show() # For Slope along all direction else: Px = self._plot_slope('x', subs) Py = self._plot_slope('y', subs) Pz = self._plot_slope('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _plot_deflection(self, dir, subs=None): deflection = self.deflection() if dir == 'x': dir_num = 0 color = 'm' elif dir == 'y': dir_num = 1 color = 'r' elif dir == 'z': dir_num = 2 color = 'c' if subs is None: subs = {} for sym in deflection[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color) def plot_deflection(self, dir="all", subs=None): """ Returns a plot for Deflection along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which deflection plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as keys and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.plot_deflection() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0) """ dir = dir.lower() # For deflection along x direction if dir == "x": Px = self._plot_deflection('x', subs) return Px.show() # For deflection along y direction elif dir == "y": Py = self._plot_deflection('y', subs) return Py.show() # For deflection along z direction elif dir == "z": Pz = self._plot_deflection('z', subs) return Pz.show() # For deflection along all direction else: Px = self._plot_deflection('x', subs) Py = self._plot_deflection('y', subs) Pz = self._plot_deflection('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def plot_loading_results(self, dir='x', subs=None): """ Returns a subplot of Shear Force, Bending Moment, Slope and Deflection of the Beam object along the direction specified. Parameters ========== dir : string (default : "x") Direction along which plots are required. If no direction is specified, plots along x-axis are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, A, x) >>> subs = {E:40, G:21, I:100, A:25} >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.plot_loading_results('y',subs) PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: -6*x**2 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0) Plot[3]:Plot object containing: [0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0) """ dir = dir.lower() if subs is None: subs = {} ax1 = self._plot_shear_force(dir, subs) ax2 = self._plot_bending_moment(dir, subs) ax3 = self._plot_slope(dir, subs) ax4 = self._plot_deflection(dir, subs) return PlotGrid(4, 1, ax1, ax2, ax3, ax4) def _plot_shear_stress(self, dir, subs=None): shear_stress = self.shear_stress() if dir == 'x': dir_num = 0 color = 'r' elif dir == 'y': dir_num = 1 color = 'g' elif dir == 'z': dir_num = 2 color = 'b' if subs is None: subs = {} for sym in shear_stress[dir_num].atoms(Symbol): if sym != self.variable and sym not in subs: raise ValueError('Value of %s was not passed.' %sym) if self.length in subs: length = subs[self.length] else: length = self.length return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir, xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color) def plot_shear_stress(self, dir="all", subs=None): """ Returns a plot for Shear Stress along all three directions present in the Beam object. Parameters ========== dir : string (default : "all") Direction along which shear stress plot is required. If no direction is specified, all plots are displayed. subs : dictionary Python dictionary containing Symbols as key and their corresponding values. Examples ======== There is a beam of length 20 meters and area of cross section 2 square meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, E, G, I, 2, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.plot_shear_stress() PlotGrid object containing: Plot[0]:Plot object containing: [0]: cartesian line: 0 for x over (0.0, 20.0) Plot[1]:Plot object containing: [0]: cartesian line: -3*x**2 for x over (0.0, 20.0) Plot[2]:Plot object containing: [0]: cartesian line: -15*x/2 for x over (0.0, 20.0) """ dir = dir.lower() # For shear stress along x direction if dir == "x": Px = self._plot_shear_stress('x', subs) return Px.show() # For shear stress along y direction elif dir == "y": Py = self._plot_shear_stress('y', subs) return Py.show() # For shear stress along z direction elif dir == "z": Pz = self._plot_shear_stress('z', subs) return Pz.show() # For shear stress along all direction else: Px = self._plot_shear_stress('x', subs) Py = self._plot_shear_stress('y', subs) Pz = self._plot_shear_stress('z', subs) return PlotGrid(3, 1, Px, Py, Pz) def _max_shear_force(self, dir): """ Helper function for max_shear_force(). """ dir = dir.lower() if dir == 'x': dir_num = 0 elif dir == 'y': dir_num = 1 elif dir == 'z': dir_num = 2 if not self.shear_force()[dir_num]: return (0,0) # To restrict the range within length of the Beam load_curve = Piecewise((float("nan"), self.variable<=0), (self._load_vector[dir_num], self.variable<self.length), (float("nan"), True)) points = solve(load_curve.rewrite(Piecewise), self.variable, domain=S.Reals) points.append(0) points.append(self.length) shear_curve = self.shear_force()[dir_num] shear_values = [shear_curve.subs(self.variable, x) for x in points] shear_values = list(map(abs, shear_values)) max_shear = max(shear_values) return (points[shear_values.index(max_shear)], max_shear) def max_shear_force(self): """ Returns point of max shear force and its corresponding shear value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.max_shear_force() [(0, 0), (20, 2400), (20, 300)] """ max_shear = [] max_shear.append(self._max_shear_force('x')) max_shear.append(self._max_shear_force('y')) max_shear.append(self._max_shear_force('z')) return max_shear def _max_bending_moment(self, dir): """ Helper function for max_bending_moment(). """ dir = dir.lower() if dir == 'x': dir_num = 0 elif dir == 'y': dir_num = 1 elif dir == 'z': dir_num = 2 if not self.bending_moment()[dir_num]: return (0,0) # To restrict the range within length of the Beam shear_curve = Piecewise((float("nan"), self.variable<=0), (self.shear_force()[dir_num], self.variable<self.length), (float("nan"), True)) points = solve(shear_curve.rewrite(Piecewise), self.variable, domain=S.Reals) points.append(0) points.append(self.length) bending_moment_curve = self.bending_moment()[dir_num] bending_moments = [bending_moment_curve.subs(self.variable, x) for x in points] bending_moments = list(map(abs, bending_moments)) max_bending_moment = max(bending_moments) return (points[bending_moments.index(max_bending_moment)], max_bending_moment) def max_bending_moment(self): """ Returns point of max bending moment and its corresponding bending moment value along all directions in a Beam object as a list. solve_for_reaction_loads() must be called before using this function. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.max_bending_moment() [(0, 0), (20, 3000), (20, 16000)] """ max_bmoment = [] max_bmoment.append(self._max_bending_moment('x')) max_bmoment.append(self._max_bending_moment('y')) max_bmoment.append(self._max_bending_moment('z')) return max_bmoment max_bmoment = max_bending_moment def _max_deflection(self, dir): """ Helper function for max_Deflection() """ dir = dir.lower() if dir == 'x': dir_num = 0 elif dir == 'y': dir_num = 1 elif dir == 'z': dir_num = 2 if not self.deflection()[dir_num]: return (0,0) # To restrict the range within length of the Beam slope_curve = Piecewise((float("nan"), self.variable<=0), (self.slope()[dir_num], self.variable<self.length), (float("nan"), True)) points = solve(slope_curve.rewrite(Piecewise), self.variable, domain=S.Reals) points.append(0) points.append(self._length) deflection_curve = self.deflection()[dir_num] deflections = [deflection_curve.subs(self.variable, x) for x in points] deflections = list(map(abs, deflections)) max_def = max(deflections) return (points[deflections.index(max_def)], max_def) def max_deflection(self): """ Returns point of max deflection and its corresponding deflection value along all directions in a Beam object as a list. solve_for_reaction_loads() and solve_slope_deflection() must be called before using this function. Examples ======== There is a beam of length 20 meters. It it supported by rollers at of its end. A linear load having slope equal to 12 is applied along y-axis. A constant distributed load of magnitude 15 N is applied from start till its end along z-axis. .. plot:: :context: close-figs :format: doctest :include-source: True >>> from sympy.physics.continuum_mechanics.beam import Beam3D >>> from sympy import symbols >>> l, E, G, I, A, x = symbols('l, E, G, I, A, x') >>> b = Beam3D(20, 40, 21, 100, 25, x) >>> b.apply_load(15, start=0, order=0, dir="z") >>> b.apply_load(12*x, start=0, order=0, dir="y") >>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])] >>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4') >>> b.apply_load(R1, start=0, order=-1, dir="z") >>> b.apply_load(R2, start=20, order=-1, dir="z") >>> b.apply_load(R3, start=0, order=-1, dir="y") >>> b.apply_load(R4, start=20, order=-1, dir="y") >>> b.solve_for_reaction_loads(R1, R2, R3, R4) >>> b.solve_slope_deflection() >>> b.max_deflection() [(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)] """ max_def = [] max_def.append(self._max_deflection('x')) max_def.append(self._max_deflection('y')) max_def.append(self._max_deflection('z')) return max_def
d2f2033a7f8c5e1cea5823f3546ed6d4ad62786cb0823d17c799118622ee29d5
#!/usr/bin/env python # -*- coding: utf-8 -*- """ The module implements routines to model the polarization of optical fields and can be used to calculate the effects of polarization optical elements on the fields. - Jones vectors. - Stokes vectors. - Jones matrices. - Mueller matrices. Examples ======== We calculate a generic Jones vector: >>> from sympy import symbols, pprint, zeros, simplify >>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector, ... half_wave_retarder, polarizing_beam_splitter, jones_2_stokes) >>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True) >>> x0 = jones_vector(psi, chi) >>> pprint(x0, use_unicode=True) ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤ ⎢ ⎥ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦ And the more general Stokes vector: >>> s0 = stokes_vector(psi, chi, p, I0) >>> pprint(s0, use_unicode=True) ⎡ I₀ ⎤ ⎢ ⎥ ⎢I₀⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥ ⎢ ⎥ ⎢I₀⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥ ⎢ ⎥ ⎣ I₀⋅p⋅sin(2⋅χ) ⎦ We calculate how the Jones vector is modified by a half-wave plate: >>> alpha = symbols("alpha", real=True) >>> HWP = half_wave_retarder(alpha) >>> x1 = simplify(HWP*x0) We calculate the very common operation of passing a beam through a half-wave plate and then through a polarizing beam-splitter. We do this by putting this Jones vector as the first entry of a two-Jones-vector state that is transformed by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the transmitted and reflected Jones vectors: >>> PBS = polarizing_beam_splitter() >>> X1 = zeros(4, 1) >>> X1[:2, :] = x1 >>> X2 = PBS*X1 >>> transmitted_port = X2[:2, :] >>> reflected_port = X2[2:, :] This allows us to calculate how the power in both ports depends on the initial polarization: >>> transmitted_power = jones_2_stokes(transmitted_port)[0] >>> reflected_power = jones_2_stokes(reflected_port)[0] >>> print(transmitted_power) cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2 >>> print(reflected_power) sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2 Please see the description of the individual functions for further details and examples. References ========== .. [1] https://en.wikipedia.org/wiki/Jones_calculus .. [2] https://en.wikipedia.org/wiki/Mueller_calculus .. [3] https://en.wikipedia.org/wiki/Stokes_parameters """ from sympy.core.numbers import (I, pi) from sympy.functions.elementary.complexes import (Abs, im, re) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.matrices.dense import Matrix from sympy.simplify.simplify import simplify from sympy.physics.quantum import TensorProduct def jones_vector(psi, chi): """A Jones vector corresponding to a polarization ellipse with `psi` tilt, and `chi` circularity. Parameters ========== ``psi`` : numeric type or SymPy Symbol The tilt of the polarization relative to the `x` axis. ``chi`` : numeric type or SymPy Symbol The angle adjacent to the mayor axis of the polarization ellipse. Returns ======= Matrix : A Jones vector. Examples ======== The axes on the Poincaré sphere. >>> from sympy import pprint, symbols, pi >>> from sympy.physics.optics.polarization import jones_vector >>> psi, chi = symbols("psi, chi", real=True) A general Jones vector. >>> pprint(jones_vector(psi, chi), use_unicode=True) ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤ ⎢ ⎥ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦ Horizontal polarization. >>> pprint(jones_vector(0, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎣0⎦ Vertical polarization. >>> pprint(jones_vector(pi/2, 0), use_unicode=True) ⎡0⎤ ⎢ ⎥ ⎣1⎦ Diagonal polarization. >>> pprint(jones_vector(pi/4, 0), use_unicode=True) ⎡√2⎤ ⎢──⎥ ⎢2 ⎥ ⎢ ⎥ ⎢√2⎥ ⎢──⎥ ⎣2 ⎦ Anti-diagonal polarization. >>> pprint(jones_vector(-pi/4, 0), use_unicode=True) ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-√2 ⎥ ⎢────⎥ ⎣ 2 ⎦ Right-hand circular polarization. >>> pprint(jones_vector(0, pi/4), use_unicode=True) ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⎥ ⎢────⎥ ⎣ 2 ⎦ Left-hand circular polarization. >>> pprint(jones_vector(0, -pi/4), use_unicode=True) ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢──────⎥ ⎣ 2 ⎦ """ return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi), I*sin(chi)*cos(psi) + sin(psi)*cos(chi)]) def stokes_vector(psi, chi, p=1, I=1): """A Stokes vector corresponding to a polarization ellipse with ``psi`` tilt, and ``chi`` circularity. Parameters ========== ``psi`` : numeric type or SymPy Symbol The tilt of the polarization relative to the ``x`` axis. ``chi`` : numeric type or SymPy Symbol The angle adjacent to the mayor axis of the polarization ellipse. ``p`` : numeric type or SymPy Symbol The degree of polarization. ``I`` : numeric type or SymPy Symbol The intensity of the field. Returns ======= Matrix : A Stokes vector. Examples ======== The axes on the Poincaré sphere. >>> from sympy import pprint, symbols, pi >>> from sympy.physics.optics.polarization import stokes_vector >>> psi, chi, p, I = symbols("psi, chi, p, I", real=True) >>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True) ⎡ I ⎤ ⎢ ⎥ ⎢I⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥ ⎢ ⎥ ⎢I⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥ ⎢ ⎥ ⎣ I⋅p⋅sin(2⋅χ) ⎦ Horizontal polarization >>> pprint(stokes_vector(0, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢1⎥ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣0⎦ Vertical polarization >>> pprint(stokes_vector(pi/2, 0), use_unicode=True) ⎡1 ⎤ ⎢ ⎥ ⎢-1⎥ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎣0 ⎦ Diagonal polarization >>> pprint(stokes_vector(pi/4, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎢1⎥ ⎢ ⎥ ⎣0⎦ Anti-diagonal polarization >>> pprint(stokes_vector(-pi/4, 0), use_unicode=True) ⎡1 ⎤ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎢-1⎥ ⎢ ⎥ ⎣0 ⎦ Right-hand circular polarization >>> pprint(stokes_vector(0, pi/4), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣1⎦ Left-hand circular polarization >>> pprint(stokes_vector(0, -pi/4), use_unicode=True) ⎡1 ⎤ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎣-1⎦ Unpolarized light >>> pprint(stokes_vector(0, 0, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣0⎦ """ S0 = I S1 = I*p*cos(2*psi)*cos(2*chi) S2 = I*p*sin(2*psi)*cos(2*chi) S3 = I*p*sin(2*chi) return Matrix([S0, S1, S2, S3]) def jones_2_stokes(e): """Return the Stokes vector for a Jones vector `e`. Parameters ========== ``e`` : SymPy Matrix A Jones vector. Returns ======= SymPy Matrix A Jones vector. Examples ======== The axes on the Poincaré sphere. >>> from sympy import pprint, pi >>> from sympy.physics.optics.polarization import jones_vector >>> from sympy.physics.optics.polarization import jones_2_stokes >>> H = jones_vector(0, 0) >>> V = jones_vector(pi/2, 0) >>> D = jones_vector(pi/4, 0) >>> A = jones_vector(-pi/4, 0) >>> R = jones_vector(0, pi/4) >>> L = jones_vector(0, -pi/4) >>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]], ... use_unicode=True) ⎡⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤⎤ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥⎥ ⎢⎢0⎥ ⎢0 ⎥ ⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎣⎣0⎦ ⎣0 ⎦ ⎣0⎦ ⎣0 ⎦ ⎣1⎦ ⎣-1⎦⎦ """ ex, ey = e return Matrix([Abs(ex)**2 + Abs(ey)**2, Abs(ex)**2 - Abs(ey)**2, 2*re(ex*ey.conjugate()), -2*im(ex*ey.conjugate())]) def linear_polarizer(theta=0): """A linear polarizer Jones matrix with transmission axis at an angle ``theta``. Parameters ========== ``theta`` : numeric type or SymPy Symbol The angle of the transmission axis relative to the horizontal plane. Returns ======= SymPy Matrix A Jones matrix representing the polarizer. Examples ======== A generic polarizer. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import linear_polarizer >>> theta = symbols("theta", real=True) >>> J = linear_polarizer(theta) >>> pprint(J, use_unicode=True) ⎡ 2 ⎤ ⎢ cos (θ) sin(θ)⋅cos(θ)⎥ ⎢ ⎥ ⎢ 2 ⎥ ⎣sin(θ)⋅cos(θ) sin (θ) ⎦ """ M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)], [sin(theta)*cos(theta), sin(theta)**2]]) return M def phase_retarder(theta=0, delta=0): """A phase retarder Jones matrix with retardance `delta` at angle `theta`. Parameters ========== ``theta`` : numeric type or SymPy Symbol The angle of the fast axis relative to the horizontal plane. ``delta`` : numeric type or SymPy Symbol The phase difference between the fast and slow axes of the transmitted light. Returns ======= SymPy Matrix : A Jones matrix representing the retarder. Examples ======== A generic retarder. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import phase_retarder >>> theta, delta = symbols("theta, delta", real=True) >>> R = phase_retarder(theta, delta) >>> pprint(R, use_unicode=True) ⎡ -ⅈ⋅δ -ⅈ⋅δ ⎤ ⎢ ───── ───── ⎥ ⎢⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎛ ⅈ⋅δ⎞ 2 ⎥ ⎢⎝ℯ ⋅sin (θ) + cos (θ)⎠⋅ℯ ⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ)⎥ ⎢ ⎥ ⎢ -ⅈ⋅δ -ⅈ⋅δ ⎥ ⎢ ───── ─────⎥ ⎢⎛ ⅈ⋅δ⎞ 2 ⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎥ ⎣⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝ℯ ⋅cos (θ) + sin (θ)⎠⋅ℯ ⎦ """ R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2, (1-exp(I*delta))*cos(theta)*sin(theta)], [(1-exp(I*delta))*cos(theta)*sin(theta), sin(theta)**2 + exp(I*delta)*cos(theta)**2]]) return R*exp(-I*delta/2) def half_wave_retarder(theta): """A half-wave retarder Jones matrix at angle `theta`. Parameters ========== ``theta`` : numeric type or SymPy Symbol The angle of the fast axis relative to the horizontal plane. Returns ======= SymPy Matrix A Jones matrix representing the retarder. Examples ======== A generic half-wave plate. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import half_wave_retarder >>> theta= symbols("theta", real=True) >>> HWP = half_wave_retarder(theta) >>> pprint(HWP, use_unicode=True) ⎡ ⎛ 2 2 ⎞ ⎤ ⎢-ⅈ⋅⎝- sin (θ) + cos (θ)⎠ -2⋅ⅈ⋅sin(θ)⋅cos(θ) ⎥ ⎢ ⎥ ⎢ ⎛ 2 2 ⎞⎥ ⎣ -2⋅ⅈ⋅sin(θ)⋅cos(θ) -ⅈ⋅⎝sin (θ) - cos (θ)⎠⎦ """ return phase_retarder(theta, pi) def quarter_wave_retarder(theta): """A quarter-wave retarder Jones matrix at angle `theta`. Parameters ========== ``theta`` : numeric type or SymPy Symbol The angle of the fast axis relative to the horizontal plane. Returns ======= SymPy Matrix A Jones matrix representing the retarder. Examples ======== A generic quarter-wave plate. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import quarter_wave_retarder >>> theta= symbols("theta", real=True) >>> QWP = quarter_wave_retarder(theta) >>> pprint(QWP, use_unicode=True) ⎡ -ⅈ⋅π -ⅈ⋅π ⎤ ⎢ ───── ───── ⎥ ⎢⎛ 2 2 ⎞ 4 4 ⎥ ⎢⎝ⅈ⋅sin (θ) + cos (θ)⎠⋅ℯ (1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ)⎥ ⎢ ⎥ ⎢ -ⅈ⋅π -ⅈ⋅π ⎥ ⎢ ───── ─────⎥ ⎢ 4 ⎛ 2 2 ⎞ 4 ⎥ ⎣(1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝sin (θ) + ⅈ⋅cos (θ)⎠⋅ℯ ⎦ """ return phase_retarder(theta, pi/2) def transmissive_filter(T): """An attenuator Jones matrix with transmittance `T`. Parameters ========== ``T`` : numeric type or SymPy Symbol The transmittance of the attenuator. Returns ======= SymPy Matrix A Jones matrix representing the filter. Examples ======== A generic filter. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import transmissive_filter >>> T = symbols("T", real=True) >>> NDF = transmissive_filter(T) >>> pprint(NDF, use_unicode=True) ⎡√T 0 ⎤ ⎢ ⎥ ⎣0 √T⎦ """ return Matrix([[sqrt(T), 0], [0, sqrt(T)]]) def reflective_filter(R): """A reflective filter Jones matrix with reflectance `R`. Parameters ========== ``R`` : numeric type or SymPy Symbol The reflectance of the filter. Returns ======= SymPy Matrix A Jones matrix representing the filter. Examples ======== A generic filter. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import reflective_filter >>> R = symbols("R", real=True) >>> pprint(reflective_filter(R), use_unicode=True) ⎡√R 0 ⎤ ⎢ ⎥ ⎣0 -√R⎦ """ return Matrix([[sqrt(R), 0], [0, -sqrt(R)]]) def mueller_matrix(J): """The Mueller matrix corresponding to Jones matrix `J`. Parameters ========== ``J`` : SymPy Matrix A Jones matrix. Returns ======= SymPy Matrix The corresponding Mueller matrix. Examples ======== Generic optical components. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import (mueller_matrix, ... linear_polarizer, half_wave_retarder, quarter_wave_retarder) >>> theta = symbols("theta", real=True) A linear_polarizer >>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True) ⎡ cos(2⋅θ) sin(2⋅θ) ⎤ ⎢ 1/2 ──────── ──────── 0⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢cos(2⋅θ) cos(4⋅θ) 1 sin(4⋅θ) ⎥ ⎢──────── ──────── + ─ ──────── 0⎥ ⎢ 2 4 4 4 ⎥ ⎢ ⎥ ⎢sin(2⋅θ) sin(4⋅θ) 1 cos(4⋅θ) ⎥ ⎢──────── ──────── ─ - ──────── 0⎥ ⎢ 2 4 4 4 ⎥ ⎢ ⎥ ⎣ 0 0 0 0⎦ A half-wave plate >>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True) ⎡1 0 0 0 ⎤ ⎢ ⎥ ⎢ 4 2 ⎥ ⎢0 8⋅sin (θ) - 8⋅sin (θ) + 1 sin(4⋅θ) 0 ⎥ ⎢ ⎥ ⎢ 4 2 ⎥ ⎢0 sin(4⋅θ) - 8⋅sin (θ) + 8⋅sin (θ) - 1 0 ⎥ ⎢ ⎥ ⎣0 0 0 -1⎦ A quarter-wave plate >>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True) ⎡1 0 0 0 ⎤ ⎢ ⎥ ⎢ cos(4⋅θ) 1 sin(4⋅θ) ⎥ ⎢0 ──────── + ─ ──────── -sin(2⋅θ)⎥ ⎢ 2 2 2 ⎥ ⎢ ⎥ ⎢ sin(4⋅θ) 1 cos(4⋅θ) ⎥ ⎢0 ──────── ─ - ──────── cos(2⋅θ) ⎥ ⎢ 2 2 2 ⎥ ⎢ ⎥ ⎣0 sin(2⋅θ) -cos(2⋅θ) 0 ⎦ """ A = Matrix([[1, 0, 0, 1], [1, 0, 0, -1], [0, 1, 1, 0], [0, -I, I, 0]]) return simplify(A*TensorProduct(J, J.conjugate())*A.inv()) def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0): r"""A polarizing beam splitter Jones matrix at angle `theta`. Parameters ========== ``J`` : SymPy Matrix A Jones matrix. ``Tp`` : numeric type or SymPy Symbol The transmissivity of the P-polarized component. ``Rs`` : numeric type or SymPy Symbol The reflectivity of the S-polarized component. ``Ts`` : numeric type or SymPy Symbol The transmissivity of the S-polarized component. ``Rp`` : numeric type or SymPy Symbol The reflectivity of the P-polarized component. ``phia`` : numeric type or SymPy Symbol The phase difference between transmitted and reflected component for output mode a. ``phib`` : numeric type or SymPy Symbol The phase difference between transmitted and reflected component for output mode b. Returns ======= SymPy Matrix A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector whose first two entries are the Jones vector on one of the PBS ports, and the last two entries the Jones vector on the other port. Examples ======== Generic polarizing beam-splitter. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import polarizing_beam_splitter >>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True) >>> phia, phib = symbols("phi_a, phi_b", real=True) >>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib) >>> pprint(PBS, use_unicode=False) [ ____ ____ ] [ \/ Tp 0 I*\/ Rp 0 ] [ ] [ ____ ____ I*phi_a] [ 0 \/ Ts 0 -I*\/ Rs *e ] [ ] [ ____ ____ ] [I*\/ Rp 0 \/ Tp 0 ] [ ] [ ____ I*phi_b ____ ] [ 0 -I*\/ Rs *e 0 \/ Ts ] """ PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0], [0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)], [I*sqrt(Rp), 0, sqrt(Tp), 0], [0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]]) return PBS
9debed11d60787a445da30a03cbaff7fa3d488fea54ff01735632debf393fb9a
""" **Contains** * Medium """ from sympy.physics.units import second, meter, kilogram, ampere __all__ = ['Medium'] from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.units import speed_of_light, u0, e0 c = speed_of_light.convert_to(meter/second) _e0mksa = e0.convert_to(ampere**2*second**4/(kilogram*meter**3)) _u0mksa = u0.convert_to(meter*kilogram/(ampere**2*second**2)) class Medium(Symbol): """ This class represents an optical medium. The prime reason to implement this is to facilitate refraction, Fermat's principle, etc. Explanation =========== An optical medium is a material through which electromagnetic waves propagate. The permittivity and permeability of the medium define how electromagnetic waves propagate in it. Parameters ========== name: string The display name of the Medium. permittivity: Sympifyable Electric permittivity of the space. permeability: Sympifyable Magnetic permeability of the space. n: Sympifyable Index of refraction of the medium. Examples ======== >>> from sympy.abc import epsilon, mu >>> from sympy.physics.optics import Medium >>> m1 = Medium('m1') >>> m2 = Medium('m2', epsilon, mu) >>> m1.intrinsic_impedance 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3) >>> m2.refractive_index 299792458*meter*sqrt(epsilon*mu)/second References ========== .. [1] https://en.wikipedia.org/wiki/Optical_medium """ def __new__(cls, name, permittivity=None, permeability=None, n=None): obj = super().__new__(cls, name) obj._permittivity = sympify(permittivity) obj._permeability = sympify(permeability) obj._n = sympify(n) if n is not None: if permittivity is not None and permeability is None: obj._permeability = n**2/(c**2*obj._permittivity) if permeability is not None and permittivity is None: obj._permittivity = n**2/(c**2*obj._permeability) if permittivity is not None and permittivity is not None: if abs(n - c*sqrt(obj._permittivity*obj._permeability)) > 1e-6: raise ValueError("Values are not consistent.") elif permittivity is not None and permeability is not None: obj._n = c*sqrt(permittivity*permeability) elif permittivity is None and permeability is None: obj._permittivity = _e0mksa obj._permeability = _u0mksa return obj @property def intrinsic_impedance(self): """ Returns intrinsic impedance of the medium. Explanation =========== The intrinsic impedance of a medium is the ratio of the transverse components of the electric and magnetic fields of the electromagnetic wave travelling in the medium. In a region with no electrical conductivity it simplifies to the square root of ratio of magnetic permeability to electric permittivity. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.intrinsic_impedance 149896229*pi*kilogram*meter**2/(1250000*ampere**2*second**3) """ return sqrt(self._permeability/self._permittivity) @property def speed(self): """ Returns speed of the electromagnetic wave travelling in the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.speed 299792458*meter/second >>> m2 = Medium('m2', n=1) >>> m.speed == m2.speed True """ if self._permittivity is not None and self._permeability is not None: return 1/sqrt(self._permittivity*self._permeability) else: return c/self._n @property def refractive_index(self): """ Returns refractive index of the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.refractive_index 1 """ return (c/self.speed) @property def permittivity(self): """ Returns electric permittivity of the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.permittivity 625000*ampere**2*second**4/(22468879468420441*pi*kilogram*meter**3) """ return self._permittivity @property def permeability(self): """ Returns magnetic permeability of the medium. Examples ======== >>> from sympy.physics.optics import Medium >>> m = Medium('m') >>> m.permeability pi*kilogram*meter/(2500000*ampere**2*second**2) """ return self._permeability def __str__(self): from sympy.printing import sstr return type(self).__name__ + ': ' + sstr([self._permittivity, self._permeability, self._n]) def __lt__(self, other): """ Compares based on refractive index of the medium. """ return self.refractive_index < other.refractive_index def __gt__(self, other): return not self < other def __eq__(self, other): return self.refractive_index == other.refractive_index def __ne__(self, other): return not self == other
aa84a5cee8cc4c70f1219bc140f27f705d8fc41f9ac325d5a829ddae251df8f4
""" **Contains** * refraction_angle * fresnel_coefficients * deviation * brewster_angle * critical_angle * lens_makers_formula * mirror_formula * lens_formula * hyperfocal_distance * transverse_magnification """ __all__ = ['refraction_angle', 'deviation', 'fresnel_coefficients', 'brewster_angle', 'critical_angle', 'lens_makers_formula', 'mirror_formula', 'lens_formula', 'hyperfocal_distance', 'transverse_magnification' ] from sympy.core.numbers import (Float, I, oo, pi, zoo) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (acos, asin, atan2, cos, sin, tan) from sympy.matrices.dense import Matrix from sympy.polys.polytools import cancel from sympy.series.limits import Limit from sympy.geometry.line import Ray3D from sympy.geometry.util import intersection from sympy.geometry.plane import Plane from sympy.utilities.iterables import is_sequence from .medium import Medium def refractive_index_of_medium(medium): """ Helper function that returns refractive index, given a medium """ if isinstance(medium, Medium): n = medium.refractive_index else: n = sympify(medium) return n def refraction_angle(incident, medium1, medium2, normal=None, plane=None): """ This function calculates transmitted vector after refraction at planar surface. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object. If ``incident`` is a number then treated as angle of incidence (in radians) in which case refraction angle is returned. If ``incident`` is an object of `Ray3D`, `normal` also has to be an instance of `Ray3D` in order to get the output as a `Ray3D`. Please note that if plane of separation is not provided and normal is an instance of `Ray3D`, ``normal`` will be assumed to be intersecting incident ray at the plane of separation. This will not be the case when `normal` is a `Matrix` or any other sequence. If ``incident`` is an instance of `Ray3D` and `plane` has not been provided and ``normal`` is not `Ray3D`, output will be a `Matrix`. Parameters ========== incident : Matrix, Ray3D, sequence or a number Incident vector or angle of incidence medium1 : sympy.physics.optics.medium.Medium or sympifiable Medium 1 or its refractive index medium2 : sympy.physics.optics.medium.Medium or sympifiable Medium 2 or its refractive index normal : Matrix, Ray3D, or sequence Normal vector plane : Plane Plane of separation of the two media. Returns ======= Returns an angle of refraction or a refracted ray depending on inputs. Examples ======== >>> from sympy.physics.optics import refraction_angle >>> from sympy.geometry import Point3D, Ray3D, Plane >>> from sympy.matrices import Matrix >>> from sympy import symbols, pi >>> n = Matrix([0, 0, 1]) >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1]) >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0)) >>> refraction_angle(r1, 1, 1, n) Matrix([ [ 1], [ 1], [-1]]) >>> refraction_angle(r1, 1, 1, plane=P) Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1)) With different index of refraction of the two media >>> n1, n2 = symbols('n1, n2') >>> refraction_angle(r1, n1, n2, n) Matrix([ [ n1/n2], [ n1/n2], [-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]]) >>> refraction_angle(r1, n1, n2, plane=P) Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1))) >>> round(refraction_angle(pi/6, 1.2, 1.5), 5) 0.41152 """ n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) # check if an incidence angle was supplied instead of a ray try: angle_of_incidence = float(incident) except TypeError: angle_of_incidence = None try: critical_angle_ = critical_angle(medium1, medium2) except (ValueError, TypeError): critical_angle_ = None if angle_of_incidence is not None: if normal is not None or plane is not None: raise ValueError('Normal/plane not allowed if incident is an angle') if not 0.0 <= angle_of_incidence < pi*0.5: raise ValueError('Angle of incidence not in range [0:pi/2)') if critical_angle_ and angle_of_incidence > critical_angle_: raise ValueError('Ray undergoes total internal reflection') return asin(n1*sin(angle_of_incidence)/n2) # Treat the incident as ray below # A flag to check whether to return Ray3D or not return_ray = False if plane is not None and normal is not None: raise ValueError("Either plane or normal is acceptable.") if not isinstance(incident, Matrix): if is_sequence(incident): _incident = Matrix(incident) elif isinstance(incident, Ray3D): _incident = Matrix(incident.direction_ratio) else: raise TypeError( "incident should be a Matrix, Ray3D, or sequence") else: _incident = incident # If plane is provided, get direction ratios of the normal # to the plane from the plane else go with `normal` param. if plane is not None: if not isinstance(plane, Plane): raise TypeError("plane should be an instance of geometry.plane.Plane") # If we have the plane, we can get the intersection # point of incident ray and the plane and thus return # an instance of Ray3D. if isinstance(incident, Ray3D): return_ray = True intersection_pt = plane.intersection(incident)[0] _normal = Matrix(plane.normal_vector) else: if not isinstance(normal, Matrix): if is_sequence(normal): _normal = Matrix(normal) elif isinstance(normal, Ray3D): _normal = Matrix(normal.direction_ratio) if isinstance(incident, Ray3D): intersection_pt = intersection(incident, normal) if len(intersection_pt) == 0: raise ValueError( "Normal isn't concurrent with the incident ray.") else: return_ray = True intersection_pt = intersection_pt[0] else: raise TypeError( "Normal should be a Matrix, Ray3D, or sequence") else: _normal = normal eta = n1/n2 # Relative index of refraction # Calculating magnitude of the vectors mag_incident = sqrt(sum([i**2 for i in _incident])) mag_normal = sqrt(sum([i**2 for i in _normal])) # Converting vectors to unit vectors by dividing # them with their magnitudes _incident /= mag_incident _normal /= mag_normal c1 = -_incident.dot(_normal) # cos(angle_of_incidence) cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2 if cs2.is_negative: # This is the case of total internal reflection(TIR). return S.Zero drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal # Multiplying unit vector by its magnitude drs = drs*mag_incident if not return_ray: return drs else: return Ray3D(intersection_pt, direction_ratio=drs) def fresnel_coefficients(angle_of_incidence, medium1, medium2): """ This function uses Fresnel equations to calculate reflection and transmission coefficients. Those are obtained for both polarisations when the electric field vector is in the plane of incidence (labelled 'p') and when the electric field vector is perpendicular to the plane of incidence (labelled 's'). There are four real coefficients unless the incident ray reflects in total internal in which case there are two complex ones. Angle of incidence is the angle between the incident ray and the surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object. Parameters ========== angle_of_incidence : sympifiable medium1 : Medium or sympifiable Medium 1 or its refractive index medium2 : Medium or sympifiable Medium 2 or its refractive index Returns ======= Returns a list with four real Fresnel coefficients: [reflection p (TM), reflection s (TE), transmission p (TM), transmission s (TE)] If the ray is undergoes total internal reflection then returns a list of two complex Fresnel coefficients: [reflection p (TM), reflection s (TE)] Examples ======== >>> from sympy.physics.optics import fresnel_coefficients >>> fresnel_coefficients(0.3, 1, 2) [0.317843553417859, -0.348645229818821, 0.658921776708929, 0.651354770181179] >>> fresnel_coefficients(0.6, 2, 1) [-0.235625382192159 - 0.971843958291041*I, 0.816477005968898 - 0.577377951366403*I] References ========== .. [1] https://en.wikipedia.org/wiki/Fresnel_equations """ if not 0 <= 2*angle_of_incidence < pi: raise ValueError('Angle of incidence not in range [0:pi/2)') n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2) try: angle_of_total_internal_reflection_onset = critical_angle(n1, n2) except ValueError: angle_of_total_internal_reflection_onset = None if angle_of_total_internal_reflection_onset is None or\ angle_of_total_internal_reflection_onset > angle_of_incidence: R_s = -sin(angle_of_incidence - angle_of_refraction)\ /sin(angle_of_incidence + angle_of_refraction) R_p = tan(angle_of_incidence - angle_of_refraction)\ /tan(angle_of_incidence + angle_of_refraction) T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\ /sin(angle_of_incidence + angle_of_refraction) T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\ /(sin(angle_of_incidence + angle_of_refraction)\ *cos(angle_of_incidence - angle_of_refraction)) return [R_p, R_s, T_p, T_s] else: n = n2/n1 R_s = cancel((cos(angle_of_incidence)-\ I*sqrt(sin(angle_of_incidence)**2 - n**2))\ /(cos(angle_of_incidence)+\ I*sqrt(sin(angle_of_incidence)**2 - n**2))) R_p = cancel((n**2*cos(angle_of_incidence)-\ I*sqrt(sin(angle_of_incidence)**2 - n**2))\ /(n**2*cos(angle_of_incidence)+\ I*sqrt(sin(angle_of_incidence)**2 - n**2))) return [R_p, R_s] def deviation(incident, medium1, medium2, normal=None, plane=None): """ This function calculates the angle of deviation of a ray due to refraction at planar surface. Parameters ========== incident : Matrix, Ray3D, sequence or float Incident vector or angle of incidence medium1 : sympy.physics.optics.medium.Medium or sympifiable Medium 1 or its refractive index medium2 : sympy.physics.optics.medium.Medium or sympifiable Medium 2 or its refractive index normal : Matrix, Ray3D, or sequence Normal vector plane : Plane Plane of separation of the two media. Returns angular deviation between incident and refracted rays Examples ======== >>> from sympy.physics.optics import deviation >>> from sympy.geometry import Point3D, Ray3D, Plane >>> from sympy.matrices import Matrix >>> from sympy import symbols >>> n1, n2 = symbols('n1, n2') >>> n = Matrix([0, 0, 1]) >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1]) >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0)) >>> deviation(r1, 1, 1, n) 0 >>> deviation(r1, n1, n2, plane=P) -acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3) >>> round(deviation(0.1, 1.2, 1.5), 5) -0.02005 """ refracted = refraction_angle(incident, medium1, medium2, normal=normal, plane=plane) try: angle_of_incidence = Float(incident) except TypeError: angle_of_incidence = None if angle_of_incidence is not None: return float(refracted) - angle_of_incidence if refracted != 0: if isinstance(refracted, Ray3D): refracted = Matrix(refracted.direction_ratio) if not isinstance(incident, Matrix): if is_sequence(incident): _incident = Matrix(incident) elif isinstance(incident, Ray3D): _incident = Matrix(incident.direction_ratio) else: raise TypeError( "incident should be a Matrix, Ray3D, or sequence") else: _incident = incident if plane is None: if not isinstance(normal, Matrix): if is_sequence(normal): _normal = Matrix(normal) elif isinstance(normal, Ray3D): _normal = Matrix(normal.direction_ratio) else: raise TypeError( "normal should be a Matrix, Ray3D, or sequence") else: _normal = normal else: _normal = Matrix(plane.normal_vector) mag_incident = sqrt(sum([i**2 for i in _incident])) mag_normal = sqrt(sum([i**2 for i in _normal])) mag_refracted = sqrt(sum([i**2 for i in refracted])) _incident /= mag_incident _normal /= mag_normal refracted /= mag_refracted i = acos(_incident.dot(_normal)) r = acos(refracted.dot(_normal)) return i - r def brewster_angle(medium1, medium2): """ This function calculates the Brewster's angle of incidence to Medium 2 from Medium 1 in radians. Parameters ========== medium 1 : Medium or sympifiable Refractive index of Medium 1 medium 2 : Medium or sympifiable Refractive index of Medium 1 Examples ======== >>> from sympy.physics.optics import brewster_angle >>> brewster_angle(1, 1.33) 0.926093295503462 """ n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) return atan2(n2, n1) def critical_angle(medium1, medium2): """ This function calculates the critical angle of incidence (marking the onset of total internal) to Medium 2 from Medium 1 in radians. Parameters ========== medium 1 : Medium or sympifiable Refractive index of Medium 1. medium 2 : Medium or sympifiable Refractive index of Medium 1. Examples ======== >>> from sympy.physics.optics import critical_angle >>> critical_angle(1.33, 1) 0.850908514477849 """ n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) if n2 > n1: raise ValueError('Total internal reflection impossible for n1 < n2') else: return asin(n2/n1) def lens_makers_formula(n_lens, n_surr, r1, r2, d=0): """ This function calculates focal length of a lens. It follows cartesian sign convention. Parameters ========== n_lens : Medium or sympifiable Index of refraction of lens. n_surr : Medium or sympifiable Index of reflection of surrounding. r1 : sympifiable Radius of curvature of first surface. r2 : sympifiable Radius of curvature of second surface. d : sympifiable, optional Thickness of lens, default value is 0. Examples ======== >>> from sympy.physics.optics import lens_makers_formula >>> from sympy import S >>> lens_makers_formula(1.33, 1, 10, -10) 15.1515151515151 >>> lens_makers_formula(1.2, 1, 10, S.Infinity) 50.0000000000000 >>> lens_makers_formula(1.33, 1, 10, -10, d=1) 15.3418463277618 """ if isinstance(n_lens, Medium): n_lens = n_lens.refractive_index else: n_lens = sympify(n_lens) if isinstance(n_surr, Medium): n_surr = n_surr.refractive_index else: n_surr = sympify(n_surr) d = sympify(d) focal_length = 1/((n_lens - n_surr) / n_surr*(1/r1 - 1/r2 + (((n_lens - n_surr) * d) / (n_lens * r1 * r2)))) if focal_length == zoo: return S.Infinity return focal_length def mirror_formula(focal_length=None, u=None, v=None): """ This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays. Parameters ========== focal_length : sympifiable Focal length of the mirror. u : sympifiable Distance of object from the pole on the principal axis. v : sympifiable Distance of the image from the pole on the principal axis. Examples ======== >>> from sympy.physics.optics import mirror_formula >>> from sympy.abc import f, u, v >>> mirror_formula(focal_length=f, u=u) f*u/(-f + u) >>> mirror_formula(focal_length=f, v=v) f*v/(-f + v) >>> mirror_formula(u=u, v=v) u*v/(u + v) """ if focal_length and u and v: raise ValueError("Please provide only two parameters") focal_length = sympify(focal_length) u = sympify(u) v = sympify(v) if u is oo: _u = Symbol('u') if v is oo: _v = Symbol('v') if focal_length is oo: _f = Symbol('f') if focal_length is None: if u is oo and v is oo: return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit() if u is oo: return Limit(v*_u/(v + _u), _u, oo).doit() if v is oo: return Limit(_v*u/(_v + u), _v, oo).doit() return v*u/(v + u) if u is None: if v is oo and focal_length is oo: return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit() if v is oo: return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit() if focal_length is oo: return Limit(v*_f/(v - _f), _f, oo).doit() return v*focal_length/(v - focal_length) if v is None: if u is oo and focal_length is oo: return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit() if u is oo: return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit() if focal_length is oo: return Limit(u*_f/(u - _f), _f, oo).doit() return u*focal_length/(u - focal_length) def lens_formula(focal_length=None, u=None, v=None): """ This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays. Parameters ========== focal_length : sympifiable Focal length of the mirror. u : sympifiable Distance of object from the optical center on the principal axis. v : sympifiable Distance of the image from the optical center on the principal axis. Examples ======== >>> from sympy.physics.optics import lens_formula >>> from sympy.abc import f, u, v >>> lens_formula(focal_length=f, u=u) f*u/(f + u) >>> lens_formula(focal_length=f, v=v) f*v/(f - v) >>> lens_formula(u=u, v=v) u*v/(u - v) """ if focal_length and u and v: raise ValueError("Please provide only two parameters") focal_length = sympify(focal_length) u = sympify(u) v = sympify(v) if u is oo: _u = Symbol('u') if v is oo: _v = Symbol('v') if focal_length is oo: _f = Symbol('f') if focal_length is None: if u is oo and v is oo: return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit() if u is oo: return Limit(v*_u/(_u - v), _u, oo).doit() if v is oo: return Limit(_v*u/(u - _v), _v, oo).doit() return v*u/(u - v) if u is None: if v is oo and focal_length is oo: return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit() if v is oo: return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit() if focal_length is oo: return Limit(v*_f/(_f - v), _f, oo).doit() return v*focal_length/(focal_length - v) if v is None: if u is oo and focal_length is oo: return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit() if u is oo: return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit() if focal_length is oo: return Limit(u*_f/(u + _f), _f, oo).doit() return u*focal_length/(u + focal_length) def hyperfocal_distance(f, N, c): """ Parameters ========== f: sympifiable Focal length of a given lens. N: sympifiable F-number of a given lens. c: sympifiable Circle of Confusion (CoC) of a given image format. Example ======= >>> from sympy.physics.optics import hyperfocal_distance >>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2) 9.47 """ f = sympify(f) N = sympify(N) c = sympify(c) return (1/(N * c))*(f**2) def transverse_magnification(si, so): """ Calculates the transverse magnification, which is the ratio of the image size to the object size. Parameters ========== so: sympifiable Lens-object distance. si: sympifiable Lens-image distance. Example ======= >>> from sympy.physics.optics import transverse_magnification >>> transverse_magnification(30, 15) -2 """ si = sympify(si) so = sympify(so) return (-(si/so))
f7ddbec5de0100c99def2d3b31f3c5dfcc2b7c11233cb762b0fad5d2251ff849
""" This module has all the classes and functions related to waves in optics. **Contains** * TWave """ __all__ = ['TWave'] from sympy.core.expr import Expr from sympy.core.function import Derivative, Function from sympy.core.numbers import (Number, pi, I) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (atan2, cos, sin) from sympy.physics.units import speed_of_light, meter, second c = speed_of_light.convert_to(meter/second) class TWave(Expr): r""" This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided. Explanation =========== It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`, where :math:`A` is the amplitude, :math:`\omega` is the angular frequency, :math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable to represent the position on the dimension on which the wave propagates, and :math:`\phi` is the phase angle of the wave. Arguments ========= amplitude : Sympifyable Amplitude of the wave. frequency : Sympifyable Frequency of the wave. phase : Sympifyable Phase angle of the wave. time_period : Sympifyable Time period of the wave. n : Sympifyable Refractive index of the medium. Raises ======= ValueError : When neither frequency nor time period is provided or they are not consistent. TypeError : When anything other than TWave objects is added. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f') >>> w1 = TWave(A1, f, phi1) >>> w2 = TWave(A2, f, phi2) >>> w3 = w1 + w2 # Superposition of two waves >>> w3 TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f, atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2))) >>> w3.amplitude sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2) >>> w3.phase atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)) >>> w3.speed 299792458*meter/(second*n) >>> w3.angular_velocity 2*pi*f """ def __init__( self, amplitude, frequency=None, phase=S.Zero, time_period=None, n=Symbol('n')): frequency = sympify(frequency) amplitude = sympify(amplitude) phase = sympify(phase) time_period = sympify(time_period) n = sympify(n) self._frequency = frequency self._amplitude = amplitude self._phase = phase self._time_period = time_period self._n = n if time_period is not None: self._frequency = 1/self._time_period if frequency is not None: self._time_period = 1/self._frequency if time_period is not None: if frequency != 1/time_period: raise ValueError("frequency and time_period should be consistent.") if frequency is None and time_period is None: raise ValueError("Either frequency or time period is needed.") @property def frequency(self): """ Returns the frequency of the wave, in cycles per second. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.frequency f """ return self._frequency @property def time_period(self): """ Returns the temporal period of the wave, in seconds per cycle. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.time_period 1/f """ return self._time_period @property def wavelength(self): """ Returns the wavelength (spatial period) of the wave, in meters per cycle. It depends on the medium of the wave. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.wavelength 299792458*meter/(second*f*n) """ return c/(self._frequency*self._n) @property def amplitude(self): """ Returns the amplitude of the wave. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.amplitude A """ return self._amplitude @property def phase(self): """ Returns the phase angle of the wave, in radians. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.phase phi """ return self._phase @property def speed(self): """ Returns the propagation speed of the wave, in meters per second. It is dependent on the propagation medium. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.speed 299792458*meter/(second*n) """ return self.wavelength*self._frequency @property def angular_velocity(self): """ Returns the angular velocity of the wave, in radians per second. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.angular_velocity 2*pi*f """ return 2*pi*self._frequency @property def wavenumber(self): """ Returns the wavenumber of the wave, in radians per meter. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.wavenumber pi*second*f*n/(149896229*meter) """ return 2*pi/self.wavelength def __str__(self): """String representation of a TWave.""" from sympy.printing import sstr return type(self).__name__ + sstr(self.args) __repr__ = __str__ def __add__(self, other): """ Addition of two waves will result in their superposition. The type of interference will depend on their phase angles. """ if isinstance(other, TWave): if self._frequency == other._frequency and self.wavelength == other.wavelength: return TWave(sqrt(self._amplitude**2 + other._amplitude**2 + 2 * self._amplitude*other._amplitude*cos( self._phase - other.phase)), self._frequency, atan2(self._amplitude*sin(self._phase) + other._amplitude*sin(other._phase), self._amplitude*cos(self._phase) + other._amplitude*cos(other._phase)) ) else: raise NotImplementedError("Interference of waves with different frequencies" " has not been implemented.") else: raise TypeError(type(other).__name__ + " and TWave objects cannot be added.") def __mul__(self, other): """ Multiplying a wave by a scalar rescales the amplitude of the wave. """ other = sympify(other) if isinstance(other, Number): return TWave(self._amplitude*other, *self.args[1:]) else: raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.") def __sub__(self, other): return self.__add__(-1*other) def __neg__(self): return self.__mul__(-1) def __radd__(self, other): return self.__add__(other) def __rmul__(self, other): return self.__mul__(other) def __rsub__(self, other): return (-self).__radd__(other) def _eval_rewrite_as_sin(self, *args, **kwargs): return self._amplitude*sin(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self._phase + pi/2, evaluate=False) def _eval_rewrite_as_cos(self, *args, **kwargs): return self._amplitude*cos(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self._phase) def _eval_rewrite_as_pde(self, *args, **kwargs): mu, epsilon, x, t = symbols('mu, epsilon, x, t') E = Function('E') return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2) def _eval_rewrite_as_exp(self, *args, **kwargs): return self._amplitude*exp(I*(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self._phase))
a21776c118e5bed4d4c2539d5cee700142757a49a91600a557c8da96a5440d45
""" Gaussian optics. The module implements: - Ray transfer matrices for geometrical and gaussian optics. See RayTransferMatrix, GeometricRay and BeamParameter - Conjugation relations for geometrical and gaussian optics. See geometric_conj*, gauss_conj and conjugate_gauss_beams The conventions for the distances are as follows: focal distance positive for convergent lenses object distance positive for real objects image distance positive for real images """ __all__ = [ 'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction', 'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter', 'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab', 'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj', 'conjugate_gauss_beams', ] from sympy.core.expr import Expr from sympy.core.numbers import (I, pi) from sympy.core.sympify import sympify from sympy.functions.elementary.complexes import (im, re) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import atan2 from sympy.matrices.dense import Matrix, MutableDenseMatrix from sympy.polys.rationaltools import together from sympy.utilities.misc import filldedent ### # A, B, C, D matrices ### class RayTransferMatrix(MutableDenseMatrix): """ Base class for a Ray Transfer Matrix. It should be used if there isn't already a more specific subclass mentioned in See Also. Parameters ========== parameters : A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D])) Examples ======== >>> from sympy.physics.optics import RayTransferMatrix, ThinLens >>> from sympy import Symbol, Matrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat Matrix([ [1, 2], [3, 4]]) >>> RayTransferMatrix(Matrix([[1, 2], [3, 4]])) Matrix([ [1, 2], [3, 4]]) >>> mat.A 1 >>> f = Symbol('f') >>> lens = ThinLens(f) >>> lens Matrix([ [ 1, 0], [-1/f, 1]]) >>> lens.C -1/f See Also ======== GeometricRay, BeamParameter, FreeSpace, FlatRefraction, CurvedRefraction, FlatMirror, CurvedMirror, ThinLens References ========== .. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis """ def __new__(cls, *args): if len(args) == 4: temp = ((args[0], args[1]), (args[2], args[3])) elif len(args) == 1 \ and isinstance(args[0], Matrix) \ and args[0].shape == (2, 2): temp = args[0] else: raise ValueError(filldedent(''' Expecting 2x2 Matrix or the 4 elements of the Matrix but got %s''' % str(args))) return Matrix.__new__(cls, temp) def __mul__(self, other): if isinstance(other, RayTransferMatrix): return RayTransferMatrix(Matrix.__mul__(self, other)) elif isinstance(other, GeometricRay): return GeometricRay(Matrix.__mul__(self, other)) elif isinstance(other, BeamParameter): temp = self*Matrix(((other.q,), (1,))) q = (temp[0]/temp[1]).expand(complex=True) return BeamParameter(other.wavelen, together(re(q)), z_r=together(im(q))) else: return Matrix.__mul__(self, other) @property def A(self): """ The A parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.A 1 """ return self[0, 0] @property def B(self): """ The B parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.B 2 """ return self[0, 1] @property def C(self): """ The C parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.C 3 """ return self[1, 0] @property def D(self): """ The D parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.D 4 """ return self[1, 1] class FreeSpace(RayTransferMatrix): """ Ray Transfer Matrix for free space. Parameters ========== distance See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FreeSpace >>> from sympy import symbols >>> d = symbols('d') >>> FreeSpace(d) Matrix([ [1, d], [0, 1]]) """ def __new__(cls, d): return RayTransferMatrix.__new__(cls, 1, d, 0, 1) class FlatRefraction(RayTransferMatrix): """ Ray Transfer Matrix for refraction. Parameters ========== n1 : Refractive index of one medium. n2 : Refractive index of other medium. See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FlatRefraction >>> from sympy import symbols >>> n1, n2 = symbols('n1 n2') >>> FlatRefraction(n1, n2) Matrix([ [1, 0], [0, n1/n2]]) """ def __new__(cls, n1, n2): n1, n2 = map(sympify, (n1, n2)) return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2) class CurvedRefraction(RayTransferMatrix): """ Ray Transfer Matrix for refraction on curved interface. Parameters ========== R : Radius of curvature (positive for concave). n1 : Refractive index of one medium. n2 : Refractive index of other medium. See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import CurvedRefraction >>> from sympy import symbols >>> R, n1, n2 = symbols('R n1 n2') >>> CurvedRefraction(R, n1, n2) Matrix([ [ 1, 0], [(n1 - n2)/(R*n2), n1/n2]]) """ def __new__(cls, R, n1, n2): R, n1, n2 = map(sympify, (R, n1, n2)) return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2) class FlatMirror(RayTransferMatrix): """ Ray Transfer Matrix for reflection. See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FlatMirror >>> FlatMirror() Matrix([ [1, 0], [0, 1]]) """ def __new__(cls): return RayTransferMatrix.__new__(cls, 1, 0, 0, 1) class CurvedMirror(RayTransferMatrix): """ Ray Transfer Matrix for reflection from curved surface. Parameters ========== R : radius of curvature (positive for concave) See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import CurvedMirror >>> from sympy import symbols >>> R = symbols('R') >>> CurvedMirror(R) Matrix([ [ 1, 0], [-2/R, 1]]) """ def __new__(cls, R): R = sympify(R) return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1) class ThinLens(RayTransferMatrix): """ Ray Transfer Matrix for a thin lens. Parameters ========== f : The focal distance. See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import ThinLens >>> from sympy import symbols >>> f = symbols('f') >>> ThinLens(f) Matrix([ [ 1, 0], [-1/f, 1]]) """ def __new__(cls, f): f = sympify(f) return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1) ### # Representation for geometric ray ### class GeometricRay(MutableDenseMatrix): """ Representation for a geometric ray in the Ray Transfer Matrix formalism. Parameters ========== h : height, and angle : angle, or matrix : a 2x1 matrix (Matrix(2, 1, [height, angle])) Examples ======== >>> from sympy.physics.optics import GeometricRay, FreeSpace >>> from sympy import symbols, Matrix >>> d, h, angle = symbols('d, h, angle') >>> GeometricRay(h, angle) Matrix([ [ h], [angle]]) >>> FreeSpace(d)*GeometricRay(h, angle) Matrix([ [angle*d + h], [ angle]]) >>> GeometricRay( Matrix( ((h,), (angle,)) ) ) Matrix([ [ h], [angle]]) See Also ======== RayTransferMatrix """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], Matrix) \ and args[0].shape == (2, 1): temp = args[0] elif len(args) == 2: temp = ((args[0],), (args[1],)) else: raise ValueError(filldedent(''' Expecting 2x1 Matrix or the 2 elements of the Matrix but got %s''' % str(args))) return Matrix.__new__(cls, temp) @property def height(self): """ The distance from the optical axis. Examples ======== >>> from sympy.physics.optics import GeometricRay >>> from sympy import symbols >>> h, angle = symbols('h, angle') >>> gRay = GeometricRay(h, angle) >>> gRay.height h """ return self[0] @property def angle(self): """ The angle with the optical axis. Examples ======== >>> from sympy.physics.optics import GeometricRay >>> from sympy import symbols >>> h, angle = symbols('h, angle') >>> gRay = GeometricRay(h, angle) >>> gRay.angle angle """ return self[1] ### # Representation for gauss beam ### class BeamParameter(Expr): """ Representation for a gaussian ray in the Ray Transfer Matrix formalism. Parameters ========== wavelen : the wavelength, z : the distance to waist, and w : the waist, or z_r : the rayleigh range. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.q 1 + 1.88679245283019*I*pi >>> p.q.n() 1.0 + 5.92753330865999*I >>> p.w_0.n() 0.00100000000000000 >>> p.z_r.n() 5.92753330865999 >>> from sympy.physics.optics import FreeSpace >>> fs = FreeSpace(10) >>> p1 = fs*p >>> p.w.n() 0.00101413072159615 >>> p1.w.n() 0.00210803120913829 See Also ======== RayTransferMatrix References ========== .. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter .. [2] https://en.wikipedia.org/wiki/Gaussian_beam """ #TODO A class Complex may be implemented. The BeamParameter may # subclass it. See: # https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion def __new__(cls, wavelen, z, z_r=None, w=None): wavelen = sympify(wavelen) z = sympify(z) if z_r is not None and w is None: z_r = sympify(z_r) elif w is not None and z_r is None: z_r = waist2rayleigh(sympify(w), wavelen) else: raise ValueError('Constructor expects exactly one named argument.') return Expr.__new__(cls, wavelen, z, z_r) @property def wavelen(self): return self.args[0] @property def z(self): return self.args[1] @property def z_r(self): return self.args[2] @property def q(self): """ The complex parameter representing the beam. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.q 1 + 1.88679245283019*I*pi """ return self.z + I*self.z_r @property def radius(self): """ The radius of curvature of the phase front. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.radius 1 + 3.55998576005696*pi**2 """ return self.z*(1 + (self.z_r/self.z)**2) @property def w(self): """ The beam radius at `1/e^2` intensity. See Also ======== w_0 : The minimal radius of beam. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.w 0.001*sqrt(0.2809/pi**2 + 1) """ return self.w_0*sqrt(1 + (self.z/self.z_r)**2) @property def w_0(self): """ The beam waist (minimal radius). See Also ======== w : the beam radius at `1/e^2` intensity Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.w_0 0.00100000000000000 """ return sqrt(self.z_r/pi*self.wavelen) @property def divergence(self): """ Half of the total angular spread. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.divergence 0.00053/pi """ return self.wavelen/pi/self.w_0 @property def gouy(self): """ The Gouy phase. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.gouy atan(0.53/pi) """ return atan2(self.z, self.z_r) @property def waist_approximation_limit(self): """ The minimal waist for which the gauss beam approximation is valid. Explanation =========== The gauss beam is a solution to the paraxial equation. For curvatures that are too great it is not a valid approximation. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.waist_approximation_limit 1.06e-6/pi """ return 2*self.wavelen/pi ### # Utilities ### def waist2rayleigh(w, wavelen): """ Calculate the rayleigh range from the waist of a gaussian beam. See Also ======== rayleigh2waist, BeamParameter Examples ======== >>> from sympy.physics.optics import waist2rayleigh >>> from sympy import symbols >>> w, wavelen = symbols('w wavelen') >>> waist2rayleigh(w, wavelen) pi*w**2/wavelen """ w, wavelen = map(sympify, (w, wavelen)) return w**2*pi/wavelen def rayleigh2waist(z_r, wavelen): """Calculate the waist from the rayleigh range of a gaussian beam. See Also ======== waist2rayleigh, BeamParameter Examples ======== >>> from sympy.physics.optics import rayleigh2waist >>> from sympy import symbols >>> z_r, wavelen = symbols('z_r wavelen') >>> rayleigh2waist(z_r, wavelen) sqrt(wavelen*z_r)/sqrt(pi) """ z_r, wavelen = map(sympify, (z_r, wavelen)) return sqrt(z_r/pi*wavelen) def geometric_conj_ab(a, b): """ Conjugation relation for geometrical beams under paraxial conditions. Explanation =========== Takes the distances to the optical element and returns the needed focal distance. See Also ======== geometric_conj_af, geometric_conj_bf Examples ======== >>> from sympy.physics.optics import geometric_conj_ab >>> from sympy import symbols >>> a, b = symbols('a b') >>> geometric_conj_ab(a, b) a*b/(a + b) """ a, b = map(sympify, (a, b)) if a.is_infinite or b.is_infinite: return a if b.is_infinite else b else: return a*b/(a + b) def geometric_conj_af(a, f): """ Conjugation relation for geometrical beams under paraxial conditions. Explanation =========== Takes the object distance (for geometric_conj_af) or the image distance (for geometric_conj_bf) to the optical element and the focal distance. Then it returns the other distance needed for conjugation. See Also ======== geometric_conj_ab Examples ======== >>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf >>> from sympy import symbols >>> a, b, f = symbols('a b f') >>> geometric_conj_af(a, f) a*f/(a - f) >>> geometric_conj_bf(b, f) b*f/(b - f) """ a, f = map(sympify, (a, f)) return -geometric_conj_ab(a, -f) geometric_conj_bf = geometric_conj_af def gaussian_conj(s_in, z_r_in, f): """ Conjugation relation for gaussian beams. Parameters ========== s_in : The distance to optical element from the waist. z_r_in : The rayleigh range of the incident beam. f : The focal length of the optical element. Returns ======= a tuple containing (s_out, z_r_out, m) s_out : The distance between the new waist and the optical element. z_r_out : The rayleigh range of the emergent beam. m : The ration between the new and the old waists. Examples ======== >>> from sympy.physics.optics import gaussian_conj >>> from sympy import symbols >>> s_in, z_r_in, f = symbols('s_in z_r_in f') >>> gaussian_conj(s_in, z_r_in, f)[0] 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f) >>> gaussian_conj(s_in, z_r_in, f)[1] z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2) >>> gaussian_conj(s_in, z_r_in, f)[2] 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2) """ s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f)) s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f ) m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2) z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2) return (s_out, z_r_out, m) def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs): """ Find the optical setup conjugating the object/image waists. Parameters ========== wavelen : The wavelength of the beam. waist_in and waist_out : The waists to be conjugated. f : The focal distance of the element used in the conjugation. Returns ======= a tuple containing (s_in, s_out, f) s_in : The distance before the optical element. s_out : The distance after the optical element. f : The focal distance of the optical element. Examples ======== >>> from sympy.physics.optics import conjugate_gauss_beams >>> from sympy import symbols, factor >>> l, w_i, w_o, f = symbols('l w_i w_o f') >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0] f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2))) >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2 >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2] f """ #TODO add the other possible arguments wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out)) m = waist_out / waist_in z = waist2rayleigh(waist_in, wavelen) if len(kwargs) != 1: raise ValueError("The function expects only one named argument") elif 'dist' in kwargs: raise NotImplementedError(filldedent(''' Currently only focal length is supported as a parameter''')) elif 'f' in kwargs: f = sympify(kwargs['f']) s_in = f * (1 - sqrt(1/m**2 - z**2/f**2)) s_out = gaussian_conj(s_in, z, f)[0] elif 's_in' in kwargs: raise NotImplementedError(filldedent(''' Currently only focal length is supported as a parameter''')) else: raise ValueError(filldedent(''' The functions expects the focal length as a named argument''')) return (s_in, s_out, f) #TODO #def plot_beam(): # """Plot the beam radius as it propagates in space.""" # pass #TODO #def plot_beam_conjugation(): # """ # Plot the intersection of two beams. # # Represents the conjugation relation. # # See Also # ======== # # conjugate_gauss_beams # """ # pass
9047cf3bd09bca990d80bd69705d230e6fb0ffb1e5e744333e6aff1c3b73a9d2
from sympy.core.add import Add from sympy.core.function import Function from sympy.core.mul import Mul from sympy.core.numbers import (I, Rational, oo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import eye from sympy.polys.polytools import factor from sympy.polys.rootoftools import CRootOf from sympy.simplify.simplify import simplify from sympy.core.containers import Tuple from sympy.matrices import ImmutableMatrix, Matrix from sympy.physics.control import (TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback) from sympy.testing.pytest import raises a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn = symbols('a, x, b, s, g, d, p, k,\ a0:3, b0:3, tau, zeta, wn') TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) TF2 = TransferFunction(k, 1, s) TF3 = TransferFunction(a2*p - s, a2*s + p, s) def test_TransferFunction_construction(): tf = TransferFunction(s + 1, s**2 + s + 1, s) assert tf.num == (s + 1) assert tf.den == (s**2 + s + 1) assert tf.args == (s + 1, s**2 + s + 1, s) tf1 = TransferFunction(s + 4, s - 5, s) assert tf1.num == (s + 4) assert tf1.den == (s - 5) assert tf1.args == (s + 4, s - 5, s) # using different polynomial variables. tf2 = TransferFunction(p + 3, p**2 - 9, p) assert tf2.num == (p + 3) assert tf2.den == (p**2 - 9) assert tf2.args == (p + 3, p**2 - 9, p) tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) # no pole-zero cancellation on its own. tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s) assert tf4.den == (s - 1)*(s + 5) assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s) tf4_ = TransferFunction(p + 2, p + 2, p) assert tf4_.args == (p + 2, p + 2, p) tf5 = TransferFunction(s - 1, 4 - p, s) assert tf5.args == (s - 1, 4 - p, s) tf5_ = TransferFunction(s - 1, s - 1, s) assert tf5_.args == (s - 1, s - 1, s) tf6 = TransferFunction(5, 6, s) assert tf6.num == 5 assert tf6.den == 6 assert tf6.args == (5, 6, s) tf6_ = TransferFunction(1/2, 4, s) assert tf6_.num == 0.5 assert tf6_.den == 4 assert tf6_.args == (0.500000000000000, 4, s) tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s) tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p) assert not tf7 == tf8 tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) assert tf7_ == tf8_ assert -(-tf7_) == tf7_ == -(-(-(-tf7_))) tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s) assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s) tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) assert tf10.args == (d + p**3, a + d*s + g*s**2, p) assert tf10_ == tf10 tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s) assert tf11.num == (a0 + a1*s) assert tf11.den == (b0 + b1*s + b2*s**2) assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s) # when just the numerator is 0, leave the denominator alone. tf12 = TransferFunction(0, p**2 - p + 1, p) assert tf12.args == (0, p**2 - p + 1, p) tf13 = TransferFunction(0, 1, s) assert tf13.args == (0, 1, s) # float exponents tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s) assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s) tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p) assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p) omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i') tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s) assert tf18.num == k_i/s + k_o*s + k_p assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s) # ValueError when denominator is zero. raises(ValueError, lambda: TransferFunction(4, 0, s)) raises(ValueError, lambda: TransferFunction(s, 0, s)) raises(ValueError, lambda: TransferFunction(0, 0, s)) raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s)) raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3)) raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4)) raises(TypeError, lambda: TransferFunction(3, 4, 8)) def test_TransferFunction_functions(): # classmethod from_rational_expression expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False) expr_2 = s/0 expr_3 = (p*s**2 + 5*s)/(s + 1)**3 expr_4 = 6 expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2)) expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9)) tf = TransferFunction(s + 1, s**2 + 2, s) delay = exp(-s/tau) expr_7 = delay*tf.to_expr() H1 = TransferFunction.from_rational_expression(expr_7, s) H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s) expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False) assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s) raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2)) raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3)) assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s) assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p) raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4)) assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s) assert TransferFunction.from_rational_expression(expr_5, s) == \ TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s) assert TransferFunction.from_rational_expression(expr_6, s) == \ TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s) assert H1 == H2 assert TransferFunction.from_rational_expression(expr_8, s) == \ TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s) # explicitly cancel poles and zeros. tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s) a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s) assert tf0.simplify() == simplify(tf0) == a tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) b = TransferFunction(p + 3, p + 5, p) assert tf1.simplify() == simplify(tf1) == b # expand the numerator and the denominator. G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) G2 = TransferFunction(1, -3, p) c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p) d = (b0*s**s + b1*p**s)*(b2*s*p + p**p) e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p) f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s G3 = TransferFunction(c, d, s) G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p) assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s) assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p) assert G2.expand() == G2 assert G3.expand() == TransferFunction(e, f, s) assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p) # purely symbolic polynomials. p1 = a1*s + a0 p2 = b2*s**2 + b1*s + b0 SP1 = TransferFunction(p1, p2, s) expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s) expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s) assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_ assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1 assert expect1_.evalf() == expect1 c1, d0, d1, d2 = symbols('c1, d0:3') p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0 SP2 = TransferFunction(p3, p4, p) expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p) expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p) assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_ assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2 assert expect2_.evalf() == expect2 SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s) expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s) expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s) assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_ assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3 assert expect3_.evalf() == expect3 SP4 = TransferFunction(s - a1*p**3, a0*s + p, p) expect4 = TransferFunction(7.0*p**3 + s, p - s, p) expect4_ = TransferFunction(7*p**3 + s, p - s, p) assert SP4.subs({a0: -1, a1: -7}) == expect4_ assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4 assert expect4_.evalf() == expect4 # Low-frequency (or DC) gain. assert tf0.dc_gain() == 1 assert tf1.dc_gain() == Rational(3, 5) assert SP2.dc_gain() == 0 assert expect4.dc_gain() == -1 assert expect2_.dc_gain() == 0 assert TransferFunction(1, s, s).dc_gain() == oo # Poles of a transfer function. tf_ = TransferFunction(x**3 - k, k, x) _tf = TransferFunction(k, x**4 - k, x) TF_ = TransferFunction(x**2, x**10 + x + x**2, x) _TF = TransferFunction(x**10 + x + x**2, x**2, x) assert G1.poles() == [I, I, -I, -I] assert G2.poles() == [] assert tf1.poles() == [-5, 1] assert expect4_.poles() == [s] assert SP4.poles() == [-a0*s] assert expect3.poles() == [-0.25*p] assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I]) assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I]) assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))] assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles()) # Stability of a transfer function. q, r = symbols('q, r', negative=True) t = symbols('t', positive=True) TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s) stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s) stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s) assert G1.is_stable() is False assert G2.is_stable() is True assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve. assert expect2.is_stable() is False assert expect1.is_stable() is True assert stable_tf.is_stable() is True assert stable_tf_.is_stable() is True assert TF_.is_stable() is False assert expect4_.is_stable() is None # no assumption provided for the only pole 's'. assert SP4.is_stable() is None # Zeros of a transfer function. assert G1.zeros() == [1, 1] assert G2.zeros() == [] assert tf1.zeros() == [-3, 1] assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 - sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14] assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2, -(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2] assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0), 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125]) assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2, -k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2] assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros()) # negation of TF. tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s) tf3 = TransferFunction(-3*p + 3, 1 - p, p) assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s) assert -tf3 == TransferFunction(3*p - 3, 1 - p, p) # taking power of a TF. tf4 = TransferFunction(p + 4, p - 3, p) tf5 = TransferFunction(s**2 + 1, 1 - s, s) expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s) expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p) assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1 assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2 assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s) assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p) assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s) raises(ValueError, lambda: tf4**(s**2 + s - 1)) raises(ValueError, lambda: tf5**s) raises(ValueError, lambda: tf4**tf5) # SymPy's own functions. tf = TransferFunction(s - 1, s**2 - 2*s + 1, s) tf6 = TransferFunction(s + p, p**2 - 5, s) assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s) assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1 # subs & xreplace assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s) assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s) assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s) raises(TypeError, lambda: tf3.xreplace({p: exp(2)})) assert tf3.subs(p, exp(2)) == tf3 tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k) assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) # Conversion to Expr with to_expr() tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s) tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s) tf10 = TransferFunction(0, 1, s) tf11 = TransferFunction(1, 1, s) assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False) assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False) assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False) assert tf11.to_expr() == Pow(1, -1, evaluate=False) def test_TransferFunction_addition_and_subtraction(): tf1 = TransferFunction(s + 6, s - 5, s) tf2 = TransferFunction(s + 3, s + 1, s) tf3 = TransferFunction(s + 1, s**2 + s + 1, s) tf4 = TransferFunction(p, 2 - p, p) # addition assert tf1 + tf2 == Parallel(tf1, tf2) assert tf3 + tf1 == Parallel(tf3, tf1) assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3) assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3) c = symbols("c", commutative=False) raises(ValueError, lambda: tf1 + Matrix([1, 2, 3])) raises(ValueError, lambda: tf2 + c) raises(ValueError, lambda: tf3 + tf4) raises(ValueError, lambda: tf1 + (s - 1)) raises(ValueError, lambda: tf1 + 8) raises(ValueError, lambda: (1 - p**3) + tf1) # subtraction assert tf1 - tf2 == Parallel(tf1, -tf2) assert tf3 - tf2 == Parallel(tf3, -tf2) assert -tf1 - tf3 == Parallel(-tf1, -tf3) assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3) raises(ValueError, lambda: tf1 - Matrix([1, 2, 3])) raises(ValueError, lambda: tf3 - tf4) raises(ValueError, lambda: tf1 - (s - 1)) raises(ValueError, lambda: tf1 - 8) raises(ValueError, lambda: (s + 5) - tf2) raises(ValueError, lambda: (1 + p**4) - tf1) def test_TransferFunction_multiplication_and_division(): G1 = TransferFunction(s + 3, -s**3 + 9, s) G2 = TransferFunction(s + 1, s - 5, s) G3 = TransferFunction(p, p**4 - 6, p) G4 = TransferFunction(p + 4, p - 5, p) G5 = TransferFunction(s + 6, s - 5, s) G6 = TransferFunction(s + 3, s + 1, s) G7 = TransferFunction(1, 1, s) # multiplication assert G1*G2 == Series(G1, G2) assert -G1*G5 == Series(-G1, G5) assert -G2*G5*-G6 == Series(-G2, G5, -G6) assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6) assert G3*G4 == Series(G3, G4) assert (G1*G2)*-(G5*G6) == \ Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6)) assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6)) c = symbols("c", commutative=False) raises(ValueError, lambda: G3 * Matrix([1, 2, 3])) raises(ValueError, lambda: G1 * c) raises(ValueError, lambda: G3 * G5) raises(ValueError, lambda: G5 * (s - 1)) raises(ValueError, lambda: 9 * G5) raises(ValueError, lambda: G3 / Matrix([1, 2, 3])) raises(ValueError, lambda: G6 / 0) raises(ValueError, lambda: G3 / G5) raises(ValueError, lambda: G5 / 2) raises(ValueError, lambda: G5 / s**2) raises(ValueError, lambda: (s - 4*s**2) / G2) raises(ValueError, lambda: 0 / G4) raises(ValueError, lambda: G5 / G6) raises(ValueError, lambda: -G3 /G4) raises(ValueError, lambda: G7 / (1 + G6)) raises(ValueError, lambda: G7 / (G5 * G6)) raises(ValueError, lambda: G7 / (G7 + (G5 + G6))) def test_TransferFunction_is_proper(): omega_o, zeta, tau = symbols('omega_o, zeta, tau') G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) G2 = TransferFunction(tau - s**3, tau + p**4, tau) G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert G1.is_proper assert G2.is_proper assert G3.is_proper assert not G4.is_proper def test_TransferFunction_is_strictly_proper(): omega_o, zeta, tau = symbols('omega_o, zeta, tau') tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) tf2 = TransferFunction(tau - s**3, tau + p**4, tau) tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert not tf1.is_strictly_proper assert not tf2.is_strictly_proper assert tf3.is_strictly_proper assert not tf4.is_strictly_proper def test_TransferFunction_is_biproper(): tau, omega_o, zeta = symbols('tau, omega_o, zeta') tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) tf2 = TransferFunction(tau - s**3, tau + p**4, tau) tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert tf1.is_biproper assert tf2.is_biproper assert not tf3.is_biproper assert not tf4.is_biproper def test_Series_construction(): tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf2 = TransferFunction(a2*p - s, a2*s + p, s) tf3 = TransferFunction(a0*p + p**a1 - s, p, p) tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) inp = Function('X_d')(s) out = Function('X')(s) s0 = Series(tf, tf2) assert s0.args == (tf, tf2) assert s0.var == s s1 = Series(Parallel(tf, -tf2), tf2) assert s1.args == (Parallel(tf, -tf2), tf2) assert s1.var == s tf3_ = TransferFunction(inp, 1, s) tf4_ = TransferFunction(-out, 1, s) s2 = Series(tf, Parallel(tf3_, tf4_), tf2) assert s2.args == (tf, Parallel(tf3_, tf4_), tf2) s3 = Series(tf, tf2, tf4) assert s3.args == (tf, tf2, tf4) s4 = Series(tf3_, tf4_) assert s4.args == (tf3_, tf4_) assert s4.var == s s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4) assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4) s7 = Series(tf, tf2) assert s0 == s7 assert not s0 == s2 raises(ValueError, lambda: Series(tf, tf3)) raises(ValueError, lambda: Series(tf, tf2, tf3, tf4)) raises(ValueError, lambda: Series(-tf3, tf2)) raises(TypeError, lambda: Series(2, tf, tf4)) raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2)) raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4]))) def test_MIMOSeries_construction(): tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf_2 = TransferFunction(a2*p - s, a2*s + p, s) tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]]) tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]]) tfm_3 = TransferFunctionMatrix([[-tf_3]]) tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]]) tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p) s8 = MIMOSeries(tfm_2, tfm_1) assert s8.args == (tfm_2, tfm_1) assert s8.var == s assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1) s9 = MIMOSeries(tfm_3, tfm_2, tfm_1) assert s9.args == (tfm_3, tfm_2, tfm_1) assert s9.var == s assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1) s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1) # arg cannot be empty tuple. raises(ValueError, lambda: MIMOSeries()) # arg cannot contain SISO as well as MIMO systems. raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1)) # for all the adjascent transfer function matrices: # no. of inputs of first TFM must be equal to the no. of outputs of the second TFM. raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1)) # all the TFMs must use the same complex variable. raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5)) # Number or expression not allowed in the arguments. raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3)) raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3)) raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3)) def test_Series_functions(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \ == Series(tf1, Series(tf2, tf3)) assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3)) assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5) assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5) assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5) assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5) assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5) assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5)) assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5))) assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3) assert -tf1*tf2 == Series(-tf1, tf2) assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2)) raises(ValueError, lambda: tf1*tf2*tf4) raises(ValueError, lambda: tf1*(tf2 - tf4)) raises(ValueError, lambda: tf3*Matrix([1, 2, 3])) # evaluate=True -> doit() assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \ TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \ TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s) assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit() assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \ TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(-tf1, -tf2, -tf3).doit() == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert -Series(tf1, tf2, tf3).doit() == \ TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \ TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)) assert S1.is_proper assert not S1.is_strictly_proper assert S1.is_biproper S2 = Series(tf1, tf2, tf3) assert S2.is_proper assert S2.is_strictly_proper assert not S2.is_biproper S3 = Series(tf1, -tf2, Parallel(tf1, -tf3)) assert S3.is_proper assert S3.is_strictly_proper assert not S3.is_biproper def test_MIMOSeries_functions(): tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]]) tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]]) tfm3 = TransferFunctionMatrix([[-TF1]]) tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]]) tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]]) tfm6 = TransferFunctionMatrix([[-TF3], [TF1]]) tfm7 = TransferFunctionMatrix([[TF1], [-TF2]]) assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6) assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6) assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7) assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5) assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4)) raises(ValueError, lambda: tfm1*tfm2 + TF1) raises(TypeError, lambda: tfm1*tfm2 + a0) raises(TypeError, lambda: tfm4*tfm6 - (s - 1)) raises(TypeError, lambda: tfm4*-tfm6 - 8) raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2) # Shape criteria. raises(TypeError, lambda: -tfm1*tfm2 + tfm4) raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5) raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5) assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1) assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1) # Multiplication of a Series object with a SISO TF not allowed. raises(ValueError, lambda: tfm4*tfm5*TF1) raises(TypeError, lambda: tfm4*tfm5*a1) raises(TypeError, lambda: tfm4*-tfm5*(s - 2)) raises(TypeError, lambda: tfm5*tfm4*9) raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4) # Transfer function matrix in the arguments. assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit() == TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2, (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),), (TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),)))) # doit() should not cancel poles and zeros. mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]]) mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]]) tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s) assert (MIMOSeries(tm_2, tm_1).doit() == TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),))) assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),)) # calling doit() will expand the internal Series and Parallel objects. assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True) == MIMOSeries(-tfm3, -tfm2, tfm1).doit() == TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2, (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),), (TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),)))) assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit() == TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \ k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \ TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix)) def test_Parallel_construction(): tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf2 = TransferFunction(a2*p - s, a2*s + p, s) tf3 = TransferFunction(a0*p + p**a1 - s, p, p) tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) inp = Function('X_d')(s) out = Function('X')(s) p0 = Parallel(tf, tf2) assert p0.args == (tf, tf2) assert p0.var == s p1 = Parallel(Series(tf, -tf2), tf2) assert p1.args == (Series(tf, -tf2), tf2) assert p1.var == s tf3_ = TransferFunction(inp, 1, s) tf4_ = TransferFunction(-out, 1, s) p2 = Parallel(tf, Series(tf3_, -tf4_), tf2) assert p2.args == (tf, Series(tf3_, -tf4_), tf2) p3 = Parallel(tf, tf2, tf4) assert p3.args == (tf, tf2, tf4) p4 = Parallel(tf3_, tf4_) assert p4.args == (tf3_, tf4_) assert p4.var == s p5 = Parallel(tf, tf2) assert p0 == p5 assert not p0 == p1 p6 = Parallel(tf2, tf4, Series(tf2, -tf4)) assert p6.args == (tf2, tf4, Series(tf2, -tf4)) p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4) assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4) raises(ValueError, lambda: Parallel(tf, tf3)) raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4)) raises(ValueError, lambda: Parallel(-tf3, tf4)) raises(TypeError, lambda: Parallel(2, tf, tf4)) raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2)) raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4]))) def test_MIMOParallel_construction(): tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]]) tfm3 = TransferFunctionMatrix([[TF1]]) tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]]) tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]]) tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]]) tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p) p8 = MIMOParallel(tfm1, tfm2) assert p8.args == (tfm1, tfm2) assert p8.var == s assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1) p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2) assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2) assert p9.var == s assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1) p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2) assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2) assert p10.var == s assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1) p11 = MIMOParallel(tfm2, tfm1, tfm4) assert p11.args == (tfm2, tfm1, tfm4) assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1) p12 = MIMOParallel(tfm6, tfm5) assert p12.args == (tfm6, tfm5) assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2) p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1) # arg cannot be empty tuple. raises(TypeError, lambda: MIMOParallel(())) # arg cannot contain SISO as well as MIMO systems. raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1)) # all TFMs must have same shapes. raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4)) # all TFMs must be using the same complex variable. raises(ValueError, lambda: MIMOParallel(tfm3, tfm7)) # Number or expression not allowed in the arguments. raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4)) raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2)) def test_Parallel_functions(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3) assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5) assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5) assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3)) assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3)) assert -tf1 - tf2 == Parallel(-tf1, -tf2) assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2)) assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1) assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5) assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5) assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5) assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3) assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5)) raises(ValueError, lambda: tf1 + tf2 + tf4) raises(ValueError, lambda: tf1 - tf2*tf4) raises(ValueError, lambda: tf3 + Matrix([1, 2, 3])) # evaluate=True -> doit() assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \ Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \ (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \ 2*s*wn*zeta + wn**2)**2, s) assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \ , (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit() assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \ TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(-tf1, -tf2, -tf3).doit() == \ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert -Parallel(tf1, tf2, tf3).doit() == \ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \ TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \ + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf1, tf2).rewrite(TransferFunction) == \ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3) P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) assert P1.is_proper assert not P1.is_strictly_proper assert P1.is_biproper P2 = Parallel(tf1, -tf2, -tf3) assert P2.is_proper assert not P2.is_strictly_proper assert P2.is_biproper P3 = Parallel(tf1, -tf2, Series(tf1, tf3)) assert P3.is_proper assert not P3.is_strictly_proper assert P3.is_biproper def test_MIMOParallel_functions(): tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]]) tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]]) tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]]) tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]]) tfm6 = TransferFunctionMatrix([[-TF2]]) tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]]) assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3) assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3) assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1)) assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1)) assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2) assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1) raises(ValueError, lambda: tfm1 + tfm2 + TF2) raises(TypeError, lambda: tfm1 - tfm2 - a1) raises(TypeError, lambda: tfm2 - tfm3 - (s - 1)) raises(TypeError, lambda: -tfm3 - tfm2 - 9) raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2) # All TFMs must use the same complex var. tfm7 uses 'p'. raises(ValueError, lambda: tfm3 - tfm2 - tfm7) raises(ValueError, lambda: tfm2 - tfm1 + tfm7) # (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape. raises(TypeError, lambda: tfm1 + tfm2 + tfm4) raises(TypeError, lambda: (tfm1 - tfm2) - tfm4) assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2)) assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3)) assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3)) raises(ValueError, lambda: (tfm4 + tfm5)*TF1) raises(TypeError, lambda: (tfm2 - tfm3)*a2) raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6)) raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0) raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3)) # (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape. raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5) # (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape. raises(ValueError, lambda: (tfm1 - tfm2)*tfm5) # TFM in the arguments. assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit() == MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix) == TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \ (TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \ (s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),)))) def test_Feedback_construction(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf6 = TransferFunction(s - p, p + s, p) f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3) assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1) assert f1.sys1 == TransferFunction(1, 1, s) assert f1.sys2 == Series(tf1, tf2, tf3) assert f1.var == s f2 = Feedback(tf1, tf2*tf3) assert f2.args == (tf1, Series(tf2, tf3), -1) assert f2.sys1 == tf1 assert f2.sys2 == Series(tf2, tf3) assert f2.var == s f3 = Feedback(tf1*tf2, tf5) assert f3.args == (Series(tf1, tf2), tf5, -1) assert f3.sys1 == Series(tf1, tf2) f4 = Feedback(tf4, tf6) assert f4.args == (tf4, tf6, -1) assert f4.sys1 == tf4 assert f4.var == p f5 = Feedback(tf5, TransferFunction(1, 1, s)) assert f5.args == (tf5, TransferFunction(1, 1, s), -1) assert f5.var == s assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf. f6 = Feedback(TransferFunction(1, 1, p), tf4) assert f6.args == (TransferFunction(1, 1, p), tf4, -1) assert f6.var == p f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p)) assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1) assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6)) # denominator can't be a Parallel instance raises(TypeError, lambda: Feedback(tf1, tf2 + tf3)) raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3]))) raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1)) raises(TypeError, lambda: Feedback(1, 1)) # raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s))) raises(ValueError, lambda: Feedback(tf2, tf4*tf5)) raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1 raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var` def test_Feedback_functions(): tf = TransferFunction(1, 1, s) tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf6 = TransferFunction(s - p, p + s, p) assert tf / (tf + tf1) == Feedback(tf, tf1) assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3) assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3) assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf) assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5) assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5)) assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6) assert tf5 / (tf + tf5) == Feedback(tf5, tf) raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3)) raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5) raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4)) assert Feedback(tf, tf1*tf2*tf3).doit() == \ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf, tf1*tf2*tf3).sensitivity == \ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf1, tf2*tf3).doit() == \ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf1, tf2*tf3).sensitivity == \ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf1*tf2, tf5).doit() == \ TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf1*tf2, tf5, 1).sensitivity == \ 1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf4, tf6).doit() == \ TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \ TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s) assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \ TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \ TransferFunction(p, a0*p + p + p**a1 - s, p) def test_MIMOFeedback_construction(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s**3 - 1, s) tf3 = TransferFunction(s, s + 1, s) tf4 = TransferFunction(s, s**2 + 1, s) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]]) f1 = MIMOFeedback(tfm_1, tfm_2) assert f1.args == (tfm_1, tfm_2, -1) assert f1.sys1 == tfm_1 assert f1.sys2 == tfm_2 assert f1.var == s assert f1.sign == -1 assert -(-f1) == f1 f2 = MIMOFeedback(tfm_2, tfm_1, 1) assert f2.args == (tfm_2, tfm_1, 1) assert f2.sys1 == tfm_2 assert f2.sys2 == tfm_1 assert f2.var == s assert f2.sign == 1 f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2)) assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1) assert f3.sys1 == tfm_1 assert f3.sys2 == MIMOSeries(tfm_3, tfm_2) assert f3.var == s assert f3.sign == -1 mat = Matrix([[1, 1/s], [0, 1]]) sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s) f4 = MIMOFeedback(sys1, controller) assert f4.args == (sys1, controller, -1) assert f4.sys1 == f4.sys2 == sys1 def test_MIMOFeedback_errors(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s**3 - 1, s) tf3 = TransferFunction(s, s - 1, s) tf4 = TransferFunction(s, s**2 + 1, s) tf5 = TransferFunction(1, 1, s) tf6 = TransferFunction(-1, s - 1, s) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]]) tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]]) # tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I tfm_6 = TransferFunctionMatrix([[-tf3]]) tfm_7 = TransferFunctionMatrix([[tf3, tf4]]) # Unsupported Types raises(TypeError, lambda: MIMOFeedback(tf1, tf2)) raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3)) # Shape Errors raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1)) raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7)) # sign not 1/-1 raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2)) # Non-Invertible Systems raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1)) raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5)) raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1)) # Variable not same in both the systems tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p) raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1)) def test_MIMOFeedback_functions(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s - 1, s) tf3 = TransferFunction(1, 1, s) tf4 = TransferFunction(-1, s - 1, s) tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]]) tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]]) tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]]) # sensitivity, doit(), rewrite() F_1 = MIMOFeedback(tfm_2, tfm_3) F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1) assert F_1.sensitivity == Matrix([[1/2, 0], [0, 1/2]]) assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1), (2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]]) assert F_1.doit() == \ TransferFunctionMatrix(((TransferFunction(1, 2*s, s), TransferFunction(1, 2, s)), (TransferFunction(1, 2, s), TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix) assert F_2.doit(cancel=False, expand=True) == \ TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert F_2.doit(cancel=False) == \ TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \ (-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert F_2.doit() == \ TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s), TransferFunction(2*s**3*(1 - s), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s)))) assert F_2.doit(expand=True) == \ TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating. def test_TransferFunctionMatrix_construction(): tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tfm3_ = TransferFunctionMatrix([[-TF3]]) assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1) assert tfm3_.args == Tuple(Tuple(Tuple(-TF3))) assert tfm3_.var == s tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]]) assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2) assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5))) assert tfm5.var == s tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]]) assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2) assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2))) assert tfm7.var == s # all transfer functions will use the same complex variable. tf4 uses 'p'. raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]])) raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]])) # length of all the lists in the TFM should be equal. raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]])) raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]])) # lists should only support transfer functions in them. raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]])) raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]])) # `arg` should strictly be nested list of TransferFunction raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5])) raises(ValueError, lambda: TransferFunctionMatrix([TF1])) def test_TransferFunctionMatrix_functions(): tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) # Classmethod (from_matrix) mat_1 = ImmutableMatrix([ [s*(s + 1)*(s - 3)/(s**4 + 1), 2], [p, p*(s + 1)/(s*(s**1 + 1))] ]) mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]]) mat_3 = ImmutableMatrix([[1, 2], [3, 4]]) assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \ TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(p, 1, s), TransferFunction(p, s, s)]]) assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \ TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]]) assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \ TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)], [TransferFunction(3, 1, p), TransferFunction(4, 1, p)]]) # Negating a TFM tfm1 = TransferFunctionMatrix([[TF1], [TF2]]) assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]]) tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]]) assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]]) # subs() H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s) H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]]) assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var` assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]]) assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]]) assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]]) assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]]) # transpose() assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]]) assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]]) assert H_1.transpose().transpose() == H_1 assert H_2.transpose().transpose() == H_2 # elem_poles() assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []], [[], [0]]] assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]] assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]], [[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]] # elem_zeros() assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]] assert H_2.elem_zeros() == [[[0], [0]]] assert tfm2.elem_zeros() == [[[], [], [a2*p]], [[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]] # doit() H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]]) H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]]) assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]]) assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]]) # _flat() assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)] assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)] assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))] assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))] # evalf() assert H_1.evalf() == \ TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s)))) assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \ TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s), TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),)) # simplify() H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s), TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]]) assert H_5.simplify() == simplify(H_5) == \ TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),)) # expand() assert (H_1.expand() == TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)), (TransferFunction(p, 1, s), TransferFunction(p, s, s))))) assert H_5.expand() == \ TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
01664a59aa382d06faee197b16d12cada1b396501c4462b1b8c37304d210b566
from sympy.core.numbers import I from sympy.core.symbol import Dummy from sympy.functions.elementary.complexes import (Abs, arg) from sympy.functions.elementary.exponential import log from sympy.abc import s, p, a from sympy.external import import_module from sympy.physics.control.control_plots import \ (pole_zero_numerical_data, pole_zero_plot, step_response_numerical_data, step_response_plot, impulse_response_numerical_data, impulse_response_plot, ramp_response_numerical_data, ramp_response_plot, bode_magnitude_numerical_data, bode_phase_numerical_data, bode_plot) from sympy.physics.control.lti import (TransferFunction, Series, Parallel, TransferFunctionMatrix) from sympy.testing.pytest import raises, skip matplotlib = import_module( 'matplotlib', import_kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) numpy = import_module('numpy') tf1 = TransferFunction(1, p**2 + 0.5*p + 2, p) tf2 = TransferFunction(p, 6*p**2 + 3*p + 1, p) tf3 = TransferFunction(p, p**3 - 1, p) tf4 = TransferFunction(10, p**3, p) tf5 = TransferFunction(5, s**2 + 2*s + 10, s) tf6 = TransferFunction(1, 1, s) tf7 = TransferFunction(4*s*3 + 9*s**2 + 0.1*s + 11, 8*s**6 + 9*s**4 + 11, s) ser1 = Series(tf4, TransferFunction(1, p - 5, p)) ser2 = Series(tf3, TransferFunction(p, p + 2, p)) par1 = Parallel(tf1, tf2) par2 = Parallel(tf1, tf2, tf3) def _to_tuple(a, b): return tuple(a), tuple(b) def _trim_tuple(a, b): a, b = _to_tuple(a, b) return tuple(a[0: 2] + a[len(a)//2 : len(a)//2 + 1] + a[-2:]), \ tuple(b[0: 2] + b[len(b)//2 : len(b)//2 + 1] + b[-2:]) def y_coordinate_equality(plot_data_func, evalf_func, system): """Checks whether the y-coordinate value of the plotted data point is equal to the value of the function at a particular x.""" x, y = plot_data_func(system) x, y = _trim_tuple(x, y) y_exp = tuple(evalf_func(system, x_i) for x_i in x) return all(Abs(y_exp_i - y_i) < 1e-8 for y_exp_i, y_i in zip(y_exp, y)) def test_errors(): if not matplotlib: skip("Matplotlib not the default backend") # Invalid `system` check tfm = TransferFunctionMatrix([[tf6, tf5], [tf5, tf6]]) expr = 1/(s**2 - 1) raises(NotImplementedError, lambda: pole_zero_plot(tfm)) raises(NotImplementedError, lambda: pole_zero_numerical_data(expr)) raises(NotImplementedError, lambda: impulse_response_plot(expr)) raises(NotImplementedError, lambda: impulse_response_numerical_data(tfm)) raises(NotImplementedError, lambda: step_response_plot(tfm)) raises(NotImplementedError, lambda: step_response_numerical_data(expr)) raises(NotImplementedError, lambda: ramp_response_plot(expr)) raises(NotImplementedError, lambda: ramp_response_numerical_data(tfm)) raises(NotImplementedError, lambda: bode_plot(tfm)) # More than 1 variables tf_a = TransferFunction(a, s + 1, s) raises(ValueError, lambda: pole_zero_plot(tf_a)) raises(ValueError, lambda: pole_zero_numerical_data(tf_a)) raises(ValueError, lambda: impulse_response_plot(tf_a)) raises(ValueError, lambda: impulse_response_numerical_data(tf_a)) raises(ValueError, lambda: step_response_plot(tf_a)) raises(ValueError, lambda: step_response_numerical_data(tf_a)) raises(ValueError, lambda: ramp_response_plot(tf_a)) raises(ValueError, lambda: ramp_response_numerical_data(tf_a)) raises(ValueError, lambda: bode_plot(tf_a)) # lower_limit > 0 for response plots raises(ValueError, lambda: impulse_response_plot(tf1, lower_limit=-1)) raises(ValueError, lambda: step_response_plot(tf1, lower_limit=-0.1)) raises(ValueError, lambda: ramp_response_plot(tf1, lower_limit=-4/3)) # slope in ramp_response_plot() is negative raises(ValueError, lambda: ramp_response_plot(tf1, slope=-0.1)) def test_pole_zero(): if not matplotlib: skip("Matplotlib not the default backend") assert _to_tuple(*pole_zero_numerical_data(tf1)) == \ ((), ((-0.24999999999999994+1.3919410907075054j), (-0.24999999999999994-1.3919410907075054j))) assert _to_tuple(*pole_zero_numerical_data(tf2)) == \ ((0.0,), ((-0.25+0.3227486121839514j), (-0.25-0.3227486121839514j))) assert _to_tuple(*pole_zero_numerical_data(tf3)) == \ ((0.0,), ((-0.5000000000000004+0.8660254037844395j), (-0.5000000000000004-0.8660254037844395j), (0.9999999999999998+0j))) assert _to_tuple(*pole_zero_numerical_data(tf7)) == \ (((-0.6722222222222222+0.8776898690157247j), (-0.6722222222222222-0.8776898690157247j)), ((2.220446049250313e-16+1.2797182176061541j), (2.220446049250313e-16-1.2797182176061541j), (-0.7657146670186428+0.5744385024099056j), (-0.7657146670186428-0.5744385024099056j), (0.7657146670186427+0.5744385024099052j), (0.7657146670186427-0.5744385024099052j))) assert _to_tuple(*pole_zero_numerical_data(ser1)) == \ ((), (5.0, 0.0, 0.0, 0.0)) assert _to_tuple(*pole_zero_numerical_data(par1)) == \ ((-5.645751311064592, -0.5000000000000008, -0.3542486889354093), ((-0.24999999999999986+1.3919410907075052j), (-0.24999999999999986-1.3919410907075052j), (-0.2499999999999998+0.32274861218395134j), (-0.2499999999999998-0.32274861218395134j))) def test_bode(): if not matplotlib: skip("Matplotlib not the default backend") def bode_phase_evalf(system, point): expr = system.to_expr() _w = Dummy("w", real=True) w_expr = expr.subs({system.var: I*_w}) return arg(w_expr).subs({_w: point}).evalf() def bode_mag_evalf(system, point): expr = system.to_expr() _w = Dummy("w", real=True) w_expr = expr.subs({system.var: I*_w}) return 20*log(Abs(w_expr), 10).subs({_w: point}).evalf() def test_bode_data(sys): return y_coordinate_equality(bode_magnitude_numerical_data, bode_mag_evalf, sys) \ and y_coordinate_equality(bode_phase_numerical_data, bode_phase_evalf, sys) assert test_bode_data(tf1) assert test_bode_data(tf2) assert test_bode_data(tf3) assert test_bode_data(tf4) assert test_bode_data(tf5) def check_point_accuracy(a, b): return all(Abs(a_i - b_i) < 1e-12 for \ a_i, b_i in zip(a, b)) def test_impulse_response(): if not matplotlib: skip("Matplotlib not the default backend") def impulse_res_tester(sys, expected_value): x, y = _to_tuple(*impulse_response_numerical_data(sys, adaptive=False, nb_of_points=10)) x_check = check_point_accuracy(x, expected_value[0]) y_check = check_point_accuracy(y, expected_value[1]) return x_check and y_check exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 0.544019738507865, 0.01993849743234938, -0.31140243360893216, -0.022852779906491996, 0.1778306498155759, 0.01962941084328499, -0.1013115194573652, -0.014975541213105696, 0.0575789724730714)) exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.1666666675, 0.08389223412935855, 0.02338051973475047, -0.014966807776379383, -0.034645954223054234, -0.040560075735512804, -0.037658628907103885, -0.030149507719590022, -0.021162090730736834, -0.012721292737437523)) exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (4.369893391586999e-09, 1.1750333000630964, 3.2922404058312473, 9.432290008148343, 28.37098083007151, 86.18577464367974, 261.90356653762115, 795.6538758627842, 2416.9920942096983, 7342.159505206647)) exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 6.17283950617284, 24.69135802469136, 55.555555555555564, 98.76543209876544, 154.320987654321, 222.22222222222226, 302.46913580246917, 395.0617283950618, 500.0)) exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, -0.10455606138085417, 0.06757671513476461, -0.03234567568833768, 0.013582514927757873, -0.005273419510705473, 0.0019364083003354075, -0.000680070134067832, 0.00022969845960406913, -7.476094359583917e-05)) exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-6.016699583000218e-09, 0.35039802056107394, 3.3728423827689884, 12.119846079276684, 25.86101014293389, 29.352480635282088, -30.49475907497664, -273.8717189554019, -863.2381702029659, -1747.0262164682233)) exp7 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 18.934638095560974, 5346.93244680907, 1384609.8718249386, 358161126.65801865, 92645770015.70108, 23964739753087.42, 6198974342083139.0, 1.603492601616059e+18, 4.147764422869658e+20)) assert impulse_res_tester(tf1, exp1) assert impulse_res_tester(tf2, exp2) assert impulse_res_tester(tf3, exp3) assert impulse_res_tester(tf4, exp4) assert impulse_res_tester(tf5, exp5) assert impulse_res_tester(tf7, exp6) assert impulse_res_tester(ser1, exp7) def test_step_response(): if not matplotlib: skip("Matplotlib not the default backend") def step_res_tester(sys, expected_value): x, y = _to_tuple(*step_response_numerical_data(sys, adaptive=False, nb_of_points=10)) x_check = check_point_accuracy(x, expected_value[0]) y_check = check_point_accuracy(y, expected_value[1]) return x_check and y_check exp1 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-1.9193285738516863e-08, 0.42283495488246126, 0.7840485977945262, 0.5546841805655717, 0.33903033806932087, 0.4627251747410237, 0.5909907598988051, 0.5247213989553071, 0.4486997874319281, 0.4839358435839171)) exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 0.13728409095645816, 0.19474559355325086, 0.1974909129243011, 0.16841657696573073, 0.12559777736159378, 0.08153828016664713, 0.04360471317348958, 0.015072994568868221, -0.003636420058445484)) exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 0.6314542141914303, 2.9356520038101035, 9.37731009663807, 28.452300356688376, 86.25721933273988, 261.9236645044672, 795.6435410577224, 2416.9786984578764, 7342.154119725917)) exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 2.286236899862826, 18.28989519890261, 61.72839629629631, 146.31916159122088, 285.7796124828532, 493.8271703703705, 784.1792566529494, 1170.553292729767, 1666.6667)) exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-3.999999997894577e-09, 0.6720357068882895, 0.4429938256137113, 0.5182010838004518, 0.4944139147159695, 0.5016379853883338, 0.4995466896527733, 0.5001154784851325, 0.49997448824584123, 0.5000039745919259)) exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-1.5433688493882158e-09, 0.3428705539937336, 1.1253619102202777, 3.1849962651016517, 9.47532757182671, 28.727231099148135, 87.29426924860557, 265.2138681048606, 805.6636260007757, 2447.387582370878)) assert step_res_tester(tf1, exp1) assert step_res_tester(tf2, exp2) assert step_res_tester(tf3, exp3) assert step_res_tester(tf4, exp4) assert step_res_tester(tf5, exp5) assert step_res_tester(ser2, exp6) def test_ramp_response(): if not matplotlib: skip("Matplotlib not the default backend") def ramp_res_tester(sys, num_points, expected_value, slope=1): x, y = _to_tuple(*ramp_response_numerical_data(sys, slope=slope, adaptive=False, nb_of_points=num_points)) x_check = check_point_accuracy(x, expected_value[0]) y_check = check_point_accuracy(y, expected_value[1]) return x_check and y_check exp1 = ((0.0, 2.0, 4.0, 6.0, 8.0, 10.0), (0.0, 0.7324667795033895, 1.9909720978650398, 2.7956587704217783, 3.9224897567931514, 4.85022655284895)) exp2 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (2.4360213402019326e-08, 0.10175320182493253, 0.33057612497658406, 0.5967937263298935, 0.8431511866718248, 1.0398805391471613, 1.1776043125035738, 1.2600994825747305, 1.2981042689274653, 1.304684417610106)) exp3 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (-3.9329040468771836e-08, 0.34686634635794555, 2.9998828170537903, 12.33303690737476, 40.993913948137795, 127.84145222317912, 391.41713691996, 1192.0006858708389, 3623.9808672503405, 11011.728034546572)) exp4 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.9051973784484078, 30.483158055174524, 154.32098765432104, 487.7305288827924, 1190.7483615302544, 2469.1358024691367, 4574.3789056546275, 7803.688462124678, 12500.0)) exp5 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 3.8844361856975635, 9.141792069209865, 14.096349157657231, 19.09783068994694, 24.10179770390321, 29.09907319114121, 34.10040420185154, 39.09983919254265, 44.10006013058409)) exp6 = ((0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0), (0.0, 1.1111111111111112, 2.2222222222222223, 3.3333333333333335, 4.444444444444445, 5.555555555555555, 6.666666666666667, 7.777777777777779, 8.88888888888889, 10.0)) assert ramp_res_tester(tf1, 6, exp1) assert ramp_res_tester(tf2, 10, exp2, 1.2) assert ramp_res_tester(tf3, 10, exp3, 1.5) assert ramp_res_tester(tf4, 10, exp4, 3) assert ramp_res_tester(tf5, 10, exp5, 9) assert ramp_res_tester(tf6, 10, exp6)
22f778191582f89ca5837e19c1828a0e146d424ca854c2f54f1a821e74308102
from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import log from sympy.external import import_module from sympy.physics.quantum.density import Density, entropy, fidelity from sympy.physics.quantum.state import Ket, TimeDepKet from sympy.physics.quantum.qubit import Qubit from sympy.physics.quantum.represent import represent from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.cartesian import XKet, PxKet, PxOp, XOp from sympy.physics.quantum.spin import JzKet from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum.trace import Tr from sympy.functions import sqrt from sympy.testing.pytest import raises from sympy.physics.quantum.matrixutils import scipy_sparse_matrix from sympy.physics.quantum.tensorproduct import TensorProduct def test_eval_args(): # check instance created assert isinstance(Density([Ket(0), 0.5], [Ket(1), 0.5]), Density) assert isinstance(Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)]), Density) #test if Qubit object type preserved d = Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)]) for (state, prob) in d.args: assert isinstance(state, Qubit) # check for value error, when prob is not provided raises(ValueError, lambda: Density([Ket(0)], [Ket(1)])) def test_doit(): x, y = symbols('x y') A, B, C, D, E, F = symbols('A B C D E F', commutative=False) d = Density([XKet(), 0.5], [PxKet(), 0.5]) assert (0.5*(PxKet()*Dagger(PxKet())) + 0.5*(XKet()*Dagger(XKet()))) == d.doit() # check for kets with expr in them d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5]) assert (0.5*(PxKet(x*y)*Dagger(PxKet(x*y))) + 0.5*(XKet(x*y)*Dagger(XKet(x*y)))) == d_with_sym.doit() d = Density([(A + B)*C, 1.0]) assert d.doit() == (1.0*A*C*Dagger(C)*Dagger(A) + 1.0*A*C*Dagger(C)*Dagger(B) + 1.0*B*C*Dagger(C)*Dagger(A) + 1.0*B*C*Dagger(C)*Dagger(B)) # With TensorProducts as args # Density with simple tensor products as args t = TensorProduct(A, B, C) d = Density([t, 1.0]) assert d.doit() == \ 1.0 * TensorProduct(A*Dagger(A), B*Dagger(B), C*Dagger(C)) # Density with multiple Tensorproducts as states t2 = TensorProduct(A, B) t3 = TensorProduct(C, D) d = Density([t2, 0.5], [t3, 0.5]) assert d.doit() == (0.5 * TensorProduct(A*Dagger(A), B*Dagger(B)) + 0.5 * TensorProduct(C*Dagger(C), D*Dagger(D))) #Density with mixed states d = Density([t2 + t3, 1.0]) assert d.doit() == (1.0 * TensorProduct(A*Dagger(A), B*Dagger(B)) + 1.0 * TensorProduct(A*Dagger(C), B*Dagger(D)) + 1.0 * TensorProduct(C*Dagger(A), D*Dagger(B)) + 1.0 * TensorProduct(C*Dagger(C), D*Dagger(D))) #Density operators with spin states tp1 = TensorProduct(JzKet(1, 1), JzKet(1, -1)) d = Density([tp1, 1]) # full trace t = Tr(d) assert t.doit() == 1 #Partial trace on density operators with spin states t = Tr(d, [0]) assert t.doit() == JzKet(1, -1) * Dagger(JzKet(1, -1)) t = Tr(d, [1]) assert t.doit() == JzKet(1, 1) * Dagger(JzKet(1, 1)) # with another spin state tp2 = TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) d = Density([tp2, 1]) #full trace t = Tr(d) assert t.doit() == 1 #Partial trace on density operators with spin states t = Tr(d, [0]) assert t.doit() == JzKet(S.Half, Rational(-1, 2)) * Dagger(JzKet(S.Half, Rational(-1, 2))) t = Tr(d, [1]) assert t.doit() == JzKet(S.Half, S.Half) * Dagger(JzKet(S.Half, S.Half)) def test_apply_op(): d = Density([Ket(0), 0.5], [Ket(1), 0.5]) assert d.apply_op(XOp()) == Density([XOp()*Ket(0), 0.5], [XOp()*Ket(1), 0.5]) def test_represent(): x, y = symbols('x y') d = Density([XKet(), 0.5], [PxKet(), 0.5]) assert (represent(0.5*(PxKet()*Dagger(PxKet()))) + represent(0.5*(XKet()*Dagger(XKet())))) == represent(d) # check for kets with expr in them d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5]) assert (represent(0.5*(PxKet(x*y)*Dagger(PxKet(x*y)))) + represent(0.5*(XKet(x*y)*Dagger(XKet(x*y))))) == \ represent(d_with_sym) # check when given explicit basis assert (represent(0.5*(XKet()*Dagger(XKet())), basis=PxOp()) + represent(0.5*(PxKet()*Dagger(PxKet())), basis=PxOp())) == \ represent(d, basis=PxOp()) def test_states(): d = Density([Ket(0), 0.5], [Ket(1), 0.5]) states = d.states() assert states[0] == Ket(0) and states[1] == Ket(1) def test_probs(): d = Density([Ket(0), .75], [Ket(1), 0.25]) probs = d.probs() assert probs[0] == 0.75 and probs[1] == 0.25 #probs can be symbols x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) probs = d.probs() assert probs[0] == x and probs[1] == y def test_get_state(): x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) states = (d.get_state(0), d.get_state(1)) assert states[0] == Ket(0) and states[1] == Ket(1) def test_get_prob(): x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) probs = (d.get_prob(0), d.get_prob(1)) assert probs[0] == x and probs[1] == y def test_entropy(): up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) d = Density((up, S.Half), (down, S.Half)) # test for density object ent = entropy(d) assert entropy(d) == log(2)/2 assert d.entropy() == log(2)/2 np = import_module('numpy', min_module_version='1.4.0') if np: #do this test only if 'numpy' is available on test machine np_mat = represent(d, format='numpy') ent = entropy(np_mat) assert isinstance(np_mat, np.matrixlib.defmatrix.matrix) assert ent.real == 0.69314718055994529 assert ent.imag == 0 scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) if scipy and np: #do this test only if numpy and scipy are available mat = represent(d, format="scipy.sparse") assert isinstance(mat, scipy_sparse_matrix) assert ent.real == 0.69314718055994529 assert ent.imag == 0 def test_eval_trace(): up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) d = Density((up, 0.5), (down, 0.5)) t = Tr(d) assert t.doit() == 1 #test dummy time dependent states class TestTimeDepKet(TimeDepKet): def _eval_trace(self, bra, **options): return 1 x, t = symbols('x t') k1 = TestTimeDepKet(0, 0.5) k2 = TestTimeDepKet(0, 1) d = Density([k1, 0.5], [k2, 0.5]) assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) + 0.5 * OuterProduct(k2, k2.dual)) t = Tr(d) assert t.doit() == 1 def test_fidelity(): #test with kets up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) updown = (S.One/sqrt(2))*up + (S.One/sqrt(2))*down #check with matrices up_dm = represent(up * Dagger(up)) down_dm = represent(down * Dagger(down)) updown_dm = represent(updown * Dagger(updown)) assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3 assert fidelity(up_dm, down_dm) < 1e-3 assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3 assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3 #check with density up_dm = Density([up, 1.0]) down_dm = Density([down, 1.0]) updown_dm = Density([updown, 1.0]) assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3 assert abs(fidelity(up_dm, down_dm)) < 1e-3 assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3 assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3 #check mixed states with density updown2 = sqrt(3)/2*up + S.Half*down d1 = Density([updown, 0.25], [updown2, 0.75]) d2 = Density([updown, 0.75], [updown2, 0.25]) assert abs(fidelity(d1, d2) - 0.991) < 1e-3 assert abs(fidelity(d2, d1) - fidelity(d1, d2)) < 1e-3 #using qubits/density(pure states) state1 = Qubit('0') state2 = Qubit('1') state3 = S.One/sqrt(2)*state1 + S.One/sqrt(2)*state2 state4 = sqrt(Rational(2, 3))*state1 + S.One/sqrt(3)*state2 state1_dm = Density([state1, 1]) state2_dm = Density([state2, 1]) state3_dm = Density([state3, 1]) assert fidelity(state1_dm, state1_dm) == 1 assert fidelity(state1_dm, state2_dm) == 0 assert abs(fidelity(state1_dm, state3_dm) - 1/sqrt(2)) < 1e-3 assert abs(fidelity(state3_dm, state2_dm) - 1/sqrt(2)) < 1e-3 #using qubits/density(mixed states) d1 = Density([state3, 0.70], [state4, 0.30]) d2 = Density([state3, 0.20], [state4, 0.80]) assert abs(fidelity(d1, d1) - 1) < 1e-3 assert abs(fidelity(d1, d2) - 0.996) < 1e-3 assert abs(fidelity(d1, d2) - fidelity(d2, d1)) < 1e-3 #TODO: test for invalid arguments # non-square matrix mat1 = [[0, 0], [0, 0], [0, 0]] mat2 = [[0, 0], [0, 0]] raises(ValueError, lambda: fidelity(mat1, mat2)) # unequal dimensions mat1 = [[0, 0], [0, 0]] mat2 = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] raises(ValueError, lambda: fidelity(mat1, mat2)) # unsupported data-type x, y = 1, 2 # random values that is not a matrix raises(ValueError, lambda: fidelity(x, y))
ac473f722ac826fa14d7100db8e4e432324776be8396e3f827db160f60fc5e97
from sympy.core.numbers import (Float, I, Integer) from sympy.matrices.dense import Matrix from sympy.external import import_module from sympy.testing.pytest import skip from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.represent import (represent, rep_innerproduct, rep_expectation, enumerate_states) from sympy.physics.quantum.state import Bra, Ket from sympy.physics.quantum.operator import Operator, OuterProduct from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.tensorproduct import matrix_tensor_product from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.matrixutils import (numpy_ndarray, scipy_sparse_matrix, to_numpy, to_scipy_sparse, to_sympy) from sympy.physics.quantum.cartesian import XKet, XOp, XBra from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.operatorset import operators_to_state Amat = Matrix([[1, I], [-I, 1]]) Bmat = Matrix([[1, 2], [3, 4]]) Avec = Matrix([[1], [I]]) class AKet(Ket): @classmethod def dual_class(self): return ABra def _represent_default_basis(self, **options): return self._represent_AOp(None, **options) def _represent_AOp(self, basis, **options): return Avec class ABra(Bra): @classmethod def dual_class(self): return AKet class AOp(Operator): def _represent_default_basis(self, **options): return self._represent_AOp(None, **options) def _represent_AOp(self, basis, **options): return Amat class BOp(Operator): def _represent_default_basis(self, **options): return self._represent_AOp(None, **options) def _represent_AOp(self, basis, **options): return Bmat k = AKet('a') b = ABra('a') A = AOp('A') B = BOp('B') _tests = [ # Bra (b, Dagger(Avec)), (Dagger(b), Avec), # Ket (k, Avec), (Dagger(k), Dagger(Avec)), # Operator (A, Amat), (Dagger(A), Dagger(Amat)), # OuterProduct (OuterProduct(k, b), Avec*Avec.H), # TensorProduct (TensorProduct(A, B), matrix_tensor_product(Amat, Bmat)), # Pow (A**2, Amat**2), # Add/Mul (A*B + 2*A, Amat*Bmat + 2*Amat), # Commutator (Commutator(A, B), Amat*Bmat - Bmat*Amat), # AntiCommutator (AntiCommutator(A, B), Amat*Bmat + Bmat*Amat), # InnerProduct (InnerProduct(b, k), (Avec.H*Avec)[0]) ] def test_format_sympy(): for test in _tests: lhs = represent(test[0], basis=A, format='sympy') rhs = to_sympy(test[1]) assert lhs == rhs def test_scalar_sympy(): assert represent(Integer(1)) == Integer(1) assert represent(Float(1.0)) == Float(1.0) assert represent(1.0 + I) == 1.0 + I np = import_module('numpy') def test_format_numpy(): if not np: skip("numpy not installed.") for test in _tests: lhs = represent(test[0], basis=A, format='numpy') rhs = to_numpy(test[1]) if isinstance(lhs, numpy_ndarray): assert (lhs == rhs).all() else: assert lhs == rhs def test_scalar_numpy(): if not np: skip("numpy not installed.") assert represent(Integer(1), format='numpy') == 1 assert represent(Float(1.0), format='numpy') == 1.0 assert represent(1.0 + I, format='numpy') == 1.0 + 1.0j scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def test_format_scipy_sparse(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") for test in _tests: lhs = represent(test[0], basis=A, format='scipy.sparse') rhs = to_scipy_sparse(test[1]) if isinstance(lhs, scipy_sparse_matrix): assert np.linalg.norm((lhs - rhs).todense()) == 0.0 else: assert lhs == rhs def test_scalar_scipy_sparse(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") assert represent(Integer(1), format='scipy.sparse') == 1 assert represent(Float(1.0), format='scipy.sparse') == 1.0 assert represent(1.0 + I, format='scipy.sparse') == 1.0 + 1.0j x_ket = XKet('x') x_bra = XBra('x') x_op = XOp('X') def test_innerprod_represent(): assert rep_innerproduct(x_ket) == InnerProduct(XBra("x_1"), x_ket).doit() assert rep_innerproduct(x_bra) == InnerProduct(x_bra, XKet("x_1")).doit() try: rep_innerproduct(x_op) except TypeError: return True def test_operator_represent(): basis_kets = enumerate_states(operators_to_state(x_op), 1, 2) assert rep_expectation( x_op) == qapply(basis_kets[1].dual*x_op*basis_kets[0]) def test_enumerate_states(): test = XKet("foo") assert enumerate_states(test, 1, 1) == [XKet("foo_1")] assert enumerate_states( test, [1, 2, 4]) == [XKet("foo_1"), XKet("foo_2"), XKet("foo_4")]
1d5475289d7c688a78d0e2da66f4f3e4d045ac93b0740e1c32fdf8368d432d38
from sympy.core.mul import prod from sympy.core.numbers import Rational from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.quantum import Dagger, Commutator, qapply from sympy.physics.quantum.boson import BosonOp from sympy.physics.quantum.boson import ( BosonFockKet, BosonFockBra, BosonCoherentKet, BosonCoherentBra) def test_bosonoperator(): a = BosonOp('a') b = BosonOp('b') assert isinstance(a, BosonOp) assert isinstance(Dagger(a), BosonOp) assert a.is_annihilation assert not Dagger(a).is_annihilation assert BosonOp("a") == BosonOp("a", True) assert BosonOp("a") != BosonOp("c") assert BosonOp("a", True) != BosonOp("a", False) assert Commutator(a, Dagger(a)).doit() == 1 assert Commutator(a, Dagger(b)).doit() == a * Dagger(b) - Dagger(b) * a assert Dagger(exp(a)) == exp(Dagger(a)) def test_boson_states(): a = BosonOp("a") # Fock states n = 3 assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0 assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1 assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \ == sqrt(prod(range(1, n+1))) # Coherent states alpha1, alpha2 = 1.2, 4.3 assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1 assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1 assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() - exp((alpha1 - alpha2) ** 2 * Rational(-1, 2))) < 1e-12 assert qapply(a * BosonCoherentKet(alpha1)) == \ alpha1 * BosonCoherentKet(alpha1)
45634855e5dbb5c178e723167b4d7278446e2a682111089ee580661b1a990d7e
from sympy.core.numbers import Integer from sympy.core.symbol import Symbol from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence from sympy.physics.quantum.hilbert import HilbertSpace from sympy.core.containers import Tuple x = Symbol('x') y = Symbol('y') def test_qexpr_new(): q = QExpr(0) assert q.label == (0,) assert q.hilbert_space == HilbertSpace() assert q.is_commutative is False q = QExpr(0, 1) assert q.label == (Integer(0), Integer(1)) q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1)) assert q.label == (Integer(0), Integer(1)) assert q.hilbert_space == HilbertSpace() def test_qexpr_commutative(): q1 = QExpr(x) q2 = QExpr(y) assert q1.is_commutative is False assert q2.is_commutative is False assert q1*q2 != q2*q1 q = QExpr._new_rawargs(0, 1, HilbertSpace()) assert q.is_commutative is False def test_qexpr_commutative_free_symbols(): q1 = QExpr(x) assert q1.free_symbols.pop().is_commutative is False q2 = QExpr('q2') assert q2.free_symbols.pop().is_commutative is False def test_qexpr_subs(): q1 = QExpr(x, y) assert q1.subs(x, y) == QExpr(y, y) assert q1.subs({x: 1, y: 2}) == QExpr(1, 2) def test_qsympify(): assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3)) assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \ (Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3) assert _qsympify_sequence((1,)) == (1,)
dd81ab5c2b052e12ed379311c93e5917c10bad2764bc3293bfac4a3388b68a6b
from sympy.external import import_module from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.gate import (X, Y, Z, H, CNOT, IdentityGate, CGate, PhaseGate, TGate) from sympy.physics.quantum.identitysearch import (generate_gate_rules, generate_equivalent_ids, GateIdentity, bfs_identity_search, is_scalar_sparse_matrix, is_scalar_nonsparse_matrix, is_degenerate, is_reducible) from sympy.testing.pytest import skip def create_gate_sequence(qubit=0): gates = (X(qubit), Y(qubit), Z(qubit), H(qubit)) return gates def test_generate_gate_rules_1(): # Test with tuples (x, y, z, h) = create_gate_sequence() ph = PhaseGate(0) cgate_t = CGate(0, TGate(1)) assert generate_gate_rules((x,)) == {((x,), ())} gate_rules = {((x, x), ()), ((x,), (x,))} assert generate_gate_rules((x, x)) == gate_rules gate_rules = {((x, y, x), ()), ((y, x, x), ()), ((x, x, y), ()), ((y, x), (x,)), ((x, y), (x,)), ((y,), (x, x))} assert generate_gate_rules((x, y, x)) == gate_rules gate_rules = {((x, y, z), ()), ((y, z, x), ()), ((z, x, y), ()), ((), (x, z, y)), ((), (y, x, z)), ((), (z, y, x)), ((x,), (z, y)), ((y, z), (x,)), ((y,), (x, z)), ((z, x), (y,)), ((z,), (y, x)), ((x, y), (z,))} actual = generate_gate_rules((x, y, z)) assert actual == gate_rules gate_rules = { ((), (h, z, y, x)), ((), (x, h, z, y)), ((), (y, x, h, z)), ((), (z, y, x, h)), ((h,), (z, y, x)), ((x,), (h, z, y)), ((y,), (x, h, z)), ((z,), (y, x, h)), ((h, x), (z, y)), ((x, y), (h, z)), ((y, z), (x, h)), ((z, h), (y, x)), ((h, x, y), (z,)), ((x, y, z), (h,)), ((y, z, h), (x,)), ((z, h, x), (y,)), ((h, x, y, z), ()), ((x, y, z, h), ()), ((y, z, h, x), ()), ((z, h, x, y), ())} actual = generate_gate_rules((x, y, z, h)) assert actual == gate_rules gate_rules = {((), (cgate_t**(-1), ph**(-1), x)), ((), (ph**(-1), x, cgate_t**(-1))), ((), (x, cgate_t**(-1), ph**(-1))), ((cgate_t,), (ph**(-1), x)), ((ph,), (x, cgate_t**(-1))), ((x,), (cgate_t**(-1), ph**(-1))), ((cgate_t, x), (ph**(-1),)), ((ph, cgate_t), (x,)), ((x, ph), (cgate_t**(-1),)), ((cgate_t, x, ph), ()), ((ph, cgate_t, x), ()), ((x, ph, cgate_t), ())} actual = generate_gate_rules((x, ph, cgate_t)) assert actual == gate_rules gate_rules = {(Integer(1), cgate_t**(-1)*ph**(-1)*x), (Integer(1), ph**(-1)*x*cgate_t**(-1)), (Integer(1), x*cgate_t**(-1)*ph**(-1)), (cgate_t, ph**(-1)*x), (ph, x*cgate_t**(-1)), (x, cgate_t**(-1)*ph**(-1)), (cgate_t*x, ph**(-1)), (ph*cgate_t, x), (x*ph, cgate_t**(-1)), (cgate_t*x*ph, Integer(1)), (ph*cgate_t*x, Integer(1)), (x*ph*cgate_t, Integer(1))} actual = generate_gate_rules((x, ph, cgate_t), return_as_muls=True) assert actual == gate_rules def test_generate_gate_rules_2(): # Test with Muls (x, y, z, h) = create_gate_sequence() ph = PhaseGate(0) cgate_t = CGate(0, TGate(1)) # Note: 1 (type int) is not the same as 1 (type One) expected = {(x, Integer(1))} assert generate_gate_rules((x,), return_as_muls=True) == expected expected = {(Integer(1), Integer(1))} assert generate_gate_rules(x*x, return_as_muls=True) == expected expected = {((), ())} assert generate_gate_rules(x*x, return_as_muls=False) == expected gate_rules = {(x*y*x, Integer(1)), (y, Integer(1)), (y*x, x), (x*y, x)} assert generate_gate_rules(x*y*x, return_as_muls=True) == gate_rules gate_rules = {(x*y*z, Integer(1)), (y*z*x, Integer(1)), (z*x*y, Integer(1)), (Integer(1), x*z*y), (Integer(1), y*x*z), (Integer(1), z*y*x), (x, z*y), (y*z, x), (y, x*z), (z*x, y), (z, y*x), (x*y, z)} actual = generate_gate_rules(x*y*z, return_as_muls=True) assert actual == gate_rules gate_rules = {(Integer(1), h*z*y*x), (Integer(1), x*h*z*y), (Integer(1), y*x*h*z), (Integer(1), z*y*x*h), (h, z*y*x), (x, h*z*y), (y, x*h*z), (z, y*x*h), (h*x, z*y), (z*h, y*x), (x*y, h*z), (y*z, x*h), (h*x*y, z), (x*y*z, h), (y*z*h, x), (z*h*x, y), (h*x*y*z, Integer(1)), (x*y*z*h, Integer(1)), (y*z*h*x, Integer(1)), (z*h*x*y, Integer(1))} actual = generate_gate_rules(x*y*z*h, return_as_muls=True) assert actual == gate_rules gate_rules = {(Integer(1), cgate_t**(-1)*ph**(-1)*x), (Integer(1), ph**(-1)*x*cgate_t**(-1)), (Integer(1), x*cgate_t**(-1)*ph**(-1)), (cgate_t, ph**(-1)*x), (ph, x*cgate_t**(-1)), (x, cgate_t**(-1)*ph**(-1)), (cgate_t*x, ph**(-1)), (ph*cgate_t, x), (x*ph, cgate_t**(-1)), (cgate_t*x*ph, Integer(1)), (ph*cgate_t*x, Integer(1)), (x*ph*cgate_t, Integer(1))} actual = generate_gate_rules(x*ph*cgate_t, return_as_muls=True) assert actual == gate_rules gate_rules = {((), (cgate_t**(-1), ph**(-1), x)), ((), (ph**(-1), x, cgate_t**(-1))), ((), (x, cgate_t**(-1), ph**(-1))), ((cgate_t,), (ph**(-1), x)), ((ph,), (x, cgate_t**(-1))), ((x,), (cgate_t**(-1), ph**(-1))), ((cgate_t, x), (ph**(-1),)), ((ph, cgate_t), (x,)), ((x, ph), (cgate_t**(-1),)), ((cgate_t, x, ph), ()), ((ph, cgate_t, x), ()), ((x, ph, cgate_t), ())} actual = generate_gate_rules(x*ph*cgate_t) assert actual == gate_rules def test_generate_equivalent_ids_1(): # Test with tuples (x, y, z, h) = create_gate_sequence() assert generate_equivalent_ids((x,)) == {(x,)} assert generate_equivalent_ids((x, x)) == {(x, x)} assert generate_equivalent_ids((x, y)) == {(x, y), (y, x)} gate_seq = (x, y, z) gate_ids = {(x, y, z), (y, z, x), (z, x, y), (z, y, x), (y, x, z), (x, z, y)} assert generate_equivalent_ids(gate_seq) == gate_ids gate_ids = {Mul(x, y, z), Mul(y, z, x), Mul(z, x, y), Mul(z, y, x), Mul(y, x, z), Mul(x, z, y)} assert generate_equivalent_ids(gate_seq, return_as_muls=True) == gate_ids gate_seq = (x, y, z, h) gate_ids = {(x, y, z, h), (y, z, h, x), (h, x, y, z), (h, z, y, x), (z, y, x, h), (y, x, h, z), (z, h, x, y), (x, h, z, y)} assert generate_equivalent_ids(gate_seq) == gate_ids gate_seq = (x, y, x, y) gate_ids = {(x, y, x, y), (y, x, y, x)} assert generate_equivalent_ids(gate_seq) == gate_ids cgate_y = CGate((1,), y) gate_seq = (y, cgate_y, y, cgate_y) gate_ids = {(y, cgate_y, y, cgate_y), (cgate_y, y, cgate_y, y)} assert generate_equivalent_ids(gate_seq) == gate_ids cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) gate_seq = (cnot, h, cgate_z, h) gate_ids = {(cnot, h, cgate_z, h), (h, cgate_z, h, cnot), (h, cnot, h, cgate_z), (cgate_z, h, cnot, h)} assert generate_equivalent_ids(gate_seq) == gate_ids def test_generate_equivalent_ids_2(): # Test with Muls (x, y, z, h) = create_gate_sequence() assert generate_equivalent_ids((x,), return_as_muls=True) == {x} gate_ids = {Integer(1)} assert generate_equivalent_ids(x*x, return_as_muls=True) == gate_ids gate_ids = {x*y, y*x} assert generate_equivalent_ids(x*y, return_as_muls=True) == gate_ids gate_ids = {(x, y), (y, x)} assert generate_equivalent_ids(x*y) == gate_ids circuit = Mul(*(x, y, z)) gate_ids = {x*y*z, y*z*x, z*x*y, z*y*x, y*x*z, x*z*y} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids circuit = Mul(*(x, y, z, h)) gate_ids = {x*y*z*h, y*z*h*x, h*x*y*z, h*z*y*x, z*y*x*h, y*x*h*z, z*h*x*y, x*h*z*y} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids circuit = Mul(*(x, y, x, y)) gate_ids = {x*y*x*y, y*x*y*x} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids cgate_y = CGate((1,), y) circuit = Mul(*(y, cgate_y, y, cgate_y)) gate_ids = {y*cgate_y*y*cgate_y, cgate_y*y*cgate_y*y} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) circuit = Mul(*(cnot, h, cgate_z, h)) gate_ids = {cnot*h*cgate_z*h, h*cgate_z*h*cnot, h*cnot*h*cgate_z, cgate_z*h*cnot*h} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids def test_is_scalar_nonsparse_matrix(): numqubits = 2 id_only = False id_gate = (IdentityGate(1),) actual = is_scalar_nonsparse_matrix(id_gate, numqubits, id_only) assert actual is True x0 = X(0) xx_circuit = (x0, x0) actual = is_scalar_nonsparse_matrix(xx_circuit, numqubits, id_only) assert actual is True x1 = X(1) y1 = Y(1) xy_circuit = (x1, y1) actual = is_scalar_nonsparse_matrix(xy_circuit, numqubits, id_only) assert actual is False z1 = Z(1) xyz_circuit = (x1, y1, z1) actual = is_scalar_nonsparse_matrix(xyz_circuit, numqubits, id_only) assert actual is True cnot = CNOT(1, 0) cnot_circuit = (cnot, cnot) actual = is_scalar_nonsparse_matrix(cnot_circuit, numqubits, id_only) assert actual is True h = H(0) hh_circuit = (h, h) actual = is_scalar_nonsparse_matrix(hh_circuit, numqubits, id_only) assert actual is True h1 = H(1) xhzh_circuit = (x1, h1, z1, h1) actual = is_scalar_nonsparse_matrix(xhzh_circuit, numqubits, id_only) assert actual is True id_only = True actual = is_scalar_nonsparse_matrix(xhzh_circuit, numqubits, id_only) assert actual is True actual = is_scalar_nonsparse_matrix(xyz_circuit, numqubits, id_only) assert actual is False actual = is_scalar_nonsparse_matrix(cnot_circuit, numqubits, id_only) assert actual is True actual = is_scalar_nonsparse_matrix(hh_circuit, numqubits, id_only) assert actual is True def test_is_scalar_sparse_matrix(): np = import_module('numpy') if not np: skip("numpy not installed.") scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) if not scipy: skip("scipy not installed.") numqubits = 2 id_only = False id_gate = (IdentityGate(1),) assert is_scalar_sparse_matrix(id_gate, numqubits, id_only) is True x0 = X(0) xx_circuit = (x0, x0) assert is_scalar_sparse_matrix(xx_circuit, numqubits, id_only) is True x1 = X(1) y1 = Y(1) xy_circuit = (x1, y1) assert is_scalar_sparse_matrix(xy_circuit, numqubits, id_only) is False z1 = Z(1) xyz_circuit = (x1, y1, z1) assert is_scalar_sparse_matrix(xyz_circuit, numqubits, id_only) is True cnot = CNOT(1, 0) cnot_circuit = (cnot, cnot) assert is_scalar_sparse_matrix(cnot_circuit, numqubits, id_only) is True h = H(0) hh_circuit = (h, h) assert is_scalar_sparse_matrix(hh_circuit, numqubits, id_only) is True # NOTE: # The elements of the sparse matrix for the following circuit # is actually 1.0000000000000002+0.0j. h1 = H(1) xhzh_circuit = (x1, h1, z1, h1) assert is_scalar_sparse_matrix(xhzh_circuit, numqubits, id_only) is True id_only = True assert is_scalar_sparse_matrix(xhzh_circuit, numqubits, id_only) is True assert is_scalar_sparse_matrix(xyz_circuit, numqubits, id_only) is False assert is_scalar_sparse_matrix(cnot_circuit, numqubits, id_only) is True assert is_scalar_sparse_matrix(hh_circuit, numqubits, id_only) is True def test_is_degenerate(): (x, y, z, h) = create_gate_sequence() gate_id = GateIdentity(x, y, z) ids = {gate_id} another_id = (z, y, x) assert is_degenerate(ids, another_id) is True def test_is_reducible(): nqubits = 2 (x, y, z, h) = create_gate_sequence() circuit = (x, y, y) assert is_reducible(circuit, nqubits, 1, 3) is True circuit = (x, y, x) assert is_reducible(circuit, nqubits, 1, 3) is False circuit = (x, y, y, x) assert is_reducible(circuit, nqubits, 0, 4) is True circuit = (x, y, y, x) assert is_reducible(circuit, nqubits, 1, 3) is True circuit = (x, y, z, y, y) assert is_reducible(circuit, nqubits, 1, 5) is True def test_bfs_identity_search(): assert bfs_identity_search([], 1) == set() (x, y, z, h) = create_gate_sequence() gate_list = [x] id_set = {GateIdentity(x, x)} assert bfs_identity_search(gate_list, 1, max_depth=2) == id_set # Set should not contain degenerate quantum circuits gate_list = [x, y, z] id_set = {GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(x, y, z)} assert bfs_identity_search(gate_list, 1) == id_set id_set = {GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(x, y, z), GateIdentity(x, y, x, y), GateIdentity(x, z, x, z), GateIdentity(y, z, y, z)} assert bfs_identity_search(gate_list, 1, max_depth=4) == id_set assert bfs_identity_search(gate_list, 1, max_depth=5) == id_set gate_list = [x, y, z, h] id_set = {GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h), GateIdentity(x, y, z), GateIdentity(x, y, x, y), GateIdentity(x, z, x, z), GateIdentity(x, h, z, h), GateIdentity(y, z, y, z), GateIdentity(y, h, y, h)} assert bfs_identity_search(gate_list, 1) == id_set id_set = {GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h)} assert id_set == bfs_identity_search(gate_list, 1, max_depth=3, identity_only=True) id_set = {GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h), GateIdentity(x, y, z), GateIdentity(x, y, x, y), GateIdentity(x, z, x, z), GateIdentity(x, h, z, h), GateIdentity(y, z, y, z), GateIdentity(y, h, y, h), GateIdentity(x, y, h, x, h), GateIdentity(x, z, h, y, h), GateIdentity(y, z, h, z, h)} assert bfs_identity_search(gate_list, 1, max_depth=5) == id_set id_set = {GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h), GateIdentity(x, h, z, h)} assert id_set == bfs_identity_search(gate_list, 1, max_depth=4, identity_only=True) cnot = CNOT(1, 0) gate_list = [x, cnot] id_set = {GateIdentity(x, x), GateIdentity(cnot, cnot), GateIdentity(x, cnot, x, cnot)} assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set cgate_x = CGate((1,), x) gate_list = [x, cgate_x] id_set = {GateIdentity(x, x), GateIdentity(cgate_x, cgate_x), GateIdentity(x, cgate_x, x, cgate_x)} assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set cgate_z = CGate((0,), Z(1)) gate_list = [cnot, cgate_z, h] id_set = {GateIdentity(h, h), GateIdentity(cgate_z, cgate_z), GateIdentity(cnot, cnot), GateIdentity(cnot, h, cgate_z, h)} assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set s = PhaseGate(0) t = TGate(0) gate_list = [s, t] id_set = {GateIdentity(s, s, s, s)} assert bfs_identity_search(gate_list, 1, max_depth=4) == id_set def test_bfs_identity_search_xfail(): s = PhaseGate(0) t = TGate(0) gate_list = [Dagger(s), t] id_set = {GateIdentity(Dagger(s), t, t)} assert bfs_identity_search(gate_list, 1, max_depth=3) == id_set
ee8057d47a169eb62d1e3001468aafff040307d07cdbd13df5f75c2736aa6b03
from sympy.core.mul import Mul from sympy.core.numbers import (I, Integer, Rational, pi) from sympy.core.symbol import (Wild, symbols) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices import Matrix, ImmutableMatrix from sympy.physics.quantum.gate import (XGate, YGate, ZGate, random_circuit, CNOT, IdentityGate, H, X, Y, S, T, Z, SwapGate, gate_simp, gate_sort, CNotGate, TGate, HadamardGate, PhaseGate, UGate, CGate) from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.represent import represent from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qubit import Qubit, IntQubit, qubit_to_matrix, \ matrix_to_qubit from sympy.physics.quantum.matrixutils import matrix_to_zero from sympy.physics.quantum.matrixcache import sqrt2_inv from sympy.physics.quantum import Dagger def test_gate(): """Test a basic gate.""" h = HadamardGate(1) assert h.min_qubits == 2 assert h.nqubits == 1 i0 = Wild('i0') i1 = Wild('i1') h0_w1 = HadamardGate(i0) h0_w2 = HadamardGate(i0) h1_w1 = HadamardGate(i1) assert h0_w1 == h0_w2 assert h0_w1 != h1_w1 assert h1_w1 != h0_w2 cnot_10_w1 = CNOT(i1, i0) cnot_10_w2 = CNOT(i1, i0) cnot_01_w1 = CNOT(i0, i1) assert cnot_10_w1 == cnot_10_w2 assert cnot_10_w1 != cnot_01_w1 assert cnot_10_w2 != cnot_01_w1 def test_UGate(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) # Test basic case where gate exists in 1-qubit space u1 = UGate((0,), uMat) assert represent(u1, nqubits=1) == uMat assert qapply(u1*Qubit('0')) == a*Qubit('0') + c*Qubit('1') assert qapply(u1*Qubit('1')) == b*Qubit('0') + d*Qubit('1') # Test case where gate exists in a larger space u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ qubit_to_matrix(qapply(u2*IntQubit(i, 2))) def test_cgate(): """Test the general CGate.""" # Test single control functionality CNOTMatrix = Matrix( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) assert represent(CGate(1, XGate(0)), nqubits=2) == CNOTMatrix # Test multiple control bit functionality ToffoliGate = CGate((1, 2), XGate(0)) assert represent(ToffoliGate, nqubits=3) == \ Matrix( [[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]) ToffoliGate = CGate((3, 0), XGate(1)) assert qapply(ToffoliGate*Qubit('1001')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('1001'), nqubits=4)) assert qapply(ToffoliGate*Qubit('0000')) == \ matrix_to_qubit(represent(ToffoliGate*Qubit('0000'), nqubits=4)) CYGate = CGate(1, YGate(0)) CYGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 0, -I), (0, 0, I, 0))) # Test 2 qubit controlled-Y gate decompose method. assert represent(CYGate.decompose(), nqubits=2) == CYGate_matrix CZGate = CGate(0, ZGate(1)) CZGate_matrix = Matrix( ((1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, -1))) assert qapply(CZGate*Qubit('11')) == -Qubit('11') assert matrix_to_qubit(represent(CZGate*Qubit('11'), nqubits=2)) == \ -Qubit('11') # Test 2 qubit controlled-Z gate decompose method. assert represent(CZGate.decompose(), nqubits=2) == CZGate_matrix CPhaseGate = CGate(0, PhaseGate(1)) assert qapply(CPhaseGate*Qubit('11')) == \ I*Qubit('11') assert matrix_to_qubit(represent(CPhaseGate*Qubit('11'), nqubits=2)) == \ I*Qubit('11') # Test that the dagger, inverse, and power of CGate is evaluated properly assert Dagger(CZGate) == CZGate assert pow(CZGate, 1) == Dagger(CZGate) assert Dagger(CZGate) == CZGate.inverse() assert Dagger(CPhaseGate) != CPhaseGate assert Dagger(CPhaseGate) == CPhaseGate.inverse() assert Dagger(CPhaseGate) == pow(CPhaseGate, -1) assert pow(CPhaseGate, -1) == CPhaseGate.inverse() def test_UGate_CGate_combo(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) cMat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, a, b], [0, 0, c, d]]) # Test basic case where gate exists in 1-qubit space. u1 = UGate((0,), uMat) cu1 = CGate(1, u1) assert represent(cu1, nqubits=2) == cMat assert qapply(cu1*Qubit('10')) == a*Qubit('10') + c*Qubit('11') assert qapply(cu1*Qubit('11')) == b*Qubit('10') + d*Qubit('11') assert qapply(cu1*Qubit('01')) == Qubit('01') assert qapply(cu1*Qubit('00')) == Qubit('00') # Test case where gate exists in a larger space. u2 = UGate((1,), uMat) u2Rep = represent(u2, nqubits=2) for i in range(4): assert u2Rep*qubit_to_matrix(IntQubit(i, 2)) == \ qubit_to_matrix(qapply(u2*IntQubit(i, 2))) def test_UGate_OneQubitGate_combo(): v, w, f, g = symbols('v w f g') uMat1 = ImmutableMatrix([[v, w], [f, g]]) cMat1 = Matrix([[v, w + 1, 0, 0], [f + 1, g, 0, 0], [0, 0, v, w + 1], [0, 0, f + 1, g]]) u1 = X(0) + UGate(0, uMat1) assert represent(u1, nqubits=2) == cMat1 uMat2 = ImmutableMatrix([[1/sqrt(2), 1/sqrt(2)], [I/sqrt(2), -I/sqrt(2)]]) cMat2_1 = Matrix([[Rational(1, 2) + I/2, Rational(1, 2) - I/2], [Rational(1, 2) - I/2, Rational(1, 2) + I/2]]) cMat2_2 = Matrix([[1, 0], [0, I]]) u2 = UGate(0, uMat2) assert represent(H(0)*u2, nqubits=1) == cMat2_1 assert represent(u2*H(0), nqubits=1) == cMat2_2 def test_represent_hadamard(): """Test the representation of the hadamard gate.""" circuit = HadamardGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) # Check that the answers are same to within an epsilon. assert answer == Matrix([sqrt2_inv, sqrt2_inv, 0, 0]) def test_represent_xgate(): """Test the representation of the X gate.""" circuit = XGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([0, 1, 0, 0]) == answer def test_represent_ygate(): """Test the representation of the Y gate.""" circuit = YGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert answer[0] == 0 and answer[1] == I and \ answer[2] == 0 and answer[3] == 0 def test_represent_zgate(): """Test the representation of the Z gate.""" circuit = ZGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([1, 0, 0, 0]) == answer def test_represent_phasegate(): """Test the representation of the S gate.""" circuit = PhaseGate(0)*Qubit('01') answer = represent(circuit, nqubits=2) assert Matrix([0, I, 0, 0]) == answer def test_represent_tgate(): """Test the representation of the T gate.""" circuit = TGate(0)*Qubit('01') assert Matrix([0, exp(I*pi/4), 0, 0]) == represent(circuit, nqubits=2) def test_compound_gates(): """Test a compound gate representation.""" circuit = YGate(0)*ZGate(0)*XGate(0)*HadamardGate(0)*Qubit('00') answer = represent(circuit, nqubits=2) assert Matrix([I/sqrt(2), I/sqrt(2), 0, 0]) == answer def test_cnot_gate(): """Test the CNOT gate.""" circuit = CNotGate(1, 0) assert represent(circuit, nqubits=2) == \ Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) circuit = circuit*Qubit('111') assert matrix_to_qubit(represent(circuit, nqubits=3)) == \ qapply(circuit) circuit = CNotGate(1, 0) assert Dagger(circuit) == circuit assert Dagger(Dagger(circuit)) == circuit assert circuit*circuit == 1 def test_gate_sort(): """Test gate_sort.""" for g in (X, Y, Z, H, S, T): assert gate_sort(g(2)*g(1)*g(0)) == g(0)*g(1)*g(2) e = gate_sort(X(1)*H(0)**2*CNOT(0, 1)*X(1)*X(0)) assert e == H(0)**2*CNOT(0, 1)*X(0)*X(1)**2 assert gate_sort(Z(0)*X(0)) == -X(0)*Z(0) assert gate_sort(Z(0)*X(0)**2) == X(0)**2*Z(0) assert gate_sort(Y(0)*H(0)) == -H(0)*Y(0) assert gate_sort(Y(0)*X(0)) == -X(0)*Y(0) assert gate_sort(Z(0)*Y(0)) == -Y(0)*Z(0) assert gate_sort(T(0)*S(0)) == S(0)*T(0) assert gate_sort(Z(0)*S(0)) == S(0)*Z(0) assert gate_sort(Z(0)*T(0)) == T(0)*Z(0) assert gate_sort(Z(0)*CNOT(0, 1)) == CNOT(0, 1)*Z(0) assert gate_sort(S(0)*CNOT(0, 1)) == CNOT(0, 1)*S(0) assert gate_sort(T(0)*CNOT(0, 1)) == CNOT(0, 1)*T(0) assert gate_sort(X(1)*CNOT(0, 1)) == CNOT(0, 1)*X(1) # This takes a long time and should only be uncommented once in a while. # nqubits = 5 # ngates = 10 # trials = 10 # for i in range(trials): # c = random_circuit(ngates, nqubits) # assert represent(c, nqubits=nqubits) == \ # represent(gate_sort(c), nqubits=nqubits) def test_gate_simp(): """Test gate_simp.""" e = H(0)*X(1)*H(0)**2*CNOT(0, 1)*X(1)**3*X(0)*Z(3)**2*S(4)**3 assert gate_simp(e) == H(0)*CNOT(0, 1)*S(4)*X(0)*Z(4) assert gate_simp(X(0)*X(0)) == 1 assert gate_simp(Y(0)*Y(0)) == 1 assert gate_simp(Z(0)*Z(0)) == 1 assert gate_simp(H(0)*H(0)) == 1 assert gate_simp(T(0)*T(0)) == S(0) assert gate_simp(S(0)*S(0)) == Z(0) assert gate_simp(Integer(1)) == Integer(1) assert gate_simp(X(0)**2 + Y(0)**2) == Integer(2) def test_swap_gate(): """Test the SWAP gate.""" swap_gate_matrix = Matrix( ((1, 0, 0, 0), (0, 0, 1, 0), (0, 1, 0, 0), (0, 0, 0, 1))) assert represent(SwapGate(1, 0).decompose(), nqubits=2) == swap_gate_matrix assert qapply(SwapGate(1, 3)*Qubit('0010')) == Qubit('1000') nqubits = 4 for i in range(nqubits): for j in range(i): assert represent(SwapGate(i, j), nqubits=nqubits) == \ represent(SwapGate(i, j).decompose(), nqubits=nqubits) def test_one_qubit_commutators(): """Test single qubit gate commutation relations.""" for g1 in (IdentityGate, X, Y, Z, H, T, S): for g2 in (IdentityGate, X, Y, Z, H, T, S): e = Commutator(g1(0), g2(0)) a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) assert a == b e = Commutator(g1(0), g2(1)) assert e.doit() == 0 def test_one_qubit_anticommutators(): """Test single qubit gate anticommutation relations.""" for g1 in (IdentityGate, X, Y, Z, H): for g2 in (IdentityGate, X, Y, Z, H): e = AntiCommutator(g1(0), g2(0)) a = matrix_to_zero(represent(e, nqubits=1, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=1, format='sympy')) assert a == b e = AntiCommutator(g1(0), g2(1)) a = matrix_to_zero(represent(e, nqubits=2, format='sympy')) b = matrix_to_zero(represent(e.doit(), nqubits=2, format='sympy')) assert a == b def test_cnot_commutators(): """Test commutators of involving CNOT gates.""" assert Commutator(CNOT(0, 1), Z(0)).doit() == 0 assert Commutator(CNOT(0, 1), T(0)).doit() == 0 assert Commutator(CNOT(0, 1), S(0)).doit() == 0 assert Commutator(CNOT(0, 1), X(1)).doit() == 0 assert Commutator(CNOT(0, 1), CNOT(0, 1)).doit() == 0 assert Commutator(CNOT(0, 1), CNOT(0, 2)).doit() == 0 assert Commutator(CNOT(0, 2), CNOT(0, 1)).doit() == 0 assert Commutator(CNOT(1, 2), CNOT(1, 0)).doit() == 0 def test_random_circuit(): c = random_circuit(10, 3) assert isinstance(c, Mul) m = represent(c, nqubits=3) assert m.shape == (8, 8) assert isinstance(m, Matrix) def test_hermitian_XGate(): x = XGate(1, 2) x_dagger = Dagger(x) assert (x == x_dagger) def test_hermitian_YGate(): y = YGate(1, 2) y_dagger = Dagger(y) assert (y == y_dagger) def test_hermitian_ZGate(): z = ZGate(1, 2) z_dagger = Dagger(z) assert (z == z_dagger) def test_unitary_XGate(): x = XGate(1, 2) x_dagger = Dagger(x) assert (x*x_dagger == 1) def test_unitary_YGate(): y = YGate(1, 2) y_dagger = Dagger(y) assert (y*y_dagger == 1) def test_unitary_ZGate(): z = ZGate(1, 2) z_dagger = Dagger(z) assert (z*z_dagger == 1)
7d65f248c857b679e3fc67fdd202f3f18a4104116143b13058e020f66ab3b94f
from sympy.core.mul import Mul from sympy.core.numbers import (I, Integer, Rational) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.gate import H from sympy.physics.quantum.operator import Operator from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.spin import Jx, Jy, Jz, Jplus, Jminus, J2, JzKet from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.state import Ket from sympy.physics.quantum.density import Density from sympy.physics.quantum.qubit import Qubit from sympy.physics.quantum.boson import BosonOp, BosonFockKet, BosonFockBra j, jp, m, mp = symbols("j j' m m'") z = JzKet(1, 0) po = JzKet(1, 1) mo = JzKet(1, -1) A = Operator('A') class Foo(Operator): def _apply_operator_JzKet(self, ket, **options): return ket def test_basic(): assert qapply(Jz*po) == hbar*po assert qapply(Jx*z) == hbar*po/sqrt(2) + hbar*mo/sqrt(2) assert qapply((Jplus + Jminus)*z/sqrt(2)) == hbar*po + hbar*mo assert qapply(Jz*(po + mo)) == hbar*po - hbar*mo assert qapply(Jz*po + Jz*mo) == hbar*po - hbar*mo assert qapply(Jminus*Jminus*po) == 2*hbar**2*mo assert qapply(Jplus**2*mo) == 2*hbar**2*po assert qapply(Jplus**2*Jminus**2*po) == 4*hbar**4*po def test_extra(): extra = z.dual*A*z assert qapply(Jz*po*extra) == hbar*po*extra assert qapply(Jx*z*extra) == (hbar*po/sqrt(2) + hbar*mo/sqrt(2))*extra assert qapply( (Jplus + Jminus)*z/sqrt(2)*extra) == hbar*po*extra + hbar*mo*extra assert qapply(Jz*(po + mo)*extra) == hbar*po*extra - hbar*mo*extra assert qapply(Jz*po*extra + Jz*mo*extra) == hbar*po*extra - hbar*mo*extra assert qapply(Jminus*Jminus*po*extra) == 2*hbar**2*mo*extra assert qapply(Jplus**2*mo*extra) == 2*hbar**2*po*extra assert qapply(Jplus**2*Jminus**2*po*extra) == 4*hbar**4*po*extra def test_innerproduct(): assert qapply(po.dual*Jz*po, ip_doit=False) == hbar*(po.dual*po) assert qapply(po.dual*Jz*po) == hbar def test_zero(): assert qapply(0) == 0 assert qapply(Integer(0)) == 0 def test_commutator(): assert qapply(Commutator(Jx, Jy)*Jz*po) == I*hbar**3*po assert qapply(Commutator(J2, Jz)*Jz*po) == 0 assert qapply(Commutator(Jz, Foo('F'))*po) == 0 assert qapply(Commutator(Foo('F'), Jz)*po) == 0 def test_anticommutator(): assert qapply(AntiCommutator(Jz, Foo('F'))*po) == 2*hbar*po assert qapply(AntiCommutator(Foo('F'), Jz)*po) == 2*hbar*po def test_outerproduct(): e = Jz*(mo*po.dual)*Jz*po assert qapply(e) == -hbar**2*mo assert qapply(e, ip_doit=False) == -hbar**2*(po.dual*po)*mo assert qapply(e).doit() == -hbar**2*mo def test_tensorproduct(): a = BosonOp("a") b = BosonOp("b") ket1 = TensorProduct(BosonFockKet(1), BosonFockKet(2)) ket2 = TensorProduct(BosonFockKet(0), BosonFockKet(0)) ket3 = TensorProduct(BosonFockKet(0), BosonFockKet(2)) bra1 = TensorProduct(BosonFockBra(0), BosonFockBra(0)) bra2 = TensorProduct(BosonFockBra(1), BosonFockBra(2)) assert qapply(TensorProduct(a, b ** 2) * ket1) == sqrt(2) * ket2 assert qapply(TensorProduct(a, Dagger(b) * b) * ket1) == 2 * ket3 assert qapply(bra1 * TensorProduct(a, b * b), dagger=True) == sqrt(2) * bra2 assert qapply(bra2 * ket1).doit() == TensorProduct(1, 1) assert qapply(TensorProduct(a, b * b) * ket1) == sqrt(2) * ket2 assert qapply(Dagger(TensorProduct(a, b * b) * ket1), dagger=True) == sqrt(2) * Dagger(ket2) def test_dagger(): lhs = Dagger(Qubit(0))*Dagger(H(0)) rhs = Dagger(Qubit(1))/sqrt(2) + Dagger(Qubit(0))/sqrt(2) assert qapply(lhs, dagger=True) == rhs def test_issue_6073(): x, y = symbols('x y', commutative=False) A = Ket(x, y) B = Operator('B') assert qapply(A) == A assert qapply(A.dual*B) == A.dual*B def test_density(): d = Density([Jz*mo, 0.5], [Jz*po, 0.5]) assert qapply(d) == Density([-hbar*mo, 0.5], [hbar*po, 0.5]) def test_issue3044(): expr1 = TensorProduct(Jz*JzKet(S(2),S.NegativeOne)/sqrt(2), Jz*JzKet(S.Half,S.Half)) result = Mul(S.NegativeOne, Rational(1, 4), 2**S.Half, hbar**2) result *= TensorProduct(JzKet(2,-1), JzKet(S.Half,S.Half)) assert qapply(expr1) == result
6fc7812f098bf22cdef9adf44cc0e4a16b83ca6d363ef063afb6b27cbc1a47f2
"""Tests for cartesian.py""" from sympy.core.numbers import (I, pi) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.delta_functions import DiracDelta from sympy.sets.sets import Interval from sympy.physics.quantum import qapply, represent, L2, Dagger from sympy.physics.quantum import Commutator, hbar from sympy.physics.quantum.cartesian import ( XOp, YOp, ZOp, PxOp, X, Y, Z, Px, XKet, XBra, PxKet, PxBra, PositionKet3D, PositionBra3D ) from sympy.physics.quantum.operator import DifferentialOperator x, y, z, x_1, x_2, x_3, y_1, z_1 = symbols('x,y,z,x_1,x_2,x_3,y_1,z_1') px, py, px_1, px_2 = symbols('px py px_1 px_2') def test_x(): assert X.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) assert Commutator(X, Px).doit() == I*hbar assert qapply(X*XKet(x)) == x*XKet(x) assert XKet(x).dual_class() == XBra assert XBra(x).dual_class() == XKet assert (Dagger(XKet(y))*XKet(x)).doit() == DiracDelta(x - y) assert (PxBra(px)*XKet(x)).doit() == \ exp(-I*x*px/hbar)/sqrt(2*pi*hbar) assert represent(XKet(x)) == DiracDelta(x - x_1) assert represent(XBra(x)) == DiracDelta(-x + x_1) assert XBra(x).position == x assert represent(XOp()*XKet()) == x*DiracDelta(x - x_2) assert represent(XOp()*XKet()*XBra('y')) == \ x*DiracDelta(x - x_3)*DiracDelta(x_1 - y) assert represent(XBra("y")*XKet()) == DiracDelta(x - y) assert represent( XKet()*XBra()) == DiracDelta(x - x_2) * DiracDelta(x_1 - x) rep_p = represent(XOp(), basis=PxOp) assert rep_p == hbar*I*DiracDelta(px_1 - px_2)*DifferentialOperator(px_1) assert rep_p == represent(XOp(), basis=PxOp()) assert rep_p == represent(XOp(), basis=PxKet) assert rep_p == represent(XOp(), basis=PxKet()) assert represent(XOp()*PxKet(), basis=PxKet) == \ hbar*I*DiracDelta(px - px_2)*DifferentialOperator(px) def test_p(): assert Px.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) assert qapply(Px*PxKet(px)) == px*PxKet(px) assert PxKet(px).dual_class() == PxBra assert PxBra(x).dual_class() == PxKet assert (Dagger(PxKet(py))*PxKet(px)).doit() == DiracDelta(px - py) assert (XBra(x)*PxKet(px)).doit() == \ exp(I*x*px/hbar)/sqrt(2*pi*hbar) assert represent(PxKet(px)) == DiracDelta(px - px_1) rep_x = represent(PxOp(), basis=XOp) assert rep_x == -hbar*I*DiracDelta(x_1 - x_2)*DifferentialOperator(x_1) assert rep_x == represent(PxOp(), basis=XOp()) assert rep_x == represent(PxOp(), basis=XKet) assert rep_x == represent(PxOp(), basis=XKet()) assert represent(PxOp()*XKet(), basis=XKet) == \ -hbar*I*DiracDelta(x - x_2)*DifferentialOperator(x) assert represent(XBra("y")*PxOp()*XKet(), basis=XKet) == \ -hbar*I*DiracDelta(x - y)*DifferentialOperator(x) def test_3dpos(): assert Y.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) assert Z.hilbert_space == L2(Interval(S.NegativeInfinity, S.Infinity)) test_ket = PositionKet3D(x, y, z) assert qapply(X*test_ket) == x*test_ket assert qapply(Y*test_ket) == y*test_ket assert qapply(Z*test_ket) == z*test_ket assert qapply(X*Y*test_ket) == x*y*test_ket assert qapply(X*Y*Z*test_ket) == x*y*z*test_ket assert qapply(Y*Z*test_ket) == y*z*test_ket assert PositionKet3D() == test_ket assert YOp() == Y assert ZOp() == Z assert PositionKet3D.dual_class() == PositionBra3D assert PositionBra3D.dual_class() == PositionKet3D other_ket = PositionKet3D(x_1, y_1, z_1) assert (Dagger(other_ket)*test_ket).doit() == \ DiracDelta(x - x_1)*DiracDelta(y - y_1)*DiracDelta(z - z_1) assert test_ket.position_x == x assert test_ket.position_y == y assert test_ket.position_z == z assert other_ket.position_x == x_1 assert other_ket.position_y == y_1 assert other_ket.position_z == z_1 # TODO: Add tests for representations
090588299152a6451ee57ec0176ec4a95c19e25d19ab2725ddb758815663dc7b
from sympy.core.numbers import (I, pi) from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import Matrix from sympy.physics.quantum.qft import QFT, IQFT, RkGate from sympy.physics.quantum.gate import (ZGate, SwapGate, HadamardGate, CGate, PhaseGate, TGate) from sympy.physics.quantum.qubit import Qubit from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.represent import represent def test_RkGate(): x = Symbol('x') assert RkGate(1, x).k == x assert RkGate(1, x).targets == (1,) assert RkGate(1, 1) == ZGate(1) assert RkGate(2, 2) == PhaseGate(2) assert RkGate(3, 3) == TGate(3) assert represent( RkGate(0, x), nqubits=1) == Matrix([[1, 0], [0, exp(2*I*pi/2**x)]]) def test_quantum_fourier(): assert QFT(0, 3).decompose() == \ SwapGate(0, 2)*HadamardGate(0)*CGate((0,), PhaseGate(1)) * \ HadamardGate(1)*CGate((0,), TGate(2))*CGate((1,), PhaseGate(2)) * \ HadamardGate(2) assert IQFT(0, 3).decompose() == \ HadamardGate(2)*CGate((1,), RkGate(2, -2))*CGate((0,), RkGate(2, -3)) * \ HadamardGate(1)*CGate((0,), RkGate(1, -2))*HadamardGate(0)*SwapGate(0, 2) assert represent(QFT(0, 3), nqubits=3) == \ Matrix([[exp(2*pi*I/8)**(i*j % 8)/sqrt(8) for i in range(8)] for j in range(8)]) assert QFT(0, 4).decompose() # non-trivial decomposition assert qapply(QFT(0, 3).decompose()*Qubit(0, 0, 0)).expand() == qapply( HadamardGate(0)*HadamardGate(1)*HadamardGate(2)*Qubit(0, 0, 0) ).expand() def test_qft_represent(): c = QFT(0, 3) a = represent(c, nqubits=3) b = represent(c.decompose(), nqubits=3) assert a.evalf(n=10) == b.evalf(n=10)
bb37bad801ba1f8c7631824903e118dcdb64ab0beb0c843690e36ebc8450899e
from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import Matrix from sympy.physics.quantum.represent import represent from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.qubit import IntQubit from sympy.physics.quantum.grover import (apply_grover, superposition_basis, OracleGate, grover_iteration, WGate) def return_one_on_two(qubits): return qubits == IntQubit(2, qubits.nqubits) def return_one_on_one(qubits): return qubits == IntQubit(1, nqubits=qubits.nqubits) def test_superposition_basis(): nbits = 2 first_half_state = IntQubit(0, nqubits=nbits)/2 + IntQubit(1, nqubits=nbits)/2 second_half_state = IntQubit(2, nbits)/2 + IntQubit(3, nbits)/2 assert first_half_state + second_half_state == superposition_basis(nbits) nbits = 3 firstq = (1/sqrt(8))*IntQubit(0, nqubits=nbits) + (1/sqrt(8))*IntQubit(1, nqubits=nbits) secondq = (1/sqrt(8))*IntQubit(2, nbits) + (1/sqrt(8))*IntQubit(3, nbits) thirdq = (1/sqrt(8))*IntQubit(4, nbits) + (1/sqrt(8))*IntQubit(5, nbits) fourthq = (1/sqrt(8))*IntQubit(6, nbits) + (1/sqrt(8))*IntQubit(7, nbits) assert firstq + secondq + thirdq + fourthq == superposition_basis(nbits) def test_OracleGate(): v = OracleGate(1, lambda qubits: qubits == IntQubit(0)) assert qapply(v*IntQubit(0)) == -IntQubit(0) assert qapply(v*IntQubit(1)) == IntQubit(1) nbits = 2 v = OracleGate(2, return_one_on_two) assert qapply(v*IntQubit(0, nbits)) == IntQubit(0, nqubits=nbits) assert qapply(v*IntQubit(1, nbits)) == IntQubit(1, nqubits=nbits) assert qapply(v*IntQubit(2, nbits)) == -IntQubit(2, nbits) assert qapply(v*IntQubit(3, nbits)) == IntQubit(3, nbits) assert represent(OracleGate(1, lambda qubits: qubits == IntQubit(0)), nqubits=1) == \ Matrix([[-1, 0], [0, 1]]) assert represent(v, nqubits=2) == Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) def test_WGate(): nqubits = 2 basis_states = superposition_basis(nqubits) assert qapply(WGate(nqubits)*basis_states) == basis_states expected = ((2/sqrt(pow(2, nqubits)))*basis_states) - IntQubit(1, nqubits=nqubits) assert qapply(WGate(nqubits)*IntQubit(1, nqubits=nqubits)) == expected def test_grover_iteration_1(): numqubits = 2 basis_states = superposition_basis(numqubits) v = OracleGate(numqubits, return_one_on_one) expected = IntQubit(1, nqubits=numqubits) assert qapply(grover_iteration(basis_states, v)) == expected def test_grover_iteration_2(): numqubits = 4 basis_states = superposition_basis(numqubits) v = OracleGate(numqubits, return_one_on_two) # After (pi/4)sqrt(pow(2, n)), IntQubit(2) should have highest prob # In this case, after around pi times (3 or 4) iterated = grover_iteration(basis_states, v) iterated = qapply(iterated) iterated = grover_iteration(iterated, v) iterated = qapply(iterated) iterated = grover_iteration(iterated, v) iterated = qapply(iterated) # In this case, probability was highest after 3 iterations # Probability of Qubit('0010') was 251/256 (3) vs 781/1024 (4) # Ask about measurement expected = (-13*basis_states)/64 + 264*IntQubit(2, numqubits)/256 assert qapply(expected) == iterated def test_grover(): nqubits = 2 assert apply_grover(return_one_on_one, nqubits) == IntQubit(1, nqubits=nqubits) nqubits = 4 basis_states = superposition_basis(nqubits) expected = (-13*basis_states)/64 + 264*IntQubit(2, nqubits)/256 assert apply_grover(return_one_on_two, 4) == qapply(expected)
0cd7c179805aff9f24486ecf339225a3ac67cde93c952880197d35b8c15162a2
from sympy.core.singleton import S from sympy.physics.quantum.operatorset import ( operators_to_state, state_to_operators ) from sympy.physics.quantum.cartesian import ( XOp, XKet, PxOp, PxKet, XBra, PxBra ) from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum.operator import Operator from sympy.physics.quantum.spin import ( JxKet, JyKet, JzKet, JxBra, JyBra, JzBra, JxOp, JyOp, JzOp, J2Op ) from sympy.testing.pytest import raises def test_spin(): assert operators_to_state({J2Op, JxOp}) == JxKet assert operators_to_state({J2Op, JyOp}) == JyKet assert operators_to_state({J2Op, JzOp}) == JzKet assert operators_to_state({J2Op(), JxOp()}) == JxKet assert operators_to_state({J2Op(), JyOp()}) == JyKet assert operators_to_state({J2Op(), JzOp()}) == JzKet assert state_to_operators(JxKet) == {J2Op, JxOp} assert state_to_operators(JyKet) == {J2Op, JyOp} assert state_to_operators(JzKet) == {J2Op, JzOp} assert state_to_operators(JxBra) == {J2Op, JxOp} assert state_to_operators(JyBra) == {J2Op, JyOp} assert state_to_operators(JzBra) == {J2Op, JzOp} assert state_to_operators(JxKet(S.Half, S.Half)) == {J2Op(), JxOp()} assert state_to_operators(JyKet(S.Half, S.Half)) == {J2Op(), JyOp()} assert state_to_operators(JzKet(S.Half, S.Half)) == {J2Op(), JzOp()} assert state_to_operators(JxBra(S.Half, S.Half)) == {J2Op(), JxOp()} assert state_to_operators(JyBra(S.Half, S.Half)) == {J2Op(), JyOp()} assert state_to_operators(JzBra(S.Half, S.Half)) == {J2Op(), JzOp()} def test_op_to_state(): assert operators_to_state(XOp) == XKet() assert operators_to_state(PxOp) == PxKet() assert operators_to_state(Operator) == Ket() assert state_to_operators(operators_to_state(XOp("Q"))) == XOp("Q") assert state_to_operators(operators_to_state(XOp())) == XOp() raises(NotImplementedError, lambda: operators_to_state(XKet)) def test_state_to_op(): assert state_to_operators(XKet) == XOp() assert state_to_operators(PxKet) == PxOp() assert state_to_operators(XBra) == XOp() assert state_to_operators(PxBra) == PxOp() assert state_to_operators(Ket) == Operator() assert state_to_operators(Bra) == Operator() assert operators_to_state(state_to_operators(XKet("test"))) == XKet("test") assert operators_to_state(state_to_operators(XBra("test"))) == XKet("test") assert operators_to_state(state_to_operators(XKet())) == XKet() assert operators_to_state(state_to_operators(XBra())) == XKet() raises(NotImplementedError, lambda: state_to_operators(XOp))
f27767cf222c8c5e003aeffd93a62a6a9ff55d40d36e21a7bfba2725dad90560
"""Tests for piab.py""" from sympy.core.numbers import pi from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.sets.sets import Interval from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum import L2, qapply, hbar, represent from sympy.physics.quantum.piab import PIABHamiltonian, PIABKet, PIABBra, m, L i, j, n, x = symbols('i j n x') def test_H(): assert PIABHamiltonian('H').hilbert_space == \ L2(Interval(S.NegativeInfinity, S.Infinity)) assert qapply(PIABHamiltonian('H')*PIABKet(n)) == \ (n**2*pi**2*hbar**2)/(2*m*L**2)*PIABKet(n) def test_states(): assert PIABKet(n).dual_class() == PIABBra assert PIABKet(n).hilbert_space == \ L2(Interval(S.NegativeInfinity, S.Infinity)) assert represent(PIABKet(n)) == sqrt(2/L)*sin(n*pi*x/L) assert (PIABBra(i)*PIABKet(j)).doit() == KroneckerDelta(i, j) assert PIABBra(n).dual_class() == PIABKet
60c260d88d01fa220aeb5a56e167a98be9ed09333d14936eab790440cd8fdbbb
from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.numbers import (I, Integer) from sympy.core.symbol import symbols from sympy.functions.elementary.complexes import conjugate from sympy.matrices.dense import Matrix from sympy.physics.quantum.dagger import adjoint, Dagger from sympy.external import import_module from sympy.testing.pytest import skip from sympy.physics.quantum.operator import Operator, IdentityOperator def test_scalars(): x = symbols('x', complex=True) assert Dagger(x) == conjugate(x) assert Dagger(I*x) == -I*conjugate(x) i = symbols('i', real=True) assert Dagger(i) == i p = symbols('p') assert isinstance(Dagger(p), adjoint) i = Integer(3) assert Dagger(i) == i A = symbols('A', commutative=False) assert Dagger(A).is_commutative is False def test_matrix(): x = symbols('x') m = Matrix([[I, x*I], [2, 4]]) assert Dagger(m) == m.H def test_dagger_mul(): O = Operator('O') I = IdentityOperator() assert Dagger(O)*O == Dagger(O)*O assert Dagger(O)*O*I == Mul(Dagger(O), O)*I assert Dagger(O)*Dagger(O) == Dagger(O)**2 assert Dagger(O)*Dagger(I) == Dagger(O) class Foo(Expr): def _eval_adjoint(self): return I def test_eval_adjoint(): f = Foo() d = Dagger(f) assert d == I np = import_module('numpy') def test_numpy_dagger(): if not np: skip("numpy not installed.") a = np.matrix([[1.0, 2.0j], [-1.0j, 2.0]]) adag = a.copy().transpose().conjugate() assert (Dagger(a) == adag).all() scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def test_scipy_sparse_dagger(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") else: sparse = scipy.sparse a = sparse.csr_matrix([[1.0 + 0.0j, 2.0j], [-1.0j, 2.0 + 0.0j]]) adag = a.copy().transpose().conjugate() assert np.linalg.norm((Dagger(a) - adag).todense()) == 0.0
78d9c08a0669475a52dbdbc3f216e578e526094d0be9a10312559642b0bdc3c9
from sympy.core.function import (Derivative, Function, diff) from sympy.core.mul import Mul from sympy.core.numbers import (Integer, pi) from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.trigonometric import sin from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.hilbert import HilbertSpace from sympy.physics.quantum.operator import (Operator, UnitaryOperator, HermitianOperator, OuterProduct, DifferentialOperator, IdentityOperator) from sympy.physics.quantum.state import Ket, Bra, Wavefunction from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.represent import represent from sympy.physics.quantum.spin import JzKet, JzBra from sympy.physics.quantum.trace import Tr from sympy.matrices import eye class CustomKet(Ket): @classmethod def default_args(self): return ("t",) class CustomOp(HermitianOperator): @classmethod def default_args(self): return ("T",) t_ket = CustomKet() t_op = CustomOp() def test_operator(): A = Operator('A') B = Operator('B') C = Operator('C') assert isinstance(A, Operator) assert isinstance(A, QExpr) assert A.label == (Symbol('A'),) assert A.is_commutative is False assert A.hilbert_space == HilbertSpace() assert A*B != B*A assert (A*(B + C)).expand() == A*B + A*C assert ((A + B)**2).expand() == A**2 + A*B + B*A + B**2 assert t_op.label[0] == Symbol(t_op.default_args()[0]) assert Operator() == Operator("O") assert A*IdentityOperator() == A def test_operator_inv(): A = Operator('A') assert A*A.inv() == 1 assert A.inv()*A == 1 def test_hermitian(): H = HermitianOperator('H') assert isinstance(H, HermitianOperator) assert isinstance(H, Operator) assert Dagger(H) == H assert H.inv() != H assert H.is_commutative is False assert Dagger(H).is_commutative is False def test_unitary(): U = UnitaryOperator('U') assert isinstance(U, UnitaryOperator) assert isinstance(U, Operator) assert U.inv() == Dagger(U) assert U*Dagger(U) == 1 assert Dagger(U)*U == 1 assert U.is_commutative is False assert Dagger(U).is_commutative is False def test_identity(): I = IdentityOperator() O = Operator('O') x = Symbol("x") assert isinstance(I, IdentityOperator) assert isinstance(I, Operator) assert I * O == O assert O * I == O assert I * Dagger(O) == Dagger(O) assert Dagger(O) * I == Dagger(O) assert isinstance(I * I, IdentityOperator) assert isinstance(3 * I, Mul) assert isinstance(I * x, Mul) assert I.inv() == I assert Dagger(I) == I assert qapply(I * O) == O assert qapply(O * I) == O for n in [2, 3, 5]: assert represent(IdentityOperator(n)) == eye(n) def test_outer_product(): k = Ket('k') b = Bra('b') op = OuterProduct(k, b) assert isinstance(op, OuterProduct) assert isinstance(op, Operator) assert op.ket == k assert op.bra == b assert op.label == (k, b) assert op.is_commutative is False op = k*b assert isinstance(op, OuterProduct) assert isinstance(op, Operator) assert op.ket == k assert op.bra == b assert op.label == (k, b) assert op.is_commutative is False op = 2*k*b assert op == Mul(Integer(2), k, b) op = 2*(k*b) assert op == Mul(Integer(2), OuterProduct(k, b)) assert Dagger(k*b) == OuterProduct(Dagger(b), Dagger(k)) assert Dagger(k*b).is_commutative is False #test the _eval_trace assert Tr(OuterProduct(JzKet(1, 1), JzBra(1, 1))).doit() == 1 # test scaled kets and bras assert OuterProduct(2 * k, b) == 2 * OuterProduct(k, b) assert OuterProduct(k, 2 * b) == 2 * OuterProduct(k, b) # test sums of kets and bras k1, k2 = Ket('k1'), Ket('k2') b1, b2 = Bra('b1'), Bra('b2') assert (OuterProduct(k1 + k2, b1) == OuterProduct(k1, b1) + OuterProduct(k2, b1)) assert (OuterProduct(k1, b1 + b2) == OuterProduct(k1, b1) + OuterProduct(k1, b2)) assert (OuterProduct(1 * k1 + 2 * k2, 3 * b1 + 4 * b2) == 3 * OuterProduct(k1, b1) + 4 * OuterProduct(k1, b2) + 6 * OuterProduct(k2, b1) + 8 * OuterProduct(k2, b2)) def test_operator_dagger(): A = Operator('A') B = Operator('B') assert Dagger(A*B) == Dagger(B)*Dagger(A) assert Dagger(A + B) == Dagger(A) + Dagger(B) assert Dagger(A**2) == Dagger(A)**2 def test_differential_operator(): x = Symbol('x') f = Function('f') d = DifferentialOperator(Derivative(f(x), x), f(x)) g = Wavefunction(x**2, x) assert qapply(d*g) == Wavefunction(2*x, x) assert d.expr == Derivative(f(x), x) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 2), f(x)) d = DifferentialOperator(Derivative(f(x), x, 2), f(x)) g = Wavefunction(x**3, x) assert qapply(d*g) == Wavefunction(6*x, x) assert d.expr == Derivative(f(x), x, 2) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 3), f(x)) d = DifferentialOperator(1/x*Derivative(f(x), x), f(x)) assert d.expr == 1/x*Derivative(f(x), x) assert d.function == f(x) assert d.variables == (x,) assert diff(d, x) == \ DifferentialOperator(Derivative(1/x*Derivative(f(x), x), x), f(x)) assert qapply(d*g) == Wavefunction(3*x, x) # 2D cartesian Laplacian y = Symbol('y') d = DifferentialOperator(Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2), f(x, y)) w = Wavefunction(x**3*y**2 + y**3*x**2, x, y) assert d.expr == Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2) assert d.function == f(x, y) assert d.variables == (x, y) assert diff(d, x) == \ DifferentialOperator(Derivative(d.expr, x), f(x, y)) assert diff(d, y) == \ DifferentialOperator(Derivative(d.expr, y), f(x, y)) assert qapply(d*w) == Wavefunction(2*x**3 + 6*x*y**2 + 6*x**2*y + 2*y**3, x, y) # 2D polar Laplacian (th = theta) r, th = symbols('r th') d = DifferentialOperator(1/r*Derivative(r*Derivative(f(r, th), r), r) + 1/(r**2)*Derivative(f(r, th), th, 2), f(r, th)) w = Wavefunction(r**2*sin(th), r, (th, 0, pi)) assert d.expr == \ 1/r*Derivative(r*Derivative(f(r, th), r), r) + \ 1/(r**2)*Derivative(f(r, th), th, 2) assert d.function == f(r, th) assert d.variables == (r, th) assert diff(d, r) == \ DifferentialOperator(Derivative(d.expr, r), f(r, th)) assert diff(d, th) == \ DifferentialOperator(Derivative(d.expr, th), f(r, th)) assert qapply(d*w) == Wavefunction(3*sin(th), r, (th, 0, pi))
d7209335faee069f85ef92abc67751d8f3de765161b475827c28a71cd4187847
from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.matrices.dense import Matrix from sympy.printing.latex import latex from sympy.physics.quantum import (Dagger, Commutator, AntiCommutator, qapply, Operator, represent) from sympy.physics.quantum.pauli import (SigmaOpBase, SigmaX, SigmaY, SigmaZ, SigmaMinus, SigmaPlus, qsimplify_pauli) from sympy.physics.quantum.pauli import SigmaZKet, SigmaZBra from sympy.testing.pytest import raises sx, sy, sz = SigmaX(), SigmaY(), SigmaZ() sx1, sy1, sz1 = SigmaX(1), SigmaY(1), SigmaZ(1) sx2, sy2, sz2 = SigmaX(2), SigmaY(2), SigmaZ(2) sm, sp = SigmaMinus(), SigmaPlus() sm1, sp1 = SigmaMinus(1), SigmaPlus(1) A, B = Operator("A"), Operator("B") def test_pauli_operators_types(): assert isinstance(sx, SigmaOpBase) and isinstance(sx, SigmaX) assert isinstance(sy, SigmaOpBase) and isinstance(sy, SigmaY) assert isinstance(sz, SigmaOpBase) and isinstance(sz, SigmaZ) assert isinstance(sm, SigmaOpBase) and isinstance(sm, SigmaMinus) assert isinstance(sp, SigmaOpBase) and isinstance(sp, SigmaPlus) def test_pauli_operators_commutator(): assert Commutator(sx, sy).doit() == 2 * I * sz assert Commutator(sy, sz).doit() == 2 * I * sx assert Commutator(sz, sx).doit() == 2 * I * sy def test_pauli_operators_commutator_with_labels(): assert Commutator(sx1, sy1).doit() == 2 * I * sz1 assert Commutator(sy1, sz1).doit() == 2 * I * sx1 assert Commutator(sz1, sx1).doit() == 2 * I * sy1 assert Commutator(sx2, sy2).doit() == 2 * I * sz2 assert Commutator(sy2, sz2).doit() == 2 * I * sx2 assert Commutator(sz2, sx2).doit() == 2 * I * sy2 assert Commutator(sx1, sy2).doit() == 0 assert Commutator(sy1, sz2).doit() == 0 assert Commutator(sz1, sx2).doit() == 0 def test_pauli_operators_anticommutator(): assert AntiCommutator(sy, sz).doit() == 0 assert AntiCommutator(sz, sx).doit() == 0 assert AntiCommutator(sx, sm).doit() == 1 assert AntiCommutator(sx, sp).doit() == 1 def test_pauli_operators_adjoint(): assert Dagger(sx) == sx assert Dagger(sy) == sy assert Dagger(sz) == sz def test_pauli_operators_adjoint_with_labels(): assert Dagger(sx1) == sx1 assert Dagger(sy1) == sy1 assert Dagger(sz1) == sz1 assert Dagger(sx1) != sx2 assert Dagger(sy1) != sy2 assert Dagger(sz1) != sz2 def test_pauli_operators_multiplication(): assert qsimplify_pauli(sx * sx) == 1 assert qsimplify_pauli(sy * sy) == 1 assert qsimplify_pauli(sz * sz) == 1 assert qsimplify_pauli(sx * sy) == I * sz assert qsimplify_pauli(sy * sz) == I * sx assert qsimplify_pauli(sz * sx) == I * sy assert qsimplify_pauli(sy * sx) == - I * sz assert qsimplify_pauli(sz * sy) == - I * sx assert qsimplify_pauli(sx * sz) == - I * sy def test_pauli_operators_multiplication_with_labels(): assert qsimplify_pauli(sx1 * sx1) == 1 assert qsimplify_pauli(sy1 * sy1) == 1 assert qsimplify_pauli(sz1 * sz1) == 1 assert isinstance(sx1 * sx2, Mul) assert isinstance(sy1 * sy2, Mul) assert isinstance(sz1 * sz2, Mul) assert qsimplify_pauli(sx1 * sy1 * sx2 * sy2) == - sz1 * sz2 assert qsimplify_pauli(sy1 * sz1 * sz2 * sx2) == - sx1 * sy2 def test_pauli_states(): sx, sz = SigmaX(), SigmaZ() up = SigmaZKet(0) down = SigmaZKet(1) assert qapply(sx * up) == down assert qapply(sx * down) == up assert qapply(sz * up) == up assert qapply(sz * down) == - down up = SigmaZBra(0) down = SigmaZBra(1) assert qapply(up * sx, dagger=True) == down assert qapply(down * sx, dagger=True) == up assert qapply(up * sz, dagger=True) == up assert qapply(down * sz, dagger=True) == - down assert Dagger(SigmaZKet(0)) == SigmaZBra(0) assert Dagger(SigmaZBra(1)) == SigmaZKet(1) raises(ValueError, lambda: SigmaZBra(2)) raises(ValueError, lambda: SigmaZKet(2)) def test_use_name(): assert sm.use_name is False assert sm1.use_name is True assert sx.use_name is False assert sx1.use_name is True def test_printing(): assert latex(sx) == r'{\sigma_x}' assert latex(sx1) == r'{\sigma_x^{(1)}}' assert latex(sy) == r'{\sigma_y}' assert latex(sy1) == r'{\sigma_y^{(1)}}' assert latex(sz) == r'{\sigma_z}' assert latex(sz1) == r'{\sigma_z^{(1)}}' assert latex(sm) == r'{\sigma_-}' assert latex(sm1) == r'{\sigma_-^{(1)}}' assert latex(sp) == r'{\sigma_+}' assert latex(sp1) == r'{\sigma_+^{(1)}}' def test_represent(): represent(sx) == Matrix([[0, 1], [1, 0]]) represent(sy) == Matrix([[0, -I], [I, 0]]) represent(sz) == Matrix([[1, 0], [0, -1]]) represent(sm) == Matrix([[0, 0], [1, 0]]) represent(sp) == Matrix([[0, 1], [0, 0]])
7245872b040588031670369849aff6eaf8bf188b2fb37dbfd0eeb6239946b2bf
from sympy.core.numbers import Integer from sympy.core.symbol import symbols from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.anticommutator import AntiCommutator as AComm from sympy.physics.quantum.operator import Operator a, b, c = symbols('a,b,c') A, B, C, D = symbols('A,B,C,D', commutative=False) def test_anticommutator(): ac = AComm(A, B) assert isinstance(ac, AComm) assert ac.is_commutative is False assert ac.subs(A, C) == AComm(C, B) def test_commutator_identities(): assert AComm(a*A, b*B) == a*b*AComm(A, B) assert AComm(A, A) == 2*A**2 assert AComm(A, B) == AComm(B, A) assert AComm(a, b) == 2*a*b assert AComm(A, B).doit() == A*B + B*A def test_anticommutator_dagger(): assert Dagger(AComm(A, B)) == AComm(Dagger(A), Dagger(B)) class Foo(Operator): def _eval_anticommutator_Bar(self, bar): return Integer(0) class Bar(Operator): pass class Tam(Operator): def _eval_anticommutator_Foo(self, foo): return Integer(1) def test_eval_commutator(): F = Foo('F') B = Bar('B') T = Tam('T') assert AComm(F, B).doit() == 0 assert AComm(B, F).doit() == 0 assert AComm(F, T).doit() == 1 assert AComm(T, F).doit() == 1 assert AComm(B, T).doit() == B*T + T*B
2063faadcdbe6f7c1ef5d4436e9467885021430a7f4d8b4c7c5cf1bac029af1d
from sympy.physics.quantum.hilbert import ( HilbertSpace, ComplexSpace, L2, FockSpace, TensorProductHilbertSpace, DirectSumHilbertSpace, TensorPowerHilbertSpace ) from sympy.core.numbers import oo from sympy.core.symbol import Symbol from sympy.printing.repr import srepr from sympy.printing.str import sstr from sympy.sets.sets import Interval def test_hilbert_space(): hs = HilbertSpace() assert isinstance(hs, HilbertSpace) assert sstr(hs) == 'H' assert srepr(hs) == 'HilbertSpace()' def test_complex_space(): c1 = ComplexSpace(2) assert isinstance(c1, ComplexSpace) assert c1.dimension == 2 assert sstr(c1) == 'C(2)' assert srepr(c1) == 'ComplexSpace(Integer(2))' n = Symbol('n') c2 = ComplexSpace(n) assert isinstance(c2, ComplexSpace) assert c2.dimension == n assert sstr(c2) == 'C(n)' assert srepr(c2) == "ComplexSpace(Symbol('n'))" assert c2.subs(n, 2) == ComplexSpace(2) def test_L2(): b1 = L2(Interval(-oo, 1)) assert isinstance(b1, L2) assert b1.dimension is oo assert b1.interval == Interval(-oo, 1) x = Symbol('x', real=True) y = Symbol('y', real=True) b2 = L2(Interval(x, y)) assert b2.dimension is oo assert b2.interval == Interval(x, y) assert b2.subs(x, -1) == L2(Interval(-1, y)) def test_fock_space(): f1 = FockSpace() f2 = FockSpace() assert isinstance(f1, FockSpace) assert f1.dimension is oo assert f1 == f2 def test_tensor_product(): n = Symbol('n') hs1 = ComplexSpace(2) hs2 = ComplexSpace(n) h = hs1*hs2 assert isinstance(h, TensorProductHilbertSpace) assert h.dimension == 2*n assert h.spaces == (hs1, hs2) h = hs2*hs2 assert isinstance(h, TensorPowerHilbertSpace) assert h.base == hs2 assert h.exp == 2 assert h.dimension == n**2 f = FockSpace() h = hs1*hs2*f assert h.dimension is oo def test_tensor_power(): n = Symbol('n') hs1 = ComplexSpace(2) hs2 = ComplexSpace(n) h = hs1**2 assert isinstance(h, TensorPowerHilbertSpace) assert h.base == hs1 assert h.exp == 2 assert h.dimension == 4 h = hs2**3 assert isinstance(h, TensorPowerHilbertSpace) assert h.base == hs2 assert h.exp == 3 assert h.dimension == n**3 def test_direct_sum(): n = Symbol('n') hs1 = ComplexSpace(2) hs2 = ComplexSpace(n) h = hs1 + hs2 assert isinstance(h, DirectSumHilbertSpace) assert h.dimension == 2 + n assert h.spaces == (hs1, hs2) f = FockSpace() h = hs1 + f + hs2 assert h.dimension is oo assert h.spaces == (hs1, f, hs2)
2ce20f34659a95f3cb2fb0cd01a88b0a9e09fc6d6666951899308dc77923aa0c
from sympy.concrete.summations import Sum from sympy.core.function import expand from sympy.core.numbers import (I, Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.matrices.dense import Matrix from sympy.abc import alpha, beta, gamma, j, m from sympy.physics.quantum import hbar, represent, Commutator, InnerProduct from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.spin import ( Jx, Jy, Jz, Jplus, Jminus, J2, JxBra, JyBra, JzBra, JxKet, JyKet, JzKet, JxKetCoupled, JyKetCoupled, JzKetCoupled, couple, uncouple, Rotation, WignerD ) from sympy.testing.pytest import raises, slow j1, j2, j3, j4, m1, m2, m3, m4 = symbols('j1:5 m1:5') j12, j13, j24, j34, j123, j134, mi, mi1, mp = symbols( 'j12 j13 j24 j34 j123 j134 mi mi1 mp') def test_represent_spin_operators(): assert represent(Jx) == hbar*Matrix([[0, 1], [1, 0]])/2 assert represent( Jx, j=1) == hbar*sqrt(2)*Matrix([[0, 1, 0], [1, 0, 1], [0, 1, 0]])/2 assert represent(Jy) == hbar*I*Matrix([[0, -1], [1, 0]])/2 assert represent(Jy, j=1) == hbar*I*sqrt(2)*Matrix([[0, -1, 0], [1, 0, -1], [0, 1, 0]])/2 assert represent(Jz) == hbar*Matrix([[1, 0], [0, -1]])/2 assert represent( Jz, j=1) == hbar*Matrix([[1, 0, 0], [0, 0, 0], [0, 0, -1]]) def test_represent_spin_states(): # Jx basis assert represent(JxKet(S.Half, S.Half), basis=Jx) == Matrix([1, 0]) assert represent(JxKet(S.Half, Rational(-1, 2)), basis=Jx) == Matrix([0, 1]) assert represent(JxKet(1, 1), basis=Jx) == Matrix([1, 0, 0]) assert represent(JxKet(1, 0), basis=Jx) == Matrix([0, 1, 0]) assert represent(JxKet(1, -1), basis=Jx) == Matrix([0, 0, 1]) assert represent( JyKet(S.Half, S.Half), basis=Jx) == Matrix([exp(-I*pi/4), 0]) assert represent( JyKet(S.Half, Rational(-1, 2)), basis=Jx) == Matrix([0, exp(I*pi/4)]) assert represent(JyKet(1, 1), basis=Jx) == Matrix([-I, 0, 0]) assert represent(JyKet(1, 0), basis=Jx) == Matrix([0, 1, 0]) assert represent(JyKet(1, -1), basis=Jx) == Matrix([0, 0, I]) assert represent( JzKet(S.Half, S.Half), basis=Jx) == sqrt(2)*Matrix([-1, 1])/2 assert represent( JzKet(S.Half, Rational(-1, 2)), basis=Jx) == sqrt(2)*Matrix([-1, -1])/2 assert represent(JzKet(1, 1), basis=Jx) == Matrix([1, -sqrt(2), 1])/2 assert represent(JzKet(1, 0), basis=Jx) == sqrt(2)*Matrix([1, 0, -1])/2 assert represent(JzKet(1, -1), basis=Jx) == Matrix([1, sqrt(2), 1])/2 # Jy basis assert represent( JxKet(S.Half, S.Half), basis=Jy) == Matrix([exp(I*pi*Rational(-3, 4)), 0]) assert represent( JxKet(S.Half, Rational(-1, 2)), basis=Jy) == Matrix([0, exp(I*pi*Rational(3, 4))]) assert represent(JxKet(1, 1), basis=Jy) == Matrix([I, 0, 0]) assert represent(JxKet(1, 0), basis=Jy) == Matrix([0, 1, 0]) assert represent(JxKet(1, -1), basis=Jy) == Matrix([0, 0, -I]) assert represent(JyKet(S.Half, S.Half), basis=Jy) == Matrix([1, 0]) assert represent(JyKet(S.Half, Rational(-1, 2)), basis=Jy) == Matrix([0, 1]) assert represent(JyKet(1, 1), basis=Jy) == Matrix([1, 0, 0]) assert represent(JyKet(1, 0), basis=Jy) == Matrix([0, 1, 0]) assert represent(JyKet(1, -1), basis=Jy) == Matrix([0, 0, 1]) assert represent( JzKet(S.Half, S.Half), basis=Jy) == sqrt(2)*Matrix([-1, I])/2 assert represent( JzKet(S.Half, Rational(-1, 2)), basis=Jy) == sqrt(2)*Matrix([I, -1])/2 assert represent(JzKet(1, 1), basis=Jy) == Matrix([1, -I*sqrt(2), -1])/2 assert represent( JzKet(1, 0), basis=Jy) == Matrix([-sqrt(2)*I, 0, -sqrt(2)*I])/2 assert represent(JzKet(1, -1), basis=Jy) == Matrix([-1, -sqrt(2)*I, 1])/2 # Jz basis assert represent( JxKet(S.Half, S.Half), basis=Jz) == sqrt(2)*Matrix([1, 1])/2 assert represent( JxKet(S.Half, Rational(-1, 2)), basis=Jz) == sqrt(2)*Matrix([-1, 1])/2 assert represent(JxKet(1, 1), basis=Jz) == Matrix([1, sqrt(2), 1])/2 assert represent(JxKet(1, 0), basis=Jz) == sqrt(2)*Matrix([-1, 0, 1])/2 assert represent(JxKet(1, -1), basis=Jz) == Matrix([1, -sqrt(2), 1])/2 assert represent( JyKet(S.Half, S.Half), basis=Jz) == sqrt(2)*Matrix([-1, -I])/2 assert represent( JyKet(S.Half, Rational(-1, 2)), basis=Jz) == sqrt(2)*Matrix([-I, -1])/2 assert represent(JyKet(1, 1), basis=Jz) == Matrix([1, sqrt(2)*I, -1])/2 assert represent(JyKet(1, 0), basis=Jz) == sqrt(2)*Matrix([I, 0, I])/2 assert represent(JyKet(1, -1), basis=Jz) == Matrix([-1, sqrt(2)*I, 1])/2 assert represent(JzKet(S.Half, S.Half), basis=Jz) == Matrix([1, 0]) assert represent(JzKet(S.Half, Rational(-1, 2)), basis=Jz) == Matrix([0, 1]) assert represent(JzKet(1, 1), basis=Jz) == Matrix([1, 0, 0]) assert represent(JzKet(1, 0), basis=Jz) == Matrix([0, 1, 0]) assert represent(JzKet(1, -1), basis=Jz) == Matrix([0, 0, 1]) def test_represent_uncoupled_states(): # Jx basis assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 0, 0, 1]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, S.Half)), basis=Jx) == \ Matrix([-I, 0, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([0, 0, 0, I]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), basis=Jx) == \ Matrix([S.Half, Rational(-1, 2), Rational(-1, 2), S.Half]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([S.Half, S.Half, Rational(-1, 2), Rational(-1, 2)]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), basis=Jx) == \ Matrix([S.Half, Rational(-1, 2), S.Half, Rational(-1, 2)]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), basis=Jx) == \ Matrix([S.Half, S.Half, S.Half, S.Half]) # Jy basis assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, S.Half)), basis=Jy) == \ Matrix([I, 0, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 0, 0, -I]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([0, 0, 0, 1]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), basis=Jy) == \ Matrix([S.Half, -I/2, -I/2, Rational(-1, 2)]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([-I/2, S.Half, Rational(-1, 2), -I/2]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), basis=Jy) == \ Matrix([-I/2, Rational(-1, 2), S.Half, -I/2]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), basis=Jy) == \ Matrix([Rational(-1, 2), -I/2, -I/2, S.Half]) # Jz basis assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, S.Half)), basis=Jz) == \ Matrix([S.Half, S.Half, S.Half, S.Half]) assert represent(TensorProduct(JxKet(S.Half, S.Half), JxKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([Rational(-1, 2), S.Half, Rational(-1, 2), S.Half]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, S.Half)), basis=Jz) == \ Matrix([Rational(-1, 2), Rational(-1, 2), S.Half, S.Half]) assert represent(TensorProduct(JxKet(S.Half, Rational(-1, 2)), JxKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([S.Half, Rational(-1, 2), Rational(-1, 2), S.Half]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, S.Half)), basis=Jz) == \ Matrix([S.Half, I/2, I/2, Rational(-1, 2)]) assert represent(TensorProduct(JyKet(S.Half, S.Half), JyKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([I/2, S.Half, Rational(-1, 2), I/2]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, S.Half)), basis=Jz) == \ Matrix([I/2, Rational(-1, 2), S.Half, I/2]) assert represent(TensorProduct(JyKet(S.Half, Rational(-1, 2)), JyKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([Rational(-1, 2), I/2, I/2, S.Half]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([0, 1, 0, 0]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), basis=Jz) == \ Matrix([0, 0, 1, 0]) assert represent(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), basis=Jz) == \ Matrix([0, 0, 0, 1]) def test_represent_coupled_states(): # Jx basis assert represent(JxKetCoupled(0, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 1, 0, 0]) assert represent(JxKetCoupled(1, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(JxKetCoupled(1, -1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 0, 1]) assert represent(JyKetCoupled(0, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, -I, 0, 0]) assert represent(JyKetCoupled(1, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 1, 0]) assert represent(JyKetCoupled(1, -1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, 0, 0, I]) assert represent(JzKetCoupled(0, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, S.Half, -sqrt(2)/2, S.Half]) assert represent(JzKetCoupled(1, 0, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, sqrt(2)/2, 0, -sqrt(2)/2]) assert represent(JzKetCoupled(1, -1, (S.Half, S.Half)), basis=Jx) == \ Matrix([0, S.Half, sqrt(2)/2, S.Half]) # Jy basis assert represent(JxKetCoupled(0, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, I, 0, 0]) assert represent(JxKetCoupled(1, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(JxKetCoupled(1, -1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 0, -I]) assert represent(JyKetCoupled(0, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 1, 0, 0]) assert represent(JyKetCoupled(1, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 1, 0]) assert represent(JyKetCoupled(1, -1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, 0, 0, 1]) assert represent(JzKetCoupled(0, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, S.Half, -I*sqrt(2)/2, Rational(-1, 2)]) assert represent(JzKetCoupled(1, 0, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, -I*sqrt(2)/2, 0, -I*sqrt(2)/2]) assert represent(JzKetCoupled(1, -1, (S.Half, S.Half)), basis=Jy) == \ Matrix([0, Rational(-1, 2), -I*sqrt(2)/2, S.Half]) # Jz basis assert represent(JxKetCoupled(0, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JxKetCoupled(1, 1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, S.Half, sqrt(2)/2, S.Half]) assert represent(JxKetCoupled(1, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, -sqrt(2)/2, 0, sqrt(2)/2]) assert represent(JxKetCoupled(1, -1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, S.Half, -sqrt(2)/2, S.Half]) assert represent(JyKetCoupled(0, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JyKetCoupled(1, 1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, S.Half, I*sqrt(2)/2, Rational(-1, 2)]) assert represent(JyKetCoupled(1, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, I*sqrt(2)/2, 0, I*sqrt(2)/2]) assert represent(JyKetCoupled(1, -1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, Rational(-1, 2), I*sqrt(2)/2, S.Half]) assert represent(JzKetCoupled(0, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([1, 0, 0, 0]) assert represent(JzKetCoupled(1, 1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, 1, 0, 0]) assert represent(JzKetCoupled(1, 0, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, 0, 1, 0]) assert represent(JzKetCoupled(1, -1, (S.Half, S.Half)), basis=Jz) == \ Matrix([0, 0, 0, 1]) def test_represent_rotation(): assert represent(Rotation(0, pi/2, 0)) == \ Matrix( [[WignerD( S( 1)/2, S( 1)/2, S( 1)/2, 0, pi/2, 0), WignerD( S.Half, S.Half, Rational(-1, 2), 0, pi/2, 0)], [WignerD(S.Half, Rational(-1, 2), S.Half, 0, pi/2, 0), WignerD(S.Half, Rational(-1, 2), Rational(-1, 2), 0, pi/2, 0)]]) assert represent(Rotation(0, pi/2, 0), doit=True) == \ Matrix([[sqrt(2)/2, -sqrt(2)/2], [sqrt(2)/2, sqrt(2)/2]]) def test_rewrite_same(): # Rewrite to same basis assert JxBra(1, 1).rewrite('Jx') == JxBra(1, 1) assert JxBra(j, m).rewrite('Jx') == JxBra(j, m) assert JxKet(1, 1).rewrite('Jx') == JxKet(1, 1) assert JxKet(j, m).rewrite('Jx') == JxKet(j, m) def test_rewrite_Bra(): # Numerical assert JxBra(1, 1).rewrite('Jy') == -I*JyBra(1, 1) assert JxBra(1, 0).rewrite('Jy') == JyBra(1, 0) assert JxBra(1, -1).rewrite('Jy') == I*JyBra(1, -1) assert JxBra(1, 1).rewrite( 'Jz') == JzBra(1, 1)/2 + JzBra(1, 0)/sqrt(2) + JzBra(1, -1)/2 assert JxBra( 1, 0).rewrite('Jz') == -sqrt(2)*JzBra(1, 1)/2 + sqrt(2)*JzBra(1, -1)/2 assert JxBra(1, -1).rewrite( 'Jz') == JzBra(1, 1)/2 - JzBra(1, 0)/sqrt(2) + JzBra(1, -1)/2 assert JyBra(1, 1).rewrite('Jx') == I*JxBra(1, 1) assert JyBra(1, 0).rewrite('Jx') == JxBra(1, 0) assert JyBra(1, -1).rewrite('Jx') == -I*JxBra(1, -1) assert JyBra(1, 1).rewrite( 'Jz') == JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, 0)/2 - JzBra(1, -1)/2 assert JyBra(1, 0).rewrite( 'Jz') == -sqrt(2)*I*JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, -1)/2 assert JyBra(1, -1).rewrite( 'Jz') == -JzBra(1, 1)/2 - sqrt(2)*I*JzBra(1, 0)/2 + JzBra(1, -1)/2 assert JzBra(1, 1).rewrite( 'Jx') == JxBra(1, 1)/2 - sqrt(2)*JxBra(1, 0)/2 + JxBra(1, -1)/2 assert JzBra( 1, 0).rewrite('Jx') == sqrt(2)*JxBra(1, 1)/2 - sqrt(2)*JxBra(1, -1)/2 assert JzBra(1, -1).rewrite( 'Jx') == JxBra(1, 1)/2 + sqrt(2)*JxBra(1, 0)/2 + JxBra(1, -1)/2 assert JzBra(1, 1).rewrite( 'Jy') == JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, 0)/2 - JyBra(1, -1)/2 assert JzBra(1, 0).rewrite( 'Jy') == sqrt(2)*I*JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, -1)/2 assert JzBra(1, -1).rewrite( 'Jy') == -JyBra(1, 1)/2 + sqrt(2)*I*JyBra(1, 0)/2 + JyBra(1, -1)/2 # Symbolic assert JxBra(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), 0, 0) * JyBra(j, mi), (mi, -j, j)) assert JxBra(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 0, pi/2, 0) * JzBra(j, mi), (mi, -j, j)) assert JyBra(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 0, pi/2) * JxBra(j, mi), (mi, -j, j)) assert JyBra(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * JzBra(j, mi), (mi, -j, j)) assert JzBra(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, pi*Rational(3, 2), 0) * JxBra(j, mi), (mi, -j, j)) assert JzBra(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), pi/2, pi/2) * JyBra(j, mi), (mi, -j, j)) def test_rewrite_Ket(): # Numerical assert JxKet(1, 1).rewrite('Jy') == I*JyKet(1, 1) assert JxKet(1, 0).rewrite('Jy') == JyKet(1, 0) assert JxKet(1, -1).rewrite('Jy') == -I*JyKet(1, -1) assert JxKet(1, 1).rewrite( 'Jz') == JzKet(1, 1)/2 + JzKet(1, 0)/sqrt(2) + JzKet(1, -1)/2 assert JxKet( 1, 0).rewrite('Jz') == -sqrt(2)*JzKet(1, 1)/2 + sqrt(2)*JzKet(1, -1)/2 assert JxKet(1, -1).rewrite( 'Jz') == JzKet(1, 1)/2 - JzKet(1, 0)/sqrt(2) + JzKet(1, -1)/2 assert JyKet(1, 1).rewrite('Jx') == -I*JxKet(1, 1) assert JyKet(1, 0).rewrite('Jx') == JxKet(1, 0) assert JyKet(1, -1).rewrite('Jx') == I*JxKet(1, -1) assert JyKet(1, 1).rewrite( 'Jz') == JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, 0)/2 - JzKet(1, -1)/2 assert JyKet(1, 0).rewrite( 'Jz') == sqrt(2)*I*JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, -1)/2 assert JyKet(1, -1).rewrite( 'Jz') == -JzKet(1, 1)/2 + sqrt(2)*I*JzKet(1, 0)/2 + JzKet(1, -1)/2 assert JzKet(1, 1).rewrite( 'Jx') == JxKet(1, 1)/2 - sqrt(2)*JxKet(1, 0)/2 + JxKet(1, -1)/2 assert JzKet( 1, 0).rewrite('Jx') == sqrt(2)*JxKet(1, 1)/2 - sqrt(2)*JxKet(1, -1)/2 assert JzKet(1, -1).rewrite( 'Jx') == JxKet(1, 1)/2 + sqrt(2)*JxKet(1, 0)/2 + JxKet(1, -1)/2 assert JzKet(1, 1).rewrite( 'Jy') == JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, 0)/2 - JyKet(1, -1)/2 assert JzKet(1, 0).rewrite( 'Jy') == -sqrt(2)*I*JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, -1)/2 assert JzKet(1, -1).rewrite( 'Jy') == -JyKet(1, 1)/2 - sqrt(2)*I*JyKet(1, 0)/2 + JyKet(1, -1)/2 # Symbolic assert JxKet(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), 0, 0) * JyKet(j, mi), (mi, -j, j)) assert JxKet(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, 0, pi/2, 0) * JzKet(j, mi), (mi, -j, j)) assert JyKet(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, 0, pi/2) * JxKet(j, mi), (mi, -j, j)) assert JyKet(j, m).rewrite('Jz') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * JzKet(j, mi), (mi, -j, j)) assert JzKet(j, m).rewrite('Jx') == Sum( WignerD(j, mi, m, 0, pi*Rational(3, 2), 0) * JxKet(j, mi), (mi, -j, j)) assert JzKet(j, m).rewrite('Jy') == Sum( WignerD(j, mi, m, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j, mi), (mi, -j, j)) def test_rewrite_uncoupled_state(): # Numerical assert TensorProduct(JyKet(1, 1), JxKet( 1, 1)).rewrite('Jx') == -I*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert TensorProduct(JyKet(1, 0), JxKet( 1, 1)).rewrite('Jx') == TensorProduct(JxKet(1, 0), JxKet(1, 1)) assert TensorProduct(JyKet(1, -1), JxKet( 1, 1)).rewrite('Jx') == I*TensorProduct(JxKet(1, -1), JxKet(1, 1)) assert TensorProduct(JzKet(1, 1), JxKet(1, 1)).rewrite('Jx') == \ TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 - sqrt(2)*TensorProduct(JxKet( 1, 0), JxKet(1, 1))/2 + TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JzKet(1, 0), JxKet(1, 1)).rewrite('Jx') == \ -sqrt(2)*TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 + sqrt( 2)*TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JzKet(1, -1), JxKet(1, 1)).rewrite('Jx') == \ TensorProduct(JxKet(1, -1), JxKet(1, 1))/2 + sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, 1))/2 + TensorProduct(JxKet(1, 1), JxKet(1, 1))/2 assert TensorProduct(JxKet(1, 1), JyKet( 1, 1)).rewrite('Jy') == I*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert TensorProduct(JxKet(1, 0), JyKet( 1, 1)).rewrite('Jy') == TensorProduct(JyKet(1, 0), JyKet(1, 1)) assert TensorProduct(JxKet(1, -1), JyKet( 1, 1)).rewrite('Jy') == -I*TensorProduct(JyKet(1, -1), JyKet(1, 1)) assert TensorProduct(JzKet(1, 1), JyKet(1, 1)).rewrite('Jy') == \ -TensorProduct(JyKet(1, -1), JyKet(1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 + TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JzKet(1, 0), JyKet(1, 1)).rewrite('Jy') == \ -sqrt(2)*I*TensorProduct(JyKet(1, -1), JyKet( 1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JzKet(1, -1), JyKet(1, 1)).rewrite('Jy') == \ TensorProduct(JyKet(1, -1), JyKet(1, 1))/2 - sqrt(2)*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 - TensorProduct(JyKet(1, 1), JyKet(1, 1))/2 assert TensorProduct(JxKet(1, 1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JxKet(1, 0), JzKet(1, 1)).rewrite('Jz') == \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet( 1, 1))/2 - sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JxKet(1, -1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 - sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, 1), JzKet(1, 1)).rewrite('Jz') == \ -TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 + TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, 0), JzKet(1, 1)).rewrite('Jz') == \ sqrt(2)*I*TensorProduct(JzKet(1, -1), JzKet( 1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 assert TensorProduct(JyKet(1, -1), JzKet(1, 1)).rewrite('Jz') == \ TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 + sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 - TensorProduct(JzKet(1, 1), JzKet(1, 1))/2 # Symbolic assert TensorProduct(JyKet(j1, m1), JxKet(j2, m2)).rewrite('Jy') == \ TensorProduct(JyKet(j1, m1), Sum( WignerD(j2, mi, m2, pi*Rational(3, 2), 0, 0) * JyKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JzKet(j1, m1), JxKet(j2, m2)).rewrite('Jz') == \ TensorProduct(JzKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, pi/2, 0) * JzKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JxKet(j1, m1), JyKet(j2, m2)).rewrite('Jx') == \ TensorProduct(JxKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, 0, pi/2) * JxKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JzKet(j1, m1), JyKet(j2, m2)).rewrite('Jz') == \ TensorProduct(JzKet(j1, m1), Sum(WignerD( j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2) * JzKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JxKet(j1, m1), JzKet(j2, m2)).rewrite('Jx') == \ TensorProduct(JxKet(j1, m1), Sum( WignerD(j2, mi, m2, 0, pi*Rational(3, 2), 0) * JxKet(j2, mi), (mi, -j2, j2))) assert TensorProduct(JyKet(j1, m1), JzKet(j2, m2)).rewrite('Jy') == \ TensorProduct(JyKet(j1, m1), Sum(WignerD( j2, mi, m2, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j2, mi), (mi, -j2, j2))) def test_rewrite_coupled_state(): # Numerical assert JyKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(0, 0, (S.Half, S.Half)) assert JyKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jx') == \ -I*JxKetCoupled(1, 1, (S.Half, S.Half)) assert JyKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(1, 0, (S.Half, S.Half)) assert JyKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jx') == \ I*JxKetCoupled(1, -1, (S.Half, S.Half)) assert JzKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(0, 0, (S.Half, S.Half)) assert JzKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(1, 1, (S.Half, S.Half))/2 - sqrt(2)*JxKetCoupled(1, 0, ( S.Half, S.Half))/2 + JxKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jx') == \ sqrt(2)*JxKetCoupled(1, 1, (S( 1)/2, S.Half))/2 - sqrt(2)*JxKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jx') == \ JxKetCoupled(1, 1, (S.Half, S.Half))/2 + sqrt(2)*JxKetCoupled(1, 0, ( S.Half, S.Half))/2 + JxKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(0, 0, (S.Half, S.Half)) assert JxKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jy') == \ I*JyKetCoupled(1, 1, (S.Half, S.Half)) assert JxKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(1, 0, (S.Half, S.Half)) assert JxKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jy') == \ -I*JyKetCoupled(1, -1, (S.Half, S.Half)) assert JzKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(0, 0, (S.Half, S.Half)) assert JzKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jy') == \ JyKetCoupled(1, 1, (S.Half, S.Half))/2 - I*sqrt(2)*JyKetCoupled(1, 0, ( S.Half, S.Half))/2 - JyKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jy') == \ -I*sqrt(2)*JyKetCoupled(1, 1, (S.Half, S.Half))/2 - I*sqrt( 2)*JyKetCoupled(1, -1, (S.Half, S.Half))/2 assert JzKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jy') == \ -JyKetCoupled(1, 1, (S.Half, S.Half))/2 - I*sqrt(2)*JyKetCoupled(1, 0, (S.Half, S.Half))/2 + JyKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(0, 0, (S.Half, S.Half)) assert JxKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S.Half, S.Half))/2 + sqrt(2)*JzKetCoupled(1, 0, ( S.Half, S.Half))/2 + JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jz') == \ -sqrt(2)*JzKetCoupled(1, 1, (S( 1)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JxKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S.Half, S.Half))/2 - sqrt(2)*JzKetCoupled(1, 0, ( S.Half, S.Half))/2 + JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JyKetCoupled(0, 0, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(0, 0, (S.Half, S.Half)) assert JyKetCoupled(1, 1, (S.Half, S.Half)).rewrite('Jz') == \ JzKetCoupled(1, 1, (S.Half, S.Half))/2 + I*sqrt(2)*JzKetCoupled(1, 0, ( S.Half, S.Half))/2 - JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JyKetCoupled(1, 0, (S.Half, S.Half)).rewrite('Jz') == \ I*sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half))/2 + I*sqrt( 2)*JzKetCoupled(1, -1, (S.Half, S.Half))/2 assert JyKetCoupled(1, -1, (S.Half, S.Half)).rewrite('Jz') == \ -JzKetCoupled(1, 1, (S.Half, S.Half))/2 + I*sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half))/2 + JzKetCoupled(1, -1, (S.Half, S.Half))/2 # Symbolic assert JyKetCoupled(j, m, (j1, j2)).rewrite('Jx') == \ Sum(WignerD(j, mi, m, 0, 0, pi/2) * JxKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JzKetCoupled(j, m, (j1, j2)).rewrite('Jx') == \ Sum(WignerD(j, mi, m, 0, pi*Rational(3, 2), 0) * JxKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JxKetCoupled(j, m, (j1, j2)).rewrite('Jy') == \ Sum(WignerD(j, mi, m, pi*Rational(3, 2), 0, 0) * JyKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JzKetCoupled(j, m, (j1, j2)).rewrite('Jy') == \ Sum(WignerD(j, mi, m, pi*Rational(3, 2), pi/2, pi/2) * JyKetCoupled(j, mi, (j1, j2)), (mi, -j, j)) assert JxKetCoupled(j, m, (j1, j2)).rewrite('Jz') == \ Sum(WignerD(j, mi, m, 0, pi/2, 0) * JzKetCoupled(j, mi, ( j1, j2)), (mi, -j, j)) assert JyKetCoupled(j, m, (j1, j2)).rewrite('Jz') == \ Sum(WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * JzKetCoupled( j, mi, (j1, j2)), (mi, -j, j)) def test_innerproducts_of_rewritten_states(): # Numerical assert qapply(JxBra(1, 1)*JxKet(1, 1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 0)*JxKet(1, 0).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, -1)*JxKet(1, -1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 1)*JxKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JxBra(1, 0)*JxKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JxBra(1, -1)*JxKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jx')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 1)*JyKet(1, 1).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, 0)*JyKet(1, 0).rewrite('Jz')).doit() == 1 assert qapply(JyBra(1, -1)*JyKet(1, -1).rewrite('Jz')).doit() == 1 assert qapply(JzBra(1, 1)*JzKet(1, 1).rewrite('Jy')).doit() == 1 assert qapply(JzBra(1, 0)*JzKet(1, 0).rewrite('Jy')).doit() == 1 assert qapply(JzBra(1, -1)*JzKet(1, -1).rewrite('Jy')).doit() == 1 assert qapply(JxBra(1, 1)*JxKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JxBra(1, 1)*JxKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 1)*JxKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JxBra(1, 1)*JxKet(1, -1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 1)*JyKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JyBra(1, 1)*JyKet(1, -1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 1)*JyKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JyBra(1, 1)*JyKet(1, -1).rewrite('Jz')) == 0 assert qapply(JzBra(1, 1)*JzKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JzBra(1, 1)*JzKet(1, -1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 1)*JzKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JzBra(1, 1)*JzKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, 1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, 1).rewrite('Jz')) == 0 assert qapply(JxBra(1, 0)*JxKet(1, -1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, 1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, -1).rewrite('Jx')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, 1).rewrite('Jz')) == 0 assert qapply(JyBra(1, 0)*JyKet(1, -1).rewrite('Jz')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, 1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, -1).rewrite('Jx')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, 1).rewrite('Jy')) == 0 assert qapply(JzBra(1, 0)*JzKet(1, -1).rewrite('Jy')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 1).rewrite('Jy')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 0).rewrite('Jy')).doit() == 0 assert qapply(JxBra(1, -1)*JxKet(1, 1).rewrite('Jz')) == 0 assert qapply(JxBra(1, -1)*JxKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JyBra(1, -1)*JyKet(1, 1).rewrite('Jx')) == 0 assert qapply(JyBra(1, -1)*JyKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JyBra(1, -1)*JyKet(1, 1).rewrite('Jz')) == 0 assert qapply(JyBra(1, -1)*JyKet(1, 0).rewrite('Jz')).doit() == 0 assert qapply(JzBra(1, -1)*JzKet(1, 1).rewrite('Jx')) == 0 assert qapply(JzBra(1, -1)*JzKet(1, 0).rewrite('Jx')).doit() == 0 assert qapply(JzBra(1, -1)*JzKet(1, 1).rewrite('Jy')) == 0 assert qapply(JzBra(1, -1)*JzKet(1, 0).rewrite('Jy')).doit() == 0 def test_uncouple_2_coupled_states(): # j1=1/2, j2=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) # j1=1/2, j2=1 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)) == \ expand(uncouple( couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)) ))) # j1=1, j2=1 assert TensorProduct(JzKet(1, 1), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, 1), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, 1), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 1), JzKet(1, -1)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, 0), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, 0), JzKet(1, -1)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, 1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, 1)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, 0)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, 0)) ))) assert TensorProduct(JzKet(1, -1), JzKet(1, -1)) == \ expand(uncouple(couple( TensorProduct(JzKet(1, -1), JzKet(1, -1)) ))) def test_uncouple_3_coupled_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.NegativeOne/ 2), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) # j1=1/2, j2=1, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) # Coupling j1+j3=j13, j13+j2=j # j1=1/2, j2=1/2, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) # j1=1/2, j2=1, j3=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( 1)/2), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S( -1)/2), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.NegativeOne/ 2), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ))) @slow def test_uncouple_4_coupled_states(): # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S( 1)/2, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) ))) # j1=1/2, j2=1/2, j3=1, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet( S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) ))) # Couple j1+j3=j13, j2+j4=j24, j13+j24=j # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) # j1=1/2, j2=1/2, j3=1, j4=1/2 assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, S.Half)), ((1, 3), (2, 4), (1, 2)) ))) assert TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) == \ expand(uncouple(couple( TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (2, 4), (1, 2)) ))) def test_uncouple_2_coupled_states_numerical(): # j1=1/2, j2=1/2 assert uncouple(JzKetCoupled(0, 0, (S.Half, S.Half))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/2 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half))) == \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/2 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/2 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) # j1=1, j2=1/2 assert uncouple(JzKetCoupled(S.Half, S.Half, (1, S.Half))) == \ -sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(S.Half, S.Half))/3 + \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(S.Half, Rational(-1, 2)))/3 assert uncouple(JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(S.Half, Rational(-1, 2)))/3 - \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(S.Half, S.Half))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half))) == \ TensorProduct(JzKet(1, 1), JzKet(S.Half, S.Half)) assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(S.Half, Rational(-1, 2)))/3 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(S.Half, S.Half))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half))) == \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(S.Half, Rational(-1, 2)))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(S.Half, S.Half))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half))) == \ TensorProduct(JzKet(1, -1), JzKet(S.Half, Rational(-1, 2))) # j1=1, j2=1 assert uncouple(JzKetCoupled(0, 0, (1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/3 assert uncouple(JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 - \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(1, 0, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(1, -1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 2, (1, 1))) == \ TensorProduct(JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(2, 1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert uncouple(JzKetCoupled(2, 0, (1, 1))) == \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, 1))/6 assert uncouple(JzKetCoupled(2, -1, (1, 1))) == \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 + \ sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, -2, (1, 1))) == \ TensorProduct(JzKet(1, -1), JzKet(1, -1)) def test_uncouple_3_coupled_states_numerical(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half))) == \ TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)) assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/3 + \ sqrt(3)*TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))/3 + \ sqrt(3)*TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half))) == \ TensorProduct(JzKet( S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))) # j1=1/2, j2=1/2, j3=1 assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1))) == \ TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)) assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1))) == \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))/2 + \ TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1))) == \ TensorProduct( JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)) assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))/2 + \ TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))/2 # j1=1/2, j2=1, j3=1 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, 1, 1))) == \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/5 assert uncouple(JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1))) == \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/5 + \ sqrt(5)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1))) == \ -sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/15 - \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/5 assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1))) == \ -4*sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 - \ 2*sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/15 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1))) == \ -sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ 2*sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/15 - \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ 4*sqrt(5)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1))) == \ -sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/5 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/3 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/3 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/3 # j1=1, j2=1, j3=1 assert uncouple(JzKetCoupled(3, 3, (1, 1, 1))) == \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (1, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (1, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(10)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (1, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(3, -3, (1, 1, 1))) == \ TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (1, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(2, 1, (1, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, 0, (1, 1, 1))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (1, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -2, (1, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(1, 1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/15 - \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(1, 0, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/10 - \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/10 - \ 2*sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/10 - \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (1, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/30 # Defined j13 # j1=1/2, j2=1/2, j3=1, j13=1/2 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))/3 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))/3 # j1=1/2, j2=1, j3=1, j13=1/2 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -2*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/3 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/3 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/3 + \ 2*TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct( JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/3 # j1=1, j2=1, j3=1, j13=1 assert uncouple(JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/2 + \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)))) == \ -TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))/2 - \ TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))/2 + \ TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))/2 def test_uncouple_4_coupled_states_numerical(): # j1=1/2, j2=1/2, j3=1, j4=1, default coupling assert uncouple(JzKetCoupled(3, 3, (S.Half, S.Half, 1, 1))) == \ TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (S.Half, S.Half, 1, 1))) == \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (S.Half, S.Half, 1, 1))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (S.Half, S.Half, 1, 1))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(3, -3, (S.Half, S.Half, 1, 1))) == \ TensorProduct(JzKet(S.Half, -S( 1)/2), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1, 1))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/4 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1, 1))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1, 1))) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/30 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/5 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 - \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/20 - \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1, 1))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/5 - \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/20 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/30 # j1=1/2, j2=1/2, j3=1, j4=1, j12=1, j34=1 assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/2 + \ sqrt(2)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/2 assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/4 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/6 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/4 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 2)))) == \ -sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/2 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/4 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/2 - \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 1), (1, 3, 1)))) == \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/2 - \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/4 - \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/4 + \ sqrt(2)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/4 # j1=1/2, j2=1/2, j3=1, j4=1, j12=1, j34=2 assert uncouple(JzKetCoupled(3, 3, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ TensorProduct(JzKet( S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)) assert uncouple(JzKetCoupled(3, 2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/3 assert uncouple(JzKetCoupled(3, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/10 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/5 + \ sqrt(5)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(10)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(3, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/15 + \ 2*sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/15 + \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/15 assert uncouple(JzKetCoupled(3, -2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(3, -3, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 3)))) == \ TensorProduct(JzKet(S.Half, -S( 1)/2), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)) assert uncouple(JzKetCoupled(2, 2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))/3 - \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/3 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/6 + \ sqrt(6)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/6 assert uncouple(JzKetCoupled(2, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/3 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/12 - \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/12 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/3 + \ sqrt(3)*TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/6 assert uncouple(JzKetCoupled(2, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/2 - \ TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/2 + \ TensorProduct(JzKet(S( 1)/2, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/2 assert uncouple(JzKetCoupled(2, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/6 - \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/3 - \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/6 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/12 + \ sqrt(6)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/12 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(2, -2, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 2)))) == \ -sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/6 - \ sqrt(6)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/6 + \ sqrt(3)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/3 + \ sqrt(3)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))/3 assert uncouple(JzKetCoupled(1, 1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))/5 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/20 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/30 assert uncouple(JzKetCoupled(1, 0, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))/10 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))/10 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))/15 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/10 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/10 assert uncouple(JzKetCoupled(1, -1, (S.Half, S.Half, 1, 1), ((1, 2, 1), (3, 4, 2), (1, 3, 1)))) == \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))/30 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))/15 + \ sqrt(15)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))/30 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))/20 - \ sqrt(30)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))/20 + \ sqrt(15)*TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))/5 def test_uncouple_symbolic(): assert uncouple(JzKetCoupled(j, m, (j1, j2) )) == \ Sum(CG(j1, m1, j2, m2, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2)), (m1, -j1, j1), (m2, -j2, j2)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3) )) == \ Sum(CG(j1, m1, j2, m2, j1 + j2, m1 + m2) * CG(j1 + j2, m1 + m2, j3, m3, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3), ((1, 3, j13), (1, 2, j)) )) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j2, m2, j, m) * TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3, j4) )) == \ Sum(CG(j1, m1, j2, m2, j1 + j2, m1 + m2) * CG(j1 + j2, m1 + m2, j3, m3, j1 + j2 + j3, m1 + m2 + m3) * CG(j1 + j2 + j3, m1 + m2 + m3, j4, m4, j, m) * TensorProduct( JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3), (m4, -j4, j4)) assert uncouple(JzKetCoupled(j, m, (j1, j2, j3, j4), ((1, 3, j13), (2, 4, j24), (1, 2, j)) )) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j2, m2, j4, m4, j24, m2 + m4) * CG(j13, m1 + m3, j24, m2 + m4, j, m) * TensorProduct( JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), (m1, -j1, j1), (m2, -j2, j2), (m3, -j3, j3), (m4, -j4, j4)) def test_couple_2_states(): # j1=1/2, j2=1/2 assert JzKetCoupled(0, 0, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S.Half, S.Half)) ))) assert JzKetCoupled(1, 1, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, S.Half)) ))) assert JzKetCoupled(1, 0, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, S.Half)) ))) assert JzKetCoupled(1, -1, (S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half)) ))) # j1=1, j2=1/2 assert JzKetCoupled(S.Half, S.Half, (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (1, S.Half)) ))) assert JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half)) ))) # j1=1, j2=1 assert JzKetCoupled(0, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (1, 1)) ))) assert JzKetCoupled(1, 1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (1, 1)) ))) assert JzKetCoupled(1, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (1, 1)) ))) assert JzKetCoupled(1, -1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (1, 1)) ))) assert JzKetCoupled(2, 2, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (1, 1)) ))) assert JzKetCoupled(2, 1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (1, 1)) ))) assert JzKetCoupled(2, 0, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (1, 1)) ))) assert JzKetCoupled(2, -1, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (1, 1)) ))) assert JzKetCoupled(2, -2, (1, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (1, 1)) ))) # j1=1/2, j2=3/2 assert JzKetCoupled(1, 1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(1, 0, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(1, -1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, 2, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, 1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, 0, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, -1, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, Rational(3, 2))) ))) assert JzKetCoupled(2, -2, (S.Half, Rational(3, 2))) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, Rational(3, 2))) ))) def test_couple_3_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half)) ))) # j1=1/2, j2=1/2, j3=1 assert JzKetCoupled(0, 0, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(1, 1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(1, 0, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(1, -1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, 2, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, 1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, 0, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, -1, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, S.Half, 1)) ))) assert JzKetCoupled(2, -2, (S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, S.Half, 1)) ))) # Couple j1+j3=j13, j13+j2=j # j1=1/2, j2=1/2, j3=1/2, j13=0 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S( 1)/2, S.Half), ((1, 3, 0), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S( 1)/2, S.Half), ((1, 3, 0), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) # j1=1, j2=1/2, j3=1, j13=1 assert JzKetCoupled(S.Half, S.Half, (1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, ( 1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, S.Half))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), ( 1, S.Half, 1), ((1, 3, 1), (1, 2, Rational(3, 2)))) ), ((1, 3), (1, 2)) )) def test_couple_4_states(): # Default coupling # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, 2, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(2, 2, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, 1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(2, 1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple( uncouple( JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, -1, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, S.Half, S.Half, S.Half)) ))) assert JzKetCoupled(2, -2, (S.Half, S.Half, S.Half, S.Half)) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, S.Half, S.Half, S.Half)) ))) # j1=1/2, j2=1/2, j3=1/2, j4=1 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1)) ))) assert JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S.Half, S.Half, 1)) == \ expand(couple(uncouple( JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S.Half, S.Half, 1)) ))) # Coupling j1+j3=j13, j2+j4=j24, j13+j24=j # j1=1/2, j2=1/2, j3=1/2, j4=1/2, j13=1, j24=0 assert JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 3, 1), (2, 4, 0), (1, 2, 1)) ) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1/2, j3=1/2, j4=1, j13=1, j24=1/2 assert JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) ) == \ expand(couple(uncouple( JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) )), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) ) == \ expand(couple(uncouple( JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, S.Half)) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) == \ expand(couple(uncouple( JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 3, 1), (2, 4, S.Half), (1, 2, Rational(3, 2))) ) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1, j3=1/2, j4=1, j13=0, j24=1 assert JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ((1, 3, 0), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ( (1, 3, 0), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) # j1=1/2, j2=1, j3=1/2, j4=1, j13=1, j24=1 assert JzKetCoupled(0, 0, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 0)) ) == \ expand(couple(uncouple( JzKetCoupled(0, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 0))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 1)) ) == \ expand(couple(uncouple( JzKetCoupled(1, -1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 1))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 2, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 2, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, 0, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, 0, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, -1, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, -1, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) assert JzKetCoupled(2, -2, (S.Half, 1, S.Half, 1), ((1, 3, 1), (2, 4, 1), (1, 2, 2)) ) == \ expand(couple(uncouple( JzKetCoupled(2, -2, (S.Half, 1, S.Half, 1), ( (1, 3, 1), (2, 4, 1), (1, 2, 2))) ), ((1, 3), (2, 4), (1, 2)) )) def test_couple_2_states_numerical(): # j1=1/2, j2=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ JzKetCoupled(1, 1, (S.Half, S.Half)) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(0, 0, (S( 1)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half))/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(0, 0, (S( 1)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half))/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(1, -1, (S.Half, S.Half)) # j1=1, j2=1/2 assert couple(TensorProduct(JzKet(1, 1), JzKet(S.Half, S.Half))) == \ JzKetCoupled(Rational(3, 2), Rational(3, 2), (1, S.Half)) assert couple(TensorProduct(JzKet(1, 1), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (1, S.Half))/3 + sqrt( 3)*JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(S.Half, S.Half))) == \ -sqrt(3)*JzKetCoupled(S.Half, S.Half, (1, S.Half))/3 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (1, S.Half))/3 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(S.Half, S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (1, S( 1)/2))/3 + sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (1, S.Half))/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(Rational(3, 2), Rational(-3, 2), (1, S.Half)) # j1=1, j2=1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (1, 1)) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 + sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled( 1, 1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, 1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled( 0, 0, (1, 1))/3 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (1, 1))/3 - sqrt(2)*JzKetCoupled( 1, 0, (1, 1))/2 + sqrt(6)*JzKetCoupled(2, 0, (1, 1))/6 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled( 1, -1, (1, 1))/2 + sqrt(2)*JzKetCoupled(2, -1, (1, 1))/2 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (1, 1)) # j1=3/2, j2=1/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(3, 2)), JzKet(S.Half, S.Half))) == \ JzKetCoupled(2, 2, (Rational(3, 2), S.Half)) assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(3, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled( 1, 1, (Rational(3, 2), S.Half))/2 + JzKetCoupled(2, 1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), S.Half), JzKet(S.Half, S.Half))) == \ -JzKetCoupled(1, 1, (S( 3)/2, S.Half))/2 + sqrt(3)*JzKetCoupled(2, 1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(2, 0, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(1, 0, (S( 3)/2, S.Half))/2 + sqrt(2)*JzKetCoupled(2, 0, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(1, -1, (S( 3)/2, S.Half))/2 + sqrt(3)*JzKetCoupled(2, -1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-3, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(3)*JzKetCoupled(1, -1, (Rational(3, 2), S.Half))/2 + \ JzKetCoupled(2, -1, (Rational(3, 2), S.Half))/2 assert couple(TensorProduct(JzKet(Rational(3, 2), Rational(-3, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(2, -2, (Rational(3, 2), S.Half)) def test_couple_3_states_numerical(): # Default coupling # j1=1/2,j2=1/2,j3=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ JzKetCoupled(Rational(3, 2), S( 3)/2, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 2, 1), (1, 3, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(Rational(3, 2), -S( 3)/2, (S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2))) ) # j1=S.Half, j2=S.Half, j3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ JzKetCoupled(2, 2, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(2)*JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ JzKetCoupled(2, -2, (S.Half, S.Half, 1), ((1, 2, 1), (1, 3, 2)) ) # j1=S.Half, j2=1, j3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled( Rational(5, 2), Rational(5, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1))) == \ -2*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ 2*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1))) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0))) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ 2*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1))) == \ -2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(S( 5)/2, Rational(-5, 2), (S.Half, 1, 1), ((1, 2, Rational(3, 2)), (1, 3, Rational(5, 2))) ) # j1=1, j2=1, j3=1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1))) == \ JzKetCoupled(3, 3, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) ) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/5 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0))) == \ -JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0))) == \ -sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ 2*sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/5 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0))) == \ -JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 + \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 0), (1, 3, 1)) )/3 - \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/30 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1))) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0))) == \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/10 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 1), (1, 3, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1))) == \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 1)) )/5 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1))) == \ JzKetCoupled(3, -3, (1, 1, 1), ((1, 2, 2), (1, 3, 3)) ) # j1=S.Half, j2=S.Half, j3=Rational(3, 2) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2)))) == \ JzKetCoupled(Rational(5, 2), S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half))) == \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3) /2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ 2*sqrt(30)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/15 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2)))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2)))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half))) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/30 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 0), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2)))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half))) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, S.Half)) )/6 - \ 2*sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/15 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2)))) == \ -sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(3, 2))) )/5 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S( 3)/2), ((1, 2, 1), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2)))) == \ JzKetCoupled(Rational(5, 2), -S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 2, 1), (1, 3, Rational(5, 2))) ) # Couple j1 to j3 # j1=1/2, j2=1/2, j3=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(3, 2), S( 3)/2, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, Rational(3, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 - \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.One/ 2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 0), (1, 2, S.Half)) )/2 + \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.One /2), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(3, 2), -S( 3)/2, (S.Half, S.Half, S.Half), ((1, 3, 1), (1, 2, Rational(3, 2))) ) # j1=1/2, j2=1/2, j3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(2, 2, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(2)*JzKetCoupled( 2, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/3 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/3 + \ sqrt(3)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/3 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/2 + \ JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 0)) )/3 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(6)*JzKetCoupled( 2, 0, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, S.Half), (1, 2, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 1)) )/6 + \ sqrt(2)*JzKetCoupled( 2, -1, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(2, -2, (S.Half, S.Half, 1), ((1, 3, Rational(3, 2)), (1, 2, 2)) ) # j 1=1/2, j 2=1, j 3=1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled( Rational(5, 2), Rational(5, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -2*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 + \ 2*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, Rational(3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 - \ 2*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(S( 5)/2, S.Half, (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, S.Half), (1, 2, Rational(3, 2))) )/3 + \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(S( 5)/2, Rational(-5, 2), (S.Half, 1, 1), ((1, 3, Rational(3, 2)), (1, 2, Rational(5, 2))) ) # j1=1, 1, 1 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(3, 3, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) ) assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/5 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 1), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(6)*JzKetCoupled(2, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, 2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ 2*sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/5 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 + \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 - \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 + \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, 0), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 + \ JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 - \ JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, 1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/6 - \ JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/2 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/5 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(0, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 0)) )/6 + \ sqrt(3)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ sqrt(15)*JzKetCoupled(1, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/15 - \ sqrt(3)*JzKetCoupled(2, 0, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/3 + \ sqrt(10)*JzKetCoupled(3, 0, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/10 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 - \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/10 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 - \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ 2*sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, 0), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/3 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 1)), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 0), (1, 2, 1)) )/3 - \ JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 1)) )/2 + \ sqrt(15)*JzKetCoupled(1, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 1)) )/30 - \ JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(3)*JzKetCoupled(2, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(15)*JzKetCoupled(3, -1, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/15 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, 0)), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 1), (1, 2, 2)) )/2 + \ sqrt(6)*JzKetCoupled(2, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 2)) )/6 + \ sqrt(3)*JzKetCoupled(3, -2, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) )/3 assert couple(TensorProduct(JzKet(1, -1), JzKet(1, -1), JzKet(1, -1)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(3, -3, (1, 1, 1), ((1, 3, 2), (1, 2, 3)) ) # j1=1/2, j2=1/2, j3=3/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(5, 2), S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 - \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3) /2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/2 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 - \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ 2*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/6 + \ 3*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S.Half, S(3)/ 2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/6 - \ 3*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ -2*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S(3) /2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(3, 2))), ((1, 3), (1, 2)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/2 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 + \ sqrt(15)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), S.Half)), ((1, 3), (1, 2)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, S.Half)) )/6 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/5 + \ sqrt(30)*JzKetCoupled(Rational(5, 2), -S( 1)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-1, 2))), ((1, 3), (1, 2)) ) == \ -JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 1), (1, 2, Rational(3, 2))) )/2 + \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(3, 2))) )/10 + \ sqrt(15)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S.Half, S( 3)/2), ((1, 3, 2), (1, 2, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(Rational(3, 2), Rational(-3, 2))), ((1, 3), (1, 2)) ) == \ JzKetCoupled(Rational(5, 2), -S( 5)/2, (S.Half, S.Half, Rational(3, 2)), ((1, 3, 2), (1, 2, Rational(5, 2))) ) def test_couple_4_states_numerical(): # Default coupling # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ JzKetCoupled(2, 2, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/3 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 - \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)))/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)))/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)))/2 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)))/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)))/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)))/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 - \ sqrt(6)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(3)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (1, 3, S.Half), (1, 4, 1)) )/2 + \ sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/6 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half))) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 0)) )/3 - \ sqrt(3)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 - \ sqrt(6)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)))) == \ -sqrt(6)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, S.Half), (1, 4, 1)) )/3 + \ sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/6 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half))) == \ -sqrt(3)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)))) == \ JzKetCoupled(2, -2, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, 2)) ) # j1=S.Half, S.Half, S.Half, 1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 + \ 2*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ 2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ -sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ -sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/2 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/6 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1))) == \ 2*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, S.Half)) )/3 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/3 - \ 2*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1))) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, S.Half), (1, 4, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1))) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0))) == \ -sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1))) == \ JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (1, 3, Rational(3, 2)), (1, 4, Rational(5, 2))) ) # Couple j1 to j2, j3 to j4 # j1=1/2, j2=1/2, j3=1/2, j4=1/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(2, 2, (S( 1)/2, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/3 + \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, 1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ -JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 0), (1, 3, 0)) )/2 - \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/6 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 - \ JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 0), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(0, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 0)) )/3 - \ sqrt(2)*JzKetCoupled(1, 0, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ sqrt(6)*JzKetCoupled(2, 0, (S.Half, S.Half, S.Half, S.One/ 2), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/6 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 0), (1, 3, 1)) )/2 - \ JzKetCoupled(1, -1, (S.Half, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 1)) )/2 + \ JzKetCoupled(2, -1, (S.Half, S( 1)/2, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) )/2 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2))), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(2, -2, (S( 1)/2, S.Half, S.Half, S.Half), ((1, 2, 1), (3, 4, 1), (1, 3, 2)) ) # j1=S.Half, S.Half, S.Half, 1 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(Rational(5, 2), Rational(5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) ) assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ 2*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/2 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 + \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(6)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 + \ JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(5)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 + \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(3)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 - \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(6)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/30 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/6 - \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 - \ sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/3 - \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 + \ sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 0), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/2 + \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/10 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(2)*JzKetCoupled(S.Half, S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/2 - \ sqrt(10)*JzKetCoupled(Rational(3, 2), S.Half, (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/5 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), S.Half, (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/3 + \ JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 4*sqrt(5)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, S.Half), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ sqrt(6)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ sqrt(30)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(5)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 1)), ((1, 2), (3, 4), (1, 3)) ) == \ 2*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, S.Half)) )/3 + \ sqrt(2)*JzKetCoupled(S.Half, Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, S.Half)) )/6 - \ sqrt(2)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(10)*JzKetCoupled(Rational(3, 2), Rational(-1, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-1, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/10 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, 0)), ((1, 2), (3, 4), (1, 3)) ) == \ -sqrt(3)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, S.Half), (1, 3, Rational(3, 2))) )/3 - \ 2*sqrt(15)*JzKetCoupled(Rational(3, 2), Rational(-3, 2), (S.Half, S.Half, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(3, 2))) )/15 + \ sqrt(10)*JzKetCoupled(Rational(5, 2), Rational(-3, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) )/5 assert couple(TensorProduct(JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(S.Half, Rational(-1, 2)), JzKet(1, -1)), ((1, 2), (3, 4), (1, 3)) ) == \ JzKetCoupled(Rational(5, 2), Rational(-5, 2), (S.Half, S( 1)/2, S.Half, 1), ((1, 2, 1), (3, 4, Rational(3, 2)), (1, 3, Rational(5, 2))) ) def test_couple_symbolic(): assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ Sum(CG(j1, m1, j2, m2, j, m1 + m2) * JzKetCoupled(j, m1 + m2, ( j1, j2)), (j, m1 + m2, j1 + j2)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3))) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j12, m1 + m2, j3, m3, j, m1 + m2 + m3) * JzKetCoupled(j, m1 + m2 + m3, (j1, j2, j3), ((1, 2, j12), (1, 3, j)) ), (j12, m1 + m2, j1 + j2), (j, m1 + m2 + m3, j12 + j3)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3)), ((1, 3), (1, 2)) ) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j2, m2, j, m1 + m2 + m3) * JzKetCoupled(j, m1 + m2 + m3, (j1, j2, j3), ((1, 3, j13), (1, 2, j)) ), (j13, m1 + m3, j1 + j3), (j, m1 + m2 + m3, j13 + j2)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4))) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j12, m1 + m2, j3, m3, j123, m1 + m2 + m3) * CG(j123, m1 + m2 + m3, j4, m4, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 2, j12), (1, 3, j123), (1, 4, j)) ), (j12, m1 + m2, j1 + j2), (j123, m1 + m2 + m3, j12 + j3), (j, m1 + m2 + m3 + m4, j123 + j4)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), ((1, 2), (3, 4), (1, 3)) ) == \ Sum(CG(j1, m1, j2, m2, j12, m1 + m2) * CG(j3, m3, j4, m4, j34, m3 + m4) * CG(j12, m1 + m2, j34, m3 + m4, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 2, j12), (3, 4, j34), (1, 3, j)) ), (j12, m1 + m2, j1 + j2), (j34, m3 + m4, j3 + j4), (j, m1 + m2 + m3 + m4, j12 + j34)) assert couple(TensorProduct(JzKet(j1, m1), JzKet(j2, m2), JzKet(j3, m3), JzKet(j4, m4)), ((1, 3), (1, 4), (1, 2)) ) == \ Sum(CG(j1, m1, j3, m3, j13, m1 + m3) * CG(j13, m1 + m3, j4, m4, j134, m1 + m3 + m4) * CG(j134, m1 + m3 + m4, j2, m2, j, m1 + m2 + m3 + m4) * JzKetCoupled(j, m1 + m2 + m3 + m4, ( j1, j2, j3, j4), ((1, 3, j13), (1, 4, j134), (1, 2, j)) ), (j13, m1 + m3, j1 + j3), (j134, m1 + m3 + m4, j13 + j4), (j, m1 + m2 + m3 + m4, j134 + j2)) def test_innerproduct(): assert InnerProduct(JzBra(1, 1), JzKet(1, 1)).doit() == 1 assert InnerProduct( JzBra(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))).doit() == 0 assert InnerProduct(JzBra(j, m), JzKet(j, m)).doit() == 1 assert InnerProduct(JzBra(1, 0), JyKet(1, 1)).doit() == I/sqrt(2) assert InnerProduct( JxBra(S.Half, S.Half), JzKet(S.Half, S.Half)).doit() == -sqrt(2)/2 assert InnerProduct(JyBra(1, 1), JzKet(1, 1)).doit() == S.Half assert InnerProduct(JxBra(1, -1), JyKet(1, 1)).doit() == 0 def test_rotation_small_d(): # Symbolic tests # j = 1/2 assert Rotation.d(S.Half, S.Half, S.Half, beta).doit() == cos(beta/2) assert Rotation.d(S.Half, S.Half, Rational(-1, 2), beta).doit() == -sin(beta/2) assert Rotation.d(S.Half, Rational(-1, 2), S.Half, beta).doit() == sin(beta/2) assert Rotation.d(S.Half, Rational(-1, 2), Rational(-1, 2), beta).doit() == cos(beta/2) # j = 1 assert Rotation.d(1, 1, 1, beta).doit() == (1 + cos(beta))/2 assert Rotation.d(1, 1, 0, beta).doit() == -sin(beta)/sqrt(2) assert Rotation.d(1, 1, -1, beta).doit() == (1 - cos(beta))/2 assert Rotation.d(1, 0, 1, beta).doit() == sin(beta)/sqrt(2) assert Rotation.d(1, 0, 0, beta).doit() == cos(beta) assert Rotation.d(1, 0, -1, beta).doit() == -sin(beta)/sqrt(2) assert Rotation.d(1, -1, 1, beta).doit() == (1 - cos(beta))/2 assert Rotation.d(1, -1, 0, beta).doit() == sin(beta)/sqrt(2) assert Rotation.d(1, -1, -1, beta).doit() == (1 + cos(beta))/2 # j = 3/2 assert Rotation.d(S( 3)/2, Rational(3, 2), Rational(3, 2), beta).doit() == (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 3)/2, S.Half, beta).doit() == -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 3)/2, Rational(-1, 2), beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 3)/2, Rational(-3, 2), beta).doit() == (-3*sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 1)/2, Rational(3, 2), beta).doit() == sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(S( 3)/2, S.Half, S.Half, beta).doit() == (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4 assert Rotation.d(S( 3)/2, S.Half, Rational(-1, 2), beta).doit() == (sin(beta/2) - 3*sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), S( 1)/2, Rational(-3, 2), beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, Rational(3, 2), beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, S.Half, beta).doit() == (-sin(beta/2) + 3*sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, Rational(-1, 2), beta).doit() == (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 1)/2, Rational(-3, 2), beta).doit() == -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(S( 3)/2, Rational(-3, 2), Rational(3, 2), beta).doit() == (3*sin(beta/2) - sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 3)/2, S.Half, beta).doit() == sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 3)/2, Rational(-1, 2), beta).doit() == sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4 assert Rotation.d(Rational(3, 2), -S( 3)/2, Rational(-3, 2), beta).doit() == (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4 # j = 2 assert Rotation.d(2, 2, 2, beta).doit() == (3 + 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, 2, 1, beta).doit() == -((cos(beta) + 1)*sin(beta))/2 assert Rotation.d(2, 2, 0, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, 2, -1, beta).doit() == (cos(beta) - 1)*sin(beta)/2 assert Rotation.d(2, 2, -2, beta).doit() == (3 - 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, 1, 2, beta).doit() == (cos(beta) + 1)*sin(beta)/2 assert Rotation.d(2, 1, 1, beta).doit() == (cos(beta) + cos(2*beta))/2 assert Rotation.d(2, 1, 0, beta).doit() == -sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 1, -1, beta).doit() == (cos(beta) - cos(2*beta))/2 assert Rotation.d(2, 1, -2, beta).doit() == (cos(beta) - 1)*sin(beta)/2 assert Rotation.d(2, 0, 2, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, 0, 1, beta).doit() == sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 0, 0, beta).doit() == (1 + 3*cos(2*beta))/4 assert Rotation.d(2, 0, -1, beta).doit() == -sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, 0, -2, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, -1, 2, beta).doit() == (2*sin(beta) - sin(2*beta))/4 assert Rotation.d(2, -1, 1, beta).doit() == (cos(beta) - cos(2*beta))/2 assert Rotation.d(2, -1, 0, beta).doit() == sqrt(6)*sin(2*beta)/4 assert Rotation.d(2, -1, -1, beta).doit() == (cos(beta) + cos(2*beta))/2 assert Rotation.d(2, -1, -2, beta).doit() == -((cos(beta) + 1)*sin(beta))/2 assert Rotation.d(2, -2, 2, beta).doit() == (3 - 4*cos(beta) + cos(2*beta))/8 assert Rotation.d(2, -2, 1, beta).doit() == (2*sin(beta) - sin(2*beta))/4 assert Rotation.d(2, -2, 0, beta).doit() == sqrt(6)*sin(beta)**2/4 assert Rotation.d(2, -2, -1, beta).doit() == (cos(beta) + 1)*sin(beta)/2 assert Rotation.d(2, -2, -2, beta).doit() == (3 + 4*cos(beta) + cos(2*beta))/8 # Numerical tests # j = 1/2 assert Rotation.d(S.Half, S.Half, S.Half, pi/2).doit() == sqrt(2)/2 assert Rotation.d(S.Half, S.Half, Rational(-1, 2), pi/2).doit() == -sqrt(2)/2 assert Rotation.d(S.Half, Rational(-1, 2), S.Half, pi/2).doit() == sqrt(2)/2 assert Rotation.d(S.Half, Rational(-1, 2), Rational(-1, 2), pi/2).doit() == sqrt(2)/2 # j = 1 assert Rotation.d(1, 1, 1, pi/2).doit() == S.Half assert Rotation.d(1, 1, 0, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(1, 1, -1, pi/2).doit() == S.Half assert Rotation.d(1, 0, 1, pi/2).doit() == sqrt(2)/2 assert Rotation.d(1, 0, 0, pi/2).doit() == 0 assert Rotation.d(1, 0, -1, pi/2).doit() == -sqrt(2)/2 assert Rotation.d(1, -1, 1, pi/2).doit() == S.Half assert Rotation.d(1, -1, 0, pi/2).doit() == sqrt(2)/2 assert Rotation.d(1, -1, -1, pi/2).doit() == S.Half # j = 3/2 assert Rotation.d(Rational(3, 2), Rational(3, 2), Rational(3, 2), pi/2).doit() == sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(3, 2), S.Half, pi/2).doit() == -sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(3, 2), Rational(-1, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(3, 2), Rational(-3, 2), pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), S.Half, Rational(3, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), S.Half, S.Half, pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), S.Half, Rational(-1, 2), pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), S.Half, Rational(-3, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), Rational(3, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), S.Half, pi/2).doit() == sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), Rational(-1, 2), pi/2).doit() == -sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(-1, 2), Rational(-3, 2), pi/2).doit() == -sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), Rational(3, 2), pi/2).doit() == sqrt(2)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), S.Half, pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), Rational(-1, 2), pi/2).doit() == sqrt(6)/4 assert Rotation.d(Rational(3, 2), Rational(-3, 2), Rational(-3, 2), pi/2).doit() == sqrt(2)/4 # j = 2 assert Rotation.d(2, 2, 2, pi/2).doit() == Rational(1, 4) assert Rotation.d(2, 2, 1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 2, 0, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, 2, -1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 2, -2, pi/2).doit() == Rational(1, 4) assert Rotation.d(2, 1, 2, pi/2).doit() == S.Half assert Rotation.d(2, 1, 1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 1, 0, pi/2).doit() == 0 assert Rotation.d(2, 1, -1, pi/2).doit() == S.Half assert Rotation.d(2, 1, -2, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 0, 2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, 0, 1, pi/2).doit() == 0 assert Rotation.d(2, 0, 0, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, 0, -1, pi/2).doit() == 0 assert Rotation.d(2, 0, -2, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, -1, 2, pi/2).doit() == S.Half assert Rotation.d(2, -1, 1, pi/2).doit() == S.Half assert Rotation.d(2, -1, 0, pi/2).doit() == 0 assert Rotation.d(2, -1, -1, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, -1, -2, pi/2).doit() == Rational(-1, 2) assert Rotation.d(2, -2, 2, pi/2).doit() == Rational(1, 4) assert Rotation.d(2, -2, 1, pi/2).doit() == S.Half assert Rotation.d(2, -2, 0, pi/2).doit() == sqrt(6)/4 assert Rotation.d(2, -2, -1, pi/2).doit() == S.Half assert Rotation.d(2, -2, -2, pi/2).doit() == Rational(1, 4) def test_rotation_d(): # Symbolic tests # j = 1/2 assert Rotation.D(S.Half, S.Half, S.Half, alpha, beta, gamma).doit() == \ cos(beta/2)*exp(-I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S.Half, S.Half, Rational(-1, 2), alpha, beta, gamma).doit() == \ -sin(beta/2)*exp(-I*alpha/2)*exp(I*gamma/2) assert Rotation.D(S.Half, Rational(-1, 2), S.Half, alpha, beta, gamma).doit() == \ sin(beta/2)*exp(I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(S.Half, Rational(-1, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ cos(beta/2)*exp(I*alpha/2)*exp(I*gamma/2) # j = 1 assert Rotation.D(1, 1, 1, alpha, beta, gamma).doit() == \ (1 + cos(beta))/2*exp(-I*alpha)*exp(-I*gamma) assert Rotation.D(1, 1, 0, alpha, beta, gamma).doit() == -sin( beta)/sqrt(2)*exp(-I*alpha) assert Rotation.D(1, 1, -1, alpha, beta, gamma).doit() == \ (1 - cos(beta))/2*exp(-I*alpha)*exp(I*gamma) assert Rotation.D(1, 0, 1, alpha, beta, gamma).doit() == \ sin(beta)/sqrt(2)*exp(-I*gamma) assert Rotation.D(1, 0, 0, alpha, beta, gamma).doit() == cos(beta) assert Rotation.D(1, 0, -1, alpha, beta, gamma).doit() == \ -sin(beta)/sqrt(2)*exp(I*gamma) assert Rotation.D(1, -1, 1, alpha, beta, gamma).doit() == \ (1 - cos(beta))/2*exp(I*alpha)*exp(-I*gamma) assert Rotation.D(1, -1, 0, alpha, beta, gamma).doit() == \ sin(beta)/sqrt(2)*exp(I*alpha) assert Rotation.D(1, -1, -1, alpha, beta, gamma).doit() == \ (1 + cos(beta))/2*exp(I*alpha)*exp(I*gamma) # j = 3/2 assert Rotation.D(Rational(3, 2), Rational(3, 2), Rational(3, 2), alpha, beta, gamma).doit() == \ (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), Rational(3, 2), S.Half, alpha, beta, gamma).doit() == \ -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(3, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(3, 2), Rational(-3, 2), alpha, beta, gamma).doit() == \ (-3*sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(-3, 2))*exp(I*gamma*Rational(3, 2)) assert Rotation.D(Rational(3, 2), S.Half, Rational(3, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), S.Half, S.Half, alpha, beta, gamma).doit() == \ (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), S.Half, Rational(-1, 2), alpha, beta, gamma).doit() == \ (sin(beta/2) - 3*sin(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), S.Half, Rational(-3, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(-I*alpha/2)*exp(I*gamma*Rational(3, 2)) assert Rotation.D(Rational(3, 2), Rational(-1, 2), Rational(3, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), Rational(-1, 2), S.Half, alpha, beta, gamma).doit() == \ (-sin(beta/2) + 3*sin(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-1, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ (cos(beta/2) + 3*cos(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-1, 2), Rational(-3, 2), alpha, beta, gamma).doit() == \ -sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha/2)*exp(I*gamma*Rational(3, 2)) assert Rotation.D(Rational(3, 2), Rational(-3, 2), Rational(3, 2), alpha, beta, gamma).doit() == \ (3*sin(beta/2) - sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(I*gamma*Rational(-3, 2)) assert Rotation.D(Rational(3, 2), Rational(-3, 2), S.Half, alpha, beta, gamma).doit() == \ sqrt(3)*(cos(beta/2) - cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(-I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-3, 2), Rational(-1, 2), alpha, beta, gamma).doit() == \ sqrt(3)*(sin(beta/2) + sin(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(I*gamma/2) assert Rotation.D(Rational(3, 2), Rational(-3, 2), Rational(-3, 2), alpha, beta, gamma).doit() == \ (3*cos(beta/2) + cos(beta*Rational(3, 2)))/4*exp(I*alpha*Rational(3, 2))*exp(I*gamma*Rational(3, 2)) # j = 2 assert Rotation.D(2, 2, 2, alpha, beta, gamma).doit() == \ (3 + 4*cos(beta) + cos(2*beta))/8*exp(-2*I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, 2, 1, alpha, beta, gamma).doit() == \ -((cos(beta) + 1)*exp(-2*I*alpha)*exp(-I*gamma)*sin(beta))/2 assert Rotation.D(2, 2, 0, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(-2*I*alpha) assert Rotation.D(2, 2, -1, alpha, beta, gamma).doit() == \ (cos(beta) - 1)*sin(beta)/2*exp(-2*I*alpha)*exp(I*gamma) assert Rotation.D(2, 2, -2, alpha, beta, gamma).doit() == \ (3 - 4*cos(beta) + cos(2*beta))/8*exp(-2*I*alpha)*exp(2*I*gamma) assert Rotation.D(2, 1, 2, alpha, beta, gamma).doit() == \ (cos(beta) + 1)*sin(beta)/2*exp(-I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, 1, 1, alpha, beta, gamma).doit() == \ (cos(beta) + cos(2*beta))/2*exp(-I*alpha)*exp(-I*gamma) assert Rotation.D(2, 1, 0, alpha, beta, gamma).doit() == -sqrt(6)* \ sin(2*beta)/4*exp(-I*alpha) assert Rotation.D(2, 1, -1, alpha, beta, gamma).doit() == \ (cos(beta) - cos(2*beta))/2*exp(-I*alpha)*exp(I*gamma) assert Rotation.D(2, 1, -2, alpha, beta, gamma).doit() == \ (cos(beta) - 1)*sin(beta)/2*exp(-I*alpha)*exp(2*I*gamma) assert Rotation.D(2, 0, 2, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(-2*I*gamma) assert Rotation.D(2, 0, 1, alpha, beta, gamma).doit() == sqrt(6)* \ sin(2*beta)/4*exp(-I*gamma) assert Rotation.D( 2, 0, 0, alpha, beta, gamma).doit() == (1 + 3*cos(2*beta))/4 assert Rotation.D(2, 0, -1, alpha, beta, gamma).doit() == -sqrt(6)* \ sin(2*beta)/4*exp(I*gamma) assert Rotation.D(2, 0, -2, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(2*I*gamma) assert Rotation.D(2, -1, 2, alpha, beta, gamma).doit() == \ (2*sin(beta) - sin(2*beta))/4*exp(I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, -1, 1, alpha, beta, gamma).doit() == \ (cos(beta) - cos(2*beta))/2*exp(I*alpha)*exp(-I*gamma) assert Rotation.D(2, -1, 0, alpha, beta, gamma).doit() == sqrt(6)* \ sin(2*beta)/4*exp(I*alpha) assert Rotation.D(2, -1, -1, alpha, beta, gamma).doit() == \ (cos(beta) + cos(2*beta))/2*exp(I*alpha)*exp(I*gamma) assert Rotation.D(2, -1, -2, alpha, beta, gamma).doit() == \ -((cos(beta) + 1)*sin(beta))/2*exp(I*alpha)*exp(2*I*gamma) assert Rotation.D(2, -2, 2, alpha, beta, gamma).doit() == \ (3 - 4*cos(beta) + cos(2*beta))/8*exp(2*I*alpha)*exp(-2*I*gamma) assert Rotation.D(2, -2, 1, alpha, beta, gamma).doit() == \ (2*sin(beta) - sin(2*beta))/4*exp(2*I*alpha)*exp(-I*gamma) assert Rotation.D(2, -2, 0, alpha, beta, gamma).doit() == \ sqrt(6)*sin(beta)**2/4*exp(2*I*alpha) assert Rotation.D(2, -2, -1, alpha, beta, gamma).doit() == \ (cos(beta) + 1)*sin(beta)/2*exp(2*I*alpha)*exp(I*gamma) assert Rotation.D(2, -2, -2, alpha, beta, gamma).doit() == \ (3 + 4*cos(beta) + cos(2*beta))/8*exp(2*I*alpha)*exp(2*I*gamma) # Numerical tests # j = 1/2 assert Rotation.D( S.Half, S.Half, S.Half, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D( S.Half, S.Half, Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -sqrt(2)/2 assert Rotation.D( S.Half, Rational(-1, 2), S.Half, pi/2, pi/2, pi/2).doit() == sqrt(2)/2 assert Rotation.D( S.Half, Rational(-1, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 # j = 1 assert Rotation.D(1, 1, 1, pi/2, pi/2, pi/2).doit() == Rational(-1, 2) assert Rotation.D(1, 1, 0, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 assert Rotation.D(1, 1, -1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(1, 0, 1, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D(1, 0, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(1, 0, -1, pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/2 assert Rotation.D(1, -1, 1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(1, -1, 0, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/2 assert Rotation.D(1, -1, -1, pi/2, pi/2, pi/2).doit() == Rational(-1, 2) # j = 3/2 assert Rotation.D( Rational(3, 2), Rational(3, 2), Rational(3, 2), pi/2, pi/2, pi/2).doit() == I*sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(3, 2), S.Half, pi/2, pi/2, pi/2).doit() == sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(3, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(3, 2), Rational(-3, 2), pi/2, pi/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.D( Rational(3, 2), S.Half, Rational(3, 2), pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D( Rational(3, 2), S.Half, S.Half, pi/2, pi/2, pi/2).doit() == I*sqrt(2)/4 assert Rotation.D( Rational(3, 2), S.Half, Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -sqrt(2)/4 assert Rotation.D( Rational(3, 2), S.Half, Rational(-3, 2), pi/2, pi/2, pi/2).doit() == I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), Rational(3, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), S.Half, pi/2, pi/2, pi/2).doit() == sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(-1, 2), Rational(-3, 2), pi/2, pi/2, pi/2).doit() == sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), Rational(3, 2), pi/2, pi/2, pi/2).doit() == sqrt(2)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), S.Half, pi/2, pi/2, pi/2).doit() == I*sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), Rational(-1, 2), pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D( Rational(3, 2), Rational(-3, 2), Rational(-3, 2), pi/2, pi/2, pi/2).doit() == -I*sqrt(2)/4 # j = 2 assert Rotation.D(2, 2, 2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) assert Rotation.D(2, 2, 1, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, 2, 0, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, 2, -1, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, 2, -2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) assert Rotation.D(2, 1, 2, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, 1, 1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, 1, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 1, -1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, 1, -2, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, 0, 2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, 0, 1, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 0, 0, pi/2, pi/2, pi/2).doit() == Rational(-1, 2) assert Rotation.D(2, 0, -1, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, 0, -2, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, -1, 2, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, -1, 1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, -1, 0, pi/2, pi/2, pi/2).doit() == 0 assert Rotation.D(2, -1, -1, pi/2, pi/2, pi/2).doit() == S.Half assert Rotation.D(2, -1, -2, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, -2, 2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) assert Rotation.D(2, -2, 1, pi/2, pi/2, pi/2).doit() == I/2 assert Rotation.D(2, -2, 0, pi/2, pi/2, pi/2).doit() == -sqrt(6)/4 assert Rotation.D(2, -2, -1, pi/2, pi/2, pi/2).doit() == -I/2 assert Rotation.D(2, -2, -2, pi/2, pi/2, pi/2).doit() == Rational(1, 4) def test_wignerd(): assert Rotation.D( j, m, mp, alpha, beta, gamma) == WignerD(j, m, mp, alpha, beta, gamma) assert Rotation.d(j, m, mp, beta) == WignerD(j, m, mp, 0, beta, 0) def test_wignerD(): i,j=symbols('i j') assert Rotation.D(1, 1, 1, 0, 0, 0) == WignerD(1, 1, 1, 0, 0, 0) assert Rotation.D(1, 1, 2, 0, 0, 0) == WignerD(1, 1, 2, 0, 0, 0) assert Rotation.D(1, i**2 - j**2, i**2 - j**2, 0, 0, 0) == WignerD(1, i**2 - j**2, i**2 - j**2, 0, 0, 0) assert Rotation.D(1, i, i, 0, 0, 0) == WignerD(1, i, i, 0, 0, 0) assert Rotation.D(1, i, i+1, 0, 0, 0) == WignerD(1, i, i+1, 0, 0, 0) assert Rotation.D(1, 0, 0, 0, 0, 0) == WignerD(1, 0, 0, 0, 0, 0) def test_jplus(): assert Commutator(Jplus, Jminus).doit() == 2*hbar*Jz assert Jplus.matrix_element(1, 1, 1, 1) == 0 assert Jplus.rewrite('xyz') == Jx + I*Jy # Normal operators, normal states # Numerical assert qapply(Jplus*JxKet(1, 1)) == \ -hbar*sqrt(2)*JxKet(1, 0)/2 + hbar*JxKet(1, 1) assert qapply(Jplus*JyKet(1, 1)) == \ hbar*sqrt(2)*JyKet(1, 0)/2 + I*hbar*JyKet(1, 1) assert qapply(Jplus*JzKet(1, 1)) == 0 # Symbolic assert qapply(Jplus*JxKet(j, m)) == \ Sum(hbar * sqrt(-mi**2 - mi + j**2 + j) * WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JyKet(j, m)) == \ Sum(hbar * sqrt(j**2 + j - mi**2 - mi) * WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKet(j, m + 1) # Normal operators, coupled states # Numerical assert qapply(Jplus*JxKetCoupled(1, 1, (1, 1))) == -hbar*sqrt(2) * \ JxKetCoupled(1, 0, (1, 1))/2 + hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jplus*JyKetCoupled(1, 1, (1, 1))) == hbar*sqrt(2) * \ JyKetCoupled(1, 0, (1, 1))/2 + I*hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jplus*JzKet(1, 1)) == 0 # Symbolic assert qapply(Jplus*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar * sqrt(-mi**2 - mi + j**2 + j) * WignerD(j, mi, m, 0, pi/2, 0) * Sum( WignerD( j, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar * sqrt(j**2 + j - mi**2 - mi) * WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum( WignerD(j, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jplus*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 + \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply( TensorProduct(Jplus, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 assert qapply(TensorProduct(1, Jplus)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0)) # Symbolic assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar * sqrt(-mi**2 - mi + j1**2 + j1) * WignerD(j1, mi, m1, 0, pi/2, 0) * Sum(WignerD(j1, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar * sqrt(-mi**2 - mi + j2**2 + j2) * WignerD(j2, mi, m2, 0, pi/2, 0) * Sum(WignerD(j2, mi1, mi + 1, 0, pi*Rational(3, 2), 0) * JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar * sqrt(j1**2 + j1 - mi**2 - mi) * WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j1, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar * sqrt(j2**2 + j2 - mi**2 - mi) * WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j2, mi1, mi + 1, pi*Rational(3, 2), pi/2, pi/2) * JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jplus, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jplus)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1)) def test_jminus(): assert qapply(Jminus*JzKet(1, -1)) == 0 assert Jminus.matrix_element(1, 0, 1, 1) == sqrt(2)*hbar assert Jminus.rewrite('xyz') == Jx - I*Jy # Normal operators, normal states # Numerical assert qapply(Jminus*JxKet(1, 1)) == \ hbar*sqrt(2)*JxKet(1, 0)/2 + hbar*JxKet(1, 1) assert qapply(Jminus*JyKet(1, 1)) == \ hbar*sqrt(2)*JyKet(1, 0)/2 - hbar*I*JyKet(1, 1) assert qapply(Jminus*JzKet(1, 1)) == sqrt(2)*hbar*JzKet(1, 0) # Symbolic assert qapply(Jminus*JxKet(j, m)) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JyKet(j, m)) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1) # Normal operators, coupled states # Numerical assert qapply(Jminus*JxKetCoupled(1, 1, (1, 1))) == \ hbar*sqrt(2)*JxKetCoupled(1, 0, (1, 1))/2 + \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jminus*JyKetCoupled(1, 1, (1, 1))) == \ hbar*sqrt(2)*JyKetCoupled(1, 0, (1, 1))/2 - \ hbar*I*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jminus*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*JzKetCoupled(1, 0, (1, 1)) # Symbolic assert qapply(Jminus*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, 0, pi/2, 0) * Sum(WignerD(j, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*sqrt(j**2 + j - mi**2 + mi)*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2) * Sum( WignerD(j, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)* JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jminus*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) - \ hbar*sqrt(2)*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 - \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, -1)) + \ hbar*sqrt(2)*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ sqrt(2)*hbar*TensorProduct(JzKet(1, 0), JzKet(1, -1)) assert qapply(TensorProduct( 1, Jminus)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 # Symbolic assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*sqrt(j1**2 + j1 - mi**2 + mi)*WignerD(j1, mi, m1, 0, pi/2, 0) * Sum(WignerD(j1, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*sqrt(j2**2 + j2 - mi**2 + mi)*WignerD(j2, mi, m2, 0, pi/2, 0) * Sum(WignerD(j2, mi1, mi - 1, 0, pi*Rational(3, 2), 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*sqrt(j1**2 + j1 - mi**2 + mi)*WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j1, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*sqrt(j2**2 + j2 - mi**2 + mi)*WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2) * Sum(WignerD(j2, mi1, mi - 1, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jminus, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jminus)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1)) def test_j2(): assert Commutator(J2, Jz).doit() == 0 assert J2.matrix_element(1, 1, 1, 1) == 2*hbar**2 # Normal operators, normal states # Numerical assert qapply(J2*JxKet(1, 1)) == 2*hbar**2*JxKet(1, 1) assert qapply(J2*JyKet(1, 1)) == 2*hbar**2*JyKet(1, 1) assert qapply(J2*JzKet(1, 1)) == 2*hbar**2*JzKet(1, 1) # Symbolic assert qapply(J2*JxKet(j, m)) == \ hbar**2*j**2*JxKet(j, m) + hbar**2*j*JxKet(j, m) assert qapply(J2*JyKet(j, m)) == \ hbar**2*j**2*JyKet(j, m) + hbar**2*j*JyKet(j, m) assert qapply(J2*JzKet(j, m)) == \ hbar**2*j**2*JzKet(j, m) + hbar**2*j*JzKet(j, m) # Normal operators, coupled states # Numerical assert qapply(J2*JxKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JxKetCoupled(1, 1, (1, 1)) assert qapply(J2*JyKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JyKetCoupled(1, 1, (1, 1)) assert qapply(J2*JzKetCoupled(1, 1, (1, 1))) == \ 2*hbar**2*JzKetCoupled(1, 1, (1, 1)) # Symbolic assert qapply(J2*JxKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JxKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JxKetCoupled(j, m, (j1, j2)) assert qapply(J2*JyKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JyKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JyKetCoupled(j, m, (j1, j2)) assert qapply(J2*JzKetCoupled(j, m, (j1, j2))) == \ hbar**2*j**2*JzKetCoupled(j, m, (j1, j2)) + \ hbar**2*j*JzKetCoupled(j, m, (j1, j2)) # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(J2, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ 2*hbar**2*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ 2*hbar**2*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ 2*hbar**2*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ 2*hbar**2*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ 2*hbar**2*TensorProduct(JzKet(1, 1), JzKet(1, -1)) assert qapply(TensorProduct(1, J2)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ 2*hbar**2*TensorProduct(JzKet(1, 1), JzKet(1, -1)) # Symbolic assert qapply(TensorProduct(J2, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(J2, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar**2*j1**2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) + \ hbar**2*j1*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) assert qapply(TensorProduct(1, J2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar**2*j2**2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) + \ hbar**2*j2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) def test_jx(): assert Commutator(Jx, Jz).doit() == -I*hbar*Jy assert Jx.rewrite('plusminus') == (Jminus + Jplus)/2 assert represent(Jx, basis=Jz, j=1) == ( represent(Jplus, basis=Jz, j=1) + represent(Jminus, basis=Jz, j=1))/2 # Normal operators, normal states # Numerical assert qapply(Jx*JxKet(1, 1)) == hbar*JxKet(1, 1) assert qapply(Jx*JyKet(1, 1)) == hbar*JyKet(1, 1) assert qapply(Jx*JzKet(1, 1)) == sqrt(2)*hbar*JzKet(1, 0)/2 # Symbolic assert qapply(Jx*JxKet(j, m)) == hbar*m*JxKet(j, m) assert qapply(Jx*JyKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, 0, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jx*JzKet(j, m)) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKet(j, m + 1)/2 + hbar*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1)/2 # Normal operators, coupled states # Numerical assert qapply(Jx*JxKetCoupled(1, 1, (1, 1))) == \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jx*JyKetCoupled(1, 1, (1, 1))) == \ hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jx*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*JzKetCoupled(1, 0, (1, 1))/2 # Symbolic assert qapply(Jx*JxKetCoupled(j, m, (j1, j2))) == \ hbar*m*JxKetCoupled(j, m, (j1, j2)) assert qapply(Jx*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, 0, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jx*JzKetCoupled(j, m, (j1, j2))) == \ hbar*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2))/2 + \ hbar*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2))/2 # Normal operators, uncoupled states # Numerical assert qapply(Jx*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ 2*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert qapply(Jx*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) + \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert qapply(Jx*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ sqrt(2)*hbar*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*hbar*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert qapply(Jx*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == 0 # Symbolic assert qapply(Jx*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) + \ hbar*m2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(Jx*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, 0, pi/2)*Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) + \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, 0, pi/2)*Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(Jx*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*sqrt(j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 + \ hbar*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jx, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 assert qapply(TensorProduct(1, Jx)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 # Symbolic assert qapply(TensorProduct(Jx, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m1*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ hbar*m2*TensorProduct(JxKet(j1, m1), JxKet(j2, m2)) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, 0, pi/2) * Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jx)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, 0, pi/2) * Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), 0, 0)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jx, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 assert qapply(TensorProduct(1, Jx)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 def test_jy(): assert Commutator(Jy, Jz).doit() == I*hbar*Jx assert Jy.rewrite('plusminus') == (Jplus - Jminus)/(2*I) assert represent(Jy, basis=Jz) == ( represent(Jplus, basis=Jz) - represent(Jminus, basis=Jz))/(2*I) # Normal operators, normal states # Numerical assert qapply(Jy*JxKet(1, 1)) == hbar*JxKet(1, 1) assert qapply(Jy*JyKet(1, 1)) == hbar*JyKet(1, 1) assert qapply(Jy*JzKet(1, 1)) == sqrt(2)*hbar*I*JzKet(1, 0)/2 # Symbolic assert qapply(Jy*JxKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), 0, 0)*Sum(WignerD( j, mi1, mi, 0, 0, pi/2)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jy*JyKet(j, m)) == hbar*m*JyKet(j, m) assert qapply(Jy*JzKet(j, m)) == \ -hbar*I*sqrt(j**2 + j - m**2 - m)*JzKet( j, m + 1)/2 + hbar*I*sqrt(j**2 + j - m**2 + m)*JzKet(j, m - 1)/2 # Normal operators, coupled states # Numerical assert qapply(Jy*JxKetCoupled(1, 1, (1, 1))) == \ hbar*JxKetCoupled(1, 1, (1, 1)) assert qapply(Jy*JyKetCoupled(1, 1, (1, 1))) == \ hbar*JyKetCoupled(1, 1, (1, 1)) assert qapply(Jy*JzKetCoupled(1, 1, (1, 1))) == \ sqrt(2)*hbar*I*JzKetCoupled(1, 0, (1, 1))/2 # Symbolic assert qapply(Jy*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), 0, 0)*Sum(WignerD(j, mi1, mi, 0, 0, pi/2)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jy*JyKetCoupled(j, m, (j1, j2))) == \ hbar*m*JyKetCoupled(j, m, (j1, j2)) assert qapply(Jy*JzKetCoupled(j, m, (j1, j2))) == \ -hbar*I*sqrt(j**2 + j - m**2 - m)*JzKetCoupled(j, m + 1, (j1, j2))/2 + \ hbar*I*sqrt(j**2 + j - m**2 + m)*JzKetCoupled(j, m - 1, (j1, j2))/2 # Normal operators, uncoupled states # Numerical assert qapply(Jy*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) + \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, 1)) assert qapply(Jy*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ 2*hbar*TensorProduct(JyKet(1, 1), JyKet(1, 1)) assert qapply(Jy*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ sqrt(2)*hbar*I*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 + \ sqrt(2)*hbar*I*TensorProduct(JzKet(1, 0), JzKet(1, 1))/2 assert qapply(Jy*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == 0 # Symbolic assert qapply(Jy*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), 0, 0)*Sum(WignerD(j2, mi1, mi, 0, 0, pi/2)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), 0, 0)*Sum(WignerD(j1, mi1, mi, 0, 0, pi/2)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(Jy*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m1*TensorProduct(JyKet(j1, m1), JyKet( j2, m2)) + hbar*m2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(Jy*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*I*sqrt(j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 + \ -hbar*I*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*I*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 # Uncoupled operators, uncoupled states # Numerical assert qapply(TensorProduct(Jy, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -hbar*TensorProduct(JxKet(1, 1), JxKet(1, -1)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -hbar*TensorProduct(JyKet(1, 1), JyKet(1, -1)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*sqrt(2)*I*TensorProduct(JzKet(1, 0), JzKet(1, -1))/2 assert qapply(TensorProduct(1, Jy)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ -hbar*sqrt(2)*I*TensorProduct(JzKet(1, 1), JzKet(1, 0))/2 # Symbolic assert qapply(TensorProduct(Jy, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), 0, 0) * Sum(WignerD(j1, mi1, mi, 0, 0, pi/2)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), 0, 0) * Sum(WignerD(j2, mi1, mi, 0, 0, pi/2)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m1*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jy)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ hbar*m2*TensorProduct(JyKet(j1, m1), JyKet(j2, m2)) assert qapply(TensorProduct(Jy, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j1**2 + j1 - m1**2 - m1)*TensorProduct(JzKet(j1, m1 + 1), JzKet(j2, m2))/2 + \ hbar*I*sqrt( j1**2 + j1 - m1**2 + m1)*TensorProduct(JzKet(j1, m1 - 1), JzKet(j2, m2))/2 assert qapply(TensorProduct(1, Jy)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ -hbar*I*sqrt(j2**2 + j2 - m2**2 - m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 + 1))/2 + \ hbar*I*sqrt( j2**2 + j2 - m2**2 + m2)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2 - 1))/2 def test_jz(): assert Commutator(Jz, Jminus).doit() == -hbar*Jminus # Normal operators, normal states # Numerical assert qapply(Jz*JxKet(1, 1)) == -sqrt(2)*hbar*JxKet(1, 0)/2 assert qapply(Jz*JyKet(1, 1)) == -sqrt(2)*hbar*I*JyKet(1, 0)/2 assert qapply(Jz*JzKet(2, 1)) == hbar*JzKet(2, 1) # Symbolic assert qapply(Jz*JxKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, pi/2, 0)*Sum(WignerD(j, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JyKet(j, m)) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j, mi1), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JzKet(j, m)) == hbar*m*JzKet(j, m) # Normal operators, coupled states # Numerical assert qapply(Jz*JxKetCoupled(1, 1, (1, 1))) == \ -sqrt(2)*hbar*JxKetCoupled(1, 0, (1, 1))/2 assert qapply(Jz*JyKetCoupled(1, 1, (1, 1))) == \ -sqrt(2)*hbar*I*JyKetCoupled(1, 0, (1, 1))/2 assert qapply(Jz*JzKetCoupled(1, 1, (1, 1))) == \ hbar*JzKetCoupled(1, 1, (1, 1)) # Symbolic assert qapply(Jz*JxKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, 0, pi/2, 0)*Sum(WignerD(j, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JyKetCoupled(j, m, (j1, j2))) == \ Sum(hbar*mi*WignerD(j, mi, m, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKetCoupled(j, mi1, (j1, j2)), (mi1, -j, j)), (mi, -j, j)) assert qapply(Jz*JzKetCoupled(j, m, (j1, j2))) == \ hbar*m*JzKetCoupled(j, m, (j1, j2)) # Normal operators, uncoupled states # Numerical assert qapply(Jz*TensorProduct(JxKet(1, 1), JxKet(1, 1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 - \ sqrt(2)*hbar*TensorProduct(JxKet(1, 0), JxKet(1, 1))/2 assert qapply(Jz*TensorProduct(JyKet(1, 1), JyKet(1, 1))) == \ -sqrt(2)*hbar*I*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 - \ sqrt(2)*hbar*I*TensorProduct(JyKet(1, 0), JyKet(1, 1))/2 assert qapply(Jz*TensorProduct(JzKet(1, 1), JzKet(1, 1))) == \ 2*hbar*TensorProduct(JzKet(1, 1), JzKet(1, 1)) assert qapply(Jz*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == 0 # Symbolic assert qapply(Jz*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, pi/2, 0)*Sum(WignerD(j2, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, pi/2, 0)*Sum(WignerD(j1, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(Jz*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) + \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(Jz*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m1*TensorProduct(JzKet(j1, m1), JzKet( j2, m2)) + hbar*m2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) # Uncoupled Operators # Numerical assert qapply(TensorProduct(Jz, 1)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 0), JxKet(1, -1))/2 assert qapply(TensorProduct(1, Jz)*TensorProduct(JxKet(1, 1), JxKet(1, -1))) == \ -sqrt(2)*hbar*TensorProduct(JxKet(1, 1), JxKet(1, 0))/2 assert qapply(TensorProduct(Jz, 1)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ -sqrt(2)*I*hbar*TensorProduct(JyKet(1, 0), JyKet(1, -1))/2 assert qapply(TensorProduct(1, Jz)*TensorProduct(JyKet(1, 1), JyKet(1, -1))) == \ sqrt(2)*I*hbar*TensorProduct(JyKet(1, 1), JyKet(1, 0))/2 assert qapply(TensorProduct(Jz, 1)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ hbar*TensorProduct(JzKet(1, 1), JzKet(1, -1)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JzKet(1, 1), JzKet(1, -1))) == \ -hbar*TensorProduct(JzKet(1, 1), JzKet(1, -1)) # Symbolic assert qapply(TensorProduct(Jz, 1)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, 0, pi/2, 0)*Sum(WignerD(j1, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JxKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JxKet(j1, m1), JxKet(j2, m2))) == \ TensorProduct(JxKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, 0, pi/2, 0)*Sum(WignerD(j2, mi1, mi, 0, pi*Rational(3, 2), 0)*JxKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jz, 1)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(Sum(hbar*mi*WignerD(j1, mi, m1, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j1, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j1, mi1), (mi1, -j1, j1)), (mi, -j1, j1)), JyKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JyKet(j1, m1), JyKet(j2, m2))) == \ TensorProduct(JyKet(j1, m1), Sum(hbar*mi*WignerD(j2, mi, m2, pi*Rational(3, 2), -pi/2, pi/2)*Sum(WignerD(j2, mi1, mi, pi*Rational(3, 2), pi/2, pi/2)*JyKet(j2, mi1), (mi1, -j2, j2)), (mi, -j2, j2))) assert qapply(TensorProduct(Jz, 1)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m1*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) assert qapply(TensorProduct(1, Jz)*TensorProduct(JzKet(j1, m1), JzKet(j2, m2))) == \ hbar*m2*TensorProduct(JzKet(j1, m1), JzKet(j2, m2)) def test_rotation(): a, b, g = symbols('a b g') j, m = symbols('j m') #Uncoupled answ = [JxKet(1,-1)/2 - sqrt(2)*JxKet(1,0)/2 + JxKet(1,1)/2 , JyKet(1,-1)/2 - sqrt(2)*JyKet(1,0)/2 + JyKet(1,1)/2 , JzKet(1,-1)/2 - sqrt(2)*JzKet(1,0)/2 + JzKet(1,1)/2] fun = [state(1, 1) for state in (JxKet, JyKet, JzKet)] for state in fun: got = qapply(Rotation(0, pi/2, 0)*state) assert got in answ answ.remove(got) assert not answ arg = Rotation(a, b, g)*fun[0] assert qapply(arg) == (-exp(-I*a)*exp(I*g)*cos(b)*JxKet(1,-1)/2 + exp(-I*a)*exp(I*g)*JxKet(1,-1)/2 - sqrt(2)*exp(-I*a)*sin(b)*JxKet(1,0)/2 + exp(-I*a)*exp(-I*g)*cos(b)*JxKet(1,1)/2 + exp(-I*a)*exp(-I*g)*JxKet(1,1)/2) #dummy effective assert str(qapply(Rotation(a, b, g)*JzKet(j, m), dummy=False)) == str( qapply(Rotation(a, b, g)*JzKet(j, m), dummy=True)).replace('_','') #Coupled ans = [JxKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JxKetCoupled(1,0,(1,1))/2 + JxKetCoupled(1,1,(1,1))/2 , JyKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JyKetCoupled(1,0,(1,1))/2 + JyKetCoupled(1,1,(1,1))/2 , JzKetCoupled(1,-1,(1,1))/2 - sqrt(2)*JzKetCoupled(1,0,(1,1))/2 + JzKetCoupled(1,1,(1,1))/2] fun = [state(1, 1, (1,1)) for state in (JxKetCoupled, JyKetCoupled, JzKetCoupled)] for state in fun: got = qapply(Rotation(0, pi/2, 0)*state) assert got in ans ans.remove(got) assert not ans arg = Rotation(a, b, g)*fun[0] assert qapply(arg) == ( -exp(-I*a)*exp(I*g)*cos(b)*JxKetCoupled(1,-1,(1,1))/2 + exp(-I*a)*exp(I*g)*JxKetCoupled(1,-1,(1,1))/2 - sqrt(2)*exp(-I*a)*sin(b)*JxKetCoupled(1,0,(1,1))/2 + exp(-I*a)*exp(-I*g)*cos(b)*JxKetCoupled(1,1,(1,1))/2 + exp(-I*a)*exp(-I*g)*JxKetCoupled(1,1,(1,1))/2) #dummy effective assert str(qapply(Rotation(a,b,g)*JzKetCoupled(j,m,(j1,j2)), dummy=False)) == str( qapply(Rotation(a,b,g)*JzKetCoupled(j,m,(j1,j2)), dummy=True)).replace('_','') def test_jzket(): j, m = symbols('j m') # j not integer or half integer raises(ValueError, lambda: JzKet(Rational(2, 3), Rational(-1, 3))) raises(ValueError, lambda: JzKet(Rational(2, 3), m)) # j < 0 raises(ValueError, lambda: JzKet(-1, 1)) raises(ValueError, lambda: JzKet(-1, m)) # m not integer or half integer raises(ValueError, lambda: JzKet(j, Rational(-1, 3))) # abs(m) > j raises(ValueError, lambda: JzKet(1, 2)) raises(ValueError, lambda: JzKet(1, -2)) # j-m not integer raises(ValueError, lambda: JzKet(1, S.Half)) def test_jzketcoupled(): j, m = symbols('j m') # j not integer or half integer raises(ValueError, lambda: JzKetCoupled(Rational(2, 3), Rational(-1, 3), (1,))) raises(ValueError, lambda: JzKetCoupled(Rational(2, 3), m, (1,))) # j < 0 raises(ValueError, lambda: JzKetCoupled(-1, 1, (1,))) raises(ValueError, lambda: JzKetCoupled(-1, m, (1,))) # m not integer or half integer raises(ValueError, lambda: JzKetCoupled(j, Rational(-1, 3), (1,))) # abs(m) > j raises(ValueError, lambda: JzKetCoupled(1, 2, (1,))) raises(ValueError, lambda: JzKetCoupled(1, -2, (1,))) # j-m not integer raises(ValueError, lambda: JzKetCoupled(1, S.Half, (1,))) # checks types on coupling scheme raises(TypeError, lambda: JzKetCoupled(1, 1, 1)) raises(TypeError, lambda: JzKetCoupled(1, 1, (1,), 1)) raises(TypeError, lambda: JzKetCoupled(1, 1, (1, 1), (1,))) raises(TypeError, lambda: JzKetCoupled(1, 1, (1, 1, 1), (1, 2, 1), (1, 3, 1))) # checks length of coupling terms raises(ValueError, lambda: JzKetCoupled(1, 1, (1,), ((1, 2, 1),))) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 2),))) # all jn are integer or half-integer raises(ValueError, lambda: JzKetCoupled(1, 1, (Rational(1, 3), Rational(2, 3)))) # indices in coupling scheme must be integers raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((S.Half, 1, 2),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, S.Half, 2),) )) # indices out of range raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((0, 2, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((3, 2, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 0, 1),) )) raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 3, 1),) )) # all j values in coupling scheme must by integer or half-integer raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1, 1), ((1, 2, S( 4)/3), (1, 3, 1)) )) # each coupling must satisfy |j1-j2| <= j3 <= j1+j2 raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 5))) raises(ValueError, lambda: JzKetCoupled(5, 1, (1, 1))) # final j of coupling must be j of the state raises(ValueError, lambda: JzKetCoupled(1, 1, (1, 1), ((1, 2, 2),) ))
91e06cb460e93484c546bd3ab9516b91afcb8dee7a83aa05a09404a595e69d8c
from sympy.core.numbers import Integer from sympy.core.symbol import symbols from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator as Comm from sympy.physics.quantum.operator import Operator a, b, c = symbols('a,b,c') n = symbols('n', integer=True) A, B, C, D = symbols('A,B,C,D', commutative=False) def test_commutator(): c = Comm(A, B) assert c.is_commutative is False assert isinstance(c, Comm) assert c.subs(A, C) == Comm(C, B) def test_commutator_identities(): assert Comm(a*A, b*B) == a*b*Comm(A, B) assert Comm(A, A) == 0 assert Comm(a, b) == 0 assert Comm(A, B) == -Comm(B, A) assert Comm(A, B).doit() == A*B - B*A assert Comm(A, B*C).expand(commutator=True) == Comm(A, B)*C + B*Comm(A, C) assert Comm(A*B, C*D).expand(commutator=True) == \ A*C*Comm(B, D) + A*Comm(B, C)*D + C*Comm(A, D)*B + Comm(A, C)*D*B assert Comm(A, B**2).expand(commutator=True) == Comm(A, B)*B + B*Comm(A, B) assert Comm(A**2, C**2).expand(commutator=True) == \ Comm(A*B, C*D).expand(commutator=True).replace(B, A).replace(D, C) == \ A*C*Comm(A, C) + A*Comm(A, C)*C + C*Comm(A, C)*A + Comm(A, C)*C*A assert Comm(A, C**-2).expand(commutator=True) == \ Comm(A, (1/C)*(1/D)).expand(commutator=True).replace(D, C) assert Comm(A + B, C + D).expand(commutator=True) == \ Comm(A, C) + Comm(A, D) + Comm(B, C) + Comm(B, D) assert Comm(A, B + C).expand(commutator=True) == Comm(A, B) + Comm(A, C) assert Comm(A**n, B).expand(commutator=True) == Comm(A**n, B) e = Comm(A, Comm(B, C)) + Comm(B, Comm(C, A)) + Comm(C, Comm(A, B)) assert e.doit().expand() == 0 def test_commutator_dagger(): comm = Comm(A*B, C) assert Dagger(comm).expand(commutator=True) == \ - Comm(Dagger(B), Dagger(C))*Dagger(A) - \ Dagger(B)*Comm(Dagger(A), Dagger(C)) class Foo(Operator): def _eval_commutator_Bar(self, bar): return Integer(0) class Bar(Operator): pass class Tam(Operator): def _eval_commutator_Foo(self, foo): return Integer(1) def test_eval_commutator(): F = Foo('F') B = Bar('B') T = Tam('T') assert Comm(F, B).doit() == 0 assert Comm(B, F).doit() == 0 assert Comm(F, T).doit() == -1 assert Comm(T, F).doit() == 1 assert Comm(B, T).doit() == B*T - T*B assert Comm(F**2, B).expand(commutator=True).doit() == 0 assert Comm(F**2, T).expand(commutator=True).doit() == -2*F assert Comm(F, T**2).expand(commutator=True).doit() == -2*T assert Comm(T**2, F).expand(commutator=True).doit() == 2*T assert Comm(T**2, F**3).expand(commutator=True).doit() == 2*F*T*F + 2*F**2*T + 2*T*F**2
389c59c88cc5d9fe862ffe72d86451c3b7e2743145898b10c378de6a604bb0bf
import random from sympy.core.numbers import (Integer, Rational) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import Matrix from sympy.physics.quantum.qubit import (measure_all, measure_partial, matrix_to_qubit, matrix_to_density, qubit_to_matrix, IntQubit, IntQubitBra, QubitBra) from sympy.physics.quantum.gate import (HadamardGate, CNOT, XGate, YGate, ZGate, PhaseGate) from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.represent import represent from sympy.physics.quantum.shor import Qubit from sympy.testing.pytest import raises from sympy.physics.quantum.density import Density from sympy.physics.quantum.trace import Tr x, y = symbols('x,y') epsilon = .000001 def test_Qubit(): array = [0, 0, 1, 1, 0] qb = Qubit('00110') assert qb.flip(0) == Qubit('00111') assert qb.flip(1) == Qubit('00100') assert qb.flip(4) == Qubit('10110') assert qb.qubit_values == (0, 0, 1, 1, 0) assert qb.dimension == 5 for i in range(5): assert qb[i] == array[4 - i] assert len(qb) == 5 qb = Qubit('110') def test_QubitBra(): qb = Qubit(0) qb_bra = QubitBra(0) assert qb.dual_class() == QubitBra assert qb_bra.dual_class() == Qubit qb = Qubit(1, 1, 0) qb_bra = QubitBra(1, 1, 0) assert represent(qb, nqubits=3).H == represent(qb_bra, nqubits=3) qb = Qubit(0, 1) qb_bra = QubitBra(1,0) assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(0) qb_bra = QubitBra(0, 1) assert qb._eval_innerproduct_QubitBra(qb_bra) == Integer(1) def test_IntQubit(): # issue 9136 iqb = IntQubit(0, nqubits=1) assert qubit_to_matrix(Qubit('0')) == qubit_to_matrix(iqb) qb = Qubit('1010') assert qubit_to_matrix(IntQubit(qb)) == qubit_to_matrix(qb) iqb = IntQubit(1, nqubits=1) assert qubit_to_matrix(Qubit('1')) == qubit_to_matrix(iqb) assert qubit_to_matrix(IntQubit(1)) == qubit_to_matrix(iqb) iqb = IntQubit(7, nqubits=4) assert qubit_to_matrix(Qubit('0111')) == qubit_to_matrix(iqb) assert qubit_to_matrix(IntQubit(7, 4)) == qubit_to_matrix(iqb) iqb = IntQubit(8) assert iqb.as_int() == 8 assert iqb.qubit_values == (1, 0, 0, 0) iqb = IntQubit(7, 4) assert iqb.qubit_values == (0, 1, 1, 1) assert IntQubit(3) == IntQubit(3, 2) #test Dual Classes iqb = IntQubit(3) iqb_bra = IntQubitBra(3) assert iqb.dual_class() == IntQubitBra assert iqb_bra.dual_class() == IntQubit iqb = IntQubit(5) iqb_bra = IntQubitBra(5) assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(1) iqb = IntQubit(4) iqb_bra = IntQubitBra(5) assert iqb._eval_innerproduct_IntQubitBra(iqb_bra) == Integer(0) raises(ValueError, lambda: IntQubit(4, 1)) raises(ValueError, lambda: IntQubit('5')) raises(ValueError, lambda: IntQubit(5, '5')) raises(ValueError, lambda: IntQubit(5, nqubits='5')) raises(TypeError, lambda: IntQubit(5, bad_arg=True)) def test_superposition_of_states(): state = 1/sqrt(2)*Qubit('01') + 1/sqrt(2)*Qubit('10') state_gate = CNOT(0, 1)*HadamardGate(0)*state state_expanded = Qubit('01')/2 + Qubit('00')/2 - Qubit('11')/2 + Qubit('10')/2 assert qapply(state_gate).expand() == state_expanded assert matrix_to_qubit(represent(state_gate, nqubits=2)) == state_expanded #test apply methods def test_apply_represent_equality(): gates = [HadamardGate(int(3*random.random())), XGate(int(3*random.random())), ZGate(int(3*random.random())), YGate(int(3*random.random())), ZGate(int(3*random.random())), PhaseGate(int(3*random.random()))] circuit = Qubit(int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2), int(random.random()*2)) for i in range(int(random.random()*6)): circuit = gates[int(random.random()*6)]*circuit mat = represent(circuit, nqubits=6) states = qapply(circuit) state_rep = matrix_to_qubit(mat) states = states.expand() state_rep = state_rep.expand() assert state_rep == states def test_matrix_to_qubits(): qb = Qubit(0, 0, 0, 0) mat = Matrix([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) assert matrix_to_qubit(mat) == qb assert qubit_to_matrix(qb) == mat state = 2*sqrt(2)*(Qubit(0, 0, 0) + Qubit(0, 0, 1) + Qubit(0, 1, 0) + Qubit(0, 1, 1) + Qubit(1, 0, 0) + Qubit(1, 0, 1) + Qubit(1, 1, 0) + Qubit(1, 1, 1)) ones = sqrt(2)*2*Matrix([1, 1, 1, 1, 1, 1, 1, 1]) assert matrix_to_qubit(ones) == state.expand() assert qubit_to_matrix(state) == ones def test_measure_normalize(): a, b = symbols('a b') state = a*Qubit('110') + b*Qubit('111') assert measure_partial(state, (0,), normalize=False) == \ [(a*Qubit('110'), a*a.conjugate()), (b*Qubit('111'), b*b.conjugate())] assert measure_all(state, normalize=False) == \ [(Qubit('110'), a*a.conjugate()), (Qubit('111'), b*b.conjugate())] def test_measure_partial(): #Basic test of collapse of entangled two qubits (Bell States) state = Qubit('01') + Qubit('10') assert measure_partial(state, (0,)) == \ [(Qubit('10'), S.Half), (Qubit('01'), S.Half)] assert measure_partial(state, int(0)) == \ [(Qubit('10'), S.Half), (Qubit('01'), S.Half)] assert measure_partial(state, (0,)) == \ measure_partial(state, (1,))[::-1] #Test of more complex collapse and probability calculation state1 = sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111') assert measure_partial(state1, (0,)) == \ [(sqrt(2)/sqrt(3)*Qubit('00001') + 1/sqrt(3)*Qubit('11111'), 1)] assert measure_partial(state1, (1, 2)) == measure_partial(state1, (3, 4)) assert measure_partial(state1, (1, 2, 3)) == \ [(Qubit('00001'), Rational(2, 3)), (Qubit('11111'), Rational(1, 3))] #test of measuring multiple bits at once state2 = Qubit('1111') + Qubit('1101') + Qubit('1011') + Qubit('1000') assert measure_partial(state2, (0, 1, 3)) == \ [(Qubit('1000'), Rational(1, 4)), (Qubit('1101'), Rational(1, 4)), (Qubit('1011')/sqrt(2) + Qubit('1111')/sqrt(2), S.Half)] assert measure_partial(state2, (0,)) == \ [(Qubit('1000'), Rational(1, 4)), (Qubit('1111')/sqrt(3) + Qubit('1101')/sqrt(3) + Qubit('1011')/sqrt(3), Rational(3, 4))] def test_measure_all(): assert measure_all(Qubit('11')) == [(Qubit('11'), 1)] state = Qubit('11') + Qubit('10') assert measure_all(state) == [(Qubit('10'), S.Half), (Qubit('11'), S.Half)] state2 = Qubit('11')/sqrt(5) + 2*Qubit('00')/sqrt(5) assert measure_all(state2) == \ [(Qubit('00'), Rational(4, 5)), (Qubit('11'), Rational(1, 5))] # from issue #12585 assert measure_all(qapply(Qubit('0'))) == [(Qubit('0'), 1)] def test_eval_trace(): q1 = Qubit('10110') q2 = Qubit('01010') d = Density([q1, 0.6], [q2, 0.4]) t = Tr(d) assert t.doit() == 1 # extreme bits t = Tr(d, 0) assert t.doit() == (0.4*Density([Qubit('0101'), 1]) + 0.6*Density([Qubit('1011'), 1])) t = Tr(d, 4) assert t.doit() == (0.4*Density([Qubit('1010'), 1]) + 0.6*Density([Qubit('0110'), 1])) # index somewhere in between t = Tr(d, 2) assert t.doit() == (0.4*Density([Qubit('0110'), 1]) + 0.6*Density([Qubit('1010'), 1])) #trace all indices t = Tr(d, [0, 1, 2, 3, 4]) assert t.doit() == 1 # trace some indices, initialized in # non-canonical order t = Tr(d, [2, 1, 3]) assert t.doit() == (0.4*Density([Qubit('00'), 1]) + 0.6*Density([Qubit('10'), 1])) # mixed states q = (1/sqrt(2)) * (Qubit('00') + Qubit('11')) d = Density( [q, 1.0] ) t = Tr(d, 0) assert t.doit() == (0.5*Density([Qubit('0'), 1]) + 0.5*Density([Qubit('1'), 1])) def test_matrix_to_density(): mat = Matrix([[0, 0], [0, 1]]) assert matrix_to_density(mat) == Density([Qubit('1'), 1]) mat = Matrix([[1, 0], [0, 0]]) assert matrix_to_density(mat) == Density([Qubit('0'), 1]) mat = Matrix([[0, 0], [0, 0]]) assert matrix_to_density(mat) == 0 mat = Matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0]]) assert matrix_to_density(mat) == Density([Qubit('10'), 1]) mat = Matrix([[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]) assert matrix_to_density(mat) == Density([Qubit('00'), 1])
16834cd0d5387a3bb7961d8f8568d712070ab87e5beb64a2cc700e055cafdd7b
from sympy.core.numbers import I from sympy.core.symbol import symbols from sympy.core.expr import unchanged from sympy.matrices import Matrix, SparseMatrix from sympy.physics.quantum.commutator import Commutator as Comm from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.tensorproduct import TensorProduct as TP from sympy.physics.quantum.tensorproduct import tensor_product_simp from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.qubit import Qubit, QubitBra from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum.density import Density from sympy.physics.quantum.trace import Tr A, B, C, D = symbols('A,B,C,D', commutative=False) x = symbols('x') mat1 = Matrix([[1, 2*I], [1 + I, 3]]) mat2 = Matrix([[2*I, 3], [4*I, 2]]) def test_sparse_matrices(): spm = SparseMatrix.diag(1, 0) assert unchanged(TensorProduct, spm, spm) def test_tensor_product_dagger(): assert Dagger(TensorProduct(I*A, B)) == \ -I*TensorProduct(Dagger(A), Dagger(B)) assert Dagger(TensorProduct(mat1, mat2)) == \ TensorProduct(Dagger(mat1), Dagger(mat2)) def test_tensor_product_abstract(): assert TP(x*A, 2*B) == x*2*TP(A, B) assert TP(A, B) != TP(B, A) assert TP(A, B).is_commutative is False assert isinstance(TP(A, B), TP) assert TP(A, B).subs(A, C) == TP(C, B) def test_tensor_product_expand(): assert TP(A + B, B + C).expand(tensorproduct=True) == \ TP(A, B) + TP(A, C) + TP(B, B) + TP(B, C) def test_tensor_product_commutator(): assert TP(Comm(A, B), C).doit().expand(tensorproduct=True) == \ TP(A*B, C) - TP(B*A, C) assert Comm(TP(A, B), TP(B, C)).doit() == \ TP(A, B)*TP(B, C) - TP(B, C)*TP(A, B) def test_tensor_product_simp(): assert tensor_product_simp(TP(A, B)*TP(B, C)) == TP(A*B, B*C) # tests for Pow-expressions assert tensor_product_simp(TP(A, B)**x) == TP(A**x, B**x) assert tensor_product_simp(x*TP(A, B)**2) == x*TP(A**2,B**2) assert tensor_product_simp(x*(TP(A, B)**2)*TP(C,D)) == x*TP(A**2*C,B**2*D) assert tensor_product_simp(TP(A,B)-TP(C,D)**x) == TP(A,B)-TP(C**x,D**x) def test_issue_5923(): # most of the issue regarding sympification of args has been handled # and is tested internally by the use of args_cnc through the quantum # module, but the following is a test from the issue that used to raise. assert TensorProduct(1, Qubit('1')*Qubit('1').dual) == \ TensorProduct(1, OuterProduct(Qubit(1), QubitBra(1))) def test_eval_trace(): # This test includes tests with dependencies between TensorProducts #and density operators. Since, the test is more to test the behavior of #TensorProducts it remains here A, B, C, D, E, F = symbols('A B C D E F', commutative=False) # Density with simple tensor products as args t = TensorProduct(A, B) d = Density([t, 1.0]) tr = Tr(d) assert tr.doit() == 1.0*Tr(A*Dagger(A))*Tr(B*Dagger(B)) ## partial trace with simple tensor products as args t = TensorProduct(A, B, C) d = Density([t, 1.0]) tr = Tr(d, [1]) assert tr.doit() == 1.0*A*Dagger(A)*Tr(B*Dagger(B))*C*Dagger(C) tr = Tr(d, [0, 2]) assert tr.doit() == 1.0*Tr(A*Dagger(A))*B*Dagger(B)*Tr(C*Dagger(C)) # Density with multiple Tensorproducts as states t2 = TensorProduct(A, B) t3 = TensorProduct(C, D) d = Density([t2, 0.5], [t3, 0.5]) t = Tr(d) assert t.doit() == (0.5*Tr(A*Dagger(A))*Tr(B*Dagger(B)) + 0.5*Tr(C*Dagger(C))*Tr(D*Dagger(D))) t = Tr(d, [0]) assert t.doit() == (0.5*Tr(A*Dagger(A))*B*Dagger(B) + 0.5*Tr(C*Dagger(C))*D*Dagger(D)) #Density with mixed states d = Density([t2 + t3, 1.0]) t = Tr(d) assert t.doit() == ( 1.0*Tr(A*Dagger(A))*Tr(B*Dagger(B)) + 1.0*Tr(A*Dagger(C))*Tr(B*Dagger(D)) + 1.0*Tr(C*Dagger(A))*Tr(D*Dagger(B)) + 1.0*Tr(C*Dagger(C))*Tr(D*Dagger(D))) t = Tr(d, [1] ) assert t.doit() == ( 1.0*A*Dagger(A)*Tr(B*Dagger(B)) + 1.0*A*Dagger(C)*Tr(B*Dagger(D)) + 1.0*C*Dagger(A)*Tr(D*Dagger(B)) + 1.0*C*Dagger(C)*Tr(D*Dagger(D)))