hash
stringlengths
64
64
content
stringlengths
0
1.51M
e42b60b08492a9df154730f7a64dc468fad5780b463f1d7e268487ebd1d4aba2
from sympy import S, Basic, exp, multigamma, pi from sympy.core.sympify import sympify, _sympify from sympy.matrices import (ImmutableMatrix, Inverse, Trace, Determinant, MatrixSymbol, MatrixBase, Transpose, MatrixSet, matrix2numpy) from sympy.stats.rv import (_value_check, RandomMatrixSymbol, NamedArgsMixin, PSpace, _symbol_converter, MatrixDomain, Distribution) from sympy.external import import_module ################################################################################ #------------------------Matrix Probability Space------------------------------# ################################################################################ class MatrixPSpace(PSpace): """ Represents probability space for Matrix Distributions. """ def __new__(cls, sym, distribution, dim_n, dim_m): sym = _symbol_converter(sym) dim_n, dim_m = _sympify(dim_n), _sympify(dim_m) if not (dim_n.is_integer and dim_m.is_integer): raise ValueError("Dimensions should be integers") return Basic.__new__(cls, sym, distribution, dim_n, dim_m) distribution = property(lambda self: self.args[1]) symbol = property(lambda self: self.args[0]) @property def domain(self): return MatrixDomain(self.symbol, self.distribution.set) @property def value(self): return RandomMatrixSymbol(self.symbol, self.args[2], self.args[3], self) @property def values(self): return {self.value} def compute_density(self, expr, *args): rms = expr.atoms(RandomMatrixSymbol) if len(rms) > 1 or (not isinstance(expr, RandomMatrixSymbol)): raise NotImplementedError("Currently, no algorithm has been " "implemented to handle general expressions containing " "multiple matrix distributions.") return self.distribution.pdf(expr) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomMatrixSymbol to realization value. """ return {self.value: self.distribution.sample(size, library=library, seed=seed)} def rv(symbol, cls, args): args = list(map(sympify, args)) dist = cls(*args) dist.check(*args) dim = dist.dimension pspace = MatrixPSpace(symbol, dist, dim[0], dim[1]) return pspace.value class SampleMatrixScipy: """Returns the sample from scipy of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_scipy(dist, size, seed) @classmethod def _sample_scipy(cls, dist, size, seed): """Sample from SciPy.""" from scipy import stats as scipy_stats import numpy scipy_rv_map = { 'WishartDistribution': lambda dist, size, rand_state: scipy_stats.wishart.rvs( df=int(dist.n), scale=matrix2numpy(dist.scale_matrix, float), size=size), 'MatrixNormalDistribution': lambda dist, size, rand_state: scipy_stats.matrix_normal.rvs( mean=matrix2numpy(dist.location_matrix, float), rowcov=matrix2numpy(dist.scale_matrix_1, float), colcov=matrix2numpy(dist.scale_matrix_2, float), size=size, random_state=rand_state) } dist_list = scipy_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None samples = [] if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed for _ in range(size[0]): samp = scipy_rv_map[dist.__class__.__name__](dist, size[1] if len(size) > 1 else 1, rand_state) samples.append(samp) return samples class SampleMatrixNumpy: """Returns the sample from numpy of the given distribution""" ### TODO: Add tests after adding matrix distributions in numpy_rv_map def __new__(cls, dist, size, seed=None): return cls._sample_numpy(dist, size, seed) @classmethod def _sample_numpy(cls, dist, size, seed): """Sample from NumPy.""" numpy_rv_map = { } dist_list = numpy_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None samples = [] import numpy if seed is None or isinstance(seed, int): rand_state = numpy.random.default_rng(seed=seed) else: rand_state = seed for _ in range(size[0]): samp = numpy_rv_map[dist.__class__.__name__](dist, size[1], rand_state) samples.append(samp) return samples class SampleMatrixPymc: """Returns the sample from pymc3 of the given distribution""" def __new__(cls, dist, size, seed=None): return cls._sample_pymc3(dist, size, seed) @classmethod def _sample_pymc3(cls, dist, size, seed): """Sample from PyMC3.""" import pymc3 pymc3_rv_map = { 'MatrixNormalDistribution': lambda dist: pymc3.MatrixNormal('X', mu=matrix2numpy(dist.location_matrix, float), rowcov=matrix2numpy(dist.scale_matrix_1, float), colcov=matrix2numpy(dist.scale_matrix_2, float), shape=dist.location_matrix.shape), 'WishartDistribution': lambda dist: pymc3.WishartBartlett('X', nu=int(dist.n), S=matrix2numpy(dist.scale_matrix, float)) } dist_list = pymc3_rv_map.keys() if dist.__class__.__name__ not in dist_list: return None with pymc3.Model(): pymc3_rv_map[dist.__class__.__name__](dist) return pymc3.sample(size, chains=1, progressbar=False)[:]['X'] _get_sample_class_matrixrv = { 'scipy': SampleMatrixScipy, 'pymc3': SampleMatrixPymc, 'numpy': SampleMatrixNumpy } ################################################################################ #-------------------------Matrix Distribution----------------------------------# ################################################################################ class MatrixDistribution(Distribution, NamedArgsMixin): """ Abstract class for Matrix Distribution. """ def __new__(cls, *args): args = list(map(sympify, args)) return Basic.__new__(cls, *args) @staticmethod def check(*args): pass def __call__(self, expr): if isinstance(expr, list): expr = ImmutableMatrix(expr) return self.pdf(expr) def sample(self, size=(), library='scipy', seed=None): """ Internal sample method Returns dictionary mapping RandomSymbol to realization value. """ libraries = ['scipy', 'numpy', 'pymc3'] if library not in libraries: raise NotImplementedError("Sampling from %s is not supported yet." % str(library)) if not import_module(library): raise ValueError("Failed to import %s" % library) samps = _get_sample_class_matrixrv[library](self, size, seed) if samps is not None: return samps raise NotImplementedError( "Sampling for %s is not currently implemented from %s" % (self.__class__.__name__, library) ) ################################################################################ #------------------------Matrix Distribution Types-----------------------------# ################################################################################ #------------------------------------------------------------------------------- # Matrix Gamma distribution ---------------------------------------------------- class MatrixGammaDistribution(MatrixDistribution): _argnames = ('alpha', 'beta', 'scale_matrix') @staticmethod def check(alpha, beta, scale_matrix): if not isinstance(scale_matrix , MatrixSymbol): _value_check(scale_matrix.is_positive_definite, "The shape " "matrix must be positive definite.") _value_check(scale_matrix.is_square, "Should " "be square matrix") _value_check(alpha.is_positive, "Shape parameter should be positive.") _value_check(beta.is_positive, "Scale parameter should be positive.") @property def set(self): k = self.scale_matrix.shape[0] return MatrixSet(k, k, S.Reals) @property def dimension(self): return self.scale_matrix.shape def pdf(self, x): alpha , beta , scale_matrix = self.alpha, self.beta, self.scale_matrix p = scale_matrix.shape[0] if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) sigma_inv_x = - Inverse(scale_matrix)*x / beta term1 = exp(Trace(sigma_inv_x))/((beta**(p*alpha)) * multigamma(alpha, p)) term2 = (Determinant(scale_matrix))**(-alpha) term3 = (Determinant(x))**(alpha - S(p + 1)/2) return term1 * term2 * term3 def MatrixGamma(symbol, alpha, beta, scale_matrix): """ Creates a random variable with Matrix Gamma Distribution. The density of the said distribution can be found at [1]. Parameters ========== alpha: Positive Real number Shape Parameter beta: Positive Real number Scale Parameter scale_matrix: Positive definite real square matrix Scale Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, MatrixGamma >>> from sympy import MatrixSymbol, symbols >>> a, b = symbols('a b', positive=True) >>> M = MatrixGamma('M', a, b, [[2, 1], [1, 2]]) >>> X = MatrixSymbol('X', 2, 2) >>> density(M)(X).doit() exp(Trace(Matrix([ [-2/3, 1/3], [ 1/3, -2/3]])*X)/b)*Determinant(X)**(a - 3/2)/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2)) >>> density(M)([[1, 0], [0, 1]]).doit() exp(-4/(3*b))/(3**a*sqrt(pi)*b**(2*a)*gamma(a)*gamma(a - 1/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_gamma_distribution """ if isinstance(scale_matrix, list): scale_matrix = ImmutableMatrix(scale_matrix) return rv(symbol, MatrixGammaDistribution, (alpha, beta, scale_matrix)) #------------------------------------------------------------------------------- # Wishart Distribution --------------------------------------------------------- class WishartDistribution(MatrixDistribution): _argnames = ('n', 'scale_matrix') @staticmethod def check(n, scale_matrix): if not isinstance(scale_matrix , MatrixSymbol): _value_check(scale_matrix.is_positive_definite, "The shape " "matrix must be positive definite.") _value_check(scale_matrix.is_square, "Should " "be square matrix") _value_check(n.is_positive, "Shape parameter should be positive.") @property def set(self): k = self.scale_matrix.shape[0] return MatrixSet(k, k, S.Reals) @property def dimension(self): return self.scale_matrix.shape def pdf(self, x): n, scale_matrix = self.n, self.scale_matrix p = scale_matrix.shape[0] if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) sigma_inv_x = - Inverse(scale_matrix)*x / S(2) term1 = exp(Trace(sigma_inv_x))/((2**(p*n/S(2))) * multigamma(n/S(2), p)) term2 = (Determinant(scale_matrix))**(-n/S(2)) term3 = (Determinant(x))**(S(n - p - 1)/2) return term1 * term2 * term3 def Wishart(symbol, n, scale_matrix): """ Creates a random variable with Wishart Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: Positive Real number Represents degrees of freedom scale_matrix: Positive definite real square matrix Scale Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, Wishart >>> from sympy import MatrixSymbol, symbols >>> n = symbols('n', positive=True) >>> W = Wishart('W', n, [[2, 1], [1, 2]]) >>> X = MatrixSymbol('X', 2, 2) >>> density(W)(X).doit() exp(Trace(Matrix([ [-1/3, 1/6], [ 1/6, -1/3]])*X))*Determinant(X)**(n/2 - 3/2)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2)) >>> density(W)([[1, 0], [0, 1]]).doit() exp(-2/3)/(2**n*3**(n/2)*sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Wishart_distribution """ if isinstance(scale_matrix, list): scale_matrix = ImmutableMatrix(scale_matrix) return rv(symbol, WishartDistribution, (n, scale_matrix)) #------------------------------------------------------------------------------- # Matrix Normal distribution --------------------------------------------------- class MatrixNormalDistribution(MatrixDistribution): _argnames = ('location_matrix', 'scale_matrix_1', 'scale_matrix_2') @staticmethod def check(location_matrix, scale_matrix_1, scale_matrix_2): if not isinstance(scale_matrix_1 , MatrixSymbol): _value_check(scale_matrix_1.is_positive_definite, "The shape " "matrix must be positive definite.") if not isinstance(scale_matrix_2 , MatrixSymbol): _value_check(scale_matrix_2.is_positive_definite, "The shape " "matrix must be positive definite.") _value_check(scale_matrix_1.is_square, "Scale matrix 1 should be " "be square matrix") _value_check(scale_matrix_2.is_square, "Scale matrix 2 should be " "be square matrix") n = location_matrix.shape[0] p = location_matrix.shape[1] _value_check(scale_matrix_1.shape[0] == n, "Scale matrix 1 should be" " of shape %s x %s"% (str(n), str(n))) _value_check(scale_matrix_2.shape[0] == p, "Scale matrix 2 should be" " of shape %s x %s"% (str(p), str(p))) @property def set(self): n, p = self.location_matrix.shape return MatrixSet(n, p, S.Reals) @property def dimension(self): return self.location_matrix.shape def pdf(self, x): M , U , V = self.location_matrix, self.scale_matrix_1, self.scale_matrix_2 n, p = M.shape if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) term1 = Inverse(V)*Transpose(x - M)*Inverse(U)*(x - M) num = exp(-Trace(term1)/S(2)) den = (2*pi)**(S(n*p)/2) * Determinant(U)**S(p)/2 * Determinant(V)**S(n)/2 return num/den def MatrixNormal(symbol, location_matrix, scale_matrix_1, scale_matrix_2): """ Creates a random variable with Matrix Normal Distribution. The density of the said distribution can be found at [1]. Parameters ========== location_matrix: Real ``n x p`` matrix Represents degrees of freedom scale_matrix_1: Positive definite matrix Scale Matrix of shape ``n x n`` scale_matrix_2: Positive definite matrix Scale Matrix of shape ``p x p`` Returns ======= RandomSymbol Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.stats import density, MatrixNormal >>> M = MatrixNormal('M', [[1, 2]], [1], [[1, 0], [0, 1]]) >>> X = MatrixSymbol('X', 1, 2) >>> density(M)(X).doit() 2*exp(-Trace((Matrix([ [-1], [-2]]) + X.T)*(Matrix([[-1, -2]]) + X))/2)/pi >>> density(M)([[3, 4]]).doit() 2*exp(-4)/pi References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_normal_distribution """ if isinstance(location_matrix, list): location_matrix = ImmutableMatrix(location_matrix) if isinstance(scale_matrix_1, list): scale_matrix_1 = ImmutableMatrix(scale_matrix_1) if isinstance(scale_matrix_2, list): scale_matrix_2 = ImmutableMatrix(scale_matrix_2) args = (location_matrix, scale_matrix_1, scale_matrix_2) return rv(symbol, MatrixNormalDistribution, args) #------------------------------------------------------------------------------- # Matrix Student's T distribution --------------------------------------------------- class MatrixStudentTDistribution(MatrixDistribution): _argnames = ('nu', 'location_matrix', 'scale_matrix_1', 'scale_matrix_2') @staticmethod def check(nu, location_matrix, scale_matrix_1, scale_matrix_2): if not isinstance(scale_matrix_1, MatrixSymbol): _value_check(scale_matrix_1.is_positive_definite != False, "The shape " "matrix must be positive definite.") if not isinstance(scale_matrix_2, MatrixSymbol): _value_check(scale_matrix_2.is_positive_definite != False, "The shape " "matrix must be positive definite.") _value_check(scale_matrix_1.is_square != False, "Scale matrix 1 should be " "be square matrix") _value_check(scale_matrix_2.is_square != False, "Scale matrix 2 should be " "be square matrix") n = location_matrix.shape[0] p = location_matrix.shape[1] _value_check(scale_matrix_1.shape[0] == p, "Scale matrix 1 should be" " of shape %s x %s" % (str(p), str(p))) _value_check(scale_matrix_2.shape[0] == n, "Scale matrix 2 should be" " of shape %s x %s" % (str(n), str(n))) _value_check(nu.is_positive != False, "Degrees of freedom must be positive") @property def set(self): n, p = self.location_matrix.shape return MatrixSet(n, p, S.Reals) @property def dimension(self): return self.location_matrix.shape def pdf(self, x): from sympy import eye if isinstance(x, list): x = ImmutableMatrix(x) if not isinstance(x, (MatrixBase, MatrixSymbol)): raise ValueError("%s should be an isinstance of Matrix " "or MatrixSymbol" % str(x)) nu, M, Omega, Sigma = self.nu, self.location_matrix, self.scale_matrix_1, self.scale_matrix_2 n, p = M.shape K = multigamma((nu + n + p - 1)/2, p) * Determinant(Omega)**(-n/2) * Determinant(Sigma)**(-p/2) \ / ((pi)**(n*p/2) * multigamma((nu + p - 1)/2, p)) return K * (Determinant(eye(n) + Inverse(Sigma)*(x - M)*Inverse(Omega)*Transpose(x - M))) \ **(-(nu + n + p -1)/2) def MatrixStudentT(symbol, nu, location_matrix, scale_matrix_1, scale_matrix_2): """ Creates a random variable with Matrix Gamma Distribution. The density of the said distribution can be found at [1]. Parameters ========== nu: Positive Real number degrees of freedom location_matrix: Positive definite real square matrix Location Matrix of shape ``n x p`` scale_matrix_1: Positive definite real square matrix Scale Matrix of shape ``p x p`` scale_matrix_2: Positive definite real square matrix Scale Matrix of shape ``n x n`` Returns ======= RandomSymbol Examples ======== >>> from sympy import MatrixSymbol,symbols >>> from sympy.stats import density, MatrixStudentT >>> v = symbols('v',positive=True) >>> M = MatrixStudentT('M', v, [[1, 2]], [[1, 0], [0, 1]], [1]) >>> X = MatrixSymbol('X', 1, 2) >>> density(M)(X) gamma(v/2 + 1)*Determinant((Matrix([[-1, -2]]) + X)*(Matrix([ [-1], [-2]]) + X.T) + Matrix([[1]]))**(-v/2 - 1)/(pi**1.0*gamma(v/2)*Determinant(Matrix([[1]]))**1.0*Determinant(Matrix([ [1, 0], [0, 1]]))**0.5) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_t-distribution """ if isinstance(location_matrix, list): location_matrix = ImmutableMatrix(location_matrix) if isinstance(scale_matrix_1, list): scale_matrix_1 = ImmutableMatrix(scale_matrix_1) if isinstance(scale_matrix_2, list): scale_matrix_2 = ImmutableMatrix(scale_matrix_2) args = (nu, location_matrix, scale_matrix_1, scale_matrix_2) return rv(symbol, MatrixStudentTDistribution, args)
3d5593a9be4309284cac0f879859a83f81748120233a6ec9ff6bd8166ad9a29e
from sympy import (sympify, S, pi, sqrt, exp, Lambda, Indexed, besselk, gamma, Interval, Range, factorial, Mul, Integer, Add, rf, Eq, Piecewise, ones, Symbol, Pow, Rational, Sum, Intersection, Matrix, symbols, Product, IndexedBase) from sympy.matrices import ImmutableMatrix, MatrixSymbol from sympy.matrices.expressions.determinant import det from sympy.stats.joint_rv import JointDistribution, JointPSpace, MarginalDistribution from sympy.stats.rv import _value_check, random_symbols __all__ = ['JointRV', 'MultivariateNormal', 'MultivariateLaplace', 'Dirichlet', 'GeneralizedMultivariateLogGamma', 'GeneralizedMultivariateLogGammaOmega', 'Multinomial', 'MultivariateBeta', 'MultivariateEwens', 'MultivariateT', 'NegativeMultinomial', 'NormalGamma' ] def multivariate_rv(cls, sym, *args): args = list(map(sympify, args)) dist = cls(*args) args = dist.args dist.check(*args) return JointPSpace(sym, dist).value def marginal_distribution(rv, *indices): """ Marginal distribution function of a joint random variable. Parameters ========== rv: A random variable with a joint probability distribution. indices: component indices or the indexed random symbol for whom the joint distribution is to be calculated Returns ======= A Lambda expression in `sym`. Examples ======== >>> from sympy.stats import MultivariateNormal, marginal_distribution >>> m = MultivariateNormal('X', [1, 2], [[2, 1], [1, 2]]) >>> marginal_distribution(m, m[0])(1) 1/(2*sqrt(pi)) """ indices = list(indices) for i in range(len(indices)): if isinstance(indices[i], Indexed): indices[i] = indices[i].args[1] prob_space = rv.pspace if not indices: raise ValueError( "At least one component for marginal density is needed.") if hasattr(prob_space.distribution, '_marginal_distribution'): return prob_space.distribution._marginal_distribution(indices, rv.symbol) return prob_space.marginal_distribution(*indices) class JointDistributionHandmade(JointDistribution): _argnames = ('pdf',) is_Continuous = True @property def set(self): return self.args[1] def JointRV(symbol, pdf, _set=None): """ Create a Joint Random Variable where each of its component is conitinuous, given the following: -- a symbol -- a PDF in terms of indexed symbols of the symbol given as the first argument NOTE: As of now, the set for each component for a `JointRV` is equal to the set of all integers, which can not be changed. Examples ======== >>> from sympy import exp, pi, Indexed, S >>> from sympy.stats import density, JointRV >>> x1, x2 = (Indexed('x', i) for i in (1, 2)) >>> pdf = exp(-x1**2/2 + x1 - x2**2/2 - S(1)/2)/(2*pi) >>> N1 = JointRV('x', pdf) #Multivariate Normal distribution >>> density(N1)(1, 2) exp(-2)/(2*pi) Returns ======= RandomSymbol """ #TODO: Add support for sets provided by the user symbol = sympify(symbol) syms = list(i for i in pdf.free_symbols if isinstance(i, Indexed) and i.base == IndexedBase(symbol)) syms = tuple(sorted(syms, key = lambda index: index.args[1])) _set = S.Reals**len(syms) pdf = Lambda(syms, pdf) dist = JointDistributionHandmade(pdf, _set) jrv = JointPSpace(symbol, dist).value rvs = random_symbols(pdf) if len(rvs) != 0: dist = MarginalDistribution(dist, (jrv,)) return JointPSpace(symbol, dist).value return jrv #------------------------------------------------------------------------------- # Multivariate Normal distribution --------------------------------------------- class MultivariateNormalDistribution(JointDistribution): _argnames = ('mu', 'sigma') is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma): _value_check(mu.shape[0] == sigma.shape[0], "Size of the mean vector and covariance matrix are incorrect.") #check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The covariance matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.sigma k = mu.shape[0] args = ImmutableMatrix(args) x = args - mu return S.One/sqrt((2*pi)**(k)*det(sigma))*exp( Rational(-1, 2)*x.transpose()*(sigma.inv()*\ x))[0] def _marginal_distribution(self, indices, sym): sym = ImmutableMatrix([Indexed(sym, i) for i in indices]) _mu, _sigma = self.mu, self.sigma k = self.mu.shape[0] for i in range(k): if i not in indices: _mu = _mu.row_del(i) _sigma = _sigma.col_del(i) _sigma = _sigma.row_del(i) return Lambda(tuple(sym), S.One/sqrt((2*pi)**(len(_mu))*det(_sigma))*exp( Rational(-1, 2)*(_mu - sym).transpose()*(_sigma.inv()*\ (_mu - sym)))[0]) def MultivariateNormal(name, mu, sigma): """ Creates a continuous random variable with Multivariate Normal Distribution. The density of the multivariate normal distribution can be found at [1]. Parameters ========== mu : List representing the mean or the mean vector sigma : Positive definite square matrix Represents covariance Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import MultivariateNormal, density, marginal_distribution >>> from sympy import symbols >>> X = MultivariateNormal('X', [3, 4], [[2, 1], [1, 2]]) >>> y, z = symbols('y z') >>> density(X)(y, z) sqrt(3)*exp(-y**2/3 + y*z/3 + 2*y/3 - z**2/3 + 5*z/3 - 13/3)/(6*pi) >>> density(X)(1, 2) sqrt(3)*exp(-4/3)/(6*pi) >>> marginal_distribution(X, X[1])(y) exp(-(y - 4)**2/4)/(2*sqrt(pi)) >>> marginal_distribution(X, X[0])(y) exp(-(y - 3)**2/4)/(2*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_normal_distribution """ return multivariate_rv(MultivariateNormalDistribution, name, mu, sigma) #------------------------------------------------------------------------------- # Multivariate Laplace distribution -------------------------------------------- class MultivariateLaplaceDistribution(JointDistribution): _argnames = ('mu', 'sigma') is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma): _value_check(mu.shape[0] == sigma.shape[0], "Size of the mean vector and covariance matrix are incorrect.") # check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The covariance matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.sigma mu_T = mu.transpose() k = S(mu.shape[0]) sigma_inv = sigma.inv() args = ImmutableMatrix(args) args_T = args.transpose() x = (mu_T*sigma_inv*mu)[0] y = (args_T*sigma_inv*args)[0] v = 1 - k/2 return S(2)/((2*pi)**(S(k)/2)*sqrt(det(sigma)))\ *(y/(2 + x))**(S(v)/2)*besselk(v, sqrt((2 + x)*(y)))\ *exp((args_T*sigma_inv*mu)[0]) def MultivariateLaplace(name, mu, sigma): """ Creates a continuous random variable with Multivariate Laplace Distribution. The density of the multivariate Laplace distribution can be found at [1]. Parameters ========== mu : List representing the mean or the mean vector sigma : Positive definite square matrix Represents covariance Matrix Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import MultivariateLaplace, density >>> from sympy import symbols >>> y, z = symbols('y z') >>> X = MultivariateLaplace('X', [2, 4], [[3, 1], [1, 3]]) >>> density(X)(y, z) sqrt(2)*exp(y/4 + 5*z/4)*besselk(0, sqrt(15*y*(3*y/8 - z/8)/2 + 15*z*(-y/8 + 3*z/8)/2))/(4*pi) >>> density(X)(1, 2) sqrt(2)*exp(11/4)*besselk(0, sqrt(165)/4)/(4*pi) References ========== .. [1] https://en.wikipedia.org/wiki/Multivariate_Laplace_distribution """ return multivariate_rv(MultivariateLaplaceDistribution, name, mu, sigma) #------------------------------------------------------------------------------- # Multivariate StudentT distribution ------------------------------------------- class MultivariateTDistribution(JointDistribution): _argnames = ('mu', 'shape_mat', 'dof') is_Continuous=True @property def set(self): k = self.mu.shape[0] return S.Reals**k @staticmethod def check(mu, sigma, v): _value_check(mu.shape[0] == sigma.shape[0], "Size of the location vector and shape matrix are incorrect.") # check if covariance matrix is positive definite or not. if not isinstance(sigma, MatrixSymbol): _value_check(sigma.is_positive_definite, "The shape matrix must be positive definite. ") def pdf(self, *args): mu, sigma = self.mu, self.shape_mat v = S(self.dof) k = S(mu.shape[0]) sigma_inv = sigma.inv() args = ImmutableMatrix(args) x = args - mu return gamma((k + v)/2)/(gamma(v/2)*(v*pi)**(k/2)*sqrt(det(sigma)))\ *(1 + 1/v*(x.transpose()*sigma_inv*x)[0])**((-v - k)/2) def MultivariateT(syms, mu, sigma, v): """ Creates a joint random variable with multivariate T-distribution. Parameters ========== syms: A symbol/str For identifying the random variable. mu: A list/matrix Representing the location vector sigma: The shape matrix for the distribution Examples ======== >>> from sympy.stats import density, MultivariateT >>> from sympy import Symbol >>> x = Symbol("x") >>> X = MultivariateT("x", [1, 1], [[1, 0], [0, 1]], 2) >>> density(X)(1, 2) 2/(9*pi) Returns ======= RandomSymbol """ return multivariate_rv(MultivariateTDistribution, syms, mu, sigma, v) #------------------------------------------------------------------------------- # Multivariate Normal Gamma distribution --------------------------------------- class NormalGammaDistribution(JointDistribution): _argnames = ('mu', 'lamda', 'alpha', 'beta') is_Continuous=True @staticmethod def check(mu, lamda, alpha, beta): _value_check(mu.is_real, "Location must be real.") _value_check(lamda > 0, "Lambda must be positive") _value_check(alpha > 0, "alpha must be positive") _value_check(beta > 0, "beta must be positive") @property def set(self): return S.Reals*Interval(0, S.Infinity) def pdf(self, x, tau): beta, alpha, lamda = self.beta, self.alpha, self.lamda mu = self.mu return beta**alpha*sqrt(lamda)/(gamma(alpha)*sqrt(2*pi))*\ tau**(alpha - S.Half)*exp(-1*beta*tau)*\ exp(-1*(lamda*tau*(x - mu)**2)/S(2)) def _marginal_distribution(self, indices, *sym): if len(indices) == 2: return self.pdf(*sym) if indices[0] == 0: #For marginal over `x`, return non-standardized Student-T's #distribution x = sym[0] v, mu, sigma = self.alpha - S.Half, self.mu, \ S(self.beta)/(self.lamda * self.alpha) return Lambda(sym, gamma((v + 1)/2)/(gamma(v/2)*sqrt(pi*v)*sigma)*\ (1 + 1/v*((x - mu)/sigma)**2)**((-v -1)/2)) #For marginal over `tau`, return Gamma distribution as per construction from sympy.stats.crv_types import GammaDistribution return Lambda(sym, GammaDistribution(self.alpha, self.beta)(sym[0])) def NormalGamma(sym, mu, lamda, alpha, beta): """ Creates a bivariate joint random variable with multivariate Normal gamma distribution. Parameters ========== sym: A symbol/str For identifying the random variable. mu: A real number The mean of the normal distribution lamda: A positive integer Parameter of joint distribution alpha: A positive integer Parameter of joint distribution beta: A positive integer Parameter of joint distribution Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, NormalGamma >>> from sympy import symbols >>> X = NormalGamma('x', 0, 1, 2, 3) >>> y, z = symbols('y z') >>> density(X)(y, z) 9*sqrt(2)*z**(3/2)*exp(-3*z)*exp(-y**2*z/2)/(2*sqrt(pi)) References ========== .. [1] https://en.wikipedia.org/wiki/Normal-gamma_distribution """ return multivariate_rv(NormalGammaDistribution, sym, mu, lamda, alpha, beta) #------------------------------------------------------------------------------- # Multivariate Beta/Dirichlet distribution ------------------------------------- class MultivariateBetaDistribution(JointDistribution): _argnames = ('alpha',) is_Continuous = True @staticmethod def check(alpha): _value_check(len(alpha) >= 2, "At least two categories should be passed.") for a_k in alpha: _value_check((a_k > 0) != False, "Each concentration parameter" " should be positive.") @property def set(self): k = len(self.alpha) return Interval(0, 1)**k def pdf(self, *syms): alpha = self.alpha B = Mul.fromiter(map(gamma, alpha))/gamma(Add(*alpha)) return Mul.fromiter(sym**(a_k - 1) for a_k, sym in zip(alpha, syms))/B def MultivariateBeta(syms, *alpha): """ Creates a continuous random variable with Dirichlet/Multivariate Beta Distribution. The density of the dirichlet distribution can be found at [1]. Parameters ========== alpha: Positive real numbers Signifies concentration numbers. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, MultivariateBeta, marginal_distribution >>> from sympy import Symbol >>> a1 = Symbol('a1', positive=True) >>> a2 = Symbol('a2', positive=True) >>> B = MultivariateBeta('B', [a1, a2]) >>> C = MultivariateBeta('C', a1, a2) >>> x = Symbol('x') >>> y = Symbol('y') >>> density(B)(x, y) x**(a1 - 1)*y**(a2 - 1)*gamma(a1 + a2)/(gamma(a1)*gamma(a2)) >>> marginal_distribution(C, C[0])(x) x**(a1 - 1)*gamma(a1 + a2)/(a2*gamma(a1)*gamma(a2)) References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_distribution .. [2] http://mathworld.wolfram.com/DirichletDistribution.html """ if not isinstance(alpha[0], list): alpha = (list(alpha),) return multivariate_rv(MultivariateBetaDistribution, syms, alpha[0]) Dirichlet = MultivariateBeta #------------------------------------------------------------------------------- # Multivariate Ewens distribution ---------------------------------------------- class MultivariateEwensDistribution(JointDistribution): _argnames = ('n', 'theta') is_Discrete = True is_Continuous = False @staticmethod def check(n, theta): _value_check((n > 0), "sample size should be positive integer.") _value_check(theta.is_positive, "mutation rate should be positive.") @property def set(self): if not isinstance(self.n, Integer): i = Symbol('i', integer=True, positive=True) return Product(Intersection(S.Naturals0, Interval(0, self.n//i)), (i, 1, self.n)) prod_set = Range(0, self.n + 1) for i in range(2, self.n + 1): prod_set *= Range(0, self.n//i + 1) return prod_set.flatten() def pdf(self, *syms): n, theta = self.n, self.theta condi = isinstance(self.n, Integer) if not (isinstance(syms[0], IndexedBase) or condi): raise ValueError("Please use IndexedBase object for syms as " "the dimension is symbolic") term_1 = factorial(n)/rf(theta, n) if condi: term_2 = Mul.fromiter(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])) for j in range(n)) cond = Eq(sum([(k + 1)*syms[k] for k in range(n)]), n) return Piecewise((term_1 * term_2, cond), (0, True)) syms = syms[0] j, k = symbols('j, k', positive=True, integer=True) term_2 = Product(theta**syms[j]/((j+1)**syms[j]*factorial(syms[j])), (j, 0, n - 1)) cond = Eq(Sum((k + 1)*syms[k], (k, 0, n - 1)), n) return Piecewise((term_1 * term_2, cond), (0, True)) def MultivariateEwens(syms, n, theta): """ Creates a discrete random variable with Multivariate Ewens Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: Positive integer Size of the sample or the integer whose partitions are considered theta: Positive real number Denotes Mutation rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, marginal_distribution, MultivariateEwens >>> from sympy import Symbol >>> a1 = Symbol('a1', positive=True) >>> a2 = Symbol('a2', positive=True) >>> ed = MultivariateEwens('E', 2, 1) >>> density(ed)(a1, a2) Piecewise((1/(2**a2*factorial(a1)*factorial(a2)), Eq(a1 + 2*a2, 2)), (0, True)) >>> marginal_distribution(ed, ed[0])(a1) Piecewise((1/factorial(a1), Eq(a1, 2)), (0, True)) References ========== .. [1] https://en.wikipedia.org/wiki/Ewens%27s_sampling_formula .. [2] http://www.stat.rutgers.edu/home/hcrane/Papers/STS529.pdf """ return multivariate_rv(MultivariateEwensDistribution, syms, n, theta) #------------------------------------------------------------------------------- # Generalized Multivariate Log Gamma distribution ------------------------------ class GeneralizedMultivariateLogGammaDistribution(JointDistribution): _argnames = ('delta', 'v', 'lamda', 'mu') is_Continuous=True def check(self, delta, v, l, mu): _value_check((delta >= 0, delta <= 1), "delta must be in range [0, 1].") _value_check((v > 0), "v must be positive") for lk in l: _value_check((lk > 0), "lamda must be a positive vector.") for muk in mu: _value_check((muk > 0), "mu must be a positive vector.") _value_check(len(l) > 1,"the distribution should have at least" " two random variables.") @property def set(self): return S.Reals**len(self.lamda) def pdf(self, *y): from sympy.functions.special.gamma_functions import gamma d, v, l, mu = self.delta, self.v, self.lamda, self.mu n = Symbol('n', negative=False, integer=True) k = len(l) sterm1 = Pow((1 - d), n)/\ ((gamma(v + n)**(k - 1))*gamma(v)*gamma(n + 1)) sterm2 = Mul.fromiter(mui*li**(-v - n) for mui, li in zip(mu, l)) term1 = sterm1 * sterm2 sterm3 = (v + n) * sum([mui * yi for mui, yi in zip(mu, y)]) sterm4 = sum([exp(mui * yi)/li for (mui, yi, li) in zip(mu, y, l)]) term2 = exp(sterm3 - sterm4) return Pow(d, v) * Sum(term1 * term2, (n, 0, S.Infinity)) def GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu): """ Creates a joint random variable with generalized multivariate log gamma distribution. The joint pdf can be found at [1]. Parameters ========== syms: list/tuple/set of symbols for identifying each component delta: A constant in range [0, 1] v: Positive real number lamda: List of positive real numbers mu: List of positive real numbers Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma >>> from sympy import symbols, S >>> v = 1 >>> l, mu = [1, 1, 1], [1, 1, 1] >>> d = S.Half >>> y = symbols('y_1:4', positive=True) >>> Gd = GeneralizedMultivariateLogGamma('G', d, v, l, mu) >>> density(Gd)(y[0], y[1], y[2]) Sum(exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/(2**n*gamma(n + 1)**3), (n, 0, oo))/2 References ========== .. [1] https://en.wikipedia.org/wiki/Generalized_multivariate_log-gamma_distribution .. [2] https://www.researchgate.net/publication/234137346_On_a_multivariate_log-gamma_distribution_and_the_use_of_the_distribution_in_the_Bayesian_analysis Note ==== If the GeneralizedMultivariateLogGamma is too long to type use, `from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGamma as GMVLG` If you want to pass the matrix omega instead of the constant delta, then use, GeneralizedMultivariateLogGammaOmega. """ return multivariate_rv(GeneralizedMultivariateLogGammaDistribution, syms, delta, v, lamda, mu) def GeneralizedMultivariateLogGammaOmega(syms, omega, v, lamda, mu): """ Extends GeneralizedMultivariateLogGamma. Parameters ========== syms: list/tuple/set of symbols For identifying each component omega: A square matrix Every element of square matrix must be absolute value of square root of correlation coefficient v: Positive real number lamda: List of positive real numbers mu: List of positive real numbers Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density >>> from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega >>> from sympy import Matrix, symbols, S >>> omega = Matrix([[1, S.Half, S.Half], [S.Half, 1, S.Half], [S.Half, S.Half, 1]]) >>> v = 1 >>> l, mu = [1, 1, 1], [1, 1, 1] >>> G = GeneralizedMultivariateLogGammaOmega('G', omega, v, l, mu) >>> y = symbols('y_1:4', positive=True) >>> density(G)(y[0], y[1], y[2]) sqrt(2)*Sum((1 - sqrt(2)/2)**n*exp((n + 1)*(y_1 + y_2 + y_3) - exp(y_1) - exp(y_2) - exp(y_3))/gamma(n + 1)**3, (n, 0, oo))/2 References ========== .. [1] https://en.wikipedia.org/wiki/Generalized_multivariate_log-gamma_distribution .. [2] https://www.researchgate.net/publication/234137346_On_a_multivariate_log-gamma_distribution_and_the_use_of_the_distribution_in_the_Bayesian_analysis Notes ===== If the GeneralizedMultivariateLogGammaOmega is too long to type use, `from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaOmega as GMVLGO` """ _value_check((omega.is_square, isinstance(omega, Matrix)), "omega must be a" " square matrix") for val in omega.values(): _value_check((val >= 0, val <= 1), "all values in matrix must be between 0 and 1(both inclusive).") _value_check(omega.diagonal().equals(ones(1, omega.shape[0])), "all the elements of diagonal should be 1.") _value_check((omega.shape[0] == len(lamda), len(lamda) == len(mu)), "lamda, mu should be of same length and omega should " " be of shape (length of lamda, length of mu)") _value_check(len(lamda) > 1,"the distribution should have at least" " two random variables.") delta = Pow(Rational(omega.det()), Rational(1, len(lamda) - 1)) return GeneralizedMultivariateLogGamma(syms, delta, v, lamda, mu) #------------------------------------------------------------------------------- # Multinomial distribution ----------------------------------------------------- class MultinomialDistribution(JointDistribution): _argnames = ('n', 'p') is_Continuous=False is_Discrete = True @staticmethod def check(n, p): _value_check(n > 0, "number of trials must be a positive integer") for p_k in p: _value_check((p_k >= 0, p_k <= 1), "probability must be in range [0, 1]") _value_check(Eq(sum(p), 1), "probabilities must sum to 1") @property def set(self): return Intersection(S.Naturals0, Interval(0, self.n))**len(self.p) def pdf(self, *x): n, p = self.n, self.p term_1 = factorial(n)/Mul.fromiter(factorial(x_k) for x_k in x) term_2 = Mul.fromiter(p_k**x_k for p_k, x_k in zip(p, x)) return Piecewise((term_1 * term_2, Eq(sum(x), n)), (0, True)) def Multinomial(syms, n, *p): """ Creates a discrete random variable with Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== n: Positive integer Represents number of trials p: List of event probabilites Must be in the range of [0, 1] Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, Multinomial, marginal_distribution >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> M = Multinomial('M', 3, p1, p2, p3) >>> density(M)(x1, x2, x3) Piecewise((6*p1**x1*p2**x2*p3**x3/(factorial(x1)*factorial(x2)*factorial(x3)), Eq(x1 + x2 + x3, 3)), (0, True)) >>> marginal_distribution(M, M[0])(x1).subs(x1, 1) 3*p1*p2**2 + 6*p1*p2*p3 + 3*p1*p3**2 References ========== .. [1] https://en.wikipedia.org/wiki/Multinomial_distribution .. [2] http://mathworld.wolfram.com/MultinomialDistribution.html """ if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(MultinomialDistribution, syms, n, p[0]) #------------------------------------------------------------------------------- # Negative Multinomial Distribution -------------------------------------------- class NegativeMultinomialDistribution(JointDistribution): _argnames = ('k0', 'p') is_Continuous=False is_Discrete = True @staticmethod def check(k0, p): _value_check(k0 > 0, "number of failures must be a positive integer") for p_k in p: _value_check((p_k >= 0, p_k <= 1), "probability must be in range [0, 1].") _value_check(sum(p) <= 1, "success probabilities must not be greater than 1.") @property def set(self): return Range(0, S.Infinity)**len(self.p) def pdf(self, *k): k0, p = self.k0, self.p term_1 = (gamma(k0 + sum(k))*(1 - sum(p))**k0)/gamma(k0) term_2 = Mul.fromiter(pi**ki/factorial(ki) for pi, ki in zip(p, k)) return term_1 * term_2 def NegativeMultinomial(syms, k0, *p): """ Creates a discrete random variable with Negative Multinomial Distribution. The density of the said distribution can be found at [1]. Parameters ========== k0: positive integer Represents number of failures before the experiment is stopped p: List of event probabilites Must be in the range of [0, 1] Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, NegativeMultinomial, marginal_distribution >>> from sympy import symbols >>> x1, x2, x3 = symbols('x1, x2, x3', nonnegative=True, integer=True) >>> p1, p2, p3 = symbols('p1, p2, p3', positive=True) >>> N = NegativeMultinomial('M', 3, p1, p2, p3) >>> N_c = NegativeMultinomial('M', 3, 0.1, 0.1, 0.1) >>> density(N)(x1, x2, x3) p1**x1*p2**x2*p3**x3*(-p1 - p2 - p3 + 1)**3*gamma(x1 + x2 + x3 + 3)/(2*factorial(x1)*factorial(x2)*factorial(x3)) >>> marginal_distribution(N_c, N_c[0])(1).evalf().round(2) 0.25 References ========== .. [1] https://en.wikipedia.org/wiki/Negative_multinomial_distribution .. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html """ if not isinstance(p[0], list): p = (list(p), ) return multivariate_rv(NegativeMultinomialDistribution, syms, k0, p[0])
6f8738f5845ee6faaf500afd29c652f48ad818d91c197585aa905437e083384a
""" Contains ======== FlorySchulz Geometric Hermite Logarithmic NegativeBinomial Poisson Skellam YuleSimon Zeta """ from sympy import (Basic, factorial, exp, S, sympify, I, zeta, polylog, log, beta, hyper, binomial, Piecewise, floor, besseli, sqrt, Sum, Dummy, Lambda, Eq) from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace from sympy.stats.rv import _value_check, is_random __all__ = ['FlorySchulz', 'Geometric', 'Hermite', 'Logarithmic', 'NegativeBinomial', 'Poisson', 'Skellam', 'YuleSimon', 'Zeta' ] def rv(symbol, cls, *args, **kwargs): args = list(map(sympify, args)) dist = cls(*args) if kwargs.pop('check', True): dist.check(*args) pspace = SingleDiscretePSpace(symbol, dist) if any(is_random(arg) for arg in args): from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution pspace = CompoundPSpace(symbol, CompoundDistribution(dist)) return pspace.value class DiscreteDistributionHandmade(SingleDiscreteDistribution): _argnames = ('pdf',) def __new__(cls, pdf, set=S.Integers): return Basic.__new__(cls, pdf, set) @property def set(self): return self.args[1] @staticmethod def check(pdf, set): x = Dummy('x') val = Sum(pdf(x), (x, set._inf, set._sup)).doit() _value_check(Eq(val, 1) != S.false, "The pdf is incorrect on the given set.") def DiscreteRV(symbol, density, set=S.Integers, **kwargs): """ Create a Discrete Random Variable given the following: Parameters ========== symbol : Symbol Represents name of the random variable. density : Expression containing symbol Represents probability density function. set : set Represents the region where the pdf is valid, by default is real line. check : bool If True, it will check whether the given density integrates to 1 over the given set. If False, it will not perform this check. Default is False. Examples ======== >>> from sympy.stats import DiscreteRV, P, E >>> from sympy import Rational, Symbol >>> x = Symbol('x') >>> n = 10 >>> density = Rational(1, 10) >>> X = DiscreteRV(x, density, set=set(range(n))) >>> E(X) 9/2 >>> P(X>3) 3/5 Returns ======= RandomSymbol """ set = sympify(set) pdf = Piecewise((density, set.as_relational(symbol)), (0, True)) pdf = Lambda(symbol, pdf) # have a default of False while `rv` should have a default of True kwargs['check'] = kwargs.pop('check', False) return rv(symbol.name, DiscreteDistributionHandmade, pdf, set, **kwargs) #------------------------------------------------------------------------------- # Flory-Schulz distribution ------------------------------------------------------------ class FlorySchulzDistribution(SingleDiscreteDistribution): _argnames = ('a',) set = S.Naturals @staticmethod def check(a): _value_check((0 < a, a < 1), "a must be between 0 and 1") def pdf(self, k): a = self.a return (a**2 * k * (1 - a)**(k - 1)) def _characteristic_function(self, t): a = self.a return a**2*exp(I*t)/((1 + (a - 1)*exp(I*t))**2) def _moment_generating_function(self, t): a = self.a return a**2*exp(t)/((1 + (a - 1)*exp(t))**2) def FlorySchulz(name, a): r""" Create a discrete random variable with a FlorySchulz distribution. The density of the FlorySchulz distribution is given by .. math:: f(k) := (a^2) k (1 - a)^{k-1} Parameters ========== a A real number between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import density, E, variance, FlorySchulz >>> from sympy import Symbol, S >>> a = S.One / 5 >>> z = Symbol("z") >>> X = FlorySchulz("x", a) >>> density(X)(z) (4/5)**(z - 1)*z/25 >>> E(X) 9 >>> variance(X) 40 References ========== https://en.wikipedia.org/wiki/Flory%E2%80%93Schulz_distribution """ return rv(name, FlorySchulzDistribution, a) #------------------------------------------------------------------------------- # Geometric distribution ------------------------------------------------------------ class GeometricDistribution(SingleDiscreteDistribution): _argnames = ('p',) set = S.Naturals @staticmethod def check(p): _value_check((0 < p, p <= 1), "p must be between 0 and 1") def pdf(self, k): return (1 - self.p)**(k - 1) * self.p def _characteristic_function(self, t): p = self.p return p * exp(I*t) / (1 - (1 - p)*exp(I*t)) def _moment_generating_function(self, t): p = self.p return p * exp(t) / (1 - (1 - p) * exp(t)) def Geometric(name, p): r""" Create a discrete random variable with a Geometric distribution. Explanation =========== The density of the Geometric distribution is given by .. math:: f(k) := p (1 - p)^{k - 1} Parameters ========== p: A probability between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Geometric, density, E, variance >>> from sympy import Symbol, S >>> p = S.One / 5 >>> z = Symbol("z") >>> X = Geometric("x", p) >>> density(X)(z) (4/5)**(z - 1)/5 >>> E(X) 5 >>> variance(X) 20 References ========== .. [1] https://en.wikipedia.org/wiki/Geometric_distribution .. [2] http://mathworld.wolfram.com/GeometricDistribution.html """ return rv(name, GeometricDistribution, p) #------------------------------------------------------------------------------- # Hermite distribution --------------------------------------------------------- class HermiteDistribution(SingleDiscreteDistribution): _argnames = ('a1', 'a2') set = S.Naturals0 @staticmethod def check(a1, a2): _value_check(a1.is_nonnegative, 'Parameter a1 must be >= 0.') _value_check(a2.is_nonnegative, 'Parameter a2 must be >= 0.') def pdf(self, k): a1, a2 = self.a1, self.a2 term1 = exp(-(a1 + a2)) j = Dummy("j", integer=True) num = a1**(k - 2*j) * a2**j den = factorial(k - 2*j) * factorial(j) return term1 * Sum(num/den, (j, 0, k//2)).doit() def _moment_generating_function(self, t): a1, a2 = self.a1, self.a2 term1 = a1 * (exp(t) - 1) term2 = a2 * (exp(2*t) - 1) return exp(term1 + term2) def _characteristic_function(self, t): a1, a2 = self.a1, self.a2 term1 = a1 * (exp(I*t) - 1) term2 = a2 * (exp(2*I*t) - 1) return exp(term1 + term2) def Hermite(name, a1, a2): r""" Create a discrete random variable with a Hermite distribution. Explanation =========== The density of the Hermite distribution is given by .. math:: f(x):= e^{-a_1 -a_2}\sum_{j=0}^{\left \lfloor x/2 \right \rfloor} \frac{a_{1}^{x-2j}a_{2}^{j}}{(x-2j)!j!} Parameters ========== a1: A Positive number greater than equal to 0. a2: A Positive number greater than equal to 0. Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Hermite, density, E, variance >>> from sympy import Symbol >>> a1 = Symbol("a1", positive=True) >>> a2 = Symbol("a2", positive=True) >>> x = Symbol("x") >>> H = Hermite("H", a1=5, a2=4) >>> density(H)(2) 33*exp(-9)/2 >>> E(H) 13 >>> variance(H) 21 References ========== .. [1] https://en.wikipedia.org/wiki/Hermite_distribution """ return rv(name, HermiteDistribution, a1, a2) #------------------------------------------------------------------------------- # Logarithmic distribution ------------------------------------------------------------ class LogarithmicDistribution(SingleDiscreteDistribution): _argnames = ('p',) set = S.Naturals @staticmethod def check(p): _value_check((p > 0, p < 1), "p should be between 0 and 1") def pdf(self, k): p = self.p return (-1) * p**k / (k * log(1 - p)) def _characteristic_function(self, t): p = self.p return log(1 - p * exp(I*t)) / log(1 - p) def _moment_generating_function(self, t): p = self.p return log(1 - p * exp(t)) / log(1 - p) def Logarithmic(name, p): r""" Create a discrete random variable with a Logarithmic distribution. Explanation =========== The density of the Logarithmic distribution is given by .. math:: f(k) := \frac{-p^k}{k \ln{(1 - p)}} Parameters ========== p: A value between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Logarithmic, density, E, variance >>> from sympy import Symbol, S >>> p = S.One / 5 >>> z = Symbol("z") >>> X = Logarithmic("x", p) >>> density(X)(z) -1/(5**z*z*log(4/5)) >>> E(X) -1/(-4*log(5) + 8*log(2)) >>> variance(X) -1/((-4*log(5) + 8*log(2))*(-2*log(5) + 4*log(2))) + 1/(-64*log(2)*log(5) + 64*log(2)**2 + 16*log(5)**2) - 10/(-32*log(5) + 64*log(2)) References ========== .. [1] https://en.wikipedia.org/wiki/Logarithmic_distribution .. [2] http://mathworld.wolfram.com/LogarithmicDistribution.html """ return rv(name, LogarithmicDistribution, p) #------------------------------------------------------------------------------- # Negative binomial distribution ------------------------------------------------------------ class NegativeBinomialDistribution(SingleDiscreteDistribution): _argnames = ('r', 'p') set = S.Naturals0 @staticmethod def check(r, p): _value_check(r > 0, 'r should be positive') _value_check((p > 0, p < 1), 'p should be between 0 and 1') def pdf(self, k): r = self.r p = self.p return binomial(k + r - 1, k) * (1 - p)**r * p**k def _characteristic_function(self, t): r = self.r p = self.p return ((1 - p) / (1 - p * exp(I*t)))**r def _moment_generating_function(self, t): r = self.r p = self.p return ((1 - p) / (1 - p * exp(t)))**r def NegativeBinomial(name, r, p): r""" Create a discrete random variable with a Negative Binomial distribution. Explanation =========== The density of the Negative Binomial distribution is given by .. math:: f(k) := \binom{k + r - 1}{k} (1 - p)^r p^k Parameters ========== r: A positive value p: A value between 0 and 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import NegativeBinomial, density, E, variance >>> from sympy import Symbol, S >>> r = 5 >>> p = S.One / 5 >>> z = Symbol("z") >>> X = NegativeBinomial("x", r, p) >>> density(X)(z) 1024*binomial(z + 4, z)/(3125*5**z) >>> E(X) 5/4 >>> variance(X) 25/16 References ========== .. [1] https://en.wikipedia.org/wiki/Negative_binomial_distribution .. [2] http://mathworld.wolfram.com/NegativeBinomialDistribution.html """ return rv(name, NegativeBinomialDistribution, r, p) #------------------------------------------------------------------------------- # Poisson distribution ------------------------------------------------------------ class PoissonDistribution(SingleDiscreteDistribution): _argnames = ('lamda',) set = S.Naturals0 @staticmethod def check(lamda): _value_check(lamda > 0, "Lambda must be positive") def pdf(self, k): return self.lamda**k / factorial(k) * exp(-self.lamda) def _characteristic_function(self, t): return exp(self.lamda * (exp(I*t) - 1)) def _moment_generating_function(self, t): return exp(self.lamda * (exp(t) - 1)) def Poisson(name, lamda): r""" Create a discrete random variable with a Poisson distribution. Explanation =========== The density of the Poisson distribution is given by .. math:: f(k) := \frac{\lambda^{k} e^{- \lambda}}{k!} Parameters ========== lamda: Positive number, a rate Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Poisson, density, E, variance >>> from sympy import Symbol, simplify >>> rate = Symbol("lambda", positive=True) >>> z = Symbol("z") >>> X = Poisson("x", rate) >>> density(X)(z) lambda**z*exp(-lambda)/factorial(z) >>> E(X) lambda >>> simplify(variance(X)) lambda References ========== .. [1] https://en.wikipedia.org/wiki/Poisson_distribution .. [2] http://mathworld.wolfram.com/PoissonDistribution.html """ return rv(name, PoissonDistribution, lamda) # ----------------------------------------------------------------------------- # Skellam distribution -------------------------------------------------------- class SkellamDistribution(SingleDiscreteDistribution): _argnames = ('mu1', 'mu2') set = S.Integers @staticmethod def check(mu1, mu2): _value_check(mu1 >= 0, 'Parameter mu1 must be >= 0') _value_check(mu2 >= 0, 'Parameter mu2 must be >= 0') def pdf(self, k): (mu1, mu2) = (self.mu1, self.mu2) term1 = exp(-(mu1 + mu2)) * (mu1 / mu2) ** (k / 2) term2 = besseli(k, 2 * sqrt(mu1 * mu2)) return term1 * term2 def _cdf(self, x): raise NotImplementedError( "Skellam doesn't have closed form for the CDF.") def _characteristic_function(self, t): (mu1, mu2) = (self.mu1, self.mu2) return exp(-(mu1 + mu2) + mu1 * exp(I * t) + mu2 * exp(-I * t)) def _moment_generating_function(self, t): (mu1, mu2) = (self.mu1, self.mu2) return exp(-(mu1 + mu2) + mu1 * exp(t) + mu2 * exp(-t)) def Skellam(name, mu1, mu2): r""" Create a discrete random variable with a Skellam distribution. Explanation =========== The Skellam is the distribution of the difference N1 - N2 of two statistically independent random variables N1 and N2 each Poisson-distributed with respective expected values mu1 and mu2. The density of the Skellam distribution is given by .. math:: f(k) := e^{-(\mu_1+\mu_2)}(\frac{\mu_1}{\mu_2})^{k/2}I_k(2\sqrt{\mu_1\mu_2}) Parameters ========== mu1: A non-negative value mu2: A non-negative value Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Skellam, density, E, variance >>> from sympy import Symbol, pprint >>> z = Symbol("z", integer=True) >>> mu1 = Symbol("mu1", positive=True) >>> mu2 = Symbol("mu2", positive=True) >>> X = Skellam("x", mu1, mu2) >>> pprint(density(X)(z), use_unicode=False) z - 2 /mu1\ -mu1 - mu2 / _____ _____\ |---| *e *besseli\z, 2*\/ mu1 *\/ mu2 / \mu2/ >>> E(X) mu1 - mu2 >>> variance(X).expand() mu1 + mu2 References ========== .. [1] https://en.wikipedia.org/wiki/Skellam_distribution """ return rv(name, SkellamDistribution, mu1, mu2) #------------------------------------------------------------------------------- # Yule-Simon distribution ------------------------------------------------------------ class YuleSimonDistribution(SingleDiscreteDistribution): _argnames = ('rho',) set = S.Naturals @staticmethod def check(rho): _value_check(rho > 0, 'rho should be positive') def pdf(self, k): rho = self.rho return rho * beta(k, rho + 1) def _cdf(self, x): return Piecewise((1 - floor(x) * beta(floor(x), self.rho + 1), x >= 1), (0, True)) def _characteristic_function(self, t): rho = self.rho return rho * hyper((1, 1), (rho + 2,), exp(I*t)) * exp(I*t) / (rho + 1) def _moment_generating_function(self, t): rho = self.rho return rho * hyper((1, 1), (rho + 2,), exp(t)) * exp(t) / (rho + 1) def YuleSimon(name, rho): r""" Create a discrete random variable with a Yule-Simon distribution. Explanation =========== The density of the Yule-Simon distribution is given by .. math:: f(k) := \rho B(k, \rho + 1) Parameters ========== rho: A positive value Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import YuleSimon, density, E, variance >>> from sympy import Symbol, simplify >>> p = 5 >>> z = Symbol("z") >>> X = YuleSimon("x", p) >>> density(X)(z) 5*beta(z, 6) >>> simplify(E(X)) 5/4 >>> simplify(variance(X)) 25/48 References ========== .. [1] https://en.wikipedia.org/wiki/Yule%E2%80%93Simon_distribution """ return rv(name, YuleSimonDistribution, rho) #------------------------------------------------------------------------------- # Zeta distribution ------------------------------------------------------------ class ZetaDistribution(SingleDiscreteDistribution): _argnames = ('s',) set = S.Naturals @staticmethod def check(s): _value_check(s > 1, 's should be greater than 1') def pdf(self, k): s = self.s return 1 / (k**s * zeta(s)) def _characteristic_function(self, t): return polylog(self.s, exp(I*t)) / zeta(self.s) def _moment_generating_function(self, t): return polylog(self.s, exp(t)) / zeta(self.s) def Zeta(name, s): r""" Create a discrete random variable with a Zeta distribution. Explanation =========== The density of the Zeta distribution is given by .. math:: f(k) := \frac{1}{k^s \zeta{(s)}} Parameters ========== s: A value greater than 1 Returns ======= RandomSymbol Examples ======== >>> from sympy.stats import Zeta, density, E, variance >>> from sympy import Symbol >>> s = 5 >>> z = Symbol("z") >>> X = Zeta("x", s) >>> density(X)(z) 1/(z**5*zeta(5)) >>> E(X) pi**4/(90*zeta(5)) >>> variance(X) -pi**8/(8100*zeta(5)**2) + zeta(3)/zeta(5) References ========== .. [1] https://en.wikipedia.org/wiki/Zeta_distribution """ return rv(name, ZetaDistribution, s)
ec0f177855033c42e82cc9060a41c3b4697a22d7bf0ddca95eb8eebadfd5c511
"""Finitely Presented Groups and its algorithms. """ from sympy import S from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement, free_group) from sympy.combinatorics.rewritingsystem import RewritingSystem from sympy.combinatorics.coset_table import (CosetTable, coset_enumeration_r, coset_enumeration_c) from sympy.combinatorics import PermutationGroup from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from sympy.utilities.magic import pollute from sympy import symbols from itertools import product @public def fp_group(fr_grp, relators=[]): _fp_group = FpGroup(fr_grp, relators) return (_fp_group,) + tuple(_fp_group._generators) @public def xfp_group(fr_grp, relators=[]): _fp_group = FpGroup(fr_grp, relators) return (_fp_group, _fp_group._generators) # Does not work. Both symbols and pollute are undefined. Never tested. @public def vfp_group(fr_grpm, relators): _fp_group = FpGroup(symbols, relators) pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators) return _fp_group def _parse_relators(rels): """Parse the passed relators.""" return rels ############################################################################### # FINITELY PRESENTED GROUPS # ############################################################################### class FpGroup(DefaultPrinting): """ The FpGroup would take a FreeGroup and a list/tuple of relators, the relators would be specified in such a way that each of them be equal to the identity of the provided free group. """ is_group = True is_FpGroup = True is_PermutationGroup = False def __init__(self, fr_grp, relators): relators = _parse_relators(relators) self.free_group = fr_grp self.relators = relators self.generators = self._generators() self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self}) # CosetTable instance on identity subgroup self._coset_table = None # returns whether coset table on identity subgroup # has been standardized self._is_standardized = False self._order = None self._center = None self._rewriting_system = RewritingSystem(self) self._perm_isomorphism = None return def _generators(self): return self.free_group.generators def make_confluent(self): ''' Try to make the group's rewriting system confluent ''' self._rewriting_system.make_confluent() return def reduce(self, word): ''' Return the reduced form of `word` in `self` according to the group's rewriting system. If it's confluent, the reduced form is the unique normal form of the word in the group. ''' return self._rewriting_system.reduce(word) def equals(self, word1, word2): ''' Compare `word1` and `word2` for equality in the group using the group's rewriting system. If the system is confluent, the returned answer is necessarily correct. (If it isn't, `False` could be returned in some cases where in fact `word1 == word2`) ''' if self.reduce(word1*word2**-1) == self.identity: return True elif self._rewriting_system.is_confluent: return False return None @property def identity(self): return self.free_group.identity def __contains__(self, g): return g in self.free_group def subgroup(self, gens, C=None, homomorphism=False): ''' Return the subgroup generated by `gens` using the Reidemeister-Schreier algorithm homomorphism -- When set to True, return a dictionary containing the images of the presentation generators in the original group. Examples ======== >>> from sympy.combinatorics.fp_groups import FpGroup >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]) >>> H = [x*y, x**-1*y**-1*x*y*x] >>> K, T = f.subgroup(H, homomorphism=True) >>> T(K.generators) [x*y, x**-1*y**2*x**-1] ''' if not all([isinstance(g, FreeGroupElement) for g in gens]): raise ValueError("Generators must be `FreeGroupElement`s") if not all([g.group == self.free_group for g in gens]): raise ValueError("Given generators are not members of the group") if homomorphism: g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True) else: g, rels = reidemeister_presentation(self, gens, C=C) if g: g = FpGroup(g[0].group, rels) else: g = FpGroup(free_group('')[0], []) if homomorphism: from sympy.combinatorics.homomorphisms import homomorphism return g, homomorphism(g, self, g.generators, _gens, check=False) return g def coset_enumeration(self, H, strategy="relator_based", max_cosets=None, draft=None, incomplete=False): """ Return an instance of ``coset table``, when Todd-Coxeter algorithm is run over the ``self`` with ``H`` as subgroup, using ``strategy`` argument as strategy. The returned coset table is compressed but not standardized. An instance of `CosetTable` for `fp_grp` can be passed as the keyword argument `draft` in which case the coset enumeration will start with that instance and attempt to complete it. When `incomplete` is `True` and the function is unable to complete for some reason, the partially complete table will be returned. """ if not max_cosets: max_cosets = CosetTable.coset_table_max_limit if strategy == 'relator_based': C = coset_enumeration_r(self, H, max_cosets=max_cosets, draft=draft, incomplete=incomplete) else: C = coset_enumeration_c(self, H, max_cosets=max_cosets, draft=draft, incomplete=incomplete) if C.is_complete(): C.compress() return C def standardize_coset_table(self): """ Standardized the coset table ``self`` and makes the internal variable ``_is_standardized`` equal to ``True``. """ self._coset_table.standardize() self._is_standardized = True def coset_table(self, H, strategy="relator_based", max_cosets=None, draft=None, incomplete=False): """ Return the mathematical coset table of ``self`` in ``H``. """ if not H: if self._coset_table is not None: if not self._is_standardized: self.standardize_coset_table() else: C = self.coset_enumeration([], strategy, max_cosets=max_cosets, draft=draft, incomplete=incomplete) self._coset_table = C self.standardize_coset_table() return self._coset_table.table else: C = self.coset_enumeration(H, strategy, max_cosets=max_cosets, draft=draft, incomplete=incomplete) C.standardize() return C.table def order(self, strategy="relator_based"): """ Returns the order of the finitely presented group ``self``. It uses the coset enumeration with identity group as subgroup, i.e ``H=[]``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x, y**2]) >>> f.order(strategy="coset_table_based") 2 """ from sympy import S, gcd if self._order is not None: return self._order if self._coset_table is not None: self._order = len(self._coset_table.table) elif len(self.relators) == 0: self._order = self.free_group.order() elif len(self.generators) == 1: self._order = abs(gcd([r.array_form[0][1] for r in self.relators])) elif self._is_infinite(): self._order = S.Infinity else: gens, C = self._finite_index_subgroup() if C: ind = len(C.table) self._order = ind*self.subgroup(gens, C=C).order() else: self._order = self.index([]) return self._order def _is_infinite(self): ''' Test if the group is infinite. Return `True` if the test succeeds and `None` otherwise ''' used_gens = set() for r in self.relators: used_gens.update(r.contains_generators()) if any([g not in used_gens for g in self.generators]): return True # Abelianisation test: check is the abelianisation is infinite abelian_rels = [] from sympy.matrices.normalforms import invariant_factors from sympy.matrices import Matrix for rel in self.relators: abelian_rels.append([rel.exponent_sum(g) for g in self.generators]) m = Matrix(Matrix(abelian_rels)) if 0 in invariant_factors(m): return True else: return None def _finite_index_subgroup(self, s=[]): ''' Find the elements of `self` that generate a finite index subgroup and, if found, return the list of elements and the coset table of `self` by the subgroup, otherwise return `(None, None)` ''' gen = self.most_frequent_generator() rels = list(self.generators) rels.extend(self.relators) if not s: if len(self.generators) == 2: s = [gen] + [g for g in self.generators if g != gen] else: rand = self.free_group.identity i = 0 while ((rand in rels or rand**-1 in rels or rand.is_identity) and i<10): rand = self.random() i += 1 s = [gen, rand] + [g for g in self.generators if g != gen] mid = (len(s)+1)//2 half1 = s[:mid] half2 = s[mid:] draft1 = None draft2 = None m = 200 C = None while not C and (m/2 < CosetTable.coset_table_max_limit): m = min(m, CosetTable.coset_table_max_limit) draft1 = self.coset_enumeration(half1, max_cosets=m, draft=draft1, incomplete=True) if draft1.is_complete(): C = draft1 half = half1 else: draft2 = self.coset_enumeration(half2, max_cosets=m, draft=draft2, incomplete=True) if draft2.is_complete(): C = draft2 half = half2 if not C: m *= 2 if not C: return None, None C.compress() return half, C def most_frequent_generator(self): gens = self.generators rels = self.relators freqs = [sum([r.generator_count(g) for r in rels]) for g in gens] return gens[freqs.index(max(freqs))] def random(self): import random r = self.free_group.identity for i in range(random.randint(2,3)): r = r*random.choice(self.generators)**random.choice([1,-1]) return r def index(self, H, strategy="relator_based"): """ Return the index of subgroup ``H`` in group ``self``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3]) >>> f.index([x]) 4 """ # TODO: use |G:H| = |G|/|H| (currently H can't be made into a group) # when we know |G| and |H| if H == []: return self.order() else: C = self.coset_enumeration(H, strategy) return len(C.table) def __str__(self): if self.free_group.rank > 30: str_form = "<fp group with %s generators>" % self.free_group.rank else: str_form = "<fp group on the generators %s>" % str(self.generators) return str_form __repr__ = __str__ #============================================================================== # PERMUTATION GROUP METHODS #============================================================================== def _to_perm_group(self): ''' Return an isomorphic permutation group and the isomorphism. The implementation is dependent on coset enumeration so will only terminate for finite groups. ''' from sympy.combinatorics import Permutation, PermutationGroup from sympy.combinatorics.homomorphisms import homomorphism if self.order() is S.Infinity: raise NotImplementedError("Permutation presentation of infinite " "groups is not implemented") if self._perm_isomorphism: T = self._perm_isomorphism P = T.image() else: C = self.coset_table([]) gens = self.generators images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens] images = [Permutation(i) for i in images] P = PermutationGroup(images) T = homomorphism(self, P, gens, images, check=False) self._perm_isomorphism = T return P, T def _perm_group_list(self, method_name, *args): ''' Given the name of a `PermutationGroup` method (returning a subgroup or a list of subgroups) and (optionally) additional arguments it takes, return a list or a list of lists containing the generators of this (or these) subgroups in terms of the generators of `self`. ''' P, T = self._to_perm_group() perm_result = getattr(P, method_name)(*args) single = False if isinstance(perm_result, PermutationGroup): perm_result, single = [perm_result], True result = [] for group in perm_result: gens = group.generators result.append(T.invert(gens)) return result[0] if single else result def derived_series(self): ''' Return the list of lists containing the generators of the subgroups in the derived series of `self`. ''' return self._perm_group_list('derived_series') def lower_central_series(self): ''' Return the list of lists containing the generators of the subgroups in the lower central series of `self`. ''' return self._perm_group_list('lower_central_series') def center(self): ''' Return the list of generators of the center of `self`. ''' return self._perm_group_list('center') def derived_subgroup(self): ''' Return the list of generators of the derived subgroup of `self`. ''' return self._perm_group_list('derived_subgroup') def centralizer(self, other): ''' Return the list of generators of the centralizer of `other` (a list of elements of `self`) in `self`. ''' T = self._to_perm_group()[1] other = T(other) return self._perm_group_list('centralizer', other) def normal_closure(self, other): ''' Return the list of generators of the normal closure of `other` (a list of elements of `self`) in `self`. ''' T = self._to_perm_group()[1] other = T(other) return self._perm_group_list('normal_closure', other) def _perm_property(self, attr): ''' Given an attribute of a `PermutationGroup`, return its value for a permutation group isomorphic to `self`. ''' P = self._to_perm_group()[0] return getattr(P, attr) @property def is_abelian(self): ''' Check if `self` is abelian. ''' return self._perm_property("is_abelian") @property def is_nilpotent(self): ''' Check if `self` is nilpotent. ''' return self._perm_property("is_nilpotent") @property def is_solvable(self): ''' Check if `self` is solvable. ''' return self._perm_property("is_solvable") @property def elements(self): ''' List the elements of `self`. ''' P, T = self._to_perm_group() return T.invert(P._elements) @property def is_cyclic(self): """ Return ``True`` if group is Cyclic. """ if len(self.generators) <= 1: return True try: P, T = self._to_perm_group() except NotImplementedError: raise NotImplementedError("Check for infinite Cyclic group " "is not implemented") return P.is_cyclic def abelian_invariants(self): """ Return Abelian Invariants of a group. """ try: P, T = self._to_perm_group() except NotImplementedError: raise NotImplementedError("abelian invariants is not implemented" "for infinite group") return P.abelian_invariants() def composition_series(self): """ Return subnormal series of maximum length for a group. """ try: P, T = self._to_perm_group() except NotImplementedError: raise NotImplementedError("composition series is not implemented" "for infinite group") return P.composition_series() class FpSubgroup(DefaultPrinting): ''' The class implementing a subgroup of an FpGroup or a FreeGroup (only finite index subgroups are supported at this point). This is to be used if one wishes to check if an element of the original group belongs to the subgroup ''' def __init__(self, G, gens, normal=False): super().__init__() self.parent = G self.generators = list({g for g in gens if g != G.identity}) self._min_words = None #for use in __contains__ self.C = None self.normal = normal def __contains__(self, g): if isinstance(self.parent, FreeGroup): if self._min_words is None: # make _min_words - a list of subwords such that # g is in the subgroup if and only if it can be # partitioned into these subwords. Infinite families of # subwords are presented by tuples, e.g. (r, w) # stands for the family of subwords r*w**n*r**-1 def _process(w): # this is to be used before adding new words # into _min_words; if the word w is not cyclically # reduced, it will generate an infinite family of # subwords so should be written as a tuple; # if it is, w**-1 should be added to the list # as well p, r = w.cyclic_reduction(removed=True) if not r.is_identity: return [(r, p)] else: return [w, w**-1] # make the initial list gens = [] for w in self.generators: if self.normal: w = w.cyclic_reduction() gens.extend(_process(w)) for w1 in gens: for w2 in gens: # if w1 and w2 are equal or are inverses, continue if w1 == w2 or (not isinstance(w1, tuple) and w1**-1 == w2): continue # if the start of one word is the inverse of the # end of the other, their multiple should be added # to _min_words because of cancellation if isinstance(w1, tuple): # start, end s1, s2 = w1[0][0], w1[0][0]**-1 else: s1, s2 = w1[0], w1[len(w1)-1] if isinstance(w2, tuple): # start, end r1, r2 = w2[0][0], w2[0][0]**-1 else: r1, r2 = w2[0], w2[len(w1)-1] # p1 and p2 are w1 and w2 or, in case when # w1 or w2 is an infinite family, a representative p1, p2 = w1, w2 if isinstance(w1, tuple): p1 = w1[0]*w1[1]*w1[0]**-1 if isinstance(w2, tuple): p2 = w2[0]*w2[1]*w2[0]**-1 # add the product of the words to the list is necessary if r1**-1 == s2 and not (p1*p2).is_identity: new = _process(p1*p2) if not new in gens: gens.extend(new) if r2**-1 == s1 and not (p2*p1).is_identity: new = _process(p2*p1) if not new in gens: gens.extend(new) self._min_words = gens min_words = self._min_words def _is_subword(w): # check if w is a word in _min_words or one of # the infinite families in it w, r = w.cyclic_reduction(removed=True) if r.is_identity or self.normal: return w in min_words else: t = [s[1] for s in min_words if isinstance(s, tuple) and s[0] == r] return [s for s in t if w.power_of(s)] != [] # store the solution of words for which the result of # _word_break (below) is known known = {} def _word_break(w): # check if w can be written as a product of words # in min_words if len(w) == 0: return True i = 0 while i < len(w): i += 1 prefix = w.subword(0, i) if not _is_subword(prefix): continue rest = w.subword(i, len(w)) if rest not in known: known[rest] = _word_break(rest) if known[rest]: return True return False if self.normal: g = g.cyclic_reduction() return _word_break(g) else: if self.C is None: C = self.parent.coset_enumeration(self.generators) self.C = C i = 0 C = self.C for j in range(len(g)): i = C.table[i][C.A_dict[g[j]]] return i == 0 def order(self): from sympy import S if not self.generators: return 1 if isinstance(self.parent, FreeGroup): return S.Infinity if self.C is None: C = self.parent.coset_enumeration(self.generators) self.C = C # This is valid because `len(self.C.table)` (the index of the subgroup) # will always be finite - otherwise coset enumeration doesn't terminate return self.parent.order()/len(self.C.table) def to_FpGroup(self): if isinstance(self.parent, FreeGroup): gen_syms = [('x_%d'%i) for i in range(len(self.generators))] return free_group(', '.join(gen_syms))[0] return self.parent.subgroup(C=self.C) def __str__(self): if len(self.generators) > 30: str_form = "<fp subgroup with %s generators>" % len(self.generators) else: str_form = "<fp subgroup on the generators %s>" % str(self.generators) return str_form __repr__ = __str__ ############################################################################### # LOW INDEX SUBGROUPS # ############################################################################### def low_index_subgroups(G, N, Y=[]): """ Implements the Low Index Subgroups algorithm, i.e find all subgroups of ``G`` upto a given index ``N``. This implements the method described in [Sim94]. This procedure involves a backtrack search over incomplete Coset Tables, rather than over forced coincidences. Parameters ========== G: An FpGroup < X|R > N: positive integer, representing the maximum index value for subgroups Y: (an optional argument) specifying a list of subgroup generators, such that each of the resulting subgroup contains the subgroup generated by Y. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> L = low_index_subgroups(f, 4) >>> for coset_table in L: ... print(coset_table.table) [[0, 0, 0, 0]] [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]] [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]] [[1, 1, 0, 0], [0, 0, 1, 1]] References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 5.4 .. [2] Marston Conder and Peter Dobcsanyi "Applications and Adaptions of the Low Index Subgroups Procedure" """ C = CosetTable(G, []) R = G.relators # length chosen for the length of the short relators len_short_rel = 5 # elements of R2 only checked at the last step for complete # coset tables R2 = {rel for rel in R if len(rel) > len_short_rel} # elements of R1 are used in inner parts of the process to prune # branches of the search tree, R1 = {rel.identity_cyclic_reduction() for rel in set(R) - R2} R1_c_list = C.conjugates(R1) S = [] descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y) return S def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y): A_dict = C.A_dict A_dict_inv = C.A_dict_inv if C.is_complete(): # if C is complete then it only needs to test # whether the relators in R2 are satisfied for w, alpha in product(R2, C.omega): if not C.scan_check(alpha, w): return # relators in R2 are satisfied, append the table to list S.append(C) else: # find the first undefined entry in Coset Table for alpha, x in product(range(len(C.table)), C.A): if C.table[alpha][A_dict[x]] is None: # this is "x" in pseudo-code (using "y" makes it clear) undefined_coset, undefined_gen = alpha, x break # for filling up the undefine entry we try all possible values # of beta in Omega or beta = n where beta^(undefined_gen^-1) is undefined reach = C.omega + [C.n] for beta in reach: if beta < N: if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None: try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \ undefined_gen, beta, Y) def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y): r""" Solves the problem of trying out each individual possibility for `\alpha^x. """ D = C.copy() if beta == D.n and beta < N: D.table.append([None]*len(D.A)) D.p.append(beta) D.table[alpha][D.A_dict[x]] = beta D.table[beta][D.A_dict_inv[x]] = alpha D.deduction_stack.append((alpha, x)) if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \ R1_c_list[D.A_dict_inv[x]]): return for w in Y: if not D.scan_check(0, w): return if first_in_class(D, Y): descendant_subgroups(S, D, R1_c_list, x, R2, N, Y) def first_in_class(C, Y=[]): """ Checks whether the subgroup ``H=G1`` corresponding to the Coset Table could possibly be the canonical representative of its conjugacy class. Parameters ========== C: CosetTable Returns ======= bool: True/False If this returns False, then no descendant of C can have that property, and so we can abandon C. If it returns True, then we need to process further the node of the search tree corresponding to C, and so we call ``descendant_subgroups`` recursively on C. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> C = CosetTable(f, []) >>> C.table = [[0, 0, None, None]] >>> first_in_class(C) True >>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1] >>> first_in_class(C) True >>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]] >>> C.p = [0, 1, 2] >>> first_in_class(C) False >>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]] >>> first_in_class(C) False # TODO:: Sims points out in [Sim94] that performance can be improved by # remembering some of the information computed by ``first_in_class``. If # the ``continue alpha`` statement is executed at line 14, then the same thing # will happen for that value of alpha in any descendant of the table C, and so # the values the values of alpha for which this occurs could profitably be # stored and passed through to the descendants of C. Of course this would # make the code more complicated. # The code below is taken directly from the function on page 208 of [Sim94] # nu[alpha] """ n = C.n # lamda is the largest numbered point in Omega_c_alpha which is currently defined lamda = -1 # for alpha in Omega_c, nu[alpha] is the point in Omega_c_alpha corresponding to alpha nu = [None]*n # for alpha in Omega_c_alpha, mu[alpha] is the point in Omega_c corresponding to alpha mu = [None]*n # mutually nu and mu are the mutually-inverse equivalence maps between # Omega_c_alpha and Omega_c next_alpha = False # For each 0!=alpha in [0 .. nc-1], we start by constructing the equivalent # standardized coset table C_alpha corresponding to H_alpha for alpha in range(1, n): # reset nu to "None" after previous value of alpha for beta in range(lamda+1): nu[mu[beta]] = None # we only want to reject our current table in favour of a preceding # table in the ordering in which 1 is replaced by alpha, if the subgroup # G_alpha corresponding to this preceding table definitely contains the # given subgroup for w in Y: # TODO: this should support input of a list of general words # not just the words which are in "A" (i.e gen and gen^-1) if C.table[alpha][C.A_dict[w]] != alpha: # continue with alpha next_alpha = True break if next_alpha: next_alpha = False continue # try alpha as the new point 0 in Omega_C_alpha mu[0] = alpha nu[alpha] = 0 # compare corresponding entries in C and C_alpha lamda = 0 for beta in range(n): for x in C.A: gamma = C.table[beta][C.A_dict[x]] delta = C.table[mu[beta]][C.A_dict[x]] # if either of the entries is undefined, # we move with next alpha if gamma is None or delta is None: # continue with alpha next_alpha = True break if nu[delta] is None: # delta becomes the next point in Omega_C_alpha lamda += 1 nu[delta] = lamda mu[lamda] = delta if nu[delta] < gamma: return False if nu[delta] > gamma: # continue with alpha next_alpha = True break if next_alpha: next_alpha = False break return True #======================================================================== # Simplifying Presentation #======================================================================== def simplify_presentation(*args, change_gens=False): ''' For an instance of `FpGroup`, return a simplified isomorphic copy of the group (e.g. remove redundant generators or relators). Alternatively, a list of generators and relators can be passed in which case the simplified lists will be returned. By default, the generators of the group are unchanged. If you would like to remove redundant generators, set the keyword argument `change_gens = True`. ''' if len(args) == 1: if not isinstance(args[0], FpGroup): raise TypeError("The argument must be an instance of FpGroup") G = args[0] gens, rels = simplify_presentation(G.generators, G.relators, change_gens=change_gens) if gens: return FpGroup(gens[0].group, rels) return FpGroup(FreeGroup([]), []) elif len(args) == 2: gens, rels = args[0][:], args[1][:] if not gens: return gens, rels identity = gens[0].group.identity else: if len(args) == 0: m = "Not enough arguments" else: m = "Too many arguments" raise RuntimeError(m) prev_gens = [] prev_rels = [] while not set(prev_rels) == set(rels): prev_rels = rels while change_gens and not set(prev_gens) == set(gens): prev_gens = gens gens, rels = elimination_technique_1(gens, rels, identity) rels = _simplify_relators(rels, identity) if change_gens: syms = [g.array_form[0][0] for g in gens] F = free_group(syms)[0] identity = F.identity gens = F.generators subs = dict(zip(syms, gens)) for j, r in enumerate(rels): a = r.array_form rel = identity for sym, p in a: rel = rel*subs[sym]**p rels[j] = rel return gens, rels def _simplify_relators(rels, identity): """Relies upon ``_simplification_technique_1`` for its functioning. """ rels = rels[:] rels = list(set(_simplification_technique_1(rels))) rels.sort() rels = [r.identity_cyclic_reduction() for r in rels] try: rels.remove(identity) except ValueError: pass return rels # Pg 350, section 2.5.1 from [2] def elimination_technique_1(gens, rels, identity): rels = rels[:] # the shorter relators are examined first so that generators selected for # elimination will have shorter strings as equivalent rels.sort() gens = gens[:] redundant_gens = {} redundant_rels = [] used_gens = set() # examine each relator in relator list for any generator occurring exactly # once for rel in rels: # don't look for a redundant generator in a relator which # depends on previously found ones contained_gens = rel.contains_generators() if any([g in contained_gens for g in redundant_gens]): continue contained_gens = list(contained_gens) contained_gens.sort(reverse = True) for gen in contained_gens: if rel.generator_count(gen) == 1 and gen not in used_gens: k = rel.exponent_sum(gen) gen_index = rel.index(gen**k) bk = rel.subword(gen_index + 1, len(rel)) fw = rel.subword(0, gen_index) chi = bk*fw redundant_gens[gen] = chi**(-1*k) used_gens.update(chi.contains_generators()) redundant_rels.append(rel) break rels = [r for r in rels if r not in redundant_rels] # eliminate the redundant generators from remaining relators rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels] rels = list(set(rels)) try: rels.remove(identity) except ValueError: pass gens = [g for g in gens if g not in redundant_gens] return gens, rels def _simplification_technique_1(rels): """ All relators are checked to see if they are of the form `gen^n`. If any such relators are found then all other relators are processed for strings in the `gen` known order. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import _simplification_technique_1 >>> F, x, y = free_group("x, y") >>> w1 = [x**2*y**4, x**3] >>> _simplification_technique_1(w1) [x**-1*y**4, x**3] >>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5] >>> _simplification_technique_1(w2) [x**-1*y*x**-1, x**3, x**-1*y**-2, y**5] >>> w3 = [x**6*y**4, x**4] >>> _simplification_technique_1(w3) [x**2*y**4, x**4] """ from sympy import gcd rels = rels[:] # dictionary with "gen: n" where gen^n is one of the relators exps = {} for i in range(len(rels)): rel = rels[i] if rel.number_syllables() == 1: g = rel[0] exp = abs(rel.array_form[0][1]) if rel.array_form[0][1] < 0: rels[i] = rels[i]**-1 g = g**-1 if g in exps: exp = gcd(exp, exps[g].array_form[0][1]) exps[g] = g**exp one_syllables_words = exps.values() # decrease some of the exponents in relators, making use of the single # syllable relators for i in range(len(rels)): rel = rels[i] if rel in one_syllables_words: continue rel = rel.eliminate_words(one_syllables_words, _all = True) # if rels[i] contains g**n where abs(n) is greater than half of the power p # of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0) for g in rel.contains_generators(): if g in exps: exp = exps[g].array_form[0][1] max_exp = (exp + 1)//2 rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True) rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True) rels[i] = rel rels = [r.identity_cyclic_reduction() for r in rels] return rels ############################################################################### # SUBGROUP PRESENTATIONS # ############################################################################### # Pg 175 [1] def define_schreier_generators(C, homomorphism=False): ''' Parameters ========== C -- Coset table. homomorphism -- When set to True, return a dictionary containing the images of the presentation generators in the original group. ''' y = [] gamma = 1 f = C.fp_group X = f.generators if homomorphism: # `_gens` stores the elements of the parent group to # to which the schreier generators correspond to. _gens = {} # compute the schreier Traversal tau = {} tau[0] = f.identity C.P = [[None]*len(C.A) for i in range(C.n)] for alpha, x in product(C.omega, C.A): beta = C.table[alpha][C.A_dict[x]] if beta == gamma: C.P[alpha][C.A_dict[x]] = "<identity>" C.P[beta][C.A_dict_inv[x]] = "<identity>" gamma += 1 if homomorphism: tau[beta] = tau[alpha]*x elif x in X and C.P[alpha][C.A_dict[x]] is None: y_alpha_x = '%s_%s' % (x, alpha) y.append(y_alpha_x) C.P[alpha][C.A_dict[x]] = y_alpha_x if homomorphism: _gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1 grp_gens = list(free_group(', '.join(y))) C._schreier_free_group = grp_gens.pop(0) C._schreier_generators = grp_gens if homomorphism: C._schreier_gen_elem = _gens # replace all elements of P by, free group elements for i, j in product(range(len(C.P)), range(len(C.A))): # if equals "<identity>", replace by identity element if C.P[i][j] == "<identity>": C.P[i][j] = C._schreier_free_group.identity elif isinstance(C.P[i][j], str): r = C._schreier_generators[y.index(C.P[i][j])] C.P[i][j] = r beta = C.table[i][j] C.P[beta][j + 1] = r**-1 def reidemeister_relators(C): R = C.fp_group.relators rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)] order_1_gens = {i for i in rels if len(i) == 1} # remove all the order 1 generators from relators rels = list(filter(lambda rel: rel not in order_1_gens, rels)) # replace order 1 generators by identity element in reidemeister relators for i in range(len(rels)): w = rels[i] w = w.eliminate_words(order_1_gens, _all=True) rels[i] = w C._schreier_generators = [i for i in C._schreier_generators if not (i in order_1_gens or i**-1 in order_1_gens)] # Tietze transformation 1 i.e TT_1 # remove cyclic conjugate elements from relators i = 0 while i < len(rels): w = rels[i] j = i + 1 while j < len(rels): if w.is_cyclic_conjugate(rels[j]): del rels[j] else: j += 1 i += 1 C._reidemeister_relators = rels def rewrite(C, alpha, w): """ Parameters ========== C: CosetTable alpha: A live coset w: A word in `A*` Returns ======= rho(tau(alpha), w) Examples ======== >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x ,y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**6]) >>> C = CosetTable(f, []) >>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]] >>> C.p = [0, 1, 2, 3, 4, 5] >>> define_schreier_generators(C) >>> rewrite(C, 0, (x*y)**6) x_4*y_2*x_3*x_1*x_2*y_4*x_5 """ v = C._schreier_free_group.identity for i in range(len(w)): x_i = w[i] v = v*C.P[alpha][C.A_dict[x_i]] alpha = C.table[alpha][C.A_dict[x_i]] return v # Pg 350, section 2.5.2 from [2] def elimination_technique_2(C): """ This technique eliminates one generator at a time. Heuristically this seems superior in that we may select for elimination the generator with shortest equivalent string at each stage. >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \ reidemeister_relators, define_schreier_generators, elimination_technique_2 >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x] >>> C = coset_enumeration_r(f, H) >>> C.compress(); C.standardize() >>> define_schreier_generators(C) >>> reidemeister_relators(C) >>> elimination_technique_2(C) ([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2]) """ rels = C._reidemeister_relators rels.sort(reverse=True) gens = C._schreier_generators for i in range(len(gens) - 1, -1, -1): rel = rels[i] for j in range(len(gens) - 1, -1, -1): gen = gens[j] if rel.generator_count(gen) == 1: k = rel.exponent_sum(gen) gen_index = rel.index(gen**k) bk = rel.subword(gen_index + 1, len(rel)) fw = rel.subword(0, gen_index) rep_by = (bk*fw)**(-1*k) del rels[i]; del gens[j] for l in range(len(rels)): rels[l] = rels[l].eliminate_word(gen, rep_by) break C._reidemeister_relators = rels C._schreier_generators = gens return C._schreier_generators, C._reidemeister_relators def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False): """ Parameters ========== fp_group: A finitely presented group, an instance of FpGroup H: A subgroup whose presentation is to be found, given as a list of words in generators of `fp_grp` homomorphism: When set to True, return a homomorphism from the subgroup to the parent group Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation >>> F, x, y = free_group("x, y") Example 5.6 Pg. 177 from [1] >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]) >>> H = [x*y, x**-1*y**-1*x*y*x] >>> reidemeister_presentation(f, H) ((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1)) Example 5.8 Pg. 183 from [1] >>> f = FpGroup(F, [x**3, y**3, (x*y)**3]) >>> H = [x*y, x*y**-1] >>> reidemeister_presentation(f, H) ((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0)) Exercises Q2. Pg 187 from [1] >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> H = [x] >>> reidemeister_presentation(f, H) ((x_0,), (x_0**4,)) Example 5.9 Pg. 183 from [1] >>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2]) >>> H = [x] >>> reidemeister_presentation(f, H) ((x_0,), (x_0**6,)) """ if not C: C = coset_enumeration_r(fp_grp, H) C.compress(); C.standardize() define_schreier_generators(C, homomorphism=homomorphism) reidemeister_relators(C) gens, rels = C._schreier_generators, C._reidemeister_relators gens, rels = simplify_presentation(gens, rels, change_gens=True) C.schreier_generators = tuple(gens) C.reidemeister_relators = tuple(rels) if homomorphism: _gens = [] for gen in gens: _gens.append(C._schreier_gen_elem[str(gen)]) return C.schreier_generators, C.reidemeister_relators, _gens return C.schreier_generators, C.reidemeister_relators FpGroupElement = FreeGroupElement
1a0f59bccab01cb2d123844f2026223bb5e0465198f459f2caf50108ccedd878
from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.concrete.expr_with_intlimits import ExprWithIntLimits from sympy.core.exprtools import factor_terms from sympy.functions.elementary.exponential import exp, log from sympy.polys import quo, roots from sympy.simplify import powsimp from sympy.core.function import Derivative from sympy.core.symbol import Dummy, Symbol class Product(ExprWithIntLimits): r""" Represents unevaluated products. Explanation =========== ``Product`` represents a finite or infinite product, with the first argument being the general form of terms in the series, and the second argument being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking all integer values from ``start`` through ``end``. In accordance with long-standing mathematical convention, the end term is included in the product. Finite products =============== For finite products (and products with symbolic limits assumed to be finite) we follow the analogue of the summation convention described by Karr [1], especially definition 3 of section 1.4. The product: .. math:: \prod_{m \leq i < n} f(i) has *the obvious meaning* for `m < n`, namely: .. math:: \prod_{m \leq i < n} f(i) = f(m) f(m+1) \cdot \ldots \cdot f(n-2) f(n-1) with the upper limit value `f(n)` excluded. The product over an empty set is one if and only if `m = n`: .. math:: \prod_{m \leq i < n} f(i) = 1 \quad \mathrm{for} \quad m = n Finally, for all other products over empty sets we assume the following definition: .. math:: \prod_{m \leq i < n} f(i) = \frac{1}{\prod_{n \leq i < m} f(i)} \quad \mathrm{for} \quad m > n It is important to note that above we define all products with the upper limit being exclusive. This is in contrast to the usual mathematical notation, but does not affect the product convention. Indeed we have: .. math:: \prod_{m \leq i < n} f(i) = \prod_{i = m}^{n - 1} f(i) where the difference in notation is intentional to emphasize the meaning, with limits typeset on the top being inclusive. Examples ======== >>> from sympy.abc import a, b, i, k, m, n, x >>> from sympy import Product, oo >>> Product(k, (k, 1, m)) Product(k, (k, 1, m)) >>> Product(k, (k, 1, m)).doit() factorial(m) >>> Product(k**2,(k, 1, m)) Product(k**2, (k, 1, m)) >>> Product(k**2,(k, 1, m)).doit() factorial(m)**2 Wallis' product for pi: >>> W = Product(2*i/(2*i-1) * 2*i/(2*i+1), (i, 1, oo)) >>> W Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo)) Direct computation currently fails: >>> W.doit() Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, oo)) But we can approach the infinite product by a limit of finite products: >>> from sympy import limit >>> W2 = Product(2*i/(2*i-1)*2*i/(2*i+1), (i, 1, n)) >>> W2 Product(4*i**2/((2*i - 1)*(2*i + 1)), (i, 1, n)) >>> W2e = W2.doit() >>> W2e 4**n*factorial(n)**2/(2**(2*n)*RisingFactorial(1/2, n)*RisingFactorial(3/2, n)) >>> limit(W2e, n, oo) pi/2 By the same formula we can compute sin(pi/2): >>> from sympy import combsimp, pi, gamma, simplify >>> P = pi * x * Product(1 - x**2/k**2, (k, 1, n)) >>> P = P.subs(x, pi/2) >>> P pi**2*Product(1 - pi**2/(4*k**2), (k, 1, n))/2 >>> Pe = P.doit() >>> Pe pi**2*RisingFactorial(1 - pi/2, n)*RisingFactorial(1 + pi/2, n)/(2*factorial(n)**2) >>> limit(Pe, n, oo).gammasimp() sin(pi**2/2) >>> Pe.rewrite(gamma) (-1)**n*pi**2*gamma(pi/2)*gamma(n + 1 + pi/2)/(2*gamma(1 + pi/2)*gamma(-n + pi/2)*gamma(n + 1)**2) Products with the lower limit being larger than the upper one: >>> Product(1/i, (i, 6, 1)).doit() 120 >>> Product(i, (i, 2, 5)).doit() 120 The empty product: >>> Product(i, (i, n, n-1)).doit() 1 An example showing that the symbolic result of a product is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly valid interpretation to those products by interchanging the limits according to the above rules: >>> P = Product(2, (i, 10, n)).doit() >>> P 2**(n - 9) >>> P.subs(n, 5) 1/16 >>> Product(2, (i, 10, 5)).doit() 1/16 >>> 1/Product(2, (i, 6, 9)).doit() 1/16 An explicit example of the Karr summation convention applied to products: >>> P1 = Product(x, (i, a, b)).doit() >>> P1 x**(-a + b + 1) >>> P2 = Product(x, (i, b+1, a-1)).doit() >>> P2 x**(a - b - 1) >>> simplify(P1 * P2) 1 And another one: >>> P1 = Product(i, (i, b, a)).doit() >>> P1 RisingFactorial(b, a - b + 1) >>> P2 = Product(i, (i, a+1, b-1)).doit() >>> P2 RisingFactorial(a + 1, -a + b - 1) >>> P1 * P2 RisingFactorial(b, a - b + 1)*RisingFactorial(a + 1, -a + b - 1) >>> combsimp(P1 * P2) 1 See Also ======== Sum, summation product References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 .. [2] https://en.wikipedia.org/wiki/Multiplication#Capital_Pi_notation .. [3] https://en.wikipedia.org/wiki/Empty_product """ __slots__ = ('is_commutative',) def __new__(cls, function, *symbols, **assumptions): obj = ExprWithIntLimits.__new__(cls, function, *symbols, **assumptions) return obj def _eval_rewrite_as_Sum(self, *args, **kwargs): from sympy.concrete.summations import Sum return exp(Sum(log(self.function), *self.limits)) @property def term(self): return self._args[0] function = term def _eval_is_zero(self): if self.has_empty_sequence: return False z = self.term.is_zero if z is True: return True if self.has_finite_limits: # A Product is zero only if its term is zero assuming finite limits. return z def _eval_is_extended_real(self): if self.has_empty_sequence: return True return self.function.is_extended_real def _eval_is_positive(self): if self.has_empty_sequence: return True if self.function.is_positive and self.has_finite_limits: return True def _eval_is_nonnegative(self): if self.has_empty_sequence: return True if self.function.is_nonnegative and self.has_finite_limits: return True def _eval_is_extended_nonnegative(self): if self.has_empty_sequence: return True if self.function.is_extended_nonnegative: return True def _eval_is_extended_nonpositive(self): if self.has_empty_sequence: return True def _eval_is_finite(self): if self.has_finite_limits and self.function.is_finite: return True def doit(self, **hints): # first make sure any definite limits have product # variables with matching assumptions reps = {} for xab in self.limits: # Must be imported here to avoid circular imports from .summations import _dummy_with_inherited_properties_concrete d = _dummy_with_inherited_properties_concrete(xab) if d: reps[xab[0]] = d if reps: undo = {v: k for k, v in reps.items()} did = self.xreplace(reps).doit(**hints) if type(did) is tuple: # when separate=True did = tuple([i.xreplace(undo) for i in did]) else: did = did.xreplace(undo) return did f = self.function for index, limit in enumerate(self.limits): i, a, b = limit dif = b - a if dif.is_integer and dif.is_negative: a, b = b + 1, a - 1 f = 1 / f g = self._eval_product(f, (i, a, b)) if g in (None, S.NaN): return self.func(powsimp(f), *self.limits[index:]) else: f = g if hints.get('deep', True): return f.doit(**hints) else: return powsimp(f) def _eval_adjoint(self): if self.is_commutative: return self.func(self.function.adjoint(), *self.limits) return None def _eval_conjugate(self): return self.func(self.function.conjugate(), *self.limits) def _eval_product(self, term, limits): from sympy.concrete.delta import deltaproduct, _has_simple_delta from sympy.concrete.summations import summation from sympy.functions import KroneckerDelta, RisingFactorial (k, a, n) = limits if k not in term.free_symbols: if (term - 1).is_zero: return S.One return term**(n - a + 1) if a == n: return term.subs(k, a) if term.has(KroneckerDelta) and _has_simple_delta(term, limits[0]): return deltaproduct(term, limits) dif = n - a definite = dif.is_Integer if definite and (dif < 100): return self._eval_product_direct(term, limits) elif term.is_polynomial(k): poly = term.as_poly(k) A = B = Q = S.One all_roots = roots(poly) M = 0 for r, m in all_roots.items(): M += m A *= RisingFactorial(a - r, n - a + 1)**m Q *= (n - r)**m if M < poly.degree(): arg = quo(poly, Q.as_poly(k)) B = self.func(arg, (k, a, n)).doit() return poly.LC()**(n - a + 1) * A * B elif term.is_Add: factored = factor_terms(term, fraction=True) if factored.is_Mul: return self._eval_product(factored, (k, a, n)) elif term.is_Mul: # Factor in part without the summation variable and part with without_k, with_k = term.as_coeff_mul(k) if len(with_k) >= 2: # More than one term including k, so still a multiplication exclude, include = [], [] for t in with_k: p = self._eval_product(t, (k, a, n)) if p is not None: exclude.append(p) else: include.append(t) if not exclude: return None else: arg = term._new_rawargs(*include) A = Mul(*exclude) B = self.func(arg, (k, a, n)).doit() return without_k**(n - a + 1)*A * B else: # Just a single term p = self._eval_product(with_k[0], (k, a, n)) if p is None: p = self.func(with_k[0], (k, a, n)).doit() return without_k**(n - a + 1)*p elif term.is_Pow: if not term.base.has(k): s = summation(term.exp, (k, a, n)) return term.base**s elif not term.exp.has(k): p = self._eval_product(term.base, (k, a, n)) if p is not None: return p**term.exp elif isinstance(term, Product): evaluated = term.doit() f = self._eval_product(evaluated, limits) if f is None: return self.func(evaluated, limits) else: return f if definite: return self._eval_product_direct(term, limits) def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import product_simplify rv = product_simplify(self) return rv.doit() if kwargs['doit'] else rv def _eval_transpose(self): if self.is_commutative: return self.func(self.function.transpose(), *self.limits) return None def _eval_product_direct(self, term, limits): (k, a, n) = limits return Mul(*[term.subs(k, a + i) for i in range(n - a + 1)]) def _eval_derivative(self, x): from sympy.concrete.summations import Sum if isinstance(x, Symbol) and x not in self.free_symbols: return S.Zero f, limits = self.function, list(self.limits) limit = limits.pop(-1) if limits: f = self.func(f, *limits) i, a, b = limit if x in a.free_symbols or x in b.free_symbols: return None h = Dummy() rv = Sum( Product(f, (i, a, h - 1)) * Product(f, (i, h + 1, b)) * Derivative(f, x, evaluate=True).subs(i, h), (h, a, b)) return rv def is_convergent(self): r""" See docs of :obj:`.Sum.is_convergent()` for explanation of convergence in SymPy. Explanation =========== The infinite product: .. math:: \prod_{1 \leq i < \infty} f(i) is defined by the sequence of partial products: .. math:: \prod_{i=1}^{n} f(i) = f(1) f(2) \cdots f(n) as n increases without bound. The product converges to a non-zero value if and only if the sum: .. math:: \sum_{1 \leq i < \infty} \log{f(n)} converges. Examples ======== >>> from sympy import Product, Symbol, cos, pi, exp, oo >>> n = Symbol('n', integer=True) >>> Product(n/(n + 1), (n, 1, oo)).is_convergent() False >>> Product(1/n**2, (n, 1, oo)).is_convergent() False >>> Product(cos(pi/n), (n, 1, oo)).is_convergent() True >>> Product(exp(-n**2), (n, 1, oo)).is_convergent() False References ========== .. [1] https://en.wikipedia.org/wiki/Infinite_product """ from sympy.concrete.summations import Sum sequence_term = self.function log_sum = log(sequence_term) lim = self.limits try: is_conv = Sum(log_sum, *lim).is_convergent() except NotImplementedError: if Sum(sequence_term - 1, *lim).is_absolutely_convergent() is S.true: return S.true raise NotImplementedError("The algorithm to find the product convergence of %s " "is not yet implemented" % (sequence_term)) return is_conv def reverse_order(expr, *indices): """ Reverse the order of a limit in a Product. Explanation =========== ``reverse_order(expr, *indices)`` reverses some limits in the expression ``expr`` which can be either a ``Sum`` or a ``Product``. The selectors in the argument ``indices`` specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple. Examples ======== >>> from sympy import gamma, Product, simplify, Sum >>> from sympy.abc import x, y, a, b, c, d >>> P = Product(x, (x, a, b)) >>> Pr = P.reverse_order(x) >>> Pr Product(1/x, (x, b + 1, a - 1)) >>> Pr = Pr.doit() >>> Pr 1/RisingFactorial(b + 1, a - b - 1) >>> simplify(Pr.rewrite(gamma)) Piecewise((gamma(b + 1)/gamma(a), b > -1), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True)) >>> P = P.doit() >>> P RisingFactorial(a, -a + b + 1) >>> simplify(P.rewrite(gamma)) Piecewise((gamma(b + 1)/gamma(a), a > 0), ((-1)**(-a + b + 1)*gamma(1 - a)/gamma(-b), True)) While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name. >>> S = Sum(x*y, (x, a, b), (y, c, d)) >>> S Sum(x*y, (x, a, b), (y, c, d)) >>> S0 = S.reverse_order(0) >>> S0 Sum(-x*y, (x, b + 1, a - 1), (y, c, d)) >>> S1 = S0.reverse_order(1) >>> S1 Sum(x*y, (x, b + 1, a - 1), (y, d + 1, c - 1)) Of course we can mix both notations: >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) See Also ======== sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit, sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 """ l_indices = list(indices) for i, indx in enumerate(l_indices): if not isinstance(indx, int): l_indices[i] = expr.index(indx) e = 1 limits = [] for i, limit in enumerate(expr.limits): l = limit if i in l_indices: e = -e l = (limit[0], limit[2] + 1, limit[1] - 1) limits.append(l) return Product(expr.function ** e, *limits) def product(*args, **kwargs): r""" Compute the product. Explanation =========== The notation for symbols is similar to the notation used in Sum or Integral. product(f, (i, a, b)) computes the product of f with respect to i from a to b, i.e., :: b _____ product(f(n), (i, a, b)) = | | f(n) | | i = a If it cannot compute the product, it returns an unevaluated Product object. Repeated products can be computed by introducing additional symbols tuples:: Examples ======== >>> from sympy import product, symbols >>> i, n, m, k = symbols('i n m k', integer=True) >>> product(i, (i, 1, k)) factorial(k) >>> product(m, (i, 1, k)) m**k >>> product(i, (i, 1, k), (k, 1, n)) Product(factorial(k), (k, 1, n)) """ prod = Product(*args, **kwargs) if isinstance(prod, Product): return prod.doit(deep=False) else: return prod
fe60b0ac147a4082bbb839b3f1b5aaad237b91b93e98f27754961d424c14bed8
"""Formal Power Series""" from collections import defaultdict from sympy import oo, zoo, nan from sympy.core.add import Add from sympy.core.compatibility import iterable from sympy.core.expr import Expr from sympy.core.function import Derivative, Function, expand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.relational import Eq from sympy.sets.sets import Interval from sympy.core.singleton import S from sympy.core.symbol import Wild, Dummy, symbols, Symbol from sympy.core.sympify import sympify from sympy.discrete.convolutions import convolution from sympy.functions.combinatorial.factorials import binomial, factorial, rf from sympy.functions.combinatorial.numbers import bell from sympy.functions.elementary.integers import floor, frac, ceiling from sympy.functions.elementary.miscellaneous import Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.series.limits import Limit from sympy.series.order import Order from sympy.simplify.powsimp import powsimp from sympy.series.sequences import sequence from sympy.series.series_class import SeriesBase def rational_algorithm(f, x, k, order=4, full=False): """ Rational algorithm for computing formula of coefficients of Formal Power Series of a function. Explanation =========== Applicable when f(x) or some derivative of f(x) is a rational function in x. :func:`rational_algorithm` uses :func:`~.apart` function for partial fraction decomposition. :func:`~.apart` by default uses 'undetermined coefficients method'. By setting ``full=True``, 'Bronstein's algorithm' can be used instead. Looks for derivative of a function up to 4'th order (by default). This can be overridden using order option. Parameters ========== x : Symbol order : int, optional Order of the derivative of ``f``, Default is 4. full : bool Returns ======= formula : Expr ind : Expr Independent terms. order : int full : bool Examples ======== >>> from sympy import log, atan >>> from sympy.series.formal import rational_algorithm as ra >>> from sympy.abc import x, k >>> ra(1 / (1 - x), x, k) (1, 0, 0) >>> ra(log(1 + x), x, k) (-1/((-1)**k*k), 0, 1) >>> ra(atan(x), x, k, full=True) ((-I/(2*(-I)**k) + I/(2*I**k))/k, 0, 1) Notes ===== By setting ``full=True``, range of admissible functions to be solved using ``rational_algorithm`` can be increased. This option should be used carefully as it can significantly slow down the computation as ``doit`` is performed on the :class:`~.RootSum` object returned by the :func:`~.apart` function. Use ``full=False`` whenever possible. See Also ======== sympy.polys.partfrac.apart References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ from sympy.polys import RootSum, apart from sympy.integrals import integrate diff = f ds = [] # list of diff for i in range(order + 1): if i: diff = diff.diff(x) if diff.is_rational_function(x): coeff, sep = S.Zero, S.Zero terms = apart(diff, x, full=full) if terms.has(RootSum): terms = terms.doit() for t in Add.make_args(terms): num, den = t.as_numer_denom() if not den.has(x): sep += t else: if isinstance(den, Mul): # m*(n*x - a)**j -> (n*x - a)**j ind = den.as_independent(x) den = ind[1] num /= ind[0] # (n*x - a)**j -> (x - b) den, j = den.as_base_exp() a, xterm = den.as_coeff_add(x) # term -> m/x**n if not a: sep += t continue xc = xterm[0].coeff(x) a /= -xc num /= xc**j ak = ((-1)**j * num * binomial(j + k - 1, k).rewrite(factorial) / a**(j + k)) coeff += ak # Hacky, better way? if coeff.is_zero: return None if (coeff.has(x) or coeff.has(zoo) or coeff.has(oo) or coeff.has(nan)): return None for j in range(i): coeff = (coeff / (k + j + 1)) sep = integrate(sep, x) sep += (ds.pop() - sep).limit(x, 0) # constant of integration return (coeff.subs(k, k - i), sep, i) else: ds.append(diff) return None def rational_independent(terms, x): """ Returns a list of all the rationally independent terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.series.formal import rational_independent >>> from sympy.abc import x >>> rational_independent([cos(x), sin(x)], x) [cos(x), sin(x)] >>> rational_independent([x**2, sin(x), x*sin(x), x**3], x) [x**3 + x**2, x*sin(x) + sin(x)] """ if not terms: return [] ind = terms[0:1] for t in terms[1:]: n = t.as_independent(x)[1] for i, term in enumerate(ind): d = term.as_independent(x)[1] q = (n / d).cancel() if q.is_rational_function(x): ind[i] += t break else: ind.append(t) return ind def simpleDE(f, x, g, order=4): r""" Generates simple DE. Explanation =========== DE is of the form .. math:: f^k(x) + \sum\limits_{j=0}^{k-1} A_j f^j(x) = 0 where :math:`A_j` should be rational function in x. Generates DE's upto order 4 (default). DE's can also have free parameters. By increasing order, higher order DE's can be found. Yields a tuple of (DE, order). """ from sympy.solvers.solveset import linsolve a = symbols('a:%d' % (order)) def _makeDE(k): eq = f.diff(x, k) + Add(*[a[i]*f.diff(x, i) for i in range(0, k)]) DE = g(x).diff(x, k) + Add(*[a[i]*g(x).diff(x, i) for i in range(0, k)]) return eq, DE found = False for k in range(1, order + 1): eq, DE = _makeDE(k) eq = eq.expand() terms = eq.as_ordered_terms() ind = rational_independent(terms, x) if found or len(ind) == k: sol = dict(zip(a, (i for s in linsolve(ind, a[:k]) for i in s))) if sol: found = True DE = DE.subs(sol) DE = DE.as_numer_denom()[0] DE = DE.factor().as_coeff_mul(Derivative)[1][0] yield DE.collect(Derivative(g(x))), k def exp_re(DE, r, k): """Converts a DE with constant coefficients (explike) into a RE. Explanation =========== Performs the substitution: .. math:: f^j(x) \\to r(k + j) Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import exp_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> exp_re(-f(x) + Derivative(f(x)), r, k) -r(k) + r(k + 1) >>> exp_re(Derivative(f(x), x) + Derivative(f(x), (x, 2)), r, k) r(k) + r(k + 1) See Also ======== sympy.series.formal.hyper_re """ RE = S.Zero g = DE.atoms(Function).pop() mini = None for t in Add.make_args(DE): coeff, d = t.as_independent(g) if isinstance(d, Derivative): j = d.derivative_count else: j = 0 if mini is None or j < mini: mini = j RE += coeff * r(k + j) if mini: RE = RE.subs(k, k - mini) return RE def hyper_re(DE, r, k): """ Converts a DE into a RE. Explanation =========== Performs the substitution: .. math:: x^l f^j(x) \\to (k + 1 - l)_j . a_{k + j - l} Normalises the terms so that lowest order of a term is always r(k). Examples ======== >>> from sympy import Function, Derivative >>> from sympy.series.formal import hyper_re >>> from sympy.abc import x, k >>> f, r = Function('f'), Function('r') >>> hyper_re(-f(x) + Derivative(f(x)), r, k) (k + 1)*r(k + 1) - r(k) >>> hyper_re(-x*f(x) + Derivative(f(x), (x, 2)), r, k) (k + 2)*(k + 3)*r(k + 3) - r(k) See Also ======== sympy.series.formal.exp_re """ RE = S.Zero g = DE.atoms(Function).pop() x = g.atoms(Symbol).pop() mini = None for t in Add.make_args(DE.expand()): coeff, d = t.as_independent(g) c, v = coeff.as_independent(x) l = v.as_coeff_exponent(x)[1] if isinstance(d, Derivative): j = d.derivative_count else: j = 0 RE += c * rf(k + 1 - l, j) * r(k + j - l) if mini is None or j - l < mini: mini = j - l RE = RE.subs(k, k - mini) m = Wild('m') return RE.collect(r(k + m)) def _transformation_a(f, x, P, Q, k, m, shift): f *= x**(-shift) P = P.subs(k, k + shift) Q = Q.subs(k, k + shift) return f, P, Q, m def _transformation_c(f, x, P, Q, k, m, scale): f = f.subs(x, x**scale) P = P.subs(k, k / scale) Q = Q.subs(k, k / scale) m *= scale return f, P, Q, m def _transformation_e(f, x, P, Q, k, m): f = f.diff(x) P = P.subs(k, k + 1) * (k + m + 1) Q = Q.subs(k, k + 1) * (k + 1) return f, P, Q, m def _apply_shift(sol, shift): return [(res, cond + shift) for res, cond in sol] def _apply_scale(sol, scale): return [(res, cond / scale) for res, cond in sol] def _apply_integrate(sol, x, k): return [(res / ((cond + 1)*(cond.as_coeff_Add()[1].coeff(k))), cond + 1) for res, cond in sol] def _compute_formula(f, x, P, Q, k, m, k_max): """Computes the formula for f.""" from sympy.polys import roots sol = [] for i in range(k_max + 1, k_max + m + 1): if (i < 0) == True: continue r = f.diff(x, i).limit(x, 0) / factorial(i) if r.is_zero: continue kterm = m*k + i res = r p = P.subs(k, kterm) q = Q.subs(k, kterm) c1 = p.subs(k, 1/k).leadterm(k)[0] c2 = q.subs(k, 1/k).leadterm(k)[0] res *= (-c1 / c2)**k for r, mul in roots(p, k).items(): res *= rf(-r, k)**mul for r, mul in roots(q, k).items(): res /= rf(-r, k)**mul sol.append((res, kterm)) return sol def _rsolve_hypergeometric(f, x, P, Q, k, m): """ Recursive wrapper to rsolve_hypergeometric. Explanation =========== Returns a Tuple of (formula, series independent terms, maximum power of x in independent terms) if successful otherwise ``None``. See :func:`rsolve_hypergeometric` for details. """ from sympy.polys import lcm, roots from sympy.integrals import integrate # transformation - c proots, qroots = roots(P, k), roots(Q, k) all_roots = dict(proots) all_roots.update(qroots) scale = lcm([r.as_numer_denom()[1] for r, t in all_roots.items() if r.is_rational]) f, P, Q, m = _transformation_c(f, x, P, Q, k, m, scale) # transformation - a qroots = roots(Q, k) if qroots: k_min = Min(*qroots.keys()) else: k_min = S.Zero shift = k_min + m f, P, Q, m = _transformation_a(f, x, P, Q, k, m, shift) l = (x*f).limit(x, 0) if not isinstance(l, Limit) and l != 0: # Ideally should only be l != 0 return None qroots = roots(Q, k) if qroots: k_max = Max(*qroots.keys()) else: k_max = S.Zero ind, mp = S.Zero, -oo for i in range(k_max + m + 1): r = f.diff(x, i).limit(x, 0) / factorial(i) if r.is_finite is False: old_f = f f, P, Q, m = _transformation_a(f, x, P, Q, k, m, i) f, P, Q, m = _transformation_e(f, x, P, Q, k, m) sol, ind, mp = _rsolve_hypergeometric(f, x, P, Q, k, m) sol = _apply_integrate(sol, x, k) sol = _apply_shift(sol, i) ind = integrate(ind, x) ind += (old_f - ind).limit(x, 0) # constant of integration mp += 1 return sol, ind, mp elif r: ind += r*x**(i + shift) pow_x = Rational((i + shift), scale) if pow_x > mp: mp = pow_x # maximum power of x ind = ind.subs(x, x**(1/scale)) sol = _compute_formula(f, x, P, Q, k, m, k_max) sol = _apply_shift(sol, shift) sol = _apply_scale(sol, scale) return sol, ind, mp def rsolve_hypergeometric(f, x, P, Q, k, m): """ Solves RE of hypergeometric type. Explanation =========== Attempts to solve RE of the form Q(k)*a(k + m) - P(k)*a(k) Transformations that preserve Hypergeometric type: a. x**n*f(x): b(k + m) = R(k - n)*b(k) b. f(A*x): b(k + m) = A**m*R(k)*b(k) c. f(x**n): b(k + n*m) = R(k/n)*b(k) d. f(x**(1/m)): b(k + 1) = R(k*m)*b(k) e. f'(x): b(k + m) = ((k + m + 1)/(k + 1))*R(k + 1)*b(k) Some of these transformations have been used to solve the RE. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import exp, ln, S >>> from sympy.series.formal import rsolve_hypergeometric as rh >>> from sympy.abc import x, k >>> rh(exp(x), x, -S.One, (k + 1), k, 1) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> rh(ln(1 + x), x, k**2, k*(k + 1), k, 1) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) References ========== .. [1] Formal Power Series - Dominik Gruntz, Wolfram Koepf .. [2] Power Series in Computer Algebra - Wolfram Koepf """ result = _rsolve_hypergeometric(f, x, P, Q, k, m) if result is None: return None sol_list, ind, mp = result sol_dict = defaultdict(lambda: S.Zero) for res, cond in sol_list: j, mk = cond.as_coeff_Add() c = mk.coeff(k) if j.is_integer is False: res *= x**frac(j) j = floor(j) res = res.subs(k, (k - j) / c) cond = Eq(k % c, j % c) sol_dict[cond] += res # Group together formula for same conditions sol = [] for cond, res in sol_dict.items(): sol.append((res, cond)) sol.append((S.Zero, True)) sol = Piecewise(*sol) if mp is -oo: s = S.Zero elif mp.is_integer is False: s = ceiling(mp) else: s = mp + 1 # save all the terms of # form 1/x**k in ind if s < 0: ind += sum(sequence(sol * x**k, (k, s, -1))) s = S.Zero return (sol, ind, s) def _solve_hyper_RE(f, x, RE, g, k): """See docstring of :func:`rsolve_hypergeometric` for details.""" terms = Add.make_args(RE) if len(terms) == 2: gs = list(RE.atoms(Function)) P, Q = map(RE.coeff, gs) m = gs[1].args[0] - gs[0].args[0] if m < 0: P, Q = Q, P m = abs(m) return rsolve_hypergeometric(f, x, P, Q, k, m) def _solve_explike_DE(f, x, DE, g, k): """Solves DE with constant coefficients.""" from sympy.solvers import rsolve for t in Add.make_args(DE): coeff, d = t.as_independent(g) if coeff.free_symbols: return RE = exp_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) sol = rsolve(RE, g(k), init) if sol: return (sol / factorial(k), S.Zero, S.Zero) def _solve_simple(f, x, DE, g, k): """Converts DE into RE and solves using :func:`rsolve`.""" from sympy.solvers import rsolve RE = hyper_re(DE, g, k) init = {} for i in range(len(Add.make_args(RE))): if i: f = f.diff(x) init[g(k).subs(k, i)] = f.limit(x, 0) / factorial(i) sol = rsolve(RE, g(k), init) if sol: return (sol, S.Zero, S.Zero) def _transform_explike_DE(DE, g, x, order, syms): """Converts DE with free parameters into DE with constant coefficients.""" from sympy.solvers.solveset import linsolve eq = [] highest_coeff = DE.coeff(Derivative(g(x), x, order)) for i in range(order): coeff = DE.coeff(Derivative(g(x), x, i)) coeff = (coeff / highest_coeff).expand().collect(x) for t in Add.make_args(coeff): eq.append(t) temp = [] for e in eq: if e.has(x): break elif e.has(Symbol): temp.append(e) else: eq = temp if eq: sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: DE = DE.subs(sol) DE = DE.factor().as_coeff_mul(Derivative)[1][0] DE = DE.collect(Derivative(g(x))) return DE def _transform_DE_RE(DE, g, k, order, syms): """Converts DE with free parameters into RE of hypergeometric type.""" from sympy.solvers.solveset import linsolve RE = hyper_re(DE, g, k) eq = [] for i in range(1, order): coeff = RE.coeff(g(k + i)) eq.append(coeff) sol = dict(zip(syms, (i for s in linsolve(eq, list(syms)) for i in s))) if sol: m = Wild('m') RE = RE.subs(sol) RE = RE.factor().as_numer_denom()[0].collect(g(k + m)) RE = RE.as_coeff_mul(g)[1][0] for i in range(order): # smallest order should be g(k) if RE.coeff(g(k + i)) and i: RE = RE.subs(k, k - i) break return RE def solve_de(f, x, DE, order, g, k): """ Solves the DE. Explanation =========== Tries to solve DE by either converting into a RE containing two terms or converting into a DE having constant coefficients. Returns ======= formula : Expr ind : Expr Independent terms. order : int Examples ======== >>> from sympy import Derivative as D, Function >>> from sympy import exp, ln >>> from sympy.series.formal import solve_de >>> from sympy.abc import x, k >>> f = Function('f') >>> solve_de(exp(x), x, D(f(x), x) - f(x), 1, f, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> solve_de(ln(1 + x), x, (x + 1)*D(f(x), x, 2) + D(f(x)), 2, f, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) """ sol = None syms = DE.free_symbols.difference({g, x}) if syms: RE = _transform_DE_RE(DE, g, k, order, syms) else: RE = hyper_re(DE, g, k) if not RE.free_symbols.difference({k}): sol = _solve_hyper_RE(f, x, RE, g, k) if sol: return sol if syms: DE = _transform_explike_DE(DE, g, x, order, syms) if not DE.free_symbols.difference({x}): sol = _solve_explike_DE(f, x, DE, g, k) if sol: return sol def hyper_algorithm(f, x, k, order=4): """ Hypergeometric algorithm for computing Formal Power Series. Explanation =========== Steps: * Generates DE * Convert the DE into RE * Solves the RE Examples ======== >>> from sympy import exp, ln >>> from sympy.series.formal import hyper_algorithm >>> from sympy.abc import x, k >>> hyper_algorithm(exp(x), x, k) (Piecewise((1/factorial(k), Eq(Mod(k, 1), 0)), (0, True)), 1, 1) >>> hyper_algorithm(ln(1 + x), x, k) (Piecewise(((-1)**(k - 1)*factorial(k - 1)/RisingFactorial(2, k - 1), Eq(Mod(k, 1), 0)), (0, True)), x, 2) See Also ======== sympy.series.formal.simpleDE sympy.series.formal.solve_de """ g = Function('g') des = [] # list of DE's sol = None for DE, i in simpleDE(f, x, g, order): if DE is not None: sol = solve_de(f, x, DE, i, g, k) if sol: return sol if not DE.free_symbols.difference({x}): des.append(DE) # If nothing works # Try plain rsolve for DE in des: sol = _solve_simple(f, x, DE, g, k) if sol: return sol def _compute_fps(f, x, x0, dir, hyper, order, rational, full): """Recursive wrapper to compute fps. See :func:`compute_fps` for details. """ if x0 in [S.Infinity, S.NegativeInfinity]: dir = S.One if x0 is S.Infinity else -S.One temp = f.subs(x, 1/x) result = _compute_fps(temp, x, 0, dir, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, 1/x), result[2].subs(x, 1/x)) elif x0 or dir == -S.One: if dir == -S.One: rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 temp = f.subs(x, rep) result = _compute_fps(temp, x, 0, S.One, hyper, order, rational, full) if result is None: return None return (result[0], result[1].subs(x, rep2 + rep2b), result[2].subs(x, rep2 + rep2b)) if f.is_polynomial(x): k = Dummy('k') ak = sequence(Coeff(f, x, k), (k, 1, oo)) xk = sequence(x**k, (k, 0, oo)) ind = f.coeff(x, 0) return ak, xk, ind # Break instances of Add # this allows application of different # algorithms on different terms increasing the # range of admissible functions. if isinstance(f, Add): result = False ak = sequence(S.Zero, (0, oo)) ind, xk = S.Zero, None for t in Add.make_args(f): res = _compute_fps(t, x, 0, S.One, hyper, order, rational, full) if res: if not result: result = True xk = res[1] if res[0].start > ak.start: seq = ak s, f = ak.start, res[0].start else: seq = res[0] s, f = res[0].start, ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(f - s)], xk[s:f])]) ak += res[0] ind += res[2] + save else: ind += t if result: return ak, xk, ind return None # The symbolic term - symb, if present, is being separated from the function # Otherwise symb is being set to S.One syms = f.free_symbols.difference({x}) (f, symb) = expand(f).as_independent(*syms) if symb.is_zero: symb = S.One symb = powsimp(symb) result = None # from here on it's x0=0 and dir=1 handling k = Dummy('k') if rational: result = rational_algorithm(f, x, k, order, full) if result is None and hyper: result = hyper_algorithm(f, x, k, order) if result is None: return None ak = sequence(result[0], (k, result[2], oo)) xk_formula = powsimp(x**k * symb) xk = sequence(xk_formula, (k, 0, oo)) ind = powsimp(result[1] * symb) return ak, xk, ind def compute_fps(f, x, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Computes the formula for Formal Power Series of a function. Explanation =========== Tries to compute the formula by applying the following techniques (in order): * rational_algorithm * Hypergeometric algorithm Parameters ========== x : Symbol x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Returns ======= ak : sequence Sequence of coefficients. xk : sequence Sequence of powers of x. ind : Expr Independent terms. mul : Pow Common terms. See Also ======== sympy.series.formal.rational_algorithm sympy.series.formal.hyper_algorithm """ f = sympify(f) x = sympify(x) if not f.has(x): return None x0 = sympify(x0) if dir == '+': dir = S.One elif dir == '-': dir = -S.One elif dir not in [S.One, -S.One]: raise ValueError("Dir must be '+' or '-'") else: dir = sympify(dir) return _compute_fps(f, x, x0, dir, hyper, order, rational, full) class Coeff(Function): """ Coeff(p, x, n) represents the nth coefficient of the polynomial p in x """ @classmethod def eval(cls, p, x, n): if p.is_polynomial(x) and n.is_integer: return p.coeff(x, n) class FormalPowerSeries(SeriesBase): """ Represents Formal Power Series of a function. Explanation =========== No computation is performed. This class should only to be used to represent a series. No checks are performed. For computing a series use :func:`fps`. See Also ======== sympy.series.formal.fps """ def __new__(cls, *args): args = map(sympify, args) return Expr.__new__(cls, *args) def __init__(self, *args): ak = args[4][0] k = ak.variables[0] self.ak_seq = sequence(ak.formula, (k, 1, oo)) self.fact_seq = sequence(factorial(k), (k, 1, oo)) self.bell_coeff_seq = self.ak_seq * self.fact_seq self.sign_seq = sequence((-1, 1), (k, 1, oo)) @property def function(self): return self.args[0] @property def x(self): return self.args[1] @property def x0(self): return self.args[2] @property def dir(self): return self.args[3] @property def ak(self): return self.args[4][0] @property def xk(self): return self.args[4][1] @property def ind(self): return self.args[4][2] @property def interval(self): return Interval(0, oo) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return oo @property def infinite(self): """Returns an infinite representation of the series""" from sympy.concrete import Sum ak, xk = self.ak, self.xk k = ak.variables[0] inf_sum = Sum(ak.formula * xk.formula, (k, ak.start, ak.stop)) return self.ind + inf_sum def _get_pow_x(self, term): """Returns the power of x in a term.""" xterm, pow_x = term.as_independent(self.x)[1].as_base_exp() if not xterm.has(self.x): return S.Zero return pow_x def polynomial(self, n=6): """ Truncated series as polynomial. Explanation =========== Returns series expansion of ``f`` upto order ``O(x**n)`` as a polynomial(without ``O`` term). """ terms = [] sym = self.free_symbols for i, t in enumerate(self): xp = self._get_pow_x(t) if xp.has(*sym): xp = xp.as_coeff_add(*sym)[0] if xp >= n: break elif xp.is_integer is True and i == n + 1: break elif t is not S.Zero: terms.append(t) return Add(*terms) def truncate(self, n=6): """ Truncated series. Explanation =========== Returns truncated series expansion of f upto order ``O(x**n)``. If n is ``None``, returns an infinite iterator. """ if n is None: return iter(self) x, x0 = self.x, self.x0 pt_xk = self.xk.coeff(n) if x0 is S.NegativeInfinity: x0 = S.Infinity return self.polynomial(n) + Order(pt_xk, (x, x0)) def zero_coeff(self): return self._eval_term(0) def _eval_term(self, pt): try: pt_xk = self.xk.coeff(pt) pt_ak = self.ak.coeff(pt).simplify() # Simplify the coefficients except IndexError: term = S.Zero else: term = (pt_ak * pt_xk) if self.ind: ind = S.Zero sym = self.free_symbols for t in Add.make_args(self.ind): pow_x = self._get_pow_x(t) if pow_x.has(*sym): pow_x = pow_x.as_coeff_add(*sym)[0] if pt == 0 and pow_x < 1: ind += t elif pow_x >= pt and pow_x < pt + 1: ind += t term += ind return term.collect(self.x) def _eval_subs(self, old, new): x = self.x if old.has(x): return self def _eval_as_leading_term(self, x, cdir=0): for t in self: if t is not S.Zero: return t def _eval_derivative(self, x): f = self.function.diff(x) ind = self.ind.diff(x) pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t * (pow_xk + pow_x) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k + 1), (k, ak.start - 1, ak.stop)) else: ak = sequence((ak.formula * pow_xk).subs(k, k + 1), (k, ak.start - 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def integrate(self, x=None, **kwargs): """ Integrate Formal Power Series. Examples ======== >>> from sympy import fps, sin, integrate >>> from sympy.abc import x >>> f = fps(sin(x)) >>> f.integrate(x).truncate() -1 + x**2/2 - x**4/24 + O(x**6) >>> integrate(f, (x, 0, 1)) 1 - cos(1) """ from sympy.integrals import integrate if x is None: x = self.x elif iterable(x): return integrate(self.function, x) f = integrate(self.function, x) ind = integrate(self.ind, x) ind += (f - ind).limit(x, 0) # constant of integration pow_xk = self._get_pow_x(self.xk.formula) ak = self.ak k = ak.variables[0] if ak.formula.has(x): form = [] for e, c in ak.formula.args: temp = S.Zero for t in Add.make_args(e): pow_x = self._get_pow_x(t) temp += t / (pow_xk + pow_x + 1) form.append((temp, c)) form = Piecewise(*form) ak = sequence(form.subs(k, k - 1), (k, ak.start + 1, ak.stop)) else: ak = sequence((ak.formula / (pow_xk + 1)).subs(k, k - 1), (k, ak.start + 1, ak.stop)) return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def product(self, other, x=None, n=6): """ Multiplies two Formal Power Series, using discrete convolution and return the truncated terms upto specified order. Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(sin(x)) >>> f2 = fps(exp(x)) >>> f1.product(f2, x).truncate(4) x + x**2 + x**3/3 + O(x**4) See Also ======== sympy.discrete.convolutions sympy.series.formal.FormalPowerSeriesProduct """ if x is None: x = self.x if n is None: return iter(self) other = sympify(other) if not isinstance(other, FormalPowerSeries): raise ValueError("Both series should be an instance of FormalPowerSeries" " class.") if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") elif self.x != other.x: raise ValueError("Both series should have the same symbol.") return FormalPowerSeriesProduct(self, other) def coeff_bell(self, n): r""" self.coeff_bell(n) returns a sequence of Bell polynomials of the second kind. Note that ``n`` should be a integer. The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. See Also ======== sympy.functions.combinatorial.numbers.bell """ inner_coeffs = [bell(n, j, tuple(self.bell_coeff_seq[:n-j+1])) for j in range(1, n+1)] k = Dummy('k') return sequence(tuple(inner_coeffs), (k, 1, oo)) def compose(self, other, x=None, n=6): r""" Returns the truncated terms of the formal power series of the composed function, up to specified ``n``. Explanation =========== If ``f`` and ``g`` are two formal power series of two different functions, then the coefficient sequence ``ak`` of the composed formal power series `fp` will be as follows. .. math:: \sum\limits_{k=0}^{n} b_k B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(sin(x)) >>> f1.compose(f2, x).truncate() 1 + x + x**2/2 - x**4/8 - x**5/15 + O(x**6) >>> f1.compose(f2, x).truncate(8) 1 + x + x**2/2 - x**4/8 - x**5/15 - x**6/240 + x**7/90 + O(x**8) See Also ======== sympy.functions.combinatorial.numbers.bell sympy.series.formal.FormalPowerSeriesCompose References ========== .. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974. """ if x is None: x = self.x if n is None: return iter(self) other = sympify(other) if not isinstance(other, FormalPowerSeries): raise ValueError("Both series should be an instance of FormalPowerSeries" " class.") if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") elif self.x != other.x: raise ValueError("Both series should have the same symbol.") if other._eval_term(0).as_coeff_mul(other.x)[0] is not S.Zero: raise ValueError("The formal power series of the inner function should not have any " "constant coefficient term.") return FormalPowerSeriesCompose(self, other) def inverse(self, x=None, n=6): r""" Returns the truncated terms of the inverse of the formal power series, up to specified ``n``. Explanation =========== If ``f`` and ``g`` are two formal power series of two different functions, then the coefficient sequence ``ak`` of the composed formal power series ``fp`` will be as follows. .. math:: \sum\limits_{k=0}^{n} (-1)^{k} x_0^{-k-1} B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) Parameters ========== n : Number, optional Specifies the order of the term up to which the polynomial should be truncated. Examples ======== >>> from sympy import fps, exp, cos >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(cos(x)) >>> f1.inverse(x).truncate() 1 - x + x**2/2 - x**3/6 + x**4/24 - x**5/120 + O(x**6) >>> f2.inverse(x).truncate(8) 1 + x**2/2 + 5*x**4/24 + 61*x**6/720 + O(x**8) See Also ======== sympy.functions.combinatorial.numbers.bell sympy.series.formal.FormalPowerSeriesInverse References ========== .. [1] Comtet, Louis: Advanced combinatorics; the art of finite and infinite expansions. Reidel, 1974. """ if x is None: x = self.x if n is None: return iter(self) if self._eval_term(0).is_zero: raise ValueError("Constant coefficient should exist for an inverse of a formal" " power series to exist.") return FormalPowerSeriesInverse(self) def __add__(self, other): other = sympify(other) if isinstance(other, FormalPowerSeries): if self.dir != other.dir: raise ValueError("Both series should be calculated from the" " same direction.") elif self.x0 != other.x0: raise ValueError("Both series should be calculated about the" " same point.") x, y = self.x, other.x f = self.function + other.function.subs(y, x) if self.x not in f.free_symbols: return f ak = self.ak + other.ak if self.ak.start > other.ak.start: seq = other.ak s, e = other.ak.start, self.ak.start else: seq = self.ak s, e = self.ak.start, other.ak.start save = Add(*[z[0]*z[1] for z in zip(seq[0:(e - s)], self.xk[s:e])]) ind = self.ind + other.ind + save return self.func(f, x, self.x0, self.dir, (ak, self.xk, ind)) elif not other.has(self.x): f = self.function + other ind = self.ind + other return self.func(f, self.x, self.x0, self.dir, (self.ak, self.xk, ind)) return Add(self, other) def __radd__(self, other): return self.__add__(other) def __neg__(self): return self.func(-self.function, self.x, self.x0, self.dir, (-self.ak, self.xk, -self.ind)) def __sub__(self, other): return self.__add__(-other) def __rsub__(self, other): return (-self).__add__(other) def __mul__(self, other): other = sympify(other) if other.has(self.x): return Mul(self, other) f = self.function * other ak = self.ak.coeff_mul(other) ind = self.ind * other return self.func(f, self.x, self.x0, self.dir, (ak, self.xk, ind)) def __rmul__(self, other): return self.__mul__(other) class FiniteFormalPowerSeries(FormalPowerSeries): """Base Class for Product, Compose and Inverse classes""" def __init__(self, *args): pass @property def ffps(self): return self.args[0] @property def gfps(self): return self.args[1] @property def f(self): return self.ffps.function @property def g(self): return self.gfps.function @property def infinite(self): raise NotImplementedError("No infinite version for an object of" " FiniteFormalPowerSeries class.") def _eval_terms(self, n): raise NotImplementedError("(%s)._eval_terms()" % self) def _eval_term(self, pt): raise NotImplementedError("By the current logic, one can get terms" "upto a certain order, instead of getting term by term.") def polynomial(self, n): return self._eval_terms(n) def truncate(self, n=6): ffps = self.ffps pt_xk = ffps.xk.coeff(n) x, x0 = ffps.x, ffps.x0 return self.polynomial(n) + Order(pt_xk, (x, x0)) def _eval_derivative(self, x): raise NotImplementedError def integrate(self, x): raise NotImplementedError class FormalPowerSeriesProduct(FiniteFormalPowerSeries): """Represents the product of two formal power series of two functions. Explanation =========== No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There are two differences between a :obj:`FormalPowerSeries` object and a :obj:`FormalPowerSeriesProduct` object. The first argument contains the two functions involved in the product. Also, the coefficient sequence contains both the coefficient sequence of the formal power series of the involved functions. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ def __init__(self, *args): ffps, gfps = self.ffps, self.gfps k = ffps.ak.variables[0] self.coeff1 = sequence(ffps.ak.formula, (k, 0, oo)) k = gfps.ak.variables[0] self.coeff2 = sequence(gfps.ak.formula, (k, 0, oo)) @property def function(self): """Function of the product of two formal power series.""" return self.f * self.g def _eval_terms(self, n): """ Returns the first ``n`` terms of the product formal power series. Term by term logic is implemented here. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(sin(x)) >>> f2 = fps(exp(x)) >>> fprod = f1.product(f2, x) >>> fprod._eval_terms(4) x**3/3 + x**2 + x See Also ======== sympy.series.formal.FormalPowerSeries.product """ coeff1, coeff2 = self.coeff1, self.coeff2 aks = convolution(coeff1[:n], coeff2[:n]) terms = [] for i in range(0, n): terms.append(aks[i] * self.ffps.xk.coeff(i)) return Add(*terms) class FormalPowerSeriesCompose(FiniteFormalPowerSeries): """ Represents the composed formal power series of two functions. Explanation =========== No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There are two differences between a :obj:`FormalPowerSeries` object and a :obj:`FormalPowerSeriesCompose` object. The first argument contains the outer function and the inner function involved in the omposition. Also, the coefficient sequence contains the generic sequence which is to be multiplied by a custom ``bell_seq`` finite sequence. The finite terms will then be added up to get the final terms. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ @property def function(self): """Function for the composed formal power series.""" f, g, x = self.f, self.g, self.ffps.x return f.subs(x, g) def _eval_terms(self, n): """ Returns the first `n` terms of the composed formal power series. Term by term logic is implemented here. Explanation =========== The coefficient sequence of the :obj:`FormalPowerSeriesCompose` object is the generic sequence. It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get the final terms for the polynomial. Examples ======== >>> from sympy import fps, sin, exp >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(sin(x)) >>> fcomp = f1.compose(f2, x) >>> fcomp._eval_terms(6) -x**5/15 - x**4/8 + x**2/2 + x + 1 >>> fcomp._eval_terms(8) x**7/90 - x**6/240 - x**5/15 - x**4/8 + x**2/2 + x + 1 See Also ======== sympy.series.formal.FormalPowerSeries.compose sympy.series.formal.FormalPowerSeries.coeff_bell """ ffps, gfps = self.ffps, self.gfps terms = [ffps.zero_coeff()] for i in range(1, n): bell_seq = gfps.coeff_bell(i) seq = (ffps.bell_coeff_seq * bell_seq) terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i)) return Add(*terms) class FormalPowerSeriesInverse(FiniteFormalPowerSeries): """ Represents the Inverse of a formal power series. Explanation =========== No computation is performed. Terms are calculated using a term by term logic, instead of a point by point logic. There is a single difference between a :obj:`FormalPowerSeries` object and a :obj:`FormalPowerSeriesInverse` object. The coefficient sequence contains the generic sequence which is to be multiplied by a custom ``bell_seq`` finite sequence. The finite terms will then be added up to get the final terms. See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.FiniteFormalPowerSeries """ def __init__(self, *args): ffps = self.ffps k = ffps.xk.variables[0] inv = ffps.zero_coeff() inv_seq = sequence(inv ** (-(k + 1)), (k, 1, oo)) self.aux_seq = ffps.sign_seq * ffps.fact_seq * inv_seq @property def function(self): """Function for the inverse of a formal power series.""" f = self.f return 1 / f @property def g(self): raise ValueError("Only one function is considered while performing" "inverse of a formal power series.") @property def gfps(self): raise ValueError("Only one function is considered while performing" "inverse of a formal power series.") def _eval_terms(self, n): """ Returns the first ``n`` terms of the composed formal power series. Term by term logic is implemented here. Explanation =========== The coefficient sequence of the `FormalPowerSeriesInverse` object is the generic sequence. It is multiplied by ``bell_seq`` to get a sequence, whose terms are added up to get the final terms for the polynomial. Examples ======== >>> from sympy import fps, exp, cos >>> from sympy.abc import x >>> f1 = fps(exp(x)) >>> f2 = fps(cos(x)) >>> finv1, finv2 = f1.inverse(), f2.inverse() >>> finv1._eval_terms(6) -x**5/120 + x**4/24 - x**3/6 + x**2/2 - x + 1 >>> finv2._eval_terms(8) 61*x**6/720 + 5*x**4/24 + x**2/2 + 1 See Also ======== sympy.series.formal.FormalPowerSeries.inverse sympy.series.formal.FormalPowerSeries.coeff_bell """ ffps = self.ffps terms = [ffps.zero_coeff()] for i in range(1, n): bell_seq = ffps.coeff_bell(i) seq = (self.aux_seq * bell_seq) terms.append(Add(*(seq[:i])) / ffps.fact_seq[i-1] * ffps.xk.coeff(i)) return Add(*terms) def fps(f, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Generates Formal Power Series of ``f``. Explanation =========== Returns the formal series expansion of ``f`` around ``x = x0`` with respect to ``x`` in the form of a ``FormalPowerSeries`` object. Formal Power Series is represented using an explicit formula computed using different algorithms. See :func:`compute_fps` for the more details regarding the computation of formula. Parameters ========== x : Symbol, optional If x is None and ``f`` is univariate, the univariate symbols will be supplied, otherwise an error will be raised. x0 : number, optional Point to perform series expansion about. Default is 0. dir : {1, -1, '+', '-'}, optional If dir is 1 or '+' the series is calculated from the right and for -1 or '-' the series is calculated from the left. For smooth functions this flag will not alter the results. Default is 1. hyper : {True, False}, optional Set hyper to False to skip the hypergeometric algorithm. By default it is set to False. order : int, optional Order of the derivative of ``f``, Default is 4. rational : {True, False}, optional Set rational to False to skip rational algorithm. By default it is set to True. full : {True, False}, optional Set full to True to increase the range of rational algorithm. See :func:`rational_algorithm` for details. By default it is set to False. Examples ======== >>> from sympy import fps, ln, atan, sin >>> from sympy.abc import x, n Rational Functions >>> fps(ln(1 + x)).truncate() x - x**2/2 + x**3/3 - x**4/4 + x**5/5 + O(x**6) >>> fps(atan(x), full=True).truncate() x - x**3/3 + x**5/5 + O(x**6) Symbolic Functions >>> fps(x**n*sin(x**2), x).truncate(8) -x**(n + 6)/6 + x**(n + 2) + O(x**(n + 8)) See Also ======== sympy.series.formal.FormalPowerSeries sympy.series.formal.compute_fps """ f = sympify(f) if x is None: free = f.free_symbols if len(free) == 1: x = free.pop() elif not free: return f else: raise NotImplementedError("multivariate formal power series") result = compute_fps(f, x, x0, dir, hyper, order, rational, full) if result is None: return f return FormalPowerSeries(f, x, x0, dir, result)
8f3f55a076e2616f855cb9fdc65b9f58583ad440f77f9738ca4ecd7fd1403f3c
from collections import defaultdict from sympy.core.function import expand_log, count_ops from sympy.core import sympify, Basic, Dummy, S, Add, Mul, Pow, expand_mul, factor_terms from sympy.core.compatibility import ordered, default_sort_key, reduce from sympy.core.numbers import Integer, Rational from sympy.core.mul import prod, _keep_coeff from sympy.core.rules import Transform from sympy.functions import exp_polar, exp, log, root, polarify, unpolarify from sympy.polys import lcm, gcd from sympy.ntheory.factor_ import multiplicity def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops): """ reduces expression by combining powers with similar bases and exponents. Explanation =========== If ``deep`` is ``True`` then powsimp() will also simplify arguments of functions. By default ``deep`` is set to ``False``. If ``force`` is ``True`` then bases will be combined without checking for assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true if x and y are both negative. You can make powsimp() only combine bases or only combine exponents by changing combine='base' or combine='exp'. By default, combine='all', which does both. combine='base' will only combine:: a a a 2x x x * y => (x*y) as well as things like 2 => 4 and combine='exp' will only combine :: a b (a + b) x * x => x combine='exp' will strictly only combine exponents in the way that used to be automatic. Also use deep=True if you need the old behavior. When combine='all', 'exp' is evaluated first. Consider the first example below for when there could be an ambiguity relating to this. This is done so things like the second example can be completely combined. If you want 'base' combined first, do something like powsimp(powsimp(expr, combine='base'), combine='exp'). Examples ======== >>> from sympy import powsimp, exp, log, symbols >>> from sympy.abc import x, y, z, n >>> powsimp(x**y*x**z*y**z, combine='all') x**(y + z)*y**z >>> powsimp(x**y*x**z*y**z, combine='exp') x**(y + z)*y**z >>> powsimp(x**y*x**z*y**z, combine='base', force=True) x**y*(x*y)**z >>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True) (n*x)**(y + z) >>> powsimp(x**z*x**y*n**z*n**y, combine='exp') n**(y + z)*x**(y + z) >>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True) (n*x)**y*(n*x)**z >>> x, y = symbols('x y', positive=True) >>> powsimp(log(exp(x)*exp(y))) log(exp(x)*exp(y)) >>> powsimp(log(exp(x)*exp(y)), deep=True) x + y Radicals with Mul bases will be combined if combine='exp' >>> from sympy import sqrt >>> x, y = symbols('x y') Two radicals are automatically joined through Mul: >>> a=sqrt(x*sqrt(y)) >>> a*a**3 == a**4 True But if an integer power of that radical has been autoexpanded then Mul does not join the resulting factors: >>> a**4 # auto expands to a Mul, no longer a Pow x**2*y >>> _*a # so Mul doesn't combine them x**2*y*sqrt(x*sqrt(y)) >>> powsimp(_) # but powsimp will (x*sqrt(y))**(5/2) >>> powsimp(x*y*a) # but won't when doing so would violate assumptions x*y*sqrt(x*sqrt(y)) """ from sympy.matrices.expressions.matexpr import MatrixSymbol def recurse(arg, **kwargs): _deep = kwargs.get('deep', deep) _combine = kwargs.get('combine', combine) _force = kwargs.get('force', force) _measure = kwargs.get('measure', measure) return powsimp(arg, _deep, _combine, _force, _measure) expr = sympify(expr) if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or ( expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))): return expr if deep or expr.is_Add or expr.is_Mul and _y not in expr.args: expr = expr.func(*[recurse(w) for w in expr.args]) if expr.is_Pow: return recurse(expr*_y, deep=False)/_y if not expr.is_Mul: return expr # handle the Mul if combine in ('exp', 'all'): # Collect base/exp data, while maintaining order in the # non-commutative parts of the product c_powers = defaultdict(list) nc_part = [] newexpr = [] coeff = S.One for term in expr.args: if term.is_Rational: coeff *= term continue if term.is_Pow: term = _denest_pow(term) if term.is_commutative: b, e = term.as_base_exp() if deep: b, e = [recurse(i) for i in [b, e]] if b.is_Pow or isinstance(b, exp): # don't let smthg like sqrt(x**a) split into x**a, 1/2 # or else it will be joined as x**(a/2) later b, e = b**e, S.One c_powers[b].append(e) else: # This is the logic that combines exponents for equal, # but non-commutative bases: A**x*A**y == A**(x+y). if nc_part: b1, e1 = nc_part[-1].as_base_exp() b2, e2 = term.as_base_exp() if (b1 == b2 and e1.is_commutative and e2.is_commutative): nc_part[-1] = Pow(b1, Add(e1, e2)) continue nc_part.append(term) # add up exponents of common bases for b, e in ordered(iter(c_powers.items())): # allow 2**x/4 -> 2**(x - 2); don't do this when b and e are # Numbers since autoevaluation will undo it, e.g. # 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4 if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \ coeff is not S.One and b not in (S.One, S.NegativeOne)): m = multiplicity(abs(b), abs(coeff)) if m: e.append(m) coeff /= b**m c_powers[b] = Add(*e) if coeff is not S.One: if coeff in c_powers: c_powers[coeff] += S.One else: c_powers[coeff] = S.One # convert to plain dictionary c_powers = dict(c_powers) # check for base and inverted base pairs be = list(c_powers.items()) skip = set() # skip if we already saw them for b, e in be: if b in skip: continue bpos = b.is_positive or b.is_polar if bpos: binv = 1/b if b != binv and binv in c_powers: if b.as_numer_denom()[0] is S.One: c_powers.pop(b) c_powers[binv] -= e else: skip.add(binv) e = c_powers.pop(binv) c_powers[b] -= e # check for base and negated base pairs be = list(c_powers.items()) _n = S.NegativeOne for b, e in be: if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers: if (b.is_positive is not None or e.is_integer): if e.is_integer or b.is_negative: c_powers[-b] += c_powers.pop(b) else: # (-b).is_positive so use its e e = c_powers.pop(-b) c_powers[b] += e if _n in c_powers: c_powers[_n] += e else: c_powers[_n] = e # filter c_powers and convert to a list c_powers = [(b, e) for b, e in c_powers.items() if e] # ============================================================== # check for Mul bases of Rational powers that can be combined with # separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) -> # (x*sqrt(x*y))**(3/2) # ---------------- helper functions def ratq(x): '''Return Rational part of x's exponent as it appears in the bkey. ''' return bkey(x)[0][1] def bkey(b, e=None): '''Return (b**s, c.q), c.p where e -> c*s. If e is not given then it will be taken by using as_base_exp() on the input b. e.g. x**3/2 -> (x, 2), 3 x**y -> (x**y, 1), 1 x**(2*y/3) -> (x**y, 3), 2 exp(x/2) -> (exp(a), 2), 1 ''' if e is not None: # coming from c_powers or from below if e.is_Integer: return (b, S.One), e elif e.is_Rational: return (b, Integer(e.q)), Integer(e.p) else: c, m = e.as_coeff_Mul(rational=True) if c is not S.One: if m.is_integer: return (b, Integer(c.q)), m*Integer(c.p) return (b**m, Integer(c.q)), Integer(c.p) else: return (b**e, S.One), S.One else: return bkey(*b.as_base_exp()) def update(b): '''Decide what to do with base, b. If its exponent is now an integer multiple of the Rational denominator, then remove it and put the factors of its base in the common_b dictionary or update the existing bases if necessary. If it has been zeroed out, simply remove the base. ''' newe, r = divmod(common_b[b], b[1]) if not r: common_b.pop(b) if newe: for m in Mul.make_args(b[0]**newe): b, e = bkey(m) if b not in common_b: common_b[b] = 0 common_b[b] += e if b[1] != 1: bases.append(b) # ---------------- end of helper functions # assemble a dictionary of the factors having a Rational power common_b = {} done = [] bases = [] for b, e in c_powers: b, e = bkey(b, e) if b in common_b: common_b[b] = common_b[b] + e else: common_b[b] = e if b[1] != 1 and b[0].is_Mul: bases.append(b) bases.sort(key=default_sort_key) # this makes tie-breaking canonical bases.sort(key=measure, reverse=True) # handle longest first for base in bases: if base not in common_b: # it may have been removed already continue b, exponent = base last = False # True when no factor of base is a radical qlcm = 1 # the lcm of the radical denominators while True: bstart = b qstart = qlcm bb = [] # list of factors ee = [] # (factor's expo. and it's current value in common_b) for bi in Mul.make_args(b): bib, bie = bkey(bi) if bib not in common_b or common_b[bib] < bie: ee = bb = [] # failed break ee.append([bie, common_b[bib]]) bb.append(bib) if ee: # find the number of integral extractions possible # e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1 min1 = ee[0][1]//ee[0][0] for i in range(1, len(ee)): rat = ee[i][1]//ee[i][0] if rat < 1: break min1 = min(min1, rat) else: # update base factor counts # e.g. if ee = [(2, 5), (3, 6)] then min1 = 2 # and the new base counts will be 5-2*2 and 6-2*3 for i in range(len(bb)): common_b[bb[i]] -= min1*ee[i][0] update(bb[i]) # update the count of the base # e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y) # will increase by 4 to give bkey (x*sqrt(y), 2, 5) common_b[base] += min1*qstart*exponent if (last # no more radicals in base or len(common_b) == 1 # nothing left to join with or all(k[1] == 1 for k in common_b) # no rad's in common_b ): break # see what we can exponentiate base by to remove any radicals # so we know what to search for # e.g. if base were x**(1/2)*y**(1/3) then we should # exponentiate by 6 and look for powers of x and y in the ratio # of 2 to 3 qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)]) if qlcm == 1: break # we are done b = bstart**qlcm qlcm *= qstart if all(ratq(bi) == 1 for bi in Mul.make_args(b)): last = True # we are going to be done after this next pass # this base no longer can find anything to join with and # since it was longer than any other we are done with it b, q = base done.append((b, common_b.pop(base)*Rational(1, q))) # update c_powers and get ready to continue with powsimp c_powers = done # there may be terms still in common_b that were bases that were # identified as needing processing, so remove those, too for (b, q), e in common_b.items(): if (b.is_Pow or isinstance(b, exp)) and \ q is not S.One and not b.exp.is_Rational: b, be = b.as_base_exp() b = b**(be/q) else: b = root(b, q) c_powers.append((b, e)) check = len(c_powers) c_powers = dict(c_powers) assert len(c_powers) == check # there should have been no duplicates # ============================================================== # rebuild the expression newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()])) if combine == 'exp': return expr.func(newexpr, expr.func(*nc_part)) else: return recurse(expr.func(*nc_part), combine='base') * \ recurse(newexpr, combine='base') elif combine == 'base': # Build c_powers and nc_part. These must both be lists not # dicts because exp's are not combined. c_powers = [] nc_part = [] for term in expr.args: if term.is_commutative: c_powers.append(list(term.as_base_exp())) else: nc_part.append(term) # Pull out numerical coefficients from exponent if assumptions allow # e.g., 2**(2*x) => 4**x for i in range(len(c_powers)): b, e = c_powers[i] if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar): continue exp_c, exp_t = e.as_coeff_Mul(rational=True) if exp_c is not S.One and exp_t is not S.One: c_powers[i] = [Pow(b, exp_c), exp_t] # Combine bases whenever they have the same exponent and # assumptions allow # first gather the potential bases under the common exponent c_exp = defaultdict(list) for b, e in c_powers: if deep: e = recurse(e) c_exp[e].append(b) del c_powers # Merge back in the results of the above to form a new product c_powers = defaultdict(list) for e in c_exp: bases = c_exp[e] # calculate the new base for e if len(bases) == 1: new_base = bases[0] elif e.is_integer or force: new_base = expr.func(*bases) else: # see which ones can be joined unk = [] nonneg = [] neg = [] for bi in bases: if bi.is_negative: neg.append(bi) elif bi.is_nonnegative: nonneg.append(bi) elif bi.is_polar: nonneg.append( bi) # polar can be treated like non-negative else: unk.append(bi) if len(unk) == 1 and not neg or len(neg) == 1 and not unk: # a single neg or a single unk can join the rest nonneg.extend(unk + neg) unk = neg = [] elif neg: # their negative signs cancel in groups of 2*q if we know # that e = p/q else we have to treat them as unknown israt = False if e.is_Rational: israt = True else: p, d = e.as_numer_denom() if p.is_integer and d.is_integer: israt = True if israt: neg = [-w for w in neg] unk.extend([S.NegativeOne]*len(neg)) else: unk.extend(neg) neg = [] del israt # these shouldn't be joined for b in unk: c_powers[b].append(e) # here is a new joined base new_base = expr.func(*(nonneg + neg)) # if there are positive parts they will just get separated # again unless some change is made def _terms(e): # return the number of terms of this expression # when multiplied out -- assuming no joining of terms if e.is_Add: return sum([_terms(ai) for ai in e.args]) if e.is_Mul: return prod([_terms(mi) for mi in e.args]) return 1 xnew_base = expand_mul(new_base, deep=False) if len(Add.make_args(xnew_base)) < _terms(new_base): new_base = factor_terms(xnew_base) c_powers[new_base].append(e) # break out the powers from c_powers now c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e] # we're done return expr.func(*(c_part + nc_part)) else: raise ValueError("combine must be one of ('all', 'exp', 'base').") def powdenest(eq, force=False, polar=False): r""" Collect exponents on powers as assumptions allow. Explanation =========== Given ``(bb**be)**e``, this can be simplified as follows: * if ``bb`` is positive, or * ``e`` is an integer, or * ``|be| < 1`` then this simplifies to ``bb**(be*e)`` Given a product of powers raised to a power, ``(bb1**be1 * bb2**be2...)**e``, simplification can be done as follows: - if e is positive, the gcd of all bei can be joined with e; - all non-negative bb can be separated from those that are negative and their gcd can be joined with e; autosimplification already handles this separation. - integer factors from powers that have integers in the denominator of the exponent can be removed from any term and the gcd of such integers can be joined with e Setting ``force`` to ``True`` will make symbols that are not explicitly negative behave as though they are positive, resulting in more denesting. Setting ``polar`` to ``True`` will do simplifications on the Riemann surface of the logarithm, also resulting in more denestings. When there are sums of logs in exp() then a product of powers may be obtained e.g. ``exp(3*(log(a) + 2*log(b)))`` - > ``a**3*b**6``. Examples ======== >>> from sympy.abc import a, b, x, y, z >>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest >>> powdenest((x**(2*a/3))**(3*x)) (x**(2*a/3))**(3*x) >>> powdenest(exp(3*x*log(2))) 2**(3*x) Assumptions may prevent expansion: >>> powdenest(sqrt(x**2)) sqrt(x**2) >>> p = symbols('p', positive=True) >>> powdenest(sqrt(p**2)) p No other expansion is done. >>> i, j = symbols('i,j', integer=True) >>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j x**(x*(i + j)) But exp() will be denested by moving all non-log terms outside of the function; this may result in the collapsing of the exp to a power with a different base: >>> powdenest(exp(3*y*log(x))) x**(3*y) >>> powdenest(exp(y*(log(a) + log(b)))) (a*b)**y >>> powdenest(exp(3*(log(a) + log(b)))) a**3*b**3 If assumptions allow, symbols can also be moved to the outermost exponent: >>> i = Symbol('i', integer=True) >>> powdenest(((x**(2*i))**(3*y))**x) ((x**(2*i))**(3*y))**x >>> powdenest(((x**(2*i))**(3*y))**x, force=True) x**(6*i*x*y) >>> powdenest(((x**(2*a/3))**(3*y/i))**x) ((x**(2*a/3))**(3*y/i))**x >>> powdenest((x**(2*i)*y**(4*i))**z, force=True) (x*y**2)**(2*i*z) >>> n = Symbol('n', negative=True) >>> powdenest((x**i)**y, force=True) x**(i*y) >>> powdenest((n**i)**x, force=True) (n**i)**x """ from sympy.simplify.simplify import posify if force: def _denest(b, e): if not isinstance(b, (Pow, exp)): return b.is_positive, Pow(b, e, evaluate=False) return _denest(b.base, b.exp*e) reps = [] for p in eq.atoms(Pow, exp): if isinstance(p.base, (Pow, exp)): ok, dp = _denest(*p.args) if ok is not False: reps.append((p, dp)) if reps: eq = eq.subs(reps) eq, reps = posify(eq) return powdenest(eq, force=False, polar=polar).xreplace(reps) if polar: eq, rep = polarify(eq) return unpolarify(powdenest(unpolarify(eq, exponents_only=True)), rep) new = powsimp(sympify(eq)) return new.xreplace(Transform( _denest_pow, filter=lambda m: m.is_Pow or isinstance(m, exp))) _y = Dummy('y') def _denest_pow(eq): """ Denest powers. This is a helper function for powdenest that performs the actual transformation. """ from sympy.simplify.simplify import logcombine b, e = eq.as_base_exp() if b.is_Pow or isinstance(b.func, exp) and e != 1: new = b._eval_power(e) if new is not None: eq = new b, e = new.as_base_exp() # denest exp with log terms in exponent if b is S.Exp1 and e.is_Mul: logs = [] other = [] for ei in e.args: if any(isinstance(ai, log) for ai in Add.make_args(ei)): logs.append(ei) else: other.append(ei) logs = logcombine(Mul(*logs)) return Pow(exp(logs), Mul(*other)) _, be = b.as_base_exp() if be is S.One and not (b.is_Mul or b.is_Rational and b.q != 1 or b.is_positive): return eq # denest eq which is either pos**e or Pow**e or Mul**e or # Mul(b1**e1, b2**e2) # handle polar numbers specially polars, nonpolars = [], [] for bb in Mul.make_args(b): if bb.is_polar: polars.append(bb.as_base_exp()) else: nonpolars.append(bb) if len(polars) == 1 and not polars[0][0].is_Mul: return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e) elif polars: return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \ *powdenest(Mul(*nonpolars)**e) if b.is_Integer: # use log to see if there is a power here logb = expand_log(log(b)) if logb.is_Mul: c, logb = logb.args e *= c base = logb.args[0] return Pow(base, e) # if b is not a Mul or any factor is an atom then there is nothing to do if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)): return eq # let log handle the case of the base of the argument being a Mul, e.g. # sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we # will take the log, expand it, and then factor out the common powers that # now appear as coefficient. We do this manually since terms_gcd pulls out # fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2; # gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but # we want 3*x. Neither work with noncommutatives. def nc_gcd(aa, bb): a, b = [i.as_coeff_Mul() for i in [aa, bb]] c = gcd(a[0], b[0]).as_numer_denom()[0] g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0])) return _keep_coeff(c, g) glogb = expand_log(log(b)) if glogb.is_Add: args = glogb.args g = reduce(nc_gcd, args) if g != 1: cg, rg = g.as_coeff_Mul() glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args])) # now put the log back together again if isinstance(glogb, log) or not glogb.is_Mul: if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp): glogb = _denest_pow(glogb.args[0]) if (abs(glogb.exp) < 1) == True: return Pow(glogb.base, glogb.exp*e) return eq # the log(b) was a Mul so join any adds with logcombine add = [] other = [] for a in glogb.args: if a.is_Add: add.append(a) else: other.append(a) return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))
96ccf843472ce6dc77951ce27639bdb82b41e369a7f231c6e69d8a09cbf8aac7
""" Tools for doing common subexpression elimination. """ from sympy.core import Basic, Mul, Add, Pow, sympify, Symbol from sympy.core.compatibility import iterable from sympy.core.containers import Tuple, OrderedSet from sympy.core.exprtools import factor_terms from sympy.core.function import _coeff_isneg from sympy.core.singleton import S from sympy.utilities.iterables import numbered_symbols, sift, \ topological_sort, ordered from . import cse_opts # (preprocessor, postprocessor) pairs which are commonly useful. They should # each take a sympy expression and return a possibly transformed expression. # When used in the function ``cse()``, the target expressions will be transformed # by each of the preprocessor functions in order. After the common # subexpressions are eliminated, each resulting expression will have the # postprocessor functions transform them in *reverse* order in order to undo the # transformation if necessary. This allows the algorithm to operate on # a representation of the expressions that allows for more optimization # opportunities. # ``None`` can be used to specify no transformation for either the preprocessor or # postprocessor. basic_optimizations = [(cse_opts.sub_pre, cse_opts.sub_post), (factor_terms, None)] # sometimes we want the output in a different format; non-trivial # transformations can be put here for users # =============================================================== def reps_toposort(r): """Sort replacements ``r`` so (k1, v1) appears before (k2, v2) if k2 is in v1's free symbols. This orders items in the way that cse returns its results (hence, in order to use the replacements in a substitution option it would make sense to reverse the order). Examples ======== >>> from sympy.simplify.cse_main import reps_toposort >>> from sympy.abc import x, y >>> from sympy import Eq >>> for l, r in reps_toposort([(x, y + 1), (y, 2)]): ... print(Eq(l, r)) ... Eq(y, 2) Eq(x, y + 1) """ r = sympify(r) E = [] for c1, (k1, v1) in enumerate(r): for c2, (k2, v2) in enumerate(r): if k1 in v2.free_symbols: E.append((c1, c2)) return [r[i] for i in topological_sort((range(len(r)), E))] def cse_separate(r, e): """Move expressions that are in the form (symbol, expr) out of the expressions and sort them into the replacements using the reps_toposort. Examples ======== >>> from sympy.simplify.cse_main import cse_separate >>> from sympy.abc import x, y, z >>> from sympy import cos, exp, cse, Eq, symbols >>> x0, x1 = symbols('x:2') >>> eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1)) >>> cse([eq, Eq(x, z + 1), z - 2], postprocess=cse_separate) in [ ... [[(x0, y + 1), (x, z + 1), (x1, x + 1)], ... [x1 + exp(x1/x0) + cos(x0), z - 2]], ... [[(x1, y + 1), (x, z + 1), (x0, x + 1)], ... [x0 + exp(x0/x1) + cos(x1), z - 2]]] ... True """ d = sift(e, lambda w: w.is_Equality and w.lhs.is_Symbol) r = r + [w.args for w in d[True]] e = d[False] return [reps_toposort(r), e] # ====end of cse postprocess idioms=========================== def preprocess_for_cse(expr, optimizations): """ Preprocess an expression to optimize for common subexpression elimination. Parameters ========== expr : sympy expression The target expression to optimize. optimizations : list of (callable, callable) pairs The (preprocessor, postprocessor) pairs. Returns ======= expr : sympy expression The transformed expression. """ for pre, post in optimizations: if pre is not None: expr = pre(expr) return expr def postprocess_for_cse(expr, optimizations): """ Postprocess an expression after common subexpression elimination to return the expression to canonical sympy form. Parameters ========== expr : sympy expression The target expression to transform. optimizations : list of (callable, callable) pairs, optional The (preprocessor, postprocessor) pairs. The postprocessors will be applied in reversed order to undo the effects of the preprocessors correctly. Returns ======= expr : sympy expression The transformed expression. """ for pre, post in reversed(optimizations): if post is not None: expr = post(expr) return expr class FuncArgTracker: """ A class which manages a mapping from functions to arguments and an inverse mapping from arguments to functions. """ def __init__(self, funcs): # To minimize the number of symbolic comparisons, all function arguments # get assigned a value number. self.value_numbers = {} self.value_number_to_value = [] # Both of these maps use integer indices for arguments / functions. self.arg_to_funcset = [] self.func_to_argset = [] for func_i, func in enumerate(funcs): func_argset = OrderedSet() for func_arg in func.args: arg_number = self.get_or_add_value_number(func_arg) func_argset.add(arg_number) self.arg_to_funcset[arg_number].add(func_i) self.func_to_argset.append(func_argset) def get_args_in_value_order(self, argset): """ Return the list of arguments in sorted order according to their value numbers. """ return [self.value_number_to_value[argn] for argn in sorted(argset)] def get_or_add_value_number(self, value): """ Return the value number for the given argument. """ nvalues = len(self.value_numbers) value_number = self.value_numbers.setdefault(value, nvalues) if value_number == nvalues: self.value_number_to_value.append(value) self.arg_to_funcset.append(OrderedSet()) return value_number def stop_arg_tracking(self, func_i): """ Remove the function func_i from the argument to function mapping. """ for arg in self.func_to_argset[func_i]: self.arg_to_funcset[arg].remove(func_i) def get_common_arg_candidates(self, argset, min_func_i=0): """Return a dict whose keys are function numbers. The entries of the dict are the number of arguments said function has in common with ``argset``. Entries have at least 2 items in common. All keys have value at least ``min_func_i``. """ from collections import defaultdict count_map = defaultdict(lambda: 0) if not argset: return count_map funcsets = [self.arg_to_funcset[arg] for arg in argset] # As an optimization below, we handle the largest funcset separately from # the others. largest_funcset = max(funcsets, key=len) for funcset in funcsets: if largest_funcset is funcset: continue for func_i in funcset: if func_i >= min_func_i: count_map[func_i] += 1 # We pick the smaller of the two containers (count_map, largest_funcset) # to iterate over to reduce the number of iterations needed. (smaller_funcs_container, larger_funcs_container) = sorted( [largest_funcset, count_map], key=len) for func_i in smaller_funcs_container: # Not already in count_map? It can't possibly be in the output, so # skip it. if count_map[func_i] < 1: continue if func_i in larger_funcs_container: count_map[func_i] += 1 return {k: v for k, v in count_map.items() if v >= 2} def get_subset_candidates(self, argset, restrict_to_funcset=None): """ Return a set of functions each of which whose argument list contains ``argset``, optionally filtered only to contain functions in ``restrict_to_funcset``. """ iarg = iter(argset) indices = OrderedSet( fi for fi in self.arg_to_funcset[next(iarg)]) if restrict_to_funcset is not None: indices &= restrict_to_funcset for arg in iarg: indices &= self.arg_to_funcset[arg] return indices def update_func_argset(self, func_i, new_argset): """ Update a function with a new set of arguments. """ new_args = OrderedSet(new_argset) old_args = self.func_to_argset[func_i] for deleted_arg in old_args - new_args: self.arg_to_funcset[deleted_arg].remove(func_i) for added_arg in new_args - old_args: self.arg_to_funcset[added_arg].add(func_i) self.func_to_argset[func_i].clear() self.func_to_argset[func_i].update(new_args) class Unevaluated: def __init__(self, func, args): self.func = func self.args = args def __str__(self): return "Uneval<{}>({})".format( self.func, ", ".join(str(a) for a in self.args)) def as_unevaluated_basic(self): return self.func(*self.args, evaluate=False) @property def free_symbols(self): return set().union(*[a.free_symbols for a in self.args]) __repr__ = __str__ def match_common_args(func_class, funcs, opt_subs): """ Recognize and extract common subexpressions of function arguments within a set of function calls. For instance, for the following function calls:: x + z + y sin(x + y) this will extract a common subexpression of `x + y`:: w = x + y w + z sin(w) The function we work with is assumed to be associative and commutative. Parameters ========== func_class: class The function class (e.g. Add, Mul) funcs: list of functions A list of function calls. opt_subs: dict A dictionary of substitutions which this function may update. """ # Sort to ensure that whole-function subexpressions come before the items # that use them. funcs = sorted(funcs, key=lambda f: len(f.args)) arg_tracker = FuncArgTracker(funcs) changed = OrderedSet() for i in range(len(funcs)): common_arg_candidates_counts = arg_tracker.get_common_arg_candidates( arg_tracker.func_to_argset[i], min_func_i=i + 1) # Sort the candidates in order of match size. # This makes us try combining smaller matches first. common_arg_candidates = OrderedSet(sorted( common_arg_candidates_counts.keys(), key=lambda k: (common_arg_candidates_counts[k], k))) while common_arg_candidates: j = common_arg_candidates.pop(last=False) com_args = arg_tracker.func_to_argset[i].intersection( arg_tracker.func_to_argset[j]) if len(com_args) <= 1: # This may happen if a set of common arguments was already # combined in a previous iteration. continue # For all sets, replace the common symbols by the function # over them, to allow recursive matches. diff_i = arg_tracker.func_to_argset[i].difference(com_args) if diff_i: # com_func needs to be unevaluated to allow for recursive matches. com_func = Unevaluated( func_class, arg_tracker.get_args_in_value_order(com_args)) com_func_number = arg_tracker.get_or_add_value_number(com_func) arg_tracker.update_func_argset(i, diff_i | OrderedSet([com_func_number])) changed.add(i) else: # Treat the whole expression as a CSE. # # The reason this needs to be done is somewhat subtle. Within # tree_cse(), to_eliminate only contains expressions that are # seen more than once. The problem is unevaluated expressions # do not compare equal to the evaluated equivalent. So # tree_cse() won't mark funcs[i] as a CSE if we use an # unevaluated version. com_func_number = arg_tracker.get_or_add_value_number(funcs[i]) diff_j = arg_tracker.func_to_argset[j].difference(com_args) arg_tracker.update_func_argset(j, diff_j | OrderedSet([com_func_number])) changed.add(j) for k in arg_tracker.get_subset_candidates( com_args, common_arg_candidates): diff_k = arg_tracker.func_to_argset[k].difference(com_args) arg_tracker.update_func_argset(k, diff_k | OrderedSet([com_func_number])) changed.add(k) if i in changed: opt_subs[funcs[i]] = Unevaluated(func_class, arg_tracker.get_args_in_value_order(arg_tracker.func_to_argset[i])) arg_tracker.stop_arg_tracking(i) def opt_cse(exprs, order='canonical'): """Find optimization opportunities in Adds, Muls, Pows and negative coefficient Muls. Parameters ========== exprs : list of sympy expressions The expressions to optimize. order : string, 'none' or 'canonical' The order by which Mul and Add arguments are processed. For large expressions where speed is a concern, use the setting order='none'. Returns ======= opt_subs : dictionary of expression substitutions The expression substitutions which can be useful to optimize CSE. Examples ======== >>> from sympy.simplify.cse_main import opt_cse >>> from sympy.abc import x >>> opt_subs = opt_cse([x**-2]) >>> k, v = list(opt_subs.keys())[0], list(opt_subs.values())[0] >>> print((k, v.as_unevaluated_basic())) (x**(-2), 1/(x**2)) """ from sympy.matrices.expressions import MatAdd, MatMul, MatPow opt_subs = dict() adds = OrderedSet() muls = OrderedSet() seen_subexp = set() def _find_opts(expr): if not isinstance(expr, (Basic, Unevaluated)): return if expr.is_Atom or expr.is_Order: return if iterable(expr): list(map(_find_opts, expr)) return if expr in seen_subexp: return expr seen_subexp.add(expr) list(map(_find_opts, expr.args)) if _coeff_isneg(expr): neg_expr = -expr if not neg_expr.is_Atom: opt_subs[expr] = Unevaluated(Mul, (S.NegativeOne, neg_expr)) seen_subexp.add(neg_expr) expr = neg_expr if isinstance(expr, (Mul, MatMul)): muls.add(expr) elif isinstance(expr, (Add, MatAdd)): adds.add(expr) elif isinstance(expr, (Pow, MatPow)): base, exp = expr.base, expr.exp if _coeff_isneg(exp): opt_subs[expr] = Unevaluated(Pow, (Pow(base, -exp), -1)) for e in exprs: if isinstance(e, (Basic, Unevaluated)): _find_opts(e) # split muls into commutative commutative_muls = OrderedSet() for m in muls: c, nc = m.args_cnc(cset=False) if c: c_mul = m.func(*c) if nc: if c_mul == 1: new_obj = m.func(*nc) else: new_obj = m.func(c_mul, m.func(*nc), evaluate=False) opt_subs[m] = new_obj if len(c) > 1: commutative_muls.add(c_mul) match_common_args(Add, adds, opt_subs) match_common_args(Mul, commutative_muls, opt_subs) return opt_subs def tree_cse(exprs, symbols, opt_subs=None, order='canonical', ignore=()): """Perform raw CSE on expression tree, taking opt_subs into account. Parameters ========== exprs : list of sympy expressions The expressions to reduce. symbols : infinite iterator yielding unique Symbols The symbols used to label the common subexpressions which are pulled out. opt_subs : dictionary of expression substitutions The expressions to be substituted before any CSE action is performed. order : string, 'none' or 'canonical' The order by which Mul and Add arguments are processed. For large expressions where speed is a concern, use the setting order='none'. ignore : iterable of Symbols Substitutions containing any Symbol from ``ignore`` will be ignored. """ from sympy.matrices.expressions import MatrixExpr, MatrixSymbol, MatMul, MatAdd from sympy.polys.rootoftools import RootOf if opt_subs is None: opt_subs = dict() ## Find repeated sub-expressions to_eliminate = set() seen_subexp = set() excluded_symbols = set() def _find_repeated(expr): if not isinstance(expr, (Basic, Unevaluated)): return if isinstance(expr, RootOf): return if isinstance(expr, Basic) and (expr.is_Atom or expr.is_Order): if expr.is_Symbol: excluded_symbols.add(expr) return if iterable(expr): args = expr else: if expr in seen_subexp: for ign in ignore: if ign in expr.free_symbols: break else: to_eliminate.add(expr) return seen_subexp.add(expr) if expr in opt_subs: expr = opt_subs[expr] args = expr.args list(map(_find_repeated, args)) for e in exprs: if isinstance(e, Basic): _find_repeated(e) ## Rebuild tree # Remove symbols from the generator that conflict with names in the expressions. symbols = (symbol for symbol in symbols if symbol not in excluded_symbols) replacements = [] subs = dict() def _rebuild(expr): if not isinstance(expr, (Basic, Unevaluated)): return expr if not expr.args: return expr if iterable(expr): new_args = [_rebuild(arg) for arg in expr] return expr.func(*new_args) if expr in subs: return subs[expr] orig_expr = expr if expr in opt_subs: expr = opt_subs[expr] # If enabled, parse Muls and Adds arguments by order to ensure # replacement order independent from hashes if order != 'none': if isinstance(expr, (Mul, MatMul)): c, nc = expr.args_cnc() if c == [1]: args = nc else: args = list(ordered(c)) + nc elif isinstance(expr, (Add, MatAdd)): args = list(ordered(expr.args)) else: args = expr.args else: args = expr.args new_args = list(map(_rebuild, args)) if isinstance(expr, Unevaluated) or new_args != args: new_expr = expr.func(*new_args) else: new_expr = expr if orig_expr in to_eliminate: try: sym = next(symbols) except StopIteration: raise ValueError("Symbols iterator ran out of symbols.") if isinstance(orig_expr, MatrixExpr): sym = MatrixSymbol(sym.name, orig_expr.rows, orig_expr.cols) subs[orig_expr] = sym replacements.append((sym, new_expr)) return sym else: return new_expr reduced_exprs = [] for e in exprs: if isinstance(e, Basic): reduced_e = _rebuild(e) else: reduced_e = e reduced_exprs.append(reduced_e) return replacements, reduced_exprs def cse(exprs, symbols=None, optimizations=None, postprocess=None, order='canonical', ignore=()): """ Perform common subexpression elimination on an expression. Parameters ========== exprs : list of sympy expressions, or a single sympy expression The expressions to reduce. symbols : infinite iterator yielding unique Symbols The symbols used to label the common subexpressions which are pulled out. The ``numbered_symbols`` generator is useful. The default is a stream of symbols of the form "x0", "x1", etc. This must be an infinite iterator. optimizations : list of (callable, callable) pairs The (preprocessor, postprocessor) pairs of external optimization functions. Optionally 'basic' can be passed for a set of predefined basic optimizations. Such 'basic' optimizations were used by default in old implementation, however they can be really slow on larger expressions. Now, no pre or post optimizations are made by default. postprocess : a function which accepts the two return values of cse and returns the desired form of output from cse, e.g. if you want the replacements reversed the function might be the following lambda: lambda r, e: return reversed(r), e order : string, 'none' or 'canonical' The order by which Mul and Add arguments are processed. If set to 'canonical', arguments will be canonically ordered. If set to 'none', ordering will be faster but dependent on expressions hashes, thus machine dependent and variable. For large expressions where speed is a concern, use the setting order='none'. ignore : iterable of Symbols Substitutions containing any Symbol from ``ignore`` will be ignored. Returns ======= replacements : list of (Symbol, expression) pairs All of the common subexpressions that were replaced. Subexpressions earlier in this list might show up in subexpressions later in this list. reduced_exprs : list of sympy expressions The reduced expressions with all of the replacements above. Examples ======== >>> from sympy import cse, SparseMatrix >>> from sympy.abc import x, y, z, w >>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3) ([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3]) Note that currently, y + z will not get substituted if -y - z is used. >>> cse(((w + x + y + z)*(w - y - z))/(w + x)**3) ([(x0, w + x)], [(w - y - z)*(x0 + y + z)/x0**3]) List of expressions with recursive substitutions: >>> m = SparseMatrix([x + y, x + y + z]) >>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m]) ([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([ [x0], [x1]])]) Note: the type and mutability of input matrices is retained. >>> isinstance(_[1][-1], SparseMatrix) True The user may disallow substitutions containing certain symbols: >>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,)) ([(x0, x + 1)], [x0*y**2, 3*x0*y**2]) """ from sympy.matrices import (MatrixBase, Matrix, ImmutableMatrix, SparseMatrix, ImmutableSparseMatrix) if isinstance(exprs, (int, float)): exprs = sympify(exprs) # Handle the case if just one expression was passed. if isinstance(exprs, (Basic, MatrixBase)): exprs = [exprs] copy = exprs temp = [] for e in exprs: if isinstance(e, (Matrix, ImmutableMatrix)): temp.append(Tuple(*e._mat)) elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)): temp.append(Tuple(*e._smat.items())) else: temp.append(e) exprs = temp del temp if optimizations is None: optimizations = list() elif optimizations == 'basic': optimizations = basic_optimizations # Preprocess the expressions to give us better optimization opportunities. reduced_exprs = [preprocess_for_cse(e, optimizations) for e in exprs] if symbols is None: symbols = numbered_symbols(cls=Symbol) else: # In case we get passed an iterable with an __iter__ method instead of # an actual iterator. symbols = iter(symbols) # Find other optimization opportunities. opt_subs = opt_cse(reduced_exprs, order) # Main CSE algorithm. replacements, reduced_exprs = tree_cse(reduced_exprs, symbols, opt_subs, order, ignore) # Postprocess the expressions to return the expressions to canonical form. exprs = copy for i, (sym, subtree) in enumerate(replacements): subtree = postprocess_for_cse(subtree, optimizations) replacements[i] = (sym, subtree) reduced_exprs = [postprocess_for_cse(e, optimizations) for e in reduced_exprs] # Get the matrices back for i, e in enumerate(exprs): if isinstance(e, (Matrix, ImmutableMatrix)): reduced_exprs[i] = Matrix(e.rows, e.cols, reduced_exprs[i]) if isinstance(e, ImmutableMatrix): reduced_exprs[i] = reduced_exprs[i].as_immutable() elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)): m = SparseMatrix(e.rows, e.cols, {}) for k, v in reduced_exprs[i]: m[k] = v if isinstance(e, ImmutableSparseMatrix): m = m.as_immutable() reduced_exprs[i] = m if postprocess is None: return replacements, reduced_exprs return postprocess(replacements, reduced_exprs)
a29533bd6b24725f9baf6592d5843319b85a590ae337d0fbccf551ab7bfc2d7d
from collections import defaultdict from sympy.core.add import Add from sympy.core.basic import S from sympy.core.compatibility import ordered from sympy.core.expr import Expr from sympy.core.exprtools import Factors, gcd_terms, factor_terms from sympy.core.function import expand_mul from sympy.core.mul import Mul from sympy.core.numbers import pi, I from sympy.core.power import Pow from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial from sympy.functions.elementary.hyperbolic import ( cosh, sinh, tanh, coth, sech, csch, HyperbolicFunction) from sympy.functions.elementary.trigonometric import ( cos, sin, tan, cot, sec, csc, sqrt, TrigonometricFunction) from sympy.ntheory.factor_ import perfect_power from sympy.polys.polytools import factor from sympy.simplify.simplify import bottom_up from sympy.strategies.tree import greedy from sympy.strategies.core import identity, debug from sympy import SYMPY_DEBUG # ================== Fu-like tools =========================== def TR0(rv): """Simplification of rational polynomials, trying to simplify the expression, e.g. combine things like 3*x + 2*x, etc.... """ # although it would be nice to use cancel, it doesn't work # with noncommutatives return rv.normal().factor().expand() def TR1(rv): """Replace sec, csc with 1/cos, 1/sin Examples ======== >>> from sympy.simplify.fu import TR1, sec, csc >>> from sympy.abc import x >>> TR1(2*csc(x) + sec(x)) 1/cos(x) + 2/sin(x) """ def f(rv): if isinstance(rv, sec): a = rv.args[0] return S.One/cos(a) elif isinstance(rv, csc): a = rv.args[0] return S.One/sin(a) return rv return bottom_up(rv, f) def TR2(rv): """Replace tan and cot with sin/cos and cos/sin Examples ======== >>> from sympy.simplify.fu import TR2 >>> from sympy.abc import x >>> from sympy import tan, cot, sin, cos >>> TR2(tan(x)) sin(x)/cos(x) >>> TR2(cot(x)) cos(x)/sin(x) >>> TR2(tan(tan(x) - sin(x)/cos(x))) 0 """ def f(rv): if isinstance(rv, tan): a = rv.args[0] return sin(a)/cos(a) elif isinstance(rv, cot): a = rv.args[0] return cos(a)/sin(a) return rv return bottom_up(rv, f) def TR2i(rv, half=False): """Converts ratios involving sin and cos as follows:: sin(x)/cos(x) -> tan(x) sin(x)/(cos(x) + 1) -> tan(x/2) if half=True Examples ======== >>> from sympy.simplify.fu import TR2i >>> from sympy.abc import x, a >>> from sympy import sin, cos >>> TR2i(sin(x)/cos(x)) tan(x) Powers of the numerator and denominator are also recognized >>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True) tan(x/2)**2 The transformation does not take place unless assumptions allow (i.e. the base must be positive or the exponent must be an integer for both numerator and denominator) >>> TR2i(sin(x)**a/(cos(x) + 1)**a) sin(x)**a/(cos(x) + 1)**a """ def f(rv): if not rv.is_Mul: return rv n, d = rv.as_numer_denom() if n.is_Atom or d.is_Atom: return rv def ok(k, e): # initial filtering of factors return ( (e.is_integer or k.is_positive) and ( k.func in (sin, cos) or (half and k.is_Add and len(k.args) >= 2 and any(any(isinstance(ai, cos) or ai.is_Pow and ai.base is cos for ai in Mul.make_args(a)) for a in k.args)))) n = n.as_powers_dict() ndone = [(k, n.pop(k)) for k in list(n.keys()) if not ok(k, n[k])] if not n: return rv d = d.as_powers_dict() ddone = [(k, d.pop(k)) for k in list(d.keys()) if not ok(k, d[k])] if not d: return rv # factoring if necessary def factorize(d, ddone): newk = [] for k in d: if k.is_Add and len(k.args) > 1: knew = factor(k) if half else factor_terms(k) if knew != k: newk.append((k, knew)) if newk: for i, (k, knew) in enumerate(newk): del d[k] newk[i] = knew newk = Mul(*newk).as_powers_dict() for k in newk: v = d[k] + newk[k] if ok(k, v): d[k] = v else: ddone.append((k, v)) del newk factorize(n, ndone) factorize(d, ddone) # joining t = [] for k in n: if isinstance(k, sin): a = cos(k.args[0], evaluate=False) if a in d and d[a] == n[k]: t.append(tan(k.args[0])**n[k]) n[k] = d[a] = None elif half: a1 = 1 + a if a1 in d and d[a1] == n[k]: t.append((tan(k.args[0]/2))**n[k]) n[k] = d[a1] = None elif isinstance(k, cos): a = sin(k.args[0], evaluate=False) if a in d and d[a] == n[k]: t.append(tan(k.args[0])**-n[k]) n[k] = d[a] = None elif half and k.is_Add and k.args[0] is S.One and \ isinstance(k.args[1], cos): a = sin(k.args[1].args[0], evaluate=False) if a in d and d[a] == n[k] and (d[a].is_integer or \ a.is_positive): t.append(tan(a.args[0]/2)**-n[k]) n[k] = d[a] = None if t: rv = Mul(*(t + [b**e for b, e in n.items() if e]))/\ Mul(*[b**e for b, e in d.items() if e]) rv *= Mul(*[b**e for b, e in ndone])/Mul(*[b**e for b, e in ddone]) return rv return bottom_up(rv, f) def TR3(rv): """Induced formula: example sin(-a) = -sin(a) Examples ======== >>> from sympy.simplify.fu import TR3 >>> from sympy.abc import x, y >>> from sympy import pi >>> from sympy import cos >>> TR3(cos(y - x*(y - x))) cos(x*(x - y) + y) >>> cos(pi/2 + x) -sin(x) >>> cos(30*pi/2 + x) -cos(x) """ from sympy.simplify.simplify import signsimp # Negative argument (already automatic for funcs like sin(-x) -> -sin(x) # but more complicated expressions can use it, too). Also, trig angles # between pi/4 and pi/2 are not reduced to an angle between 0 and pi/4. # The following are automatically handled: # Argument of type: pi/2 +/- angle # Argument of type: pi +/- angle # Argument of type : 2k*pi +/- angle def f(rv): if not isinstance(rv, TrigonometricFunction): return rv rv = rv.func(signsimp(rv.args[0])) if not isinstance(rv, TrigonometricFunction): return rv if (rv.args[0] - S.Pi/4).is_positive is (S.Pi/2 - rv.args[0]).is_positive is True: fmap = {cos: sin, sin: cos, tan: cot, cot: tan, sec: csc, csc: sec} rv = fmap[rv.func](S.Pi/2 - rv.args[0]) return rv return bottom_up(rv, f) def TR4(rv): """Identify values of special angles. a= 0 pi/6 pi/4 pi/3 pi/2 ---------------------------------------------------- cos(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1 sin(a) 1 sqrt(3)/2 sqrt(2)/2 1/2 0 tan(a) 0 sqt(3)/3 1 sqrt(3) -- Examples ======== >>> from sympy import pi >>> from sympy import cos, sin, tan, cot >>> for s in (0, pi/6, pi/4, pi/3, pi/2): ... print('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s))) ... 1 0 0 zoo sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3) sqrt(2)/2 sqrt(2)/2 1 1 1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3 0 1 zoo 0 """ # special values at 0, pi/6, pi/4, pi/3, pi/2 already handled return rv def _TR56(rv, f, g, h, max, pow): """Helper for TR5 and TR6 to replace f**2 with h(g**2) Options ======= max : controls size of exponent that can appear on f e.g. if max=4 then f**4 will be changed to h(g**2)**2. pow : controls whether the exponent must be a perfect power of 2 e.g. if pow=True (and max >= 6) then f**6 will not be changed but f**8 will be changed to h(g**2)**4 >>> from sympy.simplify.fu import _TR56 as T >>> from sympy.abc import x >>> from sympy import sin, cos >>> h = lambda x: 1 - x >>> T(sin(x)**3, sin, cos, h, 4, False) (1 - cos(x)**2)*sin(x) >>> T(sin(x)**6, sin, cos, h, 6, False) (1 - cos(x)**2)**3 >>> T(sin(x)**6, sin, cos, h, 6, True) sin(x)**6 >>> T(sin(x)**8, sin, cos, h, 10, True) (1 - cos(x)**2)**4 """ def _f(rv): # I'm not sure if this transformation should target all even powers # or only those expressible as powers of 2. Also, should it only # make the changes in powers that appear in sums -- making an isolated # change is not going to allow a simplification as far as I can tell. if not (rv.is_Pow and rv.base.func == f): return rv if not rv.exp.is_real: return rv if (rv.exp < 0) == True: return rv if (rv.exp > max) == True: return rv if rv.exp == 1: return rv if rv.exp == 2: return h(g(rv.base.args[0])**2) else: if rv.exp % 2 == 1: e = rv.exp//2 return f(rv.base.args[0])*h(g(rv.base.args[0])**2)**e elif rv.exp == 4: e = 2 elif not pow: if rv.exp % 2: return rv e = rv.exp//2 else: p = perfect_power(rv.exp) if not p: return rv e = rv.exp//2 return h(g(rv.base.args[0])**2)**e return bottom_up(rv, _f) def TR5(rv, max=4, pow=False): """Replacement of sin**2 with 1 - cos(x)**2. See _TR56 docstring for advanced use of ``max`` and ``pow``. Examples ======== >>> from sympy.simplify.fu import TR5 >>> from sympy.abc import x >>> from sympy import sin >>> TR5(sin(x)**2) 1 - cos(x)**2 >>> TR5(sin(x)**-2) # unchanged sin(x)**(-2) >>> TR5(sin(x)**4) (1 - cos(x)**2)**2 """ return _TR56(rv, sin, cos, lambda x: 1 - x, max=max, pow=pow) def TR6(rv, max=4, pow=False): """Replacement of cos**2 with 1 - sin(x)**2. See _TR56 docstring for advanced use of ``max`` and ``pow``. Examples ======== >>> from sympy.simplify.fu import TR6 >>> from sympy.abc import x >>> from sympy import cos >>> TR6(cos(x)**2) 1 - sin(x)**2 >>> TR6(cos(x)**-2) #unchanged cos(x)**(-2) >>> TR6(cos(x)**4) (1 - sin(x)**2)**2 """ return _TR56(rv, cos, sin, lambda x: 1 - x, max=max, pow=pow) def TR7(rv): """Lowering the degree of cos(x)**2. Examples ======== >>> from sympy.simplify.fu import TR7 >>> from sympy.abc import x >>> from sympy import cos >>> TR7(cos(x)**2) cos(2*x)/2 + 1/2 >>> TR7(cos(x)**2 + 1) cos(2*x)/2 + 3/2 """ def f(rv): if not (rv.is_Pow and rv.base.func == cos and rv.exp == 2): return rv return (1 + cos(2*rv.base.args[0]))/2 return bottom_up(rv, f) def TR8(rv, first=True): """Converting products of ``cos`` and/or ``sin`` to a sum or difference of ``cos`` and or ``sin`` terms. Examples ======== >>> from sympy.simplify.fu import TR8 >>> from sympy import cos, sin >>> TR8(cos(2)*cos(3)) cos(5)/2 + cos(1)/2 >>> TR8(cos(2)*sin(3)) sin(5)/2 + sin(1)/2 >>> TR8(sin(2)*sin(3)) -cos(5)/2 + cos(1)/2 """ def f(rv): if not ( rv.is_Mul or rv.is_Pow and rv.base.func in (cos, sin) and (rv.exp.is_integer or rv.base.is_positive)): return rv if first: n, d = [expand_mul(i) for i in rv.as_numer_denom()] newn = TR8(n, first=False) newd = TR8(d, first=False) if newn != n or newd != d: rv = gcd_terms(newn/newd) if rv.is_Mul and rv.args[0].is_Rational and \ len(rv.args) == 2 and rv.args[1].is_Add: rv = Mul(*rv.as_coeff_Mul()) return rv args = {cos: [], sin: [], None: []} for a in ordered(Mul.make_args(rv)): if a.func in (cos, sin): args[a.func].append(a.args[0]) elif (a.is_Pow and a.exp.is_Integer and a.exp > 0 and \ a.base.func in (cos, sin)): # XXX this is ok but pathological expression could be handled # more efficiently as in TRmorrie args[a.base.func].extend([a.base.args[0]]*a.exp) else: args[None].append(a) c = args[cos] s = args[sin] if not (c and s or len(c) > 1 or len(s) > 1): return rv args = args[None] n = min(len(c), len(s)) for i in range(n): a1 = s.pop() a2 = c.pop() args.append((sin(a1 + a2) + sin(a1 - a2))/2) while len(c) > 1: a1 = c.pop() a2 = c.pop() args.append((cos(a1 + a2) + cos(a1 - a2))/2) if c: args.append(cos(c.pop())) while len(s) > 1: a1 = s.pop() a2 = s.pop() args.append((-cos(a1 + a2) + cos(a1 - a2))/2) if s: args.append(sin(s.pop())) return TR8(expand_mul(Mul(*args))) return bottom_up(rv, f) def TR9(rv): """Sum of ``cos`` or ``sin`` terms as a product of ``cos`` or ``sin``. Examples ======== >>> from sympy.simplify.fu import TR9 >>> from sympy import cos, sin >>> TR9(cos(1) + cos(2)) 2*cos(1/2)*cos(3/2) >>> TR9(cos(1) + 2*sin(1) + 2*sin(2)) cos(1) + 4*sin(3/2)*cos(1/2) If no change is made by TR9, no re-arrangement of the expression will be made. For example, though factoring of common term is attempted, if the factored expression wasn't changed, the original expression will be returned: >>> TR9(cos(3) + cos(3)*cos(2)) cos(3) + cos(2)*cos(3) """ def f(rv): if not rv.is_Add: return rv def do(rv, first=True): # cos(a)+/-cos(b) can be combined into a product of cosines and # sin(a)+/-sin(b) can be combined into a product of cosine and # sine. # # If there are more than two args, the pairs which "work" will # have a gcd extractable and the remaining two terms will have # the above structure -- all pairs must be checked to find the # ones that work. args that don't have a common set of symbols # are skipped since this doesn't lead to a simpler formula and # also has the arbitrariness of combining, for example, the x # and y term instead of the y and z term in something like # cos(x) + cos(y) + cos(z). if not rv.is_Add: return rv args = list(ordered(rv.args)) if len(args) != 2: hit = False for i in range(len(args)): ai = args[i] if ai is None: continue for j in range(i + 1, len(args)): aj = args[j] if aj is None: continue was = ai + aj new = do(was) if new != was: args[i] = new # update in place args[j] = None hit = True break # go to next i if hit: rv = Add(*[_f for _f in args if _f]) if rv.is_Add: rv = do(rv) return rv # two-arg Add split = trig_split(*args) if not split: return rv gcd, n1, n2, a, b, iscos = split # application of rule if possible if iscos: if n1 == n2: return gcd*n1*2*cos((a + b)/2)*cos((a - b)/2) if n1 < 0: a, b = b, a return -2*gcd*sin((a + b)/2)*sin((a - b)/2) else: if n1 == n2: return gcd*n1*2*sin((a + b)/2)*cos((a - b)/2) if n1 < 0: a, b = b, a return 2*gcd*cos((a + b)/2)*sin((a - b)/2) return process_common_addends(rv, do) # DON'T sift by free symbols return bottom_up(rv, f) def TR10(rv, first=True): """Separate sums in ``cos`` and ``sin``. Examples ======== >>> from sympy.simplify.fu import TR10 >>> from sympy.abc import a, b, c >>> from sympy import cos, sin >>> TR10(cos(a + b)) -sin(a)*sin(b) + cos(a)*cos(b) >>> TR10(sin(a + b)) sin(a)*cos(b) + sin(b)*cos(a) >>> TR10(sin(a + b + c)) (-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \ (sin(a)*cos(b) + sin(b)*cos(a))*cos(c) """ def f(rv): if not rv.func in (cos, sin): return rv f = rv.func arg = rv.args[0] if arg.is_Add: if first: args = list(ordered(arg.args)) else: args = list(arg.args) a = args.pop() b = Add._from_args(args) if b.is_Add: if f == sin: return sin(a)*TR10(cos(b), first=False) + \ cos(a)*TR10(sin(b), first=False) else: return cos(a)*TR10(cos(b), first=False) - \ sin(a)*TR10(sin(b), first=False) else: if f == sin: return sin(a)*cos(b) + cos(a)*sin(b) else: return cos(a)*cos(b) - sin(a)*sin(b) return rv return bottom_up(rv, f) def TR10i(rv): """Sum of products to function of sum. Examples ======== >>> from sympy.simplify.fu import TR10i >>> from sympy import cos, sin, sqrt >>> from sympy.abc import x >>> TR10i(cos(1)*cos(3) + sin(1)*sin(3)) cos(2) >>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3)) cos(3) + sin(4) >>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x) 2*sqrt(2)*x*sin(x + pi/6) """ global _ROOT2, _ROOT3, _invROOT3 if _ROOT2 is None: _roots() def f(rv): if not rv.is_Add: return rv def do(rv, first=True): # args which can be expressed as A*(cos(a)*cos(b)+/-sin(a)*sin(b)) # or B*(cos(a)*sin(b)+/-cos(b)*sin(a)) can be combined into # A*f(a+/-b) where f is either sin or cos. # # If there are more than two args, the pairs which "work" will have # a gcd extractable and the remaining two terms will have the above # structure -- all pairs must be checked to find the ones that # work. if not rv.is_Add: return rv args = list(ordered(rv.args)) if len(args) != 2: hit = False for i in range(len(args)): ai = args[i] if ai is None: continue for j in range(i + 1, len(args)): aj = args[j] if aj is None: continue was = ai + aj new = do(was) if new != was: args[i] = new # update in place args[j] = None hit = True break # go to next i if hit: rv = Add(*[_f for _f in args if _f]) if rv.is_Add: rv = do(rv) return rv # two-arg Add split = trig_split(*args, two=True) if not split: return rv gcd, n1, n2, a, b, same = split # identify and get c1 to be cos then apply rule if possible if same: # coscos, sinsin gcd = n1*gcd if n1 == n2: return gcd*cos(a - b) return gcd*cos(a + b) else: #cossin, cossin gcd = n1*gcd if n1 == n2: return gcd*sin(a + b) return gcd*sin(b - a) rv = process_common_addends( rv, do, lambda x: tuple(ordered(x.free_symbols))) # need to check for inducible pairs in ratio of sqrt(3):1 that # appeared in different lists when sorting by coefficient while rv.is_Add: byrad = defaultdict(list) for a in rv.args: hit = 0 if a.is_Mul: for ai in a.args: if ai.is_Pow and ai.exp is S.Half and \ ai.base.is_Integer: byrad[ai].append(a) hit = 1 break if not hit: byrad[S.One].append(a) # no need to check all pairs -- just check for the onees # that have the right ratio args = [] for a in byrad: for b in [_ROOT3*a, _invROOT3]: if b in byrad: for i in range(len(byrad[a])): if byrad[a][i] is None: continue for j in range(len(byrad[b])): if byrad[b][j] is None: continue was = Add(byrad[a][i] + byrad[b][j]) new = do(was) if new != was: args.append(new) byrad[a][i] = None byrad[b][j] = None break if args: rv = Add(*(args + [Add(*[_f for _f in v if _f]) for v in byrad.values()])) else: rv = do(rv) # final pass to resolve any new inducible pairs break return rv return bottom_up(rv, f) def TR11(rv, base=None): """Function of double angle to product. The ``base`` argument can be used to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base then cosine and sine functions with argument 6*pi/7 will be replaced. Examples ======== >>> from sympy.simplify.fu import TR11 >>> from sympy import cos, sin, pi >>> from sympy.abc import x >>> TR11(sin(2*x)) 2*sin(x)*cos(x) >>> TR11(cos(2*x)) -sin(x)**2 + cos(x)**2 >>> TR11(sin(4*x)) 4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x) >>> TR11(sin(4*x/3)) 4*(-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3) If the arguments are simply integers, no change is made unless a base is provided: >>> TR11(cos(2)) cos(2) >>> TR11(cos(4), 2) -sin(2)**2 + cos(2)**2 There is a subtle issue here in that autosimplification will convert some higher angles to lower angles >>> cos(6*pi/7) + cos(3*pi/7) -cos(pi/7) + cos(3*pi/7) The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying the 3*pi/7 base: >>> TR11(_, 3*pi/7) -sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7) """ def f(rv): if not rv.func in (cos, sin): return rv if base: f = rv.func t = f(base*2) co = S.One if t.is_Mul: co, t = t.as_coeff_Mul() if not t.func in (cos, sin): return rv if rv.args[0] == t.args[0]: c = cos(base) s = sin(base) if f is cos: return (c**2 - s**2)/co else: return 2*c*s/co return rv elif not rv.args[0].is_Number: # make a change if the leading coefficient's numerator is # divisible by 2 c, m = rv.args[0].as_coeff_Mul(rational=True) if c.p % 2 == 0: arg = c.p//2*m/c.q c = TR11(cos(arg)) s = TR11(sin(arg)) if rv.func == sin: rv = 2*s*c else: rv = c**2 - s**2 return rv return bottom_up(rv, f) def _TR11(rv): """ Helper for TR11 to find half-arguments for sin in factors of num/den that appear in cos or sin factors in the den/num. Examples ======== >>> from sympy.simplify.fu import TR11, _TR11 >>> from sympy import cos, sin >>> from sympy.abc import x >>> TR11(sin(x/3)/(cos(x/6))) sin(x/3)/cos(x/6) >>> _TR11(sin(x/3)/(cos(x/6))) 2*sin(x/6) >>> TR11(sin(x/6)/(sin(x/3))) sin(x/6)/sin(x/3) >>> _TR11(sin(x/6)/(sin(x/3))) 1/(2*cos(x/6)) """ def f(rv): if not isinstance(rv, Expr): return rv def sincos_args(flat): # find arguments of sin and cos that # appears as bases in args of flat # and have Integer exponents args = defaultdict(set) for fi in Mul.make_args(flat): b, e = fi.as_base_exp() if e.is_Integer and e > 0: if b.func in (cos, sin): args[b.func].add(b.args[0]) return args num_args, den_args = map(sincos_args, rv.as_numer_denom()) def handle_match(rv, num_args, den_args): # for arg in sin args of num_args, look for arg/2 # in den_args and pass this half-angle to TR11 # for handling in rv for narg in num_args[sin]: half = narg/2 if half in den_args[cos]: func = cos elif half in den_args[sin]: func = sin else: continue rv = TR11(rv, half) den_args[func].remove(half) return rv # sin in num, sin or cos in den rv = handle_match(rv, num_args, den_args) # sin in den, sin or cos in num rv = handle_match(rv, den_args, num_args) return rv return bottom_up(rv, f) def TR12(rv, first=True): """Separate sums in ``tan``. Examples ======== >>> from sympy.abc import x, y >>> from sympy import tan >>> from sympy.simplify.fu import TR12 >>> TR12(tan(x + y)) (tan(x) + tan(y))/(-tan(x)*tan(y) + 1) """ def f(rv): if not rv.func == tan: return rv arg = rv.args[0] if arg.is_Add: if first: args = list(ordered(arg.args)) else: args = list(arg.args) a = args.pop() b = Add._from_args(args) if b.is_Add: tb = TR12(tan(b), first=False) else: tb = tan(b) return (tan(a) + tb)/(1 - tan(a)*tb) return rv return bottom_up(rv, f) def TR12i(rv): """Combine tan arguments as (tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y). Examples ======== >>> from sympy.simplify.fu import TR12i >>> from sympy import tan >>> from sympy.abc import a, b, c >>> ta, tb, tc = [tan(i) for i in (a, b, c)] >>> TR12i((ta + tb)/(-ta*tb + 1)) tan(a + b) >>> TR12i((ta + tb)/(ta*tb - 1)) -tan(a + b) >>> TR12i((-ta - tb)/(ta*tb - 1)) tan(a + b) >>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1)) >>> TR12i(eq.expand()) -3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1)) """ from sympy import factor def f(rv): if not (rv.is_Add or rv.is_Mul or rv.is_Pow): return rv n, d = rv.as_numer_denom() if not d.args or not n.args: return rv dok = {} def ok(di): m = as_f_sign_1(di) if m: g, f, s = m if s is S.NegativeOne and f.is_Mul and len(f.args) == 2 and \ all(isinstance(fi, tan) for fi in f.args): return g, f d_args = list(Mul.make_args(d)) for i, di in enumerate(d_args): m = ok(di) if m: g, t = m s = Add(*[_.args[0] for _ in t.args]) dok[s] = S.One d_args[i] = g continue if di.is_Add: di = factor(di) if di.is_Mul: d_args.extend(di.args) d_args[i] = S.One elif di.is_Pow and (di.exp.is_integer or di.base.is_positive): m = ok(di.base) if m: g, t = m s = Add(*[_.args[0] for _ in t.args]) dok[s] = di.exp d_args[i] = g**di.exp else: di = factor(di) if di.is_Mul: d_args.extend(di.args) d_args[i] = S.One if not dok: return rv def ok(ni): if ni.is_Add and len(ni.args) == 2: a, b = ni.args if isinstance(a, tan) and isinstance(b, tan): return a, b n_args = list(Mul.make_args(factor_terms(n))) hit = False for i, ni in enumerate(n_args): m = ok(ni) if not m: m = ok(-ni) if m: n_args[i] = S.NegativeOne else: if ni.is_Add: ni = factor(ni) if ni.is_Mul: n_args.extend(ni.args) n_args[i] = S.One continue elif ni.is_Pow and ( ni.exp.is_integer or ni.base.is_positive): m = ok(ni.base) if m: n_args[i] = S.One else: ni = factor(ni) if ni.is_Mul: n_args.extend(ni.args) n_args[i] = S.One continue else: continue else: n_args[i] = S.One hit = True s = Add(*[_.args[0] for _ in m]) ed = dok[s] newed = ed.extract_additively(S.One) if newed is not None: if newed: dok[s] = newed else: dok.pop(s) n_args[i] *= -tan(s) if hit: rv = Mul(*n_args)/Mul(*d_args)/Mul(*[(Add(*[ tan(a) for a in i.args]) - 1)**e for i, e in dok.items()]) return rv return bottom_up(rv, f) def TR13(rv): """Change products of ``tan`` or ``cot``. Examples ======== >>> from sympy.simplify.fu import TR13 >>> from sympy import tan, cot >>> TR13(tan(3)*tan(2)) -tan(2)/tan(5) - tan(3)/tan(5) + 1 >>> TR13(cot(3)*cot(2)) cot(2)*cot(5) + 1 + cot(3)*cot(5) """ def f(rv): if not rv.is_Mul: return rv # XXX handle products of powers? or let power-reducing handle it? args = {tan: [], cot: [], None: []} for a in ordered(Mul.make_args(rv)): if a.func in (tan, cot): args[a.func].append(a.args[0]) else: args[None].append(a) t = args[tan] c = args[cot] if len(t) < 2 and len(c) < 2: return rv args = args[None] while len(t) > 1: t1 = t.pop() t2 = t.pop() args.append(1 - (tan(t1)/tan(t1 + t2) + tan(t2)/tan(t1 + t2))) if t: args.append(tan(t.pop())) while len(c) > 1: t1 = c.pop() t2 = c.pop() args.append(1 + cot(t1)*cot(t1 + t2) + cot(t2)*cot(t1 + t2)) if c: args.append(cot(c.pop())) return Mul(*args) return bottom_up(rv, f) def TRmorrie(rv): """Returns cos(x)*cos(2*x)*...*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x)) Examples ======== >>> from sympy.simplify.fu import TRmorrie, TR8, TR3 >>> from sympy.abc import x >>> from sympy import Mul, cos, pi >>> TRmorrie(cos(x)*cos(2*x)) sin(4*x)/(4*sin(x)) >>> TRmorrie(7*Mul(*[cos(x) for x in range(10)])) 7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3)) Sometimes autosimplification will cause a power to be not recognized. e.g. in the following, cos(4*pi/7) automatically simplifies to -cos(3*pi/7) so only 2 of the 3 terms are recognized: >>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(4*pi/7)) -sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7)) A touch by TR8 resolves the expression to a Rational >>> TR8(_) -1/8 In this case, if eq is unsimplified, the answer is obtained directly: >>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9) >>> TRmorrie(eq) 1/16 But if angles are made canonical with TR3 then the answer is not simplified without further work: >>> TR3(eq) sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2 >>> TRmorrie(_) sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9)) >>> TR8(_) cos(7*pi/18)/(16*sin(pi/9)) >>> TR3(_) 1/16 The original expression would have resolve to 1/16 directly with TR8, however: >>> TR8(eq) 1/16 References ========== .. [1] https://en.wikipedia.org/wiki/Morrie%27s_law """ def f(rv, first=True): if not rv.is_Mul: return rv if first: n, d = rv.as_numer_denom() return f(n, 0)/f(d, 0) args = defaultdict(list) coss = {} other = [] for c in rv.args: b, e = c.as_base_exp() if e.is_Integer and isinstance(b, cos): co, a = b.args[0].as_coeff_Mul() args[a].append(co) coss[b] = e else: other.append(c) new = [] for a in args: c = args[a] c.sort() while c: k = 0 cc = ci = c[0] while cc in c: k += 1 cc *= 2 if k > 1: newarg = sin(2**k*ci*a)/2**k/sin(ci*a) # see how many times this can be taken take = None ccs = [] for i in range(k): cc /= 2 key = cos(a*cc, evaluate=False) ccs.append(cc) take = min(coss[key], take or coss[key]) # update exponent counts for i in range(k): cc = ccs.pop() key = cos(a*cc, evaluate=False) coss[key] -= take if not coss[key]: c.remove(cc) new.append(newarg**take) else: b = cos(c.pop(0)*a) other.append(b**coss[b]) if new: rv = Mul(*(new + other + [ cos(k*a, evaluate=False) for a in args for k in args[a]])) return rv return bottom_up(rv, f) def TR14(rv, first=True): """Convert factored powers of sin and cos identities into simpler expressions. Examples ======== >>> from sympy.simplify.fu import TR14 >>> from sympy.abc import x, y >>> from sympy import cos, sin >>> TR14((cos(x) - 1)*(cos(x) + 1)) -sin(x)**2 >>> TR14((sin(x) - 1)*(sin(x) + 1)) -cos(x)**2 >>> p1 = (cos(x) + 1)*(cos(x) - 1) >>> p2 = (cos(y) - 1)*2*(cos(y) + 1) >>> p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1)) >>> TR14(p1*p2*p3*(x - 1)) -18*(x - 1)*sin(x)**2*sin(y)**4 """ def f(rv): if not rv.is_Mul: return rv if first: # sort them by location in numerator and denominator # so the code below can just deal with positive exponents n, d = rv.as_numer_denom() if d is not S.One: newn = TR14(n, first=False) newd = TR14(d, first=False) if newn != n or newd != d: rv = newn/newd return rv other = [] process = [] for a in rv.args: if a.is_Pow: b, e = a.as_base_exp() if not (e.is_integer or b.is_positive): other.append(a) continue a = b else: e = S.One m = as_f_sign_1(a) if not m or m[1].func not in (cos, sin): if e is S.One: other.append(a) else: other.append(a**e) continue g, f, si = m process.append((g, e.is_Number, e, f, si, a)) # sort them to get like terms next to each other process = list(ordered(process)) # keep track of whether there was any change nother = len(other) # access keys keys = (g, t, e, f, si, a) = list(range(6)) while process: A = process.pop(0) if process: B = process[0] if A[e].is_Number and B[e].is_Number: # both exponents are numbers if A[f] == B[f]: if A[si] != B[si]: B = process.pop(0) take = min(A[e], B[e]) # reinsert any remainder # the B will likely sort after A so check it first if B[e] != take: rem = [B[i] for i in keys] rem[e] -= take process.insert(0, rem) elif A[e] != take: rem = [A[i] for i in keys] rem[e] -= take process.insert(0, rem) if isinstance(A[f], cos): t = sin else: t = cos other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take) continue elif A[e] == B[e]: # both exponents are equal symbols if A[f] == B[f]: if A[si] != B[si]: B = process.pop(0) take = A[e] if isinstance(A[f], cos): t = sin else: t = cos other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take) continue # either we are done or neither condition above applied other.append(A[a]**A[e]) if len(other) != nother: rv = Mul(*other) return rv return bottom_up(rv, f) def TR15(rv, max=4, pow=False): """Convert sin(x)**-2 to 1 + cot(x)**2. See _TR56 docstring for advanced use of ``max`` and ``pow``. Examples ======== >>> from sympy.simplify.fu import TR15 >>> from sympy.abc import x >>> from sympy import sin >>> TR15(1 - 1/sin(x)**2) -cot(x)**2 """ def f(rv): if not (isinstance(rv, Pow) and isinstance(rv.base, sin)): return rv e = rv.exp if e % 2 == 1: return TR15(rv.base**(e + 1))/rv.base ia = 1/rv a = _TR56(ia, sin, cot, lambda x: 1 + x, max=max, pow=pow) if a != ia: rv = a return rv return bottom_up(rv, f) def TR16(rv, max=4, pow=False): """Convert cos(x)**-2 to 1 + tan(x)**2. See _TR56 docstring for advanced use of ``max`` and ``pow``. Examples ======== >>> from sympy.simplify.fu import TR16 >>> from sympy.abc import x >>> from sympy import cos >>> TR16(1 - 1/cos(x)**2) -tan(x)**2 """ def f(rv): if not (isinstance(rv, Pow) and isinstance(rv.base, cos)): return rv e = rv.exp if e % 2 == 1: return TR15(rv.base**(e + 1))/rv.base ia = 1/rv a = _TR56(ia, cos, tan, lambda x: 1 + x, max=max, pow=pow) if a != ia: rv = a return rv return bottom_up(rv, f) def TR111(rv): """Convert f(x)**-i to g(x)**i where either ``i`` is an integer or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec. Examples ======== >>> from sympy.simplify.fu import TR111 >>> from sympy.abc import x >>> from sympy import tan >>> TR111(1 - 1/tan(x)**2) 1 - cot(x)**2 """ def f(rv): if not ( isinstance(rv, Pow) and (rv.base.is_positive or rv.exp.is_integer and rv.exp.is_negative)): return rv if isinstance(rv.base, tan): return cot(rv.base.args[0])**-rv.exp elif isinstance(rv.base, sin): return csc(rv.base.args[0])**-rv.exp elif isinstance(rv.base, cos): return sec(rv.base.args[0])**-rv.exp return rv return bottom_up(rv, f) def TR22(rv, max=4, pow=False): """Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1. See _TR56 docstring for advanced use of ``max`` and ``pow``. Examples ======== >>> from sympy.simplify.fu import TR22 >>> from sympy.abc import x >>> from sympy import tan, cot >>> TR22(1 + tan(x)**2) sec(x)**2 >>> TR22(1 + cot(x)**2) csc(x)**2 """ def f(rv): if not (isinstance(rv, Pow) and rv.base.func in (cot, tan)): return rv rv = _TR56(rv, tan, sec, lambda x: x - 1, max=max, pow=pow) rv = _TR56(rv, cot, csc, lambda x: x - 1, max=max, pow=pow) return rv return bottom_up(rv, f) def TRpower(rv): """Convert sin(x)**n and cos(x)**n with positive n to sums. Examples ======== >>> from sympy.simplify.fu import TRpower >>> from sympy.abc import x >>> from sympy import cos, sin >>> TRpower(sin(x)**6) -15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16 >>> TRpower(sin(x)**3*cos(2*x)**4) (3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8) References ========== .. [1] https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Power-reduction_formulae """ def f(rv): if not (isinstance(rv, Pow) and isinstance(rv.base, (sin, cos))): return rv b, n = rv.as_base_exp() x = b.args[0] if n.is_Integer and n.is_positive: if n.is_odd and isinstance(b, cos): rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x) for k in range((n + 1)/2)]) elif n.is_odd and isinstance(b, sin): rv = 2**(1-n)*(-1)**((n-1)/2)*Add(*[binomial(n, k)* (-1)**k*sin((n - 2*k)*x) for k in range((n + 1)/2)]) elif n.is_even and isinstance(b, cos): rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x) for k in range(n/2)]) elif n.is_even and isinstance(b, sin): rv = 2**(1-n)*(-1)**(n/2)*Add(*[binomial(n, k)* (-1)**k*cos((n - 2*k)*x) for k in range(n/2)]) if n.is_even: rv += 2**(-n)*binomial(n, n/2) return rv return bottom_up(rv, f) def L(rv): """Return count of trigonometric functions in expression. Examples ======== >>> from sympy.simplify.fu import L >>> from sympy.abc import x >>> from sympy import cos, sin >>> L(cos(x)+sin(x)) 2 """ return S(rv.count(TrigonometricFunction)) # ============== end of basic Fu-like tools ===================== if SYMPY_DEBUG: (TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13, TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22 )= list(map(debug, (TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13, TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22))) # tuples are chains -- (f, g) -> lambda x: g(f(x)) # lists are choices -- [f, g] -> lambda x: min(f(x), g(x), key=objective) CTR1 = [(TR5, TR0), (TR6, TR0), identity] CTR2 = (TR11, [(TR5, TR0), (TR6, TR0), TR0]) CTR3 = [(TRmorrie, TR8, TR0), (TRmorrie, TR8, TR10i, TR0), identity] CTR4 = [(TR4, TR10i), identity] RL1 = (TR4, TR3, TR4, TR12, TR4, TR13, TR4, TR0) # XXX it's a little unclear how this one is to be implemented # see Fu paper of reference, page 7. What is the Union symbol referring to? # The diagram shows all these as one chain of transformations, but the # text refers to them being applied independently. Also, a break # if L starts to increase has not been implemented. RL2 = [ (TR4, TR3, TR10, TR4, TR3, TR11), (TR5, TR7, TR11, TR4), (CTR3, CTR1, TR9, CTR2, TR4, TR9, TR9, CTR4), identity, ] def fu(rv, measure=lambda x: (L(x), x.count_ops())): """Attempt to simplify expression by using transformation rules given in the algorithm by Fu et al. :func:`fu` will try to minimize the objective function ``measure``. By default this first minimizes the number of trig terms and then minimizes the number of total operations. Examples ======== >>> from sympy.simplify.fu import fu >>> from sympy import cos, sin, tan, pi, S, sqrt >>> from sympy.abc import x, y, a, b >>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6)) 3/2 >>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x)) 2*sqrt(2)*sin(x + pi/3) CTR1 example >>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2 >>> fu(eq) cos(x)**4 - 2*cos(y)**2 + 2 CTR2 example >>> fu(S.Half - cos(2*x)/2) sin(x)**2 CTR3 example >>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b))) sqrt(2)*sin(a + b + pi/4) CTR4 example >>> fu(sqrt(3)*cos(x)/2 + sin(x)/2) sin(x + pi/3) Example 1 >>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4) -cos(x)**2 + cos(y)**2 Example 2 >>> fu(cos(4*pi/9)) sin(pi/18) >>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)) 1/16 Example 3 >>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18)) -sqrt(3) Objective function example >>> fu(sin(x)/cos(x)) # default objective function tan(x) >>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count sin(x)/cos(x) References ========== .. [1] https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.657.2478&rep=rep1&type=pdf """ fRL1 = greedy(RL1, measure) fRL2 = greedy(RL2, measure) was = rv rv = sympify(rv) if not isinstance(rv, Expr): return rv.func(*[fu(a, measure=measure) for a in rv.args]) rv = TR1(rv) if rv.has(tan, cot): rv1 = fRL1(rv) if (measure(rv1) < measure(rv)): rv = rv1 if rv.has(tan, cot): rv = TR2(rv) if rv.has(sin, cos): rv1 = fRL2(rv) rv2 = TR8(TRmorrie(rv1)) rv = min([was, rv, rv1, rv2], key=measure) return min(TR2i(rv), rv, key=measure) def process_common_addends(rv, do, key2=None, key1=True): """Apply ``do`` to addends of ``rv`` that (if ``key1=True``) share at least a common absolute value of their coefficient and the value of ``key2`` when applied to the argument. If ``key1`` is False ``key2`` must be supplied and will be the only key applied. """ # collect by absolute value of coefficient and key2 absc = defaultdict(list) if key1: for a in rv.args: c, a = a.as_coeff_Mul() if c < 0: c = -c a = -a # put the sign on `a` absc[(c, key2(a) if key2 else 1)].append(a) elif key2: for a in rv.args: absc[(S.One, key2(a))].append(a) else: raise ValueError('must have at least one key') args = [] hit = False for k in absc: v = absc[k] c, _ = k if len(v) > 1: e = Add(*v, evaluate=False) new = do(e) if new != e: e = new hit = True args.append(c*e) else: args.append(c*v[0]) if hit: rv = Add(*args) return rv fufuncs = ''' TR0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR10i TR11 TR12 TR13 L TR2i TRmorrie TR12i TR14 TR15 TR16 TR111 TR22'''.split() FU = dict(list(zip(fufuncs, list(map(locals().get, fufuncs))))) def _roots(): global _ROOT2, _ROOT3, _invROOT3 _ROOT2, _ROOT3 = sqrt(2), sqrt(3) _invROOT3 = 1/_ROOT3 _ROOT2 = None def trig_split(a, b, two=False): """Return the gcd, s1, s2, a1, a2, bool where If two is False (default) then:: a + b = gcd*(s1*f(a1) + s2*f(a2)) where f = cos if bool else sin else: if bool, a + b was +/- cos(a1)*cos(a2) +/- sin(a1)*sin(a2) and equals n1*gcd*cos(a - b) if n1 == n2 else n1*gcd*cos(a + b) else a + b was +/- cos(a1)*sin(a2) +/- sin(a1)*cos(a2) and equals n1*gcd*sin(a + b) if n1 = n2 else n1*gcd*sin(b - a) Examples ======== >>> from sympy.simplify.fu import trig_split >>> from sympy.abc import x, y, z >>> from sympy import cos, sin, sqrt >>> trig_split(cos(x), cos(y)) (1, 1, 1, x, y, True) >>> trig_split(2*cos(x), -2*cos(y)) (2, 1, -1, x, y, True) >>> trig_split(cos(x)*sin(y), cos(y)*sin(y)) (sin(y), 1, 1, x, y, True) >>> trig_split(cos(x), -sqrt(3)*sin(x), two=True) (2, 1, -1, x, pi/6, False) >>> trig_split(cos(x), sin(x), two=True) (sqrt(2), 1, 1, x, pi/4, False) >>> trig_split(cos(x), -sin(x), two=True) (sqrt(2), 1, -1, x, pi/4, False) >>> trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True) (2*sqrt(2), 1, -1, x, pi/6, False) >>> trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True) (-2*sqrt(2), 1, 1, x, pi/3, False) >>> trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True) (sqrt(6)/3, 1, 1, x, pi/6, False) >>> trig_split(-sqrt(6)*cos(x)*sin(y), -sqrt(2)*sin(x)*sin(y), two=True) (-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False) >>> trig_split(cos(x), sin(x)) >>> trig_split(cos(x), sin(z)) >>> trig_split(2*cos(x), -sin(x)) >>> trig_split(cos(x), -sqrt(3)*sin(x)) >>> trig_split(cos(x)*cos(y), sin(x)*sin(z)) >>> trig_split(cos(x)*cos(y), sin(x)*sin(y)) >>> trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True) """ global _ROOT2, _ROOT3, _invROOT3 if _ROOT2 is None: _roots() a, b = [Factors(i) for i in (a, b)] ua, ub = a.normal(b) gcd = a.gcd(b).as_expr() n1 = n2 = 1 if S.NegativeOne in ua.factors: ua = ua.quo(S.NegativeOne) n1 = -n1 elif S.NegativeOne in ub.factors: ub = ub.quo(S.NegativeOne) n2 = -n2 a, b = [i.as_expr() for i in (ua, ub)] def pow_cos_sin(a, two): """Return ``a`` as a tuple (r, c, s) such that ``a = (r or 1)*(c or 1)*(s or 1)``. Three arguments are returned (radical, c-factor, s-factor) as long as the conditions set by ``two`` are met; otherwise None is returned. If ``two`` is True there will be one or two non-None values in the tuple: c and s or c and r or s and r or s or c with c being a cosine function (if possible) else a sine, and s being a sine function (if possible) else oosine. If ``two`` is False then there will only be a c or s term in the tuple. ``two`` also require that either two cos and/or sin be present (with the condition that if the functions are the same the arguments are different or vice versa) or that a single cosine or a single sine be present with an optional radical. If the above conditions dictated by ``two`` are not met then None is returned. """ c = s = None co = S.One if a.is_Mul: co, a = a.as_coeff_Mul() if len(a.args) > 2 or not two: return None if a.is_Mul: args = list(a.args) else: args = [a] a = args.pop(0) if isinstance(a, cos): c = a elif isinstance(a, sin): s = a elif a.is_Pow and a.exp is S.Half: # autoeval doesn't allow -1/2 co *= a else: return None if args: b = args[0] if isinstance(b, cos): if c: s = b else: c = b elif isinstance(b, sin): if s: c = b else: s = b elif b.is_Pow and b.exp is S.Half: co *= b else: return None return co if co is not S.One else None, c, s elif isinstance(a, cos): c = a elif isinstance(a, sin): s = a if c is None and s is None: return co = co if co is not S.One else None return co, c, s # get the parts m = pow_cos_sin(a, two) if m is None: return coa, ca, sa = m m = pow_cos_sin(b, two) if m is None: return cob, cb, sb = m # check them if (not ca) and cb or ca and isinstance(ca, sin): coa, ca, sa, cob, cb, sb = cob, cb, sb, coa, ca, sa n1, n2 = n2, n1 if not two: # need cos(x) and cos(y) or sin(x) and sin(y) c = ca or sa s = cb or sb if not isinstance(c, s.func): return None return gcd, n1, n2, c.args[0], s.args[0], isinstance(c, cos) else: if not coa and not cob: if (ca and cb and sa and sb): if isinstance(ca, sa.func) is not isinstance(cb, sb.func): return args = {j.args for j in (ca, sa)} if not all(i.args in args for i in (cb, sb)): return return gcd, n1, n2, ca.args[0], sa.args[0], isinstance(ca, sa.func) if ca and sa or cb and sb or \ two and (ca is None and sa is None or cb is None and sb is None): return c = ca or sa s = cb or sb if c.args != s.args: return if not coa: coa = S.One if not cob: cob = S.One if coa is cob: gcd *= _ROOT2 return gcd, n1, n2, c.args[0], pi/4, False elif coa/cob == _ROOT3: gcd *= 2*cob return gcd, n1, n2, c.args[0], pi/3, False elif coa/cob == _invROOT3: gcd *= 2*coa return gcd, n1, n2, c.args[0], pi/6, False def as_f_sign_1(e): """If ``e`` is a sum that can be written as ``g*(a + s)`` where ``s`` is ``+/-1``, return ``g``, ``a``, and ``s`` where ``a`` does not have a leading negative coefficient. Examples ======== >>> from sympy.simplify.fu import as_f_sign_1 >>> from sympy.abc import x >>> as_f_sign_1(x + 1) (1, x, 1) >>> as_f_sign_1(x - 1) (1, x, -1) >>> as_f_sign_1(-x + 1) (-1, x, -1) >>> as_f_sign_1(-x - 1) (-1, x, 1) >>> as_f_sign_1(2*x + 2) (2, x, 1) """ if not e.is_Add or len(e.args) != 2: return # exact match a, b = e.args if a in (S.NegativeOne, S.One): g = S.One if b.is_Mul and b.args[0].is_Number and b.args[0] < 0: a, b = -a, -b g = -g return g, b, a # gcd match a, b = [Factors(i) for i in e.args] ua, ub = a.normal(b) gcd = a.gcd(b).as_expr() if S.NegativeOne in ua.factors: ua = ua.quo(S.NegativeOne) n1 = -1 n2 = 1 elif S.NegativeOne in ub.factors: ub = ub.quo(S.NegativeOne) n1 = 1 n2 = -1 else: n1 = n2 = 1 a, b = [i.as_expr() for i in (ua, ub)] if a is S.One: a, b = b, a n1, n2 = n2, n1 if n1 == -1: gcd = -gcd n2 = -n2 if b is S.One: return gcd, a, n2 def _osborne(e, d): """Replace all hyperbolic functions with trig functions using the Osborne rule. Notes ===== ``d`` is a dummy variable to prevent automatic evaluation of trigonometric/hyperbolic functions. References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function """ def f(rv): if not isinstance(rv, HyperbolicFunction): return rv a = rv.args[0] a = a*d if not a.is_Add else Add._from_args([i*d for i in a.args]) if isinstance(rv, sinh): return I*sin(a) elif isinstance(rv, cosh): return cos(a) elif isinstance(rv, tanh): return I*tan(a) elif isinstance(rv, coth): return cot(a)/I elif isinstance(rv, sech): return sec(a) elif isinstance(rv, csch): return csc(a)/I else: raise NotImplementedError('unhandled %s' % rv.func) return bottom_up(e, f) def _osbornei(e, d): """Replace all trig functions with hyperbolic functions using the Osborne rule. Notes ===== ``d`` is a dummy variable to prevent automatic evaluation of trigonometric/hyperbolic functions. References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function """ def f(rv): if not isinstance(rv, TrigonometricFunction): return rv const, x = rv.args[0].as_independent(d, as_Add=True) a = x.xreplace({d: S.One}) + const*I if isinstance(rv, sin): return sinh(a)/I elif isinstance(rv, cos): return cosh(a) elif isinstance(rv, tan): return tanh(a)/I elif isinstance(rv, cot): return coth(a)*I elif isinstance(rv, sec): return sech(a) elif isinstance(rv, csc): return csch(a)*I else: raise NotImplementedError('unhandled %s' % rv.func) return bottom_up(e, f) def hyper_as_trig(rv): """Return an expression containing hyperbolic functions in terms of trigonometric functions. Any trigonometric functions initially present are replaced with Dummy symbols and the function to undo the masking and the conversion back to hyperbolics is also returned. It should always be true that:: t, f = hyper_as_trig(expr) expr == f(t) Examples ======== >>> from sympy.simplify.fu import hyper_as_trig, fu >>> from sympy.abc import x >>> from sympy import cosh, sinh >>> eq = sinh(x)**2 + cosh(x)**2 >>> t, f = hyper_as_trig(eq) >>> f(fu(t)) cosh(2*x) References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function """ from sympy.simplify.simplify import signsimp from sympy.simplify.radsimp import collect # mask off trig functions trigs = rv.atoms(TrigonometricFunction) reps = [(t, Dummy()) for t in trigs] masked = rv.xreplace(dict(reps)) # get inversion substitutions in place reps = [(v, k) for k, v in reps] d = Dummy() return _osborne(masked, d), lambda x: collect(signsimp( _osbornei(x, d).xreplace(dict(reps))), S.ImaginaryUnit) def sincos_to_sum(expr): """Convert products and powers of sin and cos to sums. Explanation =========== Applied power reduction TRpower first, then expands products, and converts products to sums with TR8. Examples ======== >>> from sympy.simplify.fu import sincos_to_sum >>> from sympy.abc import x >>> from sympy import cos, sin >>> sincos_to_sum(16*sin(x)**3*cos(2*x)**2) 7*sin(x) - 5*sin(3*x) + 3*sin(5*x) - sin(7*x) """ if not expr.has(cos, sin): return expr else: return TR8(expand_mul(TRpower(expr)))
15a9e1f5f711de2ba02ce0d739745f6d4f6c730ea9ee0f376ecf910fa1924b4e
"""Predefined R^n manifolds together with common coord. systems. Coordinate systems are predefined as well as the transformation laws between them. Coordinate functions can be accessed as attributes of the manifold (eg `R2.x`), as attributes of the coordinate systems (eg `R2_r.x` and `R2_p.theta`), or by using the usual `coord_sys.coord_function(index, name)` interface. """ from typing import Any import warnings from sympy import sqrt, atan2, acos, sin, cos, symbols, Dummy from .diffgeom import Manifold, Patch, CoordSystem __all__ = [ 'R2', 'R2_origin', 'relations_2d', 'R2_r', 'R2_p', 'R3', 'R3_origin', 'relations_3d', 'R3_r', 'R3_c', 'R3_s' ] ############################################################################### # R2 ############################################################################### R2 = Manifold('R^2', 2) # type: Any R2_origin = Patch('origin', R2) # type: Any x, y = symbols('x y', real=True) r, theta = symbols('rho theta', nonnegative=True) relations_2d = { ('rectangular', 'polar'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))], ('polar', 'rectangular'): [(r, theta), (r*cos(theta), r*sin(theta))], } R2_r = CoordSystem('rectangular', R2_origin, (x, y), relations_2d) # type: Any R2_p = CoordSystem('polar', R2_origin, (r, theta), relations_2d) # type: Any # support deprecated feature with warnings.catch_warnings(): warnings.simplefilter("ignore") x, y, r, theta = symbols('x y r theta', cls=Dummy) R2_r.connect_to(R2_p, [x, y], [sqrt(x**2 + y**2), atan2(y, x)], inverse=False, fill_in_gaps=False) R2_p.connect_to(R2_r, [r, theta], [r*cos(theta), r*sin(theta)], inverse=False, fill_in_gaps=False) # Defining the basis coordinate functions and adding shortcuts for them to the # manifold and the patch. R2.x, R2.y = R2_origin.x, R2_origin.y = R2_r.x, R2_r.y = R2_r.coord_functions() R2.r, R2.theta = R2_origin.r, R2_origin.theta = R2_p.r, R2_p.theta = R2_p.coord_functions() # Defining the basis vector fields and adding shortcuts for them to the # manifold and the patch. R2.e_x, R2.e_y = R2_origin.e_x, R2_origin.e_y = R2_r.e_x, R2_r.e_y = R2_r.base_vectors() R2.e_r, R2.e_theta = R2_origin.e_r, R2_origin.e_theta = R2_p.e_r, R2_p.e_theta = R2_p.base_vectors() # Defining the basis oneform fields and adding shortcuts for them to the # manifold and the patch. R2.dx, R2.dy = R2_origin.dx, R2_origin.dy = R2_r.dx, R2_r.dy = R2_r.base_oneforms() R2.dr, R2.dtheta = R2_origin.dr, R2_origin.dtheta = R2_p.dr, R2_p.dtheta = R2_p.base_oneforms() ############################################################################### # R3 ############################################################################### R3 = Manifold('R^3', 3) # type: Any R3_origin = Patch('origin', R3) # type: Any x, y, z = symbols('x y z', real=True) rho, psi, r, theta, phi = symbols('rho psi r theta phi', nonnegative=True) relations_3d = { ('rectangular', 'cylindrical'): [(x, y, z), (sqrt(x**2 + y**2), atan2(y, x), z)], ('cylindrical', 'rectangular'): [(rho, psi, z), (rho*cos(psi), rho*sin(psi), z)], ('rectangular', 'spherical'): [(x, y, z), (sqrt(x**2 + y**2 + z**2), acos(z/sqrt(x**2 + y**2 + z**2)), atan2(y, x))], ('spherical', 'rectangular'): [(r, theta, phi), (r*sin(theta)*cos(phi), r*sin(theta)*sin(phi), r*cos(theta))], ('cylindrical', 'spherical'): [(rho, psi, z), (sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi)], ('spherical', 'cylindrical'): [(r, theta, phi), (r*sin(theta), phi, r*cos(theta))], } R3_r = CoordSystem('rectangular', R3_origin, (x, y, z), relations_3d) # type: Any R3_c = CoordSystem('cylindrical', R3_origin, (rho, psi, z), relations_3d) # type: Any R3_s = CoordSystem('spherical', R3_origin, (r, theta, phi), relations_3d) # type: Any # support deprecated feature with warnings.catch_warnings(): warnings.simplefilter("ignore") x, y, z, rho, psi, r, theta, phi = symbols('x y z rho psi r theta phi', cls=Dummy) R3_r.connect_to(R3_c, [x, y, z], [sqrt(x**2 + y**2), atan2(y, x), z], inverse=False, fill_in_gaps=False) R3_c.connect_to(R3_r, [rho, psi, z], [rho*cos(psi), rho*sin(psi), z], inverse=False, fill_in_gaps=False) ## rectangular <-> spherical R3_r.connect_to(R3_s, [x, y, z], [sqrt(x**2 + y**2 + z**2), acos(z/ sqrt(x**2 + y**2 + z**2)), atan2(y, x)], inverse=False, fill_in_gaps=False) R3_s.connect_to(R3_r, [r, theta, phi], [r*sin(theta)*cos(phi), r*sin( theta)*sin(phi), r*cos(theta)], inverse=False, fill_in_gaps=False) ## cylindrical <-> spherical R3_c.connect_to(R3_s, [rho, psi, z], [sqrt(rho**2 + z**2), acos(z/sqrt(rho**2 + z**2)), psi], inverse=False, fill_in_gaps=False) R3_s.connect_to(R3_c, [r, theta, phi], [r*sin(theta), phi, r*cos(theta)], inverse=False, fill_in_gaps=False) # Defining the basis coordinate functions. R3_r.x, R3_r.y, R3_r.z = R3_r.coord_functions() R3_c.rho, R3_c.psi, R3_c.z = R3_c.coord_functions() R3_s.r, R3_s.theta, R3_s.phi = R3_s.coord_functions() # Defining the basis vector fields. R3_r.e_x, R3_r.e_y, R3_r.e_z = R3_r.base_vectors() R3_c.e_rho, R3_c.e_psi, R3_c.e_z = R3_c.base_vectors() R3_s.e_r, R3_s.e_theta, R3_s.e_phi = R3_s.base_vectors() # Defining the basis oneform fields. R3_r.dx, R3_r.dy, R3_r.dz = R3_r.base_oneforms() R3_c.drho, R3_c.dpsi, R3_c.dz = R3_c.base_oneforms() R3_s.dr, R3_s.dtheta, R3_s.dphi = R3_s.base_oneforms()
11e1e67a3f3d297bf27d1a0770a8c266963787827889eae9d54c66ea6a7d6c65
from typing import Any, Set from functools import reduce from itertools import permutations from sympy.combinatorics import Permutation from sympy.core import ( Basic, Expr, Function, diff, Pow, Mul, Add, Lambda, S, Tuple, Dict ) from sympy.core.cache import cacheit from sympy.core.symbol import Symbol, Dummy from sympy.core.symbol import Str from sympy.core.sympify import _sympify from sympy.functions import factorial from sympy.matrices import ImmutableDenseMatrix as Matrix from sympy.simplify import simplify from sympy.solvers import solve from sympy.utilities.exceptions import SymPyDeprecationWarning # TODO you are a bit excessive in the use of Dummies # TODO dummy point, literal field # TODO too often one needs to call doit or simplify on the output, check the # tests and find out why from sympy.tensor.array import ImmutableDenseNDimArray class Manifold(Basic): """ A mathematical manifold. Explanation =========== A manifold is a topological space that locally resembles Euclidean space near each point [1]. This class does not provide any means to study the topological characteristics of the manifold that it represents, though. Parameters ========== name : str The name of the manifold. dim : int The dimension of the manifold. Examples ======== >>> from sympy.diffgeom import Manifold >>> m = Manifold('M', 2) >>> m M >>> m.dim 2 References ========== .. [1] https://en.wikipedia.org/wiki/Manifold """ def __new__(cls, name, dim, **kwargs): if not isinstance(name, Str): name = Str(name) dim = _sympify(dim) obj = super().__new__(cls, name, dim) obj.patches = _deprecated_list( "Manifold.patches", "external container for registry", 19321, "1.7", [] ) return obj @property def name(self): return self.args[0] @property def dim(self): return self.args[1] class Patch(Basic): """ A patch on a manifold. Explanation =========== Coordinate patch, or patch in short, is a simply-connected open set around a point in the manifold [1]. On a manifold one can have many patches that do not always include the whole manifold. On these patches coordinate charts can be defined that permit the parameterization of any point on the patch in terms of a tuple of real numbers (the coordinates). This class does not provide any means to study the topological characteristics of the patch that it represents. Parameters ========== name : str The name of the patch. manifold : Manifold The manifold on which the patch is defined. Examples ======== >>> from sympy.diffgeom import Manifold, Patch >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> p P >>> p.dim 2 References ========== .. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry (2013) """ def __new__(cls, name, manifold, **kwargs): if not isinstance(name, Str): name = Str(name) obj = super().__new__(cls, name, manifold) obj.manifold.patches.append(obj) # deprecated obj.coord_systems = _deprecated_list( "Patch.coord_systems", "external container for registry", 19321, "1.7", [] ) return obj @property def name(self): return self.args[0] @property def manifold(self): return self.args[1] @property def dim(self): return self.manifold.dim class CoordSystem(Basic): """ A coordinate system defined on the patch. Explanation =========== Coordinate system is a system that uses one or more coordinates to uniquely determine the position of the points or other geometric elements on a manifold [1]. By passing ``Symbols`` to *symbols* parameter, user can define the name and assumptions of coordinate symbols of the coordinate system. If not passed, these symbols are generated automatically and are assumed to be real valued. By passing *relations* parameter, user can define the tranform relations of coordinate systems. Inverse transformation and indirect transformation can be found automatically. If this parameter is not passed, coordinate transformation cannot be done. Parameters ========== name : str The name of the coordinate system. patch : Patch The patch where the coordinate system is defined. symbols : list of Symbols, optional Defines the names and assumptions of coordinate symbols. relations : dict, optional Key is a tuple of two strings, who are the names of the systems where the coordinates transform from and transform to. Value is a tuple of the symbols before transformation and a tuple of the expressions after transformation. Examples ======== We define two-dimensional Cartesian coordinate system and polar coordinate system. >>> from sympy import symbols, pi, sqrt, atan2, cos, sin >>> from sympy.diffgeom import Manifold, Patch, CoordSystem >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> x, y = symbols('x y', real=True) >>> r, theta = symbols('r theta', nonnegative=True) >>> relation_dict = { ... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))], ... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))] ... } >>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict) >>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict) ``symbols`` property returns ``CoordinateSymbol`` instances. These symbols are not same with the symbols used to construct the coordinate system. >>> Car2D Car2D >>> Car2D.dim 2 >>> Car2D.symbols (x, y) >>> _[0].func <class 'sympy.diffgeom.diffgeom.CoordinateSymbol'> ``transformation()`` method returns the transformation function from one coordinate system to another. ``transform()`` method returns the transformed coordinates. >>> Car2D.transformation(Pol) Lambda((x, y), Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]])) >>> Car2D.transform(Pol) Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]]) >>> Car2D.transform(Pol, [1, 2]) Matrix([ [sqrt(5)], [atan(2)]]) ``jacobian()`` method returns the Jacobian matrix of coordinate transformation between two systems. ``jacobian_determinant()`` method returns the Jacobian determinant of coordinate transformation between two systems. >>> Pol.jacobian(Car2D) Matrix([ [cos(theta), -r*sin(theta)], [sin(theta), r*cos(theta)]]) >>> Pol.jacobian(Car2D, [1, pi/2]) Matrix([ [0, -1], [1, 0]]) >>> Car2D.jacobian_determinant(Pol) 1/sqrt(x**2 + y**2) >>> Car2D.jacobian_determinant(Pol, [1,0]) 1 References ========== .. [1] https://en.wikipedia.org/wiki/Coordinate_system """ def __new__(cls, name, patch, symbols=None, relations={}, **kwargs): if not isinstance(name, Str): name = Str(name) # canonicallize the symbols if symbols is None: names = kwargs.get('names', None) if names is None: symbols = Tuple( *[Symbol('%s_%s' % (name.name, i), real=True) for i in range(patch.dim)] ) else: SymPyDeprecationWarning( feature="Class signature 'names' of CoordSystem", useinstead="class signature 'symbols'", issue=19321, deprecated_since_version="1.7" ).warn() symbols = Tuple( *[Symbol(n, real=True) for n in names] ) else: syms = [] for s in symbols: if isinstance(s, Symbol): syms.append(Symbol(s.name, **s._assumptions.generator)) elif isinstance(s, str): SymPyDeprecationWarning( feature="Passing str as coordinate symbol's name", useinstead="Symbol which contains the name and assumption for coordinate symbol", issue=19321, deprecated_since_version="1.7" ).warn() syms.append(Symbol(s, real=True)) symbols = Tuple(*syms) # canonicallize the relations rel_temp = {} for k,v in relations.items(): s1, s2 = k if not isinstance(s1, Str): s1 = Str(s1) if not isinstance(s2, Str): s2 = Str(s2) key = Tuple(s1, s2) # Old version used Lambda as a value. if isinstance(v, Lambda): v = (tuple(v.signature), tuple(v.expr)) else: v = (tuple(v[0]), tuple(v[1])) rel_temp[key] = v relations = Dict(rel_temp) # construct the object obj = super().__new__(cls, name, patch, symbols, relations) # Add deprecated attributes obj.transforms = _deprecated_dict( "Mutable CoordSystem.transforms", "'relations' parameter in class signature", 19321, "1.7", {} ) obj._names = [str(n) for n in symbols] obj.patch.coord_systems.append(obj) # deprecated obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated obj._dummy = Dummy() return obj @property def name(self): return self.args[0] @property def patch(self): return self.args[1] @property def manifold(self): return self.patch.manifold @property def symbols(self): return tuple(CoordinateSymbol(self, i, **s._assumptions.generator) for i,s in enumerate(self.args[2])) @property def relations(self): return self.args[3] @property def dim(self): return self.patch.dim ########################################################################## # Finding transformation relation ########################################################################## def transformation(self, sys): """ Return coordinate transformation function from *self* to *sys*. Parameters ========== sys : CoordSystem Returns ======= sympy.Lambda Examples ======== >>> from sympy.diffgeom.rn import R2_r, R2_p >>> R2_r.transformation(R2_p) Lambda((x, y), Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]])) """ signature = self.args[2] key = Tuple(self.name, sys.name) if self == sys: expr = Matrix(self.symbols) elif key in self.relations: expr = Matrix(self.relations[key][1]) elif key[::-1] in self.relations: expr = Matrix(self._inverse_transformation(sys, self)) else: expr = Matrix(self._indirect_transformation(self, sys)) return Lambda(signature, expr) @staticmethod def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name): ret = solve( [t[0] - t[1] for t in zip(sym2, exprs)], list(sym1), dict=True) if len(ret) == 0: temp = "Cannot solve inverse relation from {} to {}." raise NotImplementedError(temp.format(sys1_name, sys2_name)) elif len(ret) > 1: temp = "Obtained multiple inverse relation from {} to {}." raise ValueError(temp.format(sys1_name, sys2_name)) return ret[0] @classmethod def _inverse_transformation(cls, sys1, sys2): # Find the transformation relation from sys2 to sys1 forward = sys1.transform(sys2) inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward, sys1.name, sys2.name) signature = tuple(sys1.symbols) return [inv_results[s] for s in signature] @classmethod @cacheit def _indirect_transformation(cls, sys1, sys2): # Find the transformation relation between two indirectly connected # coordinate systems rel = sys1.relations path = cls._dijkstra(sys1, sys2) transforms = [] for s1, s2 in zip(path, path[1:]): if (s1, s2) in rel: transforms.append(rel[(s1, s2)]) else: sym2, inv_exprs = rel[(s2, s1)] sym1 = tuple(Dummy() for i in sym2) ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1) ret = tuple(ret[s] for s in sym2) transforms.append((sym1, ret)) syms = sys1.args[2] exprs = syms for newsyms, newexprs in transforms: exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs) return exprs @staticmethod def _dijkstra(sys1, sys2): # Use Dijkstra algorithm to find the shortest path between two indirectly-connected # coordinate systems # return value is the list of the names of the systems. relations = sys1.relations graph = {} for s1, s2 in relations.keys(): if s1 not in graph: graph[s1] = {s2} else: graph[s1].add(s2) if s2 not in graph: graph[s2] = {s1} else: graph[s2].add(s1) path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited def visit(sys): path_dict[sys][2] = 1 for newsys in graph[sys]: distance = path_dict[sys][0] + 1 if path_dict[newsys][0] >= distance or not path_dict[newsys][1]: path_dict[newsys][0] = distance path_dict[newsys][1] = [i for i in path_dict[sys][1]] path_dict[newsys][1].append(sys) visit(sys1.name) while True: min_distance = max(path_dict.values(), key=lambda x:x[0])[0] newsys = None for sys, lst in path_dict.items(): if 0 < lst[0] <= min_distance and not lst[2]: min_distance = lst[0] newsys = sys if newsys is None: break visit(newsys) result = path_dict[sys2.name][1] result.append(sys2.name) if result == [sys2.name]: raise KeyError("Two coordinate systems are not connected.") return result def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False): SymPyDeprecationWarning( feature="CoordSystem.connect_to", useinstead="new instance generated with new 'transforms' parameter", issue=19321, deprecated_since_version="1.7" ).warn() from_coords, to_exprs = dummyfy(from_coords, to_exprs) self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs) if inverse: to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs) if fill_in_gaps: self._fill_gaps_in_transformations() @staticmethod def _inv_transf(from_coords, to_exprs): # Will be removed when connect_to is removed inv_from = [i.as_dummy() for i in from_coords] inv_to = solve( [t[0] - t[1] for t in zip(inv_from, to_exprs)], list(from_coords), dict=True)[0] inv_to = [inv_to[fc] for fc in from_coords] return Matrix(inv_from), Matrix(inv_to) @staticmethod def _fill_gaps_in_transformations(): # Will be removed when connect_to is removed raise NotImplementedError ########################################################################## # Coordinate transformations ########################################################################## def transform(self, sys, coordinates=None): """ Return the result of coordinate transformation from *self* to *sys*. If coordinates are not given, coordinate symbols of *self* are used. Parameters ========== sys : CoordSystem coordinates : Any iterable, optional. Returns ======= sympy.ImmutableDenseMatrix containing CoordinateSymbol Examples ======== >>> from sympy.diffgeom.rn import R2_r, R2_p >>> R2_r.transform(R2_p) Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]]) >>> R2_r.transform(R2_p, [0, 1]) Matrix([ [ 1], [pi/2]]) """ if coordinates is None: coordinates = self.symbols if self != sys: transf = self.transformation(sys) coordinates = transf(*coordinates) else: coordinates = Matrix(coordinates) return coordinates def coord_tuple_transform_to(self, to_sys, coords): """Transform ``coords`` to coord system ``to_sys``.""" SymPyDeprecationWarning( feature="CoordSystem.coord_tuple_transform_to", useinstead="CoordSystem.transform", issue=19321, deprecated_since_version="1.7" ).warn() coords = Matrix(coords) if self != to_sys: transf = self.transforms[to_sys] coords = transf[1].subs(list(zip(transf[0], coords))) return coords def jacobian(self, sys, coordinates=None): """ Return the jacobian matrix of a transformation on given coordinates. If coordinates are not given, coordinate symbols of *self* are used. Parameters ========== sys : CoordSystem coordinates : Any iterable, optional. Returns ======= sympy.ImmutableDenseMatrix Examples ======== >>> from sympy.diffgeom.rn import R2_r, R2_p >>> R2_p.jacobian(R2_r) Matrix([ [cos(theta), -rho*sin(theta)], [sin(theta), rho*cos(theta)]]) >>> R2_p.jacobian(R2_r, [1, 0]) Matrix([ [1, 0], [0, 1]]) """ result = self.transform(sys).jacobian(self.symbols) if coordinates is not None: result = result.subs(list(zip(self.symbols, coordinates))) return result jacobian_matrix = jacobian def jacobian_determinant(self, sys, coordinates=None): """ Return the jacobian determinant of a transformation on given coordinates. If coordinates are not given, coordinate symbols of *self* are used. Parameters ========== sys : CoordSystem coordinates : Any iterable, optional. Returns ======= sympy.Expr Examples ======== >>> from sympy.diffgeom.rn import R2_r, R2_p >>> R2_r.jacobian_determinant(R2_p) 1/sqrt(x**2 + y**2) >>> R2_r.jacobian_determinant(R2_p, [1, 0]) 1 """ return self.jacobian(sys, coordinates).det() ########################################################################## # Points ########################################################################## def point(self, coords): """Create a ``Point`` with coordinates given in this coord system.""" return Point(self, coords) def point_to_coords(self, point): """Calculate the coordinates of a point in this coord system.""" return point.coords(self) ########################################################################## # Base fields. ########################################################################## def base_scalar(self, coord_index): """Return ``BaseScalarField`` that takes a point and returns one of the coordinates.""" return BaseScalarField(self, coord_index) coord_function = base_scalar def base_scalars(self): """Returns a list of all coordinate functions. For more details see the ``base_scalar`` method of this class.""" return [self.base_scalar(i) for i in range(self.dim)] coord_functions = base_scalars def base_vector(self, coord_index): """Return a basis vector field. The basis vector field for this coordinate system. It is also an operator on scalar fields.""" return BaseVectorField(self, coord_index) def base_vectors(self): """Returns a list of all base vectors. For more details see the ``base_vector`` method of this class.""" return [self.base_vector(i) for i in range(self.dim)] def base_oneform(self, coord_index): """Return a basis 1-form field. The basis one-form field for this coordinate system. It is also an operator on vector fields.""" return Differential(self.coord_function(coord_index)) def base_oneforms(self): """Returns a list of all base oneforms. For more details see the ``base_oneform`` method of this class.""" return [self.base_oneform(i) for i in range(self.dim)] class CoordinateSymbol(Symbol): """A symbol which denotes an abstract value of i-th coordinate of the coordinate system with given context. Explanation =========== Each coordinates in coordinate system are represented by unique symbol, such as x, y, z in Cartesian coordinate system. You may not construct this class directly. Instead, use `symbols` method of CoordSystem. Parameters ========== coord_sys : CoordSystem index : integer Examples ======== >>> from sympy import symbols >>> from sympy.diffgeom import Manifold, Patch, CoordSystem >>> m = Manifold('M', 2) >>> p = Patch('P', m) >>> _x, _y = symbols('x y', nonnegative=True) >>> C = CoordSystem('C', p, [_x, _y]) >>> x, y = C.symbols >>> x.name 'x' >>> x.coord_sys == C True >>> x.index 0 >>> x.is_nonnegative True """ def __new__(cls, coord_sys, index, **assumptions): name = coord_sys.args[2][index].name obj = super().__new__(cls, name, **assumptions) obj.coord_sys = coord_sys obj.index = index return obj def __getnewargs__(self): return (self.coord_sys, self.index) def _hashable_content(self): return ( self.coord_sys, self.index ) + tuple(sorted(self.assumptions0.items())) class Point(Basic): """Point defined in a coordinate system. Explanation =========== Mathematically, point is defined in the manifold and does not have any coordinates by itself. Coordinate system is what imbues the coordinates to the point by coordinate chart. However, due to the difficulty of realizing such logic, you must supply a coordinate system and coordinates to define a Point here. The usage of this object after its definition is independent of the coordinate system that was used in order to define it, however due to limitations in the simplification routines you can arrive at complicated expressions if you use inappropriate coordinate systems. Parameters ========== coord_sys : CoordSystem coords : list The coordinates of the point. Examples ======== >>> from sympy import pi >>> from sympy.diffgeom import Point >>> from sympy.diffgeom.rn import R2, R2_r, R2_p >>> rho, theta = R2_p.symbols >>> p = Point(R2_p, [rho, 3*pi/4]) >>> p.manifold == R2 True >>> p.coords() Matrix([ [ rho], [3*pi/4]]) >>> p.coords(R2_r) Matrix([ [-sqrt(2)*rho/2], [ sqrt(2)*rho/2]]) """ def __new__(cls, coord_sys, coords, **kwargs): coords = Matrix(coords) obj = super().__new__(cls, coord_sys, coords) obj._coord_sys = coord_sys obj._coords = coords return obj @property def patch(self): return self._coord_sys.patch @property def manifold(self): return self._coord_sys.manifold @property def dim(self): return self.manifold.dim def coords(self, sys=None): """ Coordinates of the point in given coordinate system. If coordinate system is not passed, it returns the coordinates in the coordinate system in which the poin was defined. """ if sys is None: return self._coords else: return self._coord_sys.transform(sys, self._coords) @property def free_symbols(self): return self._coords.free_symbols class BaseScalarField(Expr): """Base scalar field over a manifold for a given coordinate system. Explanation =========== A scalar field takes a point as an argument and returns a scalar. A base scalar field of a coordinate system takes a point and returns one of the coordinates of that point in the coordinate system in question. To define a scalar field you need to choose the coordinate system and the index of the coordinate. The use of the scalar field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems. You can build complicated scalar fields by just building up SymPy expressions containing ``BaseScalarField`` instances. Parameters ========== coord_sys : CoordSystem index : integer Examples ======== >>> from sympy import Function, pi >>> from sympy.diffgeom import BaseScalarField >>> from sympy.diffgeom.rn import R2_r, R2_p >>> rho, _ = R2_p.symbols >>> point = R2_p.point([rho, 0]) >>> fx, fy = R2_r.base_scalars() >>> ftheta = BaseScalarField(R2_r, 1) >>> fx(point) rho >>> fy(point) 0 >>> (fx**2+fy**2).rcall(point) rho**2 >>> g = Function('g') >>> fg = g(ftheta-pi) >>> fg.rcall(point) g(-pi) """ is_commutative = True def __new__(cls, coord_sys, index, **kwargs): index = _sympify(index) obj = super().__new__(cls, coord_sys, index) obj._coord_sys = coord_sys obj._index = index return obj @property def coord_sys(self): return self.args[0] @property def index(self): return self.args[1] @property def patch(self): return self.coord_sys.patch @property def manifold(self): return self.coord_sys.manifold @property def dim(self): return self.manifold.dim def __call__(self, *args): """Evaluating the field at a point or doing nothing. If the argument is a ``Point`` instance, the field is evaluated at that point. The field is returned itself if the argument is any other object. It is so in order to have working recursive calling mechanics for all fields (check the ``__call__`` method of ``Expr``). """ point = args[0] if len(args) != 1 or not isinstance(point, Point): return self coords = point.coords(self._coord_sys) # XXX Calling doit is necessary with all the Subs expressions # XXX Calling simplify is necessary with all the trig expressions return simplify(coords[self._index]).doit() # XXX Workaround for limitations on the content of args free_symbols = set() # type: Set[Any] def doit(self): return self class BaseVectorField(Expr): r"""Base vector field over a manifold for a given coordinate system. Explanation =========== A vector field is an operator taking a scalar field and returning a directional derivative (which is also a scalar field). A base vector field is the same type of operator, however the derivation is specifically done with respect to a chosen coordinate. To define a base vector field you need to choose the coordinate system and the index of the coordinate. The use of the vector field after its definition is independent of the coordinate system in which it was defined, however due to limitations in the simplification routines you may arrive at more complicated expression if you use unappropriate coordinate systems. Parameters ========== coord_sys : CoordSystem index : integer Examples ======== >>> from sympy import Function >>> from sympy.diffgeom.rn import R2_p, R2_r >>> from sympy.diffgeom import BaseVectorField >>> from sympy import pprint >>> x, y = R2_r.symbols >>> rho, theta = R2_p.symbols >>> fx, fy = R2_r.base_scalars() >>> point_p = R2_p.point([rho, theta]) >>> point_r = R2_r.point([x, y]) >>> g = Function('g') >>> s_field = g(fx, fy) >>> v = BaseVectorField(R2_r, 1) >>> pprint(v(s_field)) / d \| |---(g(x, xi))|| \dxi /|xi=y >>> pprint(v(s_field).rcall(point_r).doit()) d --(g(x, y)) dy >>> pprint(v(s_field).rcall(point_p)) / d \| |---(g(rho*cos(theta), xi))|| \dxi /|xi=rho*sin(theta) """ is_commutative = False def __new__(cls, coord_sys, index, **kwargs): index = _sympify(index) obj = super().__new__(cls, coord_sys, index) obj._coord_sys = coord_sys obj._index = index return obj @property def coord_sys(self): return self.args[0] @property def index(self): return self.args[1] @property def patch(self): return self.coord_sys.patch @property def manifold(self): return self.coord_sys.manifold @property def dim(self): return self.manifold.dim def __call__(self, scalar_field): """Apply on a scalar field. The action of a vector field on a scalar field is a directional differentiation. If the argument is not a scalar field an error is raised. """ if covariant_order(scalar_field) or contravariant_order(scalar_field): raise ValueError('Only scalar fields can be supplied as arguments to vector fields.') if scalar_field is None: return self base_scalars = list(scalar_field.atoms(BaseScalarField)) # First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r) d_var = self._coord_sys._dummy # TODO: you need a real dummy function for the next line d_funcs = [Function('_#_%s' % i)(d_var) for i, b in enumerate(base_scalars)] d_result = scalar_field.subs(list(zip(base_scalars, d_funcs))) d_result = d_result.diff(d_var) # Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y)) coords = self._coord_sys.symbols d_funcs_deriv = [f.diff(d_var) for f in d_funcs] d_funcs_deriv_sub = [] for b in base_scalars: jac = self._coord_sys.jacobian(b._coord_sys, coords) d_funcs_deriv_sub.append(jac[b._index, self._index]) d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub))) # Remove the dummies result = d_result.subs(list(zip(d_funcs, base_scalars))) result = result.subs(list(zip(coords, self._coord_sys.coord_functions()))) return result.doit() def _find_coords(expr): # Finds CoordinateSystems existing in expr fields = expr.atoms(BaseScalarField, BaseVectorField) result = set() for f in fields: result.add(f._coord_sys) return result class Commutator(Expr): r"""Commutator of two vector fields. Explanation =========== The commutator of two vector fields `v_1` and `v_2` is defined as the vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal to `v_1(v_2(f)) - v_2(v_1(f))`. Examples ======== >>> from sympy.diffgeom.rn import R2_p, R2_r >>> from sympy.diffgeom import Commutator >>> from sympy.simplify import simplify >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> e_r = R2_p.base_vector(0) >>> c_xy = Commutator(e_x, e_y) >>> c_xr = Commutator(e_x, e_r) >>> c_xy 0 Unfortunately, the current code is not able to compute everything: >>> c_xr Commutator(e_x, e_rho) >>> simplify(c_xr(fy**2)) -2*cos(theta)*y**2/(x**2 + y**2) """ def __new__(cls, v1, v2): if (covariant_order(v1) or contravariant_order(v1) != 1 or covariant_order(v2) or contravariant_order(v2) != 1): raise ValueError( 'Only commutators of vector fields are supported.') if v1 == v2: return S.Zero coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)]) if len(coord_sys) == 1: # Only one coordinate systems is used, hence it is easy enough to # actually evaluate the commutator. if all(isinstance(v, BaseVectorField) for v in (v1, v2)): return S.Zero bases_1, bases_2 = [list(v.atoms(BaseVectorField)) for v in (v1, v2)] coeffs_1 = [v1.expand().coeff(b) for b in bases_1] coeffs_2 = [v2.expand().coeff(b) for b in bases_2] res = 0 for c1, b1 in zip(coeffs_1, bases_1): for c2, b2 in zip(coeffs_2, bases_2): res += c1*b1(c2)*b2 - c2*b2(c1)*b1 return res else: obj = super().__new__(cls, v1, v2) obj._v1 = v1 # deprecated assignment obj._v2 = v2 # deprecated assignment return obj @property def v1(self): return self.args[0] @property def v2(self): return self.args[1] def __call__(self, scalar_field): """Apply on a scalar field. If the argument is not a scalar field an error is raised. """ return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field)) class Differential(Expr): r"""Return the differential (exterior derivative) of a form field. Explanation =========== The differential of a form (i.e. the exterior derivative) has a complicated definition in the general case. The differential `df` of the 0-form `f` is defined for any vector field `v` as `df(v) = v(f)`. Examples ======== >>> from sympy import Function >>> from sympy.diffgeom.rn import R2_r >>> from sympy.diffgeom import Differential >>> from sympy import pprint >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> g = Function('g') >>> s_field = g(fx, fy) >>> dg = Differential(s_field) >>> dg d(g(x, y)) >>> pprint(dg(e_x)) / d \| |---(g(xi, y))|| \dxi /|xi=x >>> pprint(dg(e_y)) / d \| |---(g(x, xi))|| \dxi /|xi=y Applying the exterior derivative operator twice always results in: >>> Differential(dg) 0 """ is_commutative = False def __new__(cls, form_field): if contravariant_order(form_field): raise ValueError( 'A vector field was supplied as an argument to Differential.') if isinstance(form_field, Differential): return S.Zero else: obj = super().__new__(cls, form_field) obj._form_field = form_field # deprecated assignment return obj @property def form_field(self): return self.args[0] def __call__(self, *vector_fields): """Apply on a list of vector_fields. Explanation =========== If the number of vector fields supplied is not equal to 1 + the order of the form field inside the differential the result is undefined. For 1-forms (i.e. differentials of scalar fields) the evaluation is done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector field, the differential is returned unchanged. This is done in order to permit partial contractions for higher forms. In the general case the evaluation is done by applying the form field inside the differential on a list with one less elements than the number of elements in the original list. Lowering the number of vector fields is achieved through replacing each pair of fields by their commutator. If the arguments are not vectors or ``None``s an error is raised. """ if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None for a in vector_fields): raise ValueError('The arguments supplied to Differential should be vector fields or Nones.') k = len(vector_fields) if k == 1: if vector_fields[0]: return vector_fields[0].rcall(self._form_field) return self else: # For higher form it is more complicated: # Invariant formula: # https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula # df(v1, ... vn) = +/- vi(f(v1..no i..vn)) # +/- f([vi,vj],v1..no i, no j..vn) f = self._form_field v = vector_fields ret = 0 for i in range(k): t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:])) ret += (-1)**i*t for j in range(i + 1, k): c = Commutator(v[i], v[j]) if c: # TODO this is ugly - the Commutator can be Zero and # this causes the next line to fail t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:]) ret += (-1)**(i + j)*t return ret class TensorProduct(Expr): """Tensor product of forms. Explanation =========== The tensor product permits the creation of multilinear functionals (i.e. higher order tensors) out of lower order fields (e.g. 1-forms and vector fields). However, the higher tensors thus created lack the interesting features provided by the other type of product, the wedge product, namely they are not antisymmetric and hence are not form fields. Examples ======== >>> from sympy.diffgeom.rn import R2_r >>> from sympy.diffgeom import TensorProduct >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> dx, dy = R2_r.base_oneforms() >>> TensorProduct(dx, dy)(e_x, e_y) 1 >>> TensorProduct(dx, dy)(e_y, e_x) 0 >>> TensorProduct(dx, fx*dy)(fx*e_x, e_y) x**2 >>> TensorProduct(e_x, e_y)(fx**2, fy**2) 4*x*y >>> TensorProduct(e_y, dx)(fy) dx You can nest tensor products. >>> tp1 = TensorProduct(dx, dy) >>> TensorProduct(tp1, dx)(e_x, e_y, e_x) 1 You can make partial contraction for instance when 'raising an index'. Putting ``None`` in the second argument of ``rcall`` means that the respective position in the tensor product is left as it is. >>> TP = TensorProduct >>> metric = TP(dx, dx) + 3*TP(dy, dy) >>> metric.rcall(e_y, None) 3*dy Or automatically pad the args with ``None`` without specifying them. >>> metric.rcall(e_y) 3*dy """ def __new__(cls, *args): scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0]) multifields = [m for m in args if covariant_order(m) + contravariant_order(m)] if multifields: if len(multifields) == 1: return scalar*multifields[0] return scalar*super().__new__(cls, *multifields) else: return scalar def __call__(self, *fields): """Apply on a list of fields. If the number of input fields supplied is not equal to the order of the tensor product field, the list of arguments is padded with ``None``'s. The list of arguments is divided in sublists depending on the order of the forms inside the tensor product. The sublists are provided as arguments to these forms and the resulting expressions are given to the constructor of ``TensorProduct``. """ tot_order = covariant_order(self) + contravariant_order(self) tot_args = len(fields) if tot_args != tot_order: fields = list(fields) + [None]*(tot_order - tot_args) orders = [covariant_order(f) + contravariant_order(f) for f in self._args] indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)] fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])] multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)] return TensorProduct(*multipliers) class WedgeProduct(TensorProduct): """Wedge product of forms. Explanation =========== In the context of integration only completely antisymmetric forms make sense. The wedge product permits the creation of such forms. Examples ======== >>> from sympy.diffgeom.rn import R2_r >>> from sympy.diffgeom import WedgeProduct >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> dx, dy = R2_r.base_oneforms() >>> WedgeProduct(dx, dy)(e_x, e_y) 1 >>> WedgeProduct(dx, dy)(e_y, e_x) -1 >>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y) x**2 >>> WedgeProduct(e_x, e_y)(fy, None) -e_x You can nest wedge products. >>> wp1 = WedgeProduct(dx, dy) >>> WedgeProduct(wp1, dx)(e_x, e_y, e_x) 0 """ # TODO the calculation of signatures is slow # TODO you do not need all these permutations (neither the prefactor) def __call__(self, *fields): """Apply on a list of vector_fields. The expression is rewritten internally in terms of tensor products and evaluated.""" orders = (covariant_order(e) + contravariant_order(e) for e in self.args) mul = 1/Mul(*(factorial(o) for o in orders)) perms = permutations(fields) perms_par = (Permutation( p).signature() for p in permutations(list(range(len(fields))))) tensor_prod = TensorProduct(*self.args) return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)]) class LieDerivative(Expr): """Lie derivative with respect to a vector field. Explanation =========== The transport operator that defines the Lie derivative is the pushforward of the field to be derived along the integral curve of the field with respect to which one derives. Examples ======== >>> from sympy.diffgeom.rn import R2_r, R2_p >>> from sympy.diffgeom import (LieDerivative, TensorProduct) >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> e_rho, e_theta = R2_p.base_vectors() >>> dx, dy = R2_r.base_oneforms() >>> LieDerivative(e_x, fy) 0 >>> LieDerivative(e_x, fx) 1 >>> LieDerivative(e_x, e_x) 0 The Lie derivative of a tensor field by another tensor field is equal to their commutator: >>> LieDerivative(e_x, e_rho) Commutator(e_x, e_rho) >>> LieDerivative(e_x + e_y, fx) 1 >>> tp = TensorProduct(dx, dy) >>> LieDerivative(e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) >>> LieDerivative(e_x, tp) LieDerivative(e_x, TensorProduct(dx, dy)) """ def __new__(cls, v_field, expr): expr_form_ord = covariant_order(expr) if contravariant_order(v_field) != 1 or covariant_order(v_field): raise ValueError('Lie derivatives are defined only with respect to' ' vector fields. The supplied argument was not a ' 'vector field.') if expr_form_ord > 0: obj = super().__new__(cls, v_field, expr) # deprecated assignments obj._v_field = v_field obj._expr = expr return obj if expr.atoms(BaseVectorField): return Commutator(v_field, expr) else: return v_field.rcall(expr) @property def v_field(self): return self.args[0] @property def expr(self): return self.args[1] def __call__(self, *args): v = self.v_field expr = self.expr lead_term = v(expr(*args)) rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:]) for i in range(len(args))]) return lead_term - rest class BaseCovarDerivativeOp(Expr): """Covariant derivative operator with respect to a base vector. Examples ======== >>> from sympy.diffgeom.rn import R2_r >>> from sympy.diffgeom import BaseCovarDerivativeOp >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> dx, dy = R2_r.base_oneforms() >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy)) >>> ch [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch) >>> cvd(fx) 1 >>> cvd(fx*e_x) e_x """ def __new__(cls, coord_sys, index, christoffel): index = _sympify(index) christoffel = ImmutableDenseNDimArray(christoffel) obj = super().__new__(cls, coord_sys, index, christoffel) # deprecated assignments obj._coord_sys = coord_sys obj._index = index obj._christoffel = christoffel return obj @property def coord_sys(self): return self.args[0] @property def index(self): return self.args[1] @property def christoffel(self): return self.args[2] def __call__(self, field): """Apply on a scalar field. The action of a vector field on a scalar field is a directional differentiation. If the argument is not a scalar field the behaviour is undefined. """ if covariant_order(field) != 0: raise NotImplementedError() field = vectors_in_basis(field, self._coord_sys) wrt_vector = self._coord_sys.base_vector(self._index) wrt_scalar = self._coord_sys.coord_function(self._index) vectors = list(field.atoms(BaseVectorField)) # First step: replace all vectors with something susceptible to # derivation and do the derivation # TODO: you need a real dummy function for the next line d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i, b in enumerate(vectors)] d_result = field.subs(list(zip(vectors, d_funcs))) d_result = wrt_vector(d_result) # Second step: backsubstitute the vectors in d_result = d_result.subs(list(zip(d_funcs, vectors))) # Third step: evaluate the derivatives of the vectors derivs = [] for v in vectors: d = Add(*[(self._christoffel[k, wrt_vector._index, v._index] *v._coord_sys.base_vector(k)) for k in range(v._coord_sys.dim)]) derivs.append(d) to_subs = [wrt_vector(d) for d in d_funcs] # XXX: This substitution can fail when there are Dummy symbols and the # cache is disabled: https://github.com/sympy/sympy/issues/17794 result = d_result.subs(list(zip(to_subs, derivs))) # Remove the dummies result = result.subs(list(zip(d_funcs, vectors))) return result.doit() class CovarDerivativeOp(Expr): """Covariant derivative operator. Examples ======== >>> from sympy.diffgeom.rn import R2_r >>> from sympy.diffgeom import CovarDerivativeOp >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> fx, fy = R2_r.base_scalars() >>> e_x, e_y = R2_r.base_vectors() >>> dx, dy = R2_r.base_oneforms() >>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy)) >>> ch [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> cvd = CovarDerivativeOp(fx*e_x, ch) >>> cvd(fx) x >>> cvd(fx*e_x) x*e_x """ def __new__(cls, wrt, christoffel): if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1: raise NotImplementedError() if contravariant_order(wrt) != 1 or covariant_order(wrt): raise ValueError('Covariant derivatives are defined only with ' 'respect to vector fields. The supplied argument ' 'was not a vector field.') obj = super().__new__(cls, wrt, christoffel) # deprecated assigments obj._wrt = wrt obj._christoffel = christoffel return obj @property def wrt(self): return self.args[0] @property def christoffel(self): return self.args[1] def __call__(self, field): vectors = list(self._wrt.atoms(BaseVectorField)) base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel) for v in vectors] return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field) ############################################################################### # Integral curves on vector fields ############################################################################### def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False): r"""Return the series expansion for an integral curve of the field. Explanation =========== Integral curve is a function `\gamma` taking a parameter in `R` to a point in the manifold. It verifies the equation: `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)` where the given ``vector_field`` is denoted as `V`. This holds for any value `t` for the parameter and any scalar field `f`. This equation can also be decomposed of a basis of coordinate functions `V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i` This function returns a series expansion of `\gamma(t)` in terms of the coordinate system ``coord_sys``. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold). Parameters ========== vector_field the vector field for which an integral curve will be given param the argument of the function `\gamma` from R to the curve start_point the point which corresponds to `\gamma(0)` n the order to which to expand coord_sys the coordinate system in which to expand coeffs (default False) - if True return a list of elements of the expansion Examples ======== Use the predefined R2 manifold: >>> from sympy.abc import t, x, y >>> from sympy.diffgeom.rn import R2_p, R2_r >>> from sympy.diffgeom import intcurve_series Specify a starting point and a vector field: >>> start_point = R2_r.point([x, y]) >>> vector_field = R2_r.e_x Calculate the series: >>> intcurve_series(vector_field, t, start_point, n=3) Matrix([ [t + x], [ y]]) Or get the elements of the expansion in a list: >>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True) >>> series[0] Matrix([ [x], [y]]) >>> series[1] Matrix([ [t], [0]]) >>> series[2] Matrix([ [0], [0]]) The series in the polar coordinate system: >>> series = intcurve_series(vector_field, t, start_point, ... n=3, coord_sys=R2_p, coeffs=True) >>> series[0] Matrix([ [sqrt(x**2 + y**2)], [ atan2(y, x)]]) >>> series[1] Matrix([ [t*x/sqrt(x**2 + y**2)], [ -t*y/(x**2 + y**2)]]) >>> series[2] Matrix([ [t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2], [ t**2*x*y/(x**2 + y**2)**2]]) See Also ======== intcurve_diffequ """ if contravariant_order(vector_field) != 1 or covariant_order(vector_field): raise ValueError('The supplied field was not a vector field.') def iter_vfield(scalar_field, i): """Return ``vector_field`` called `i` times on ``scalar_field``.""" return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field) def taylor_terms_per_coord(coord_function): """Return the series for one of the coordinates.""" return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i) for i in range(n)] coord_sys = coord_sys if coord_sys else start_point._coord_sys coord_functions = coord_sys.coord_functions() taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions] if coeffs: return [Matrix(t) for t in zip(*taylor_terms)] else: return Matrix([sum(c) for c in taylor_terms]) def intcurve_diffequ(vector_field, param, start_point, coord_sys=None): r"""Return the differential equation for an integral curve of the field. Explanation =========== Integral curve is a function `\gamma` taking a parameter in `R` to a point in the manifold. It verifies the equation: `V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)` where the given ``vector_field`` is denoted as `V`. This holds for any value `t` for the parameter and any scalar field `f`. This function returns the differential equation of `\gamma(t)` in terms of the coordinate system ``coord_sys``. The equations and expansions are necessarily done in coordinate-system-dependent way as there is no other way to represent movement between points on the manifold (i.e. there is no such thing as a difference of points for a general manifold). Parameters ========== vector_field the vector field for which an integral curve will be given param the argument of the function `\gamma` from R to the curve start_point the point which corresponds to `\gamma(0)` coord_sys the coordinate system in which to give the equations Returns ======= a tuple of (equations, initial conditions) Examples ======== Use the predefined R2 manifold: >>> from sympy.abc import t >>> from sympy.diffgeom.rn import R2, R2_p, R2_r >>> from sympy.diffgeom import intcurve_diffequ Specify a starting point and a vector field: >>> start_point = R2_r.point([0, 1]) >>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y Get the equation: >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point) >>> equations [f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)] >>> init_cond [f_0(0), f_1(0) - 1] The series in the polar coordinate system: >>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) >>> equations [Derivative(f_0(t), t), Derivative(f_1(t), t) - 1] >>> init_cond [f_0(0) - 1, f_1(0) - pi/2] See Also ======== intcurve_series """ if contravariant_order(vector_field) != 1 or covariant_order(vector_field): raise ValueError('The supplied field was not a vector field.') coord_sys = coord_sys if coord_sys else start_point._coord_sys gammas = [Function('f_%d' % i)(param) for i in range( start_point._coord_sys.dim)] arbitrary_p = Point(coord_sys, gammas) coord_functions = coord_sys.coord_functions() equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p)) for cf in coord_functions] init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point)) for cf in coord_functions] return equations, init_cond ############################################################################### # Helpers ############################################################################### def dummyfy(args, exprs): # TODO Is this a good idea? d_args = Matrix([s.as_dummy() for s in args]) reps = dict(zip(args, d_args)) d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs]) return d_args, d_exprs ############################################################################### # Helpers ############################################################################### def contravariant_order(expr, _strict=False): """Return the contravariant order of an expression. Examples ======== >>> from sympy.diffgeom import contravariant_order >>> from sympy.diffgeom.rn import R2 >>> from sympy.abc import a >>> contravariant_order(a) 0 >>> contravariant_order(a*R2.x + 2) 0 >>> contravariant_order(a*R2.x*R2.e_y + R2.e_x) 1 """ # TODO move some of this to class methods. # TODO rewrite using the .as_blah_blah methods if isinstance(expr, Add): orders = [contravariant_order(e) for e in expr.args] if len(set(orders)) != 1: raise ValueError('Misformed expression containing contravariant fields of varying order.') return orders[0] elif isinstance(expr, Mul): orders = [contravariant_order(e) for e in expr.args] not_zero = [o for o in orders if o != 0] if len(not_zero) > 1: raise ValueError('Misformed expression containing multiplication between vectors.') return 0 if not not_zero else not_zero[0] elif isinstance(expr, Pow): if covariant_order(expr.base) or covariant_order(expr.exp): raise ValueError( 'Misformed expression containing a power of a vector.') return 0 elif isinstance(expr, BaseVectorField): return 1 elif isinstance(expr, TensorProduct): return sum(contravariant_order(a) for a in expr.args) elif not _strict or expr.atoms(BaseScalarField): return 0 else: # If it does not contain anything related to the diffgeom module and it is _strict return -1 def covariant_order(expr, _strict=False): """Return the covariant order of an expression. Examples ======== >>> from sympy.diffgeom import covariant_order >>> from sympy.diffgeom.rn import R2 >>> from sympy.abc import a >>> covariant_order(a) 0 >>> covariant_order(a*R2.x + 2) 0 >>> covariant_order(a*R2.x*R2.dy + R2.dx) 1 """ # TODO move some of this to class methods. # TODO rewrite using the .as_blah_blah methods if isinstance(expr, Add): orders = [covariant_order(e) for e in expr.args] if len(set(orders)) != 1: raise ValueError('Misformed expression containing form fields of varying order.') return orders[0] elif isinstance(expr, Mul): orders = [covariant_order(e) for e in expr.args] not_zero = [o for o in orders if o != 0] if len(not_zero) > 1: raise ValueError('Misformed expression containing multiplication between forms.') return 0 if not not_zero else not_zero[0] elif isinstance(expr, Pow): if covariant_order(expr.base) or covariant_order(expr.exp): raise ValueError( 'Misformed expression containing a power of a form.') return 0 elif isinstance(expr, Differential): return covariant_order(*expr.args) + 1 elif isinstance(expr, TensorProduct): return sum(covariant_order(a) for a in expr.args) elif not _strict or expr.atoms(BaseScalarField): return 0 else: # If it does not contain anything related to the diffgeom module and it is _strict return -1 ############################################################################### # Coordinate transformation functions ############################################################################### def vectors_in_basis(expr, to_sys): """Transform all base vectors in base vectors of a specified coord basis. While the new base vectors are in the new coordinate system basis, any coefficients are kept in the old system. Examples ======== >>> from sympy.diffgeom import vectors_in_basis >>> from sympy.diffgeom.rn import R2_r, R2_p >>> vectors_in_basis(R2_r.e_x, R2_p) -y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2) >>> vectors_in_basis(R2_p.e_r, R2_r) sin(theta)*e_y + cos(theta)*e_x """ vectors = list(expr.atoms(BaseVectorField)) new_vectors = [] for v in vectors: cs = v._coord_sys jac = cs.jacobian(to_sys, cs.coord_functions()) new = (jac.T*Matrix(to_sys.base_vectors()))[v._index] new_vectors.append(new) return expr.subs(list(zip(vectors, new_vectors))) ############################################################################### # Coordinate-dependent functions ############################################################################### def twoform_to_matrix(expr): """Return the matrix representing the twoform. For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`, where `e_i` is the i-th base vector field for the coordinate system in which the expression of `w` is given. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import twoform_to_matrix, TensorProduct >>> TP = TensorProduct >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) Matrix([ [1, 0], [0, 1]]) >>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) Matrix([ [x, 0], [0, 1]]) >>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2) Matrix([ [ 1, 0], [-1/2, 1]]) """ if covariant_order(expr) != 2 or contravariant_order(expr): raise ValueError('The input expression is not a two-form.') coord_sys = _find_coords(expr) if len(coord_sys) != 1: raise ValueError('The input expression concerns more than one ' 'coordinate systems, hence there is no unambiguous ' 'way to choose a coordinate system for the matrix.') coord_sys = coord_sys.pop() vectors = coord_sys.base_vectors() expr = expr.expand() matrix_content = [[expr.rcall(v1, v2) for v1 in vectors] for v2 in vectors] return Matrix(matrix_content) def metric_to_Christoffel_1st(expr): """Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of first kind that represents the Levi-Civita connection for the given metric. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct >>> TP = TensorProduct >>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]] """ matrix = twoform_to_matrix(expr) if not matrix.is_symmetric(): raise ValueError( 'The two-form representing the metric is not symmetric.') coord_sys = _find_coords(expr).pop() deriv_matrices = [matrix.applyfunc(lambda a: d(a)) for d in coord_sys.base_vectors()] indices = list(range(coord_sys.dim)) christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2 for k in indices] for j in indices] for i in indices] return ImmutableDenseNDimArray(christoffel) def metric_to_Christoffel_2nd(expr): """Return the nested list of Christoffel symbols for the given metric. This returns the Christoffel symbol of second kind that represents the Levi-Civita connection for the given metric. Examples ======== >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct >>> TP = TensorProduct >>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[0, 0], [0, 0]], [[0, 0], [0, 0]]] >>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]] """ ch_1st = metric_to_Christoffel_1st(expr) coord_sys = _find_coords(expr).pop() indices = list(range(coord_sys.dim)) # XXX workaround, inverting a matrix does not work if it contains non # symbols #matrix = twoform_to_matrix(expr).inv() matrix = twoform_to_matrix(expr) s_fields = set() for e in matrix: s_fields.update(e.atoms(BaseScalarField)) s_fields = list(s_fields) dums = coord_sys.symbols matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields))) # XXX end of workaround christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices]) for k in indices] for j in indices] for i in indices] return ImmutableDenseNDimArray(christoffel) def metric_to_Riemann_components(expr): """Return the components of the Riemann tensor expressed in a given basis. Given a metric it calculates the components of the Riemann tensor in the canonical basis of the coordinate system in which the metric expression is given. Examples ======== >>> from sympy import exp >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct >>> TP = TensorProduct >>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]] >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \ R2.r**2*TP(R2.dtheta, R2.dtheta) >>> non_trivial_metric exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta) >>> riemann = metric_to_Riemann_components(non_trivial_metric) >>> riemann[0, :, :, :] [[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]] >>> riemann[1, :, :, :] [[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]] """ ch_2nd = metric_to_Christoffel_2nd(expr) coord_sys = _find_coords(expr).pop() indices = list(range(coord_sys.dim)) deriv_ch = [[[[d(ch_2nd[i, j, k]) for d in coord_sys.base_vectors()] for k in indices] for j in indices] for i in indices] riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu] for nu in indices] for mu in indices] for sig in indices] for rho in indices] riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices]) for nu in indices] for mu in indices] for sig in indices] for rho in indices] riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu] for nu in indices] for mu in indices] for sig in indices] for rho in indices] return ImmutableDenseNDimArray(riemann) def metric_to_Ricci_components(expr): """Return the components of the Ricci tensor expressed in a given basis. Given a metric it calculates the components of the Ricci tensor in the canonical basis of the coordinate system in which the metric expression is given. Examples ======== >>> from sympy import exp >>> from sympy.diffgeom.rn import R2 >>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct >>> TP = TensorProduct >>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) [[0, 0], [0, 0]] >>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \ R2.r**2*TP(R2.dtheta, R2.dtheta) >>> non_trivial_metric exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta) >>> metric_to_Ricci_components(non_trivial_metric) [[1/rho, 0], [0, exp(-2*rho)*rho]] """ riemann = metric_to_Riemann_components(expr) coord_sys = _find_coords(expr).pop() indices = list(range(coord_sys.dim)) ricci = [[Add(*[riemann[k, i, k, j] for k in indices]) for j in indices] for i in indices] return ImmutableDenseNDimArray(ricci) ############################################################################### # Classes for deprecation ############################################################################### class _deprecated_container: # This class gives deprecation warning. # When deprecated features are completely deleted, this should be removed as well. # See https://github.com/sympy/sympy/pull/19368 def __init__(self, feature, useinstead, issue, version, data): super().__init__(data) self.feature = feature self.useinstead = useinstead self.issue = issue self.version = version def warn(self): SymPyDeprecationWarning( feature=self.feature, useinstead=self.useinstead, issue=self.issue, deprecated_since_version=self.version).warn() def __iter__(self): self.warn() return super().__iter__() def __getitem__(self, key): self.warn() return super().__getitem__(key) def __contains__(self, key): self.warn() return super().__contains__(key) class _deprecated_list(_deprecated_container, list): pass class _deprecated_dict(_deprecated_container, dict): pass
f477a109fc06be8121cbcbca8b02736633974eef08c7454b9daaed0f89e67b4a
""" Classes and functions useful for rewriting expressions for optimized code generation. Some languages (or standards thereof), e.g. C99, offer specialized math functions for better performance and/or precision. Using the ``optimize`` function in this module, together with a collection of rules (represented as instances of ``Optimization``), one can rewrite the expressions for this purpose:: >>> from sympy import Symbol, exp, log >>> from sympy.codegen.rewriting import optimize, optims_c99 >>> x = Symbol('x') >>> optimize(3*exp(2*x) - 3, optims_c99) 3*expm1(2*x) >>> optimize(exp(2*x) - 3, optims_c99) exp(2*x) - 3 >>> optimize(log(3*x + 3), optims_c99) log1p(x) + log(3) >>> optimize(log(2*x + 3), optims_c99) log(2*x + 3) The ``optims_c99`` imported above is tuple containing the following instances (which may be imported from ``sympy.codegen.rewriting``): - ``expm1_opt`` - ``log1p_opt`` - ``exp2_opt`` - ``log2_opt`` - ``log2const_opt`` """ from itertools import chain from sympy import cos, exp, log, Max, Min, Wild, expand_log, Dummy, sin, sinc from sympy.assumptions import Q, ask from sympy.codegen.cfunctions import log1p, log2, exp2, expm1 from sympy.codegen.matrix_nodes import MatrixSolve from sympy.core.expr import UnevaluatedExpr from sympy.core.power import Pow from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.scipy_nodes import cosm1 from sympy.core.mul import Mul from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.utilities.iterables import sift class Optimization: """ Abstract base class for rewriting optimization. Subclasses should implement ``__call__`` taking an expression as argument. Parameters ========== cost_function : callable returning number priority : number """ def __init__(self, cost_function=None, priority=1): self.cost_function = cost_function self.priority=priority class ReplaceOptim(Optimization): """ Rewriting optimization calling replace on expressions. Explanation =========== The instance can be used as a function on expressions for which it will apply the ``replace`` method (see :meth:`sympy.core.basic.Basic.replace`). Parameters ========== query : First argument passed to replace. value : Second argument passed to replace. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.rewriting import ReplaceOptim >>> from sympy.codegen.cfunctions import exp2 >>> x = Symbol('x') >>> exp2_opt = ReplaceOptim(lambda p: p.is_Pow and p.base == 2, ... lambda p: exp2(p.exp)) >>> exp2_opt(2**x) exp2(x) """ def __init__(self, query, value, **kwargs): super().__init__(**kwargs) self.query = query self.value = value def __call__(self, expr): return expr.replace(self.query, self.value) def optimize(expr, optimizations): """ Apply optimizations to an expression. Parameters ========== expr : expression optimizations : iterable of ``Optimization`` instances The optimizations will be sorted with respect to ``priority`` (highest first). Examples ======== >>> from sympy import log, Symbol >>> from sympy.codegen.rewriting import optims_c99, optimize >>> x = Symbol('x') >>> optimize(log(x+3)/log(2) + log(x**2 + 1), optims_c99) log1p(x**2) + log2(x + 3) """ for optim in sorted(optimizations, key=lambda opt: opt.priority, reverse=True): new_expr = optim(expr) if optim.cost_function is None: expr = new_expr else: before, after = map(lambda x: optim.cost_function(x), (expr, new_expr)) if before > after: expr = new_expr return expr exp2_opt = ReplaceOptim( lambda p: p.is_Pow and p.base == 2, lambda p: exp2(p.exp) ) _d = Wild('d', properties=[lambda x: x.is_Dummy]) _u = Wild('u', properties=[lambda x: not x.is_number and not x.is_Add]) _v = Wild('v') _w = Wild('w') _n = Wild('n', properties=[lambda x: x.is_number]) sinc_opt1 = ReplaceOptim( sin(_w)/_w, sinc(_w) ) sinc_opt2 = ReplaceOptim( sin(_n*_w)/_w, _n*sinc(_n*_w) ) sinc_opts = (sinc_opt1, sinc_opt2) log2_opt = ReplaceOptim(_v*log(_w)/log(2), _v*log2(_w), cost_function=lambda expr: expr.count( lambda e: ( # division & eval of transcendentals are expensive floating point operations... e.is_Pow and e.exp.is_negative # division or (isinstance(e, (log, log2)) and not e.args[0].is_number)) # transcendental ) ) log2const_opt = ReplaceOptim(log(2)*log2(_w), log(_w)) logsumexp_2terms_opt = ReplaceOptim( lambda l: (isinstance(l, log) and l.args[0].is_Add and len(l.args[0].args) == 2 and all(isinstance(t, exp) for t in l.args[0].args)), lambda l: ( Max(*[e.args[0] for e in l.args[0].args]) + log1p(exp(Min(*[e.args[0] for e in l.args[0].args]))) ) ) class _FuncMinusOne: def __init__(self, func, func_m_1): self.func = func self.func_m_1 = func_m_1 def _try_func_m_1(self, expr): old_new = {} protected = expr.replace(self.func, lambda arg: old_new.setdefault(arg, Dummy())) factored = protected.factor() new_old = {v: self.func(k) for k, v in old_new.items()} return factored.replace(_d - 1, lambda d: self.func_m_1(new_old[d].args[0])).xreplace(new_old) def __call__(self, e): numbers, non_num = sift(e.args, lambda arg: arg.is_number, binary=True) non_num_func, non_num_other = sift(non_num, lambda arg: arg.has(self.func), binary=True) numsum = sum(numbers) new_func_terms, done = [], False for func_term in non_num_func: if done: new_func_terms.append(func_term) else: looking_at = func_term + numsum attempt = self._try_func_m_1(looking_at) if looking_at == attempt: new_func_terms.append(func_term) else: done = True new_func_terms.append(attempt) if not done: new_func_terms.append(numsum) return e.func(*chain(new_func_terms, non_num_other)) expm1_opt = ReplaceOptim(lambda e: e.is_Add, _FuncMinusOne(exp, expm1)) cosm1_opt = ReplaceOptim(lambda e: e.is_Add, _FuncMinusOne(cos, cosm1)) log1p_opt = ReplaceOptim( lambda e: isinstance(e, log), lambda l: expand_log(l.replace( log, lambda arg: log(arg.factor()) )).replace(log(_u+1), log1p(_u)) ) def create_expand_pow_optimization(limit, *, base_req=lambda b: b.is_symbol): """ Creates an instance of :class:`ReplaceOptim` for expanding ``Pow``. Explanation =========== The requirements for expansions are that the base needs to be a symbol and the exponent needs to be an Integer (and be less than or equal to ``limit``). Parameters ========== limit : int The highest power which is expanded into multiplication. base_req : function returning bool Requirement on base for expansion to happen, default is to return the ``is_symbol`` attribute of the base. Examples ======== >>> from sympy import Symbol, sin >>> from sympy.codegen.rewriting import create_expand_pow_optimization >>> x = Symbol('x') >>> expand_opt = create_expand_pow_optimization(3) >>> expand_opt(x**5 + x**3) x**5 + x*x*x >>> expand_opt(x**5 + x**3 + sin(x)**3) x**5 + sin(x)**3 + x*x*x >>> opt2 = create_expand_pow_optimization(3 , base_req=lambda b: not b.is_Function) >>> opt2((x+1)**2 + sin(x)**2) sin(x)**2 + (x + 1)*(x + 1) """ return ReplaceOptim( lambda e: e.is_Pow and base_req(e.base) and e.exp.is_Integer and abs(e.exp) <= limit, lambda p: ( UnevaluatedExpr(Mul(*([p.base]*+p.exp), evaluate=False)) if p.exp > 0 else 1/UnevaluatedExpr(Mul(*([p.base]*-p.exp), evaluate=False)) )) # Optimization procedures for turning A**(-1) * x into MatrixSolve(A, x) def _matinv_predicate(expr): # TODO: We should be able to support more than 2 elements if expr.is_MatMul and len(expr.args) == 2: left, right = expr.args if left.is_Inverse and right.shape[1] == 1: inv_arg = left.arg if isinstance(inv_arg, MatrixSymbol): return bool(ask(Q.fullrank(left.arg))) return False def _matinv_transform(expr): left, right = expr.args inv_arg = left.arg return MatrixSolve(inv_arg, right) matinv_opt = ReplaceOptim(_matinv_predicate, _matinv_transform) logaddexp_opt = ReplaceOptim(log(exp(_v)+exp(_w)), logaddexp(_v, _w)) logaddexp2_opt = ReplaceOptim(log(Pow(2, _v)+Pow(2, _w)), logaddexp2(_v, _w)*log(2)) # Collections of optimizations: optims_c99 = (expm1_opt, log1p_opt, exp2_opt, log2_opt, log2const_opt) optims_numpy = optims_c99 + (logaddexp_opt, logaddexp2_opt,) + sinc_opts optims_scipy = (cosm1_opt,)
0d2b12192c235742b701232f5af6ad1445ef89829747ed713f0c923ec2cbf9ce
""" Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.assumptions.ask import Q from sympy.assumptions.cnf import Literal from sympy.core.cache import cacheit @cacheit def get_all_known_facts(): """ Known facts between unary predicates as CNF clauses. """ return { frozenset((Literal(Q.algebraic, False), Literal(Q.imaginary, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.negative, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.positive, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), frozenset((Literal(Q.algebraic, False), Literal(Q.transcendental, False), Literal(Q.zero, True))), frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.hermitian, False), Literal(Q.zero, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.commutative, False), Literal(Q.finite, True))), frozenset((Literal(Q.commutative, False), Literal(Q.infinite, True))), frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), frozenset((Literal(Q.composite, False), Literal(Q.even, True), Literal(Q.positive, True), Literal(Q.prime, False))), frozenset((Literal(Q.composite, True), Literal(Q.even, False), Literal(Q.odd, False))), frozenset((Literal(Q.composite, True), Literal(Q.positive, False))), frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.even, False), Literal(Q.odd, False), Literal(Q.prime, True))), frozenset((Literal(Q.even, False), Literal(Q.zero, True))), frozenset((Literal(Q.even, True), Literal(Q.odd, True))), frozenset((Literal(Q.even, True), Literal(Q.rational, False))), frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.negative, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.positive, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.zero, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.negative, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.positive, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.zero, True))), frozenset((Literal(Q.infinite, False), Literal(Q.negative_infinite, True))), frozenset((Literal(Q.infinite, False), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), frozenset((Literal(Q.irrational, False), Literal(Q.negative, True), Literal(Q.rational, False))), frozenset((Literal(Q.irrational, False), Literal(Q.positive, True), Literal(Q.rational, False))), frozenset((Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.zero, True))), frozenset((Literal(Q.irrational, True), Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.zero, False))), frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.rational, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, True), Literal(Q.negative_infinite, True))), frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative, True), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative_infinite, True), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.negative_infinite, True), Literal(Q.zero, True))), frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), frozenset((Literal(Q.normal, True), Literal(Q.square, False))), frozenset((Literal(Q.odd, True), Literal(Q.rational, False))), frozenset((Literal(Q.orthogonal, False), Literal(Q.real_elements, True), Literal(Q.unitary, True))), frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), frozenset((Literal(Q.positive, True), Literal(Q.positive_infinite, True))), frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), frozenset((Literal(Q.positive_infinite, True), Literal(Q.zero, True))), frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) } @cacheit def get_known_facts_dict(): """ Logical relations between unary predicates as dictionary. Each key is a predicate, and item is two groups of predicates. First group contains the predicates which are implied by the key, and second group contains the predicates which are rejected by the key. """ return { Q.algebraic: (set([Q.algebraic, Q.commutative, Q.complex, Q.finite]), set([Q.infinite, Q.negative_infinite, Q.positive_infinite, Q.transcendental])), Q.antihermitian: (set([Q.antihermitian]), set([])), Q.commutative: (set([Q.commutative]), set([])), Q.complex: (set([Q.commutative, Q.complex, Q.finite]), set([Q.infinite, Q.negative_infinite, Q.positive_infinite])), Q.complex_elements: (set([Q.complex_elements]), set([])), Q.composite: (set([Q.algebraic, Q.commutative, Q.complex, Q.composite, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.rational, Q.real]), set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.irrational, Q.negative, Q.negative_infinite, Q.nonpositive, Q.positive_infinite, Q.prime, Q.transcendental, Q.zero])), Q.diagonal: (set([Q.diagonal, Q.lower_triangular, Q.normal, Q.square, Q.symmetric, Q.triangular, Q.upper_triangular]), set([])), Q.even: (set([Q.algebraic, Q.commutative, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.odd, Q.positive_infinite, Q.transcendental])), Q.extended_negative: (set([Q.commutative, Q.extended_negative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real]), set([Q.composite, Q.extended_nonnegative, Q.extended_positive, Q.imaginary, Q.nonnegative, Q.positive, Q.positive_infinite, Q.prime, Q.zero])), Q.extended_nonnegative: (set([Q.commutative, Q.extended_nonnegative, Q.extended_real]), set([Q.extended_negative, Q.imaginary, Q.negative, Q.negative_infinite])), Q.extended_nonpositive: (set([Q.commutative, Q.extended_nonpositive, Q.extended_real]), set([Q.composite, Q.extended_positive, Q.imaginary, Q.positive, Q.positive_infinite, Q.prime])), Q.extended_nonzero: (set([Q.commutative, Q.extended_nonzero, Q.extended_real]), set([Q.imaginary, Q.zero])), Q.extended_positive: (set([Q.commutative, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real]), set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.negative, Q.negative_infinite, Q.nonpositive, Q.zero])), Q.extended_real: (set([Q.commutative, Q.extended_real]), set([Q.imaginary])), Q.finite: (set([Q.commutative, Q.finite]), set([Q.infinite, Q.negative_infinite, Q.positive_infinite])), Q.fullrank: (set([Q.fullrank]), set([])), Q.hermitian: (set([Q.hermitian]), set([])), Q.imaginary: (set([Q.antihermitian, Q.commutative, Q.complex, Q.finite, Q.imaginary]), set([Q.composite, Q.even, Q.extended_negative, Q.extended_nonnegative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.infinite, Q.integer, Q.irrational, Q.negative, Q.negative_infinite, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, Q.rational, Q.real, Q.zero])), Q.infinite: (set([Q.commutative, Q.infinite]), set([Q.algebraic, Q.complex, Q.composite, Q.even, Q.finite, Q.imaginary, Q.integer, Q.irrational, Q.negative, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.prime, Q.rational, Q.real, Q.transcendental, Q.zero])), Q.integer: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.positive_infinite, Q.transcendental])), Q.integer_elements: (set([Q.complex_elements, Q.integer_elements, Q.real_elements]), set([])), Q.invertible: (set([Q.fullrank, Q.invertible, Q.square]), set([Q.singular])), Q.irrational: (set([Q.commutative, Q.complex, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.irrational, Q.nonzero, Q.real]), set([Q.composite, Q.even, Q.imaginary, Q.infinite, Q.integer, Q.negative_infinite, Q.odd, Q.positive_infinite, Q.prime, Q.rational, Q.zero])), Q.is_true: (set([Q.is_true]), set([])), Q.lower_triangular: (set([Q.lower_triangular, Q.triangular]), set([])), Q.negative: (set([Q.commutative, Q.complex, Q.extended_negative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.negative, Q.nonpositive, Q.nonzero, Q.real]), set([Q.composite, Q.extended_nonnegative, Q.extended_positive, Q.imaginary, Q.infinite, Q.negative_infinite, Q.nonnegative, Q.positive, Q.positive_infinite, Q.prime, Q.zero])), Q.negative_infinite: (set([Q.commutative, Q.extended_negative, Q.extended_nonpositive, Q.extended_nonzero, Q.extended_real, Q.infinite, Q.negative_infinite]), set([Q.algebraic, Q.complex, Q.composite, Q.even, Q.extended_nonnegative, Q.extended_positive, Q.finite, Q.imaginary, Q.integer, Q.irrational, Q.negative, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, Q.rational, Q.real, Q.transcendental, Q.zero])), Q.nonnegative: (set([Q.commutative, Q.complex, Q.extended_nonnegative, Q.extended_real, Q.finite, Q.hermitian, Q.nonnegative, Q.real]), set([Q.extended_negative, Q.imaginary, Q.infinite, Q.negative, Q.negative_infinite, Q.positive_infinite])), Q.nonpositive: (set([Q.commutative, Q.complex, Q.extended_nonpositive, Q.extended_real, Q.finite, Q.hermitian, Q.nonpositive, Q.real]), set([Q.composite, Q.extended_positive, Q.imaginary, Q.infinite, Q.negative_infinite, Q.positive, Q.positive_infinite, Q.prime])), Q.nonzero: (set([Q.commutative, Q.complex, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.nonzero, Q.real]), set([Q.imaginary, Q.infinite, Q.negative_infinite, Q.positive_infinite, Q.zero])), Q.normal: (set([Q.normal, Q.square]), set([])), Q.odd: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_nonzero, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonzero, Q.odd, Q.rational, Q.real]), set([Q.even, Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.positive_infinite, Q.transcendental, Q.zero])), Q.orthogonal: (set([Q.fullrank, Q.invertible, Q.normal, Q.orthogonal, Q.positive_definite, Q.square, Q.unitary]), set([Q.singular])), Q.positive: (set([Q.commutative, Q.complex, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, Q.nonnegative, Q.nonzero, Q.positive, Q.real]), set([Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.negative, Q.negative_infinite, Q.nonpositive, Q.positive_infinite, Q.zero])), Q.positive_definite: (set([Q.fullrank, Q.invertible, Q.positive_definite, Q.square]), set([Q.singular])), Q.positive_infinite: (set([Q.commutative, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.infinite, Q.positive_infinite]), set([Q.algebraic, Q.complex, Q.composite, Q.even, Q.extended_negative, Q.extended_nonpositive, Q.finite, Q.imaginary, Q.integer, Q.irrational, Q.negative, Q.negative_infinite, Q.nonnegative, Q.nonpositive, Q.nonzero, Q.odd, Q.positive, Q.prime, Q.rational, Q.real, Q.transcendental, Q.zero])), Q.prime: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_nonnegative, Q.extended_nonzero, Q.extended_positive, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.prime, Q.rational, Q.real]), set([Q.composite, Q.extended_negative, Q.extended_nonpositive, Q.imaginary, Q.infinite, Q.irrational, Q.negative, Q.negative_infinite, Q.nonpositive, Q.positive_infinite, Q.transcendental, Q.zero])), Q.rational: (set([Q.algebraic, Q.commutative, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.rational, Q.real]), set([Q.imaginary, Q.infinite, Q.irrational, Q.negative_infinite, Q.positive_infinite, Q.transcendental])), Q.real: (set([Q.commutative, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.real]), set([Q.imaginary, Q.infinite, Q.negative_infinite, Q.positive_infinite])), Q.real_elements: (set([Q.complex_elements, Q.real_elements]), set([])), Q.singular: (set([Q.singular]), set([Q.invertible, Q.orthogonal, Q.positive_definite, Q.unitary])), Q.square: (set([Q.square]), set([])), Q.symmetric: (set([Q.square, Q.symmetric]), set([])), Q.transcendental: (set([Q.commutative, Q.complex, Q.finite, Q.transcendental]), set([Q.algebraic, Q.composite, Q.even, Q.infinite, Q.integer, Q.negative_infinite, Q.odd, Q.positive_infinite, Q.prime, Q.rational, Q.zero])), Q.triangular: (set([Q.triangular]), set([])), Q.unit_triangular: (set([Q.triangular, Q.unit_triangular]), set([])), Q.unitary: (set([Q.fullrank, Q.invertible, Q.normal, Q.square, Q.unitary]), set([Q.singular])), Q.upper_triangular: (set([Q.triangular, Q.upper_triangular]), set([])), Q.zero: (set([Q.algebraic, Q.commutative, Q.complex, Q.even, Q.extended_nonnegative, Q.extended_nonpositive, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonpositive, Q.rational, Q.real, Q.zero]), set([Q.composite, Q.extended_negative, Q.extended_nonzero, Q.extended_positive, Q.imaginary, Q.infinite, Q.irrational, Q.negative, Q.negative_infinite, Q.nonzero, Q.odd, Q.positive, Q.positive_infinite, Q.prime, Q.transcendental])), }
332dd6dea7cb3b1dc63ef7a81cc646150b1df5013b283f8377d726ff074e6ecb
"""Module for querying SymPy objects about assumptions.""" from sympy.assumptions.assume import (global_assumptions, Predicate, AppliedPredicate) from sympy.assumptions.cnf import CNF, EncodedCNF, Literal from sympy.core import sympify from sympy.core.kind import BooleanKind from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le from sympy.logic.inference import satisfiable from sympy.utilities.decorator import memoize_property from sympy.utilities.exceptions import SymPyDeprecationWarning # Memoization is necessary for the properties of AssumptionKeys to # ensure that only one object of Predicate objects are created. # This is because assumption handlers are registered on those objects. class AssumptionKeys: """ This class contains all the supported keys by ``ask``. It should be accessed via the instance ``sympy.Q``. """ # DO NOT add methods or properties other than predicate keys. # SAT solver checks the properties of Q and use them to compute the # fact system. Non-predicate attributes will break this. @memoize_property def hermitian(self): from .handlers.sets import HermitianPredicate return HermitianPredicate() @memoize_property def antihermitian(self): from .handlers.sets import AntihermitianPredicate return AntihermitianPredicate() @memoize_property def real(self): from .handlers.sets import RealPredicate return RealPredicate() @memoize_property def extended_real(self): from .handlers.sets import ExtendedRealPredicate return ExtendedRealPredicate() @memoize_property def imaginary(self): from .handlers.sets import ImaginaryPredicate return ImaginaryPredicate() @memoize_property def complex(self): from .handlers.sets import ComplexPredicate return ComplexPredicate() @memoize_property def algebraic(self): from .handlers.sets import AlgebraicPredicate return AlgebraicPredicate() @memoize_property def transcendental(self): from .predicates.sets import TranscendentalPredicate return TranscendentalPredicate() @memoize_property def integer(self): from .handlers.sets import IntegerPredicate return IntegerPredicate() @memoize_property def rational(self): from .handlers.sets import RationalPredicate return RationalPredicate() @memoize_property def irrational(self): from .handlers.sets import IrrationalPredicate return IrrationalPredicate() @memoize_property def finite(self): from .handlers.calculus import FinitePredicate return FinitePredicate() @memoize_property def infinite(self): from .handlers.calculus import InfinitePredicate return InfinitePredicate() @memoize_property def positive_infinite(self): from .handlers.calculus import PositiveInfinitePredicate return PositiveInfinitePredicate() @memoize_property def negative_infinite(self): from .handlers.calculus import NegativeInfinitePredicate return NegativeInfinitePredicate() @memoize_property def positive(self): from .handlers.order import PositivePredicate return PositivePredicate() @memoize_property def negative(self): from .handlers.order import NegativePredicate return NegativePredicate() @memoize_property def zero(self): from .handlers.order import ZeroPredicate return ZeroPredicate() @memoize_property def extended_positive(self): from .handlers.order import ExtendedPositivePredicate return ExtendedPositivePredicate() @memoize_property def extended_negative(self): from .handlers.order import ExtendedNegativePredicate return ExtendedNegativePredicate() @memoize_property def nonzero(self): from .handlers.order import NonZeroPredicate return NonZeroPredicate() @memoize_property def nonpositive(self): from .handlers.order import NonPositivePredicate return NonPositivePredicate() @memoize_property def nonnegative(self): from .handlers.order import NonNegativePredicate return NonNegativePredicate() @memoize_property def extended_nonzero(self): from .handlers.order import ExtendedNonZeroPredicate return ExtendedNonZeroPredicate() @memoize_property def extended_nonpositive(self): from .handlers.order import ExtendedNonPositivePredicate return ExtendedNonPositivePredicate() @memoize_property def extended_nonnegative(self): from .handlers.order import ExtendedNonNegativePredicate return ExtendedNonNegativePredicate() @memoize_property def even(self): from .handlers.ntheory import EvenPredicate return EvenPredicate() @memoize_property def odd(self): from .handlers.ntheory import OddPredicate return OddPredicate() @memoize_property def prime(self): from .handlers.ntheory import PrimePredicate return PrimePredicate() @memoize_property def composite(self): from .handlers.ntheory import CompositePredicate return CompositePredicate() @memoize_property def commutative(self): from .handlers.common import CommutativePredicate return CommutativePredicate() @memoize_property def is_true(self): from .handlers.common import IsTruePredicate return IsTruePredicate() @memoize_property def symmetric(self): from .handlers.matrices import SymmetricPredicate return SymmetricPredicate() @memoize_property def invertible(self): from .handlers.matrices import InvertiblePredicate return InvertiblePredicate() @memoize_property def orthogonal(self): from .handlers.matrices import OrthogonalPredicate return OrthogonalPredicate() @memoize_property def unitary(self): from .handlers.matrices import UnitaryPredicate return UnitaryPredicate() @memoize_property def positive_definite(self): from .handlers.matrices import PositiveDefinitePredicate return PositiveDefinitePredicate() @memoize_property def upper_triangular(self): from .handlers.matrices import UpperTriangularPredicate return UpperTriangularPredicate() @memoize_property def lower_triangular(self): from .handlers.matrices import LowerTriangularPredicate return LowerTriangularPredicate() @memoize_property def diagonal(self): from .handlers.matrices import DiagonalPredicate return DiagonalPredicate() @memoize_property def fullrank(self): from .handlers.matrices import FullRankPredicate return FullRankPredicate() @memoize_property def square(self): from .handlers.matrices import SquarePredicate return SquarePredicate() @memoize_property def integer_elements(self): from .handlers.matrices import IntegerElementsPredicate return IntegerElementsPredicate() @memoize_property def real_elements(self): from .handlers.matrices import RealElementsPredicate return RealElementsPredicate() @memoize_property def complex_elements(self): from .handlers.matrices import ComplexElementsPredicate return ComplexElementsPredicate() @memoize_property def singular(self): from .predicates.matrices import SingularPredicate return SingularPredicate() @memoize_property def normal(self): from .predicates.matrices import NormalPredicate return NormalPredicate() @memoize_property def triangular(self): from .predicates.matrices import TriangularPredicate return TriangularPredicate() @memoize_property def unit_triangular(self): from .predicates.matrices import UnitTriangularPredicate return UnitTriangularPredicate() @memoize_property def eq(self): from .relation.equality import EqualityPredicate return EqualityPredicate() @memoize_property def ne(self): from .relation.equality import UnequalityPredicate return UnequalityPredicate() @memoize_property def gt(self): from .relation.equality import StrictGreaterThanPredicate return StrictGreaterThanPredicate() @memoize_property def ge(self): from .relation.equality import GreaterThanPredicate return GreaterThanPredicate() @memoize_property def lt(self): from .relation.equality import StrictLessThanPredicate return StrictLessThanPredicate() @memoize_property def le(self): from .relation.equality import LessThanPredicate return LessThanPredicate() Q = AssumptionKeys() def _extract_all_facts(assump, exprs): """ Extract all relevant assumptions from *assump* with respect to given *exprs*. Parameters ========== assump : sympy.assumptions.cnf.CNF exprs : tuple of expressions Returns ======= sympy.assumptions.cnf.CNF Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.ask import _extract_all_facts >>> from sympy.abc import x, y >>> assump = CNF.from_prop(Q.positive(x) & Q.integer(y)) >>> exprs = (x,) >>> cnf = _extract_all_facts(assump, exprs) >>> cnf.clauses {frozenset({Literal(Q.positive, False)})} """ facts = set() for clause in assump.clauses: args = [] for literal in clause: if isinstance(literal.lit, AppliedPredicate) and len(literal.lit.arguments) == 1: if literal.lit.arg in exprs: # Add literal if it has matching in it args.append(Literal(literal.lit.function, literal.is_Not)) else: # If any of the literals doesn't have matching expr don't add the whole clause. break else: if args: facts.add(frozenset(args)) return CNF(facts) def ask(proposition, assumptions=True, context=global_assumptions): """ Function to evaluate the proposition with assumptions. Explanation =========== This function evaluates the proposition to ``True`` or ``False`` if the truth value can be determined. If not, it returns ``None``. It should be discerned from :func:`~.refine()` which, when applied to a proposition, simplifies the argument to symbolic ``Boolean`` instead of Python built-in ``True``, ``False`` or ``None``. **Syntax** * ask(proposition) Evaluate the *proposition* in global assumption context. * ask(proposition, assumptions) Evaluate the *proposition* with respect to *assumptions* in global assumption context. Parameters ========== proposition : Any boolean expression. Proposition which will be evaluated to boolean value. If this is not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``. assumptions : Any boolean expression, optional. Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional. Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. Returns ======= ``True``, ``False``, or ``None`` Raises ====== TypeError : *proposition* or *assumptions* is not valid logical expression. ValueError : assumptions are inconsistent. Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False If the truth value cannot be determined, ``None`` will be returned. >>> print(ask(Q.odd(3*x))) # cannot determine unless we know x None ``ValueError`` is raised if assumptions are inconsistent. >>> ask(Q.integer(x), Q.even(x) & Q.odd(x)) Traceback (most recent call last): ... ValueError: inconsistent assumptions Q.even(x) & Q.odd(x) Notes ===== Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), x > 0) It is however a work in progress. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. Proposition is not reduced to ``None`` if the truth value cannot be determined. """ from sympy.assumptions.satask import satask proposition = sympify(proposition) assumptions = sympify(assumptions) if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind: raise TypeError("proposition must be a valid logical expression") if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind: raise TypeError("assumptions must be a valid logical expression") binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le} if isinstance(proposition, AppliedPredicate): key, args = proposition.function, proposition.arguments elif proposition.func in binrelpreds: key, args = binrelpreds[proposition.func], proposition.args else: key, args = Q.is_true, (proposition,) # convert local and global assumptions to CNF assump_cnf = CNF.from_prop(assumptions) assump_cnf.extend(context) # extract the relevant facts from assumptions with respect to args local_facts = _extract_all_facts(assump_cnf, args) # convert default facts and assumed facts to encoded CNF known_facts_cnf = get_all_known_facts() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) # check the satisfiability of given assumptions if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) # quick computation for single fact res = _ask_single_fact(key, local_facts) if res is not None: return res # direct resolution method, no logic res = key(*args)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res def _ask_single_fact(key, local_facts): """ Compute the truth value of single predicate using assumptions. Parameters ========== key : sympy.assumptions.assume.Predicate Proposition predicate. local_facts : sympy.assumptions.cnf.CNF Local assumption in CNF form. Returns ======= ``True``, ``False`` or ``None`` Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.ask import _ask_single_fact If prerequisite of proposition is rejected by the assumption, return ``False``. >>> key, assump = Q.zero, ~Q.zero >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) False >>> key, assump = Q.zero, ~Q.even >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) False If assumption implies the proposition, return ``True``. >>> key, assump = Q.even, Q.zero >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) True If proposition rejects the assumption, return ``False``. >>> key, assump = Q.even, Q.odd >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) False """ if local_facts.clauses: known_facts_dict = get_known_facts_dict() if len(local_facts.clauses) == 1: cl, = local_facts.clauses if len(cl) == 1: f, = cl prop_facts = known_facts_dict.get(key, None) prop_req = prop_facts[0] if prop_facts is not None else set() if f.is_Not and f.arg in prop_req: # the prerequisite of proposition is rejected return False for clause in local_facts.clauses: if len(clause) == 1: f, = clause prop_facts = known_facts_dict.get(f.arg, None) if not f.is_Not else None if prop_facts is None: continue prop_req, prop_rej = prop_facts if key in prop_req: # assumption implies the proposition return True elif key in prop_rej: # proposition rejects the assumption return False return None def register_handler(key, handler): """ Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler. .. deprecated:: 1.8. Use multipledispatch handler instead. See :obj:`~.Predicate`. """ SymPyDeprecationWarning( feature="register_handler() function", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() if isinstance(key, Predicate): key = key.name.name Qkey = getattr(Q, key, None) if Qkey is not None: Qkey.add_handler(handler) else: setattr(Q, key, Predicate(key, handlers=[handler])) def remove_handler(key, handler): """ Removes a handler from the ask system. Same syntax as register_handler .. deprecated:: 1.8. Use multipledispatch handler instead. See :obj:`~.Predicate`. """ SymPyDeprecationWarning( feature="remove_handler() function", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() if isinstance(key, Predicate): key = key.name.name getattr(Q, key).remove_handler(handler) from sympy.assumptions.ask_generated import (get_all_known_facts, get_known_facts_dict)
0bff209047116a9eacd0ea0624da916318a72b0ee92e3de22c8ebfc00e670156
""" Module to evaluate the proposition with assumptions using SAT algorithm. """ from sympy import Symbol, S from sympy.assumptions.ask_generated import get_all_known_facts from sympy.assumptions.assume import global_assumptions, AppliedPredicate from sympy.assumptions.sathandlers import class_fact_registry from sympy.core import oo from sympy.logic.inference import satisfiable from sympy.assumptions.cnf import CNF, EncodedCNF def satask(proposition, assumptions=True, context=global_assumptions, use_known_facts=True, iterations=oo): """ Function to evaluate the proposition with assumptions using SAT algorithm. This function extracts every fact relevant to the expressions composing proposition and assumptions. For example, if a predicate containing ``Abs(x)`` is proposed, then ``Q.zero(Abs(x)) | Q.positive(Abs(x))`` will be found and passed to SAT solver because ``Q.nonnegative`` is registered as a fact for ``Abs``. Proposition is evaluated to ``True`` or ``False`` if the truth value can be determined. If not, ``None`` is returned. Parameters ========== proposition : Any boolean expression. Proposition which will be evaluated to boolean value. assumptions : Any boolean expression, optional. Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional. Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. use_known_facts : bool, optional. If ``True``, facts from ``sympy.assumptions.ask_generated`` module are passed to SAT solver as well. iterations : int, optional. Number of times that relevant facts are recursively extracted. Default is infinite times until no new fact is found. Returns ======= ``True``, ``False``, or ``None`` Examples ======== >>> from sympy import Abs, Q >>> from sympy.assumptions.satask import satask >>> from sympy.abc import x >>> satask(Q.zero(Abs(x)), Q.zero(x)) True """ props = CNF.from_prop(proposition) _props = CNF.from_prop(~proposition) assumptions = CNF.from_prop(assumptions) context_cnf = CNF() if context: context_cnf = context_cnf.extend(context) sat = get_all_relevant_facts(props, assumptions, context_cnf, use_known_facts=use_known_facts, iterations=iterations) sat.add_from_cnf(assumptions) if context: sat.add_from_cnf(context_cnf) return check_satisfiability(props, _props, sat) def check_satisfiability(prop, _prop, factbase): sat_true = factbase.copy() sat_false = factbase.copy() sat_true.add_from_cnf(prop) sat_false.add_from_cnf(_prop) can_be_true = satisfiable(sat_true) can_be_false = satisfiable(sat_false) if can_be_true and can_be_false: return None if can_be_true and not can_be_false: return True if not can_be_true and can_be_false: return False if not can_be_true and not can_be_false: # TODO: Run additional checks to see which combination of the # assumptions, global_assumptions, and relevant_facts are # inconsistent. raise ValueError("Inconsistent assumptions") def extract_predargs(proposition, assumptions=None, context=None): """ Extract every expression in the argument of predicates from *proposition*, *assumptions* and *context*. Parameters ========== proposition : sympy.assumptions.cnf.CNF assumptions : sympy.assumptions.cnf.CNF, optional. context : sympy.assumptions.cnf.CNF, optional. CNF generated from assumptions context. Examples ======== >>> from sympy import Q, Abs >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.satask import extract_predargs >>> from sympy.abc import x, y >>> props = CNF.from_prop(Q.zero(Abs(x*y))) >>> assump = CNF.from_prop(Q.zero(x) & Q.zero(y)) >>> extract_predargs(props, assump) {x, y, Abs(x*y)} """ req_keys = find_symbols(proposition) keys = proposition.all_predicates() # XXX: We need this since True/False are not Basic lkeys = set() if assumptions: lkeys |= assumptions.all_predicates() if context: lkeys |= context.all_predicates() lkeys = lkeys - {S.true, S.false} tmp_keys = None while tmp_keys != set(): tmp = set() for l in lkeys: syms = find_symbols(l) if (syms & req_keys) != set(): tmp |= syms tmp_keys = tmp - req_keys req_keys |= tmp_keys keys |= {l for l in lkeys if find_symbols(l) & req_keys != set()} exprs = set() for key in keys: if isinstance(key, AppliedPredicate): exprs |= set(key.arguments) else: exprs.add(key) return exprs def find_symbols(pred): """ Find every :obj:`~.Symbol` in *pred*. Parameters ========== pred : sympy.assumptions.cnf.CNF, or any Expr. """ if isinstance(pred, CNF): symbols = set() for a in pred.all_predicates(): symbols |= find_symbols(a) return symbols return pred.atoms(Symbol) def get_relevant_clsfacts(exprs, relevant_facts=None): """ Extract relevant facts from the items in *exprs*. Facts are defined in ``assumptions.sathandlers`` module. This function is recursively called by ``get_all_relevant_facts()``. Parameters ========== exprs : set Expressions whose relevant facts are searched. relevant_facts : sympy.assumptions.cnf.CNF, optional. Pre-discovered relevant facts. Returns ======= exprs : set Candidates for next relevant fact searching. relevant_facts : sympy.assumptions.cnf.CNF Updated relevant facts. Examples ======== Here, we will see how facts relevant to ``Abs(x*y)`` are recursively extracted. On the first run, set containing the expression is passed without pre-discovered relevant facts. The result is a set containig candidates for next run, and ``CNF()`` instance containing facts which are relevant to ``Abs`` and its argument. >>> from sympy import Abs >>> from sympy.assumptions.satask import get_relevant_clsfacts >>> from sympy.abc import x, y >>> exprs = {Abs(x*y)} >>> exprs, facts = get_relevant_clsfacts(exprs) >>> exprs {x*y} >>> facts.clauses #doctest: +SKIP {frozenset({Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}), frozenset({Literal(Q.zero(Abs(x*y)), False), Literal(Q.zero(x*y), True)}), frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True)}), frozenset({Literal(Q.zero(Abs(x*y)), True), Literal(Q.zero(x*y), False)}), frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.odd(Abs(x*y)), False), Literal(Q.odd(x*y), True)}), frozenset({Literal(Q.even(Abs(x*y)), False), Literal(Q.even(x*y), True), Literal(Q.odd(Abs(x*y)), False)}), frozenset({Literal(Q.positive(Abs(x*y)), False), Literal(Q.zero(Abs(x*y)), False)})} We pass the first run's results to the second run, and get the expressions for next run and updated facts. >>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts) >>> exprs {x, y} On final run, no more candidate is returned thus we know that all relevant facts are successfully retrieved. >>> exprs, facts = get_relevant_clsfacts(exprs, relevant_facts=facts) >>> exprs set() """ if not relevant_facts: relevant_facts = CNF() newexprs = set() for expr in exprs: for fact in class_fact_registry(expr): newfact = CNF.to_CNF(fact) relevant_facts = relevant_facts._and(newfact) for key in newfact.all_predicates(): if isinstance(key, AppliedPredicate): newexprs |= set(key.arguments) return newexprs - exprs, relevant_facts def get_all_relevant_facts(proposition, assumptions, context, use_known_facts=True, iterations=oo): """ Extract all relevant facts from *proposition* and *assumptions*. This function extracts the facts by recursively calling ``get_relevant_clsfacts()``. Extracted facts are converted to ``EncodedCNF`` and returned. Parameters ========== proposition : sympy.assumptions.cnf.CNF CNF generated from proposition expression. assumptions : sympy.assumptions.cnf.CNF CNF generated from assumption expression. context : sympy.assumptions.cnf.CNF CNF generated from assumptions context. use_known_facts : bool, optional. If ``True``, facts from ``sympy.assumptions.ask_generated`` module are encoded as well. iterations : int, optional. Number of times that relevant facts are recursively extracted. Default is infinite times until no new fact is found. Returns ======= sympy.assumptions.cnf.EncodedCNF Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.satask import get_all_relevant_facts >>> from sympy.abc import x, y >>> props = CNF.from_prop(Q.nonzero(x*y)) >>> assump = CNF.from_prop(Q.nonzero(x)) >>> context = CNF.from_prop(Q.nonzero(y)) >>> get_all_relevant_facts(props, assump, context) #doctest: +SKIP <sympy.assumptions.cnf.EncodedCNF at 0x7f09faa6ccd0> """ # The relevant facts might introduce new keys, e.g., Q.zero(x*y) will # introduce the keys Q.zero(x) and Q.zero(y), so we need to run it until # we stop getting new things. Hopefully this strategy won't lead to an # infinite loop in the future. i = 0 relevant_facts = CNF() all_exprs = set() while True: if i == 0: exprs = extract_predargs(proposition, assumptions, context) all_exprs |= exprs exprs, relevant_facts = get_relevant_clsfacts(exprs, relevant_facts) i += 1 if i >= iterations: break if not exprs: break if use_known_facts: known_facts_CNF = CNF() known_facts_CNF.add_clauses(get_all_known_facts()) kf_encoded = EncodedCNF() kf_encoded.from_cnf(known_facts_CNF) def translate_literal(lit, delta): if lit > 0: return lit + delta else: return lit - delta def translate_data(data, delta): return [{translate_literal(i, delta) for i in clause} for clause in data] data = [] symbols = [] n_lit = len(kf_encoded.symbols) for i, expr in enumerate(all_exprs): symbols += [pred(expr) for pred in kf_encoded.symbols] data += translate_data(kf_encoded.data, i * n_lit) encoding = dict(list(zip(symbols, range(1, len(symbols)+1)))) ctx = EncodedCNF(data, encoding) else: ctx = EncodedCNF() ctx.add_from_cnf(relevant_facts) return ctx
b5496422436c191a39957451fde67495d081f7476f25938e47a8d1d4fec9b52f
""" Known facts in assumptions module. This module defines the facts between unary predicates in ``get_known_facts()``, and supports functions to generate the contents in ``sympy.assumptions.ask_generated`` file. """ from sympy.assumptions import Q from sympy.assumptions.assume import AppliedPredicate from sympy.core.cache import cacheit from sympy.core.symbol import Symbol from sympy.logic.boolalg import (to_cnf, And, Not, Implies, Equivalent, Exclusive,) from sympy.logic.inference import satisfiable @cacheit def get_composite_predicates(): # To reduce the complexity of sat solver, these predicates are # transformed into the combination of primitive predicates. return { Q.real : Q.negative | Q.zero | Q.positive, Q.integer : Q.even | Q.odd, Q.nonpositive : Q.negative | Q.zero, Q.nonzero : Q.negative | Q.positive, Q.nonnegative : Q.zero | Q.positive, Q.extended_real : Q.negative_infinite | Q.negative | Q.zero | Q.positive | Q.positive_infinite, Q.extended_positive: Q.positive | Q.positive_infinite, Q.extended_negative: Q.negative | Q.negative_infinite, Q.extended_nonzero: Q.negative_infinite | Q.negative | Q.positive | Q.positive_infinite, Q.extended_nonpositive: Q.negative_infinite | Q.negative | Q.zero, Q.extended_nonnegative: Q.zero | Q.positive | Q.positive_infinite, Q.complex : Q.algebraic | Q.transcendental } @cacheit def get_known_facts(x=None): """ Facts between unary predicates. Parameters ========== x : Symbol, optional Placeholder symbol for unary facts. Default is ``Symbol('x')``. Returns ======= fact : Known facts in conjugated normal form. """ if x is None: x = Symbol('x') fact = And( # primitive predicates for extended real exclude each other. Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x), Q.positive(x), Q.positive_infinite(x)), # build complex plane Exclusive(Q.real(x), Q.imaginary(x)), Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)), # other subsets of complex Exclusive(Q.transcendental(x), Q.algebraic(x)), Equivalent(Q.real(x), Q.rational(x) | Q.irrational(x)), Exclusive(Q.irrational(x), Q.rational(x)), Implies(Q.rational(x), Q.algebraic(x)), # integers Exclusive(Q.even(x), Q.odd(x)), Implies(Q.integer(x), Q.rational(x)), Implies(Q.zero(x), Q.even(x)), Exclusive(Q.composite(x), Q.prime(x)), Implies(Q.composite(x) | Q.prime(x), Q.integer(x) & Q.positive(x)), Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)), # hermitian and antihermitian Implies(Q.real(x), Q.hermitian(x)), Implies(Q.imaginary(x), Q.antihermitian(x)), Implies(Q.zero(x), Q.hermitian(x) | Q.antihermitian(x)), # define finity and infinity, and build extended real line Exclusive(Q.infinite(x), Q.finite(x)), Implies(Q.complex(x), Q.finite(x)), Implies(Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)), # commutativity Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)), # matrices Implies(Q.orthogonal(x), Q.positive_definite(x)), Implies(Q.orthogonal(x), Q.unitary(x)), Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)), Implies(Q.unitary(x), Q.normal(x)), Implies(Q.unitary(x), Q.invertible(x)), Implies(Q.normal(x), Q.square(x)), Implies(Q.diagonal(x), Q.normal(x)), Implies(Q.positive_definite(x), Q.invertible(x)), Implies(Q.diagonal(x), Q.upper_triangular(x)), Implies(Q.diagonal(x), Q.lower_triangular(x)), Implies(Q.lower_triangular(x), Q.triangular(x)), Implies(Q.upper_triangular(x), Q.triangular(x)), Implies(Q.triangular(x), Q.upper_triangular(x) | Q.lower_triangular(x)), Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)), Implies(Q.diagonal(x), Q.symmetric(x)), Implies(Q.unit_triangular(x), Q.triangular(x)), Implies(Q.invertible(x), Q.fullrank(x)), Implies(Q.invertible(x), Q.square(x)), Implies(Q.symmetric(x), Q.square(x)), Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)), Equivalent(Q.invertible(x), ~Q.singular(x)), Implies(Q.integer_elements(x), Q.real_elements(x)), Implies(Q.real_elements(x), Q.complex_elements(x)), ) return fact def generate_known_facts_dict(keys, fact): """ Computes and returns a dictionary which contains the relations between unary predicates. Each key is a predicate, and item is two groups of predicates. First group contains the predicates which are implied by the key, and second group contains the predicates which are rejected by the key. All predicates in *keys* and *fact* must be unary and have same placeholder symbol. Parameters ========== keys : list of AppliedPredicate instances. fact : Fact between predicates in conjugated normal form. Examples ======== >>> from sympy import Q >>> from sympy.assumptions.facts import generate_known_facts_dict >>> from sympy.logic.boolalg import And, Implies >>> from sympy.abc import x >>> keys = [Q.even(x), Q.odd(x), Q.zero(x)] >>> fact = And(Implies(Q.even(x), ~Q.odd(x)), ... Implies(Q.zero(x), Q.even(x))) >>> generate_known_facts_dict(keys, fact) {Q.even: ({Q.even}, {Q.odd}), Q.odd: ({Q.odd}, {Q.even, Q.zero}), Q.zero: ({Q.even, Q.zero}, {Q.odd})} """ fact_cnf = to_cnf(fact) mapping = single_fact_lookup(keys, fact_cnf) ret = {} for key, value in mapping.items(): implied = set() rejected = set() for expr in value: if isinstance(expr, AppliedPredicate): implied.add(expr.function) elif isinstance(expr, Not): pred = expr.args[0] rejected.add(pred.function) ret[key.function] = (implied, rejected) return ret @cacheit def get_known_facts_keys(): """ Return every unary predicates registered to ``Q``. This function is used to generate the keys for ``generate_known_facts_dict``. """ exclude = set() for pred in [Q.eq, Q.ne, Q.gt, Q.lt, Q.ge, Q.le]: # exclude polyadic predicates exclude.add(pred) result = [] for attr in Q.__class__.__dict__: if attr.startswith('__'): continue pred = getattr(Q, attr) if pred in exclude: continue result.append(pred) return result def single_fact_lookup(known_facts_keys, known_facts_cnf): # Return the dictionary for quick lookup of single fact mapping = {} for key in known_facts_keys: mapping[key] = {key} for other_key in known_facts_keys: if other_key != key: if ask_full_inference(other_key, key, known_facts_cnf): mapping[key].add(other_key) if ask_full_inference(~other_key, key, known_facts_cnf): mapping[key].add(~other_key) return mapping def ask_full_inference(proposition, assumptions, known_facts_cnf): """ Method for inferring properties about objects. """ if not satisfiable(And(known_facts_cnf, assumptions, proposition)): return False if not satisfiable(And(known_facts_cnf, assumptions, Not(proposition))): return True return None
14afec3c83945da0c6163f62eb3a883c90d4396707bad2449efe613cf9b71082
from collections import defaultdict from sympy.assumptions.ask import Q from sympy.core import (Add, Mul, Pow, Number, NumberSymbol, Symbol) from sympy.core.numbers import ImaginaryUnit from sympy.functions.elementary.complexes import Abs from sympy.logic.boolalg import (Equivalent, And, Or, Implies) from sympy.matrices.expressions import MatMul # APIs here may be subject to change ### Helper functions ### def allargs(symbol, fact, expr): """ Apply all arguments of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import allargs >>> from sympy.abc import x, y >>> allargs(x, Q.negative(x) | Q.positive(x), x*y) (Q.negative(x) | Q.positive(x)) & (Q.negative(y) | Q.positive(y)) """ return And(*[fact.subs(symbol, arg) for arg in expr.args]) def anyarg(symbol, fact, expr): """ Apply any argument of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import anyarg >>> from sympy.abc import x, y >>> anyarg(x, Q.negative(x) & Q.positive(x), x*y) (Q.negative(x) & Q.positive(x)) | (Q.negative(y) & Q.positive(y)) """ return Or(*[fact.subs(symbol, arg) for arg in expr.args]) def exactlyonearg(symbol, fact, expr): """ Apply exactly one argument of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import exactlyonearg >>> from sympy.abc import x, y >>> exactlyonearg(x, Q.positive(x), x*y) (Q.positive(x) & ~Q.positive(y)) | (Q.positive(y) & ~Q.positive(x)) """ pred_args = [fact.subs(symbol, arg) for arg in expr.args] res = Or(*[And(pred_args[i], *[~lit for lit in pred_args[:i] + pred_args[i+1:]]) for i in range(len(pred_args))]) return res ### Fact registry ### class ClassFactRegistry: """ Register handlers against classes. Explanation =========== ``register`` method registers the handler function for a class. Here, handler function should return a single fact. ``multiregister`` method registers the handler function for multiple classes. Here, handler function should return a container of multiple facts. ``registry(expr)`` returns a set of facts for *expr*. Examples ======== Here, we register the facts for ``Abs``. >>> from sympy import Abs, Q >>> from sympy.logic.boolalg import Equivalent >>> from sympy.assumptions.sathandlers import ClassFactRegistry >>> reg = ClassFactRegistry() >>> @reg.register(Abs) ... def f1(expr): ... return Q.nonnegative(expr) >>> @reg.register(Abs) ... def f2(expr): ... arg = expr.args[0] ... return Equivalent(~Q.zero(arg), ~Q.zero(expr)) Calling the registry with expression returns the defined facts for the expression. >>> from sympy.abc import x >>> reg(Abs(x)) {Q.nonnegative(Abs(x)), Equivalent(~Q.zero(x), ~Q.zero(Abs(x)))} Multiple facts can be registered at once by ``multiregister`` method. >>> reg2 = ClassFactRegistry() >>> @reg2.multiregister(Abs) ... def _(expr): ... arg = expr.args[0] ... return [Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr)] >>> reg2(Abs(x)) {Implies(Q.even(x), Q.even(Abs(x))), Implies(Q.odd(x), Q.odd(Abs(x)))} """ def __init__(self): self.singlefacts = defaultdict(frozenset) self.multifacts = defaultdict(frozenset) def register(self, cls): def _(func): self.singlefacts[cls] |= {func} return func return _ def multiregister(self, *classes): def _(func): for cls in classes: self.multifacts[cls] |= {func} return func return _ def __getitem__(self, key): ret1 = self.singlefacts[key] for k in self.singlefacts: if issubclass(key, k): ret1 |= self.singlefacts[k] ret2 = self.multifacts[key] for k in self.multifacts: if issubclass(key, k): ret2 |= self.multifacts[k] return ret1, ret2 def __call__(self, expr): ret = set() handlers1, handlers2 = self[expr.func] for h in handlers1: ret.add(h(expr)) for h in handlers2: ret.update(h(expr)) return ret class_fact_registry = ClassFactRegistry() ### Class fact registration ### x = Symbol('x') ## Abs ## @class_fact_registry.multiregister(Abs) def _(expr): arg = expr.args[0] return [Q.nonnegative(expr), Equivalent(~Q.zero(arg), ~Q.zero(expr)), Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr), Q.integer(arg) >> Q.integer(expr), ] ### Add ## @class_fact_registry.multiregister(Add) def _(expr): return [allargs(x, Q.positive(x), expr) >> Q.positive(expr), allargs(x, Q.negative(x), expr) >> Q.negative(expr), allargs(x, Q.real(x), expr) >> Q.real(expr), allargs(x, Q.rational(x), expr) >> Q.rational(expr), allargs(x, Q.integer(x), expr) >> Q.integer(expr), exactlyonearg(x, ~Q.integer(x), expr) >> ~Q.integer(expr), ] @class_fact_registry.register(Add) def _(expr): allargs_real = allargs(x, Q.real(x), expr) onearg_irrational = exactlyonearg(x, Q.irrational(x), expr) return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr))) ### Mul ### @class_fact_registry.multiregister(Mul) def _(expr): return [Equivalent(Q.zero(expr), anyarg(x, Q.zero(x), expr)), allargs(x, Q.positive(x), expr) >> Q.positive(expr), allargs(x, Q.real(x), expr) >> Q.real(expr), allargs(x, Q.rational(x), expr) >> Q.rational(expr), allargs(x, Q.integer(x), expr) >> Q.integer(expr), exactlyonearg(x, ~Q.rational(x), expr) >> ~Q.integer(expr), allargs(x, Q.commutative(x), expr) >> Q.commutative(expr), ] @class_fact_registry.register(Mul) def _(expr): # Implicitly assumes Mul has more than one arg # Would be allargs(x, Q.prime(x) | Q.composite(x)) except 1 is composite # More advanced prime assumptions will require inequalities, as 1 provides # a corner case. allargs_prime = allargs(x, Q.prime(x), expr) return Implies(allargs_prime, ~Q.prime(expr)) @class_fact_registry.register(Mul) def _(expr): # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented) allargs_imag_or_real = allargs(x, Q.imaginary(x) | Q.real(x), expr) onearg_imaginary = exactlyonearg(x, Q.imaginary(x), expr) return Implies(allargs_imag_or_real, Implies(onearg_imaginary, Q.imaginary(expr))) @class_fact_registry.register(Mul) def _(expr): allargs_real = allargs(x, Q.real(x), expr) onearg_irrational = exactlyonearg(x, Q.irrational(x), expr) return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr))) @class_fact_registry.register(Mul) def _(expr): # Including the integer qualification means we don't need to add any facts # for odd, since the assumptions already know that every integer is # exactly one of even or odd. allargs_integer = allargs(x, Q.integer(x), expr) anyarg_even = anyarg(x, Q.even(x), expr) return Implies(allargs_integer, Equivalent(anyarg_even, Q.even(expr))) ### MatMul ### @class_fact_registry.register(MatMul) def _(expr): allargs_square = allargs(x, Q.square(x), expr) allargs_invertible = allargs(x, Q.invertible(x), expr) return Implies(allargs_square, Equivalent(Q.invertible(expr), allargs_invertible)) ### Pow ### @class_fact_registry.multiregister(Pow) def _(expr): base, exp = expr.base, expr.exp return [ (Q.real(base) & Q.even(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr), (Q.nonnegative(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr), (Q.nonpositive(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonpositive(expr), Equivalent(Q.zero(expr), Q.zero(base) & Q.positive(exp)) ] ### Numbers ### _old_assump_getters = { Q.positive: lambda o: o.is_positive, Q.zero: lambda o: o.is_zero, Q.negative: lambda o: o.is_negative, Q.rational: lambda o: o.is_rational, Q.irrational: lambda o: o.is_irrational, Q.even: lambda o: o.is_even, Q.odd: lambda o: o.is_odd, Q.imaginary: lambda o: o.is_imaginary, Q.prime: lambda o: o.is_prime, Q.composite: lambda o: o.is_composite, } @class_fact_registry.multiregister(Number, NumberSymbol, ImaginaryUnit) def _(expr): ret = [] for p, getter in _old_assump_getters.items(): pred = p(expr) prop = getter(expr) if prop is not None: ret.append(Equivalent(pred, prop)) return ret
a1e60789a40c109b1632f74ca360a4af4be086b9dc3ce505a53190d0b462ef7f
from sympy import Order, S, log, limit, lcm_list, im, re, Dummy, Piecewise from sympy.core import Add, Mul, Pow from sympy.core.basic import Basic from sympy.core.compatibility import iterable from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import expand_mul from sympy.core.numbers import _sympifyit, oo, zoo from sympy.core.relational import is_le, is_lt, is_ge, is_gt from sympy.core.sympify import _sympify from sympy.functions.elementary.miscellaneous import Min, Max from sympy.logic.boolalg import And from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union, Complement, EmptySet) from sympy.sets.fancysets import ImageSet from sympy.solvers.inequalities import solve_univariate_inequality from sympy.utilities import filldedent from sympy.multipledispatch import dispatch def continuous_domain(f, symbol, domain): """ Returns the intervals in the given domain for which the function is continuous. This method is limited by the ability to determine the various singularities and discontinuities of the given function. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the intervals are to be determined. domain : Interval The domain over which the continuity of the symbol has to be checked. Examples ======== >>> from sympy import Symbol, S, tan, log, pi, sqrt >>> from sympy.sets import Interval >>> from sympy.calculus.util import continuous_domain >>> x = Symbol('x') >>> continuous_domain(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> continuous_domain(tan(x), x, Interval(0, pi)) Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi)) >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5)) Interval(2, 5) >>> continuous_domain(log(2*x - 1), x, S.Reals) Interval.open(1/2, oo) Returns ======= Interval Union of all intervals where the function is continuous. Raises ====== NotImplementedError If the method to determine continuity of such a function has not yet been developed. """ from sympy.solvers.inequalities import solve_univariate_inequality from sympy.calculus.singularities import singularities if domain.is_subset(S.Reals): constrained_interval = domain for atom in f.atoms(Pow): den = atom.exp.as_numer_denom()[1] if den.is_even and den.is_nonzero: constraint = solve_univariate_inequality(atom.base >= 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) for atom in f.atoms(log): constraint = solve_univariate_inequality(atom.args[0] > 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) return constrained_interval - singularities(f, symbol, domain) def function_range(f, symbol, domain): """ Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the range of function is to be determined. domain : Interval The domain under which the range of the function has to be found. Examples ======== >>> from sympy import Symbol, S, exp, log, pi, sqrt, sin, tan >>> from sympy.sets import Interval >>> from sympy.calculus.util import function_range >>> x = Symbol('x') >>> function_range(sin(x), x, Interval(0, 2*pi)) Interval(-1, 1) >>> function_range(tan(x), x, Interval(-pi/2, pi/2)) Interval(-oo, oo) >>> function_range(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> function_range(exp(x), x, S.Reals) Interval.open(0, oo) >>> function_range(log(x), x, S.Reals) Interval(-oo, oo) >>> function_range(sqrt(x), x , Interval(-5, 9)) Interval(0, 3) Returns ======= Interval Union of all ranges for all intervals under domain where function is continuous. Raises ====== NotImplementedError If any of the intervals, in the given domain, for which function is continuous are not finite or real, OR if the critical points of the function on the domain can't be found. """ from sympy.solvers.solveset import solveset if isinstance(domain, EmptySet): return S.EmptySet period = periodicity(f, symbol) if period == S.Zero: # the expression is constant wrt symbol return FiniteSet(f.expand()) if period is not None: if isinstance(domain, Interval): if (domain.inf - domain.sup).is_infinite: domain = Interval(0, period) elif isinstance(domain, Union): for sub_dom in domain.args: if isinstance(sub_dom, Interval) and \ ((sub_dom.inf - sub_dom.sup).is_infinite): domain = Interval(0, period) intervals = continuous_domain(f, symbol, domain) range_int = S.EmptySet if isinstance(intervals,(Interval, FiniteSet)): interval_iter = (intervals,) elif isinstance(intervals, Union): interval_iter = intervals.args else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) for interval in interval_iter: if isinstance(interval, FiniteSet): for singleton in interval: if singleton in domain: range_int += FiniteSet(f.subs(symbol, singleton)) elif isinstance(interval, Interval): vals = S.EmptySet critical_points = S.EmptySet critical_values = S.EmptySet bounds = ((interval.left_open, interval.inf, '+'), (interval.right_open, interval.sup, '-')) for is_open, limit_point, direction in bounds: if is_open: critical_values += FiniteSet(limit(f, symbol, limit_point, direction)) vals += critical_values else: vals += FiniteSet(f.subs(symbol, limit_point)) solution = solveset(f.diff(symbol), symbol, interval) if not iterable(solution): raise NotImplementedError( 'Unable to find critical points for {}'.format(f)) if isinstance(solution, ImageSet): raise NotImplementedError( 'Infinite number of critical points for {}'.format(f)) critical_points += solution for critical_point in critical_points: vals += FiniteSet(f.subs(symbol, critical_point)) left_open, right_open = False, False if critical_values is not S.EmptySet: if critical_values.inf == vals.inf: left_open = True if critical_values.sup == vals.sup: right_open = True range_int += Interval(vals.inf, vals.sup, left_open, right_open) else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) return range_int def not_empty_in(finset_intersection, *syms): """ Finds the domain of the functions in `finite_set` in which the `finite_set` is not-empty Parameters ========== finset_intersection : The unevaluated intersection of FiniteSet containing real-valued functions with Union of Sets syms : Tuple of symbols Symbol for which domain is to be found Raises ====== NotImplementedError The algorithms to find the non-emptiness of the given FiniteSet are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report it to the github issue tracker (https://github.com/sympy/sympy/issues). Examples ======== >>> from sympy import FiniteSet, Interval, not_empty_in, oo >>> from sympy.abc import x >>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x) Interval(0, 2) >>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) Union(Interval(1, 2), Interval(-sqrt(2), -1)) >>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) Union(Interval.Lopen(-2, -1), Interval(2, oo)) """ # TODO: handle piecewise defined functions # TODO: handle transcendental functions # TODO: handle multivariate functions if len(syms) == 0: raise ValueError("One or more symbols must be given in syms.") if finset_intersection is S.EmptySet: return S.EmptySet if isinstance(finset_intersection, Union): elm_in_sets = finset_intersection.args[0] return Union(not_empty_in(finset_intersection.args[1], *syms), elm_in_sets) if isinstance(finset_intersection, FiniteSet): finite_set = finset_intersection _sets = S.Reals else: finite_set = finset_intersection.args[1] _sets = finset_intersection.args[0] if not isinstance(finite_set, FiniteSet): raise ValueError('A FiniteSet must be given, not %s: %s' % (type(finite_set), finite_set)) if len(syms) == 1: symb = syms[0] else: raise NotImplementedError('more than one variables %s not handled' % (syms,)) def elm_domain(expr, intrvl): """ Finds the domain of an expression in any given interval """ from sympy.solvers.solveset import solveset _start = intrvl.start _end = intrvl.end _singularities = solveset(expr.as_numer_denom()[1], symb, domain=S.Reals) if intrvl.right_open: if _end is S.Infinity: _domain1 = S.Reals else: _domain1 = solveset(expr < _end, symb, domain=S.Reals) else: _domain1 = solveset(expr <= _end, symb, domain=S.Reals) if intrvl.left_open: if _start is S.NegativeInfinity: _domain2 = S.Reals else: _domain2 = solveset(expr > _start, symb, domain=S.Reals) else: _domain2 = solveset(expr >= _start, symb, domain=S.Reals) # domain in the interval expr_with_sing = Intersection(_domain1, _domain2) expr_domain = Complement(expr_with_sing, _singularities) return expr_domain if isinstance(_sets, Interval): return Union(*[elm_domain(element, _sets) for element in finite_set]) if isinstance(_sets, Union): _domain = S.EmptySet for intrvl in _sets.args: _domain_element = Union(*[elm_domain(element, intrvl) for element in finite_set]) _domain = Union(_domain, _domain_element) return _domain def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : Expr. The concerned function. symbol : Symbol The variable for which the period is to be determined. check : Boolean, optional The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. `None` is returned when the function is aperiodic or has a complex period. The value of `0` is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as `exp`, `sinh` is evaluated to `None`. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the `check` flag is not reliable due to internal simplification of the given expression. Hence, it is set to `False` by default. Examples ======== >>> from sympy import Symbol, sin, cos, tan, exp >>> from sympy.calculus.util import periodicity >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) """ from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.simplify.simplify import simplify from sympy.solvers.decompogen import decompogen from sympy.polys.polytools import degree temp = Dummy('x', real=True) f = f.subs(symbol, temp) symbol = temp def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if isinstance(f, TrigonometricFunction): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1): f = Pow(S.Exp1, expand_mul(f.exp)) if im(f) != 0: period_real = periodicity(re(f), symbol) period_imag = periodicity(im(f), symbol) if period_real is not None and period_imag is not None: period = lcim([period_real, period_imag]) if f.is_Pow and f.base != S.Exp1: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) #check if 'f' is linear in 'symbol' elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and symbol not in n.free_symbols): period = Abs(n / a.diff(symbol)) elif isinstance(f, Piecewise): pass # not handling Piecewise yet as the return type is not favorable elif period is None: from sympy.solvers.decompogen import compogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g != orig_f and g != f: # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None def _periodicity(args, symbol): """ Helper for `periodicity` to find the period of a list of simpler functions. It uses the `lcim` method to find the least common period of all the functions. Parameters ========== args : Tuple of Symbol All the symbols present in a function. symbol : Symbol The symbol over which the function is to be evaluated. Returns ======= period The least common period of the function for all the symbols of the function. None if for at least one of the symbols the function is aperiodic """ periods = [] for f in args: period = periodicity(f, symbol) if period is None: return None if period is not S.Zero: periods.append(period) if len(periods) > 1: return lcim(periods) if periods: return periods[0] def lcim(numbers): """Returns the least common integral multiple of a list of numbers. The numbers can be rational or irrational or a mixture of both. `None` is returned for incommensurable numbers. Parameters ========== numbers : list Numbers (rational and/or irrational) for which lcim is to be found. Returns ======= number lcim if it exists, otherwise `None` for incommensurable numbers. Examples ======== >>> from sympy import S, pi >>> from sympy.calculus.util import lcim >>> lcim([S(1)/2, S(3)/4, S(5)/6]) 15/2 >>> lcim([2*pi, 3*pi, pi, pi/2]) 6*pi >>> lcim([S(1), 2*pi]) """ result = None if all(num.is_irrational for num in numbers): factorized_nums = list(map(lambda num: num.factor(), numbers)) factors_num = list( map(lambda num: num.as_coeff_Mul(), factorized_nums)) term = factors_num[0][1] if all(factor == term for coeff, factor in factors_num): common_term = term coeffs = [coeff for coeff, factor in factors_num] result = lcm_list(coeffs) * common_term elif all(num.is_rational for num in numbers): result = lcm_list(numbers) else: pass return result def is_convex(f, *syms, domain=S.Reals): """Determines the convexity of the function passed in the argument. Parameters ========== f : Expr The concerned function. syms : Tuple of symbols The variables with respect to which the convexity is to be determined. domain : Interval, optional The domain over which the convexity of the function has to be checked. If unspecified, S.Reals will be the default domain. Returns ======= Boolean The method returns `True` if the function is convex otherwise it returns `False`. Raises ====== NotImplementedError The check for the convexity of multivariate functions is not implemented yet. Notes ===== To determine concavity of a function pass `-f` as the concerned function. To determine logarithmic convexity of a function pass log(f) as concerned function. To determine logartihmic concavity of a function pass -log(f) as concerned function. Currently, convexity check of multivariate functions is not handled. Examples ======== >>> from sympy import symbols, exp, oo, Interval >>> from sympy.calculus.util import is_convex >>> x = symbols('x') >>> is_convex(exp(x), x) True >>> is_convex(x**3, x, domain = Interval(-1, oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Convex_function .. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf .. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function .. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function .. [5] https://en.wikipedia.org/wiki/Concave_function """ if len(syms) > 1: raise NotImplementedError( "The check for the convexity of multivariate functions is not implemented yet.") f = _sympify(f) var = syms[0] condition = f.diff(var, 2) < 0 if solve_univariate_inequality(condition, var, False, domain): return False return True def stationary_points(f, symbol, domain=S.Reals): """ Returns the stationary points of a function (where derivative of the function is 0) in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for which the stationary points are to be determined. domain : Interval The domain over which the stationary points have to be checked. If unspecified, S.Reals will be the default domain. Returns ======= Set A set of stationary points for the function. If there are no stationary point, an EmptySet is returned. Examples ======== >>> from sympy import Symbol, S, sin, pi, pprint, stationary_points >>> from sympy.sets import Interval >>> x = Symbol('x') >>> stationary_points(1/x, x, S.Reals) EmptySet >>> pprint(stationary_points(sin(x), x), use_unicode=False) pi 3*pi {2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers} 2 2 >>> stationary_points(sin(x),x, Interval(0, 4*pi)) FiniteSet(pi/2, 3*pi/2, 5*pi/2, 7*pi/2) """ from sympy import solveset, diff if isinstance(domain, EmptySet): return S.EmptySet domain = continuous_domain(f, symbol, domain) set = solveset(diff(f, symbol), symbol, domain) return set def maximum(f, symbol, domain=S.Reals): """ Returns the maximum value of a function in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for maximum value needs to be determined. domain : Interval The domain over which the maximum have to be checked. If unspecified, then Global maximum is returned. Returns ======= number Maximum value of the function in given domain. Examples ======== >>> from sympy import Symbol, S, sin, cos, pi, maximum >>> from sympy.sets import Interval >>> x = Symbol('x') >>> f = -x**2 + 2*x + 5 >>> maximum(f, x, S.Reals) 6 >>> maximum(sin(x), x, Interval(-pi, pi/4)) sqrt(2)/2 >>> maximum(sin(x)*cos(x), x) 1/2 """ from sympy import Symbol if isinstance(symbol, Symbol): if isinstance(domain, EmptySet): raise ValueError("Maximum value not defined for empty domain.") return function_range(f, symbol, domain).sup else: raise ValueError("%s is not a valid symbol." % symbol) def minimum(f, symbol, domain=S.Reals): """ Returns the minimum value of a function in the given domain. Parameters ========== f : Expr The concerned function. symbol : Symbol The variable for minimum value needs to be determined. domain : Interval The domain over which the minimum have to be checked. If unspecified, then Global minimum is returned. Returns ======= number Minimum value of the function in the given domain. Examples ======== >>> from sympy import Symbol, S, sin, cos, minimum >>> from sympy.sets import Interval >>> x = Symbol('x') >>> f = x**2 + 2*x + 5 >>> minimum(f, x, S.Reals) 4 >>> minimum(sin(x), x, Interval(2, 3)) sin(3) >>> minimum(sin(x)*cos(x), x) -1/2 """ from sympy import Symbol if isinstance(symbol, Symbol): if isinstance(domain, EmptySet): raise ValueError("Minimum value not defined for empty domain.") return function_range(f, symbol, domain).inf else: raise ValueError("%s is not a valid symbol." % symbol) class AccumulationBounds(AtomicExpr): r""" # Note AccumulationBounds has an alias: AccumBounds AccumulationBounds represent an interval `[a, b]`, which is always closed at the ends. Here `a` and `b` can be any value from extended real numbers. The intended meaning of AccummulationBounds is to give an approximate location of the accumulation points of a real function at a limit point. Let `a` and `b` be reals such that a <= b. `\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}` `\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}` `\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}` `\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}` `oo` and `-oo` are added to the second and third definition respectively, since if either `-oo` or `oo` is an argument, then the other one should be included (though not as an end point). This is forced, since we have, for example, `1/AccumBounds(0, 1) = AccumBounds(1, oo)`, and the limit at `0` is not one-sided. As x tends to `0-`, then `1/x -> -oo`, so `-oo` should be interpreted as belonging to `AccumBounds(1, oo)` though it need not appear explicitly. In many cases it suffices to know that the limit set is bounded. However, in some other cases more exact information could be useful. For example, all accumulation values of cos(x) + 1 are non-negative. (AccumBounds(-1, 1) + 1 = AccumBounds(0, 2)) A AccumulationBounds object is defined to be real AccumulationBounds, if its end points are finite reals. Let `X`, `Y` be real AccumulationBounds, then their sum, difference, product are defined to be the following sets: `X + Y = \{ x+y \mid x \in X \cap y \in Y\}` `X - Y = \{ x-y \mid x \in X \cap y \in Y\}` `X * Y = \{ x*y \mid x \in X \cap y \in Y\}` When an AccumBounds is raised to a negative power, if 0 is contained between the bounds then an infinite range is returned, otherwise if an endpoint is 0 then a semi-infinite range with consistent sign will be returned. AccumBounds in expressions behave a lot like Intervals but the semantics are not necessarily the same. Division (or exponentiation to a negative integer power) could be handled with *intervals* by returning a union of the results obtained after splitting the bounds between negatives and positives, but that is not done with AccumBounds. In addition, bounds are assumed to be independent of each other; if the same bound is used in more than one place in an expression, the result may not be the supremum or infimum of the expression (see below). Finally, when a boundary is ``1``, exponentiation to the power of ``oo`` yields ``oo``, neither ``1`` nor ``nan``. Examples ======== >>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo >>> from sympy.abc import x >>> AccumBounds(0, 1) + AccumBounds(1, 2) AccumBounds(1, 3) >>> AccumBounds(0, 1) - AccumBounds(0, 2) AccumBounds(-2, 1) >>> AccumBounds(-2, 3)*AccumBounds(-1, 1) AccumBounds(-3, 3) >>> AccumBounds(1, 2)*AccumBounds(3, 5) AccumBounds(3, 10) The exponentiation of AccumulationBounds is defined as follows: If 0 does not belong to `X` or `n > 0` then `X^n = \{ x^n \mid x \in X\}` >>> AccumBounds(1, 4)**(S(1)/2) AccumBounds(1, 2) otherwise, an infinite or semi-infinite result is obtained: >>> 1/AccumBounds(-1, 1) AccumBounds(-oo, oo) >>> 1/AccumBounds(0, 2) AccumBounds(1/2, oo) >>> 1/AccumBounds(-oo, 0) AccumBounds(-oo, 0) A boundary of 1 will always generate all nonnegatives: >>> AccumBounds(1, 2)**oo AccumBounds(0, oo) >>> AccumBounds(0, 1)**oo AccumBounds(0, oo) If the exponent is itself an AccumulationBounds or is not an integer then unevaluated results will be returned unless the base values are positive: >>> AccumBounds(2, 3)**AccumBounds(-1, 2) AccumBounds(1/3, 9) >>> AccumBounds(-2, 3)**AccumBounds(-1, 2) AccumBounds(-2, 3)**AccumBounds(-1, 2) >>> AccumBounds(-2, -1)**(S(1)/2) sqrt(AccumBounds(-2, -1)) Note: `<a, b>^2` is not same as `<a, b>*<a, b>` >>> AccumBounds(-1, 1)**2 AccumBounds(0, 1) >>> AccumBounds(1, 3) < 4 True >>> AccumBounds(1, 3) < -1 False Some elementary functions can also take AccumulationBounds as input. A function `f` evaluated for some real AccumulationBounds `<a, b>` is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}` >>> sin(AccumBounds(pi/6, pi/3)) AccumBounds(1/2, sqrt(3)/2) >>> exp(AccumBounds(0, 1)) AccumBounds(1, E) >>> log(AccumBounds(1, E)) AccumBounds(0, 1) Some symbol in an expression can be substituted for a AccumulationBounds object. But it doesn't necessarily evaluate the AccumulationBounds for that expression. The same expression can be evaluated to different values depending upon the form it is used for substitution since each instance of an AccumulationBounds is considered independent. For example: >>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) AccumBounds(-1, 4) >>> ((x + 1)**2).subs(x, AccumBounds(-1, 1)) AccumBounds(0, 4) References ========== .. [1] https://en.wikipedia.org/wiki/Interval_arithmetic .. [2] http://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf Notes ===== Do not use ``AccumulationBounds`` for floating point interval arithmetic calculations, use ``mpmath.iv`` instead. """ is_extended_real = True def __new__(cls, min, max): min = _sympify(min) max = _sympify(max) # Only allow real intervals (use symbols with 'is_extended_real=True'). if not min.is_extended_real or not max.is_extended_real: raise ValueError("Only real AccumulationBounds are supported") if max == min: return max # Make sure that the created AccumBounds object will be valid. if max.is_number and min.is_number: bad = max.is_comparable and min.is_comparable and max < min else: bad = (max - min).is_extended_negative if bad: raise ValueError( "Lower limit should be smaller than upper limit") return Basic.__new__(cls, min, max) # setting the operation priority _op_priority = 11.0 def _eval_is_real(self): if self.min.is_real and self.max.is_real: return True @property def min(self): """ Returns the minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).min 1 """ return self.args[0] @property def max(self): """ Returns the maximum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).max 3 """ return self.args[1] @property def delta(self): """ Returns the difference of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).delta 2 """ return self.max - self.min @property def mid(self): """ Returns the mean of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).mid 2 """ return (self.min + self.max) / 2 @_sympifyit('other', NotImplemented) def _eval_power(self, other): return self.__pow__(other) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, other.min), Add(self.max, other.max)) if other is S.Infinity and self.min is S.NegativeInfinity or \ other is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_extended_real: if self.min is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif self.min is S.NegativeInfinity: return AccumBounds(-oo, self.max + other) elif self.max is S.Infinity: return AccumBounds(self.min + other, oo) else: return AccumBounds(Add(self.min, other), Add(self.max, other)) return Add(self, other, evaluate=False) return NotImplemented __radd__ = __add__ def __neg__(self): return AccumBounds(-self.max, -self.min) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, -other.max), Add(self.max, -other.min)) if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \ other is S.Infinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_extended_real: if self.min is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif self.min is S.NegativeInfinity: return AccumBounds(-oo, self.max - other) elif self.max is S.Infinity: return AccumBounds(self.min - other, oo) else: return AccumBounds( Add(self.min, -other), Add(self.max, -other)) return Add(self, -other, evaluate=False) return NotImplemented @_sympifyit('other', NotImplemented) def __rsub__(self, other): return self.__neg__() + other @_sympifyit('other', NotImplemented) def __mul__(self, other): if self.args == (-oo, oo): return self if isinstance(other, Expr): if isinstance(other, AccumBounds): if other.args == (-oo, oo): return other v = set() for i in self.args: vi = other*i for i in vi.args or (vi,): v.add(i) return AccumBounds(Min(*v), Max(*v)) if other is S.Infinity: if self.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero: return AccumBounds(-oo, 0) if other is S.NegativeInfinity: if self.min.is_zero: return AccumBounds(-oo, 0) if self.max.is_zero: return AccumBounds(0, oo) if other.is_extended_real: if other.is_zero: if self.max is S.Infinity: return AccumBounds(0, oo) if self.min is S.NegativeInfinity: return AccumBounds(-oo, 0) return S.Zero if other.is_extended_positive: return AccumBounds( Mul(self.min, other), Mul(self.max, other)) elif other.is_extended_negative: return AccumBounds( Mul(self.max, other), Mul(self.min, other)) if isinstance(other, Order): return other return Mul(self, other, evaluate=False) return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): if other.min.is_positive or other.max.is_negative: return self * AccumBounds(1/other.max, 1/other.min) if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative and other.min.is_extended_nonpositive and other.max.is_extended_nonnegative): if self.min.is_zero and other.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero and other.min.is_zero: return AccumBounds(-oo, 0) return AccumBounds(-oo, oo) if self.max.is_extended_negative: if other.min.is_extended_negative: if other.max.is_zero: return AccumBounds(self.max / other.min, oo) if other.max.is_extended_positive: # if we were dealing with intervals we would return # Union(Interval(-oo, self.max/other.max), # Interval(self.max/other.min, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_extended_positive: return AccumBounds(-oo, self.max / other.max) if self.min.is_extended_positive: if other.min.is_extended_negative: if other.max.is_zero: return AccumBounds(-oo, self.min / other.min) if other.max.is_extended_positive: # if we were dealing with intervals we would return # Union(Interval(-oo, self.min/other.min), # Interval(self.min/other.max, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_extended_positive: return AccumBounds(self.min / other.max, oo) elif other.is_extended_real: if other is S.Infinity or other is S.NegativeInfinity: if self == AccumBounds(-oo, oo): return AccumBounds(-oo, oo) if self.max is S.Infinity: return AccumBounds(Min(0, other), Max(0, other)) if self.min is S.NegativeInfinity: return AccumBounds(Min(0, -other), Max(0, -other)) if other.is_extended_positive: return AccumBounds(self.min / other, self.max / other) elif other.is_extended_negative: return AccumBounds(self.max / other, self.min / other) if (1 / other) is S.ComplexInfinity: return Mul(self, 1 / other, evaluate=False) else: return Mul(self, 1 / other) return NotImplemented @_sympifyit('other', NotImplemented) def __rtruediv__(self, other): if isinstance(other, Expr): if other.is_extended_real: if other.is_zero: return S.Zero if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative): if self.min.is_zero: if other.is_extended_positive: return AccumBounds(Mul(other, 1 / self.max), oo) if other.is_extended_negative: return AccumBounds(-oo, Mul(other, 1 / self.max)) if self.max.is_zero: if other.is_extended_positive: return AccumBounds(-oo, Mul(other, 1 / self.min)) if other.is_extended_negative: return AccumBounds(Mul(other, 1 / self.min), oo) return AccumBounds(-oo, oo) else: return AccumBounds(Min(other / self.min, other / self.max), Max(other / self.min, other / self.max)) return Mul(other, 1 / self, evaluate=False) else: return NotImplemented @_sympifyit('other', NotImplemented) def __pow__(self, other): if isinstance(other, Expr): if other is S.Infinity: if self.min.is_extended_nonnegative: if self.max < 1: return S.Zero if self.min > 1: return S.Infinity return AccumBounds(0, oo) elif self.max.is_extended_negative: if self.min > -1: return S.Zero if self.max < -1: return zoo return S.NaN else: if self.min > -1: if self.max < 1: return S.Zero return AccumBounds(0, oo) return AccumBounds(-oo, oo) if other is S.NegativeInfinity: return (1/self)**oo # generically true if (self.max - self.min).is_nonnegative: # well defined if self.min.is_nonnegative: # no 0 to worry about if other.is_nonnegative: # no infinity to worry about return self.func(self.min**other, self.max**other) if other.is_zero: return S.One # x**0 = 1 if other.is_Integer or other.is_integer: if self.min.is_extended_positive: return AccumBounds( Min(self.min**other, self.max**other), Max(self.min**other, self.max**other)) elif self.max.is_extended_negative: return AccumBounds( Min(self.max**other, self.min**other), Max(self.max**other, self.min**other)) if other % 2 == 0: if other.is_extended_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(self.min**other, oo) return AccumBounds(0, oo) return AccumBounds( S.Zero, Max(self.min**other, self.max**other)) elif other % 2 == 1: if other.is_extended_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(-oo, self.min**other) return AccumBounds(-oo, oo) return AccumBounds(self.min**other, self.max**other) # non-integer exponent # 0**neg or neg**frac yields complex if (other.is_number or other.is_rational) and ( self.min.is_extended_nonnegative or ( other.is_extended_nonnegative and self.min.is_extended_nonnegative)): num, den = other.as_numer_denom() if num is S.One: return AccumBounds(*[i**(1/den) for i in self.args]) elif den is not S.One: # e.g. if other is not Float return (self**num)**(1/den) # ok for non-negative base if isinstance(other, AccumBounds): if (self.min.is_extended_positive or self.min.is_extended_nonnegative and other.min.is_extended_nonnegative): p = [self**i for i in other.args] if not any(i.is_Pow for i in p): a = [j for i in p for j in i.args or (i,)] try: return self.func(min(a), max(a)) except TypeError: # can't sort pass return Pow(self, other, evaluate=False) return NotImplemented @_sympifyit('other', NotImplemented) def __rpow__(self, other): if other.is_real and other.is_extended_nonnegative and ( self.max - self.min).is_extended_positive: if other is S.One: return S.One if other.is_extended_positive: a, b = [other**i for i in self.args] if min(a, b) != a: a, b = b, a return self.func(a, b) if other.is_zero: if self.min.is_zero: return self.func(0, 1) if self.min.is_extended_positive: return S.Zero return Pow(other, self, evaluate=False) def __abs__(self): if self.max.is_extended_negative: return self.__neg__() elif self.min.is_extended_negative: return AccumBounds(S.Zero, Max(abs(self.min), self.max)) else: return self def __contains__(self, other): """ Returns True if other is contained in self, where other belongs to extended real numbers, False if not contained, otherwise TypeError is raised. Examples ======== >>> from sympy import AccumBounds, oo >>> 1 in AccumBounds(-1, 3) True -oo and oo go together as limits (in AccumulationBounds). >>> -oo in AccumBounds(1, oo) True >>> oo in AccumBounds(-oo, 0) True """ other = _sympify(other) if other is S.Infinity or other is S.NegativeInfinity: if self.min is S.NegativeInfinity or self.max is S.Infinity: return True return False rv = And(self.min <= other, self.max >= other) if rv not in (True, False): raise TypeError("input failed to evaluate") return rv def intersection(self, other): """ Returns the intersection of 'self' and 'other'. Here other can be an instance of FiniteSet or AccumulationBounds. Parameters ========== other: AccumulationBounds Another AccumulationBounds object with which the intersection has to be computed. Returns ======= AccumulationBounds Intersection of 'self' and 'other'. Examples ======== >>> from sympy import AccumBounds, FiniteSet >>> AccumBounds(1, 3).intersection(AccumBounds(2, 4)) AccumBounds(2, 3) >>> AccumBounds(1, 3).intersection(AccumBounds(4, 6)) EmptySet >>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5)) FiniteSet(1, 2) """ if not isinstance(other, (AccumBounds, FiniteSet)): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if isinstance(other, FiniteSet): fin_set = S.EmptySet for i in other: if i in self: fin_set = fin_set + FiniteSet(i) return fin_set if self.max < other.min or self.min > other.max: return S.EmptySet if self.min <= other.min: if self.max <= other.max: return AccumBounds(other.min, self.max) if self.max > other.max: return other if other.min <= self.min: if other.max < self.max: return AccumBounds(self.min, other.max) if other.max > self.max: return self def union(self, other): # TODO : Devise a better method for Union of AccumBounds # this method is not actually correct and # can be made better if not isinstance(other, AccumBounds): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if self.min <= other.min and self.max >= other.min: return AccumBounds(self.min, Max(self.max, other.max)) if other.min <= self.min and other.max >= self.min: return AccumBounds(other.min, Max(self.max, other.max)) @dispatch(AccumulationBounds, AccumulationBounds) # type: ignore # noqa:F811 def _eval_is_le(lhs, rhs): # noqa:F811 if is_le(lhs.max, rhs.min): return True if is_gt(lhs.min, rhs.max): return False @dispatch(AccumulationBounds, Basic) # type: ignore # noqa:F811 def _eval_is_le(lhs, rhs): # noqa: F811 """ Returns True if range of values attained by `self` AccumulationBounds object is greater than the range of values attained by `other`, where other may be any value of type AccumulationBounds object or extended real number value, False if `other` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) > AccumBounds(4, oo) False >>> AccumBounds(1, 4) > AccumBounds(3, 4) AccumBounds(1, 4) > AccumBounds(3, 4) >>> AccumBounds(1, oo) > -1 True """ if not rhs.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(rhs), rhs)) elif rhs.is_comparable: if is_le(lhs.max, rhs): return True if is_gt(lhs.min, rhs): return False @dispatch(AccumulationBounds, AccumulationBounds) def _eval_is_ge(lhs, rhs): # noqa:F811 if is_ge(lhs.min, rhs.max): return True if is_lt(lhs.max, rhs.min): return False @dispatch(AccumulationBounds, Expr) # type:ignore def _eval_is_ge(lhs, rhs): # noqa: F811 """ Returns True if range of values attained by `lhs` AccumulationBounds object is less that the range of values attained by `rhs`, where other may be any value of type AccumulationBounds object or extended real number value, False if `rhs` satisfies the same property, else an unevaluated Relational. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) >= AccumBounds(4, oo) False >>> AccumBounds(1, 4) >= AccumBounds(3, 4) AccumBounds(1, 4) >= AccumBounds(3, 4) >>> AccumBounds(1, oo) >= 1 True """ if not rhs.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(rhs), rhs)) elif rhs.is_comparable: if is_ge(lhs.min, rhs): return True if is_lt(lhs.max, rhs): return False @dispatch(Expr, AccumulationBounds) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 if not lhs.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(lhs), lhs)) elif lhs.is_comparable: if is_le(rhs.max, lhs): return True if is_gt(rhs.min, lhs): return False @dispatch(AccumulationBounds, AccumulationBounds) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 if is_ge(lhs.min, rhs.max): return True if is_lt(lhs.max, rhs.min): return False # setting an alias for AccumulationBounds AccumBounds = AccumulationBounds
8a34a800662021b937ed64ec8c8b9ec58220a4aba1a96d047bf2aadbe9957abd
""" This module provides convenient functions to transform sympy expressions to lambda functions which can be used to calculate numerical values very fast. """ from typing import Any, Dict, Iterable import builtins import inspect import keyword import textwrap import linecache from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.core.compatibility import (is_sequence, iterable, NotIterable) from sympy.utilities.misc import filldedent from sympy.utilities.decorator import doctest_depends_on __doctest_requires__ = {('lambdify',): ['numpy', 'tensorflow']} # Default namespaces, letting us define translations that can't be defined # by simple variable maps, like I => 1j MATH_DEFAULT = {} # type: Dict[str, Any] MPMATH_DEFAULT = {} # type: Dict[str, Any] NUMPY_DEFAULT = {"I": 1j} # type: Dict[str, Any] SCIPY_DEFAULT = {"I": 1j} # type: Dict[str, Any] CUPY_DEFAULT = {"I": 1j} # type: Dict[str, Any] TENSORFLOW_DEFAULT = {} # type: Dict[str, Any] SYMPY_DEFAULT = {} # type: Dict[str, Any] NUMEXPR_DEFAULT = {} # type: Dict[str, Any] # These are the namespaces the lambda functions will use. # These are separate from the names above because they are modified # throughout this file, whereas the defaults should remain unmodified. MATH = MATH_DEFAULT.copy() MPMATH = MPMATH_DEFAULT.copy() NUMPY = NUMPY_DEFAULT.copy() SCIPY = SCIPY_DEFAULT.copy() CUPY = CUPY_DEFAULT.copy() TENSORFLOW = TENSORFLOW_DEFAULT.copy() SYMPY = SYMPY_DEFAULT.copy() NUMEXPR = NUMEXPR_DEFAULT.copy() # Mappings between sympy and other modules function names. MATH_TRANSLATIONS = { "ceiling": "ceil", "E": "e", "ln": "log", } # NOTE: This dictionary is reused in Function._eval_evalf to allow subclasses # of Function to automatically evalf. MPMATH_TRANSLATIONS = { "Abs": "fabs", "elliptic_k": "ellipk", "elliptic_f": "ellipf", "elliptic_e": "ellipe", "elliptic_pi": "ellippi", "ceiling": "ceil", "chebyshevt": "chebyt", "chebyshevu": "chebyu", "E": "e", "I": "j", "ln": "log", #"lowergamma":"lower_gamma", "oo": "inf", #"uppergamma":"upper_gamma", "LambertW": "lambertw", "MutableDenseMatrix": "matrix", "ImmutableDenseMatrix": "matrix", "conjugate": "conj", "dirichlet_eta": "altzeta", "Ei": "ei", "Shi": "shi", "Chi": "chi", "Si": "si", "Ci": "ci", "RisingFactorial": "rf", "FallingFactorial": "ff", "betainc_regularized": "betainc", } NUMPY_TRANSLATIONS = { "Heaviside": "heaviside", } # type: Dict[str, str] SCIPY_TRANSLATIONS = {} # type: Dict[str, str] CUPY_TRANSLATIONS = {} # type: Dict[str, str] TENSORFLOW_TRANSLATIONS = {} # type: Dict[str, str] NUMEXPR_TRANSLATIONS = {} # type: Dict[str, str] # Available modules: MODULES = { "math": (MATH, MATH_DEFAULT, MATH_TRANSLATIONS, ("from math import *",)), "mpmath": (MPMATH, MPMATH_DEFAULT, MPMATH_TRANSLATIONS, ("from mpmath import *",)), "numpy": (NUMPY, NUMPY_DEFAULT, NUMPY_TRANSLATIONS, ("import numpy; from numpy import *; from numpy.linalg import *",)), "scipy": (SCIPY, SCIPY_DEFAULT, SCIPY_TRANSLATIONS, ("import numpy; import scipy; from scipy import *; from scipy.special import *",)), "cupy": (CUPY, CUPY_DEFAULT, CUPY_TRANSLATIONS, ("import cupy",)), "tensorflow": (TENSORFLOW, TENSORFLOW_DEFAULT, TENSORFLOW_TRANSLATIONS, ("import tensorflow",)), "sympy": (SYMPY, SYMPY_DEFAULT, {}, ( "from sympy.functions import *", "from sympy.matrices import *", "from sympy import Integral, pi, oo, nan, zoo, E, I",)), "numexpr" : (NUMEXPR, NUMEXPR_DEFAULT, NUMEXPR_TRANSLATIONS, ("import_module('numexpr')", )), } def _import(module, reload=False): """ Creates a global translation dictionary for module. The argument module has to be one of the following strings: "math", "mpmath", "numpy", "sympy", "tensorflow". These dictionaries map names of python functions to their equivalent in other modules. """ # Required despite static analysis claiming it is not used from sympy.external import import_module # noqa:F401 try: namespace, namespace_default, translations, import_commands = MODULES[ module] except KeyError: raise NameError( "'%s' module can't be used for lambdification" % module) # Clear namespace or exit if namespace != namespace_default: # The namespace was already generated, don't do it again if not forced. if reload: namespace.clear() namespace.update(namespace_default) else: return for import_command in import_commands: if import_command.startswith('import_module'): module = eval(import_command) if module is not None: namespace.update(module.__dict__) continue else: try: exec(import_command, {}, namespace) continue except ImportError: pass raise ImportError( "can't import '%s' with '%s' command" % (module, import_command)) # Add translated names to namespace for sympyname, translation in translations.items(): namespace[sympyname] = namespace[translation] # For computing the modulus of a sympy expression we use the builtin abs # function, instead of the previously used fabs function for all # translation modules. This is because the fabs function in the math # module does not accept complex valued arguments. (see issue 9474). The # only exception, where we don't use the builtin abs function is the # mpmath translation module, because mpmath.fabs returns mpf objects in # contrast to abs(). if 'Abs' not in namespace: namespace['Abs'] = abs # Used for dynamically generated filenames that are inserted into the # linecache. _lambdify_generated_counter = 1 @doctest_depends_on(modules=('numpy', 'tensorflow', ), python_version=(3,)) def lambdify(args: Iterable, expr, modules=None, printer=None, use_imps=True, dummify=False): """Convert a SymPy expression into a function that allows for fast numeric evaluation. .. warning:: This function uses ``exec``, and thus shouldn't be used on unsanitized input. .. versionchanged:: 1.7.0 Passing a set for the *args* parameter is deprecated as sets are unordered. Use an ordered iterable such as a list or tuple. Explanation =========== For example, to convert the SymPy expression ``sin(x) + cos(x)`` to an equivalent NumPy function that numerically evaluates it: >>> from sympy import sin, cos, symbols, lambdify >>> import numpy as np >>> x = symbols('x') >>> expr = sin(x) + cos(x) >>> expr sin(x) + cos(x) >>> f = lambdify(x, expr, 'numpy') >>> a = np.array([1, 2]) >>> f(a) [1.38177329 0.49315059] The primary purpose of this function is to provide a bridge from SymPy expressions to numerical libraries such as NumPy, SciPy, NumExpr, mpmath, and tensorflow. In general, SymPy functions do not work with objects from other libraries, such as NumPy arrays, and functions from numeric libraries like NumPy or mpmath do not work on SymPy expressions. ``lambdify`` bridges the two by converting a SymPy expression to an equivalent numeric function. The basic workflow with ``lambdify`` is to first create a SymPy expression representing whatever mathematical function you wish to evaluate. This should be done using only SymPy functions and expressions. Then, use ``lambdify`` to convert this to an equivalent function for numerical evaluation. For instance, above we created ``expr`` using the SymPy symbol ``x`` and SymPy functions ``sin`` and ``cos``, then converted it to an equivalent NumPy function ``f``, and called it on a NumPy array ``a``. Parameters ========== args : List[Symbol] A variable or a list of variables whose nesting represents the nesting of the arguments that will be passed to the function. Variables can be symbols, undefined functions, or matrix symbols. >>> from sympy import Eq >>> from sympy.abc import x, y, z The list of variables should match the structure of how the arguments will be passed to the function. Simply enclose the parameters as they will be passed in a list. To call a function like ``f(x)`` then ``[x]`` should be the first argument to ``lambdify``; for this case a single ``x`` can also be used: >>> f = lambdify(x, x + 1) >>> f(1) 2 >>> f = lambdify([x], x + 1) >>> f(1) 2 To call a function like ``f(x, y)`` then ``[x, y]`` will be the first argument of the ``lambdify``: >>> f = lambdify([x, y], x + y) >>> f(1, 1) 2 To call a function with a single 3-element tuple like ``f((x, y, z))`` then ``[(x, y, z)]`` will be the first argument of the ``lambdify``: >>> f = lambdify([(x, y, z)], Eq(z**2, x**2 + y**2)) >>> f((3, 4, 5)) True If two args will be passed and the first is a scalar but the second is a tuple with two arguments then the items in the list should match that structure: >>> f = lambdify([x, (y, z)], x + y + z) >>> f(1, (2, 3)) 6 expr : Expr An expression, list of expressions, or matrix to be evaluated. Lists may be nested. If the expression is a list, the output will also be a list. >>> f = lambdify(x, [x, [x + 1, x + 2]]) >>> f(1) [1, [2, 3]] If it is a matrix, an array will be returned (for the NumPy module). >>> from sympy import Matrix >>> f = lambdify(x, Matrix([x, x + 1])) >>> f(1) [[1] [2]] Note that the argument order here (variables then expression) is used to emulate the Python ``lambda`` keyword. ``lambdify(x, expr)`` works (roughly) like ``lambda x: expr`` (see :ref:`lambdify-how-it-works` below). modules : str, optional Specifies the numeric library to use. If not specified, *modules* defaults to: - ``["scipy", "numpy"]`` if SciPy is installed - ``["numpy"]`` if only NumPy is installed - ``["math", "mpmath", "sympy"]`` if neither is installed. That is, SymPy functions are replaced as far as possible by either ``scipy`` or ``numpy`` functions if available, and Python's standard library ``math``, or ``mpmath`` functions otherwise. *modules* can be one of the following types: - The strings ``"math"``, ``"mpmath"``, ``"numpy"``, ``"numexpr"``, ``"scipy"``, ``"sympy"``, or ``"tensorflow"``. This uses the corresponding printer and namespace mapping for that module. - A module (e.g., ``math``). This uses the global namespace of the module. If the module is one of the above known modules, it will also use the corresponding printer and namespace mapping (i.e., ``modules=numpy`` is equivalent to ``modules="numpy"``). - A dictionary that maps names of SymPy functions to arbitrary functions (e.g., ``{'sin': custom_sin}``). - A list that contains a mix of the arguments above, with higher priority given to entries appearing first (e.g., to use the NumPy module but override the ``sin`` function with a custom version, you can use ``[{'sin': custom_sin}, 'numpy']``). dummify : bool, optional Whether or not the variables in the provided expression that are not valid Python identifiers are substituted with dummy symbols. This allows for undefined functions like ``Function('f')(t)`` to be supplied as arguments. By default, the variables are only dummified if they are not valid Python identifiers. Set ``dummify=True`` to replace all arguments with dummy symbols (if ``args`` is not a string) - for example, to ensure that the arguments do not redefine any built-in names. Examples ======== >>> from sympy.utilities.lambdify import implemented_function >>> from sympy import sqrt, sin, Matrix >>> from sympy import Function >>> from sympy.abc import w, x, y, z >>> f = lambdify(x, x**2) >>> f(2) 4 >>> f = lambdify((x, y, z), [z, y, x]) >>> f(1,2,3) [3, 2, 1] >>> f = lambdify(x, sqrt(x)) >>> f(4) 2.0 >>> f = lambdify((x, y), sin(x*y)**2) >>> f(0, 5) 0.0 >>> row = lambdify((x, y), Matrix((x, x + y)).T, modules='sympy') >>> row(1, 2) Matrix([[1, 3]]) ``lambdify`` can be used to translate SymPy expressions into mpmath functions. This may be preferable to using ``evalf`` (which uses mpmath on the backend) in some cases. >>> f = lambdify(x, sin(x), 'mpmath') >>> f(1) 0.8414709848078965 Tuple arguments are handled and the lambdified function should be called with the same type of arguments as were used to create the function: >>> f = lambdify((x, (y, z)), x + y) >>> f(1, (2, 4)) 3 The ``flatten`` function can be used to always work with flattened arguments: >>> from sympy.utilities.iterables import flatten >>> args = w, (x, (y, z)) >>> vals = 1, (2, (3, 4)) >>> f = lambdify(flatten(args), w + x + y + z) >>> f(*flatten(vals)) 10 Functions present in ``expr`` can also carry their own numerical implementations, in a callable attached to the ``_imp_`` attribute. This can be used with undefined functions using the ``implemented_function`` factory: >>> f = implemented_function(Function('f'), lambda x: x+1) >>> func = lambdify(x, f(x)) >>> func(4) 5 ``lambdify`` always prefers ``_imp_`` implementations to implementations in other namespaces, unless the ``use_imps`` input parameter is False. Usage with Tensorflow: >>> import tensorflow as tf >>> from sympy import Max, sin, lambdify >>> from sympy.abc import x >>> f = Max(x, sin(x)) >>> func = lambdify(x, f, 'tensorflow') After tensorflow v2, eager execution is enabled by default. If you want to get the compatible result across tensorflow v1 and v2 as same as this tutorial, run this line. >>> tf.compat.v1.enable_eager_execution() If you have eager execution enabled, you can get the result out immediately as you can use numpy. If you pass tensorflow objects, you may get an ``EagerTensor`` object instead of value. >>> result = func(tf.constant(1.0)) >>> print(result) tf.Tensor(1.0, shape=(), dtype=float32) >>> print(result.__class__) <class 'tensorflow.python.framework.ops.EagerTensor'> You can use ``.numpy()`` to get the numpy value of the tensor. >>> result.numpy() 1.0 >>> var = tf.Variable(2.0) >>> result = func(var) # also works for tf.Variable and tf.Placeholder >>> result.numpy() 2.0 And it works with any shape array. >>> tensor = tf.constant([[1.0, 2.0], [3.0, 4.0]]) >>> result = func(tensor) >>> result.numpy() [[1. 2.] [3. 4.]] Notes ===== - For functions involving large array calculations, numexpr can provide a significant speedup over numpy. Please note that the available functions for numexpr are more limited than numpy but can be expanded with ``implemented_function`` and user defined subclasses of Function. If specified, numexpr may be the only option in modules. The official list of numexpr functions can be found at: https://numexpr.readthedocs.io/en/latest/user_guide.html#supported-functions - In previous versions of SymPy, ``lambdify`` replaced ``Matrix`` with ``numpy.matrix`` by default. As of SymPy 1.0 ``numpy.array`` is the default. To get the old default behavior you must pass in ``[{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']`` to the ``modules`` kwarg. >>> from sympy import lambdify, Matrix >>> from sympy.abc import x, y >>> import numpy >>> array2mat = [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'] >>> f = lambdify((x, y), Matrix([x, y]), modules=array2mat) >>> f(1, 2) [[1] [2]] - In the above examples, the generated functions can accept scalar values or numpy arrays as arguments. However, in some cases the generated function relies on the input being a numpy array: >>> from sympy import Piecewise >>> from sympy.testing.pytest import ignore_warnings >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "numpy") >>> with ignore_warnings(RuntimeWarning): ... f(numpy.array([-1, 0, 1, 2])) [-1. 0. 1. 0.5] >>> f(0) Traceback (most recent call last): ... ZeroDivisionError: division by zero In such cases, the input should be wrapped in a numpy array: >>> with ignore_warnings(RuntimeWarning): ... float(f(numpy.array([0]))) 0.0 Or if numpy functionality is not required another module can be used: >>> f = lambdify(x, Piecewise((x, x <= 1), (1/x, x > 1)), "math") >>> f(0) 0 .. _lambdify-how-it-works: How it works ============ When using this function, it helps a great deal to have an idea of what it is doing. At its core, lambdify is nothing more than a namespace translation, on top of a special printer that makes some corner cases work properly. To understand lambdify, first we must properly understand how Python namespaces work. Say we had two files. One called ``sin_cos_sympy.py``, with .. code:: python # sin_cos_sympy.py from sympy import sin, cos def sin_cos(x): return sin(x) + cos(x) and one called ``sin_cos_numpy.py`` with .. code:: python # sin_cos_numpy.py from numpy import sin, cos def sin_cos(x): return sin(x) + cos(x) The two files define an identical function ``sin_cos``. However, in the first file, ``sin`` and ``cos`` are defined as the SymPy ``sin`` and ``cos``. In the second, they are defined as the NumPy versions. If we were to import the first file and use the ``sin_cos`` function, we would get something like >>> from sin_cos_sympy import sin_cos # doctest: +SKIP >>> sin_cos(1) # doctest: +SKIP cos(1) + sin(1) On the other hand, if we imported ``sin_cos`` from the second file, we would get >>> from sin_cos_numpy import sin_cos # doctest: +SKIP >>> sin_cos(1) # doctest: +SKIP 1.38177329068 In the first case we got a symbolic output, because it used the symbolic ``sin`` and ``cos`` functions from SymPy. In the second, we got a numeric result, because ``sin_cos`` used the numeric ``sin`` and ``cos`` functions from NumPy. But notice that the versions of ``sin`` and ``cos`` that were used was not inherent to the ``sin_cos`` function definition. Both ``sin_cos`` definitions are exactly the same. Rather, it was based on the names defined at the module where the ``sin_cos`` function was defined. The key point here is that when function in Python references a name that is not defined in the function, that name is looked up in the "global" namespace of the module where that function is defined. Now, in Python, we can emulate this behavior without actually writing a file to disk using the ``exec`` function. ``exec`` takes a string containing a block of Python code, and a dictionary that should contain the global variables of the module. It then executes the code "in" that dictionary, as if it were the module globals. The following is equivalent to the ``sin_cos`` defined in ``sin_cos_sympy.py``: >>> import sympy >>> module_dictionary = {'sin': sympy.sin, 'cos': sympy.cos} >>> exec(''' ... def sin_cos(x): ... return sin(x) + cos(x) ... ''', module_dictionary) >>> sin_cos = module_dictionary['sin_cos'] >>> sin_cos(1) cos(1) + sin(1) and similarly with ``sin_cos_numpy``: >>> import numpy >>> module_dictionary = {'sin': numpy.sin, 'cos': numpy.cos} >>> exec(''' ... def sin_cos(x): ... return sin(x) + cos(x) ... ''', module_dictionary) >>> sin_cos = module_dictionary['sin_cos'] >>> sin_cos(1) 1.38177329068 So now we can get an idea of how ``lambdify`` works. The name "lambdify" comes from the fact that we can think of something like ``lambdify(x, sin(x) + cos(x), 'numpy')`` as ``lambda x: sin(x) + cos(x)``, where ``sin`` and ``cos`` come from the ``numpy`` namespace. This is also why the symbols argument is first in ``lambdify``, as opposed to most SymPy functions where it comes after the expression: to better mimic the ``lambda`` keyword. ``lambdify`` takes the input expression (like ``sin(x) + cos(x)``) and 1. Converts it to a string 2. Creates a module globals dictionary based on the modules that are passed in (by default, it uses the NumPy module) 3. Creates the string ``"def func({vars}): return {expr}"``, where ``{vars}`` is the list of variables separated by commas, and ``{expr}`` is the string created in step 1., then ``exec``s that string with the module globals namespace and returns ``func``. In fact, functions returned by ``lambdify`` support inspection. So you can see exactly how they are defined by using ``inspect.getsource``, or ``??`` if you are using IPython or the Jupyter notebook. >>> f = lambdify(x, sin(x) + cos(x)) >>> import inspect >>> print(inspect.getsource(f)) def _lambdifygenerated(x): return (sin(x) + cos(x)) This shows us the source code of the function, but not the namespace it was defined in. We can inspect that by looking at the ``__globals__`` attribute of ``f``: >>> f.__globals__['sin'] <ufunc 'sin'> >>> f.__globals__['cos'] <ufunc 'cos'> >>> f.__globals__['sin'] is numpy.sin True This shows us that ``sin`` and ``cos`` in the namespace of ``f`` will be ``numpy.sin`` and ``numpy.cos``. Note that there are some convenience layers in each of these steps, but at the core, this is how ``lambdify`` works. Step 1 is done using the ``LambdaPrinter`` printers defined in the printing module (see :mod:`sympy.printing.lambdarepr`). This allows different SymPy expressions to define how they should be converted to a string for different modules. You can change which printer ``lambdify`` uses by passing a custom printer in to the ``printer`` argument. Step 2 is augmented by certain translations. There are default translations for each module, but you can provide your own by passing a list to the ``modules`` argument. For instance, >>> def mysin(x): ... print('taking the sin of', x) ... return numpy.sin(x) ... >>> f = lambdify(x, sin(x), [{'sin': mysin}, 'numpy']) >>> f(1) taking the sin of 1 0.8414709848078965 The globals dictionary is generated from the list by merging the dictionary ``{'sin': mysin}`` and the module dictionary for NumPy. The merging is done so that earlier items take precedence, which is why ``mysin`` is used above instead of ``numpy.sin``. If you want to modify the way ``lambdify`` works for a given function, it is usually easiest to do so by modifying the globals dictionary as such. In more complicated cases, it may be necessary to create and pass in a custom printer. Finally, step 3 is augmented with certain convenience operations, such as the addition of a docstring. Understanding how ``lambdify`` works can make it easier to avoid certain gotchas when using it. For instance, a common mistake is to create a lambdified function for one module (say, NumPy), and pass it objects from another (say, a SymPy expression). For instance, say we create >>> from sympy.abc import x >>> f = lambdify(x, x + 1, 'numpy') Now if we pass in a NumPy array, we get that array plus 1 >>> import numpy >>> a = numpy.array([1, 2]) >>> f(a) [2 3] But what happens if you make the mistake of passing in a SymPy expression instead of a NumPy array: >>> f(x + 1) x + 2 This worked, but it was only by accident. Now take a different lambdified function: >>> from sympy import sin >>> g = lambdify(x, x + sin(x), 'numpy') This works as expected on NumPy arrays: >>> g(a) [1.84147098 2.90929743] But if we try to pass in a SymPy expression, it fails >>> try: ... g(x + 1) ... # NumPy release after 1.17 raises TypeError instead of ... # AttributeError ... except (AttributeError, TypeError): ... raise AttributeError() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... AttributeError: Now, let's look at what happened. The reason this fails is that ``g`` calls ``numpy.sin`` on the input expression, and ``numpy.sin`` does not know how to operate on a SymPy object. **As a general rule, NumPy functions do not know how to operate on SymPy expressions, and SymPy functions do not know how to operate on NumPy arrays. This is why lambdify exists: to provide a bridge between SymPy and NumPy.** However, why is it that ``f`` did work? That's because ``f`` doesn't call any functions, it only adds 1. So the resulting function that is created, ``def _lambdifygenerated(x): return x + 1`` does not depend on the globals namespace it is defined in. Thus it works, but only by accident. A future version of ``lambdify`` may remove this behavior. Be aware that certain implementation details described here may change in future versions of SymPy. The API of passing in custom modules and printers will not change, but the details of how a lambda function is created may change. However, the basic idea will remain the same, and understanding it will be helpful to understanding the behavior of lambdify. **In general: you should create lambdified functions for one module (say, NumPy), and only pass it input types that are compatible with that module (say, NumPy arrays).** Remember that by default, if the ``module`` argument is not provided, ``lambdify`` creates functions using the NumPy and SciPy namespaces. """ from sympy.core.symbol import Symbol # If the user hasn't specified any modules, use what is available. if modules is None: try: _import("scipy") except ImportError: try: _import("numpy") except ImportError: # Use either numpy (if available) or python.math where possible. # XXX: This leads to different behaviour on different systems and # might be the reason for irreproducible errors. modules = ["math", "mpmath", "sympy"] else: modules = ["numpy"] else: modules = ["numpy", "scipy"] # Get the needed namespaces. namespaces = [] # First find any function implementations if use_imps: namespaces.append(_imp_namespace(expr)) # Check for dict before iterating if isinstance(modules, (dict, str)) or not hasattr(modules, '__iter__'): namespaces.append(modules) else: # consistency check if _module_present('numexpr', modules) and len(modules) > 1: raise TypeError("numexpr must be the only item in 'modules'") namespaces += list(modules) # fill namespace with first having highest priority namespace = {} # type: Dict[str, Any] for m in namespaces[::-1]: buf = _get_namespace(m) namespace.update(buf) if hasattr(expr, "atoms"): #Try if you can extract symbols from the expression. #Move on if expr.atoms in not implemented. syms = expr.atoms(Symbol) for term in syms: namespace.update({str(term): term}) if printer is None: if _module_present('mpmath', namespaces): from sympy.printing.pycode import MpmathPrinter as Printer # type: ignore elif _module_present('scipy', namespaces): from sympy.printing.numpy import SciPyPrinter as Printer # type: ignore elif _module_present('numpy', namespaces): from sympy.printing.numpy import NumPyPrinter as Printer # type: ignore elif _module_present('cupy', namespaces): from sympy.printing.numpy import CuPyPrinter as Printer # type: ignore elif _module_present('numexpr', namespaces): from sympy.printing.lambdarepr import NumExprPrinter as Printer # type: ignore elif _module_present('tensorflow', namespaces): from sympy.printing.tensorflow import TensorflowPrinter as Printer # type: ignore elif _module_present('sympy', namespaces): from sympy.printing.pycode import SymPyPrinter as Printer # type: ignore else: from sympy.printing.pycode import PythonCodePrinter as Printer # type: ignore user_functions = {} for m in namespaces[::-1]: if isinstance(m, dict): for k in m: user_functions[k] = k printer = Printer({'fully_qualified_modules': False, 'inline': True, 'allow_unknown_functions': True, 'user_functions': user_functions}) if isinstance(args, set): SymPyDeprecationWarning( feature="The list of arguments is a `set`. This leads to unpredictable results", useinstead=": Convert set into list or tuple", issue=20013, deprecated_since_version="1.6.3" ).warn() # Get the names of the args, for creating a docstring if not iterable(args): args = (args,) names = [] # Grab the callers frame, for getting the names by inspection (if needed) callers_local_vars = inspect.currentframe().f_back.f_locals.items() # type: ignore for n, var in enumerate(args): if hasattr(var, 'name'): names.append(var.name) else: # It's an iterable. Try to get name by inspection of calling frame. name_list = [var_name for var_name, var_val in callers_local_vars if var_val is var] if len(name_list) == 1: names.append(name_list[0]) else: # Cannot infer name with certainty. arg_# will have to do. names.append('arg_' + str(n)) # Create the function definition code and execute it funcname = '_lambdifygenerated' if _module_present('tensorflow', namespaces): funcprinter = _TensorflowEvaluatorPrinter(printer, dummify) # type: _EvaluatorPrinter else: funcprinter = _EvaluatorPrinter(printer, dummify) funcstr = funcprinter.doprint(funcname, args, expr) # Collect the module imports from the code printers. imp_mod_lines = [] for mod, keys in (getattr(printer, 'module_imports', None) or {}).items(): for k in keys: if k not in namespace: ln = "from %s import %s" % (mod, k) try: exec(ln, {}, namespace) except ImportError: # Tensorflow 2.0 has issues with importing a specific # function from its submodule. # https://github.com/tensorflow/tensorflow/issues/33022 ln = "%s = %s.%s" % (k, mod, k) exec(ln, {}, namespace) imp_mod_lines.append(ln) # Provide lambda expression with builtins, and compatible implementation of range namespace.update({'builtins':builtins, 'range':range}) funclocals = {} # type: Dict[str, Any] global _lambdify_generated_counter filename = '<lambdifygenerated-%s>' % _lambdify_generated_counter _lambdify_generated_counter += 1 c = compile(funcstr, filename, 'exec') exec(c, namespace, funclocals) # mtime has to be None or else linecache.checkcache will remove it linecache.cache[filename] = (len(funcstr), None, funcstr.splitlines(True), filename) # type: ignore func = funclocals[funcname] # Apply the docstring sig = "func({})".format(", ".join(str(i) for i in names)) sig = textwrap.fill(sig, subsequent_indent=' '*8) expr_str = str(expr) if len(expr_str) > 78: expr_str = textwrap.wrap(expr_str, 75)[0] + '...' func.__doc__ = ( "Created with lambdify. Signature:\n\n" "{sig}\n\n" "Expression:\n\n" "{expr}\n\n" "Source code:\n\n" "{src}\n\n" "Imported modules:\n\n" "{imp_mods}" ).format(sig=sig, expr=expr_str, src=funcstr, imp_mods='\n'.join(imp_mod_lines)) return func def _module_present(modname, modlist): if modname in modlist: return True for m in modlist: if hasattr(m, '__name__') and m.__name__ == modname: return True return False def _get_namespace(m): """ This is used by _lambdify to parse its arguments. """ if isinstance(m, str): _import(m) return MODULES[m][0] elif isinstance(m, dict): return m elif hasattr(m, "__dict__"): return m.__dict__ else: raise TypeError("Argument must be either a string, dict or module but it is: %s" % m) def lambdastr(args, expr, printer=None, dummify=None): """ Returns a string that can be evaluated to a lambda function. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.utilities.lambdify import lambdastr >>> lambdastr(x, x**2) 'lambda x: (x**2)' >>> lambdastr((x,y,z), [z,y,x]) 'lambda x,y,z: ([z, y, x])' Although tuples may not appear as arguments to lambda in Python 3, lambdastr will create a lambda function that will unpack the original arguments so that nested arguments can be handled: >>> lambdastr((x, (y, z)), x + y) 'lambda _0,_1: (lambda x,y,z: (x + y))(_0,_1[0],_1[1])' """ # Transforming everything to strings. from sympy.matrices import DeferredVector from sympy import Dummy, sympify, Symbol, Function, flatten, Derivative, Basic if printer is not None: if inspect.isfunction(printer): lambdarepr = printer else: if inspect.isclass(printer): lambdarepr = lambda expr: printer().doprint(expr) else: lambdarepr = lambda expr: printer.doprint(expr) else: #XXX: This has to be done here because of circular imports from sympy.printing.lambdarepr import lambdarepr def sub_args(args, dummies_dict): if isinstance(args, str): return args elif isinstance(args, DeferredVector): return str(args) elif iterable(args): dummies = flatten([sub_args(a, dummies_dict) for a in args]) return ",".join(str(a) for a in dummies) else: # replace these with Dummy symbols if isinstance(args, (Function, Symbol, Derivative)): dummies = Dummy() dummies_dict.update({args : dummies}) return str(dummies) else: return str(args) def sub_expr(expr, dummies_dict): expr = sympify(expr) # dict/tuple are sympified to Basic if isinstance(expr, Basic): expr = expr.xreplace(dummies_dict) # list is not sympified to Basic elif isinstance(expr, list): expr = [sub_expr(a, dummies_dict) for a in expr] return expr # Transform args def isiter(l): return iterable(l, exclude=(str, DeferredVector, NotIterable)) def flat_indexes(iterable): n = 0 for el in iterable: if isiter(el): for ndeep in flat_indexes(el): yield (n,) + ndeep else: yield (n,) n += 1 if dummify is None: dummify = any(isinstance(a, Basic) and a.atoms(Function, Derivative) for a in ( args if isiter(args) else [args])) if isiter(args) and any(isiter(i) for i in args): dum_args = [str(Dummy(str(i))) for i in range(len(args))] indexed_args = ','.join([ dum_args[ind[0]] + ''.join(["[%s]" % k for k in ind[1:]]) for ind in flat_indexes(args)]) lstr = lambdastr(flatten(args), expr, printer=printer, dummify=dummify) return 'lambda %s: (%s)(%s)' % (','.join(dum_args), lstr, indexed_args) dummies_dict = {} if dummify: args = sub_args(args, dummies_dict) else: if isinstance(args, str): pass elif iterable(args, exclude=DeferredVector): args = ",".join(str(a) for a in args) # Transform expr if dummify: if isinstance(expr, str): pass else: expr = sub_expr(expr, dummies_dict) expr = lambdarepr(expr) return "lambda %s: (%s)" % (args, expr) class _EvaluatorPrinter: def __init__(self, printer=None, dummify=False): self._dummify = dummify #XXX: This has to be done here because of circular imports from sympy.printing.lambdarepr import LambdaPrinter if printer is None: printer = LambdaPrinter() if inspect.isfunction(printer): self._exprrepr = printer else: if inspect.isclass(printer): printer = printer() self._exprrepr = printer.doprint #if hasattr(printer, '_print_Symbol'): # symbolrepr = printer._print_Symbol #if hasattr(printer, '_print_Dummy'): # dummyrepr = printer._print_Dummy # Used to print the generated function arguments in a standard way self._argrepr = LambdaPrinter().doprint def doprint(self, funcname, args, expr): """Returns the function definition code as a string.""" from sympy import Dummy funcbody = [] if not iterable(args): args = [args] argstrs, expr = self._preprocess(args, expr) # Generate argument unpacking and final argument list funcargs = [] unpackings = [] for argstr in argstrs: if iterable(argstr): funcargs.append(self._argrepr(Dummy())) unpackings.extend(self._print_unpacking(argstr, funcargs[-1])) else: funcargs.append(argstr) funcsig = 'def {}({}):'.format(funcname, ', '.join(funcargs)) # Wrap input arguments before unpacking funcbody.extend(self._print_funcargwrapping(funcargs)) funcbody.extend(unpackings) funcbody.append('return ({})'.format(self._exprrepr(expr))) funclines = [funcsig] funclines.extend(' ' + line for line in funcbody) return '\n'.join(funclines) + '\n' @classmethod def _is_safe_ident(cls, ident): return isinstance(ident, str) and ident.isidentifier() \ and not keyword.iskeyword(ident) def _preprocess(self, args, expr): """Preprocess args, expr to replace arguments that do not map to valid Python identifiers. Returns string form of args, and updated expr. """ from sympy import Dummy, Function, flatten, Derivative, ordered, Basic from sympy.matrices import DeferredVector from sympy.core.symbol import uniquely_named_symbol from sympy.core.expr import Expr # Args of type Dummy can cause name collisions with args # of type Symbol. Force dummify of everything in this # situation. dummify = self._dummify or any( isinstance(arg, Dummy) for arg in flatten(args)) argstrs = [None]*len(args) for arg, i in reversed(list(ordered(zip(args, range(len(args)))))): if iterable(arg): s, expr = self._preprocess(arg, expr) elif isinstance(arg, DeferredVector): s = str(arg) elif isinstance(arg, Basic) and arg.is_symbol: s = self._argrepr(arg) if dummify or not self._is_safe_ident(s): dummy = Dummy() if isinstance(expr, Expr): dummy = uniquely_named_symbol( dummy.name, expr, modify=lambda s: '_' + s) s = self._argrepr(dummy) expr = self._subexpr(expr, {arg: dummy}) elif dummify or isinstance(arg, (Function, Derivative)): dummy = Dummy() s = self._argrepr(dummy) expr = self._subexpr(expr, {arg: dummy}) else: s = str(arg) argstrs[i] = s return argstrs, expr def _subexpr(self, expr, dummies_dict): from sympy.matrices import DeferredVector from sympy import sympify expr = sympify(expr) xreplace = getattr(expr, 'xreplace', None) if xreplace is not None: expr = xreplace(dummies_dict) else: if isinstance(expr, DeferredVector): pass elif isinstance(expr, dict): k = [self._subexpr(sympify(a), dummies_dict) for a in expr.keys()] v = [self._subexpr(sympify(a), dummies_dict) for a in expr.values()] expr = dict(zip(k, v)) elif isinstance(expr, tuple): expr = tuple(self._subexpr(sympify(a), dummies_dict) for a in expr) elif isinstance(expr, list): expr = [self._subexpr(sympify(a), dummies_dict) for a in expr] return expr def _print_funcargwrapping(self, args): """Generate argument wrapping code. args is the argument list of the generated function (strings). Return value is a list of lines of code that will be inserted at the beginning of the function definition. """ return [] def _print_unpacking(self, unpackto, arg): """Generate argument unpacking code. arg is the function argument to be unpacked (a string), and unpackto is a list or nested lists of the variable names (strings) to unpack to. """ def unpack_lhs(lvalues): return '[{}]'.format(', '.join( unpack_lhs(val) if iterable(val) else val for val in lvalues)) return ['{} = {}'.format(unpack_lhs(unpackto), arg)] class _TensorflowEvaluatorPrinter(_EvaluatorPrinter): def _print_unpacking(self, lvalues, rvalue): """Generate argument unpacking code. This method is used when the input value is not interable, but can be indexed (see issue #14655). """ from sympy import flatten def flat_indexes(elems): n = 0 for el in elems: if iterable(el): for ndeep in flat_indexes(el): yield (n,) + ndeep else: yield (n,) n += 1 indexed = ', '.join('{}[{}]'.format(rvalue, ']['.join(map(str, ind))) for ind in flat_indexes(lvalues)) return ['[{}] = [{}]'.format(', '.join(flatten(lvalues)), indexed)] def _imp_namespace(expr, namespace=None): """ Return namespace dict with function implementations We need to search for functions in anything that can be thrown at us - that is - anything that could be passed as ``expr``. Examples include sympy expressions, as well as tuples, lists and dicts that may contain sympy expressions. Parameters ---------- expr : object Something passed to lambdify, that will generate valid code from ``str(expr)``. namespace : None or mapping Namespace to fill. None results in new empty dict Returns ------- namespace : dict dict with keys of implemented function names within ``expr`` and corresponding values being the numerical implementation of function Examples ======== >>> from sympy.abc import x >>> from sympy.utilities.lambdify import implemented_function, _imp_namespace >>> from sympy import Function >>> f = implemented_function(Function('f'), lambda x: x+1) >>> g = implemented_function(Function('g'), lambda x: x*10) >>> namespace = _imp_namespace(f(g(x))) >>> sorted(namespace.keys()) ['f', 'g'] """ # Delayed import to avoid circular imports from sympy.core.function import FunctionClass if namespace is None: namespace = {} # tuples, lists, dicts are valid expressions if is_sequence(expr): for arg in expr: _imp_namespace(arg, namespace) return namespace elif isinstance(expr, dict): for key, val in expr.items(): # functions can be in dictionary keys _imp_namespace(key, namespace) _imp_namespace(val, namespace) return namespace # sympy expressions may be Functions themselves func = getattr(expr, 'func', None) if isinstance(func, FunctionClass): imp = getattr(func, '_imp_', None) if imp is not None: name = expr.func.__name__ if name in namespace and namespace[name] != imp: raise ValueError('We found more than one ' 'implementation with name ' '"%s"' % name) namespace[name] = imp # and / or they may take Functions as arguments if hasattr(expr, 'args'): for arg in expr.args: _imp_namespace(arg, namespace) return namespace def implemented_function(symfunc, implementation): """ Add numerical ``implementation`` to function ``symfunc``. ``symfunc`` can be an ``UndefinedFunction`` instance, or a name string. In the latter case we create an ``UndefinedFunction`` instance with that name. Be aware that this is a quick workaround, not a general method to create special symbolic functions. If you want to create a symbolic function to be used by all the machinery of SymPy you should subclass the ``Function`` class. Parameters ---------- symfunc : ``str`` or ``UndefinedFunction`` instance If ``str``, then create new ``UndefinedFunction`` with this as name. If ``symfunc`` is an Undefined function, create a new function with the same name and the implemented function attached. implementation : callable numerical implementation to be called by ``evalf()`` or ``lambdify`` Returns ------- afunc : sympy.FunctionClass instance function with attached implementation Examples ======== >>> from sympy.abc import x >>> from sympy.utilities.lambdify import lambdify, implemented_function >>> f = implemented_function('f', lambda x: x+1) >>> lam_f = lambdify(x, f(x)) >>> lam_f(4) 5 """ # Delayed import to avoid circular imports from sympy.core.function import UndefinedFunction # if name, create function to hold implementation kwargs = {} if isinstance(symfunc, UndefinedFunction): kwargs = symfunc._kwargs symfunc = symfunc.__name__ if isinstance(symfunc, str): # Keyword arguments to UndefinedFunction are added as attributes to # the created class. symfunc = UndefinedFunction( symfunc, _imp_=staticmethod(implementation), **kwargs) elif not isinstance(symfunc, UndefinedFunction): raise ValueError(filldedent(''' symfunc should be either a string or an UndefinedFunction instance.''')) return symfunc
c2bb3b6e8e4425640e7c4f1306b209c64fa4a93b9b400417b7147cd012fd9eb9
""" A Printer for generating readable representation of most sympy classes. """ from typing import Any, Dict from sympy.core import S, Rational, Pow, Basic, Mul, Number from sympy.core.mul import _keep_coeff from sympy.core.function import _coeff_isneg from .printer import Printer, print_function from sympy.printing.precedence import precedence, PRECEDENCE from mpmath.libmp import prec_to_dps, to_str as mlib_to_str from sympy.utilities import default_sort_key, sift class StrPrinter(Printer): printmethod = "_sympystr" _default_settings = { "order": None, "full_prec": "auto", "sympy_integers": False, "abbrev": False, "perm_cyclic": True, "min": None, "max": None, } # type: Dict[str, Any] _relationals = dict() # type: Dict[str, str] def parenthesize(self, item, level, strict=False): if (precedence(item) < level) or ((not strict) and precedence(item) <= level): return "(%s)" % self._print(item) else: return self._print(item) def stringify(self, args, sep, level=0): return sep.join([self.parenthesize(item, level) for item in args]) def emptyPrinter(self, expr): if isinstance(expr, str): return expr elif isinstance(expr, Basic): return repr(expr) else: return str(expr) def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) PREC = precedence(expr) l = [] for term in terms: t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: l.extend([sign, "(%s)" % t]) else: l.extend([sign, t]) sign = l.pop(0) if sign == '+': sign = "" return sign + ' '.join(l) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_Not(self, expr): return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"])) def _print_And(self, expr): return self.stringify(expr.args, " & ", PRECEDENCE["BitwiseAnd"]) def _print_Or(self, expr): return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"]) def _print_Xor(self, expr): return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"]) def _print_AppliedPredicate(self, expr): return '%s(%s)' % ( self._print(expr.function), self.stringify(expr.arguments, ", ")) def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return expr.__class__.__name__ + "(%s)" % ", ".join(l) def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_Catalan(self, expr): return 'Catalan' def _print_ComplexInfinity(self, expr): return 'zoo' def _print_ConditionSet(self, s): args = tuple([self._print(i) for i in (s.sym, s.condition)]) if s.base_set is S.UniversalSet: return 'ConditionSet(%s, %s)' % args args += (self._print(s.base_set),) return 'ConditionSet(%s, %s, %s)' % args def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars)) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(d[key])) items.append(item) return "{%s}" % ", ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) else: return 'Domain on ' + self._print(d.symbols) def _print_Dummy(self, expr): return '_' + expr.name def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Exp1(self, expr): return 'E' def _print_ExprCondPair(self, expr): return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond)) def _print_Function(self, expr): return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_TribonacciConstant(self, expr): return 'TribonacciConstant' def _print_ImaginaryUnit(self, expr): return 'I' def _print_Infinity(self, expr): return 'oo' def _print_Integral(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Integral(%s, %s)' % (self._print(expr.function), L) def _print_Interval(self, i): fin = 'Interval{m}({a}, {b})' a, b, l, r = i.args if a.is_infinite and b.is_infinite: m = '' elif a.is_infinite and not r: m = '' elif b.is_infinite and not l: m = '' elif not l and not r: m = '' elif l and r: m = '.open' elif l: m = '.Lopen' else: m = '.Ropen' return fin.format(**{'a': a, 'b': b, 'm': m}) def _print_AccumulationBounds(self, i): return "AccumBounds(%s, %s)" % (self._print(i.min), self._print(i.max)) def _print_Inverse(self, I): return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) def _print_Lambda(self, obj): expr = obj.expr sig = obj.signature if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] return "Lambda(%s, %s)" % (self._print(sig), self._print(expr)) def _print_LatticeOp(self, expr): args = sorted(expr.args, key=default_sort_key) return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) def _print_Limit(self, expr): e, z, z0, dir = expr.args if str(dir) == "+": return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0))) else: return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir))) def _print_list(self, expr): return "[%s]" % self.stringify(expr, ", ") def _print_MatrixBase(self, expr): return expr._format_str(self) def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def strslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = '' if x[1] == dim: x[1] = '' return ':'.join(map(lambda arg: self._print(arg), x)) return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' + strslice(expr.rowslice, expr.parent.rows) + ', ' + strslice(expr.colslice, expr.parent.cols) + ']') def _print_DeferredVector(self, expr): return expr.name def _print_Mul(self, expr): prec = precedence(expr) # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. args = expr.args if args[0] is S.One or any( isinstance(a, Number) or a.is_Pow and all(ai.is_Integer for ai in a.args) for a in args[1:]): d, n = sift(args, lambda x: isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0), binary=True) for i, di in enumerate(d): if di.exp.is_Number: e = -di.exp else: dargs = list(di.exp.args) dargs[0] = -dargs[0] e = Mul._from_args(dargs) d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base # don't parenthesize first factor if negative if _coeff_isneg(n[0]): pre = [str(n.pop(0))] else: pre = [] nfactors = pre + [self.parenthesize(a, prec, strict=False) for a in n] # don't parenthesize first of denominator unless singleton if len(d) > 1 and _coeff_isneg(d[0]): pre = [str(d.pop(0))] else: pre = [] dfactors = pre + [self.parenthesize(a, prec, strict=False) for a in d] n = '*'.join(nfactors) d = '*'.join(dfactors) if len(dfactors) > 1: return '%s/(%s)' % (n, d) elif dfactors: return '%s/%s' % (n, d) return n c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator def apow(i): b, e = i.as_base_exp() eargs = list(Mul.make_args(e)) if eargs[0] is S.NegativeOne: eargs = eargs[1:] else: eargs[0] = -eargs[0] e = Mul._from_args(eargs) if isinstance(i, Pow): return i.func(b, e, evaluate=False) return i.func(e, evaluate=False) for item in args: if (item.is_commutative and isinstance(item, Pow) and bool(item.exp.as_coeff_Mul()[0] < 0)): if item.exp is not S.NegativeOne: b.append(apow(item)) else: if (len(item.args[0].args) != 1 and isinstance(item.base, Mul)): # To avoid situations like #14160 pow_paren.append(item) b.append(item.base) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec, strict=False) for x in a] b_str = [self.parenthesize(x, prec, strict=False) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_MatMul(self, expr): c, m = expr.as_coeff_mmul() sign = "" if c.is_number: re, im = c.as_real_imag() if im.is_zero and re.is_negative: expr = _keep_coeff(-c, m) sign = "-" elif re.is_zero and im.is_negative: expr = _keep_coeff(-c, m) sign = "-" return sign + '*'.join( [self.parenthesize(arg, precedence(expr)) for arg in expr.args] ) def _print_ElementwiseApplyFunction(self, expr): return "{}.({})".format( expr.function, self._print(expr.expr), ) def _print_NaN(self, expr): return 'nan' def _print_NegativeInfinity(self, expr): return '-oo' def _print_Order(self, expr): if not expr.variables or all(p is S.Zero for p in expr.point): if len(expr.variables) <= 1: return 'O(%s)' % self._print(expr.expr) else: return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) else: return 'O(%s)' % self.stringify(expr.args, ', ', 0) def _print_Ordinal(self, expr): return expr.__str__() def _print_Cycle(self, expr): return expr.__str__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle from sympy.utilities.exceptions import SymPyDeprecationWarning perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: if not expr.size: return '()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] s = s.replace(',', '') return s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % self._print(expr.array_form) return 'Permutation([], size=%s)' % self._print(expr.size) trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size) use = full = self._print(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Subs(self, obj): expr, old, new = obj.args if len(obj.point) == 1: old = old[0] new = new[0] return "Subs(%s, %s, %s)" % ( self._print(expr), self._print(old), self._print(new)) def _print_TensorIndex(self, expr): return expr._print() def _print_TensorHead(self, expr): return expr._print() def _print_Tensor(self, expr): return expr._print() def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "*".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): return expr._print() def _print_ArraySymbol(self, expr): return self._print(expr.name) def _print_ArrayElement(self, expr): return "%s[%s]" % (expr.name, ", ".join([self._print(i) for i in expr.indices])) def _print_PermutationGroup(self, expr): p = [' %s' % self._print(a) for a in expr.args] return 'PermutationGroup([\n%s])' % ',\n'.join(p) def _print_Pi(self, expr): return 'pi' def _print_PolyRing(self, ring): return "Polynomial ring in %s over %s with %s order" % \ (", ".join(map(lambda rs: self._print(rs), ring.symbols)), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "Rational function field in %s over %s with %s order" % \ (", ".join(map(lambda fs: self._print(fs), field.symbols)), self._print(field.domain), self._print(field.order)) def _print_FreeGroupElement(self, elm): return elm.__str__() def _print_GaussianElement(self, poly): return "(%s + %s*I)" % (poly.x, poly.y) def _print_PolyElement(self, poly): return poly.str(self, PRECEDENCE, "%s**%s", "*") def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) return numer + "/" + denom def _print_Poly(self, expr): ATOM_PREC = PRECEDENCE["Atom"] - 1 terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] for monom, coeff in expr.terms(): s_monom = [] for i, e in enumerate(monom): if e > 0: if e == 1: s_monom.append(gens[i]) else: s_monom.append(gens[i] + "**%d" % e) s_monom = "*".join(s_monom) if coeff.is_Add: if s_monom: s_coeff = "(" + self._print(coeff) + ")" else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + "*" + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ['-', '+']: modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] format = expr.__class__.__name__ + "(%s, %s" from sympy.polys.polyerrors import PolynomialError try: format += ", modulus=%s" % expr.get_modulus() except PolynomialError: format += ", domain='%s'" % expr.get_domain() format += ")" for index, item in enumerate(gens): if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): gens[index] = item[1:len(item) - 1] return format % (' '.join(terms), ', '.join(gens)) def _print_UniversalSet(self, p): return 'UniversalSet' def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr, rational=False): """Printing helper function for ``Pow`` Parameters ========== rational : bool, optional If ``True``, it will not attempt printing ``sqrt(x)`` or ``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)`` instead. See examples for additional details Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.str import StrPrinter >>> from sympy.abc import x How ``rational`` keyword works with ``sqrt``: >>> printer = StrPrinter() >>> printer._print_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._print_Pow(sqrt(x), rational=False) 'sqrt(x)' >>> printer._print_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._print_Pow(1/sqrt(x), rational=False) '1/sqrt(x)' Notes ===== ``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy, so there is no need of defining a separate printer for ``sqrt``. Instead, it should be handled here as well. """ PREC = precedence(expr) if expr.exp is S.Half and not rational: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if -expr.exp is S.Half and not rational: # Note: Don't test "expr.exp == -S.Half" here, because that will # match -0.5, which we don't want. return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base))) if expr.exp is -S.One: # Similarly to the S.Half case, don't test with "==" here. return '%s/%s' % (self._print(S.One), self.parenthesize(expr.base, PREC, strict=False)) e = self.parenthesize(expr.exp, PREC, strict=False) if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: # the parenthesized exp should be '(Rational(a, b))' so strip parens, # but just check to be sure. if e.startswith('(Rational'): return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), self.parenthesize(expr.exp, PREC, strict=False)) def _print_Integer(self, expr): if self._settings.get("sympy_integers", False): return "S(%s)" % (expr) return str(expr.p) def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Rationals(self, expr): return 'Rationals' def _print_Reals(self, expr): return 'Reals' def _print_Complexes(self, expr): return 'Complexes' def _print_EmptySet(self, expr): return 'EmptySet' def _print_EmptySequence(self, expr): return 'EmptySequence' def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_Rational(self, expr): if expr.q == 1: return str(expr.p) else: if self._settings.get("sympy_integers", False): return "S(%s)/%s" % (expr.p, expr.q) return "%s/%s" % (expr.p, expr.q) def _print_PythonRational(self, expr): if expr.q == 1: return str(expr.p) else: return "%d/%d" % (expr.p, expr.q) def _print_Fraction(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_mpq(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_Float(self, expr): prec = expr._prec if prec < 5: dps = 0 else: dps = prec_to_dps(expr._prec) if self._settings["full_prec"] is True: strip = False elif self._settings["full_prec"] is False: strip = True elif self._settings["full_prec"] == "auto": strip = self._print_level > 1 low = self._settings["min"] if "min" in self._settings else None high = self._settings["max"] if "max" in self._settings else None rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high) if rv.startswith('-.0'): rv = '-0.' + rv[3:] elif rv.startswith('.0'): rv = '0.' + rv[2:] if rv.startswith('+'): # e.g., +inf -> inf rv = rv[1:] return rv def _print_Relational(self, expr): charmap = { "==": "Eq", "!=": "Ne", ":=": "Assignment", '+=': "AddAugmentedAssignment", "-=": "SubAugmentedAssignment", "*=": "MulAugmentedAssignment", "/=": "DivAugmentedAssignment", "%=": "ModAugmentedAssignment", } if expr.rel_op in charmap: return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs), self._print(expr.rhs)) return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), self._relationals.get(expr.rel_op) or expr.rel_op, self.parenthesize(expr.rhs, precedence(expr))) def _print_ComplexRootOf(self, expr): return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index) def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) return "RootSum(%s)" % ", ".join(args) def _print_GroebnerBasis(self, basis): cls = basis.__class__.__name__ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs] exprs = "[%s]" % ", ".join(exprs) gens = [ self._print(gen) for gen in basis.gens ] domain = "domain='%s'" % self._print(basis.domain) order = "order='%s'" % self._print(basis.order) args = [exprs] + gens + [domain, order] return "%s(%s)" % (cls, ", ".join(args)) def _print_set(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if not args: return "set()" return '{%s}' % args def _print_frozenset(self, s): if not s: return "frozenset()" return "frozenset(%s)" % self._print_set(s) def _print_Sum(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Sum(%s, %s)' % (self._print(expr.function), L) def _print_Symbol(self, expr): return expr.name _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Identity(self, expr): return "I" def _print_ZeroMatrix(self, expr): return "0" def _print_OneMatrix(self, expr): return "1" def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_str(self, expr): return str(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_Transpose(self, T): return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) def _print_Uniform(self, expr): return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b)) def _print_Quantity(self, expr): if self._settings.get("abbrev", False): return "%s" % expr.abbrev return "%s" % expr.name def _print_Quaternion(self, expr): s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_Dimension(self, expr): return str(expr) def _print_Wild(self, expr): return expr.name + '_' def _print_WildFunction(self, expr): return expr.name + '_' def _print_WildDot(self, expr): return expr.name def _print_WildPlus(self, expr): return expr.name def _print_WildStar(self, expr): return expr.name def _print_Zero(self, expr): if self._settings.get("sympy_integers", False): return "S(0)" return "0" def _print_DMP(self, p): from sympy.core.sympify import SympifyError try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) ring = self._print(p.ring) return "%s(%s, %s, %s)" % (cls, rep, dom, ring) def _print_DMF(self, expr): return self._print_DMP(expr) def _print_Object(self, obj): return 'Object("%s")' % obj.name def _print_IdentityMorphism(self, morphism): return 'IdentityMorphism(%s)' % morphism.domain def _print_NamedMorphism(self, morphism): return 'NamedMorphism(%s, %s, "%s")' % \ (morphism.domain, morphism.codomain, morphism.name) def _print_Category(self, category): return 'Category("%s")' % category.name def _print_Manifold(self, manifold): return manifold.name.name def _print_Patch(self, patch): return patch.name.name def _print_CoordSystem(self, coords): return coords.name.name def _print_BaseScalarField(self, field): return field._coord_sys.symbols[field._index].name def _print_BaseVectorField(self, field): return 'e_%s' % field._coord_sys.symbols[field._index].name def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): return 'd%s' % field._coord_sys.symbols[field._index].name else: return 'd(%s)' % self._print(field) def _print_Tr(self, expr): #TODO : Handle indices return "%s(%s)" % ("Tr", self._print(expr.args[0])) def _print_Str(self, s): return self._print(s.name) def _print_AppliedBinaryRelation(self, expr): rel, args = expr.function, expr.arguments lhs, rhs = args return '%s(%s, %s)' % (self._print(rel), self._print(expr.lhs), self._print(expr.rhs)) @print_function(StrPrinter) def sstr(expr, **settings): """Returns the expression as a string. For large expressions where speed is a concern, use the setting order='none'. If abbrev=True setting is used then units are printed in abbreviated form. Examples ======== >>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)' """ p = StrPrinter(settings) s = p.doprint(expr) return s class StrReprPrinter(StrPrinter): """(internal) -- see sstrrepr""" def _print_str(self, s): return repr(s) def _print_Str(self, s): # Str does not to be printed same as str here return "%s(%s)" % (s.__class__.__name__, self._print(s.name)) @print_function(StrReprPrinter) def sstrrepr(expr, **settings): """return expr in mixed str/repr form i.e. strings are returned in repr form with quotes, and everything else is returned in str form. This function could be useful for hooking into sys.displayhook """ p = StrReprPrinter(settings) s = p.doprint(expr) return s
f079ebe4068a28b2faa3cb6afdbe7aa575be88d06aff80518546c1258ad1d19d
from .pycode import ( PythonCodePrinter, MpmathPrinter, # MpmathPrinter is imported for backward compatibility ) from .numpy import NumPyPrinter # NumPyPrinter is imported for backward compatibility from sympy.utilities import default_sort_key __all__ = [ 'PythonCodePrinter', 'MpmathPrinter', 'NumPyPrinter', 'LambdaPrinter', 'NumPyPrinter', 'lambdarepr', ] class LambdaPrinter(PythonCodePrinter): """ This printer converts expressions into strings that can be used by lambdify. """ printmethod = "_lambdacode" def _print_And(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' and ') result = result[:-1] result.append(')') return ''.join(result) def _print_Or(self, expr): result = ['('] for arg in sorted(expr.args, key=default_sort_key): result.extend(['(', self._print(arg), ')']) result.append(' or ') result = result[:-1] result.append(')') return ''.join(result) def _print_Not(self, expr): result = ['(', 'not (', self._print(expr.args[0]), '))'] return ''.join(result) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_ITE(self, expr): result = [ '((', self._print(expr.args[1]), ') if (', self._print(expr.args[0]), ') else (', self._print(expr.args[2]), '))' ] return ''.join(result) def _print_NumberSymbol(self, expr): return str(expr) def _print_Pow(self, expr, **kwargs): # XXX Temporary workaround. Should python math printer be # isolated from PythonCodePrinter? return super(PythonCodePrinter, self)._print_Pow(expr, **kwargs) # numexpr works by altering the string passed to numexpr.evaluate # rather than by populating a namespace. Thus a special printer... class NumExprPrinter(LambdaPrinter): # key, value pairs correspond to sympy name and numexpr name # functions not appearing in this dict will raise a TypeError printmethod = "_numexprcode" _numexpr_functions = { 'sin' : 'sin', 'cos' : 'cos', 'tan' : 'tan', 'asin': 'arcsin', 'acos': 'arccos', 'atan': 'arctan', 'atan2' : 'arctan2', 'sinh' : 'sinh', 'cosh' : 'cosh', 'tanh' : 'tanh', 'asinh': 'arcsinh', 'acosh': 'arccosh', 'atanh': 'arctanh', 'ln' : 'log', 'log': 'log', 'exp': 'exp', 'sqrt' : 'sqrt', 'Abs' : 'abs', 'conjugate' : 'conj', 'im' : 'imag', 're' : 'real', 'where' : 'where', 'complex' : 'complex', 'contains' : 'contains', } def _print_ImaginaryUnit(self, expr): return '1j' def _print_seq(self, seq, delimiter=', '): # simplified _print_seq taken from pretty.py s = [self._print(item) for item in seq] if s: return delimiter.join(s) else: return "" def _print_Function(self, e): func_name = e.func.__name__ nstr = self._numexpr_functions.get(func_name, None) if nstr is None: # check for implemented_function if hasattr(e, '_imp_'): return "(%s)" % self._print(e._imp_(*e.args)) else: raise TypeError("numexpr does not support function '%s'" % func_name) return "%s(%s)" % (nstr, self._print_seq(e.args)) def _print_Piecewise(self, expr): "Piecewise function printer" exprs = [self._print(arg.expr) for arg in expr.args] conds = [self._print(arg.cond) for arg in expr.args] # If [default_value, True] is a (expr, cond) sequence in a Piecewise object # it will behave the same as passing the 'default' kwarg to select() # *as long as* it is the last element in expr.args. # If this is not the case, it may be triggered prematurely. ans = [] parenthesis_count = 0 is_last_cond_True = False for cond, expr in zip(conds, exprs): if cond == 'True': ans.append(expr) is_last_cond_True = True break else: ans.append('where(%s, %s, ' % (cond, expr)) parenthesis_count += 1 if not is_last_cond_True: # simplest way to put a nan but raises # 'RuntimeWarning: invalid value encountered in log' ans.append('log(-1)') return ''.join(ans) + ')' * parenthesis_count def _print_ITE(self, expr): from sympy.functions.elementary.piecewise import Piecewise return self._print(expr.rewrite(Piecewise)) def blacklisted(self, expr): raise TypeError("numexpr cannot be used with %s" % expr.__class__.__name__) # blacklist all Matrix printing _print_SparseMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ blacklisted # blacklist some python expressions _print_list = \ _print_tuple = \ _print_Tuple = \ _print_dict = \ _print_Dict = \ blacklisted def doprint(self, expr): lstr = super().doprint(expr) return "evaluate('%s', truediv=True)" % lstr for k in NumExprPrinter._numexpr_functions: setattr(NumExprPrinter, '_print_%s' % k, NumExprPrinter._print_Function) def lambdarepr(expr, **settings): """ Returns a string usable for lambdifying. """ return LambdaPrinter(settings).doprint(expr)
0d42fe9aa848c92b06be3280110a7ee696d17fb4cdfd5015246f291d0b04e467
""" A Printer for generating executable code. The most important function here is srepr that returns a string so that the relation eval(srepr(expr))=expr holds in an appropriate environment. """ from typing import Any, Dict from sympy.core.function import AppliedUndef from sympy.core.mul import Mul from mpmath.libmp import repr_dps, to_str as mlib_to_str from .printer import Printer, print_function class ReprPrinter(Printer): printmethod = "_sympyrepr" _default_settings = { "order": None, "perm_cyclic" : True, } # type: Dict[str, Any] def reprify(self, args, sep): """ Prints each item in `args` and joins them with `sep`. """ return sep.join([self.doprint(item) for item in args]) def emptyPrinter(self, expr): """ The fallback printer. """ if isinstance(expr, str): return expr elif hasattr(expr, "__srepr__"): return expr.__srepr__() elif hasattr(expr, "args") and hasattr(expr.args, "__iter__"): l = [] for o in expr.args: l.append(self._print(o)) return expr.__class__.__name__ + '(%s)' % ', '.join(l) elif hasattr(expr, "__module__") and hasattr(expr, "__name__"): return "<'%s.%s'>" % (expr.__module__, expr.__name__) else: return str(expr) def _print_Add(self, expr, order=None): args = self._as_ordered_terms(expr, order=order) nargs = len(args) args = map(self._print, args) clsname = type(expr).__name__ if nargs > 255: # Issue #10259, Python < 3.7 return clsname + "(*[%s])" % ", ".join(args) return clsname + "(%s)" % ", ".join(args) def _print_Cycle(self, expr): return expr.__repr__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle from sympy.utilities.exceptions import SymPyDeprecationWarning perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: if not expr.size: return 'Permutation()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] return 'Permutation%s' %s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % str(expr.array_form) return 'Permutation([], size=%s)' % expr.size trim = str(expr.array_form[:s[-1] + 1]) + ', size=%s' % expr.size use = full = str(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Function(self, expr): r = self._print(expr.func) r += '(%s)' % ', '.join([self._print(a) for a in expr.args]) return r def _print_FunctionClass(self, expr): if issubclass(expr, AppliedUndef): return 'Function(%r)' % (expr.__name__) else: return expr.__name__ def _print_Half(self, expr): return 'Rational(1, 2)' def _print_RationalConstant(self, expr): return str(expr) def _print_AtomicExpr(self, expr): return str(expr) def _print_NumberSymbol(self, expr): return str(expr) def _print_Integer(self, expr): return 'Integer(%i)' % expr.p def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Reals(self, expr): return 'Reals' def _print_EmptySet(self, expr): return 'EmptySet' def _print_EmptySequence(self, expr): return 'EmptySequence' def _print_list(self, expr): return "[%s]" % self.reprify(expr, ", ") def _print_dict(self, expr): sep = ", " dict_kvs = ["%s: %s" % (self.doprint(key), self.doprint(value)) for key, value in expr.items()] return "{%s}" % sep.join(dict_kvs) def _print_set(self, expr): if not expr: return "set()" return "{%s}" % self.reprify(expr, ", ") def _print_MatrixBase(self, expr): # special case for some empty matrices if (expr.rows == 0) ^ (expr.cols == 0): return '%s(%s, %s, %s)' % (expr.__class__.__name__, self._print(expr.rows), self._print(expr.cols), self._print([])) l = [] for i in range(expr.rows): l.append([]) for j in range(expr.cols): l[-1].append(expr[i, j]) return '%s(%s)' % (expr.__class__.__name__, self._print(l)) def _print_BooleanTrue(self, expr): return "true" def _print_BooleanFalse(self, expr): return "false" def _print_NaN(self, expr): return "nan" def _print_Mul(self, expr, order=None): if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) nargs = len(args) args = map(self._print, args) clsname = type(expr).__name__ if nargs > 255: # Issue #10259, Python < 3.7 return clsname + "(*[%s])" % ", ".join(args) return clsname + "(%s)" % ", ".join(args) def _print_Rational(self, expr): return 'Rational(%s, %s)' % (self._print(expr.p), self._print(expr.q)) def _print_PythonRational(self, expr): return "%s(%d, %d)" % (expr.__class__.__name__, expr.p, expr.q) def _print_Fraction(self, expr): return 'Fraction(%s, %s)' % (self._print(expr.numerator), self._print(expr.denominator)) def _print_Float(self, expr): r = mlib_to_str(expr._mpf_, repr_dps(expr._prec)) return "%s('%s', precision=%i)" % (expr.__class__.__name__, r, expr._prec) def _print_Sum2(self, expr): return "Sum2(%s, (%s, %s, %s))" % (self._print(expr.f), self._print(expr.i), self._print(expr.a), self._print(expr.b)) def _print_Str(self, s): return "%s(%s)" % (s.__class__.__name__, self._print(s.name)) def _print_Symbol(self, expr): d = expr._assumptions.generator # print the dummy_index like it was an assumption if expr.is_Dummy: d['dummy_index'] = expr.dummy_index if d == {}: return "%s(%s)" % (expr.__class__.__name__, self._print(expr.name)) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.name), ', '.join(attr)) def _print_CoordinateSymbol(self, expr): d = expr._assumptions.generator if d == {}: return "%s(%s, %s)" % ( expr.__class__.__name__, self._print(expr.coord_sys), self._print(expr.index) ) else: attr = ['%s=%s' % (k, v) for k, v in d.items()] return "%s(%s, %s, %s)" % ( expr.__class__.__name__, self._print(expr.coord_sys), self._print(expr.index), ', '.join(attr) ) def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_AppliedPredicate(self, expr): # will be changed to just expr.args when args overriding is removed args = expr._args return "%s(%s)" % (expr.__class__.__name__, self.reprify(args, ", ")) def _print_str(self, expr): return repr(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.reprify(expr, ", ") def _print_WildFunction(self, expr): return "%s('%s')" % (expr.__class__.__name__, expr.name) def _print_AlgebraicNumber(self, expr): return "%s(%s, %s)" % (expr.__class__.__name__, self._print(expr.root), self._print(expr.coeffs())) def _print_PolyRing(self, ring): return "%s(%s, %s, %s)" % (ring.__class__.__name__, self._print(ring.symbols), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "%s(%s, %s, %s)" % (field.__class__.__name__, self._print(field.symbols), self._print(field.domain), self._print(field.order)) def _print_PolyElement(self, poly): terms = list(poly.terms()) terms.sort(key=poly.ring.order, reverse=True) return "%s(%s, %s)" % (poly.__class__.__name__, self._print(poly.ring), self._print(terms)) def _print_FracElement(self, frac): numer_terms = list(frac.numer.terms()) numer_terms.sort(key=frac.field.order, reverse=True) denom_terms = list(frac.denom.terms()) denom_terms.sort(key=frac.field.order, reverse=True) numer = self._print(numer_terms) denom = self._print(denom_terms) return "%s(%s, %s, %s)" % (frac.__class__.__name__, self._print(frac.field), numer, denom) def _print_FractionField(self, domain): cls = domain.__class__.__name__ field = self._print(domain.field) return "%s(%s)" % (cls, field) def _print_PolynomialRingBase(self, ring): cls = ring.__class__.__name__ dom = self._print(ring.domain) gens = ', '.join(map(self._print, ring.gens)) order = str(ring.order) if order != ring.default_order: orderstr = ", order=" + order else: orderstr = "" return "%s(%s, %s%s)" % (cls, dom, gens, orderstr) def _print_DMP(self, p): cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) if p.ring is not None: ringstr = ", ring=" + self._print(p.ring) else: ringstr = "" return "%s(%s, %s%s)" % (cls, rep, dom, ringstr) def _print_MonogenicFiniteExtension(self, ext): # The expanded tree shown by srepr(ext.modulus) # is not practical. return "FiniteExtension(%s)" % str(ext.modulus) def _print_ExtensionElement(self, f): rep = self._print(f.rep) ext = self._print(f.ext) return "ExtElem(%s, %s)" % (rep, ext) @print_function(ReprPrinter) def srepr(expr, **settings): """return expr in repr form""" return ReprPrinter(settings).doprint(expr)
67edc03ba2b60650c9a1c92bc4ce4e5325cb63cb3e6f4e70e0119e81a71f61c9
""" Integral Transforms """ from functools import reduce from sympy.core import S from sympy.core.compatibility import iterable, ordered from sympy.core.function import Function from sympy.core.relational import _canonical, Ge, Gt from sympy.core.numbers import oo from sympy.core.symbol import Dummy from sympy.functions import DiracDelta from sympy.functions.elementary.miscellaneous import Max from sympy.integrals import integrate, Integral from sympy.integrals.meijerint import _dummy from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And from sympy.simplify import simplify from sympy.utilities import default_sort_key from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.matrices.matrices import MatrixBase from sympy.polys.matrices.linsolve import _lin_eq2dict, PolyNonlinearError ########################################################################## # Helpers / Utilities ########################################################################## class IntegralTransformError(NotImplementedError): """ Exception raised in relation to problems computing transforms. Explanation =========== This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned. The hint ``needeval=True`` can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed. """ def __init__(self, transform, function, msg): super().__init__( "%s Transform could not be computed: %s." % (transform, msg)) self.function = function class IntegralTransform(Function): """ Base class for integral transforms. Explanation =========== This class represents unevaluated transforms. To implement a concrete transform, derive from this class and implement the ``_compute_transform(f, x, s, **hints)`` and ``_as_integral(f, x, s)`` functions. If the transform cannot be computed, raise :obj:`IntegralTransformError`. Also set ``cls._name``. For instance, >>> from sympy.integrals.transforms import LaplaceTransform >>> LaplaceTransform._name 'Laplace' Implement ``self._collapse_extra`` if your function returns more than just a number and possibly a convergence condition. """ @property def function(self): """ The function to be transformed. """ return self.args[0] @property def function_variable(self): """ The dependent variable of the function to be transformed. """ return self.args[1] @property def transform_variable(self): """ The independent transform variable. """ return self.args[2] @property def free_symbols(self): """ This method returns the symbols that will exist when the transform is evaluated. """ return self.function.free_symbols.union({self.transform_variable}) \ - {self.function_variable} def _compute_transform(self, f, x, s, **hints): raise NotImplementedError def _as_integral(self, f, x, s): raise NotImplementedError def _collapse_extra(self, extra): cond = And(*extra) if cond == False: raise IntegralTransformError(self.__class__.name, None, '') return cond def doit(self, **hints): """ Try to evaluate the transform in closed form. Explanation =========== This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform. Standard hints are the following: - ``simplify``: whether or not to simplify the result - ``noconds``: if True, don't return convergence conditions - ``needeval``: if True, raise IntegralTransformError instead of returning IntegralTransform objects The default values of these hints depend on the concrete transform, usually the default is ``(simplify, noconds, needeval) = (True, False, False)``. """ from sympy import Add, expand_mul, Mul from sympy.core.function import AppliedUndef needeval = hints.pop('needeval', False) try_directly = not any(func.has(self.function_variable) for func in self.function.atoms(AppliedUndef)) if try_directly: try: return self._compute_transform(self.function, self.function_variable, self.transform_variable, **hints) except IntegralTransformError: pass fn = self.function if not fn.is_Add: fn = expand_mul(fn) if fn.is_Add: hints['needeval'] = needeval res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints) for x in fn.args] extra = [] ress = [] for x in res: if not isinstance(x, tuple): x = [x] ress.append(x[0]) if len(x) == 2: # only a condition extra.append(x[1]) elif len(x) > 2: # some region parameters and a condition (Mellin, Laplace) extra += [x[1:]] res = Add(*ress) if not extra: return res try: extra = self._collapse_extra(extra) if iterable(extra): return tuple([res]) + tuple(extra) else: return (res, extra) except IntegralTransformError: pass if needeval: raise IntegralTransformError( self.__class__._name, self.function, 'needeval') # TODO handle derivatives etc # pull out constant coefficients coeff, rest = fn.as_coeff_mul(self.function_variable) return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:]))) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable) def _eval_rewrite_as_Integral(self, *args, **kwargs): return self.as_integral from sympy.solvers.inequalities import _solve_inequality def _simplify(expr, doit): from sympy import powdenest, piecewise_fold if doit: return simplify(powdenest(piecewise_fold(expr), polar=True)) return expr def _noconds_(default): """ This is a decorator generator for dropping convergence conditions. Explanation =========== Suppose you define a function ``transform(*args)`` which returns a tuple of the form ``(result, cond1, cond2, ...)``. Decorating it ``@_noconds_(default)`` will add a new keyword argument ``noconds`` to it. If ``noconds=True``, the return value will be altered to be only ``result``, whereas if ``noconds=False`` the return value will not be altered. The default value of the ``noconds`` keyword will be ``default`` (i.e. the argument of this function). """ def make_wrapper(func): from sympy.core.decorators import wraps @wraps(func) def wrapper(*args, noconds=default, **kwargs): res = func(*args, **kwargs) if noconds: return res[0] return res return wrapper return make_wrapper _noconds = _noconds_(False) ########################################################################## # Mellin Transform ########################################################################## def _default_integrator(f, x): return integrate(f, (x, 0, oo)) @_noconds def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True): """ Backend function to compute Mellin transforms. """ from sympy import re, Max, Min, count_ops # We use a fresh dummy, because assumptions on s might drop conditions on # convergence of the integral. s = _dummy('s', 'mellin-transform', f) F = integrator(x**(s - 1) * f, x) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), (-oo, oo), S.true if not F.is_Piecewise: # XXX can this work if integration gives continuous result now? raise IntegralTransformError('Mellin', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Mellin', f, 'integral in unexpected form') def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = -oo b = oo aux = S.true conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = oo b_ = -oo aux_ = [] for d in disjuncts(c): d_ = d.replace( re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: b_ = Max(soln.gts, b_) else: a_ = Min(soln.lts, a_) if a_ != oo and a_ != b: a = Max(a_, a) elif b_ != -oo and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux conds = [process_conds(c) for c in disjuncts(cond)] conds = [x for x in conds if x[2] != False] conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2]))) if not conds: raise IntegralTransformError('Mellin', f, 'no convergence found') a, b, aux = conds[0] return _simplify(F.subs(s, s_), simplify), (a, b), aux class MellinTransform(IntegralTransform): """ Class representing unevaluated Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Mellin transforms, see the :func:`mellin_transform` docstring. """ _name = 'Mellin' def _compute_transform(self, f, x, s, **hints): return _mellin_transform(f, x, s, **hints) def _as_integral(self, f, x, s): return Integral(f*x**(s - 1), (x, 0, oo)) def _collapse_extra(self, extra): from sympy import Max, Min a = [] b = [] cond = [] for (sa, sb), c in extra: a += [sa] b += [sb] cond += [c] res = (Max(*a), Min(*b)), And(*cond) if (res[0][0] >= res[0][1]) == True or res[1] == False: raise IntegralTransformError( 'Mellin', None, 'no combined convergence.') return res def mellin_transform(f, x, s, **hints): r""" Compute the Mellin transform `F(s)` of `f(x)`, .. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x. For all "sensible" functions, this converges absolutely in a strip `a < \operatorname{Re}(s) < b`. Explanation =========== The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform. This function returns ``(F, (a, b), cond)`` where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip (as above), and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`MellinTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``, then only `F` will be returned (i.e. not ``cond``, and also not the strip ``(a, b)``). Examples ======== >>> from sympy.integrals.transforms import mellin_transform >>> from sympy import exp >>> from sympy.abc import x, s >>> mellin_transform(exp(-x), x, s) (gamma(s), (0, oo), True) See Also ======== inverse_mellin_transform, laplace_transform, fourier_transform hankel_transform, inverse_hankel_transform """ return MellinTransform(f, x, s).doit(**hints) def _rewrite_sin(m_n, s, a, b): """ Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible with the strip (a, b). Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``. Examples ======== >>> from sympy.integrals.transforms import _rewrite_sin >>> from sympy import pi, S >>> from sympy.abc import s >>> _rewrite_sin((pi, 0), s, 0, 1) (gamma(s), gamma(1 - s), pi) >>> _rewrite_sin((pi, 0), s, 1, 0) (gamma(s - 1), gamma(2 - s), -pi) >>> _rewrite_sin((pi, 0), s, -1, 0) (gamma(s + 1), gamma(-s), -pi) >>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2) (gamma(s - 1/2), gamma(3/2 - s), -pi) >>> _rewrite_sin((pi, pi), s, 0, 1) (gamma(s), gamma(1 - s), -pi) >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2) (gamma(2*s), gamma(1 - 2*s), pi) >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1) (gamma(2*s - 1), gamma(2 - 2*s), -pi) """ # (This is a separate function because it is moderately complicated, # and I want to doctest it.) # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x). # But there is one comlication: the gamma functions determine the # inegration contour in the definition of the G-function. Usually # it would not matter if this is slightly shifted, unless this way # we create an undefined function! # So we try to write this in such a way that the gammas are # eminently on the right side of the strip. from sympy import expand_mul, pi, ceiling, gamma m, n = m_n m = expand_mul(m/pi) n = expand_mul(n/pi) r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi class MellinTransformStripError(ValueError): """ Exception raised by _rewrite_gamma. Mainly for internal use. """ pass def _rewrite_gamma(f, s, a, b): """ Try to rewrite the product f(s) as a product of gamma functions, so that the inverse Mellin transform of f can be expressed as a meijer G function. Explanation =========== Return (an, ap), (bm, bq), arg, exp, fac such that G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s). Raises IntegralTransformError or MellinTransformStripError on failure. It is asserted that f has no poles in the fundamental strip designated by (a, b). One of a and b is allowed to be None. The fundamental strip is important, because it determines the inversion contour. This function can handle exponentials, linear factors, trigonometric functions. This is a helper function for inverse_mellin_transform that will not attempt any transformations on f. Examples ======== >>> from sympy.integrals.transforms import _rewrite_gamma >>> from sympy.abc import s >>> from sympy import oo >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo) (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1) >>> _rewrite_gamma((s-1)**2, s, -oo, oo) (([], [1, 1]), ([2, 2], []), 1, 1, 1) Importance of the fundamental strip: >>> _rewrite_gamma(1/s, s, 0, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, None, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, 0, None) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, -oo, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, None, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, -oo, None) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(2**(-s+3), s, -oo, oo) (([], []), ([], []), 1/2, 1, 8) """ from itertools import repeat from sympy import (Poly, gamma, Mul, re, CRootOf, exp as exp_, expand, roots, ilcm, pi, sin, cos, tan, cot, igcd, exp_polar) # Our strategy will be as follows: # 1) Guess a constant c such that the inversion integral should be # performed wrt s'=c*s (instead of plain s). Write s for s'. # 2) Process all factors, rewrite them independently as gamma functions in # argument s, or exponentials of s. # 3) Try to transform all gamma functions s.t. they have argument # a+s or a-s. # 4) Check that the resulting G function parameters are valid. # 5) Combine all the exponentials. a_, b_ = S([a, b]) def left(c, is_numer): """ Decide whether pole at c lies to the left of the fundamental strip. """ # heuristically, this is the best chance for us to solve the inequalities c = expand(re(c)) if a_ is None and b_ is oo: return True if a_ is None: return c < b_ if b_ is None: return c <= a_ if (c >= b_) == True: return False if (c <= a_) == True: return True if is_numer: return None if a_.free_symbols or b_.free_symbols or c.free_symbols: return None # XXX #raise IntegralTransformError('Inverse Mellin', f, # 'Could not determine position of singularity %s' # ' relative to fundamental strip' % c) raise MellinTransformStripError('Pole inside critical strip?') # 1) s_multipliers = [] for g in f.atoms(gamma): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff] for g in f.atoms(sin, cos, tan, cot): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff/pi] s_multipliers = [abs(x) if x.is_extended_real else x for x in s_multipliers] common_coefficient = S.One for x in s_multipliers: if not x.is_Rational: common_coefficient = x break s_multipliers = [x/common_coefficient for x in s_multipliers] if (any(not x.is_Rational for x in s_multipliers) or not common_coefficient.is_extended_real): raise IntegralTransformError("Gamma", None, "Nonrational multiplier") s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S.One) if s_multiplier == common_coefficient: if len(s_multipliers) == 0: s_multiplier = common_coefficient else: s_multiplier = common_coefficient \ *reduce(igcd, [S(x.p) for x in s_multipliers]) f = f.subs(s, s/s_multiplier) fac = S.One/s_multiplier exponent = S.One/s_multiplier if a_ is not None: a_ *= s_multiplier if b_ is not None: b_ *= s_multiplier # 2) numer, denom = f.as_numer_denom() numer = Mul.make_args(numer) denom = Mul.make_args(denom) args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False))) facs = [] dfacs = [] # *_gammas will contain pairs (a, c) representing Gamma(a*s + c) numer_gammas = [] denom_gammas = [] # exponentials will contain bases for exponentials of s exponentials = [] def exception(fact): return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact) while args: fact, is_numer = args.pop() if is_numer: ugammas, lgammas = numer_gammas, denom_gammas ufacs = facs else: ugammas, lgammas = denom_gammas, numer_gammas ufacs = dfacs def linear_arg(arg): """ Test if arg is of form a*s+b, raise exception if not. """ if not arg.is_polynomial(s): raise exception(fact) p = Poly(arg, s) if p.degree() != 1: raise exception(fact) return p.all_coeffs() # constants if not fact.has(s): ufacs += [fact] # exponentials elif fact.is_Pow or isinstance(fact, exp_): if fact.is_Pow: base = fact.base exp = fact.exp else: base = exp_polar(1) exp = fact.exp if exp.is_Integer: cond = is_numer if exp < 0: cond = not cond args += [(base, cond)]*abs(exp) continue elif not base.has(s): a, b = linear_arg(exp) if not is_numer: base = 1/base exponentials += [base**a] facs += [base**b] else: raise exception(fact) # linear factors elif fact.is_polynomial(s): p = Poly(fact, s) if p.degree() != 1: # We completely factor the poly. For this we need the roots. # Now roots() only works in some cases (low degree), and CRootOf # only works without parameters. So try both... coeff = p.LT()[1] rs = roots(p, s) if len(rs) != p.degree(): rs = CRootOf.all_roots(p) ufacs += [coeff] args += [(s - c, is_numer) for c in rs] continue a, c = p.all_coeffs() ufacs += [a] c /= -a # Now need to convert s - c if left(c, is_numer): ugammas += [(S.One, -c + 1)] lgammas += [(S.One, -c)] else: ufacs += [-1] ugammas += [(S.NegativeOne, c + 1)] lgammas += [(S.NegativeOne, c)] elif isinstance(fact, gamma): a, b = linear_arg(fact.args[0]) if is_numer: if (a > 0 and (left(-b/a, is_numer) == False)) or \ (a < 0 and (left(-b/a, is_numer) == True)): raise NotImplementedError( 'Gammas partially over the strip.') ugammas += [(a, b)] elif isinstance(fact, sin): # We try to re-write all trigs as gammas. This is not in # general the best strategy, since sometimes this is impossible, # but rewriting as exponentials would work. However trig functions # in inverse mellin transforms usually all come from simplifying # gamma terms, so this should work. a = fact.args[0] if is_numer: # No problem with the poles. gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi else: gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_) args += [(gamma1, not is_numer), (gamma2, not is_numer)] ufacs += [fac_] elif isinstance(fact, tan): a = fact.args[0] args += [(sin(a, evaluate=False), is_numer), (sin(pi/2 - a, evaluate=False), not is_numer)] elif isinstance(fact, cos): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer)] elif isinstance(fact, cot): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer), (sin(a, evaluate=False), not is_numer)] else: raise exception(fact) fac *= Mul(*facs)/Mul(*dfacs) # 3) an, ap, bm, bq = [], [], [], [] for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True), (denom_gammas, bq, ap, False)]: while gammas: a, c = gammas.pop() if a != -1 and a != +1: # We use the gamma function multiplication theorem. p = abs(S(a)) newa = a/p newc = c/p if not a.is_Integer: raise TypeError("a is not an integer") for k in range(p): gammas += [(newa, newc + k/p)] if is_numer: fac *= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**a] else: fac /= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**(-a)] continue if a == +1: plus.append(1 - c) else: minus.append(c) # 4) # TODO # 5) arg = Mul(*exponentials) # for testability, sort the arguments an.sort(key=default_sort_key) ap.sort(key=default_sort_key) bm.sort(key=default_sort_key) bq.sort(key=default_sort_key) return (an, ap), (bm, bq), arg, exponent, fac @_noconds_(True) def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False): """ A helper for the real inverse_mellin_transform function, this one here assumes x to be real and positive. """ from sympy import (expand, expand_mul, hyperexpand, meijerg, arg, pi, re, factor, Heaviside, gamma, Add) x = _dummy('t', 'inverse-mellin-transform', F, positive=True) # Actually, we won't try integration at all. Instead we use the definition # of the Meijer G function as a fairly general inverse mellin transform. F = F.rewrite(gamma) for g in [factor(F), expand_mul(F), expand(F)]: if g.is_Add: # do all terms separately ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg, noconds=False) for G in g.args] conds = [p[1] for p in ress] ress = [p[0] for p in ress] res = Add(*ress) if not as_meijerg: res = factor(res, gens=res.atoms(Heaviside)) return res.subs(x, x_), And(*conds) try: a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1]) except IntegralTransformError: continue try: G = meijerg(a, b, C/x**e) except ValueError: continue if as_meijerg: h = G else: try: h = hyperexpand(G) except NotImplementedError: raise IntegralTransformError( 'Inverse Mellin', F, 'Could not calculate integral') if h.is_Piecewise and len(h.args) == 3: # XXX we break modularity here! h = Heaviside(x - abs(C))*h.args[0].args[0] \ + Heaviside(abs(C) - x)*h.args[1].args[0] # We must ensure that the integral along the line we want converges, # and return that value. # See [L], 5.2 cond = [abs(arg(G.argument)) < G.delta*pi] # Note: we allow ">=" here, this corresponds to convergence if we let # limits go to oo symmetrically. ">" corresponds to absolute convergence. cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1), abs(arg(G.argument)) == G.delta*pi)] cond = Or(*cond) if cond == False: raise IntegralTransformError( 'Inverse Mellin', F, 'does not converge') return (h*fac).subs(x, x_), cond raise IntegralTransformError('Inverse Mellin', F, '') _allowed = None class InverseMellinTransform(IntegralTransform): """ Class representing unevaluated inverse Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Mellin transforms, see the :func:`inverse_mellin_transform` docstring. """ _name = 'Inverse Mellin' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, a, b, **opts): if a is None: a = InverseMellinTransform._none_sentinel if b is None: b = InverseMellinTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, a, b, **opts) @property def fundamental_strip(self): a, b = self.args[3], self.args[4] if a is InverseMellinTransform._none_sentinel: a = None if b is InverseMellinTransform._none_sentinel: b = None return a, b def _compute_transform(self, F, s, x, **hints): from sympy import postorder_traversal global _allowed if _allowed is None: from sympy import ( exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf) _allowed = { exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf} for f in postorder_traversal(F): if f.is_Function and f.has(s) and f.func not in _allowed: raise IntegralTransformError('Inverse Mellin', F, 'Component %s not recognised.' % f) strip = self.fundamental_strip return _inverse_mellin_transform(F, s, x, strip, **hints) def _as_integral(self, F, s, x): from sympy import I c = self.__class__._c return Integral(F*x**(-s), (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_mellin_transform(F, s, x, strip, **hints): r""" Compute the inverse Mellin transform of `F(s)` over the fundamental strip given by ``strip=(a, b)``. Explanation =========== This can be defined as .. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s, for any `c` in the fundamental strip. Under certain regularity conditions on `F` and/or `f`, this recovers `f` from its Mellin transform `F` (and vice versa), for positive real `x`. One of `a` or `b` may be passed as ``None``; a suitable `c` will be inferred. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseMellinTransform` object. Note that this function will assume x to be positive and real, regardless of the sympy assumptions! For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Examples ======== >>> from sympy.integrals.transforms import inverse_mellin_transform >>> from sympy import oo, gamma >>> from sympy.abc import x, s >>> inverse_mellin_transform(gamma(s), s, x, (0, oo)) exp(-x) The fundamental strip matters: >>> f = 1/(s**2 - 1) >>> inverse_mellin_transform(f, s, x, (-oo, -1)) x*(1 - 1/x**2)*Heaviside(x - 1, 1/2)/2 >>> inverse_mellin_transform(f, s, x, (-1, 1)) -x*Heaviside(1 - x, 1/2)/2 - Heaviside(x - 1, 1/2)/(2*x) >>> inverse_mellin_transform(f, s, x, (1, oo)) (1/2 - x**2/2)*Heaviside(1 - x, 1/2)/x See Also ======== mellin_transform hankel_transform, inverse_hankel_transform """ return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints) ########################################################################## # Laplace Transform ########################################################################## def _simplifyconds(expr, s, a): r""" Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`. Examples ======== >>> from sympy.integrals.transforms import _simplifyconds as simp >>> from sympy.abc import x >>> from sympy import sympify as S >>> simp(abs(x**2) < 1, x, 1) False >>> simp(abs(x**2) < 1, x, 2) False >>> simp(abs(x**2) < 1, x, 0) Abs(x**2) < 1 >>> simp(abs(1/x**2) < 1, x, 1) True >>> simp(S(1) < abs(x), x, 1) True >>> simp(S(1) < abs(1/x), x, 1) False >>> from sympy import Ne >>> simp(Ne(1, x**3), x, 1) True >>> simp(Ne(1, x**3), x, 2) True >>> simp(Ne(1, x**3), x, 0) Ne(1, x**3) """ from sympy.core.relational import ( StrictGreaterThan, StrictLessThan, Unequality ) from sympy import Abs def power(ex): if ex == s: return 1 if ex.is_Pow and ex.base == s: return ex.exp return None def bigger(ex1, ex2): """ Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. Else return None. """ if ex1.has(s) and ex2.has(s): return None if isinstance(ex1, Abs): ex1 = ex1.args[0] if isinstance(ex2, Abs): ex2 = ex2.args[0] if ex1.has(s): return bigger(1/ex2, 1/ex1) n = power(ex2) if n is None: return None try: if n > 0 and (abs(ex1) <= abs(a)**n) == True: return False if n < 0 and (abs(ex1) >= abs(a)**n) == True: return True except TypeError: pass def replie(x, y): """ simplify x < y """ if not (x.is_positive or isinstance(x, Abs)) \ or not (y.is_positive or isinstance(y, Abs)): return (x < y) r = bigger(x, y) if r is not None: return not r return (x < y) def replue(x, y): b = bigger(x, y) if b == True or b == False: return True return Unequality(x, y) def repl(ex, *args): if ex == True or ex == False: return bool(ex) return ex.replace(*args) from sympy.simplify.radsimp import collect_abs expr = collect_abs(expr) expr = repl(expr, StrictLessThan, replie) expr = repl(expr, StrictGreaterThan, lambda x, y: replie(y, x)) expr = repl(expr, Unequality, replue) return S(expr) def expand_dirac_delta(expr): """ Expand an expression involving DiractDelta to get it as a linear combination of DiracDelta functions. """ return _lin_eq2dict(expr, expr.atoms(DiracDelta)) @_noconds def _laplace_transform(f, t, s_, simplify=True): """ The backend function for Laplace transforms. """ from sympy import (re, Max, exp, pi, Min, periodic_argument as arg_, arg, cos, Wild, symbols, polar_lift, Add) s = Dummy('s') a = Wild('a', exclude=[t]) deltazero = [] deltanonzero = [] try: integratable, deltadict = expand_dirac_delta(f) except PolyNonlinearError: raise IntegralTransformError( 'Laplace', f, 'could not expand DiracDelta expressions') for dirac_func, dirac_coeff in deltadict.items(): p = dirac_func.match(DiracDelta(a*t)) if p: deltazero.append(dirac_coeff.subs(t,0)/p[a]) else: if dirac_func.args[0].subs(t,0).is_zero: raise IntegralTransformError('Laplace', f,\ 'not implemented yet.') else: deltanonzero.append(dirac_func*dirac_coeff) F = Add(integrate(exp(-s*t) * Add(integratable, *deltanonzero), (t, 0, oo)), Add(*deltazero)) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), -oo, S.true if not F.is_Piecewise: raise IntegralTransformError( 'Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Laplace', f, 'integral in unexpected form') def process_conds(conds): """ Turn ``conds`` into a strip and auxiliary conditions. """ a = -oo aux = S.true conds = conjuncts(to_cnf(conds)) p, q, w1, w2, w3, w4, w5 = symbols( 'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) patterns = ( p*abs(arg((s + w3)*q)) < w2, p*abs(arg((s + w3)*q)) <= w2, abs(arg_((s + w3)**p*q, w1)) < w2, abs(arg_((s + w3)**p*q, w1)) <= w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) < w2, abs(arg_((polar_lift(s + w3))**p*q, w1)) <= w2) for c in conds: a_ = oo aux_ = [] for d in disjuncts(c): if d.is_Relational and s in d.rhs.free_symbols: d = d.reversed if d.is_Relational and isinstance(d, (Ge, Gt)): d = d.reversedsign for pat in patterns: m = d.match(pat) if m: break if m: if m[q].is_positive and m[w2]/m[p] == pi/2: d = -re(s + m[w3]) < 0 m = d.match(p - cos(w1*abs(arg(s*w5))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( cos(p - abs(arg_(s**w1*w5, q))*w2)*abs(s**w3)**w4 < 0) if not m: m = d.match( p - cos(abs(arg_(polar_lift(s)**w1*w5, q))*w2 )*abs(s**w3)**w4 < 0) if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]): d = re(s) > m[p] d_ = d.replace( re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lts, a_) if a_ != oo: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return a, aux.canonical if aux.is_Relational else aux conds = [process_conds(c) for c in disjuncts(cond)] conds2 = [x for x in conds if x[1] != False and x[0] != -oo] if not conds2: conds2 = [x for x in conds if x[1] != False] conds = list(ordered(conds2)) def cnt(expr): if expr == True or expr == False: return 0 return expr.count_ops() conds.sort(key=lambda x: (-x[0], cnt(x[1]))) if not conds: raise IntegralTransformError('Laplace', f, 'no convergence found') a, aux = conds[0] # XXX is [0] always the right one? def sbs(expr): return expr.subs(s, s_) if simplify: F = _simplifyconds(F, s, a) aux = _simplifyconds(aux, s, a) return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) class LaplaceTransform(IntegralTransform): """ Class representing unevaluated Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Laplace transforms, see the :func:`laplace_transform` docstring. """ _name = 'Laplace' def _compute_transform(self, f, t, s, **hints): return _laplace_transform(f, t, s, **hints) def _as_integral(self, f, t, s): from sympy import exp return Integral(f*exp(-s*t), (t, 0, oo)) def _collapse_extra(self, extra): from sympy import Max conds = [] planes = [] for plane, cond in extra: conds.append(cond) planes.append(plane) cond = And(*conds) plane = Max(*planes) if cond == False: raise IntegralTransformError( 'Laplace', None, 'No combined convergence.') return plane, cond def laplace_transform(f, t, s, legacy_matrix=True, **hints): r""" Compute the Laplace Transform `F(s)` of `f(t)`, .. math :: F(s) = \int_{0^{-}}^\infty e^{-st} f(t) \mathrm{d}t. Explanation =========== For all sensible functions, this converges absolutely in a half plane `a < \operatorname{Re}(s)`. This function returns ``(F, a, cond)`` where ``F`` is the Laplace transform of ``f``, `\operatorname{Re}(s) > a` is the half-plane of convergence, and ``cond`` are auxiliary convergence conditions. The lower bound is `0^{-}`, meaning that this bound should be approached from the lower side. This is only necessary if distributions are involved. At present, it is only done if `f(t)` contains ``DiracDelta``, in which case the Laplace transform is computed as .. math :: F(s) = \lim_{\tau\to 0^{-}} \int_{\tau}^\infty e^{-st} f(t) \mathrm{d}t. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`LaplaceTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``). .. deprecated:: 1.9 Legacy behavior for matrices where ``laplace_transform`` with ``noconds=False`` (the default) returns a Matrix whose elements are tuples. The behavior of ``laplace_transform`` for matrices will change in a future release of SymPy to return a tuple of the transformed Matrix and the convergence conditions for the matrix as a whole. Use ``legacy_matrix=False`` to enable the new behavior. Examples ======== >>> from sympy.integrals import laplace_transform >>> from sympy.abc import t, s, a >>> from sympy.functions import DiracDelta, exp >>> laplace_transform(t**a, t, s) (gamma(a + 1)/(s*s**a), 0, re(a) > -1) >>> laplace_transform(DiracDelta(t)-a*exp(-a*t),t,s) (-a/(a + s) + 1, 0, Abs(arg(a)) <= pi/2) See Also ======== inverse_laplace_transform, mellin_transform, fourier_transform hankel_transform, inverse_hankel_transform """ if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): conds = not hints.get('noconds', False) if conds and legacy_matrix: SymPyDeprecationWarning( feature="laplace_transform of a Matrix with noconds=False (default)", useinstead="the option legacy_matrix=False to get the new behaviour", issue=21504, deprecated_since_version="1.9" ).warn() return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints)) else: elements_trans = [laplace_transform(fij, t, s, **hints) for fij in f] if conds: elements, avals, conditions = zip(*elements_trans) f_laplace = type(f)(*f.shape, elements) return f_laplace, Max(*avals), And(*conditions) else: return type(f)(*f.shape, elements_trans) return LaplaceTransform(f, t, s).doit(**hints) @_noconds_(True) def _inverse_laplace_transform(F, s, t_, plane, simplify=True): """ The backend function for inverse Laplace transforms. """ from sympy import exp, Heaviside, log, expand_complex, Integral,\ Piecewise, Add from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp # There are two strategies we can try: # 1) Use inverse mellin transforms - related by a simple change of variables. # 2) Use the inversion integral. t = Dummy('t', real=True) def pw_simp(*args): """ Simplify a piecewise expression from hyperexpand. """ # XXX we break modularity here! if len(args) != 3: return Piecewise(*args) arg = args[2].args[0].argument coeff, exponent = _get_coeff_exp(arg, t) e1 = args[0].args[0] e2 = args[1].args[0] return Heaviside(1/abs(coeff) - t**exponent)*e1 \ + Heaviside(t**exponent - 1/abs(coeff))*e2 if F.is_rational_function(s): F = F.apart(s) if F.is_Add: f = Add(*[_inverse_laplace_transform(X, s, t, plane, simplify)\ for X in F.args]) return _simplify(f.subs(t, t_), simplify), True try: f, cond = inverse_mellin_transform(F, s, exp(-t), (None, oo), needeval=True, noconds=False) except IntegralTransformError: f = None if f is None: f = meijerint_inversion(F, s, t) if f is None: raise IntegralTransformError('Inverse Laplace', f, '') if f.is_Piecewise: f, cond = f.args[0] if f.has(Integral): raise IntegralTransformError('Inverse Laplace', f, 'inversion integral of unrecognised form.') else: cond = S.true f = f.replace(Piecewise, pw_simp) if f.is_Piecewise: # many of the functions called below can't work with piecewise # (b/c it has a bool in args) return f.subs(t, t_), cond u = Dummy('u') def simp_heaviside(arg, H0=S.Half): a = arg.subs(exp(-t), u) if a.has(t): return Heaviside(arg, H0) rel = _solve_inequality(a > 0, u) if rel.lts == u: k = log(rel.gts) return Heaviside(t + k, H0) else: k = log(rel.lts) return Heaviside(-(t + k), H0) f = f.replace(Heaviside, simp_heaviside) def simp_exp(arg): return expand_complex(exp(arg)) f = f.replace(exp, simp_exp) # TODO it would be nice to fix cosh and sinh ... simplify messes these # exponentials up return _simplify(f.subs(t, t_), simplify), cond class InverseLaplaceTransform(IntegralTransform): """ Class representing unevaluated inverse Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Laplace transforms, see the :func:`inverse_laplace_transform` docstring. """ _name = 'Inverse Laplace' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, plane, **opts): if plane is None: plane = InverseLaplaceTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, plane, **opts) @property def fundamental_plane(self): plane = self.args[3] if plane is InverseLaplaceTransform._none_sentinel: plane = None return plane def _compute_transform(self, F, s, t, **hints): return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints) def _as_integral(self, F, s, t): from sympy import I, exp c = self.__class__._c return Integral(exp(s*t)*F, (s, c - I*oo, c + I*oo))/(2*S.Pi*S.ImaginaryUnit) def inverse_laplace_transform(F, s, t, plane=None, **hints): r""" Compute the inverse Laplace transform of `F(s)`, defined as .. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s, for `c` so large that `F(s)` has no singularites in the half-plane `\operatorname{Re}(s) > c-\epsilon`. Explanation =========== The plane can be specified by argument ``plane``, but will be inferred if passed as None. Under certain regularity conditions, this recovers `f(t)` from its Laplace Transform `F(s)`, for non-negative `t`, and vice versa. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseLaplaceTransform` object. Note that this function will always assume `t` to be real, regardless of the sympy assumption on `t`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Examples ======== >>> from sympy.integrals.transforms import inverse_laplace_transform >>> from sympy import exp, Symbol >>> from sympy.abc import s, t >>> a = Symbol('a', positive=True) >>> inverse_laplace_transform(exp(-a*s)/s, s, t) Heaviside(-a + t, 1/2) See Also ======== laplace_transform hankel_transform, inverse_hankel_transform """ if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) return InverseLaplaceTransform(F, s, t, plane).doit(**hints) ########################################################################## # Fourier Transform ########################################################################## @_noconds_(True) def _fourier_transform(f, x, k, a, b, name, simplify=True): r""" Compute a general Fourier-type transform .. math:: F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x)\, dx. For suitable choice of *a* and *b*, this reduces to the standard Fourier and inverse Fourier transforms. """ from sympy import exp, I F = integrate(a*f*exp(b*I*x*k), (x, -oo, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true integral_f = integrate(f, (x, -oo, oo)) if integral_f in (-oo, oo, S.NaN) or integral_f.has(Integral): raise IntegralTransformError(name, f, 'function not integrable on real axis') if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class FourierTypeTransform(IntegralTransform): """ Base class for Fourier transforms.""" def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _fourier_transform(f, x, k, self.a(), self.b(), self.__class__._name, **hints) def _as_integral(self, f, x, k): from sympy import exp, I a = self.a() b = self.b() return Integral(a*f*exp(b*I*x*k), (x, -oo, oo)) class FourierTransform(FourierTypeTransform): """ Class representing unevaluated Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Fourier transforms, see the :func:`fourier_transform` docstring. """ _name = 'Fourier' def a(self): return 1 def b(self): return -2*S.Pi def fourier_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency Fourier transform of ``f``, defined as .. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`FourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import fourier_transform, exp >>> from sympy.abc import x, k >>> fourier_transform(exp(-x**2), x, k) sqrt(pi)*exp(-pi**2*k**2) >>> fourier_transform(exp(-x**2), x, k, noconds=False) (sqrt(pi)*exp(-pi**2*k**2), True) See Also ======== inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return FourierTransform(f, x, k).doit(**hints) class InverseFourierTransform(FourierTypeTransform): """ Class representing unevaluated inverse Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Fourier transforms, see the :func:`inverse_fourier_transform` docstring. """ _name = 'Inverse Fourier' def a(self): return 1 def b(self): return 2*S.Pi def inverse_fourier_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse Fourier transform of `F`, defined as .. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseFourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_fourier_transform, exp, sqrt, pi >>> from sympy.abc import x, k >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x) exp(-x**2) >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False) (exp(-x**2), True) See Also ======== fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseFourierTransform(F, k, x).doit(**hints) ########################################################################## # Fourier Sine and Cosine Transform ########################################################################## from sympy import sin, cos, sqrt, pi @_noconds_(True) def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True): """ Compute a general sine or cosine-type transform F(k) = a int_0^oo b*sin(x*k) f(x) dx. F(k) = a int_0^oo b*cos(x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard sine/cosine and inverse sine/cosine transforms. """ F = integrate(a*f*K(b*x*k), (x, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class SineCosineTypeTransform(IntegralTransform): """ Base class for sine and cosine transforms. Specify cls._kern. """ def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _sine_cosine_transform(f, x, k, self.a(), self.b(), self.__class__._kern, self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() K = self.__class__._kern return Integral(a*f*K(b*x*k), (x, 0, oo)) class SineTransform(SineCosineTypeTransform): """ Class representing unevaluated sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute sine transforms, see the :func:`sine_transform` docstring. """ _name = 'Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def sine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency sine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`SineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import sine_transform, exp >>> from sympy.abc import x, k, a >>> sine_transform(x*exp(-a*x**2), x, k) sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2)) >>> sine_transform(x**(-a), x, k) 2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2) See Also ======== fourier_transform, inverse_fourier_transform inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return SineTransform(f, x, k).doit(**hints) class InverseSineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse sine transforms, see the :func:`inverse_sine_transform` docstring. """ _name = 'Inverse Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_sine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse sine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseSineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_sine_transform, exp, sqrt, gamma >>> from sympy.abc import x, k, a >>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)* ... gamma(-a/2 + 1)/gamma((a+1)/2), k, x) x**(-a) >>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x) x*exp(-a*x**2) See Also ======== fourier_transform, inverse_fourier_transform sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseSineTransform(F, k, x).doit(**hints) class CosineTransform(SineCosineTypeTransform): """ Class representing unevaluated cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute cosine transforms, see the :func:`cosine_transform` docstring. """ _name = 'Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def cosine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency cosine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`CosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import cosine_transform, exp, sqrt, cos >>> from sympy.abc import x, k, a >>> cosine_transform(exp(-a*x), x, k) sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)) >>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k) a*exp(-a**2/(2*k))/(2*k**(3/2)) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return CosineTransform(f, x, k).doit(**hints) class InverseCosineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse cosine transforms, see the :func:`inverse_cosine_transform` docstring. """ _name = 'Inverse Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return 1 def inverse_cosine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse cosine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseCosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_cosine_transform, sqrt, pi >>> from sympy.abc import x, k, a >>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x) exp(-a*x) >>> inverse_cosine_transform(1/sqrt(k), k, x) 1/sqrt(x) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseCosineTransform(F, k, x).doit(**hints) ########################################################################## # Hankel Transform ########################################################################## @_noconds_(True) def _hankel_transform(f, r, k, nu, name, simplify=True): r""" Compute a general Hankel transform .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. """ from sympy import besselj F = integrate(f*besselj(nu, k*r)*r, (r, 0, oo)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class HankelTypeTransform(IntegralTransform): """ Base class for Hankel transforms. """ def doit(self, **hints): return self._compute_transform(self.function, self.function_variable, self.transform_variable, self.args[3], **hints) def _compute_transform(self, f, r, k, nu, **hints): return _hankel_transform(f, r, k, nu, self._name, **hints) def _as_integral(self, f, r, k, nu): from sympy import besselj return Integral(f*besselj(nu, k*r)*r, (r, 0, oo)) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable, self.args[3]) class HankelTransform(HankelTypeTransform): """ Class representing unevaluated Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Hankel transforms, see the :func:`hankel_transform` docstring. """ _name = 'Hankel' def hankel_transform(f, r, k, nu, **hints): r""" Compute the Hankel transform of `f`, defined as .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`HankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import exp >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2)) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform inverse_hankel_transform mellin_transform, laplace_transform """ return HankelTransform(f, r, k, nu).doit(**hints) class InverseHankelTransform(HankelTypeTransform): """ Class representing unevaluated inverse Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Hankel transforms, see the :func:`inverse_hankel_transform` docstring. """ _name = 'Inverse Hankel' def inverse_hankel_transform(F, k, r, nu, **hints): r""" Compute the inverse Hankel transform of `F` defined as .. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseHankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import exp >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2)) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform mellin_transform, laplace_transform """ return InverseHankelTransform(F, k, r, nu).doit(**hints)
7f6df8b4df86c59761e5056ec8c19f01bd5283067f706ee41fb2a1f35ead6c0c
from typing import Dict, List from itertools import permutations from functools import reduce from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.symbol import Wild, Dummy from sympy.core.basic import sympify from sympy.core.numbers import Rational, pi, I from sympy.core.relational import Eq, Ne from sympy.core.singleton import S from sympy.functions import exp, sin, cos, tan, cot, asin, atan from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh from sympy.functions import sqrt, erf, erfi, li, Ei from sympy.functions import besselj, bessely, besseli, besselk from sympy.functions import hankel1, hankel2, jn, yn from sympy.functions.elementary.complexes import Abs, re, im, sign, arg from sympy.functions.elementary.exponential import LambertW from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside, DiracDelta from sympy.simplify.radsimp import collect from sympy.logic.boolalg import And, Or from sympy.utilities.iterables import uniq from sympy.polys import quo, gcd, lcm, factor, cancel, PolynomialError from sympy.polys.monomials import itermonomials from sympy.polys.polyroots import root_factors from sympy.polys.rings import PolyRing from sympy.polys.solvers import solve_lin_sys from sympy.polys.constructor import construct_domain from sympy.core.compatibility import ordered from sympy.integrals.integrals import integrate def components(f, x): """ Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with minimal, positive exponents. Examples ======== >>> from sympy import cos, sin >>> from sympy.abc import x >>> from sympy.integrals.heurisch import components >>> components(sin(x)*cos(x)**2, x) {x, sin(x), cos(x)} See Also ======== heurisch """ result = set() if x in f.free_symbols: if f.is_symbol and f.is_commutative: result.add(f) elif f.is_Function or f.is_Derivative: for g in f.args: result |= components(g, x) result.add(f) elif f.is_Pow: result |= components(f.base, x) if not f.exp.is_Integer: if f.exp.is_Rational: result.add(f.base**Rational(1, f.exp.q)) else: result |= components(f.exp, x) | {f} else: for g in f.args: result |= components(g, x) return result # name -> [] of symbols _symbols_cache = {} # type: Dict[str, List[Dummy]] # NB @cacheit is not convenient here def _symbols(name, n): """get vector of symbols local to this module""" try: lsyms = _symbols_cache[name] except KeyError: lsyms = [] _symbols_cache[name] = lsyms while len(lsyms) < n: lsyms.append( Dummy('%s%i' % (name, len(lsyms))) ) return lsyms[:n] def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ A wrapper around the heurisch integration algorithm. Explanation =========== This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise. Examples ======== >>> from sympy.core import symbols >>> from sympy.functions import cos >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper >>> n, x = symbols('n x') >>> heurisch(cos(n*x), x) sin(n*x)/n >>> heurisch_wrapper(cos(n*x), x) Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True)) See Also ======== heurisch """ from sympy.solvers.solvers import solve, denoms f = sympify(f) if x not in f.free_symbols: return f*x res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) if not isinstance(res, Basic): return res # We consider each denominator in the expression, and try to find # cases where one or more symbolic denominator might be zero. The # conditions for these cases are stored in the list slns. slns = [] for d in denoms(res): try: slns += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass if not slns: return res slns = list(uniq(slns)) # Remove the solutions corresponding to poles in the original expression. slns0 = [] for d in denoms(f): try: slns0 += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass slns = [s for s in slns if s not in slns0] if not slns: return res if len(slns) > 1: eqs = [] for sub_dict in slns: eqs.extend([Eq(key, value) for key, value in sub_dict.items()]) slns = solve(eqs, dict=True, exclude=(x,)) + slns # For each case listed in the list slns, we reevaluate the integral. pairs = [] for sub_dict in slns: expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) cond = And(*[Eq(key, value) for key, value in sub_dict.items()]) generic = Or(*[Ne(key, value) for key, value in sub_dict.items()]) if expr is None: expr = integrate(f.subs(sub_dict),x) pairs.append((expr, cond)) # If there is one condition, put the generic case first. Otherwise, # doing so may lead to longer Piecewise formulas if len(pairs) == 1: pairs = [(heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), generic), (pairs[0][0], True)] else: pairs.append((heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), True)) return Piecewise(*pairs) class BesselTable: """ Derivatives of Bessel functions of orders n and n-1 in terms of each other. See the docstring of DiffCache. """ def __init__(self): self.table = {} self.n = Dummy('n') self.z = Dummy('z') self._create_table() def _create_table(t): table, n, z = t.table, t.n, t.z for f in (besselj, bessely, hankel1, hankel2): table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) f = besseli table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z + f(n, z)) f = besselk table[f] = (-f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) for f in (jn, yn): table[f] = (f(n-1, z) - (n+1)*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) def diffs(t, f, n, z): if f in t.table: diff0, diff1 = t.table[f] repl = [(t.n, n), (t.z, z)] return (diff0.subs(repl), diff1.subs(repl)) def has(t, f): return f in t.table _bessel_table = None class DiffCache: """ Store for derivatives of expressions. Explanation =========== The standard form of the derivative of a Bessel function of order n contains two Bessel functions of orders n-1 and n+1, respectively. Such forms cannot be used in parallel Risch algorithm, because there is a linear recurrence relation between the three functions while the algorithm expects that functions and derivatives are represented in terms of algebraically independent transcendentals. The solution is to take two of the functions, e.g., those of orders n and n-1, and to express the derivatives in terms of the pair. To guarantee that the proper form is used the two derivatives are cached as soon as one is encountered. Derivatives of other functions are also cached at no extra cost. All derivatives are with respect to the same variable `x`. """ def __init__(self, x): self.cache = {} self.x = x global _bessel_table if not _bessel_table: _bessel_table = BesselTable() def get_diff(self, f): cache = self.cache if f in cache: pass elif (not hasattr(f, 'func') or not _bessel_table.has(f.func)): cache[f] = cancel(f.diff(self.x)) else: n, z = f.args d0, d1 = _bessel_table.diffs(f.func, n, z) dz = self.get_diff(z) cache[f] = d0*dz cache[f.func(n-1, z)] = d1*dz return cache[f] def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ Compute indefinite integral using heuristic Risch algorithm. Explanation =========== This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use toplevel 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": References ========== .. [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: .. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. .. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. .. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. .. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral sympy.integrals.heurisch.components """ f = sympify(f) # There are some functions that Heurisch cannot currently handle, # so do not even try. # Set _try_heurisch=True to skip this check if _try_heurisch is not True: if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg): return if x not in f.free_symbols: return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if isinstance(g, li): M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif isinstance(g, exp): M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))) else: terms |= set(hints) dcache = DiffCache(x) for g in set(terms): # using copy of terms terms |= components(dcache.get_diff(g), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list(reversed(list(zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(dcache.get_diff(g)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) return (S.One, p) special = {} for term in terms: if term.is_Function: if isinstance(term, tan): special[1 + _substitute(term)**2] = False elif isinstance(term, tanh): special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif isinstance(term, LambertW): special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [ u_split[0] ] + list(special.keys())) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None #--- definitions for _integrate a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset))) else: monoms = tuple(ordered(itermonomials(V, A + B + degree_offset))) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in polys: if poly.has(*V): try: factorization = factor(poly, greedy=True) except PolynomialError: factorization = poly if factorization.is_Mul: factors = factorization.args else: factors = (factorization, ) for fact in factors: if fact.is_Pow: reducibles.add(fact.base) else: reducibles.add(fact) def _integrate(field=None): irreducibles = set() atans = set() pairs = set() for poly in reducibles: for z in poly.free_symbols: if z in V: break # should this be: `irreducibles |= \ else: # set(root_factors(poly, z, filter=field))` continue # and the line below deleted? # | # V irreducibles |= set(root_factors(poly, z, filter=field)) log_part, atan_part = [], [] for poly in list(irreducibles): m = collect(poly, I, evaluate=False) y = m.get(I, S.Zero) if y: x = m.get(S.One, S.Zero) if x.has(I) or y.has(I): continue # nontrivial x + I*y pairs.add((x, y)) irreducibles.remove(poly) while pairs: x, y = pairs.pop() if (x, -y) in pairs: pairs.remove((x, -y)) # Choosing b with no minus sign if y.could_extract_minus_sign(): y = -y irreducibles.add(x*x + y*y) atans.add(atan(x/y)) else: irreducibles.add(x + I*y) B = _symbols('B', len(irreducibles)) C = _symbols('C', len(atans)) # Note: the ordering matters here for poly, b in reversed(list(zip(ordered(irreducibles), B))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) for poly, c in reversed(list(zip(ordered(atans), C))): if poly.has(*V): poly_coeffs.append(c) atan_part.append(c * poly) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancellation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set() def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.free_symbols & syms: non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) try: numer = ring.from_expr(raw_numer) except ValueError: raise PolynomialError solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False) if solution is None: return None else: return candidate.xreplace(solution).xreplace( dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs)))) if not (F.free_symbols - set(V)): solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand() if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None
17f7018f340f5ebb1b5a4b58104b3537ee508540a06d4f9bc3434efbe4f3db93
""" Algorithms for solving the Risch differential equation. Given a differential field K of characteristic 0 that is a simple monomial extension of a base field k and f, g in K, the Risch Differential Equation problem is to decide if there exist y in K such that Dy + f*y == g and to find one if there are some. If t is a monomial over k and the coefficients of f and g are in k(t), then y is in k(t), and the outline of the algorithm here is given as: 1. Compute the normal part n of the denominator of y. The problem is then reduced to finding y' in k<t>, where y == y'/n. 2. Compute the special part s of the denominator of y. The problem is then reduced to finding y'' in k[t], where y == y''/(n*s) 3. Bound the degree of y''. 4. Reduce the equation Dy + f*y == g to a similar equation with f, g in k[t]. 5. Find the solutions in k[t] of bounded degree of the reduced equation. See Chapter 6 of "Symbolic Integration I: Transcendental Functions" by Manuel Bronstein. See also the docstring of risch.py. """ from operator import mul from functools import reduce from sympy.core import oo from sympy.core.symbol import Dummy from sympy.polys import Poly, gcd, ZZ, cancel from sympy import sqrt, re, im from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation, splitfactor, NonElementaryIntegralException, DecrementLevel, recognize_log_derivative) # TODO: Add messages to NonElementaryIntegralException errors def order_at(a, p, t): """ Computes the order of a at p, with respect to t. Explanation =========== For a, p in k[t], the order of a at p is defined as nu_p(a) = max({n in Z+ such that p**n|a}), where a != 0. If a == 0, nu_p(a) = +oo. To compute the order at a rational function, a/b, use the fact that nu_p(a/b) == nu_p(a) - nu_p(b). """ if a.is_zero: return oo if p == Poly(t, t): return a.as_poly(t).ET()[0][0] # Uses binary search for calculating the power. power_list collects the tuples # (p^k,k) where each k is some power of 2. After deciding the largest k # such that k is power of 2 and p^k|a the loop iteratively calculates # the actual power. power_list = [] p1 = p r = a.rem(p1) tracks_power = 1 while r.is_zero: power_list.append((p1,tracks_power)) p1 = p1*p1 tracks_power *= 2 r = a.rem(p1) n = 0 product = Poly(1, t) while len(power_list) != 0: final = power_list.pop() productf = product*final[0] r = a.rem(productf) if r.is_zero: n += final[1] product = productf return n def order_at_oo(a, d, t): """ Computes the order of a/d at oo (infinity), with respect to t. For f in k(t), the order or f at oo is defined as deg(d) - deg(a), where f == a/d. """ if a.is_zero: return oo return d.degree(t) - a.degree(t) def weak_normalizer(a, d, DE, z=None): """ Weak normalization. Explanation =========== Given a derivation D on k[t] and f == a/d in k(t), return q in k[t] such that f - Dq/q is weakly normalized with respect to t. f in k(t) is said to be "weakly normalized" with respect to t if residue_p(f) is not a positive integer for any normal irreducible p in k[t] such that f is in R_p (Definition 6.1.1). If f has an elementary integral, this is equivalent to no logarithm of integral(f) whose argument depends on t has a positive integer coefficient, where the arguments of the logarithms not in k(t) are in k[t]. Returns (q, f - Dq/q) """ z = z or Dummy('z') dn, ds = splitfactor(d, DE) # Compute d1, where dn == d1*d2**2*...*dn**n is a square-free # factorization of d. g = gcd(dn, dn.diff(DE.t)) d_sqf_part = dn.quo(g) d1 = d_sqf_part.quo(gcd(d_sqf_part, g)) a1, b = gcdex_diophantine(d.quo(d1).as_poly(DE.t), d1.as_poly(DE.t), a.as_poly(DE.t)) r = (a - Poly(z, DE.t)*derivation(d1, DE)).as_poly(DE.t).resultant( d1.as_poly(DE.t)) r = Poly(r, z) if not r.expr.has(z): return (Poly(1, DE.t), (a, d)) N = [i for i in r.real_roots() if i in ZZ and i > 0] q = reduce(mul, [gcd(a - Poly(n, DE.t)*derivation(d1, DE), d1) for n in N], Poly(1, DE.t)) dq = derivation(q, DE) sn = q*a - d*dq sd = q*d sn, sd = sn.cancel(sd, include=True) return (q, (sn, sd)) def normal_denom(fa, fd, ga, gd, DE): """ Normal part of the denominator. Explanation =========== Given a derivation D on k[t] and f, g in k(t) with f weakly normalized with respect to t, either raise NonElementaryIntegralException, in which case the equation Dy + f*y == g has no solution in k(t), or the quadruplet (a, b, c, h) such that a, h in k[t], b, c in k<t>, and for any solution y in k(t) of Dy + f*y == g, q = y*h in k<t> satisfies a*Dq + b*q == c. This constitutes step 1 in the outline given in the rde.py docstring. """ dn, ds = splitfactor(fd, DE) en, es = splitfactor(gd, DE) p = dn.gcd(en) h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t))) a = dn*h c = a*h if c.div(en)[1]: # en does not divide dn*h**2 raise NonElementaryIntegralException ca = c*ga ca, cd = ca.cancel(gd, include=True) ba = a*fa - dn*derivation(h, DE)*fd ba, bd = ba.cancel(fd, include=True) # (dn*h, dn*h*f - dn*Dh, dn*h**2*g, h) return (a, (ba, bd), (ca, cd), h) def special_denom(a, ba, bd, ca, cd, DE, case='auto'): """ Special part of the denominator. Explanation =========== case is one of {'exp', 'tan', 'primitive'} for the hyperexponential, hypertangent, and primitive cases, respectively. For the hyperexponential (resp. hypertangent) case, given a derivation D on k[t] and a in k[t], b, c, in k<t> with Dt/t in k (resp. Dt/(t**2 + 1) in k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp. gcd(a, t**2 + 1) == 1), return the quadruplet (A, B, C, 1/h) such that A, B, C, h in k[t] and for any solution q in k<t> of a*Dq + b*q == c, r = qh in k[t] satisfies A*Dr + B*r == C. For ``case == 'primitive'``, k<t> == k[t], so it returns (a, b, c, 1) in this case. This constitutes step 2 of the outline given in the rde.py docstring. """ from sympy.integrals.prde import parametric_log_deriv # TODO: finish writing this and write tests if case == 'auto': case = DE.case if case == 'exp': p = Poly(DE.t, DE.t) elif case == 'tan': p = Poly(DE.t**2 + 1, DE.t) elif case in ['primitive', 'base']: B = ba.to_field().quo(bd) C = ca.to_field().quo(cd) return (a, B, C, Poly(1, DE.t)) else: raise ValueError("case must be one of {'exp', 'tan', 'primitive', " "'base'}, not %s." % case) nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t) nc = order_at(ca, p, DE.t) - order_at(cd, p, DE.t) n = min(0, nc - min(0, nb)) if not nb: # Possible cancellation. if case == 'exp': dcoeff = DE.d.quo(Poly(DE.t, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t) etaa, etad = frac_in(dcoeff, DE.t) A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) if A is not None: Q, m, z = A if Q == 1: n = min(n, m) elif case == 'tan': dcoeff = DE.d.quo(Poly(DE.t**2+1, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. alphaa, alphad = frac_in(im(-ba.eval(sqrt(-1))/bd.eval(sqrt(-1))/a.eval(sqrt(-1))), DE.t) betaa, betad = frac_in(re(-ba.eval(sqrt(-1))/bd.eval(sqrt(-1))/a.eval(sqrt(-1))), DE.t) etaa, etad = frac_in(dcoeff, DE.t) if recognize_log_derivative(Poly(2, DE.t)*betaa, betad, DE): A = parametric_log_deriv(alphaa*Poly(sqrt(-1), DE.t)*betad+alphad*betaa, alphad*betad, etaa, etad, DE) if A is not None: Q, m, z = A if Q == 1: n = min(n, m) N = max(0, -nb, n - nc) pN = p**N pn = p**-n A = a*pN B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN C = (ca*pN*pn).quo(cd) h = pn # (a*p**N, (b + n*a*Dp/p)*p**N, c*p**(N - n), p**-n) return (A, B, C, h) def bound_degree(a, b, cQ, DE, case='auto', parametric=False): """ Bound on polynomial solutions. Explanation =========== Given a derivation D on k[t] and ``a``, ``b``, ``c`` in k[t] with ``a != 0``, return n in ZZ such that deg(q) <= n for any solution q in k[t] of a*Dq + b*q == c, when parametric=False, or deg(q) <= n for any solution c1, ..., cm in Const(k) and q in k[t] of a*Dq + b*q == Sum(ci*gi, (i, 1, m)) when parametric=True. For ``parametric=False``, ``cQ`` is ``c``, a ``Poly``; for ``parametric=True``, ``cQ`` is Q == [q1, ..., qm], a list of Polys. This constitutes step 3 of the outline given in the rde.py docstring. """ from sympy.integrals.prde import (parametric_log_deriv, limited_integrate, is_log_deriv_k_t_radical_in_field) # TODO: finish writing this and write tests if case == 'auto': case = DE.case da = a.degree(DE.t) db = b.degree(DE.t) # The parametric and regular cases are identical, except for this part if parametric: dc = max([i.degree(DE.t) for i in cQ]) else: dc = cQ.degree(DE.t) alpha = cancel(-b.as_poly(DE.t).LC().as_expr()/ a.as_poly(DE.t).LC().as_expr()) if case == 'base': n = max(0, dc - max(db, da - 1)) if db == da - 1 and alpha.is_Integer: n = max(0, alpha, dc - db) elif case == 'primitive': if db > da: n = max(0, dc - db) else: n = max(0, dc - da + 1) etaa, etad = frac_in(DE.d, DE.T[DE.level - 1]) t1 = DE.t with DecrementLevel(DE): alphaa, alphad = frac_in(alpha, DE.t) if db == da - 1: # if alpha == m*Dt + Dz for z in k and m in ZZ: try: (za, zd), m = limited_integrate(alphaa, alphad, [(etaa, etad)], DE) except NonElementaryIntegralException: pass else: if len(m) != 1: raise ValueError("Length of m should be 1") n = max(n, m[0]) elif db == da: # if alpha == Dz/z for z in k*: # beta = -lc(a*Dz + b*z)/(z*lc(a)) # if beta == m*Dt + Dw for w in k and m in ZZ: # n = max(n, m) A = is_log_deriv_k_t_radical_in_field(alphaa, alphad, DE) if A is not None: aa, z = A if aa == 1: beta = -(a*derivation(z, DE).as_poly(t1) + b*z.as_poly(t1)).LC()/(z.as_expr()*a.LC()) betaa, betad = frac_in(beta, DE.t) try: (za, zd), m = limited_integrate(betaa, betad, [(etaa, etad)], DE) except NonElementaryIntegralException: pass else: if len(m) != 1: raise ValueError("Length of m should be 1") n = max(n, m[0].as_expr()) elif case == 'exp': n = max(0, dc - max(db, da)) if da == db: etaa, etad = frac_in(DE.d.quo(Poly(DE.t, DE.t)), DE.T[DE.level - 1]) with DecrementLevel(DE): alphaa, alphad = frac_in(alpha, DE.t) A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) if A is not None: # if alpha == m*Dt/t + Dz/z for z in k* and m in ZZ: # n = max(n, m) a, m, z = A if a == 1: n = max(n, m) elif case in ['tan', 'other_nonlinear']: delta = DE.d.degree(DE.t) lam = DE.d.LC() alpha = cancel(alpha/lam) n = max(0, dc - max(da + delta - 1, db)) if db == da + delta - 1 and alpha.is_Integer: n = max(0, alpha, dc - db) else: raise ValueError("case must be one of {'exp', 'tan', 'primitive', " "'other_nonlinear', 'base'}, not %s." % case) return n def spde(a, b, c, n, DE): """ Rothstein's Special Polynomial Differential Equation algorithm. Explanation =========== Given a derivation D on k[t], an integer n and ``a``,``b``,``c`` in k[t] with ``a != 0``, either raise NonElementaryIntegralException, in which case the equation a*Dq + b*q == c has no solution of degree at most ``n`` in k[t], or return the tuple (B, C, m, alpha, beta) such that B, C, alpha, beta in k[t], m in ZZ, and any solution q in k[t] of degree at most n of a*Dq + b*q == c must be of the form q == alpha*h + beta, where h in k[t], deg(h) <= m, and Dh + B*h == C. This constitutes step 4 of the outline given in the rde.py docstring. """ zero = Poly(0, DE.t) alpha = Poly(1, DE.t) beta = Poly(0, DE.t) while True: if c.is_zero: return (zero, zero, 0, zero, beta) # -1 is more to the point if (n < 0) is True: raise NonElementaryIntegralException g = a.gcd(b) if not c.rem(g).is_zero: # g does not divide c raise NonElementaryIntegralException a, b, c = a.quo(g), b.quo(g), c.quo(g) if a.degree(DE.t) == 0: b = b.to_field().quo(a) c = c.to_field().quo(a) return (b, c, n, alpha, beta) r, z = gcdex_diophantine(b, a, c) b += derivation(a, DE) c = z - derivation(r, DE) n -= a.degree(DE.t) beta += alpha * r alpha *= a def no_cancel_b_large(b, c, n, DE): """ Poly Risch Differential Equation - No cancellation: deg(b) large enough. Explanation =========== Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c`` in k[t] with ``b != 0`` and either D == d/dt or deg(b) > max(0, deg(D) - 1), either raise NonElementaryIntegralException, in which case the equation ``Dq + b*q == c`` has no solution of degree at most n in k[t], or a solution q in k[t] of this equation with ``deg(q) < n``. """ q = Poly(0, DE.t) while not c.is_zero: m = c.degree(DE.t) - b.degree(DE.t) if not 0 <= m <= n: # n < 0 or m < 0 or m > n raise NonElementaryIntegralException p = Poly(c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC()*DE.t**m, DE.t, expand=False) q = q + p n = m - 1 c = c - derivation(p, DE) - b*p return q def no_cancel_b_small(b, c, n, DE): """ Poly Risch Differential Equation - No cancellation: deg(b) small enough. Explanation =========== Given a derivation D on k[t], ``n`` either an integer or +oo, and ``b``,``c`` in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, either raise NonElementaryIntegralException, in which case the equation Dq + b*q == c has no solution of degree at most n in k[t], or a solution q in k[t] of this equation with deg(q) <= n, or the tuple (h, b0, c0) such that h in k[t], b0, c0, in k, and for any solution q in k[t] of degree at most n of Dq + bq == c, y == q - h is a solution in k of Dy + b0*y == c0. """ q = Poly(0, DE.t) while not c.is_zero: if n == 0: m = 0 else: m = c.degree(DE.t) - DE.d.degree(DE.t) + 1 if not 0 <= m <= n: # n < 0 or m < 0 or m > n raise NonElementaryIntegralException if m > 0: p = Poly(c.as_poly(DE.t).LC()/(m*DE.d.as_poly(DE.t).LC())*DE.t**m, DE.t, expand=False) else: if b.degree(DE.t) != c.degree(DE.t): raise NonElementaryIntegralException if b.degree(DE.t) == 0: return (q, b.as_poly(DE.T[DE.level - 1]), c.as_poly(DE.T[DE.level - 1])) p = Poly(c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC(), DE.t, expand=False) q = q + p n = m - 1 c = c - derivation(p, DE) - b*p return q # TODO: better name for this function def no_cancel_equal(b, c, n, DE): """ Poly Risch Differential Equation - No cancellation: deg(b) == deg(D) - 1 Explanation =========== Given a derivation D on k[t] with deg(D) >= 2, n either an integer or +oo, and b, c in k[t] with deg(b) == deg(D) - 1, either raise NonElementaryIntegralException, in which case the equation Dq + b*q == c has no solution of degree at most n in k[t], or a solution q in k[t] of this equation with deg(q) <= n, or the tuple (h, m, C) such that h in k[t], m in ZZ, and C in k[t], and for any solution q in k[t] of degree at most n of Dq + b*q == c, y == q - h is a solution in k[t] of degree at most m of Dy + b*y == C. """ q = Poly(0, DE.t) lc = cancel(-b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC()) if lc.is_Integer and lc.is_positive: M = lc else: M = -1 while not c.is_zero: m = max(M, c.degree(DE.t) - DE.d.degree(DE.t) + 1) if not 0 <= m <= n: # n < 0 or m < 0 or m > n raise NonElementaryIntegralException u = cancel(m*DE.d.as_poly(DE.t).LC() + b.as_poly(DE.t).LC()) if u.is_zero: return (q, m, c) if m > 0: p = Poly(c.as_poly(DE.t).LC()/u*DE.t**m, DE.t, expand=False) else: if c.degree(DE.t) != DE.d.degree(DE.t) - 1: raise NonElementaryIntegralException else: p = c.as_poly(DE.t).LC()/b.as_poly(DE.t).LC() q = q + p n = m - 1 c = c - derivation(p, DE) - b*p return q def cancel_primitive(b, c, n, DE): """ Poly Risch Differential Equation - Cancellation: Primitive case. Explanation =========== Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and ``c`` in k[t] with Dt in k and ``b != 0``, either raise NonElementaryIntegralException, in which case the equation Dq + b*q == c has no solution of degree at most n in k[t], or a solution q in k[t] of this equation with deg(q) <= n. """ from sympy.integrals.prde import is_log_deriv_k_t_radical_in_field with DecrementLevel(DE): ba, bd = frac_in(b, DE.t) A = is_log_deriv_k_t_radical_in_field(ba, bd, DE) if A is not None: n, z = A if n == 1: # b == Dz/z raise NotImplementedError("is_deriv_in_field() is required to " " solve this problem.") # if z*c == Dp for p in k[t] and deg(p) <= n: # return p/z # else: # raise NonElementaryIntegralException if c.is_zero: return c # return 0 if n < c.degree(DE.t): raise NonElementaryIntegralException q = Poly(0, DE.t) while not c.is_zero: m = c.degree(DE.t) if n < m: raise NonElementaryIntegralException with DecrementLevel(DE): a2a, a2d = frac_in(c.LC(), DE.t) sa, sd = rischDE(ba, bd, a2a, a2d, DE) stm = Poly(sa.as_expr()/sd.as_expr()*DE.t**m, DE.t, expand=False) q += stm n = m - 1 c -= b*stm + derivation(stm, DE) return q def cancel_exp(b, c, n, DE): """ Poly Risch Differential Equation - Cancellation: Hyperexponential case. Explanation =========== Given a derivation D on k[t], n either an integer or +oo, ``b`` in k, and ``c`` in k[t] with Dt/t in k and ``b != 0``, either raise NonElementaryIntegralException, in which case the equation Dq + b*q == c has no solution of degree at most n in k[t], or a solution q in k[t] of this equation with deg(q) <= n. """ from sympy.integrals.prde import parametric_log_deriv eta = DE.d.quo(Poly(DE.t, DE.t)).as_expr() with DecrementLevel(DE): etaa, etad = frac_in(eta, DE.t) ba, bd = frac_in(b, DE.t) A = parametric_log_deriv(ba, bd, etaa, etad, DE) if A is not None: a, m, z = A if a == 1: raise NotImplementedError("is_deriv_in_field() is required to " "solve this problem.") # if c*z*t**m == Dp for p in k<t> and q = p/(z*t**m) in k[t] and # deg(q) <= n: # return q # else: # raise NonElementaryIntegralException if c.is_zero: return c # return 0 if n < c.degree(DE.t): raise NonElementaryIntegralException q = Poly(0, DE.t) while not c.is_zero: m = c.degree(DE.t) if n < m: raise NonElementaryIntegralException # a1 = b + m*Dt/t a1 = b.as_expr() with DecrementLevel(DE): # TODO: Write a dummy function that does this idiom a1a, a1d = frac_in(a1, DE.t) a1a = a1a*etad + etaa*a1d*Poly(m, DE.t) a1d = a1d*etad a2a, a2d = frac_in(c.LC(), DE.t) sa, sd = rischDE(a1a, a1d, a2a, a2d, DE) stm = Poly(sa.as_expr()/sd.as_expr()*DE.t**m, DE.t, expand=False) q += stm n = m - 1 c -= b*stm + derivation(stm, DE) # deg(c) becomes smaller return q def solve_poly_rde(b, cQ, n, DE, parametric=False): """ Solve a Polynomial Risch Differential Equation with degree bound ``n``. This constitutes step 4 of the outline given in the rde.py docstring. For parametric=False, cQ is c, a Poly; for parametric=True, cQ is Q == [q1, ..., qm], a list of Polys. """ from sympy.integrals.prde import (prde_no_cancel_b_large, prde_no_cancel_b_small) # No cancellation if not b.is_zero and (DE.case == 'base' or b.degree(DE.t) > max(0, DE.d.degree(DE.t) - 1)): if parametric: return prde_no_cancel_b_large(b, cQ, n, DE) return no_cancel_b_large(b, cQ, n, DE) elif (b.is_zero or b.degree(DE.t) < DE.d.degree(DE.t) - 1) and \ (DE.case == 'base' or DE.d.degree(DE.t) >= 2): if parametric: return prde_no_cancel_b_small(b, cQ, n, DE) R = no_cancel_b_small(b, cQ, n, DE) if isinstance(R, Poly): return R else: # XXX: Might k be a field? (pg. 209) h, b0, c0 = R with DecrementLevel(DE): b0, c0 = b0.as_poly(DE.t), c0.as_poly(DE.t) if b0 is None: # See above comment raise ValueError("b0 should be a non-Null value") if c0 is None: raise ValueError("c0 should be a non-Null value") y = solve_poly_rde(b0, c0, n, DE).as_poly(DE.t) return h + y elif DE.d.degree(DE.t) >= 2 and b.degree(DE.t) == DE.d.degree(DE.t) - 1 and \ n > -b.as_poly(DE.t).LC()/DE.d.as_poly(DE.t).LC(): # TODO: Is this check necessary, and if so, what should it do if it fails? # b comes from the first element returned from spde() if not b.as_poly(DE.t).LC().is_number: raise TypeError("Result should be a number") if parametric: raise NotImplementedError("prde_no_cancel_b_equal() is not yet " "implemented.") R = no_cancel_equal(b, cQ, n, DE) if isinstance(R, Poly): return R else: h, m, C = R # XXX: Or should it be rischDE()? y = solve_poly_rde(b, C, m, DE) return h + y else: # Cancellation if b.is_zero: raise NotImplementedError("Remaining cases for Poly (P)RDE are " "not yet implemented (is_deriv_in_field() required).") else: if DE.case == 'exp': if parametric: raise NotImplementedError("Parametric RDE cancellation " "hyperexponential case is not yet implemented.") return cancel_exp(b, cQ, n, DE) elif DE.case == 'primitive': if parametric: raise NotImplementedError("Parametric RDE cancellation " "primitive case is not yet implemented.") return cancel_primitive(b, cQ, n, DE) else: raise NotImplementedError("Other Poly (P)RDE cancellation " "cases are not yet implemented (%s)." % DE.case) if parametric: raise NotImplementedError("Remaining cases for Poly PRDE not yet " "implemented.") raise NotImplementedError("Remaining cases for Poly RDE not yet " "implemented.") def rischDE(fa, fd, ga, gd, DE): """ Solve a Risch Differential Equation: Dy + f*y == g. Explanation =========== See the outline in the docstring of rde.py for more information about the procedure used. Either raise NonElementaryIntegralException, in which case there is no solution y in the given differential field, or return y in k(t) satisfying Dy + f*y == g, or raise NotImplementedError, in which case, the algorithms necessary to solve the given Risch Differential Equation have not yet been implemented. """ _, (fa, fd) = weak_normalizer(fa, fd, DE) a, (ba, bd), (ca, cd), hn = normal_denom(fa, fd, ga, gd, DE) A, B, C, hs = special_denom(a, ba, bd, ca, cd, DE) try: # Until this is fully implemented, use oo. Note that this will almost # certainly cause non-termination in spde() (unless A == 1), and # *might* lead to non-termination in the next step for a nonelementary # integral (I don't know for certain yet). Fortunately, spde() is # currently written recursively, so this will just give # RuntimeError: maximum recursion depth exceeded. n = bound_degree(A, B, C, DE) except NotImplementedError: # Useful for debugging: # import warnings # warnings.warn("rischDE: Proceeding with n = oo; may cause " # "non-termination.") n = oo B, C, m, alpha, beta = spde(A, B, C, n, DE) if C.is_zero: y = C else: y = solve_poly_rde(B, C, m, DE) return (alpha*y + beta, hn*hs)
dc59df2fae0afb2c8e5e245c9d017316f41487cb57d2ef0bd383fda4f401dd3f
from sympy.core import Mul from sympy.functions import DiracDelta, Heaviside from sympy.core.compatibility import default_sort_key from sympy.core.singleton import S def change_mul(node, x): """change_mul(node, x) Rearranges the operands of a product, bringing to front any simple DiracDelta expression. Explanation =========== If no simple DiracDelta expression was found, then all the DiracDelta expressions are simplified (using DiracDelta.expand(diracdelta=True, wrt=x)). Return: (dirac, new node) Where: o dirac is either a simple DiracDelta expression or None (if no simple expression was found); o new node is either a simplified DiracDelta expressions or None (if it could not be simplified). Examples ======== >>> from sympy import DiracDelta, cos >>> from sympy.integrals.deltafunctions import change_mul >>> from sympy.abc import x, y >>> change_mul(x*y*DiracDelta(x)*cos(x), x) (DiracDelta(x), x*y*cos(x)) >>> change_mul(x*y*DiracDelta(x**2 - 1)*cos(x), x) (None, x*y*cos(x)*DiracDelta(x - 1)/2 + x*y*cos(x)*DiracDelta(x + 1)/2) >>> change_mul(x*y*DiracDelta(cos(x))*cos(x), x) (None, None) See Also ======== sympy.functions.special.delta_functions.DiracDelta deltaintegrate """ new_args = [] dirac = None #Sorting is needed so that we consistently collapse the same delta; #However, we must preserve the ordering of non-commutative terms c, nc = node.args_cnc() sorted_args = sorted(c, key=default_sort_key) sorted_args.extend(nc) for arg in sorted_args: if arg.is_Pow and isinstance(arg.base, DiracDelta): new_args.append(arg.func(arg.base, arg.exp - 1)) arg = arg.base if dirac is None and (isinstance(arg, DiracDelta) and arg.is_simple(x)): dirac = arg else: new_args.append(arg) if not dirac: # there was no simple dirac new_args = [] for arg in sorted_args: if isinstance(arg, DiracDelta): new_args.append(arg.expand(diracdelta=True, wrt=x)) elif arg.is_Pow and isinstance(arg.base, DiracDelta): new_args.append(arg.func(arg.base.expand(diracdelta=True, wrt=x), arg.exp)) else: new_args.append(arg) if new_args != sorted_args: nnode = Mul(*new_args).expand() else: # if the node didn't change there is nothing to do nnode = None return (None, nnode) return (dirac, Mul(*new_args)) def deltaintegrate(f, x): """ deltaintegrate(f, x) Explanation =========== The idea for integration is the following: - If we are dealing with a DiracDelta expression, i.e. DiracDelta(g(x)), we try to simplify it. If we could simplify it, then we integrate the resulting expression. We already know we can integrate a simplified expression, because only simple DiracDelta expressions are involved. If we couldn't simplify it, there are two cases: 1) The expression is a simple expression: we return the integral, taking care if we are dealing with a Derivative or with a proper DiracDelta. 2) The expression is not simple (i.e. DiracDelta(cos(x))): we can do nothing at all. - If the node is a multiplication node having a DiracDelta term: First we expand it. If the expansion did work, then we try to integrate the expansion. If not, we try to extract a simple DiracDelta term, then we have two cases: 1) We have a simple DiracDelta term, so we return the integral. 2) We didn't have a simple term, but we do have an expression with simplified DiracDelta terms, so we integrate this expression. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.integrals.deltafunctions import deltaintegrate >>> from sympy import sin, cos, DiracDelta >>> deltaintegrate(x*sin(x)*cos(x)*DiracDelta(x - 1), x) sin(1)*cos(1)*Heaviside(x - 1, 1/2) >>> deltaintegrate(y**2*DiracDelta(x - z)*DiracDelta(y - z), y) z**2*DiracDelta(x - z)*Heaviside(y - z, 1/2) See Also ======== sympy.functions.special.delta_functions.DiracDelta sympy.integrals.integrals.Integral """ if not f.has(DiracDelta): return None from sympy.integrals import Integral, integrate from sympy.solvers import solve # g(x) = DiracDelta(h(x)) if f.func == DiracDelta: h = f.expand(diracdelta=True, wrt=x) if h == f: # can't simplify the expression #FIXME: the second term tells whether is DeltaDirac or Derivative #For integrating derivatives of DiracDelta we need the chain rule if f.is_simple(x): if (len(f.args) <= 1 or f.args[1] == 0): return Heaviside(f.args[0]) else: return (DiracDelta(f.args[0], f.args[1] - 1) / f.args[0].as_poly().LC()) else: # let's try to integrate the simplified expression fh = integrate(h, x) return fh elif f.is_Mul or f.is_Pow: # g(x) = a*b*c*f(DiracDelta(h(x)))*d*e g = f.expand() if f != g: # the expansion worked fh = integrate(g, x) if fh is not None and not isinstance(fh, Integral): return fh else: # no expansion performed, try to extract a simple DiracDelta term deltaterm, rest_mult = change_mul(f, x) if not deltaterm: if rest_mult: fh = integrate(rest_mult, x) return fh else: deltaterm = deltaterm.expand(diracdelta=True, wrt=x) if deltaterm.is_Mul: # Take out any extracted factors deltaterm, rest_mult_2 = change_mul(deltaterm, x) rest_mult = rest_mult*rest_mult_2 point = solve(deltaterm.args[0], x)[0] # Return the largest hyperreal term left after # repeated integration by parts. For example, # # integrate(y*DiracDelta(x, 1),x) == y*DiracDelta(x,0), not 0 # # This is so Integral(y*DiracDelta(x).diff(x),x).doit() # will return y*DiracDelta(x) instead of 0 or DiracDelta(x), # both of which are correct everywhere the value is defined # but give wrong answers for nested integration. n = (0 if len(deltaterm.args)==1 else deltaterm.args[1]) m = 0 while n >= 0: r = (-1)**n*rest_mult.diff(x, n).subs(x, point) if r.is_zero: n -= 1 m += 1 else: if m == 0: return r*Heaviside(x - point) else: return r*DiracDelta(x,m-1) # In some very weak sense, x=0 is still a singularity, # but we hope will not be of any practical consequence. return S.Zero return None
a6b89db7633076440ff98de32db7dfad0d5d732fe87c2e8a702350bef3d5de6d
""" Algorithms for solving Parametric Risch Differential Equations. The methods used for solving Parametric Risch Differential Equations parallel those for solving Risch Differential Equations. See the outline in the docstring of rde.py for more information. The Parametric Risch Differential Equation problem is, given f, g1, ..., gm in K(t), to determine if there exist y in K(t) and c1, ..., cm in Const(K) such that Dy + f*y == Sum(ci*gi, (i, 1, m)), and to find such y and ci if they exist. For the algorithms here G is a list of tuples of factions of the terms on the right hand side of the equation (i.e., gi in k(t)), and Q is a list of terms on the right hand side of the equation (i.e., qi in k[t]). See the docstring of each function for more information. """ from functools import reduce from sympy.core import Dummy, ilcm, Add, Mul, Pow, S from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer, bound_degree) from sympy.integrals.risch import (gcdex_diophantine, frac_in, derivation, residue_reduce, splitfactor, residue_reduce_derivation, DecrementLevel, recognize_log_derivative) from sympy.polys import Poly, lcm, cancel, sqf_list from sympy.polys.polymatrix import PolyMatrix as Matrix from sympy.solvers import solve zeros = Matrix.zeros eye = Matrix.eye def prde_normal_denom(fa, fd, G, DE): """ Parametric Risch Differential Equation - Normal part of the denominator. Explanation =========== Given a derivation D on k[t] and f, g1, ..., gm in k(t) with f weakly normalized with respect to t, return the tuple (a, b, G, h) such that a, h in k[t], b in k<t>, G = [g1, ..., gm] in k(t)^m, and for any solution c1, ..., cm in Const(k) and y in k(t) of Dy + f*y == Sum(ci*gi, (i, 1, m)), q == y*h in k<t> satisfies a*Dq + b*q == Sum(ci*Gi, (i, 1, m)). """ dn, ds = splitfactor(fd, DE) Gas, Gds = list(zip(*G)) gd = reduce(lambda i, j: i.lcm(j), Gds, Poly(1, DE.t)) en, es = splitfactor(gd, DE) p = dn.gcd(en) h = en.gcd(en.diff(DE.t)).quo(p.gcd(p.diff(DE.t))) a = dn*h c = a*h ba = a*fa - dn*derivation(h, DE)*fd ba, bd = ba.cancel(fd, include=True) G = [(c*A).cancel(D, include=True) for A, D in G] return (a, (ba, bd), G, h) def real_imag(ba, bd, gen): """ Helper function, to get the real and imaginary part of a rational function evaluated at sqrt(-1) without actually evaluating it at sqrt(-1). Explanation =========== Separates the even and odd power terms by checking the degree of terms wrt mod 4. Returns a tuple (ba[0], ba[1], bd) where ba[0] is real part of the numerator ba[1] is the imaginary part and bd is the denominator of the rational function. """ bd = bd.as_poly(gen).as_dict() ba = ba.as_poly(gen).as_dict() denom_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in bd.items()] denom_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in bd.items()] bd_real = sum(r for r in denom_real) bd_imag = sum(r for r in denom_imag) num_real = [value if key[0] % 4 == 0 else -value if key[0] % 4 == 2 else 0 for key, value in ba.items()] num_imag = [value if key[0] % 4 == 1 else -value if key[0] % 4 == 3 else 0 for key, value in ba.items()] ba_real = sum(r for r in num_real) ba_imag = sum(r for r in num_imag) ba = ((ba_real*bd_real + ba_imag*bd_imag).as_poly(gen), (ba_imag*bd_real - ba_real*bd_imag).as_poly(gen)) bd = (bd_real*bd_real + bd_imag*bd_imag).as_poly(gen) return (ba[0], ba[1], bd) def prde_special_denom(a, ba, bd, G, DE, case='auto'): """ Parametric Risch Differential Equation - Special part of the denominator. Explanation =========== Case is one of {'exp', 'tan', 'primitive'} for the hyperexponential, hypertangent, and primitive cases, respectively. For the hyperexponential (resp. hypertangent) case, given a derivation D on k[t] and a in k[t], b in k<t>, and g1, ..., gm in k(t) with Dt/t in k (resp. Dt/(t**2 + 1) in k, sqrt(-1) not in k), a != 0, and gcd(a, t) == 1 (resp. gcd(a, t**2 + 1) == 1), return the tuple (A, B, GG, h) such that A, B, h in k[t], GG = [gg1, ..., ggm] in k(t)^m, and for any solution c1, ..., cm in Const(k) and q in k<t> of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), r == q*h in k[t] satisfies A*Dr + B*r == Sum(ci*ggi, (i, 1, m)). For case == 'primitive', k<t> == k[t], so it returns (a, b, G, 1) in this case. """ # TODO: Merge this with the very similar special_denom() in rde.py if case == 'auto': case = DE.case if case == 'exp': p = Poly(DE.t, DE.t) elif case == 'tan': p = Poly(DE.t**2 + 1, DE.t) elif case in ['primitive', 'base']: B = ba.quo(bd) return (a, B, G, Poly(1, DE.t)) else: raise ValueError("case must be one of {'exp', 'tan', 'primitive', " "'base'}, not %s." % case) nb = order_at(ba, p, DE.t) - order_at(bd, p, DE.t) nc = min([order_at(Ga, p, DE.t) - order_at(Gd, p, DE.t) for Ga, Gd in G]) n = min(0, nc - min(0, nb)) if not nb: # Possible cancellation. if case == 'exp': dcoeff = DE.d.quo(Poly(DE.t, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. alphaa, alphad = frac_in(-ba.eval(0)/bd.eval(0)/a.eval(0), DE.t) etaa, etad = frac_in(dcoeff, DE.t) A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) if A is not None: Q, m, z = A if Q == 1: n = min(n, m) elif case == 'tan': dcoeff = DE.d.quo(Poly(DE.t**2 + 1, DE.t)) with DecrementLevel(DE): # We are guaranteed to not have problems, # because case != 'base'. betaa, alphaa, alphad = real_imag(ba, bd*a, DE.t) betad = alphad etaa, etad = frac_in(dcoeff, DE.t) if recognize_log_derivative(Poly(2, DE.t)*betaa, betad, DE): A = parametric_log_deriv(alphaa, alphad, etaa, etad, DE) B = parametric_log_deriv(betaa, betad, etaa, etad, DE) if A is not None and B is not None: Q, s, z = A # TODO: Add test if Q == 1: n = min(n, s/2) N = max(0, -nb) pN = p**N pn = p**-n # This is 1/h A = a*pN B = ba*pN.quo(bd) + Poly(n, DE.t)*a*derivation(p, DE).quo(p)*pN G = [(Ga*pN*pn).cancel(Gd, include=True) for Ga, Gd in G] h = pn # (a*p**N, (b + n*a*Dp/p)*p**N, g1*p**(N - n), ..., gm*p**(N - n), p**-n) return (A, B, G, h) def prde_linear_constraints(a, b, G, DE): """ Parametric Risch Differential Equation - Generate linear constraints on the constants. Explanation =========== Given a derivation D on k[t], a, b, in k[t] with gcd(a, b) == 1, and G = [g1, ..., gm] in k(t)^m, return Q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k(t) such that for any solution c1, ..., cm in Const(k) and p in k[t] of a*Dp + b*p == Sum(ci*gi, (i, 1, m)), (c1, ..., cm) is a solution of Mx == 0, and p and the ci satisfy a*Dp + b*p == Sum(ci*qi, (i, 1, m)). Because M has entries in k(t), and because Matrix doesn't play well with Poly, M will be a Matrix of Basic expressions. """ m = len(G) Gns, Gds = list(zip(*G)) d = reduce(lambda i, j: i.lcm(j), Gds) d = Poly(d, field=True) Q = [(ga*(d).quo(gd)).div(d) for ga, gd in G] if not all([ri.is_zero for _, ri in Q]): N = max([ri.degree(DE.t) for _, ri in Q]) M = Matrix(N + 1, m, lambda i, j: Q[j][1].nth(i), DE.t) else: M = Matrix(0, m, [], DE.t) # No constraints, return the empty matrix. qs, _ = list(zip(*Q)) return (qs, M) def poly_linear_constraints(p, d): """ Given p = [p1, ..., pm] in k[t]^m and d in k[t], return q = [q1, ..., qm] in k[t]^m and a matrix M with entries in k such that Sum(ci*pi, (i, 1, m)), for c1, ..., cm in k, is divisible by d if and only if (c1, ..., cm) is a solution of Mx = 0, in which case the quotient is Sum(ci*qi, (i, 1, m)). """ m = len(p) q, r = zip(*[pi.div(d) for pi in p]) if not all([ri.is_zero for ri in r]): n = max([ri.degree() for ri in r]) M = Matrix(n + 1, m, lambda i, j: r[j].nth(i), d.gens) else: M = Matrix(0, m, [], d.gens) # No constraints. return q, M def constant_system(A, u, DE): """ Generate a system for the constant solutions. Explanation =========== Given a differential field (K, D) with constant field C = Const(K), a Matrix A, and a vector (Matrix) u with coefficients in K, returns the tuple (B, v, s), where B is a Matrix with coefficients in C and v is a vector (Matrix) such that either v has coefficients in C, in which case s is True and the solutions in C of Ax == u are exactly all the solutions of Bx == v, or v has a non-constant coefficient, in which case s is False Ax == u has no constant solution. This algorithm is used both in solving parametric problems and in determining if an element a of K is a derivative of an element of K or the logarithmic derivative of a K-radical using the structure theorem approach. Because Poly does not play well with Matrix yet, this algorithm assumes that all matrix entries are Basic expressions. """ if not A: return A, u Au = A.row_join(u) Au, _ = Au.rref() # Warning: This will NOT return correct results if cancel() cannot reduce # an identically zero expression to 0. The danger is that we might # incorrectly prove that an integral is nonelementary (such as # risch_integrate(exp((sin(x)**2 + cos(x)**2 - 1)*x**2), x). # But this is a limitation in computer algebra in general, and implicit # in the correctness of the Risch Algorithm is the computability of the # constant field (actually, this same correctness problem exists in any # algorithm that uses rref()). # # We therefore limit ourselves to constant fields that are computable # via the cancel() function, in order to prevent a speed bottleneck from # calling some more complex simplification function (rational function # coefficients will fall into this class). Furthermore, (I believe) this # problem will only crop up if the integral explicitly contains an # expression in the constant field that is identically zero, but cannot # be reduced to such by cancel(). Therefore, a careful user can avoid this # problem entirely by being careful with the sorts of expressions that # appear in his integrand in the variables other than the integration # variable (the structure theorems should be able to completely decide these # problems in the integration variable). A, u = Au[:, :-1], Au[:, -1] D = lambda x: derivation(x, DE, basic=True) for j in range(A.cols): for i in range(A.rows): if A[i, j].expr.has(*DE.T): # This assumes that const(F(t0, ..., tn) == const(K) == F Ri = A[i, :] # Rm+1; m = A.rows DAij = D(A[i, j]) Rm1 = Ri.applyfunc(lambda x: D(x) / DAij) um1 = D(u[i]) / DAij Aj = A[:, j] A = A - Aj * Rm1 u = u - Aj * um1 A = A.col_join(Rm1) u = u.col_join(Matrix([um1], u.gens)) return (A, u) def prde_spde(a, b, Q, n, DE): """ Special Polynomial Differential Equation algorithm: Parametric Version. Explanation =========== Given a derivation D on k[t], an integer n, and a, b, q1, ..., qm in k[t] with deg(a) > 0 and gcd(a, b) == 1, return (A, B, Q, R, n1), with Qq = [q1, ..., qm] and R = [r1, ..., rm], such that for any solution c1, ..., cm in Const(k) and q in k[t] of degree at most n of a*Dq + b*q == Sum(ci*gi, (i, 1, m)), p = (q - Sum(ci*ri, (i, 1, m)))/a has degree at most n1 and satisfies A*Dp + B*p == Sum(ci*qi, (i, 1, m)) """ R, Z = list(zip(*[gcdex_diophantine(b, a, qi) for qi in Q])) A = a B = b + derivation(a, DE) Qq = [zi - derivation(ri, DE) for ri, zi in zip(R, Z)] R = list(R) n1 = n - a.degree(DE.t) return (A, B, Qq, R, n1) def prde_no_cancel_b_large(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) large enough. Explanation =========== Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with b != 0 and either D == d/dt or deg(b) > max(0, deg(D) - 1), returns h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*q == Sum(ci*qi, (i, 1, m)), then q = Sum(dj*hj, (j, 1, r)), where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ db = b.degree(DE.t) m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, -1, -1): # [n, ..., 0] for i in range(m): si = Q[i].nth(N + db)/b.LC() sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if all(qi.is_zero for qi in Q): dc = -1 M = zeros(0, 2, DE.t) else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t) A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE) c = eye(m, DE.t) A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c)) return (H, A) def prde_no_cancel_b_small(b, Q, n, DE): """ Parametric Poly Risch Differential Equation - No cancellation: deg(b) small enough. Explanation =========== Given a derivation D on k[t], n in ZZ, and b, q1, ..., qm in k[t] with deg(b) < deg(D) - 1 and either D == d/dt or deg(D) >= 2, returns h1, ..., hr in k[t] and a matrix A with coefficients in Const(k) such that if c1, ..., cm in Const(k) and q in k[t] satisfy deg(q) <= n and Dq + b*q == Sum(ci*qi, (i, 1, m)) then q = Sum(dj*hj, (j, 1, r)) where d1, ..., dr in Const(k) and A*Matrix([[c1, ..., cm, d1, ..., dr]]).T == 0. """ m = len(Q) H = [Poly(0, DE.t)]*m for N in range(n, 0, -1): # [n, ..., 1] for i in range(m): si = Q[i].nth(N + DE.d.degree(DE.t) - 1)/(N*DE.d.LC()) sitn = Poly(si*DE.t**N, DE.t) H[i] = H[i] + sitn Q[i] = Q[i] - derivation(sitn, DE) - b*sitn if b.degree(DE.t) > 0: for i in range(m): si = Poly(Q[i].nth(b.degree(DE.t))/b.LC(), DE.t) H[i] = H[i] + si Q[i] = Q[i] - derivation(si, DE) - b*si if all(qi.is_zero for qi in Q): dc = -1 M = Matrix() else: dc = max([qi.degree(DE.t) for qi in Q]) M = Matrix(dc + 1, m, lambda i, j: Q[j].nth(i), DE.t) A, u = constant_system(M, zeros(dc + 1, 1, DE.t), DE) c = eye(m, DE.t) A = A.row_join(zeros(A.rows, m, DE.t)).col_join(c.row_join(-c)) return (H, A) # else: b is in k, deg(qi) < deg(Dt) t = DE.t if DE.case != 'base': with DecrementLevel(DE): t0 = DE.t # k = k0(t0) ba, bd = frac_in(b, t0, field=True) Q0 = [frac_in(qi.TC(), t0, field=True) for qi in Q] f, B = param_rischDE(ba, bd, Q0, DE) # f = [f1, ..., fr] in k^r and B is a matrix with # m + r columns and entries in Const(k) = Const(k0) # such that Dy0 + b*y0 = Sum(ci*qi, (i, 1, m)) has # a solution y0 in k with c1, ..., cm in Const(k) # if and only y0 = Sum(dj*fj, (j, 1, r)) where # d1, ..., dr ar in Const(k) and # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0. # Transform fractions (fa, fd) in f into constant # polynomials fa/fd in k[t]. # (Is there a better way?) f = [Poly(fa.as_expr()/fd.as_expr(), t, field=True) for fa, fd in f] B = Matrix.from_Matrix(B.to_Matrix(), t) else: # Base case. Dy == 0 for all y in k and b == 0. # Dy + b*y = Sum(ci*qi) is solvable if and only if # Sum(ci*qi) == 0 in which case the solutions are # y = d1*f1 for f1 = 1 and any d1 in Const(k) = k. f = [Poly(1, t, field=True)] # r = 1 B = Matrix([[qi.TC() for qi in Q] + [S.Zero]], DE.t) # The condition for solvability is # B*Matrix([c1, ..., cm, d1]) == 0 # There are no constraints on d1. # Coefficients of t^j (j > 0) in Sum(ci*qi) must be zero. d = max([qi.degree(DE.t) for qi in Q]) if d > 0: M = Matrix(d, m, lambda i, j: Q[j].nth(i + 1), DE.t) A, _ = constant_system(M, zeros(d, 1, DE.t), DE) else: # No constraints on the hj. A = Matrix(0, m, [], DE.t) # Solutions of the original equation are # y = Sum(dj*fj, (j, 1, r) + Sum(ei*hi, (i, 1, m)), # where ei == ci (i = 1, ..., m), when # A*Matrix([c1, ..., cm]) == 0 and # B*Matrix([c1, ..., cm, d1, ..., dr]) == 0 # Build combined constraint matrix with m + r + m columns. r = len(f) I = eye(m, DE.t) A = A.row_join(zeros(A.rows, r + m, DE.t)) B = B.row_join(zeros(B.rows, m, DE.t)) C = I.row_join(zeros(m, r, DE.t)).row_join(-I) return f + H, A.col_join(B).col_join(C) def prde_cancel_liouvillian(b, Q, n, DE): """ Pg, 237. """ H = [] # Why use DecrementLevel? Below line answers that: # Assuming that we can solve such problems over 'k' (not k[t]) if DE.case == 'primitive': with DecrementLevel(DE): ba, bd = frac_in(b, DE.t, field=True) for i in range(n, -1, -1): if DE.case == 'exp': # this re-checking can be avoided with DecrementLevel(DE): ba, bd = frac_in(b + (i*(derivation(DE.t, DE)/DE.t)).as_poly(b.gens), DE.t, field=True) with DecrementLevel(DE): Qy = [frac_in(q.nth(i), DE.t, field=True) for q in Q] fi, Ai = param_rischDE(ba, bd, Qy, DE) fi = [Poly(fa.as_expr()/fd.as_expr(), DE.t, field=True) for fa, fd in fi] Ai = Ai.set_gens(DE.t) ri = len(fi) if i == n: M = Ai else: M = Ai.col_join(M.row_join(zeros(M.rows, ri, DE.t))) Fi, hi = [None]*ri, [None]*ri # from eq. on top of p.238 (unnumbered) for j in range(ri): hji = fi[j] * (DE.t**i).as_poly(fi[j].gens) hi[j] = hji # building up Sum(djn*(D(fjn*t^n) - b*fjnt^n)) Fi[j] = -(derivation(hji, DE) - b*hji) H += hi # in the next loop instead of Q it has # to be Q + Fi taking its place Q = Q + Fi return (H, M) def param_poly_rischDE(a, b, q, n, DE): """Polynomial solutions of a parametric Risch differential equation. Explanation =========== Given a derivation D in k[t], a, b in k[t] relatively prime, and q = [q1, ..., qm] in k[t]^m, return h = [h1, ..., hr] in k[t]^r and a matrix A with m + r columns and entries in Const(k) such that a*Dp + b*p = Sum(ci*qi, (i, 1, m)) has a solution p of degree <= n in k[t] with c1, ..., cm in Const(k) if and only if p = Sum(dj*hj, (j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm, d1, ..., dr) is a solution of Ax == 0. """ m = len(q) if n < 0: # Only the trivial zero solution is possible. # Find relations between the qi. if all([qi.is_zero for qi in q]): return [], zeros(1, m, DE.t) # No constraints. N = max([qi.degree(DE.t) for qi in q]) M = Matrix(N + 1, m, lambda i, j: q[j].nth(i), DE.t) A, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE) return [], A if a.is_ground: # Normalization: a = 1. a = a.LC() b, q = b.quo_ground(a), [qi.quo_ground(a) for qi in q] if not b.is_zero and (DE.case == 'base' or b.degree() > max(0, DE.d.degree() - 1)): return prde_no_cancel_b_large(b, q, n, DE) elif ((b.is_zero or b.degree() < DE.d.degree() - 1) and (DE.case == 'base' or DE.d.degree() >= 2)): return prde_no_cancel_b_small(b, q, n, DE) elif (DE.d.degree() >= 2 and b.degree() == DE.d.degree() - 1 and n > -b.as_poly().LC()/DE.d.as_poly().LC()): raise NotImplementedError("prde_no_cancel_b_equal() is " "not yet implemented.") else: # Liouvillian cases if DE.case == 'primitive' or DE.case == 'exp': return prde_cancel_liouvillian(b, q, n, DE) else: raise NotImplementedError("non-linear and hypertangent " "cases have not yet been implemented") # else: deg(a) > 0 # Iterate SPDE as long as possible cumulating coefficient # and terms for the recovery of original solutions. alpha, beta = a.one, [a.zero]*m while n >= 0: # and a, b relatively prime a, b, q, r, n = prde_spde(a, b, q, n, DE) beta = [betai + alpha*ri for betai, ri in zip(beta, r)] alpha *= a # Solutions p of a*Dp + b*p = Sum(ci*qi) correspond to # solutions alpha*p + Sum(ci*betai) of the initial equation. d = a.gcd(b) if not d.is_ground: break # a*Dp + b*p = Sum(ci*qi) may have a polynomial solution # only if the sum is divisible by d. qq, M = poly_linear_constraints(q, d) # qq = [qq1, ..., qqm] where qqi = qi.quo(d). # M is a matrix with m columns an entries in k. # Sum(fi*qi, (i, 1, m)), where f1, ..., fm are elements of k, is # divisible by d if and only if M*Matrix([f1, ..., fm]) == 0, # in which case the quotient is Sum(fi*qqi). A, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE) # A is a matrix with m columns and entries in Const(k). # Sum(ci*qqi) is Sum(ci*qi).quo(d), and the remainder is zero # for c1, ..., cm in Const(k) if and only if # A*Matrix([c1, ...,cm]) == 0. V = A.nullspace() # V = [v1, ..., vu] where each vj is a column matrix with # entries aj1, ..., ajm in Const(k). # Sum(aji*qi) is divisible by d with exact quotient Sum(aji*qqi). # Sum(ci*qi) is divisible by d if and only if ci = Sum(dj*aji) # (i = 1, ..., m) for some d1, ..., du in Const(k). # In that case, solutions of # a*Dp + b*p = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) # are the same as those of # (a/d)*Dp + (b/d)*p = Sum(dj*rj) # where rj = Sum(aji*qqi). if not V: # No non-trivial solution. return [], eye(m, DE.t) # Could return A, but this has # the minimum number of rows. Mqq = Matrix([qq]) # A single row. r = [(Mqq*vj)[0] for vj in V] # [r1, ..., ru] # Solutions of (a/d)*Dp + (b/d)*p = Sum(dj*rj) correspond to # solutions alpha*p + Sum(Sum(dj*aji)*betai) of the initial # equation. These are equal to alpha*p + Sum(dj*fj) where # fj = Sum(aji*betai). Mbeta = Matrix([beta]) f = [(Mbeta*vj)[0] for vj in V] # [f1, ..., fu] # # Solve the reduced equation recursively. # g, B = param_poly_rischDE(a.quo(d), b.quo(d), r, n, DE) # g = [g1, ..., gv] in k[t]^v and and B is a matrix with u + v # columns and entries in Const(k) such that # (a/d)*Dp + (b/d)*p = Sum(dj*rj) has a solution p of degree <= n # in k[t] if and only if p = Sum(ek*gk) where e1, ..., ev are in # Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0. # The solutions of the original equation are then # Sum(dj*fj, (j, 1, u)) + alpha*Sum(ek*gk, (k, 1, v)). # Collect solution components. h = f + [alpha*gk for gk in g] # Build combined relation matrix. A = -eye(m, DE.t) for vj in V: A = A.row_join(vj) A = A.row_join(zeros(m, len(g), DE.t)) A = A.col_join(zeros(B.rows, m, DE.t).row_join(B)) return h, A def param_rischDE(fa, fd, G, DE): """ Solve a Parametric Risch Differential Equation: Dy + f*y == Sum(ci*Gi, (i, 1, m)). Explanation =========== Given a derivation D in k(t), f in k(t), and G = [G1, ..., Gm] in k(t)^m, return h = [h1, ..., hr] in k(t)^r and a matrix A with m + r columns and entries in Const(k) such that Dy + f*y = Sum(ci*Gi, (i, 1, m)) has a solution y in k(t) with c1, ..., cm in Const(k) if and only if y = Sum(dj*hj, (j, 1, r)) where d1, ..., dr are in Const(k) and (c1, ..., cm, d1, ..., dr) is a solution of Ax == 0. Elements of k(t) are tuples (a, d) with a and d in k[t]. """ m = len(G) q, (fa, fd) = weak_normalizer(fa, fd, DE) # Solutions of the weakly normalized equation Dz + f*z = q*Sum(ci*Gi) # correspond to solutions y = z/q of the original equation. gamma = q G = [(q*ga).cancel(gd, include=True) for ga, gd in G] a, (ba, bd), G, hn = prde_normal_denom(fa, fd, G, DE) # Solutions q in k<t> of a*Dq + b*q = Sum(ci*Gi) correspond # to solutions z = q/hn of the weakly normalized equation. gamma *= hn A, B, G, hs = prde_special_denom(a, ba, bd, G, DE) # Solutions p in k[t] of A*Dp + B*p = Sum(ci*Gi) correspond # to solutions q = p/hs of the previous equation. gamma *= hs g = A.gcd(B) a, b, g = A.quo(g), B.quo(g), [gia.cancel(gid*g, include=True) for gia, gid in G] # a*Dp + b*p = Sum(ci*gi) may have a polynomial solution # only if the sum is in k[t]. q, M = prde_linear_constraints(a, b, g, DE) # q = [q1, ..., qm] where qi in k[t] is the polynomial component # of the partial fraction expansion of gi. # M is a matrix with m columns and entries in k. # Sum(fi*gi, (i, 1, m)), where f1, ..., fm are elements of k, # is a polynomial if and only if M*Matrix([f1, ..., fm]) == 0, # in which case the sum is equal to Sum(fi*qi). M, _ = constant_system(M, zeros(M.rows, 1, DE.t), DE) # M is a matrix with m columns and entries in Const(k). # Sum(ci*gi) is in k[t] for c1, ..., cm in Const(k) # if and only if M*Matrix([c1, ..., cm]) == 0, # in which case the sum is Sum(ci*qi). ## Reduce number of constants at this point V = M.nullspace() # V = [v1, ..., vu] where each vj is a column matrix with # entries aj1, ..., ajm in Const(k). # Sum(aji*gi) is in k[t] and equal to Sum(aji*qi) (j = 1, ..., u). # Sum(ci*gi) is in k[t] if and only is ci = Sum(dj*aji) # (i = 1, ..., m) for some d1, ..., du in Const(k). # In that case, # Sum(ci*gi) = Sum(ci*qi) = Sum(dj*Sum(aji*qi)) = Sum(dj*rj) # where rj = Sum(aji*qi) (j = 1, ..., u) in k[t]. if not V: # No non-trivial solution return [], eye(m, DE.t) Mq = Matrix([q]) # A single row. r = [(Mq*vj)[0] for vj in V] # [r1, ..., ru] # Solutions of a*Dp + b*p = Sum(dj*rj) correspond to solutions # y = p/gamma of the initial equation with ci = Sum(dj*aji). try: # We try n=5. At least for prde_spde, it will always # terminate no matter what n is. n = bound_degree(a, b, r, DE, parametric=True) except NotImplementedError: # A temporary bound is set. Eventually, it will be removed. # the currently added test case takes large time # even with n=5, and much longer with large n's. n = 5 h, B = param_poly_rischDE(a, b, r, n, DE) # h = [h1, ..., hv] in k[t]^v and and B is a matrix with u + v # columns and entries in Const(k) such that # a*Dp + b*p = Sum(dj*rj) has a solution p of degree <= n # in k[t] if and only if p = Sum(ek*hk) where e1, ..., ev are in # Const(k) and B*Matrix([d1, ..., du, e1, ..., ev]) == 0. # The solutions of the original equation for ci = Sum(dj*aji) # (i = 1, ..., m) are then y = Sum(ek*hk, (k, 1, v))/gamma. ## Build combined relation matrix with m + u + v columns. A = -eye(m, DE.t) for vj in V: A = A.row_join(vj) A = A.row_join(zeros(m, len(h), DE.t)) A = A.col_join(zeros(B.rows, m, DE.t).row_join(B)) ## Eliminate d1, ..., du. W = A.nullspace() # W = [w1, ..., wt] where each wl is a column matrix with # entries blk (k = 1, ..., m + u + v) in Const(k). # The vectors (bl1, ..., blm) generate the space of those # constant families (c1, ..., cm) for which a solution of # the equation Dy + f*y == Sum(ci*Gi) exists. They generate # the space and form a basis except possibly when Dy + f*y == 0 # is solvable in k(t}. The corresponding solutions are # y = Sum(blk'*hk, (k, 1, v))/gamma, where k' = k + m + u. v = len(h) M = Matrix([wl[:m] + wl[-v:] for wl in W]) # excise dj's. N = M.nullspace() # N = [n1, ..., ns] where the ni in Const(k)^(m + v) are column # vectors generating the space of linear relations between # c1, ..., cm, e1, ..., ev. C = Matrix([ni[:] for ni in N], DE.t) # rows n1, ..., ns. return [hk.cancel(gamma, include=True) for hk in h], C def limited_integrate_reduce(fa, fd, G, DE): """ Simpler version of step 1 & 2 for the limited integration problem. Explanation =========== Given a derivation D on k(t) and f, g1, ..., gn in k(t), return (a, b, h, N, g, V) such that a, b, h in k[t], N is a non-negative integer, g in k(t), V == [v1, ..., vm] in k(t)^m, and for any solution v in k(t), c1, ..., cm in C of f == Dv + Sum(ci*wi, (i, 1, m)), p = v*h is in k<t>, and p and the ci satisfy a*Dp + b*p == g + Sum(ci*vi, (i, 1, m)). Furthermore, if S1irr == Sirr, then p is in k[t], and if t is nonlinear or Liouvillian over k, then deg(p) <= N. So that the special part is always computed, this function calls the more general prde_special_denom() automatically if it cannot determine that S1irr == Sirr. Furthermore, it will automatically call bound_degree() when t is linear and non-Liouvillian, which for the transcendental case, implies that Dt == a*t + b with for some a, b in k*. """ dn, ds = splitfactor(fd, DE) E = [splitfactor(gd, DE) for _, gd in G] En, Es = list(zip(*E)) c = reduce(lambda i, j: i.lcm(j), (dn,) + En) # lcm(dn, en1, ..., enm) hn = c.gcd(c.diff(DE.t)) a = hn b = -derivation(hn, DE) N = 0 # These are the cases where we know that S1irr = Sirr, but there could be # others, and this algorithm will need to be extended to handle them. if DE.case in ['base', 'primitive', 'exp', 'tan']: hs = reduce(lambda i, j: i.lcm(j), (ds,) + Es) # lcm(ds, es1, ..., esm) a = hn*hs b -= (hn*derivation(hs, DE)).quo(hs) mu = min(order_at_oo(fa, fd, DE.t), min([order_at_oo(ga, gd, DE.t) for ga, gd in G])) # So far, all the above are also nonlinear or Liouvillian, but if this # changes, then this will need to be updated to call bound_degree() # as per the docstring of this function (DE.case == 'other_linear'). N = hn.degree(DE.t) + hs.degree(DE.t) + max(0, 1 - DE.d.degree(DE.t) - mu) else: # TODO: implement this raise NotImplementedError V = [(-a*hn*ga).cancel(gd, include=True) for ga, gd in G] return (a, b, a, N, (a*hn*fa).cancel(fd, include=True), V) def limited_integrate(fa, fd, G, DE): """ Solves the limited integration problem: f = Dv + Sum(ci*wi, (i, 1, n)) """ fa, fd = fa*Poly(1/fd.LC(), DE.t), fd.monic() # interpreting limited integration problem as a # parametric Risch DE problem Fa = Poly(0, DE.t) Fd = Poly(1, DE.t) G = [(fa, fd)] + G h, A = param_rischDE(Fa, Fd, G, DE) V = A.nullspace() V = [v for v in V if v[0] != 0] if not V: return None else: # we can take any vector from V, we take V[0] c0 = V[0][0] # v = [-1, c1, ..., cm, d1, ..., dr] v = V[0]/(-c0) r = len(h) m = len(v) - r - 1 C = list(v[1: m + 1]) y = -sum([v[m + 1 + i]*h[i][0].as_expr()/h[i][1].as_expr() \ for i in range(r)]) y_num, y_den = y.as_numer_denom() Ya, Yd = Poly(y_num, DE.t), Poly(y_den, DE.t) Y = Ya*Poly(1/Yd.LC(), DE.t), Yd.monic() return Y, C def parametric_log_deriv_heu(fa, fd, wa, wd, DE, c1=None): """ Parametric logarithmic derivative heuristic. Explanation =========== Given a derivation D on k[t], f in k(t), and a hyperexponential monomial theta over k(t), raises either NotImplementedError, in which case the heuristic failed, or returns None, in which case it has proven that no solution exists, or returns a solution (n, m, v) of the equation n*f == Dv/v + m*Dtheta/theta, with v in k(t)* and n, m in ZZ with n != 0. If this heuristic fails, the structure theorem approach will need to be used. The argument w == Dtheta/theta """ # TODO: finish writing this and write tests c1 = c1 or Dummy('c1') p, a = fa.div(fd) q, b = wa.div(wd) B = max(0, derivation(DE.t, DE).degree(DE.t) - 1) C = max(p.degree(DE.t), q.degree(DE.t)) if q.degree(DE.t) > B: eqs = [p.nth(i) - c1*q.nth(i) for i in range(B + 1, C + 1)] s = solve(eqs, c1) if not s or not s[c1].is_Rational: # deg(q) > B, no solution for c. return None M, N = s[c1].as_numer_denom() M_poly = M.as_poly(q.gens) N_poly = N.as_poly(q.gens) nfmwa = N_poly*fa*wd - M_poly*wa*fd nfmwd = fd*wd Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE, 'auto') if Qv is None: # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical. return None Q, v = Qv if Q.is_zero or v.is_zero: return None return (Q*N, Q*M, v) if p.degree(DE.t) > B: return None c = lcm(fd.as_poly(DE.t).LC(), wd.as_poly(DE.t).LC()) l = fd.monic().lcm(wd.monic())*Poly(c, DE.t) ln, ls = splitfactor(l, DE) z = ls*ln.gcd(ln.diff(DE.t)) if not z.has(DE.t): # TODO: We treat this as 'no solution', until the structure # theorem version of parametric_log_deriv is implemented. return None u1, r1 = (fa*l.quo(fd)).div(z) # (l*f).div(z) u2, r2 = (wa*l.quo(wd)).div(z) # (l*w).div(z) eqs = [r1.nth(i) - c1*r2.nth(i) for i in range(z.degree(DE.t))] s = solve(eqs, c1) if not s or not s[c1].is_Rational: # deg(q) <= B, no solution for c. return None M, N = s[c1].as_numer_denom() nfmwa = N.as_poly(DE.t)*fa*wd - M.as_poly(DE.t)*wa*fd nfmwd = fd*wd Qv = is_log_deriv_k_t_radical_in_field(nfmwa, nfmwd, DE) if Qv is None: # (N*f - M*w) is not the logarithmic derivative of a k(t)-radical. return None Q, v = Qv if Q.is_zero or v.is_zero: return None return (Q*N, Q*M, v) def parametric_log_deriv(fa, fd, wa, wd, DE): # TODO: Write the full algorithm using the structure theorems. # try: A = parametric_log_deriv_heu(fa, fd, wa, wd, DE) # except NotImplementedError: # Heuristic failed, we have to use the full method. # TODO: This could be implemented more efficiently. # It isn't too worrisome, because the heuristic handles most difficult # cases. return A def is_deriv_k(fa, fd, DE): r""" Checks if Df/f is the derivative of an element of k(t). Explanation =========== a in k(t) is the derivative of an element of k(t) if there exists b in k(t) such that a = Db. Either returns (ans, u), such that Df/f == Du, or None, which means that Df/f is not the derivative of an element of k(t). ans is a list of tuples such that Add(*[i*j for i, j in ans]) == u. This is useful for seeing exactly which elements of k(t) produce u. This function uses the structure theorem approach, which says that for any f in K, Df/f is the derivative of a element of K if and only if there are ri in QQ such that:: --- --- Dt \ r * Dt + \ r * i Df / i i / i --- = --. --- --- t f i in L i in E i K/C(x) K/C(x) Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of hyperexponential monomials of K over C(x)). If K is an elementary extension over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the transcendence degree of K over C(x). Furthermore, because Const_D(K) == Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x) and L_K/C(x) are disjoint. The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed recursively using this same function. Therefore, it is required to pass them as indices to D (or T). E_args are the arguments of the hyperexponentials indexed by E_K (i.e., if i is in E_K, then T[i] == exp(E_args[i])). This is needed to compute the final answer u such that Df/f == Du. log(f) will be the same as u up to a additive constant. This is because they will both behave the same as monomials. For example, both log(x) and log(2*x) == log(x) + log(2) satisfy Dt == 1/x, because log(2) is constant. Therefore, the term const is returned. const is such that log(const) + f == u. This is calculated by dividing the arguments of one logarithm from the other. Therefore, it is necessary to pass the arguments of the logarithmic terms in L_args. To handle the case where we are given Df/f, not f, use is_deriv_k_in_field(). See also ======== is_log_deriv_k_t_radical_in_field, is_log_deriv_k_t_radical """ # Compute Df/f dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)), fd*fa dfa, dfd = dfa.cancel(dfd, include=True) # Our assumption here is that each monomial is recursively transcendental if len(DE.exts) != len(DE.D): if [i for i in DE.cases if i == 'tan'] or \ ({i for i in DE.cases if i == 'primitive'} - set(DE.indices('log'))): raise NotImplementedError("Real version of the structure " "theorems with hypertangent support is not yet implemented.") # TODO: What should really be done in this case? raise NotImplementedError("Nonelementary extensions not supported " "in the structure theorems.") E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')] L_part = [DE.D[i].as_expr() for i in DE.indices('log')] # The expression dfa/dfd might not be polynomial in any of its symbols so we # use a Dummy as the generator for PolyMatrix. dum = Dummy() lhs = Matrix([E_part + L_part], dum) rhs = Matrix([dfa.as_expr()/dfd.as_expr()], dum) A, u = constant_system(lhs, rhs, DE) u = u.to_Matrix() # Poly to Expr if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A: # If the elements of u are not all constant # Note: See comment in constant_system # Also note: derivation(basic=True) calls cancel() return None else: if not all(i.is_Rational for i in u): raise NotImplementedError("Cannot work with non-rational " "coefficients in this case.") else: terms = ([DE.extargs[i] for i in DE.indices('exp')] + [DE.T[i] for i in DE.indices('log')]) ans = list(zip(terms, u)) result = Add(*[Mul(i, j) for i, j in ans]) argterms = ([DE.T[i] for i in DE.indices('exp')] + [DE.extargs[i] for i in DE.indices('log')]) l = [] ld = [] for i, j in zip(argterms, u): # We need to get around things like sqrt(x**2) != x # and also sqrt(x**2 + 2*x + 1) != x + 1 # Issue 10798: i need not be a polynomial i, d = i.as_numer_denom() icoeff, iterms = sqf_list(i) l.append(Mul(*([Pow(icoeff, j)] + [Pow(b, e*j) for b, e in iterms]))) dcoeff, dterms = sqf_list(d) ld.append(Mul(*([Pow(dcoeff, j)] + [Pow(b, e*j) for b, e in dterms]))) const = cancel(fa.as_expr()/fd.as_expr()/Mul(*l)*Mul(*ld)) return (ans, result, const) def is_log_deriv_k_t_radical(fa, fd, DE, Df=True): r""" Checks if Df is the logarithmic derivative of a k(t)-radical. Explanation =========== b in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*b == Du/u. Either returns (ans, u, n, const) or None, which means that Df cannot be written as the logarithmic derivative of a k(t)-radical. ans is a list of tuples such that Mul(*[i**j for i, j in ans]) == u. This is useful for seeing exactly what elements of k(t) produce u. This function uses the structure theorem approach, which says that for any f in K, Df is the logarithmic derivative of a K-radical if and only if there are ri in QQ such that:: --- --- Dt \ r * Dt + \ r * i / i i / i --- = Df. --- --- t i in L i in E i K/C(x) K/C(x) Where C = Const(K), L_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i = Da_i/a_i, for some a_i in C(x)(t_1, ..., t_i-1)* } (i.e., the set of all indices of logarithmic monomials of K over C(x)), and E_K/C(x) = { i in {1, ..., n} such that t_i is transcendental over C(x)(t_1, ..., t_i-1) and Dt_i/t_i = Da_i, for some a_i in C(x)(t_1, ..., t_i-1) } (i.e., the set of all indices of hyperexponential monomials of K over C(x)). If K is an elementary extension over C(x), then the cardinality of L_K/C(x) U E_K/C(x) is exactly the transcendence degree of K over C(x). Furthermore, because Const_D(K) == Const_D(C(x)) == C, deg(Dt_i) == 1 when t_i is in E_K/C(x) and deg(Dt_i) == 0 when t_i is in L_K/C(x), implying in particular that E_K/C(x) and L_K/C(x) are disjoint. The sets L_K/C(x) and E_K/C(x) must, by their nature, be computed recursively using this same function. Therefore, it is required to pass them as indices to D (or T). L_args are the arguments of the logarithms indexed by L_K (i.e., if i is in L_K, then T[i] == log(L_args[i])). This is needed to compute the final answer u such that n*f == Du/u. exp(f) will be the same as u up to a multiplicative constant. This is because they will both behave the same as monomials. For example, both exp(x) and exp(x + 1) == E*exp(x) satisfy Dt == t. Therefore, the term const is returned. const is such that exp(const)*f == u. This is calculated by subtracting the arguments of one exponential from the other. Therefore, it is necessary to pass the arguments of the exponential terms in E_args. To handle the case where we are given Df, not f, use is_log_deriv_k_t_radical_in_field(). See also ======== is_log_deriv_k_t_radical_in_field, is_deriv_k """ if Df: dfa, dfd = (fd*derivation(fa, DE) - fa*derivation(fd, DE)).cancel(fd**2, include=True) else: dfa, dfd = fa, fd # Our assumption here is that each monomial is recursively transcendental if len(DE.exts) != len(DE.D): if [i for i in DE.cases if i == 'tan'] or \ ({i for i in DE.cases if i == 'primitive'} - set(DE.indices('log'))): raise NotImplementedError("Real version of the structure " "theorems with hypertangent support is not yet implemented.") # TODO: What should really be done in this case? raise NotImplementedError("Nonelementary extensions not supported " "in the structure theorems.") E_part = [DE.D[i].quo(Poly(DE.T[i], DE.T[i])).as_expr() for i in DE.indices('exp')] L_part = [DE.D[i].as_expr() for i in DE.indices('log')] # The expression dfa/dfd might not be polynomial in any of its symbols so we # use a Dummy as the generator for PolyMatrix. dum = Dummy() lhs = Matrix([E_part + L_part], dum) rhs = Matrix([dfa.as_expr()/dfd.as_expr()], dum) A, u = constant_system(lhs, rhs, DE) u = u.to_Matrix() # Poly to Expr if not all(derivation(i, DE, basic=True).is_zero for i in u) or not A: # If the elements of u are not all constant # Note: See comment in constant_system # Also note: derivation(basic=True) calls cancel() return None else: if not all(i.is_Rational for i in u): # TODO: But maybe we can tell if they're not rational, like # log(2)/log(3). Also, there should be an option to continue # anyway, even if the result might potentially be wrong. raise NotImplementedError("Cannot work with non-rational " "coefficients in this case.") else: n = reduce(ilcm, [i.as_numer_denom()[1] for i in u]) u *= n terms = ([DE.T[i] for i in DE.indices('exp')] + [DE.extargs[i] for i in DE.indices('log')]) ans = list(zip(terms, u)) result = Mul(*[Pow(i, j) for i, j in ans]) # exp(f) will be the same as result up to a multiplicative # constant. We now find the log of that constant. argterms = ([DE.extargs[i] for i in DE.indices('exp')] + [DE.T[i] for i in DE.indices('log')]) const = cancel(fa.as_expr()/fd.as_expr() - Add(*[Mul(i, j/n) for i, j in zip(argterms, u)])) return (ans, result, n, const) def is_log_deriv_k_t_radical_in_field(fa, fd, DE, case='auto', z=None): """ Checks if f can be written as the logarithmic derivative of a k(t)-radical. Explanation =========== It differs from is_log_deriv_k_t_radical(fa, fd, DE, Df=False) for any given fa, fd, DE in that it finds the solution in the given field not in some (possibly unspecified extension) and "in_field" with the function name is used to indicate that. f in k(t) can be written as the logarithmic derivative of a k(t) radical if there exist n in ZZ and u in k(t) with n, u != 0 such that n*f == Du/u. Either returns (n, u) or None, which means that f cannot be written as the logarithmic derivative of a k(t)-radical. case is one of {'primitive', 'exp', 'tan', 'auto'} for the primitive, hyperexponential, and hypertangent cases, respectively. If case is 'auto', it will attempt to determine the type of the derivation automatically. See also ======== is_log_deriv_k_t_radical, is_deriv_k """ fa, fd = fa.cancel(fd, include=True) # f must be simple n, s = splitfactor(fd, DE) if not s.is_one: pass z = z or Dummy('z') H, b = residue_reduce(fa, fd, DE, z=z) if not b: # I will have to verify, but I believe that the answer should be # None in this case. This should never happen for the # functions given when solving the parametric logarithmic # derivative problem when integration elementary functions (see # Bronstein's book, page 255), so most likely this indicates a bug. return None roots = [(i, i.real_roots()) for i, _ in H] if not all(len(j) == i.degree() and all(k.is_Rational for k in j) for i, j in roots): # If f is the logarithmic derivative of a k(t)-radical, then all the # roots of the resultant must be rational numbers. return None # [(a, i), ...], where i*log(a) is a term in the log-part of the integral # of f respolys, residues = list(zip(*roots)) or [[], []] # Note: this might be empty, but everything below should work find in that # case (it should be the same as if it were [[1, 1]]) residueterms = [(H[j][1].subs(z, i), i) for j in range(len(H)) for i in residues[j]] # TODO: finish writing this and write tests p = cancel(fa.as_expr()/fd.as_expr() - residue_reduce_derivation(H, DE, z)) p = p.as_poly(DE.t) if p is None: # f - Dg will be in k[t] if f is the logarithmic derivative of a k(t)-radical return None if p.degree(DE.t) >= max(1, DE.d.degree(DE.t)): return None if case == 'auto': case = DE.case if case == 'exp': wa, wd = derivation(DE.t, DE).cancel(Poly(DE.t, DE.t), include=True) with DecrementLevel(DE): pa, pd = frac_in(p, DE.t, cancel=True) wa, wd = frac_in((wa, wd), DE.t) A = parametric_log_deriv(pa, pd, wa, wd, DE) if A is None: return None n, e, u = A u *= DE.t**e elif case == 'primitive': with DecrementLevel(DE): pa, pd = frac_in(p, DE.t) A = is_log_deriv_k_t_radical_in_field(pa, pd, DE, case='auto') if A is None: return None n, u = A elif case == 'base': # TODO: we can use more efficient residue reduction from ratint() if not fd.is_sqf or fa.degree() >= fd.degree(): # f is the logarithmic derivative in the base case if and only if # f = fa/fd, fd is square-free, deg(fa) < deg(fd), and # gcd(fa, fd) == 1. The last condition is handled by cancel() above. return None # Note: if residueterms = [], returns (1, 1) # f had better be 0 in that case. n = reduce(ilcm, [i.as_numer_denom()[1] for _, i in residueterms], S.One) u = Mul(*[Pow(i, j*n) for i, j in residueterms]) return (n, u) elif case == 'tan': raise NotImplementedError("The hypertangent case is " "not yet implemented for is_log_deriv_k_t_radical_in_field()") elif case in ['other_linear', 'other_nonlinear']: # XXX: If these are supported by the structure theorems, change to NotImplementedError. raise ValueError("The %s case is not supported in this function." % case) else: raise ValueError("case must be one of {'primitive', 'exp', 'tan', " "'base', 'auto'}, not %s" % case) common_denom = reduce(ilcm, [i.as_numer_denom()[1] for i in [j for _, j in residueterms]] + [n], S.One) residueterms = [(i, j*common_denom) for i, j in residueterms] m = common_denom//n if common_denom != n*m: # Verify exact division raise ValueError("Inexact division") u = cancel(u**m*Mul(*[Pow(i, j) for i, j in residueterms])) return (common_denom, u)
02690574f4a0d15e36fa0d842df1200c458c11118fa82f25c66a89de86c4a52b
""" Integrate functions by rewriting them as Meijer G-functions. There are three user-visible functions that can be used by other parts of the sympy library to solve various integration problems: - meijerint_indefinite - meijerint_definite - meijerint_inversion They can be used to compute, respectively, indefinite integrals, definite integrals over intervals of the real line, and inverse laplace-type integrals (from c-I*oo to c+I*oo). See the respective docstrings for details. The main references for this are: [L] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 [R] Kelly B. Roach. Meijer G Function Representations. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pages 205-211, New York, 1997. ACM. [P] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990). Integrals and Series: More Special Functions, Vol. 3,. Gordon and Breach Science Publisher """ from typing import Dict, Tuple from sympy.core import oo, S, pi, Expr from sympy.core.exprtools import factor_terms from sympy.core.function import expand, expand_mul, expand_power_base from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.cache import cacheit from sympy.core.symbol import Dummy, Wild from sympy.simplify import hyperexpand, powdenest, collect from sympy.simplify.fu import sincos_to_sum from sympy.logic.boolalg import And, Or, BooleanAtom from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.hyperbolic import \ _rewrite_hyperbolics_as_exp, HyperbolicFunction from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.hyper import meijerg from sympy.utilities.iterables import multiset_partitions, ordered from sympy.utilities.misc import debug as _debug from sympy.utilities import default_sort_key # keep this at top for easy reference z = Dummy('z') def _has(res, *f): # return True if res has f; in the case of Piecewise # only return True if *all* pieces have f res = piecewise_fold(res) if getattr(res, 'is_Piecewise', False): return all(_has(i, *f) for i in res.args) return res.has(*f) def _create_lookup_table(table): """ Add formulae for the function -> meijerg lookup table. """ def wild(n): return Wild(n, exclude=[z]) p, q, a, b, c = list(map(wild, 'pqabc')) n = Wild('n', properties=[lambda x: x.is_Integer and x > 0]) t = p*z**q def add(formula, an, ap, bm, bq, arg=t, fac=S.One, cond=True, hint=True): table.setdefault(_mytype(formula, z), []).append((formula, [(fac, meijerg(an, ap, bm, bq, arg))], cond, hint)) def addi(formula, inst, cond, hint=True): table.setdefault( _mytype(formula, z), []).append((formula, inst, cond, hint)) def constant(a): return [(a, meijerg([1], [], [], [0], z)), (a, meijerg([], [1], [0], [], z))] table[()] = [(a, constant(a), True, True)] # [P], Section 8. from sympy import unpolarify, Function, Not class IsNonPositiveInteger(Function): @classmethod def eval(cls, arg): arg = unpolarify(arg) if arg.is_Integer is True: return arg <= 0 # Section 8.4.2 from sympy import (gamma, pi, cos, exp, re, sin, sinc, sqrt, sinh, cosh, factorial, log, erf, erfc, erfi, polar_lift) # TODO this needs more polar_lift (c/f entry for exp) add(Heaviside(t - b)*(t - b)**(a - 1), [a], [], [], [0], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside(b - t)*(b - t)**(a - 1), [], [a], [0], [], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside(z - (b/p)**(1/q))*(t - b)**(a - 1), [a], [], [], [0], t/b, gamma(a)*b**(a - 1), And(b > 0)) add(Heaviside((b/p)**(1/q) - z)*(b - t)**(a - 1), [], [a], [0], [], t/b, gamma(a)*b**(a - 1), And(b > 0)) add((b + t)**(-a), [1 - a], [], [0], [], t/b, b**(-a)/gamma(a), hint=Not(IsNonPositiveInteger(a))) add(abs(b - t)**(-a), [1 - a], [(1 - a)/2], [0], [(1 - a)/2], t/b, 2*sin(pi*a/2)*gamma(1 - a)*abs(b)**(-a), re(a) < 1) add((t**a - b**a)/(t - b), [0, a], [], [0, a], [], t/b, b**(a - 1)*sin(a*pi)/pi) # 12 def A1(r, sign, nu): return pi**Rational(-1, 2)*(-sign*nu/2)**(1 - 2*r) def tmpadd(r, sgn): # XXX the a**2 is bad for matching add((sqrt(a**2 + t) + sgn*a)**b/(a**2 + t)**r, [(1 + b)/2, 1 - 2*r + b/2], [], [(b - sgn*b)/2], [(b + sgn*b)/2], t/a**2, a**(b - 2*r)*A1(r, sgn, b)) tmpadd(0, 1) tmpadd(0, -1) tmpadd(S.Half, 1) tmpadd(S.Half, -1) # 13 def tmpadd(r, sgn): add((sqrt(a + p*z**q) + sgn*sqrt(p)*z**(q/2))**b/(a + p*z**q)**r, [1 - r + sgn*b/2], [1 - r - sgn*b/2], [0, S.Half], [], p*z**q/a, a**(b/2 - r)*A1(r, sgn, b)) tmpadd(0, 1) tmpadd(0, -1) tmpadd(S.Half, 1) tmpadd(S.Half, -1) # (those after look obscure) # Section 8.4.3 add(exp(polar_lift(-1)*t), [], [], [0], []) # TODO can do sin^n, sinh^n by expansion ... where? # 8.4.4 (hyperbolic functions) add(sinh(t), [], [1], [S.Half], [1, 0], t**2/4, pi**Rational(3, 2)) add(cosh(t), [], [S.Half], [0], [S.Half, S.Half], t**2/4, pi**Rational(3, 2)) # Section 8.4.5 # TODO can do t + a. but can also do by expansion... (XXX not really) add(sin(t), [], [], [S.Half], [0], t**2/4, sqrt(pi)) add(cos(t), [], [], [0], [S.Half], t**2/4, sqrt(pi)) # Section 8.4.6 (sinc function) add(sinc(t), [], [], [0], [Rational(-1, 2)], t**2/4, sqrt(pi)/2) # Section 8.5.5 def make_log1(subs): N = subs[n] return [((-1)**N*factorial(N), meijerg([], [1]*(N + 1), [0]*(N + 1), [], t))] def make_log2(subs): N = subs[n] return [(factorial(N), meijerg([1]*(N + 1), [], [], [0]*(N + 1), t))] # TODO these only hold for positive p, and can be made more general # but who uses log(x)*Heaviside(a-x) anyway ... # TODO also it would be nice to derive them recursively ... addi(log(t)**n*Heaviside(1 - t), make_log1, True) addi(log(t)**n*Heaviside(t - 1), make_log2, True) def make_log3(subs): return make_log1(subs) + make_log2(subs) addi(log(t)**n, make_log3, True) addi(log(t + a), constant(log(a)) + [(S.One, meijerg([1, 1], [], [1], [0], t/a))], True) addi(log(abs(t - a)), constant(log(abs(a))) + [(pi, meijerg([1, 1], [S.Half], [1], [0, S.Half], t/a))], True) # TODO log(x)/(x+a) and log(x)/(x-1) can also be done. should they # be derivable? # TODO further formulae in this section seem obscure # Sections 8.4.9-10 # TODO # Section 8.4.11 from sympy import Ei, I, expint, Si, Ci, Shi, Chi, fresnels, fresnelc addi(Ei(t), constant(-I*pi) + [(S.NegativeOne, meijerg([], [1], [0, 0], [], t*polar_lift(-1)))], True) # Section 8.4.12 add(Si(t), [1], [], [S.Half], [0, 0], t**2/4, sqrt(pi)/2) add(Ci(t), [], [1], [0, 0], [S.Half], t**2/4, -sqrt(pi)/2) # Section 8.4.13 add(Shi(t), [S.Half], [], [0], [Rational(-1, 2), Rational(-1, 2)], polar_lift(-1)*t**2/4, t*sqrt(pi)/4) add(Chi(t), [], [S.Half, 1], [0, 0], [S.Half, S.Half], t**2/4, - pi**S('3/2')/2) # generalized exponential integral add(expint(a, t), [], [a], [a - 1, 0], [], t) # Section 8.4.14 add(erf(t), [1], [], [S.Half], [0], t**2, 1/sqrt(pi)) # TODO exp(-x)*erf(I*x) does not work add(erfc(t), [], [1], [0, S.Half], [], t**2, 1/sqrt(pi)) # This formula for erfi(z) yields a wrong(?) minus sign #add(erfi(t), [1], [], [S.Half], [0], -t**2, I/sqrt(pi)) add(erfi(t), [S.Half], [], [0], [Rational(-1, 2)], -t**2, t/sqrt(pi)) # Fresnel Integrals add(fresnels(t), [1], [], [Rational(3, 4)], [0, Rational(1, 4)], pi**2*t**4/16, S.Half) add(fresnelc(t), [1], [], [Rational(1, 4)], [0, Rational(3, 4)], pi**2*t**4/16, S.Half) ##### bessel-type functions ##### from sympy import besselj, bessely, besseli, besselk # Section 8.4.19 add(besselj(a, t), [], [], [a/2], [-a/2], t**2/4) # all of the following are derivable #add(sin(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [(1+a)/2], # [-a/2, a/2, (1-a)/2], t**2, 1/sqrt(2)) #add(cos(t)*besselj(a, t), [Rational(1, 4), Rational(3, 4)], [], [a/2], # [-a/2, (1+a)/2, (1-a)/2], t**2, 1/sqrt(2)) #add(besselj(a, t)**2, [S.Half], [], [a], [-a, 0], t**2, 1/sqrt(pi)) #add(besselj(a, t)*besselj(b, t), [0, S.Half], [], [(a + b)/2], # [-(a+b)/2, (a - b)/2, (b - a)/2], t**2, 1/sqrt(pi)) # Section 8.4.20 add(bessely(a, t), [], [-(a + 1)/2], [a/2, -a/2], [-(a + 1)/2], t**2/4) # TODO all of the following should be derivable #add(sin(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(1 - a - 1)/2], # [(1 + a)/2, (1 - a)/2], [(1 - a - 1)/2, (1 - 1 - a)/2, (1 - 1 + a)/2], # t**2, 1/sqrt(2)) #add(cos(t)*bessely(a, t), [Rational(1, 4), Rational(3, 4)], [(0 - a - 1)/2], # [(0 + a)/2, (0 - a)/2], [(0 - a - 1)/2, (1 - 0 - a)/2, (1 - 0 + a)/2], # t**2, 1/sqrt(2)) #add(besselj(a, t)*bessely(b, t), [0, S.Half], [(a - b - 1)/2], # [(a + b)/2, (a - b)/2], [(a - b - 1)/2, -(a + b)/2, (b - a)/2], # t**2, 1/sqrt(pi)) #addi(bessely(a, t)**2, # [(2/sqrt(pi), meijerg([], [S.Half, S.Half - a], [0, a, -a], # [S.Half - a], t**2)), # (1/sqrt(pi), meijerg([S.Half], [], [a], [-a, 0], t**2))], # True) #addi(bessely(a, t)*bessely(b, t), # [(2/sqrt(pi), meijerg([], [0, S.Half, (1 - a - b)/2], # [(a + b)/2, (a - b)/2, (b - a)/2, -(a + b)/2], # [(1 - a - b)/2], t**2)), # (1/sqrt(pi), meijerg([0, S.Half], [], [(a + b)/2], # [-(a + b)/2, (a - b)/2, (b - a)/2], t**2))], # True) # Section 8.4.21 ? # Section 8.4.22 add(besseli(a, t), [], [(1 + a)/2], [a/2], [-a/2, (1 + a)/2], t**2/4, pi) # TODO many more formulas. should all be derivable # Section 8.4.23 add(besselk(a, t), [], [], [a/2, -a/2], [], t**2/4, S.Half) # TODO many more formulas. should all be derivable # Complete elliptic integrals K(z) and E(z) from sympy import elliptic_k, elliptic_e add(elliptic_k(t), [S.Half, S.Half], [], [0], [0], -t, S.Half) add(elliptic_e(t), [S.Half, 3*S.Half], [], [0], [0], -t, Rational(-1, 2)/2) #################################################################### # First some helper functions. #################################################################### from sympy.utilities.timeutils import timethis timeit = timethis('meijerg') def _mytype(f, x): """ Create a hashable entity describing the type of f. """ if x not in f.free_symbols: return () elif f.is_Function: return (type(f),) else: types = [_mytype(a, x) for a in f.args] res = [] for t in types: res += list(t) res.sort() return tuple(res) class _CoeffExpValueError(ValueError): """ Exception raised by _get_coeff_exp, for internal use only. """ pass def _get_coeff_exp(expr, x): """ When expr is known to be of the form c*x**b, with c and/or b possibly 1, return c, b. Examples ======== >>> from sympy.abc import x, a, b >>> from sympy.integrals.meijerint import _get_coeff_exp >>> _get_coeff_exp(a*x**b, x) (a, b) >>> _get_coeff_exp(x, x) (1, 1) >>> _get_coeff_exp(2*x, x) (2, 1) >>> _get_coeff_exp(x**3, x) (1, 3) """ from sympy import powsimp (c, m) = expand_power_base(powsimp(expr)).as_coeff_mul(x) if not m: return c, S.Zero [m] = m if m.is_Pow: if m.base != x: raise _CoeffExpValueError('expr not of form a*x**b') return c, m.exp elif m == x: return c, S.One else: raise _CoeffExpValueError('expr not of form a*x**b: %s' % expr) def _exponents(expr, x): """ Find the exponents of ``x`` (not including zero) in ``expr``. Examples ======== >>> from sympy.integrals.meijerint import _exponents >>> from sympy.abc import x, y >>> from sympy import sin >>> _exponents(x, x) {1} >>> _exponents(x**2, x) {2} >>> _exponents(x**2 + x, x) {1, 2} >>> _exponents(x**3*sin(x + x**y) + 1/x, x) {-1, 1, 3, y} """ def _exponents_(expr, x, res): if expr == x: res.update([1]) return if expr.is_Pow and expr.base == x: res.update([expr.exp]) return for arg in expr.args: _exponents_(arg, x, res) res = set() _exponents_(expr, x, res) return res def _functions(expr, x): """ Find the types of functions in expr, to estimate the complexity. """ from sympy import Function return {e.func for e in expr.atoms(Function) if x in e.free_symbols} def _find_splitting_points(expr, x): """ Find numbers a such that a linear substitution x -> x + a would (hopefully) simplify expr. Examples ======== >>> from sympy.integrals.meijerint import _find_splitting_points as fsp >>> from sympy import sin >>> from sympy.abc import x >>> fsp(x, x) {0} >>> fsp((x-1)**3, x) {1} >>> fsp(sin(x+3)*x, x) {-3, 0} """ p, q = [Wild(n, exclude=[x]) for n in 'pq'] def compute_innermost(expr, res): if not isinstance(expr, Expr): return m = expr.match(p*x + q) if m and m[p] != 0: res.add(-m[q]/m[p]) return if expr.is_Atom: return for arg in expr.args: compute_innermost(arg, res) innermost = set() compute_innermost(expr, innermost) return innermost def _split_mul(f, x): """ Split expression ``f`` into fac, po, g, where fac is a constant factor, po = x**s for some s independent of s, and g is "the rest". Examples ======== >>> from sympy.integrals.meijerint import _split_mul >>> from sympy import sin >>> from sympy.abc import s, x >>> _split_mul((3*x)**s*sin(x**2)*x, x) (3**s, x*x**s, sin(x**2)) """ from sympy import polarify, unpolarify fac = S.One po = S.One g = S.One f = expand_power_base(f) args = Mul.make_args(f) for a in args: if a == x: po *= x elif x not in a.free_symbols: fac *= a else: if a.is_Pow and x not in a.exp.free_symbols: c, t = a.base.as_coeff_mul(x) if t != (x,): c, t = expand_mul(a.base).as_coeff_mul(x) if t == (x,): po *= x**a.exp fac *= unpolarify(polarify(c**a.exp, subs=False)) continue g *= a return fac, po, g def _mul_args(f): """ Return a list ``L`` such that ``Mul(*L) == f``. If ``f`` is not a ``Mul`` or ``Pow``, ``L=[f]``. If ``f=g**n`` for an integer ``n``, ``L=[g]*n``. If ``f`` is a ``Mul``, ``L`` comes from applying ``_mul_args`` to all factors of ``f``. """ args = Mul.make_args(f) gs = [] for g in args: if g.is_Pow and g.exp.is_Integer: n = g.exp base = g.base if n < 0: n = -n base = 1/base gs += [base]*n else: gs.append(g) return gs def _mul_as_two_parts(f): """ Find all the ways to split ``f`` into a product of two terms. Return None on failure. Explanation =========== Although the order is canonical from multiset_partitions, this is not necessarily the best order to process the terms. For example, if the case of len(gs) == 2 is removed and multiset is allowed to sort the terms, some tests fail. Examples ======== >>> from sympy.integrals.meijerint import _mul_as_two_parts >>> from sympy import sin, exp, ordered >>> from sympy.abc import x >>> list(ordered(_mul_as_two_parts(x*sin(x)*exp(x)))) [(x, exp(x)*sin(x)), (x*exp(x), sin(x)), (x*sin(x), exp(x))] """ gs = _mul_args(f) if len(gs) < 2: return None if len(gs) == 2: return [tuple(gs)] return [(Mul(*x), Mul(*y)) for (x, y) in multiset_partitions(gs, 2)] def _inflate_g(g, n): """ Return C, h such that h is a G function of argument z**n and g = C*h. """ # TODO should this be a method of meijerg? # See: [L, page 150, equation (5)] def inflate(params, n): """ (a1, .., ak) -> (a1/n, (a1+1)/n, ..., (ak + n-1)/n) """ res = [] for a in params: for i in range(n): res.append((a + i)/n) return res v = S(len(g.ap) - len(g.bq)) C = n**(1 + g.nu + v/2) C /= (2*pi)**((n - 1)*g.delta) return C, meijerg(inflate(g.an, n), inflate(g.aother, n), inflate(g.bm, n), inflate(g.bother, n), g.argument**n * n**(n*v)) def _flip_g(g): """ Turn the G function into one of inverse argument (i.e. G(1/x) -> G'(x)) """ # See [L], section 5.2 def tr(l): return [1 - a for a in l] return meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), 1/g.argument) def _inflate_fox_h(g, a): r""" Let d denote the integrand in the definition of the G function ``g``. Consider the function H which is defined in the same way, but with integrand d/Gamma(a*s) (contour conventions as usual). If ``a`` is rational, the function H can be written as C*G, for a constant C and a G-function G. This function returns C, G. """ if a < 0: return _inflate_fox_h(_flip_g(g), -a) p = S(a.p) q = S(a.q) # We use the substitution s->qs, i.e. inflate g by q. We are left with an # extra factor of Gamma(p*s), for which we use Gauss' multiplication # theorem. D, g = _inflate_g(g, q) z = g.argument D /= (2*pi)**((1 - p)/2)*p**Rational(-1, 2) z /= p**p bs = [(n + 1)/p for n in range(p)] return D, meijerg(g.an, g.aother, g.bm, list(g.bother) + bs, z) _dummies = {} # type: Dict[Tuple[str, str], Dummy] def _dummy(name, token, expr, **kwargs): """ Return a dummy. This will return the same dummy if the same token+name is requested more than once, and it is not already in expr. This is for being cache-friendly. """ d = _dummy_(name, token, **kwargs) if d in expr.free_symbols: return Dummy(name, **kwargs) return d def _dummy_(name, token, **kwargs): """ Return a dummy associated to name and token. Same effect as declaring it globally. """ global _dummies if not (name, token) in _dummies: _dummies[(name, token)] = Dummy(name, **kwargs) return _dummies[(name, token)] def _is_analytic(f, x): """ Check if f(x), when expressed using G functions on the positive reals, will in fact agree with the G functions almost everywhere """ from sympy import Heaviside, Abs return not any(x in expr.free_symbols for expr in f.atoms(Heaviside, Abs)) def _condsimp(cond): """ Do naive simplifications on ``cond``. Explanation =========== Note that this routine is completely ad-hoc, simplification rules being added as need arises rather than following any logical pattern. Examples ======== >>> from sympy.integrals.meijerint import _condsimp as simp >>> from sympy import Or, Eq, And >>> from sympy.abc import x, y, z >>> simp(Or(x < y, z, Eq(x, y))) z | (x <= y) >>> simp(Or(x <= y, And(x < y, z))) x <= y """ from sympy import ( symbols, Wild, Eq, unbranched_argument, exp_polar, pi, I, arg, periodic_argument, oo, polar_lift) from sympy.logic.boolalg import BooleanFunction if not isinstance(cond, BooleanFunction): return cond cond = cond.func(*list(map(_condsimp, cond.args))) change = True p, q, r = symbols('p q r', cls=Wild) rules = [ (Or(p < q, Eq(p, q)), p <= q), # The next two obviously are instances of a general pattern, but it is # easier to spell out the few cases we care about. (And(abs(arg(p)) <= pi, abs(arg(p) - 2*pi) <= pi), Eq(arg(p) - pi, 0)), (And(abs(2*arg(p) + pi) <= pi, abs(2*arg(p) - pi) <= pi), Eq(arg(p), 0)), (And(abs(unbranched_argument(p)) <= pi, abs(unbranched_argument(exp_polar(-2*pi*I)*p)) <= pi), Eq(unbranched_argument(exp_polar(-I*pi)*p), 0)), (And(abs(unbranched_argument(p)) <= pi/2, abs(unbranched_argument(exp_polar(-pi*I)*p)) <= pi/2), Eq(unbranched_argument(exp_polar(-I*pi/2)*p), 0)), (Or(p <= q, And(p < q, r)), p <= q) ] while change: change = False for fro, to in rules: if fro.func != cond.func: continue for n, arg1 in enumerate(cond.args): if r in fro.args[0].free_symbols: m = arg1.match(fro.args[1]) num = 1 else: num = 0 m = arg1.match(fro.args[0]) if not m: continue otherargs = [x.subs(m) for x in fro.args[:num] + fro.args[num + 1:]] otherlist = [n] for arg2 in otherargs: for k, arg3 in enumerate(cond.args): if k in otherlist: continue if arg2 == arg3: otherlist += [k] break if isinstance(arg3, And) and arg2.args[1] == r and \ isinstance(arg2, And) and arg2.args[0] in arg3.args: otherlist += [k] break if isinstance(arg3, And) and arg2.args[0] == r and \ isinstance(arg2, And) and arg2.args[1] in arg3.args: otherlist += [k] break if len(otherlist) != len(otherargs) + 1: continue newargs = [arg_ for (k, arg_) in enumerate(cond.args) if k not in otherlist] + [to.subs(m)] cond = cond.func(*newargs) change = True break # final tweak def repl_eq(orig): if orig.lhs == 0: expr = orig.rhs elif orig.rhs == 0: expr = orig.lhs else: return orig m = expr.match(arg(p)**q) if not m: m = expr.match(unbranched_argument(polar_lift(p)**q)) if not m: if isinstance(expr, periodic_argument) and not expr.args[0].is_polar \ and expr.args[1] is oo: return (expr.args[0] > 0) return orig return (m[p] > 0) return cond.replace( lambda expr: expr.is_Relational and expr.rel_op == '==', repl_eq) def _eval_cond(cond): """ Re-evaluate the conditions. """ if isinstance(cond, bool): return cond return _condsimp(cond.doit()) #################################################################### # Now the "backbone" functions to do actual integration. #################################################################### def _my_principal_branch(expr, period, full_pb=False): """ Bring expr nearer to its principal branch by removing superfluous factors. This function does *not* guarantee to yield the principal branch, to avoid introducing opaque principal_branch() objects, unless full_pb=True. """ from sympy import principal_branch res = principal_branch(expr, period) if not full_pb: res = res.replace(principal_branch, lambda x, y: x) return res def _rewrite_saxena_1(fac, po, g, x): """ Rewrite the integral fac*po*g dx, from zero to infinity, as integral fac*G, where G has argument a*x. Note po=x**s. Return fac, G. """ _, s = _get_coeff_exp(po, x) a, b = _get_coeff_exp(g.argument, x) period = g.get_period() a = _my_principal_branch(a, period) # We substitute t = x**b. C = fac/(abs(b)*a**((s + 1)/b - 1)) # Absorb a factor of (at)**((1 + s)/b - 1). def tr(l): return [a + (1 + s)/b - 1 for a in l] return C, meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), a*x) def _check_antecedents_1(g, x, helper=False): r""" Return a condition under which the mellin transform of g exists. Any power of x has already been absorbed into the G function, so this is just $\int_0^\infty g\, dx$. See [L, section 5.6.1]. (Note that s=1.) If ``helper`` is True, only check if the MT exists at infinity, i.e. if $\int_1^\infty g\, dx$ exists. """ # NOTE if you update these conditions, please update the documentation as well from sympy import Eq, Not, ceiling, Ne, re, unbranched_argument as arg delta = g.delta eta, _ = _get_coeff_exp(g.argument, x) m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) if p > q: def tr(l): return [1 - x for x in l] return _check_antecedents_1(meijerg(tr(g.bm), tr(g.bother), tr(g.an), tr(g.aother), x/eta), x) tmp = [] for b in g.bm: tmp += [-re(b) < 1] for a in g.an: tmp += [1 < 1 - re(a)] cond_3 = And(*tmp) for b in g.bother: tmp += [-re(b) < 1] for a in g.aother: tmp += [1 < 1 - re(a)] cond_3_star = And(*tmp) cond_4 = (-re(g.nu) + (q + 1 - p)/2 > q - p) def debug(*msg): _debug(*msg) debug('Checking antecedents for 1 function:') debug(' delta=%s, eta=%s, m=%s, n=%s, p=%s, q=%s' % (delta, eta, m, n, p, q)) debug(' ap = %s, %s' % (list(g.an), list(g.aother))) debug(' bq = %s, %s' % (list(g.bm), list(g.bother))) debug(' cond_3=%s, cond_3*=%s, cond_4=%s' % (cond_3, cond_3_star, cond_4)) conds = [] # case 1 case1 = [] tmp1 = [1 <= n, p < q, 1 <= m] tmp2 = [1 <= p, 1 <= m, Eq(q, p + 1), Not(And(Eq(n, 0), Eq(m, p + 1)))] tmp3 = [1 <= p, Eq(q, p)] for k in range(ceiling(delta/2) + 1): tmp3 += [Ne(abs(arg(eta)), (delta - 2*k)*pi)] tmp = [delta > 0, abs(arg(eta)) < delta*pi] extra = [Ne(eta, 0), cond_3] if helper: extra = [] for t in [tmp1, tmp2, tmp3]: case1 += [And(*(t + tmp + extra))] conds += case1 debug(' case 1:', case1) # case 2 extra = [cond_3] if helper: extra = [] case2 = [And(Eq(n, 0), p + 1 <= m, m <= q, abs(arg(eta)) < delta*pi, *extra)] conds += case2 debug(' case 2:', case2) # case 3 extra = [cond_3, cond_4] if helper: extra = [] case3 = [And(p < q, 1 <= m, delta > 0, Eq(abs(arg(eta)), delta*pi), *extra)] case3 += [And(p <= q - 2, Eq(delta, 0), Eq(abs(arg(eta)), 0), *extra)] conds += case3 debug(' case 3:', case3) # TODO altered cases 4-7 # extra case from wofram functions site: # (reproduced verbatim from Prudnikov, section 2.24.2) # http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/01/ case_extra = [] case_extra += [Eq(p, q), Eq(delta, 0), Eq(arg(eta), 0), Ne(eta, 0)] if not helper: case_extra += [cond_3] s = [] for a, b in zip(g.ap, g.bq): s += [b - a] case_extra += [re(Add(*s)) < 0] case_extra = And(*case_extra) conds += [case_extra] debug(' extra case:', [case_extra]) case_extra_2 = [And(delta > 0, abs(arg(eta)) < delta*pi)] if not helper: case_extra_2 += [cond_3] case_extra_2 = And(*case_extra_2) conds += [case_extra_2] debug(' second extra case:', [case_extra_2]) # TODO This leaves only one case from the three listed by Prudnikov. # Investigate if these indeed cover everything; if so, remove the rest. return Or(*conds) def _int0oo_1(g, x): r""" Evaluate $\int_0^\infty g\, dx$ using G functions, assuming the necessary conditions are fulfilled. Examples ======== >>> from sympy.abc import a, b, c, d, x, y >>> from sympy import meijerg >>> from sympy.integrals.meijerint import _int0oo_1 >>> _int0oo_1(meijerg([a], [b], [c], [d], x*y), x) gamma(-a)*gamma(c + 1)/(y*gamma(-d)*gamma(b + 1)) """ # See [L, section 5.6.1]. Note that s=1. from sympy import gamma, gammasimp, unpolarify eta, _ = _get_coeff_exp(g.argument, x) res = 1/eta # XXX TODO we should reduce order first for b in g.bm: res *= gamma(b + 1) for a in g.an: res *= gamma(1 - a - 1) for b in g.bother: res /= gamma(1 - b - 1) for a in g.aother: res /= gamma(a + 1) return gammasimp(unpolarify(res)) def _rewrite_saxena(fac, po, g1, g2, x, full_pb=False): """ Rewrite the integral ``fac*po*g1*g2`` from 0 to oo in terms of G functions with argument ``c*x``. Explanation =========== Return C, f1, f2 such that integral C f1 f2 from 0 to infinity equals integral fac ``po``, ``g1``, ``g2`` from 0 to infinity. Examples ======== >>> from sympy.integrals.meijerint import _rewrite_saxena >>> from sympy.abc import s, t, m >>> from sympy import meijerg >>> g1 = meijerg([], [], [0], [], s*t) >>> g2 = meijerg([], [], [m/2], [-m/2], t**2/4) >>> r = _rewrite_saxena(1, t**0, g1, g2, t) >>> r[0] s/(4*sqrt(pi)) >>> r[1] meijerg(((), ()), ((-1/2, 0), ()), s**2*t/4) >>> r[2] meijerg(((), ()), ((m/2,), (-m/2,)), t/4) """ from sympy.core.numbers import ilcm def pb(g): a, b = _get_coeff_exp(g.argument, x) per = g.get_period() return meijerg(g.an, g.aother, g.bm, g.bother, _my_principal_branch(a, per, full_pb)*x**b) _, s = _get_coeff_exp(po, x) _, b1 = _get_coeff_exp(g1.argument, x) _, b2 = _get_coeff_exp(g2.argument, x) if (b1 < 0) == True: b1 = -b1 g1 = _flip_g(g1) if (b2 < 0) == True: b2 = -b2 g2 = _flip_g(g2) if not b1.is_Rational or not b2.is_Rational: return m1, n1 = b1.p, b1.q m2, n2 = b2.p, b2.q tau = ilcm(m1*n2, m2*n1) r1 = tau//(m1*n2) r2 = tau//(m2*n1) C1, g1 = _inflate_g(g1, r1) C2, g2 = _inflate_g(g2, r2) g1 = pb(g1) g2 = pb(g2) fac *= C1*C2 a1, b = _get_coeff_exp(g1.argument, x) a2, _ = _get_coeff_exp(g2.argument, x) # arbitrarily tack on the x**s part to g1 # TODO should we try both? exp = (s + 1)/b - 1 fac = fac/(abs(b) * a1**exp) def tr(l): return [a + exp for a in l] g1 = meijerg(tr(g1.an), tr(g1.aother), tr(g1.bm), tr(g1.bother), a1*x) g2 = meijerg(g2.an, g2.aother, g2.bm, g2.bother, a2*x) return powdenest(fac, polar=True), g1, g2 def _check_antecedents(g1, g2, x): """ Return a condition under which the integral theorem applies. """ from sympy import re, Eq, Ne, cos, I, exp, sin, sign, unpolarify from sympy import arg as arg_, unbranched_argument as arg # Yes, this is madness. # XXX TODO this is a testing *nightmare* # NOTE if you update these conditions, please update the documentation as well # The following conditions are found in # [P], Section 2.24.1 # # They are also reproduced (verbatim!) at # http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/ # # Note: k=l=r=alpha=1 sigma, _ = _get_coeff_exp(g1.argument, x) omega, _ = _get_coeff_exp(g2.argument, x) s, t, u, v = S([len(g1.bm), len(g1.an), len(g1.ap), len(g1.bq)]) m, n, p, q = S([len(g2.bm), len(g2.an), len(g2.ap), len(g2.bq)]) bstar = s + t - (u + v)/2 cstar = m + n - (p + q)/2 rho = g1.nu + (u - v)/2 + 1 mu = g2.nu + (p - q)/2 + 1 phi = q - p - (v - u) eta = 1 - (v - u) - mu - rho psi = (pi*(q - m - n) + abs(arg(omega)))/(q - p) theta = (pi*(v - s - t) + abs(arg(sigma)))/(v - u) _debug('Checking antecedents:') _debug(' sigma=%s, s=%s, t=%s, u=%s, v=%s, b*=%s, rho=%s' % (sigma, s, t, u, v, bstar, rho)) _debug(' omega=%s, m=%s, n=%s, p=%s, q=%s, c*=%s, mu=%s,' % (omega, m, n, p, q, cstar, mu)) _debug(' phi=%s, eta=%s, psi=%s, theta=%s' % (phi, eta, psi, theta)) def _c1(): for g in [g1, g2]: for i in g.an: for j in g.bm: diff = i - j if diff.is_integer and diff.is_positive: return False return True c1 = _c1() c2 = And(*[re(1 + i + j) > 0 for i in g1.bm for j in g2.bm]) c3 = And(*[re(1 + i + j) < 1 + 1 for i in g1.an for j in g2.an]) c4 = And(*[(p - q)*re(1 + i - 1) - re(mu) > Rational(-3, 2) for i in g1.an]) c5 = And(*[(p - q)*re(1 + i) - re(mu) > Rational(-3, 2) for i in g1.bm]) c6 = And(*[(u - v)*re(1 + i - 1) - re(rho) > Rational(-3, 2) for i in g2.an]) c7 = And(*[(u - v)*re(1 + i) - re(rho) > Rational(-3, 2) for i in g2.bm]) c8 = (abs(phi) + 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - 1)*(v - u)) > 0) c9 = (abs(phi) - 2*re((rho - 1)*(q - p) + (v - u)*(q - p) + (mu - 1)*(v - u)) > 0) c10 = (abs(arg(sigma)) < bstar*pi) c11 = Eq(abs(arg(sigma)), bstar*pi) c12 = (abs(arg(omega)) < cstar*pi) c13 = Eq(abs(arg(omega)), cstar*pi) # The following condition is *not* implemented as stated on the wolfram # function site. In the book of Prudnikov there is an additional part # (the And involving re()). However, I only have this book in russian, and # I don't read any russian. The following condition is what other people # have told me it means. # Worryingly, it is different from the condition implemented in REDUCE. # The REDUCE implementation: # https://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra/trunk/packages/defint/definta.red # (search for tst14) # The Wolfram alpha version: # http://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/02/03/03/0014/ z0 = exp(-(bstar + cstar)*pi*I) zos = unpolarify(z0*omega/sigma) zso = unpolarify(z0*sigma/omega) if zos == 1/zso: c14 = And(Eq(phi, 0), bstar + cstar <= 1, Or(Ne(zos, 1), re(mu + rho + v - u) < 1, re(mu + rho + q - p) < 1)) else: def _cond(z): '''Returns True if abs(arg(1-z)) < pi, avoiding arg(0). Explanation =========== If ``z`` is 1 then arg is NaN. This raises a TypeError on `NaN < pi`. Previously this gave `False` so this behavior has been hardcoded here but someone should check if this NaN is more serious! This NaN is triggered by test_meijerint() in test_meijerint.py: `meijerint_definite(exp(x), x, 0, I)` ''' return z != 1 and abs(arg_(1 - z)) < pi c14 = And(Eq(phi, 0), bstar - 1 + cstar <= 0, Or(And(Ne(zos, 1), _cond(zos)), And(re(mu + rho + v - u) < 1, Eq(zos, 1)))) c14_alt = And(Eq(phi, 0), cstar - 1 + bstar <= 0, Or(And(Ne(zso, 1), _cond(zso)), And(re(mu + rho + q - p) < 1, Eq(zso, 1)))) # Since r=k=l=1, in our case there is c14_alt which is the same as calling # us with (g1, g2) = (g2, g1). The conditions below enumerate all cases # (i.e. we don't have to try arguments reversed by hand), and indeed try # all symmetric cases. (i.e. whenever there is a condition involving c14, # there is also a dual condition which is exactly what we would get when g1, # g2 were interchanged, *but c14 was unaltered*). # Hence the following seems correct: c14 = Or(c14, c14_alt) ''' When `c15` is NaN (e.g. from `psi` being NaN as happens during 'test_issue_4992' and/or `theta` is NaN as in 'test_issue_6253', both in `test_integrals.py`) the comparison to 0 formerly gave False whereas now an error is raised. To keep the old behavior, the value of NaN is replaced with False but perhaps a closer look at this condition should be made: XXX how should conditions leading to c15=NaN be handled? ''' try: lambda_c = (q - p)*abs(omega)**(1/(q - p))*cos(psi) \ + (v - u)*abs(sigma)**(1/(v - u))*cos(theta) # the TypeError might be raised here, e.g. if lambda_c is NaN if _eval_cond(lambda_c > 0) != False: c15 = (lambda_c > 0) else: def lambda_s0(c1, c2): return c1*(q - p)*abs(omega)**(1/(q - p))*sin(psi) \ + c2*(v - u)*abs(sigma)**(1/(v - u))*sin(theta) lambda_s = Piecewise( ((lambda_s0(+1, +1)*lambda_s0(-1, -1)), And(Eq(arg(sigma), 0), Eq(arg(omega), 0))), (lambda_s0(sign(arg(omega)), +1)*lambda_s0(sign(arg(omega)), -1), And(Eq(arg(sigma), 0), Ne(arg(omega), 0))), (lambda_s0(+1, sign(arg(sigma)))*lambda_s0(-1, sign(arg(sigma))), And(Ne(arg(sigma), 0), Eq(arg(omega), 0))), (lambda_s0(sign(arg(omega)), sign(arg(sigma))), True)) tmp = [lambda_c > 0, And(Eq(lambda_c, 0), Ne(lambda_s, 0), re(eta) > -1), And(Eq(lambda_c, 0), Eq(lambda_s, 0), re(eta) > 0)] c15 = Or(*tmp) except TypeError: c15 = False for cond, i in [(c1, 1), (c2, 2), (c3, 3), (c4, 4), (c5, 5), (c6, 6), (c7, 7), (c8, 8), (c9, 9), (c10, 10), (c11, 11), (c12, 12), (c13, 13), (c14, 14), (c15, 15)]: _debug(' c%s:' % i, cond) # We will return Or(*conds) conds = [] def pr(count): _debug(' case %s:' % count, conds[-1]) conds += [And(m*n*s*t != 0, bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 1 pr(1) conds += [And(Eq(u, v), Eq(bstar, 0), cstar.is_positive is True, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c12)] # 2 pr(2) conds += [And(Eq(p, q), Eq(cstar, 0), bstar.is_positive is True, omega.is_positive is True, re(mu) < 1, c1, c2, c3, c10)] # 3 pr(3) conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), sigma.is_positive is True, omega.is_positive is True, re(mu) < 1, re(rho) < 1, Ne(sigma, omega), c1, c2, c3)] # 4 pr(4) conds += [And(Eq(p, q), Eq(u, v), Eq(bstar, 0), Eq(cstar, 0), sigma.is_positive is True, omega.is_positive is True, re(mu + rho) < 1, Ne(omega, sigma), c1, c2, c3)] # 5 pr(5) conds += [And(p > q, s.is_positive is True, bstar.is_positive is True, cstar >= 0, c1, c2, c3, c5, c10, c13)] # 6 pr(6) conds += [And(p < q, t.is_positive is True, bstar.is_positive is True, cstar >= 0, c1, c2, c3, c4, c10, c13)] # 7 pr(7) conds += [And(u > v, m.is_positive is True, cstar.is_positive is True, bstar >= 0, c1, c2, c3, c7, c11, c12)] # 8 pr(8) conds += [And(u < v, n.is_positive is True, cstar.is_positive is True, bstar >= 0, c1, c2, c3, c6, c11, c12)] # 9 pr(9) conds += [And(p > q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c5, c13)] # 10 pr(10) conds += [And(p < q, Eq(u, v), Eq(bstar, 0), cstar >= 0, sigma.is_positive is True, re(rho) < 1, c1, c2, c3, c4, c13)] # 11 pr(11) conds += [And(Eq(p, q), u > v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, re(mu) < 1, c1, c2, c3, c7, c11)] # 12 pr(12) conds += [And(Eq(p, q), u < v, bstar >= 0, Eq(cstar, 0), omega.is_positive is True, re(mu) < 1, c1, c2, c3, c6, c11)] # 13 pr(13) conds += [And(p < q, u > v, bstar >= 0, cstar >= 0, c1, c2, c3, c4, c7, c11, c13)] # 14 pr(14) conds += [And(p > q, u < v, bstar >= 0, cstar >= 0, c1, c2, c3, c5, c6, c11, c13)] # 15 pr(15) conds += [And(p > q, u > v, bstar >= 0, cstar >= 0, c1, c2, c3, c5, c7, c8, c11, c13, c14)] # 16 pr(16) conds += [And(p < q, u < v, bstar >= 0, cstar >= 0, c1, c2, c3, c4, c6, c9, c11, c13, c14)] # 17 pr(17) conds += [And(Eq(t, 0), s.is_positive is True, bstar.is_positive is True, phi.is_positive is True, c1, c2, c10)] # 18 pr(18) conds += [And(Eq(s, 0), t.is_positive is True, bstar.is_positive is True, phi.is_negative is True, c1, c3, c10)] # 19 pr(19) conds += [And(Eq(n, 0), m.is_positive is True, cstar.is_positive is True, phi.is_negative is True, c1, c2, c12)] # 20 pr(20) conds += [And(Eq(m, 0), n.is_positive is True, cstar.is_positive is True, phi.is_positive is True, c1, c3, c12)] # 21 pr(21) conds += [And(Eq(s*t, 0), bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 22 pr(22) conds += [And(Eq(m*n, 0), bstar.is_positive is True, cstar.is_positive is True, c1, c2, c3, c10, c12)] # 23 pr(23) # The following case is from [Luke1969]. As far as I can tell, it is *not* # covered by Prudnikov's. # Let G1 and G2 be the two G-functions. Suppose the integral exists from # 0 to a > 0 (this is easy the easy part), that G1 is exponential decay at # infinity, and that the mellin transform of G2 exists. # Then the integral exists. mt1_exists = _check_antecedents_1(g1, x, helper=True) mt2_exists = _check_antecedents_1(g2, x, helper=True) conds += [And(mt2_exists, Eq(t, 0), u < s, bstar.is_positive is True, c10, c1, c2, c3)] pr('E1') conds += [And(mt2_exists, Eq(s, 0), v < t, bstar.is_positive is True, c10, c1, c2, c3)] pr('E2') conds += [And(mt1_exists, Eq(n, 0), p < m, cstar.is_positive is True, c12, c1, c2, c3)] pr('E3') conds += [And(mt1_exists, Eq(m, 0), q < n, cstar.is_positive is True, c12, c1, c2, c3)] pr('E4') # Let's short-circuit if this worked ... # the rest is corner-cases and terrible to read. r = Or(*conds) if _eval_cond(r) != False: return r conds += [And(m + n > p, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, abs(arg(omega)) < (m + n - p + 1)*pi, c1, c2, c10, c14, c15)] # 24 pr(24) conds += [And(m + n > q, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar.is_negative is True, abs(arg(omega)) < (m + n - q + 1)*pi, c1, c3, c10, c14, c15)] # 25 pr(25) conds += [And(Eq(p, q - 1), Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), c1, c2, c10, c14, c15)] # 26 pr(26) conds += [And(Eq(p, q + 1), Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), c1, c3, c10, c14, c15)] # 27 pr(27) conds += [And(p < q - 1, Eq(t, 0), Eq(phi, 0), s.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), abs(arg(omega)) < (m + n - p + 1)*pi, c1, c2, c10, c14, c15)] # 28 pr(28) conds += [And( p > q + 1, Eq(s, 0), Eq(phi, 0), t.is_positive is True, bstar.is_positive is True, cstar >= 0, cstar*pi < abs(arg(omega)), abs(arg(omega)) < (m + n - q + 1)*pi, c1, c3, c10, c14, c15)] # 29 pr(29) conds += [And(Eq(n, 0), Eq(phi, 0), s + t > 0, m.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, abs(arg(sigma)) < (s + t - u + 1)*pi, c1, c2, c12, c14, c15)] # 30 pr(30) conds += [And(Eq(m, 0), Eq(phi, 0), s + t > v, n.is_positive is True, cstar.is_positive is True, bstar.is_negative is True, abs(arg(sigma)) < (s + t - v + 1)*pi, c1, c3, c12, c14, c15)] # 31 pr(31) conds += [And(Eq(n, 0), Eq(phi, 0), Eq(u, v - 1), m.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (bstar + 1)*pi, c1, c2, c12, c14, c15)] # 32 pr(32) conds += [And(Eq(m, 0), Eq(phi, 0), Eq(u, v + 1), n.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (bstar + 1)*pi, c1, c3, c12, c14, c15)] # 33 pr(33) conds += [And( Eq(n, 0), Eq(phi, 0), u < v - 1, m.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (s + t - u + 1)*pi, c1, c2, c12, c14, c15)] # 34 pr(34) conds += [And( Eq(m, 0), Eq(phi, 0), u > v + 1, n.is_positive is True, cstar.is_positive is True, bstar >= 0, bstar*pi < abs(arg(sigma)), abs(arg(sigma)) < (s + t - v + 1)*pi, c1, c3, c12, c14, c15)] # 35 pr(35) return Or(*conds) # NOTE An alternative, but as far as I can tell weaker, set of conditions # can be found in [L, section 5.6.2]. def _int0oo(g1, g2, x): """ Express integral from zero to infinity g1*g2 using a G function, assuming the necessary conditions are fulfilled. Examples ======== >>> from sympy.integrals.meijerint import _int0oo >>> from sympy.abc import s, t, m >>> from sympy import meijerg, S >>> g1 = meijerg([], [], [-S(1)/2, 0], [], s**2*t/4) >>> g2 = meijerg([], [], [m/2], [-m/2], t/4) >>> _int0oo(g1, g2, t) 4*meijerg(((1/2, 0), ()), ((m/2,), (-m/2,)), s**(-2))/s**2 """ # See: [L, section 5.6.2, equation (1)] eta, _ = _get_coeff_exp(g1.argument, x) omega, _ = _get_coeff_exp(g2.argument, x) def neg(l): return [-x for x in l] a1 = neg(g1.bm) + list(g2.an) a2 = list(g2.aother) + neg(g1.bother) b1 = neg(g1.an) + list(g2.bm) b2 = list(g2.bother) + neg(g1.aother) return meijerg(a1, a2, b1, b2, omega/eta)/eta def _rewrite_inversion(fac, po, g, x): """ Absorb ``po`` == x**s into g. """ _, s = _get_coeff_exp(po, x) a, b = _get_coeff_exp(g.argument, x) def tr(l): return [t + s/b for t in l] return (powdenest(fac/a**(s/b), polar=True), meijerg(tr(g.an), tr(g.aother), tr(g.bm), tr(g.bother), g.argument)) def _check_antecedents_inversion(g, x): """ Check antecedents for the laplace inversion integral. """ from sympy import re, im, Or, And, Eq, exp, I, Add, nan, Ne _debug('Checking antecedents for inversion:') z = g.argument _, e = _get_coeff_exp(z, x) if e < 0: _debug(' Flipping G.') # We want to assume that argument gets large as |x| -> oo return _check_antecedents_inversion(_flip_g(g), x) def statement_half(a, b, c, z, plus): coeff, exponent = _get_coeff_exp(z, x) a *= exponent b *= coeff**c c *= exponent conds = [] wp = b*exp(I*re(c)*pi/2) wm = b*exp(-I*re(c)*pi/2) if plus: w = wp else: w = wm conds += [And(Or(Eq(b, 0), re(c) <= 0), re(a) <= -1)] conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) < 0)] conds += [And(Ne(b, 0), Eq(im(c), 0), re(c) > 0, re(w) <= 0, re(a) <= -1)] return Or(*conds) def statement(a, b, c, z): """ Provide a convergence statement for z**a * exp(b*z**c), c/f sphinx docs. """ return And(statement_half(a, b, c, z, True), statement_half(a, b, c, z, False)) # Notations from [L], section 5.7-10 m, n, p, q = S([len(g.bm), len(g.an), len(g.ap), len(g.bq)]) tau = m + n - p nu = q - m - n rho = (tau - nu)/2 sigma = q - p if sigma == 1: epsilon = S.Half elif sigma > 1: epsilon = 1 else: epsilon = nan theta = ((1 - sigma)/2 + Add(*g.bq) - Add(*g.ap))/sigma delta = g.delta _debug(' m=%s, n=%s, p=%s, q=%s, tau=%s, nu=%s, rho=%s, sigma=%s' % ( m, n, p, q, tau, nu, rho, sigma)) _debug(' epsilon=%s, theta=%s, delta=%s' % (epsilon, theta, delta)) # First check if the computation is valid. if not (g.delta >= e/2 or (p >= 1 and p >= q)): _debug(' Computation not valid for these parameters.') return False # Now check if the inversion integral exists. # Test "condition A" for a in g.an: for b in g.bm: if (a - b).is_integer and a > b: _debug(' Not a valid G function.') return False # There are two cases. If p >= q, we can directly use a slater expansion # like [L], 5.2 (11). Note in particular that the asymptotics of such an # expansion even hold when some of the parameters differ by integers, i.e. # the formula itself would not be valid! (b/c G functions are cts. in their # parameters) # When p < q, we need to use the theorems of [L], 5.10. if p >= q: _debug(' Using asymptotic Slater expansion.') return And(*[statement(a - 1, 0, 0, z) for a in g.an]) def E(z): return And(*[statement(a - 1, 0, 0, z) for a in g.an]) def H(z): return statement(theta, -sigma, 1/sigma, z) def Hp(z): return statement_half(theta, -sigma, 1/sigma, z, True) def Hm(z): return statement_half(theta, -sigma, 1/sigma, z, False) # [L], section 5.10 conds = [] # Theorem 1 -- p < q from test above conds += [And(1 <= n, 1 <= m, rho*pi - delta >= pi/2, delta > 0, E(z*exp(I*pi*(nu + 1))))] # Theorem 2, statements (2) and (3) conds += [And(p + 1 <= m, m + 1 <= q, delta > 0, delta < pi/2, n == 0, (m - p + 1)*pi - delta >= pi/2, Hp(z*exp(I*pi*(q - m))), Hm(z*exp(-I*pi*(q - m))))] # Theorem 2, statement (5) -- p < q from test above conds += [And(m == q, n == 0, delta > 0, (sigma + epsilon)*pi - delta >= pi/2, H(z))] # Theorem 3, statements (6) and (7) conds += [And(Or(And(p <= q - 2, 1 <= tau, tau <= sigma/2), And(p + 1 <= m + n, m + n <= (p + q)/2)), delta > 0, delta < pi/2, (tau + 1)*pi - delta >= pi/2, Hp(z*exp(I*pi*nu)), Hm(z*exp(-I*pi*nu)))] # Theorem 4, statements (10) and (11) -- p < q from test above conds += [And(1 <= m, rho > 0, delta > 0, delta + rho*pi < pi/2, (tau + epsilon)*pi - delta >= pi/2, Hp(z*exp(I*pi*nu)), Hm(z*exp(-I*pi*nu)))] # Trivial case conds += [m == 0] # TODO # Theorem 5 is quite general # Theorem 6 contains special cases for q=p+1 return Or(*conds) def _int_inversion(g, x, t): """ Compute the laplace inversion integral, assuming the formula applies. """ b, a = _get_coeff_exp(g.argument, x) C, g = _inflate_fox_h(meijerg(g.an, g.aother, g.bm, g.bother, b/t**a), -a) return C/t*g #################################################################### # Finally, the real meat. #################################################################### _lookup_table = None @cacheit @timeit def _rewrite_single(f, x, recursive=True): """ Try to rewrite f as a sum of single G functions of the form C*x**s*G(a*x**b), where b is a rational number and C is independent of x. We guarantee that result.argument.as_coeff_mul(x) returns (a, (x**b,)) or (a, ()). Returns a list of tuples (C, s, G) and a condition cond. Returns None on failure. """ from sympy import polarify, unpolarify, oo, zoo, Tuple global _lookup_table if not _lookup_table: _lookup_table = {} _create_lookup_table(_lookup_table) if isinstance(f, meijerg): from sympy import factor coeff, m = factor(f.argument, x).as_coeff_mul(x) if len(m) > 1: return None m = m[0] if m.is_Pow: if m.base != x or not m.exp.is_Rational: return None elif m != x: return None return [(1, 0, meijerg(f.an, f.aother, f.bm, f.bother, coeff*m))], True f_ = f f = f.subs(x, z) t = _mytype(f, z) if t in _lookup_table: l = _lookup_table[t] for formula, terms, cond, hint in l: subs = f.match(formula, old=True) if subs: subs_ = {} for fro, to in subs.items(): subs_[fro] = unpolarify(polarify(to, lift=True), exponents_only=True) subs = subs_ if not isinstance(hint, bool): hint = hint.subs(subs) if hint == False: continue if not isinstance(cond, (bool, BooleanAtom)): cond = unpolarify(cond.subs(subs)) if _eval_cond(cond) == False: continue if not isinstance(terms, list): terms = terms(subs) res = [] for fac, g in terms: r1 = _get_coeff_exp(unpolarify(fac.subs(subs).subs(z, x), exponents_only=True), x) try: g = g.subs(subs).subs(z, x) except ValueError: continue # NOTE these substitutions can in principle introduce oo, # zoo and other absurdities. It shouldn't matter, # but better be safe. if Tuple(*(r1 + (g,))).has(oo, zoo, -oo): continue g = meijerg(g.an, g.aother, g.bm, g.bother, unpolarify(g.argument, exponents_only=True)) res.append(r1 + (g,)) if res: return res, cond # try recursive mellin transform if not recursive: return None _debug('Trying recursive Mellin transform method.') from sympy.integrals.transforms import (mellin_transform, inverse_mellin_transform, IntegralTransformError, MellinTransformStripError) from sympy import oo, nan, zoo, simplify, cancel def my_imt(F, s, x, strip): """ Calling simplify() all the time is slow and not helpful, since most of the time it only factors things in a way that has to be un-done anyway. But sometimes it can remove apparent poles. """ # XXX should this be in inverse_mellin_transform? try: return inverse_mellin_transform(F, s, x, strip, as_meijerg=True, needeval=True) except MellinTransformStripError: return inverse_mellin_transform( simplify(cancel(expand(F))), s, x, strip, as_meijerg=True, needeval=True) f = f_ s = _dummy('s', 'rewrite-single', f) # to avoid infinite recursion, we have to force the two g functions case def my_integrator(f, x): from sympy import Integral, hyperexpand r = _meijerint_definite_4(f, x, only_double=True) if r is not None: res, cond = r res = _my_unpolarify(hyperexpand(res, rewrite='nonrepsmall')) return Piecewise((res, cond), (Integral(f, (x, 0, oo)), True)) return Integral(f, (x, 0, oo)) try: F, strip, _ = mellin_transform(f, x, s, integrator=my_integrator, simplify=False, needeval=True) g = my_imt(F, s, x, strip) except IntegralTransformError: g = None if g is None: # We try to find an expression by analytic continuation. # (also if the dummy is already in the expression, there is no point in # putting in another one) a = _dummy_('a', 'rewrite-single') if a not in f.free_symbols and _is_analytic(f, x): try: F, strip, _ = mellin_transform(f.subs(x, a*x), x, s, integrator=my_integrator, needeval=True, simplify=False) g = my_imt(F, s, x, strip).subs(a, 1) except IntegralTransformError: g = None if g is None or g.has(oo, nan, zoo): _debug('Recursive Mellin transform failed.') return None args = Add.make_args(g) res = [] for f in args: c, m = f.as_coeff_mul(x) if len(m) > 1: raise NotImplementedError('Unexpected form...') g = m[0] a, b = _get_coeff_exp(g.argument, x) res += [(c, 0, meijerg(g.an, g.aother, g.bm, g.bother, unpolarify(polarify( a, lift=True), exponents_only=True) *x**b))] _debug('Recursive Mellin transform worked:', g) return res, True def _rewrite1(f, x, recursive=True): """ Try to rewrite ``f`` using a (sum of) single G functions with argument a*x**b. Return fac, po, g such that f = fac*po*g, fac is independent of ``x``. and po = x**s. Here g is a result from _rewrite_single. Return None on failure. """ fac, po, g = _split_mul(f, x) g = _rewrite_single(g, x, recursive) if g: return fac, po, g[0], g[1] def _rewrite2(f, x): """ Try to rewrite ``f`` as a product of two G functions of arguments a*x**b. Return fac, po, g1, g2 such that f = fac*po*g1*g2, where fac is independent of x and po is x**s. Here g1 and g2 are results of _rewrite_single. Returns None on failure. """ fac, po, g = _split_mul(f, x) if any(_rewrite_single(expr, x, False) is None for expr in _mul_args(g)): return None l = _mul_as_two_parts(g) if not l: return None l = list(ordered(l, [ lambda p: max(len(_exponents(p[0], x)), len(_exponents(p[1], x))), lambda p: max(len(_functions(p[0], x)), len(_functions(p[1], x))), lambda p: max(len(_find_splitting_points(p[0], x)), len(_find_splitting_points(p[1], x)))])) for recursive in [False, True]: for fac1, fac2 in l: g1 = _rewrite_single(fac1, x, recursive) g2 = _rewrite_single(fac2, x, recursive) if g1 and g2: cond = And(g1[1], g2[1]) if cond != False: return fac, po, g1[0], g2[0], cond def meijerint_indefinite(f, x): """ Compute an indefinite integral of ``f`` by rewriting it as a G function. Examples ======== >>> from sympy.integrals.meijerint import meijerint_indefinite >>> from sympy import sin >>> from sympy.abc import x >>> meijerint_indefinite(sin(x), x) -cos(x) """ from sympy import hyper, meijerg results = [] for a in sorted(_find_splitting_points(f, x) | {S.Zero}, key=default_sort_key): res = _meijerint_indefinite_1(f.subs(x, x + a), x) if not res: continue res = res.subs(x, x - a) if _has(res, hyper, meijerg): results.append(res) else: return res if f.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_indefinite( _rewrite_hyperbolics_as_exp(f), x) if rv: if not type(rv) is list: return collect(factor_terms(rv), rv.atoms(exp)) results.extend(rv) if results: return next(ordered(results)) def _meijerint_indefinite_1(f, x): """ Helper that does not attempt any substitution. """ from sympy import Integral, piecewise_fold, nan, zoo _debug('Trying to compute the indefinite integral of', f, 'wrt', x) gs = _rewrite1(f, x) if gs is None: # Note: the code that calls us will do expand() and try again return None fac, po, gl, cond = gs _debug(' could rewrite:', gs) res = S.Zero for C, s, g in gl: a, b = _get_coeff_exp(g.argument, x) _, c = _get_coeff_exp(po, x) c += s # we do a substitution t=a*x**b, get integrand fac*t**rho*g fac_ = fac * C / (b*a**((1 + c)/b)) rho = (c + 1)/b - 1 # we now use t**rho*G(params, t) = G(params + rho, t) # [L, page 150, equation (4)] # and integral G(params, t) dt = G(1, params+1, 0, t) # (or a similar expression with 1 and 0 exchanged ... pick the one # which yields a well-defined function) # [R, section 5] # (Note that this dummy will immediately go away again, so we # can safely pass S.One for ``expr``.) t = _dummy('t', 'meijerint-indefinite', S.One) def tr(p): return [a + rho + 1 for a in p] if any(b.is_integer and (b <= 0) == True for b in tr(g.bm)): r = -meijerg( tr(g.an), tr(g.aother) + [1], tr(g.bm) + [0], tr(g.bother), t) else: r = meijerg( tr(g.an) + [1], tr(g.aother), tr(g.bm), tr(g.bother) + [0], t) # The antiderivative is most often expected to be defined # in the neighborhood of x = 0. if b.is_extended_nonnegative and not f.subs(x, 0).has(nan, zoo): place = 0 # Assume we can expand at zero else: place = None r = hyperexpand(r.subs(t, a*x**b), place=place) # now substitute back # Note: we really do want the powers of x to combine. res += powdenest(fac_*r, polar=True) def _clean(res): """This multiplies out superfluous powers of x we created, and chops off constants: >> _clean(x*(exp(x)/x - 1/x) + 3) exp(x) cancel is used before mul_expand since it is possible for an expression to have an additive constant that doesn't become isolated with simple expansion. Such a situation was identified in issue 6369: Examples ======== >>> from sympy import sqrt, cancel >>> from sympy.abc import x >>> a = sqrt(2*x + 1) >>> bad = (3*x*a**5 + 2*x - a**5 + 1)/a**2 >>> bad.expand().as_independent(x)[0] 0 >>> cancel(bad).expand().as_independent(x)[0] 1 """ from sympy import cancel res = expand_mul(cancel(res), deep=False) return Add._from_args(res.as_coeff_add(x)[1]) res = piecewise_fold(res) if res.is_Piecewise: newargs = [] for expr, cond in res.args: expr = _my_unpolarify(_clean(expr)) newargs += [(expr, cond)] res = Piecewise(*newargs) else: res = _my_unpolarify(_clean(res)) return Piecewise((res, _my_unpolarify(cond)), (Integral(f, x), True)) @timeit def meijerint_definite(f, x, a, b): """ Integrate ``f`` over the interval [``a``, ``b``], by rewriting it as a product of two G functions, or as a single G function. Return res, cond, where cond are convergence conditions. Examples ======== >>> from sympy.integrals.meijerint import meijerint_definite >>> from sympy import exp, oo >>> from sympy.abc import x >>> meijerint_definite(exp(-x**2), x, -oo, oo) (sqrt(pi), True) This function is implemented as a succession of functions meijerint_definite, _meijerint_definite_2, _meijerint_definite_3, _meijerint_definite_4. Each function in the list calls the next one (presumably) several times. This means that calling meijerint_definite can be very costly. """ # This consists of three steps: # 1) Change the integration limits to 0, oo # 2) Rewrite in terms of G functions # 3) Evaluate the integral # # There are usually several ways of doing this, and we want to try all. # This function does (1), calls _meijerint_definite_2 for step (2). from sympy import arg, exp, I, And, DiracDelta, SingularityFunction _debug('Integrating', f, 'wrt %s from %s to %s.' % (x, a, b)) if f.has(DiracDelta): _debug('Integrand has DiracDelta terms - giving up.') return None if f.has(SingularityFunction): _debug('Integrand has Singularity Function terms - giving up.') return None f_, x_, a_, b_ = f, x, a, b # Let's use a dummy in case any of the boundaries has x. d = Dummy('x') f = f.subs(x, d) x = d if a == b: return (S.Zero, True) results = [] if a is -oo and b is not oo: return meijerint_definite(f.subs(x, -x), x, -b, -a) elif a is -oo: # Integrating -oo to oo. We need to find a place to split the integral. _debug(' Integrating -oo to +oo.') innermost = _find_splitting_points(f, x) _debug(' Sensible splitting points:', innermost) for c in sorted(innermost, key=default_sort_key, reverse=True) + [S.Zero]: _debug(' Trying to split at', c) if not c.is_extended_real: _debug(' Non-real splitting point.') continue res1 = _meijerint_definite_2(f.subs(x, x + c), x) if res1 is None: _debug(' But could not compute first integral.') continue res2 = _meijerint_definite_2(f.subs(x, c - x), x) if res2 is None: _debug(' But could not compute second integral.') continue res1, cond1 = res1 res2, cond2 = res2 cond = _condsimp(And(cond1, cond2)) if cond == False: _debug(' But combined condition is always false.') continue res = res1 + res2 return res, cond elif a is oo: res = meijerint_definite(f, x, b, oo) return -res[0], res[1] elif (a, b) == (0, oo): # This is a common case - try it directly first. res = _meijerint_definite_2(f, x) if res: if _has(res[0], meijerg): results.append(res) else: return res else: if b is oo: for split in _find_splitting_points(f, x): if (a - split >= 0) == True: _debug('Trying x -> x + %s' % split) res = _meijerint_definite_2(f.subs(x, x + split) *Heaviside(x + split - a), x) if res: if _has(res[0], meijerg): results.append(res) else: return res f = f.subs(x, x + a) b = b - a a = 0 if b != oo: phi = exp(I*arg(b)) b = abs(b) f = f.subs(x, phi*x) f *= Heaviside(b - x)*phi b = oo _debug('Changed limits to', a, b) _debug('Changed function to', f) res = _meijerint_definite_2(f, x) if res: if _has(res[0], meijerg): results.append(res) else: return res if f_.has(HyperbolicFunction): _debug('Try rewriting hyperbolics in terms of exp.') rv = meijerint_definite( _rewrite_hyperbolics_as_exp(f_), x_, a_, b_) if rv: if not type(rv) is list: rv = (collect(factor_terms(rv[0]), rv[0].atoms(exp)),) + rv[1:] return rv results.extend(rv) if results: return next(ordered(results)) def _guess_expansion(f, x): """ Try to guess sensible rewritings for integrand f(x). """ from sympy import expand_trig from sympy.functions.elementary.trigonometric import TrigonometricFunction res = [(f, 'original integrand')] orig = res[-1][0] saw = {orig} expanded = expand_mul(orig) if expanded not in saw: res += [(expanded, 'expand_mul')] saw.add(expanded) expanded = expand(orig) if expanded not in saw: res += [(expanded, 'expand')] saw.add(expanded) if orig.has(TrigonometricFunction, HyperbolicFunction): expanded = expand_mul(expand_trig(orig)) if expanded not in saw: res += [(expanded, 'expand_trig, expand_mul')] saw.add(expanded) if orig.has(cos, sin): reduced = sincos_to_sum(orig) if reduced not in saw: res += [(reduced, 'trig power reduction')] saw.add(reduced) return res def _meijerint_definite_2(f, x): """ Try to integrate f dx from zero to infinity. The body of this function computes various 'simplifications' f1, f2, ... of f (e.g. by calling expand_mul(), trigexpand() - see _guess_expansion) and calls _meijerint_definite_3 with each of these in succession. If _meijerint_definite_3 succeeds with any of the simplified functions, returns this result. """ # This function does preparation for (2), calls # _meijerint_definite_3 for (2) and (3) combined. # use a positive dummy - we integrate from 0 to oo # XXX if a nonnegative symbol is used there will be test failures dummy = _dummy('x', 'meijerint-definite2', f, positive=True) f = f.subs(x, dummy) x = dummy if f == 0: return S.Zero, True for g, explanation in _guess_expansion(f, x): _debug('Trying', explanation) res = _meijerint_definite_3(g, x) if res: return res def _meijerint_definite_3(f, x): """ Try to integrate f dx from zero to infinity. This function calls _meijerint_definite_4 to try to compute the integral. If this fails, it tries using linearity. """ res = _meijerint_definite_4(f, x) if res and res[1] != False: return res if f.is_Add: _debug('Expanding and evaluating all terms.') ress = [_meijerint_definite_4(g, x) for g in f.args] if all(r is not None for r in ress): conds = [] res = S.Zero for r, c in ress: res += r conds += [c] c = And(*conds) if c != False: return res, c def _my_unpolarify(f): from sympy import unpolarify return _eval_cond(unpolarify(f)) @timeit def _meijerint_definite_4(f, x, only_double=False): """ Try to integrate f dx from zero to infinity. Explanation =========== This function tries to apply the integration theorems found in literature, i.e. it tries to rewrite f as either one or a product of two G-functions. The parameter ``only_double`` is used internally in the recursive algorithm to disable trying to rewrite f as a single G-function. """ # This function does (2) and (3) _debug('Integrating', f) # Try single G function. if not only_double: gs = _rewrite1(f, x, recursive=False) if gs is not None: fac, po, g, cond = gs _debug('Could rewrite as single G function:', fac, po, g) res = S.Zero for C, s, f in g: if C == 0: continue C, f = _rewrite_saxena_1(fac*C, po*x**s, f, x) res += C*_int0oo_1(f, x) cond = And(cond, _check_antecedents_1(f, x)) if cond == False: break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False.') else: _debug('Result before branch substitutions is:', res) return _my_unpolarify(hyperexpand(res)), cond # Try two G functions. gs = _rewrite2(f, x) if gs is not None: for full_pb in [False, True]: fac, po, g1, g2, cond = gs _debug('Could rewrite as two G functions:', fac, po, g1, g2) res = S.Zero for C1, s1, f1 in g1: for C2, s2, f2 in g2: r = _rewrite_saxena(fac*C1*C2, po*x**(s1 + s2), f1, f2, x, full_pb) if r is None: _debug('Non-rational exponents.') return C, f1_, f2_ = r _debug('Saxena subst for yielded:', C, f1_, f2_) cond = And(cond, _check_antecedents(f1_, f2_, x)) if cond == False: break res += C*_int0oo(f1_, f2_, x) else: continue break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False (full_pb=%s).' % full_pb) else: _debug('Result before branch substitutions is:', res) if only_double: return res, cond return _my_unpolarify(hyperexpand(res)), cond def meijerint_inversion(f, x, t): r""" Compute the inverse laplace transform $\int_{c+i\infty}^{c-i\infty} f(x) e^{tx}\, dx$, for real c larger than the real part of all singularities of ``f``. Note that ``t`` is always assumed real and positive. Return None if the integral does not exist or could not be evaluated. Examples ======== >>> from sympy.abc import x, t >>> from sympy.integrals.meijerint import meijerint_inversion >>> meijerint_inversion(1/x, x, t) Heaviside(t, 1/2) """ from sympy import exp, expand, log, Add, Mul, Heaviside f_ = f t_ = t t = Dummy('t', polar=True) # We don't want sqrt(t**2) = abs(t) etc f = f.subs(t_, t) _debug('Laplace-inverting', f) if not _is_analytic(f, x): _debug('But expression is not analytic.') return None # Exponentials correspond to shifts; we filter them out and then # shift the result later. If we are given an Add this will not # work, but the calling code will take care of that. shift = S.Zero if f.is_Mul: args = list(f.args) elif isinstance(f, exp): args = [f] else: args = None if args: newargs = [] exponentials = [] while args: arg = args.pop() if isinstance(arg, exp): arg2 = expand(arg) if arg2.is_Mul: args += arg2.args continue try: a, b = _get_coeff_exp(arg.args[0], x) except _CoeffExpValueError: b = 0 if b == 1: exponentials.append(a) else: newargs.append(arg) elif arg.is_Pow: arg2 = expand(arg) if arg2.is_Mul: args += arg2.args continue if x not in arg.base.free_symbols: try: a, b = _get_coeff_exp(arg.exp, x) except _CoeffExpValueError: b = 0 if b == 1: exponentials.append(a*log(arg.base)) newargs.append(arg) else: newargs.append(arg) shift = Add(*exponentials) f = Mul(*newargs) if x not in f.free_symbols: _debug('Expression consists of constant and exp shift:', f, shift) from sympy import Eq, im cond = Eq(im(shift), 0) if cond == False: _debug('but shift is nonreal, cannot be a Laplace transform') return None res = f*DiracDelta(t + shift) _debug('Result is a delta function, possibly conditional:', res, cond) # cond is True or Eq return Piecewise((res.subs(t, t_), cond)) gs = _rewrite1(f, x) if gs is not None: fac, po, g, cond = gs _debug('Could rewrite as single G function:', fac, po, g) res = S.Zero for C, s, f in g: C, f = _rewrite_inversion(fac*C, po*x**s, f, x) res += C*_int_inversion(f, x, t) cond = And(cond, _check_antecedents_inversion(f, x)) if cond == False: break cond = _my_unpolarify(cond) if cond == False: _debug('But cond is always False.') else: _debug('Result before branch substitution:', res) res = _my_unpolarify(hyperexpand(res)) if not res.has(Heaviside): res *= Heaviside(t) res = res.subs(t, t + shift) if not isinstance(cond, bool): cond = cond.subs(t, t + shift) from sympy import InverseLaplaceTransform return Piecewise((res.subs(t, t_), cond), (InverseLaplaceTransform(f_.subs(t, t_), x, t_, None), True))
9396be3c9fdeda370c99e056a34c9abb4ebca3e1572ab0e7ca59f77be539e610
"""Base class for all the objects in SymPy""" from collections import defaultdict from collections.abc import Mapping from itertools import chain, zip_longest from .assumptions import BasicMeta, ManagedProperties from .cache import cacheit from .sympify import _sympify, sympify, SympifyError from .compatibility import iterable, ordered from .kind import UndefinedKind from ._print_helpers import Printable from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" from sympy.utilities.misc import func_name try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(Printable, metaclass=ManagedProperties): """ Base class for all SymPy objects. Notes and conventions ===================== 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) 3) By "SymPy object" we mean something that can be returned by ``sympify``. But not all objects one encounters using SymPy are subclasses of Basic. For example, mutable objects are not: >>> from sympy import Basic, Matrix, sympify >>> A = Matrix([[1, 2], [3, 4]]).as_mutable() >>> isinstance(A, Basic) False >>> B = sympify(A) >>> isinstance(B, Basic) True """ __slots__ = ('_mhash', # hash value '_args', # arguments '_assumptions' ) # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False kind = UndefinedKind def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __getnewargs__(self): return self.args def __getstate__(self): return None def __reduce_ex__(self, protocol): if protocol < 2: msg = "Only pickle protocol 2 or higher is supported by sympy" raise NotImplementedError(msg) return super().__reduce_ex__(protocol) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from sympy.core.symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy.core import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True tself = type(self) tother = type(other) if tself is not tother: try: other = _sympify(other) tother = type(other) except SympifyError: return NotImplemented # As long as we have the ordering of classes (sympy.core), # comparing types will be slow in Python 2, because it uses # __cmp__. Until we can remove it # (https://github.com/sympy/sympy/issues/4269), we only compare # types in Python 2 directly if they actually have __ne__. if type(tself).__ne__ is not type.__ne__: if tself != tother: return False elif tself is not tother: return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): """``a != b`` -> Compare two symbolic trees and see whether they are different this is the same as: ``a.compare(b) != 0`` but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp}) def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and can't be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of sympy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any sympy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) nodes = preorder_traversal(self) if types: result = {node for node in nodes if isinstance(node, types)} else: result = {node for node in nodes if not node.args} return result @property def free_symbols(self): """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" return set().union(*[a.free_symbols for a in self.args]) @property def expr_free_symbols(self): from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return set() def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. When applied to a symbol a new symbol having only the same commutativity will be returned. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True >>> r.as_dummy() _r Notes ===== Any object that has structurally bound variables should have a property, `bound_symbols` that returns those symbols appearing in the object. """ from sympy.core.symbol import Dummy, Symbol def can(x): # mask free that shadow bound free = x.free_symbols bound = set(x.bound_symbols) d = {i: Dummy() for i in bound & free} x = x.subs(d) # replace bound with canonical names x = x.xreplace(x.canonical_variables) # return after undoing masking return x.xreplace({v: k for k, v in d.items()}) if not self.has(Symbol): return self return self.replace( lambda x: hasattr(x, 'bound_symbols'), lambda x: can(x), simultaneous=False) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any free symbols in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ from sympy.utilities.iterables import numbered_symbols if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} # watch out for free symbol that are not in bound symbols; # those that are in bound symbols are about to get changed bound = self.bound_symbols names = {i.name for i in self.free_symbols - set(bound)} for b in bound: d = next(dums) if b.is_Symbol: while d.name in names: d = next(dums) reps[b] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance in SymPy the the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however you can use >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method.""" from sympy import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify import hypersimp from sympy.functions import Piecewise if self.has(Piecewise): return None return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_extended_real = self.is_extended_real if is_extended_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self): """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which don't fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from sympy.core.compatibility import _nodes, default_sort_key from sympy.core.containers import Dict from sympy.core.symbol import Dummy, Symbol from sympy.utilities.misc import filldedent unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], str): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, (str, type))) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) if unordered: sequence = dict(sequence) # order so more complex items are first and items # of identical complexity are ordered so # f(x) < f(y) < x < y # \___ 2 __/ \_1_/ <- number of nodes # # For more complex ordering use an unordered sequence. k = list(ordered(sequence, default=False, keys=( lambda x: -_nodes(x), lambda x: default_sort_key(x), ))) sequence = [(k, sequence[k]) for k in k] if kwargs.pop('simultaneous', False): # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy('subs_m') for old, new in sequence: com = new.is_commutative if com is None: com = True d = Dummy('subs_d', commutative=com) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy.sets import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return any(self._has(pattern) for pattern in patterns) def _has(self, pattern): """Helper for .has()""" from sympy.core.function import UndefinedFunction, Function if isinstance(pattern, UndefinedFunction): return any(f.func == pattern or f == pattern for f in self.atoms(Function, UndefinedFunction)) if isinstance(pattern, BasicMeta): subtrees = preorder_traversal(self) return any(isinstance(arg, pattern) for arg in subtrees) pattern = _sympify(pattern) _has_matcher = getattr(pattern, '_has_matcher', None) if _has_matcher is not None: match = _has_matcher() return any(match(arg) for arg in preorder_traversal(self)) else: return any(arg == pattern for arg in preorder_traversal(self)) def _has_matcher(self): """Helper for .has()""" return lambda other: self == other def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is None it will be set to True so the match will only succeed if all non-zero values are received for each Wild that appears in the match pattern. Setting this to False accepts a match of 0; while setting it True accepts all matches that have a 0 in them. See example below for cautions. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) When matching a single symbol, `exact` will default to True, but this may or may not be the behavior that is desired: Here, we want `exact=False`: >>> from sympy import Function >>> f = Function('f') >>> e = f(1) + f(0) >>> q = f(a), lambda a: f(a + 1) >>> e.replace(*q, exact=False) f(1) + f(2) >>> e.replace(*q, exact=True) f(0) + f(2) But here, the nature of matching makes selecting the right setting tricky: >>> e = x**(1 + y) >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(-x - y + 1) >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(1 - y) It is probably better to use a different form of the query that describes the target expression more precisely: >>> (1 + x**(1 + y)).replace( ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1, ... lambda x: x.base**(1 - (x.exp - 1))) ... x**(1 - y) + 1 See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ from sympy.core.symbol import Wild try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) if exact is None: exact = (len(query.atoms(Wild)) > 1) if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") def walk(rv, F): """Apply ``F`` to args and then to result. """ args = getattr(rv, 'args', None) if args is not None: if args: newargs = tuple([walk(a, F) for a in args]) if args != newargs: rv = rv.func(*newargs) if simultaneous: # if rv is something that was already # matched (that was changed) then skip # applying F again for i, e in enumerate(args): if rv == e and e != newargs[i]: return rv rv = F(rv) return rv mapping = {} # changes that took place def rec_replace(expr): result = _query(expr) if result or result == {}: v = _value(expr, result) if v is not None and v != expr: if map: mapping[expr] = v expr = v return expr rv = walk(self, rec_replace) return (rv, mapping) if map else rv def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in preorder_traversal(self)) def matches(self, expr, repl_dict={}, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ repl_dict = repl_dict.copy() expr = sympify(expr) if not isinstance(expr, self.__class__): return None if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict.copy() for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild, Sum >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 Structurally bound symbols are ignored during matching: >>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p))) {p_: 2} But they can be identified if desired: >>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p))) {p_: 2, q_: x} The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ from sympy.core.symbol import Wild from sympy.core.function import WildFunction from sympy.utilities.misc import filldedent pattern = sympify(pattern) # match non-bound symbols canonical = lambda x: x if x.is_Symbol else x.as_dummy() m = canonical(pattern).matches(canonical(self), old=old) if m is None: return m wild = pattern.atoms(Wild, WildFunction) # sanity check if set(m) - wild: raise ValueError(filldedent(''' Some `matches` routine did not use a copy of repl_dict and injected unexpected symbols. Report this as an error at https://github.com/sympy/sympy/issues''')) # now see if bound symbols were requested bwild = wild - set(m) if not bwild: return m # replace free-Wild symbols in pattern with match result # so they will match but not be in the next match wpat = pattern.xreplace(m) # identify remaining bound wild w = wpat.matches(self, old=old) # add them to m if w: m.update(w) # done return m def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from sympy import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def simplify(self, **kwargs): """See the simplify function in sympy.simplify""" from sympy.simplify import simplify return simplify(self, **kwargs) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions import refine return refine(self, assumption) def _eval_rewrite(self, pattern, rule, **hints): if self.is_Atom: if hasattr(self, rule): return getattr(self, rule)() return self if hints.get('deep', True): args = [a._eval_rewrite(pattern, rule, **hints) if isinstance(a, Basic) else a for a in self.args] else: args = self.args if pattern is None or isinstance(self, pattern): if hasattr(self, rule): rewritten = getattr(self, rule)(*args, **hints) if rewritten is not None: return rewritten return self.func(*args) if hints.get('evaluate', True) else self def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from sympy import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, **hints): """ Rewrite functions in terms of other functions. Rewrites expression containing applications of functions of one kind in terms of functions of different kind. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. As a pattern this function accepts a list of functions to to rewrite (instances of DefinedFunction class). As rule you can use string or a destination function instance (in this case rewrite() will use the str() function). There is also the possibility to pass hints on how to rewrite the given expressions. For now there is only one such hint defined called 'deep'. When 'deep' is set to False it will forbid functions to rewrite their contents. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x Unspecified pattern: >>> sin(x).rewrite(exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a single function: >>> sin(x).rewrite(sin, exp) -I*(exp(I*x) - exp(-I*x))/2 Pattern as a list of functions: >>> sin(x).rewrite([sin, ], exp) -I*(exp(I*x) - exp(-I*x))/2 """ if not args: return self else: pattern = args[:-1] if isinstance(args[-1], str): rule = '_eval_rewrite_as_' + args[-1] else: # rewrite arg is usually a class but can also be a # singleton (e.g. GoldenRatio) so we check # __name__ or __class__.__name__ clsname = getattr(args[-1], "__name__", None) if clsname is None: clsname = args[-1].__class__.__name__ rule = '_eval_rewrite_as_' + clsname if not pattern: return self._eval_rewrite(None, rule, **hints) else: if iterable(pattern[0]): pattern = pattern[0] pattern = [p for p in pattern if self.has(p)] if pattern: return self._eval_rewrite(tuple(pattern), rule, **hints) else: return self _constructor_postprocessor_mapping = {} # type: ignore @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = () def matches(self, expr, repl_dict={}, old=False): if self == expr: return repl_dict.copy() def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, **kwargs): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== In SymPy (as in Python) two numbers compare the same if they have the same underlying base-2 representation even though they may not be the same type: >>> from sympy import S >>> 2.0 == S(2) True >>> 0.5 == S.Half True This routine was written to provide a query for such cases that would give false when the types do not match: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .numbers import Number from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(a, Number) and isinstance(b, Number): return a == b and a.__class__ == b.__class__ for i, j in zip_longest(preorder_traversal(a), preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _ne(a, b): # use this as a second test after `a != b` if you want to make # sure that things are truly equal, e.g. # a, b = 0.5, S.Half # a !=b or _ne(a, b) -> True from .numbers import Number # 0.5 == S.Half if isinstance(a, Number) and isinstance(b, Number): return a.__class__ != b.__class__ def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ from sympy import Derivative, Function, Symbol pot = preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms class preorder_traversal: """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : sympy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : sympy expression All of the subtrees in the tree. Examples ======== >>> from sympy import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: yield from self._preorder_traversal(arg, keys) elif iterable(node): for item in node: yield from self._preorder_traversal(item, keys) def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy.core import symbols >>> from sympy.core.basic import preorder_traversal >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x+y*z)*z) >>> for i in pt: ... print(i) ... if i == x+y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = _sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query # Delayed to avoid cyclic import from .singleton import S
8886e8e825da595d9aa54779a070a900aebac2f7510a760e9f87151c6dcedd09
from typing import Callable from math import log as _log from .sympify import _sympify from .cache import cacheit from .singleton import S from .expr import Expr from .evalf import PrecisionExhausted from .function import (_coeff_isneg, expand_complex, expand_multinomial, expand_mul, _mexpand) from .logic import fuzzy_bool, fuzzy_not, fuzzy_and, fuzzy_or from .compatibility import as_int, HAS_GMPY, gmpy from .parameters import global_parameters from sympy.utilities.iterables import sift from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.multipledispatch import Dispatcher from mpmath.libmp import sqrtrem as mpmath_sqrtrem from math import sqrt as _sqrt def isqrt(n): """Return the largest integer less than or equal to sqrt(n).""" if n < 0: raise ValueError("n must be nonnegative") n = int(n) # Fast path: with IEEE 754 binary64 floats and a correctly-rounded # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n < # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the # answer and fall back to the slow method if necessary. if n < 4503599761588224: s = int(_sqrt(n)) if 0 <= n - s*s <= 2*s: return s return integer_nthroot(n, 2)[0] def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). Examples ======== >>> from sympy import integer_nthroot >>> integer_nthroot(16, 2) (4, True) >>> integer_nthroot(26, 2) (5, False) To simply determine if a number is a perfect square, the is_square function should be used: >>> from sympy.ntheory.primetest import is_square >>> is_square(26) False See Also ======== sympy.ntheory.primetest.is_square integer_log """ y, n = as_int(y), as_int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if HAS_GMPY and n < 2**63: # Currently it works only for n < 2**63, else it produces TypeError # sympy issue: https://github.com/sympy/sympy/issues/18374 # gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257 if HAS_GMPY >= 2: x, t = gmpy.iroot(y, n) else: x, t = gmpy.root(y, n) return as_int(x), bool(t) return _integer_nthroot_python(y, n) def _integer_nthroot_python(y, n): if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) xprev, x = x, ((n - 1)*x + y//t)//n if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return int(x), t == y # int converts long to int if possible def integer_log(y, x): r""" Returns ``(e, bool)`` where e is the largest nonnegative integer such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$. Examples ======== >>> from sympy import integer_log >>> integer_log(125, 5) (3, True) >>> integer_log(17, 9) (1, False) >>> integer_log(4, -2) (2, True) >>> integer_log(-125,-5) (3, True) See Also ======== integer_nthroot sympy.ntheory.primetest.is_square sympy.ntheory.factor_.multiplicity sympy.ntheory.factor_.perfect_power """ if x == 1: raise ValueError('x cannot take value as 1') if y == 0: raise ValueError('y cannot take value as 0') if x in (-2, 2): x = int(x) y = as_int(y) e = y.bit_length() - 1 return e, x**e == y if x < 0: n, b = integer_log(y if y > 0 else -y, -x) return n, b and bool(n % 2 if y < 0 else not n % 2) x = as_int(x) y = as_int(y) r = e = 0 while y >= x: d = x m = 1 while y >= d: y, rem = divmod(y, d) r = r or rem e += m if y > d: d *= d m *= 2 return e, r == 0 and y == 1 class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient in some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | b**zoo | nan | Because b**z has no limit as z -> zoo | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ | oo**I | nan | oo**e could probably be best thought of as | | (-oo)**I | | the limit of x**e for real x as x tends to | | | | oo. If e is I, then the limit does not exist | | | | and nan is used to indicate that. | +--------------+---------+-----------------------------------------------+ | oo**(1+I) | zoo | If the real part of e is positive, then the | | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | | | | is zoo. | +--------------+---------+-----------------------------------------------+ | oo**(-1+I) | 0 | If the real part of e is negative, then the | | -oo**(-1+I) | | limit is 0. | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible that floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== sympy.core.numbers.Infinity sympy.core.numbers.NegativeInfinity sympy.core.numbers.NaN References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation .. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ('is_commutative',) @cacheit def __new__(cls, b, e, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate from sympy.functions.elementary.exponential import exp_polar b = _sympify(b) e = _sympify(e) # XXX: This can be removed when non-Expr args are disallowed rather # than deprecated. from sympy.core.relational import Relational if isinstance(b, Relational) or isinstance(e, Relational): raise TypeError('Relational can not be used in Pow') # XXX: This should raise TypeError once deprecation period is over: if not (isinstance(b, Expr) and isinstance(e, Expr)): SymPyDeprecationWarning( feature="Pow with non-Expr args", useinstead="Expr args", issue=19445, deprecated_since_version="1.7" ).warn() if evaluate: if b is S.Zero and e is S.NegativeInfinity: return S.ComplexInfinity if e is S.ComplexInfinity: return S.NaN if e is S.Zero: return S.One elif e is S.One: return b elif e == -1 and not b: return S.ComplexInfinity elif e.__class__.__name__ == "AccumulationBounds": if b == S.Exp1: from sympy import AccumBounds return AccumBounds(Pow(b, e.min), Pow(b, e.max)) # Only perform autosimplification if exponent or base is a Symbol or number elif (b.is_Symbol or b.is_number) and (e.is_Symbol or e.is_number) and\ e.is_integer and _coeff_isneg(b): if e.is_even: b = -b elif e.is_odd: return -Pow(-b, e) if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 return S.NaN elif b is S.One: if abs(e).is_infinite: return S.NaN return S.One else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar): from sympy import numer, denom, log, sign, im, factor_terms c, ex = factor_terms(e, sign=False).as_coeff_Mul() den = denom(ex) if isinstance(den, log) and den.args[0] == b: return S.Exp1**(c*numer(ex)) elif den.is_Add: s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*numer(ex)) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj = cls._exec_constructor_postprocessors(obj) if not isinstance(obj, Pow): return obj obj.is_commutative = (b.is_commutative and e.is_commutative) return obj def inverse(self, argindex=1): if self.base == S.Exp1: from sympy import log return log return None @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_refine(self, assumptions): from sympy.assumptions.ask import ask, Q b, e = self.as_base_exp() if ask(Q.integer(e), assumptions) and _coeff_isneg(b): if ask(Q.even(e), assumptions): return Pow(-b, e) elif ask(Q.odd(e), assumptions): return -Pow(-b, e) def _eval_power(self, other): from sympy import arg, exp, floor, im, log, re, sign b, e = self.as_base_exp() if b is S.NaN: return (b**e)**other # let __new__ handle it s = None if other.is_integer: s = 1 elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... s = 1 elif e.is_extended_real is not None: # helper functions =========================== def _half(e): """Return True if the exponent has a literal 2 as the denominator, else None.""" if getattr(e, 'q', None) == 2: return True n, d = e.as_numer_denom() if n.is_integer and d == 2: return True def _n2(e): """Return ``e`` evaluated to a Number with 2 significant digits, else None.""" try: rv = e.evalf(2, strict=True) if rv.is_Number: return rv except PrecisionExhausted: pass # =================================================== if e.is_extended_real: # we need _half(other) with constant floor or # floor(S.Half - e*arg(b)/2/pi) == 0 # handle -1 as special case if e == -1: # floor arg. is 1/2 + arg(b)/2/pi if _half(other): if b.is_negative is True: return S.NegativeOne**other*Pow(-b, e*other) elif b.is_negative is False: return Pow(b, -other) elif e.is_even: if b.is_extended_real: b = abs(b) if b.is_imaginary: b = abs(im(b))*S.ImaginaryUnit if (abs(e) < 1) == True or e == 1: s = 1 # floor = 0 elif b.is_extended_nonnegative: s = 1 # floor = 0 elif re(b).is_extended_nonnegative and (abs(e) < 2) == True: s = 1 # floor = 0 elif fuzzy_not(im(b).is_zero) and abs(e) == 2: s = 1 # floor = 0 elif _half(other): s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( S.Half - e*arg(b)/(2*S.Pi))) if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None else: # e.is_extended_real is False requires: # _half(other) with constant floor or # floor(S.Half - im(e*log(b))/2/pi) == 0 try: s = exp(2*S.ImaginaryUnit*S.Pi*other* floor(S.Half - im(e*log(b))/2/S.Pi)) # be careful to test that s is -1 or 1 b/c sign(I) == I: # so check that s is real if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None except PrecisionExhausted: s = None if s is not None: return s*Pow(b, e*other) def _eval_Mod(self, q): r"""A dispatched function to compute `b^e \bmod q`, dispatched by ``Mod``. Notes ===== Algorithms: 1. For unevaluated integer power, use built-in ``pow`` function with 3 arguments, if powers are not too large wrt base. 2. For very large powers, use totient reduction if e >= lg(m). Bound on m, is for safe factorization memory wise ie m^(1/4). For pollard-rho to be faster than built-in pow lg(e) > m^(1/4) check is added. 3. For any unevaluated power found in `b` or `e`, the step 2 will be recursed down to the base and the exponent such that the `b \bmod q` becomes the new base and ``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then the computation for the reduced expression can be done. """ from sympy.ntheory import totient from .mod import Mod base, exp = self.base, self.exp if exp.is_integer and exp.is_positive: if q.is_integer and base % q == 0: return S.Zero if base.is_Integer and exp.is_Integer and q.is_Integer: b, e, m = int(base), int(exp), int(q) mb = m.bit_length() if mb <= 80 and e >= mb and e.bit_length()**4 >= m: phi = totient(m) return Integer(pow(b, phi + e%phi, m)) return Integer(pow(b, e, m)) if isinstance(base, Pow) and base.is_integer and base.is_number: base = Mod(base, q) return Mod(Pow(base, exp, evaluate=False), q) if isinstance(exp, Pow) and exp.is_integer and exp.is_number: bit_length = int(q).bit_length() # XXX Mod-Pow actually attempts to do a hanging evaluation # if this dispatched function returns None. # May need some fixes in the dispatcher itself. if bit_length <= 80: phi = totient(q) exp = phi + Mod(exp, phi) return Mod(Pow(base, exp, evaluate=False), q) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_negative(self): ext_neg = Pow._eval_is_extended_negative(self) if ext_neg is True: return self.is_finite return ext_neg def _eval_is_positive(self): ext_pos = Pow._eval_is_extended_positive(self) if ext_pos is True: return self.is_finite return ext_pos def _eval_is_extended_positive(self): from sympy import log if self.base == self.exp: if self.base.is_extended_nonnegative: return True elif self.base.is_positive: if self.exp.is_real: return True elif self.base.is_extended_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_zero: if self.exp.is_extended_real: return self.exp.is_zero elif self.base.is_extended_nonpositive: if self.exp.is_odd: return False elif self.base.is_imaginary: if self.exp.is_integer: m = self.exp % 4 if m.is_zero: return True if m.is_integer and m.is_zero is False: return False if self.exp.is_imaginary: return log(self.base).is_imaginary def _eval_is_extended_negative(self): if self.exp is S(1)/2: if self.base.is_complex or self.base.is_extended_real: return False if self.base.is_extended_negative: if self.exp.is_odd and self.base.is_finite: return True if self.exp.is_even: return False elif self.base.is_extended_positive: if self.exp.is_extended_real: return False elif self.base.is_zero: if self.exp.is_extended_real: return False elif self.base.is_extended_nonnegative: if self.exp.is_extended_nonnegative: return False elif self.base.is_extended_nonpositive: if self.exp.is_even: return False elif self.base.is_extended_real: if self.exp.is_even: return False def _eval_is_zero(self): if self.base.is_zero: if self.exp.is_extended_positive: return True elif self.exp.is_extended_nonpositive: return False elif self.base == S.Exp1: return self.exp is S.NegativeInfinity elif self.base.is_zero is False: if self.base.is_finite and self.exp.is_finite: return False elif self.exp.is_negative: return self.base.is_infinite elif self.exp.is_nonnegative: return False elif self.exp.is_infinite and self.exp.is_extended_real: if (1 - abs(self.base)).is_extended_positive: return self.exp.is_extended_positive elif (1 - abs(self.base)).is_extended_negative: return self.exp.is_extended_negative elif self.base.is_finite and self.exp.is_negative: # when self.base.is_zero is None return False def _eval_is_integer(self): b, e = self.args if b.is_rational: if b.is_integer is False and e.is_positive: return False # rat**nonneg if b.is_integer and e.is_integer: if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): return False if b.is_Number and e.is_Number: check = self.func(*self.args) return check.is_Integer if e.is_negative and b.is_positive and (b - 1).is_positive: return False if e.is_negative and b.is_negative and (b + 1).is_negative: return False def _eval_is_extended_real(self): from ..functions import arg, log, exp from .mul import Mul if self.base is S.Exp1: if self.exp.is_extended_real: return True elif self.exp.is_imaginary: return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even real_b = self.base.is_extended_real if real_b is None: if self.base.func == exp and self.base.exp.is_imaginary: return self.exp.is_imaginary if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary: return self.exp.is_imaginary return real_e = self.exp.is_extended_real if real_e is None: return if real_b and real_e: if self.base.is_extended_positive: return True elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative: return True elif self.exp.is_integer and self.base.is_extended_nonzero: return True elif self.exp.is_integer and self.exp.is_nonnegative: return True elif self.base.is_extended_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_extended_negative and self.base.is_zero is False: return Pow(self.base, -self.exp).is_extended_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif im_e and log(self.base).is_imaginary: return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return Mul( self.base**c, self.base**a, evaluate=False).is_extended_real elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): if (self.exp/2).is_integer is False: return False if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: if self.base.is_rational and c.is_rational: if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero: return False ok = (c*log(self.base)/S.Pi).is_integer if ok is not None: return ok if real_b is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi if i.is_complex: # finite return i.is_integer def _eval_is_complex(self): if self.base == S.Exp1: return fuzzy_or([self.exp.is_complex, self.exp.is_extended_negative]) if all(a.is_complex for a in self.args) and self._eval_is_finite(): return True def _eval_is_imaginary(self): from sympy import arg, log if self.base.is_imaginary: if self.exp.is_integer: odd = self.exp.is_odd if odd is not None: return odd return if self.base == S.Exp1: f = 2 * self.exp / (S.Pi*S.ImaginaryUnit) # exp(pi*integer) = 1 or -1, so not imaginary if f.is_even: return False # exp(pi*integer + pi/2) = I or -I, so it is imaginary if f.is_odd: return True return None if self.exp.is_imaginary: imlog = log(self.base).is_imaginary if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if self.base.is_extended_real and self.exp.is_extended_real: if self.base.is_positive: return False else: rat = self.exp.is_rational if not rat: return rat if self.exp.is_integer: return False else: half = (2*self.exp).is_integer if half: return self.base.is_negative return half if self.base.is_extended_real is False: # we already know it's not imag i = arg(self.base)*self.exp/S.Pi isodd = (2*i).is_odd if isodd is not None: return isodd def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_finite(self): if self.exp.is_negative: if self.base.is_zero: return False if self.base.is_infinite or self.base.is_nonzero: return True c1 = self.base.is_finite if c1 is None: return c2 = self.exp.is_finite if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): return True def _eval_is_prime(self): ''' An integer raised to the n(>=2)-th power cannot be a prime. ''' if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive: return False def _eval_is_composite(self): """ A power is composite if both base and exponent are greater than 1 """ if (self.base.is_integer and self.exp.is_integer and ((self.base - 1).is_positive and (self.exp - 1).is_positive or (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)): return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): from sympy import exp, log, Symbol, AccumBounds if isinstance(self.exp, AccumBounds): b = self.base.subs(old, new) e = self.exp.subs(old, new) if isinstance(e, AccumBounds): return e.__rpow__(b) return self.func(b, e) def _check(ct1, ct2, old): """Return (bool, pow, remainder_pow) where, if bool is True, then the exponent of Pow `old` will combine with `pow` so the substitution is valid, otherwise bool will be False. For noncommutative objects, `pow` will be an integer, and a factor `Pow(old.base, remainder_pow)` needs to be included. If there is no such factor, None is returned. For commutative objects, remainder_pow is always None. cti are the coefficient and terms of an exponent of self or old In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) will give y**2 since (b**x)**2 == b**(2*x); if that equality does not hold then the substitution should not occur so `bool` will be False. """ coeff1, terms1 = ct1 coeff2, terms2 = ct2 if terms1 == terms2: if old.is_commutative: # Allow fractional powers for commutative objects pow = coeff1/coeff2 try: as_int(pow, strict=False) combines = True except ValueError: combines = isinstance(Pow._eval_power( Pow(*old.as_base_exp(), evaluate=False), pow), (Pow, exp, Symbol)) return combines, pow, None else: # With noncommutative symbols, substitute only integer powers if not isinstance(terms1, tuple): terms1 = (terms1,) if not all(term.is_integer for term in terms1): return False, None, None try: # Round pow toward zero pow, remainder = divmod(as_int(coeff1), as_int(coeff2)) if pow < 0 and remainder != 0: pow += 1 remainder -= as_int(coeff2) if remainder == 0: remainder_pow = None else: remainder_pow = Mul(remainder, *terms1) return True, pow, remainder_pow except ValueError: # Can't substitute pass return False, None, None if old == self.base or (old == exp and self.base == S.Exp1): if new.is_Function and isinstance(new, Callable): return new(self.exp._subs(old, new)) else: return new**self.exp._subs(old, new) # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 if isinstance(old, self.func) and self.exp == old.exp: l = log(self.base, old.base) if l.is_Number: return Pow(new, l) if isinstance(old, self.func) and self.base == old.base: if self.exp.is_Add is False: ct1 = self.exp.as_independent(Symbol, as_Add=False) ct2 = old.exp.as_independent(Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 result = self.func(new, pow) if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) oarg = old.exp new_l = [] o_al = [] ct2 = oarg.as_coeff_mul() for a in self.exp.args: newa = a._subs(old, new) ct1 = newa.as_coeff_mul() ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: new_l.append(new**pow) if remainder_pow is not None: o_al.append(remainder_pow) continue elif not old.is_commutative and not newa.is_integer: # If any term in the exponent is non-integer, # we do not do any substitutions in the noncommutative case return o_al.append(newa) if new_l: expo = Add(*o_al) new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base) return Mul(*new_l) if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive: ct1 = old.exp.as_independent(Symbol, as_Add=False) ct2 = (self.exp*log(self.base)).as_independent( Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result def as_base_exp(self): """Return base and exp of self. Explnation ========== If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1 and b.q != 1: return Integer(b.q), -e return b, e def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) if self.is_extended_real: return self def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose if self.base == S.Exp1: return self.func(S.Exp1, self.exp.transpose()) i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite) if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n + m) -> a**n*a**m""" b = self.base e = self.exp if b == S.Exp1: from sympy import Sum, Product if isinstance(e, Sum) and e.is_commutative: return Product(self.func(b, e.function), *e.limits) if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(b, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = Mul(*[i**-1 for i in nc[::-1]]*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False, binary=True) def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_extended_nonnegative) sifted = sift(maybe_real, pred) nonneg = sifted[True] other += sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: if e.is_Rational: npow, cargs = sift(cargs, lambda x: x.is_Pow and x.exp.is_Rational and x.base.is_number, binary=True) rv = Mul(*[self.func(b.func(*b.args), e) for b in npow]) rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n , where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): from sympy import atan2, cos, im, re, sin from sympy.polys.polytools import poly if self.exp.is_Integer: exp = self.exp re_e, im_e = self.base.as_real_imag(deep=deep) if not im_e: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) if expr != self: return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re_e**2 + im_e**2 re_e, im_e = re_e/mag, -im_e/mag if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp) if expr != self: return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}), im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e})) elif self.exp.is_Rational: re_e, im_e = self.base.as_real_imag(deep=deep) if im_e.is_zero and self.exp is S.Half: if re_e.is_extended_nonnegative: return self, S.Zero if re_e.is_extended_nonpositive: return S.Zero, (-self.base)**self.exp # XXX: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half) t = atan2(im_e, re_e) rp, tp = self.func(r, self.exp), t*self.exp return rp*cos(tp), rp*sin(tp) elif self.base is S.Exp1: from ..functions import exp re_e, im_e = self.exp.as_real_imag() if deep: re_e = re_e.expand(deep, **hints) im_e = im_e.expand(deep, **hints) c, s = cos(im_e), sin(im_e) return exp(re_e)*c, exp(re_e)*s else: if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (re(expanded), im(expanded)) else: return re(self), im(self) def _eval_derivative(self, s): from sympy import log dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() if base == S.Exp1: # Use mpmath function associated to class "exp": from sympy import exp as exp_function return exp_function(self.exp, evaluate=False)._eval_evalf(prec) base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_extended_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return bool(self.base._eval_is_polynomial(syms) and self.exp.is_Integer and (self.exp >= 0)) else: return True def _eval_is_rational(self): # The evaluation of self.func below can be very expensive in the case # of integer**integer if the exponent is large. We should try to exit # before that if possible: if (self.exp.is_integer and self.base.is_rational and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))): return True p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: if b.is_rational: if fuzzy_not(b.is_zero) or e.is_nonnegative: return True if b == e: # always rational, even for 0**0 return True elif b.is_irrational: return e.is_zero if b is S.Exp1: if e.is_rational and e.is_nonzero: return False def _eval_is_algebraic(self): def _is_one(expr): try: return (expr - 1).is_zero except ValueError: # when the operation is not allowed return False if self.base.is_zero or _is_one(self.base): return True elif self.base is S.Exp1: s = self.func(*self.args) if s.func == self.func: if self.exp.is_nonzero: if self.exp.is_algebraic: return False elif (self.exp/S.Pi).is_rational: return False elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational: return True else: return s.is_algebraic elif self.exp.is_rational: if self.base.is_algebraic is False: return self.exp.is_zero if self.base.is_zero is False: if self.exp.is_nonzero: return self.base.is_algebraic elif self.base.is_algebraic: return True if self.exp.is_positive: return self.base.is_algebraic elif self.base.is_algebraic and self.exp.is_algebraic: if ((fuzzy_not(self.base.is_zero) and fuzzy_not(_is_one(self.base))) or self.base.is_integer is False or self.base.is_irrational): return self.exp.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_meromorphic(self, x, a): # f**g is meromorphic if g is an integer and f is meromorphic. # E**(log(f)*g) is meromorphic if log(f)*g is meromorphic # and finite. base_merom = self.base._eval_is_meromorphic(x, a) exp_integer = self.exp.is_Integer if exp_integer: return base_merom exp_merom = self.exp._eval_is_meromorphic(x, a) if base_merom is False: # f**g = E**(log(f)*g) may be meromorphic if the # singularities of log(f) and g cancel each other, # for example, if g = 1/log(f). Hence, return False if exp_merom else None elif base_merom is None: return None b = self.base.subs(x, a) # b is extended complex as base is meromorphic. # log(base) is finite and meromorphic when b != 0, zoo. b_zero = b.is_zero if b_zero: log_defined = False else: log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero))) if log_defined is False: # zero or pole of base return exp_integer # False or None elif log_defined is None: return None if not exp_merom: return exp_merom # False or None return self.exp.subs(x, a).is_finite def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def _eval_rewrite_as_exp(self, base, expo, **kwargs): from sympy import exp, log, I, arg if base.is_zero or base.has(exp) or expo.has(exp): return base**expo if base.has(Symbol): # delay evaluation if expo is non symbolic # (as exp(x*log(5)) automatically reduces to x**5) if global_parameters.exp_is_pow: return Pow(S.Exp1, log(base)*expo, evaluate=expo.has(Symbol)) else: return exp(log(base)*expo, evaluate=expo.has(Symbol)) else: return exp((log(abs(base)) + I*arg(base))*expo) def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if not neg_exp and not (-exp).is_negative: neg_exp = _coeff_isneg(exp) int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_extended_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp if exp.is_infinite: if n is S.One and d is not S.One: return n, self.func(d, exp) if n is not S.One and d is S.One: return self.func(n, exp), d return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict={}, old=False): expr = _sympify(expr) repl_dict = repl_dict.copy() # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = self.exp.matches(S.Zero, repl_dict) if d is not None: return d # make sure the expression to be matched is an Expr if not isinstance(expr, Expr): return None b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx, cdir=0): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). # The series expansion of b**e is computed as follows: # 1) We express b as f*(1 + g) where f is the leading term of b. # g has order O(x**d) where d is strictly positive. # 2) Then b**e = (f**e)*((1 + g)**e). # (1 + g)**e is computed using binomial series. from sympy import im, I, ceiling, polygamma, logcombine, EulerGamma, nan, zoo, factorial, ff, PoleError, O, powdenest, Wild from itertools import product from ..functions import exp, log from ..series import Order, limit from ..simplify import powsimp if self.base is S.Exp1: e_series = self.exp.nseries(x, n=n, logx=logx) if e_series.is_Order: return 1 + e_series e0 = limit(e_series.removeO(), x, 0) if e0 in (-S.NegativeInfinity, S.Infinity): return self t = e_series - e0 exp_series = term = exp(e0) # series of exp(e0 + t) in t for i in range(1, n): term *= t/i term = term.nseries(x, n=n, logx=logx) exp_series += term exp_series += Order(t**n, x) return powsimp(exp_series, deep=True, combine='exp') self = powdenest(self, force=True).trigsimp() b, e = self.as_base_exp() if e.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN): raise PoleError() if e.has(x): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) if logx is not None and b.has(log): c, ex = symbols('c, ex', cls=Wild, exclude=[x]) b = b.replace(log(c*x**ex), log(c) + ex*logx) self = b**e b = b.removeO() try: if b.has(polygamma, EulerGamma) and logx is not None: raise ValueError() _, m = b.leadterm(x) except (ValueError, NotImplementedError): b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO() if b.has(nan, zoo): raise NotImplementedError() _, m = b.leadterm(x) if e.has(log): e = logcombine(e).cancel() if not (m.is_zero or e.is_number and e.is_real): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) f = b.as_leading_term(x) g = (b/f - S.One).cancel() maxpow = n - m*e if maxpow.is_negative: return O(x**(m*e), x) if g.is_zero: return f**e def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < maxpow: res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2] return res try: _, d = g.leadterm(x) except (ValueError, NotImplementedError): if limit(g/x**maxpow, x, 0) == 0: # g has higher order zero return f**e + e*f**e*g # first term of binomial series else: raise NotImplementedError() if not d.is_positive: g = g.simplify() _, d = g.leadterm(x) if not d.is_positive: raise NotImplementedError() gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO() gterms = {} for term in Add.make_args(gpoly): co1, e1 = coeff_exp(term, x) gterms[e1] = gterms.get(e1, S.Zero) + co1 k = S.One terms = {S.Zero: S.One} tk = gterms while (k*d - maxpow).is_negative: coeff = ff(e, k)/factorial(k) for ex in tk: terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex] tk = mul(tk, gterms) k += S.One if (not e.is_integer and m.is_zero and f.is_real and f.is_negative and im((b - f).dir(x, cdir)) < 0): inco, inex = coeff_exp(f**e*exp(-2*e*S.Pi*I), x) else: inco, inex = coeff_exp(f**e, x) res = S.Zero for e1 in terms: ex = e1 + inex res += terms[e1]*inco*x**(ex) if not (e.is_integer and e.is_positive and (e*d - n).is_nonpositive and res == _mexpand(self)): res += O(x**n, x) return _mexpand(res) def _eval_as_leading_term(self, x, cdir=0): from ..series import Order from sympy import exp, I, im, log e = self.exp b = self.base if self.base is S.Exp1: arg = self.exp if arg.is_Add: return Mul(*[(S.Exp1**f).as_leading_term(x) for f in arg.args]) arg_1 = arg.as_leading_term(x) if Order(x, x).contains(arg_1): return S.One if Order(1, x).contains(arg_1): return S.Exp1**arg_1 #################################################### # The correct result here should be 'None'. # # Indeed arg in not bounded as x tends to 0. # # Consequently the series expansion does not admit # # the leading term. # # For compatibility reasons, the return value here # # is the original function, i.e. exp(arg), # # instead of None. # #################################################### return S.Exp1**arg elif e.has(x): return exp(e * log(b)).as_leading_term(x, cdir=cdir) else: f = b.as_leading_term(x, cdir=cdir) if (not e.is_integer and f.is_constant() and f.is_real and f.is_negative and im((b - f).dir(x, cdir)) < 0): return self.func(f, e) * exp(-2 * e * S.Pi * I) return self.func(f, e) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e from sympy import binomial return binomial(self.exp, n) * self.func(x, n) def taylor_term(self, n, x, *previous_terms): if self.base is not S.Exp1: return super().taylor_term(n, x, *previous_terms) from sympy import sympify, factorial if n < 0: return S.Zero if n == 0: return S.One x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n return x**n/factorial(n) def _sage_(self): return self.args[0]._sage_()**self.args[1]._sage_() def _eval_rewrite_as_sin(self, base, exp): from ..functions import sin if self.base is S.Exp1: return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp) def _eval_rewrite_as_cos(self, base, exp): from ..functions import cos if self.base is S.Exp1: return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2) def _eval_rewrite_as_tanh(self, base, exp): from ..functions import tanh if self.base is S.Exp1: return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2)) def _eval_rewrite_as_sqrt(self, base, exp, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if base is not S.Exp1: return None if exp.is_Mul: coeff = exp.coeff(S.Pi * S.ImaginaryUnit) if coeff and coeff.is_number: cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + S.ImaginaryUnit*sine def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) ce, pe = e.as_content_primitive(radical=radical, clear=clear) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh + r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let sympy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e) def is_constant(self, *wrt, **flags): expr = self if flags.get('simplify', True): expr = expr.simplify() b, e = expr.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != expr: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0) def _eval_difference_delta(self, n, step): b, e = self.args if e.has(n) and not b.has(n): new_e = e.subs(n, n + step) return (b**(new_e - e) - 1) * self power = Dispatcher('power') power.add((object, object), Pow) from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols
ee34256ef1fb2a232f8ea1a97ea8026d527656899c3ab883c552fee3cc4bded8
"""Tools for manipulating of large commutative expressions. """ from sympy.core.add import Add from sympy.core.compatibility import iterable, is_sequence, SYMPY_INTS from sympy.core.mul import Mul, _keep_coeff from sympy.core.power import Pow from sympy.core.basic import Basic, preorder_traversal from sympy.core.expr import Expr from sympy.core.sympify import sympify from sympy.core.numbers import Rational, Integer, Number, I from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.coreerrors import NonCommutativeExpression from sympy.core.containers import Tuple, Dict from sympy.utilities import default_sort_key from sympy.utilities.iterables import (common_prefix, common_suffix, variations, ordered) from collections import defaultdict _eps = Dummy(positive=True) def _isnumber(i): return isinstance(i, (SYMPY_INTS, float)) or i.is_Number def _monotonic_sign(self): """Return the value closest to 0 that ``self`` may have if all symbols are signed and the result is uniformly the same sign for all values of symbols. If a symbol is only signed but not known to be an integer or the result is 0 then a symbol representative of the sign of self will be returned. Otherwise, None is returned if a) the sign could be positive or negative or b) self is not in one of the following forms: - L(x, y, ...) + A: a function linear in all symbols x, y, ... with an additive constant; if A is zero then the function can be a monomial whose sign is monotonic over the range of the variables, e.g. (x + 1)**3 if x is nonnegative. - A/L(x, y, ...) + B: the inverse of a function linear in all symbols x, y, ... that does not have a sign change from positive to negative for any set of values for the variables. - M(x, y, ...) + A: a monomial M whose factors are all signed and a constant, A. - A/M(x, y, ...) + B: the inverse of a monomial and constants A and B. - P(x): a univariate polynomial Examples ======== >>> from sympy.core.exprtools import _monotonic_sign as F >>> from sympy import Dummy >>> nn = Dummy(integer=True, nonnegative=True) >>> p = Dummy(integer=True, positive=True) >>> p2 = Dummy(integer=True, positive=True) >>> F(nn + 1) 1 >>> F(p - 1) _nneg >>> F(nn*p + 1) 1 >>> F(p2*p + 1) 2 >>> F(nn - 1) # could be negative, zero or positive """ if not self.is_extended_real: return if (-self).is_Symbol: rv = _monotonic_sign(-self) return rv if rv is None else -rv if not self.is_Add and self.as_numer_denom()[1].is_number: s = self if s.is_prime: if s.is_odd: return S(3) else: return S(2) elif s.is_composite: if s.is_odd: return S(9) else: return S(4) elif s.is_positive: if s.is_even: if s.is_prime is False: return S(4) else: return S(2) elif s.is_integer: return S.One else: return _eps elif s.is_extended_negative: if s.is_even: return S(-2) elif s.is_integer: return S.NegativeOne else: return -_eps if s.is_zero or s.is_extended_nonpositive or s.is_extended_nonnegative: return S.Zero return None # univariate polynomial free = self.free_symbols if len(free) == 1: if self.is_polynomial(): from sympy.polys.polytools import real_roots from sympy.polys.polyroots import roots from sympy.polys.polyerrors import PolynomialError x = free.pop() x0 = _monotonic_sign(x) if x0 == _eps or x0 == -_eps: x0 = S.Zero if x0 is not None: d = self.diff(x) if d.is_number: currentroots = [] else: try: currentroots = real_roots(d) except (PolynomialError, NotImplementedError): currentroots = [r for r in roots(d, x) if r.is_extended_real] y = self.subs(x, x0) if x.is_nonnegative and all(r <= x0 for r in currentroots): if y.is_nonnegative and d.is_positive: if y: return y if y.is_positive else Dummy('pos', positive=True) else: return Dummy('nneg', nonnegative=True) if y.is_nonpositive and d.is_negative: if y: return y if y.is_negative else Dummy('neg', negative=True) else: return Dummy('npos', nonpositive=True) elif x.is_nonpositive and all(r >= x0 for r in currentroots): if y.is_nonnegative and d.is_negative: if y: return Dummy('pos', positive=True) else: return Dummy('nneg', nonnegative=True) if y.is_nonpositive and d.is_positive: if y: return Dummy('neg', negative=True) else: return Dummy('npos', nonpositive=True) else: n, d = self.as_numer_denom() den = None if n.is_number: den = _monotonic_sign(d) elif not d.is_number: if _monotonic_sign(n) is not None: den = _monotonic_sign(d) if den is not None and (den.is_positive or den.is_negative): v = n*den if v.is_positive: return Dummy('pos', positive=True) elif v.is_nonnegative: return Dummy('nneg', nonnegative=True) elif v.is_negative: return Dummy('neg', negative=True) elif v.is_nonpositive: return Dummy('npos', nonpositive=True) return None # multivariate c, a = self.as_coeff_Add() v = None if not a.is_polynomial(): # F/A or A/F where A is a number and F is a signed, rational monomial n, d = a.as_numer_denom() if not (n.is_number or d.is_number): return if ( a.is_Mul or a.is_Pow) and \ a.is_rational and \ all(p.exp.is_Integer for p in a.atoms(Pow) if p.is_Pow) and \ (a.is_positive or a.is_negative): v = S.One for ai in Mul.make_args(a): if ai.is_number: v *= ai continue reps = {} for x in ai.free_symbols: reps[x] = _monotonic_sign(x) if reps[x] is None: return v *= ai.subs(reps) elif c: # signed linear expression if not any(p for p in a.atoms(Pow) if not p.is_number) and (a.is_nonpositive or a.is_nonnegative): free = list(a.free_symbols) p = {} for i in free: v = _monotonic_sign(i) if v is None: return p[i] = v or (_eps if i.is_nonnegative else -_eps) v = a.xreplace(p) if v is not None: rv = v + c if v.is_nonnegative and rv.is_positive: return rv.subs(_eps, 0) if v.is_nonpositive and rv.is_negative: return rv.subs(_eps, 0) def decompose_power(expr): """ Decompose power into symbolic base and integer exponent. Explanation =========== This is strictly only valid if the exponent from which the integer is extracted is itself an integer or the base is positive. These conditions are assumed and not checked here. Examples ======== >>> from sympy.core.exprtools import decompose_power >>> from sympy.abc import x, y >>> decompose_power(x) (x, 1) >>> decompose_power(x**2) (x, 2) >>> decompose_power(x**(2*y)) (x**y, 2) >>> decompose_power(x**(2*y/3)) (x**(y/3), 2) """ base, exp = expr.as_base_exp() if exp.is_Number: if exp.is_Rational: if not exp.is_Integer: base = Pow(base, Rational(1, exp.q)) exp = exp.p else: base, exp = expr, 1 else: exp, tail = exp.as_coeff_Mul(rational=True) if exp is S.NegativeOne: base, exp = Pow(base, tail), -1 elif exp is not S.One: tail = _keep_coeff(Rational(1, exp.q), tail) base, exp = Pow(base, tail), exp.p else: base, exp = expr, 1 return base, exp def decompose_power_rat(expr): """ Decompose power into symbolic base and rational exponent. """ base, exp = expr.as_base_exp() if exp.is_Number: if not exp.is_Rational: base, exp = expr, 1 else: exp, tail = exp.as_coeff_Mul(rational=True) if exp is S.NegativeOne: base, exp = Pow(base, tail), -1 elif exp is not S.One: tail = _keep_coeff(Rational(1, exp.q), tail) base, exp = Pow(base, tail), exp.p else: base, exp = expr, 1 return base, exp class Factors: """Efficient representation of ``f_1*f_2*...*f_n``.""" __slots__ = ('factors', 'gens') def __init__(self, factors=None): # Factors """Initialize Factors from dict or expr. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x >>> from sympy import I >>> e = 2*x**3 >>> Factors(e) Factors({2: 1, x: 3}) >>> Factors(e.as_powers_dict()) Factors({2: 1, x: 3}) >>> f = _ >>> f.factors # underlying dictionary {2: 1, x: 3} >>> f.gens # base of each factor frozenset({2, x}) >>> Factors(0) Factors({0: 1}) >>> Factors(I) Factors({I: 1}) Notes ===== Although a dictionary can be passed, only minimal checking is performed: powers of -1 and I are made canonical. """ if isinstance(factors, (SYMPY_INTS, float)): factors = S(factors) if isinstance(factors, Factors): factors = factors.factors.copy() elif factors is None or factors is S.One: factors = {} elif factors is S.Zero or factors == 0: factors = {S.Zero: S.One} elif isinstance(factors, Number): n = factors factors = {} if n < 0: factors[S.NegativeOne] = S.One n = -n if n is not S.One: if n.is_Float or n.is_Integer or n is S.Infinity: factors[n] = S.One elif n.is_Rational: # since we're processing Numbers, the denominator is # stored with a negative exponent; all other factors # are left . if n.p != 1: factors[Integer(n.p)] = S.One factors[Integer(n.q)] = S.NegativeOne else: raise ValueError('Expected Float|Rational|Integer, not %s' % n) elif isinstance(factors, Basic) and not factors.args: factors = {factors: S.One} elif isinstance(factors, Expr): c, nc = factors.args_cnc() i = c.count(I) for _ in range(i): c.remove(I) factors = dict(Mul._from_args(c).as_powers_dict()) # Handle all rational Coefficients for f in list(factors.keys()): if isinstance(f, Rational) and not isinstance(f, Integer): p, q = Integer(f.p), Integer(f.q) factors[p] = (factors[p] if p in factors else S.Zero) + factors[f] factors[q] = (factors[q] if q in factors else S.Zero) - factors[f] factors.pop(f) if i: factors[I] = factors.get(I, S.Zero) + i if nc: factors[Mul(*nc, evaluate=False)] = S.One else: factors = factors.copy() # /!\ should be dict-like # tidy up -/+1 and I exponents if Rational handle = [] for k in factors: if k is I or k in (-1, 1): handle.append(k) if handle: i1 = S.One for k in handle: if not _isnumber(factors[k]): continue i1 *= k**factors.pop(k) if i1 is not S.One: for a in i1.args if i1.is_Mul else [i1]: # at worst, -1.0*I*(-1)**e if a is S.NegativeOne: factors[a] = S.One elif a is I: factors[I] = S.One elif a.is_Pow: factors[a.base] = factors.get(a.base, S.Zero) + a.exp elif a == 1: factors[a] = S.One elif a == -1: factors[-a] = S.One factors[S.NegativeOne] = S.One else: raise ValueError('unexpected factor in i1: %s' % a) self.factors = factors keys = getattr(factors, 'keys', None) if keys is None: raise TypeError('expecting Expr or dictionary') self.gens = frozenset(keys()) def __hash__(self): # Factors keys = tuple(ordered(self.factors.keys())) values = [self.factors[k] for k in keys] return hash((keys, values)) def __repr__(self): # Factors return "Factors({%s})" % ', '.join( ['%s: %s' % (k, v) for k, v in ordered(self.factors.items())]) @property def is_zero(self): # Factors """ >>> from sympy.core.exprtools import Factors >>> Factors(0).is_zero True """ f = self.factors return len(f) == 1 and S.Zero in f @property def is_one(self): # Factors """ >>> from sympy.core.exprtools import Factors >>> Factors(1).is_one True """ return not self.factors def as_expr(self): # Factors """Return the underlying expression. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y >>> Factors((x*y**2).as_powers_dict()).as_expr() x*y**2 """ args = [] for factor, exp in self.factors.items(): if exp != 1: if isinstance(exp, Integer): b, e = factor.as_base_exp() e = _keep_coeff(exp, e) args.append(b**e) else: args.append(factor**exp) else: args.append(factor) return Mul(*args) def mul(self, other): # Factors """Return Factors of ``self * other``. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.mul(b) Factors({x: 2, y: 3, z: -1}) >>> a*b Factors({x: 2, y: 3, z: -1}) """ if not isinstance(other, Factors): other = Factors(other) if any(f.is_zero for f in (self, other)): return Factors(S.Zero) factors = dict(self.factors) for factor, exp in other.factors.items(): if factor in factors: exp = factors[factor] + exp if not exp: del factors[factor] continue factors[factor] = exp return Factors(factors) def normal(self, other): """Return ``self`` and ``other`` with ``gcd`` removed from each. The only differences between this and method ``div`` is that this is 1) optimized for the case when there are few factors in common and 2) this does not raise an error if ``other`` is zero. See Also ======== div """ if not isinstance(other, Factors): other = Factors(other) if other.is_zero: return (Factors(), Factors(S.Zero)) if self.is_zero: return (Factors(S.Zero), Factors()) self_factors = dict(self.factors) other_factors = dict(other.factors) for factor, self_exp in self.factors.items(): try: other_exp = other.factors[factor] except KeyError: continue exp = self_exp - other_exp if not exp: del self_factors[factor] del other_factors[factor] elif _isnumber(exp): if exp > 0: self_factors[factor] = exp del other_factors[factor] else: del self_factors[factor] other_factors[factor] = -exp else: r = self_exp.extract_additively(other_exp) if r is not None: if r: self_factors[factor] = r del other_factors[factor] else: # should be handled already del self_factors[factor] del other_factors[factor] else: sc, sa = self_exp.as_coeff_Add() if sc: oc, oa = other_exp.as_coeff_Add() diff = sc - oc if diff > 0: self_factors[factor] -= oc other_exp = oa elif diff < 0: self_factors[factor] -= sc other_factors[factor] -= sc other_exp = oa - diff else: self_factors[factor] = sa other_exp = oa if other_exp: other_factors[factor] = other_exp else: del other_factors[factor] return Factors(self_factors), Factors(other_factors) def div(self, other): # Factors """Return ``self`` and ``other`` with ``gcd`` removed from each. This is optimized for the case when there are many factors in common. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> from sympy import S >>> a = Factors((x*y**2).as_powers_dict()) >>> a.div(a) (Factors({}), Factors({})) >>> a.div(x*z) (Factors({y: 2}), Factors({z: 1})) The ``/`` operator only gives ``quo``: >>> a/x Factors({y: 2}) Factors treats its factors as though they are all in the numerator, so if you violate this assumption the results will be correct but will not strictly correspond to the numerator and denominator of the ratio: >>> a.div(x/z) (Factors({y: 2}), Factors({z: -1})) Factors is also naive about bases: it does not attempt any denesting of Rational-base terms, for example the following does not become 2**(2*x)/2. >>> Factors(2**(2*x + 2)).div(S(8)) (Factors({2: 2*x + 2}), Factors({8: 1})) factor_terms can clean up such Rational-bases powers: >>> from sympy.core.exprtools import factor_terms >>> n, d = Factors(2**(2*x + 2)).div(S(8)) >>> n.as_expr()/d.as_expr() 2**(2*x + 2)/8 >>> factor_terms(_) 2**(2*x)/2 """ quo, rem = dict(self.factors), {} if not isinstance(other, Factors): other = Factors(other) if other.is_zero: raise ZeroDivisionError if self.is_zero: return (Factors(S.Zero), Factors()) for factor, exp in other.factors.items(): if factor in quo: d = quo[factor] - exp if _isnumber(d): if d <= 0: del quo[factor] if d >= 0: if d: quo[factor] = d continue exp = -d else: r = quo[factor].extract_additively(exp) if r is not None: if r: quo[factor] = r else: # should be handled already del quo[factor] else: other_exp = exp sc, sa = quo[factor].as_coeff_Add() if sc: oc, oa = other_exp.as_coeff_Add() diff = sc - oc if diff > 0: quo[factor] -= oc other_exp = oa elif diff < 0: quo[factor] -= sc other_exp = oa - diff else: quo[factor] = sa other_exp = oa if other_exp: rem[factor] = other_exp else: assert factor not in rem continue rem[factor] = exp return Factors(quo), Factors(rem) def quo(self, other): # Factors """Return numerator Factor of ``self / other``. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.quo(b) # same as a/b Factors({y: 1}) """ return self.div(other)[0] def rem(self, other): # Factors """Return denominator Factors of ``self / other``. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.rem(b) Factors({z: -1}) >>> a.rem(a) Factors({}) """ return self.div(other)[1] def pow(self, other): # Factors """Return self raised to a non-negative integer power. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y >>> a = Factors((x*y**2).as_powers_dict()) >>> a**2 Factors({x: 2, y: 4}) """ if isinstance(other, Factors): other = other.as_expr() if other.is_Integer: other = int(other) if isinstance(other, SYMPY_INTS) and other >= 0: factors = {} if other: for factor, exp in self.factors.items(): factors[factor] = exp*other return Factors(factors) else: raise ValueError("expected non-negative integer, got %s" % other) def gcd(self, other): # Factors """Return Factors of ``gcd(self, other)``. The keys are the intersection of factors with the minimum exponent for each factor. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.gcd(b) Factors({x: 1, y: 1}) """ if not isinstance(other, Factors): other = Factors(other) if other.is_zero: return Factors(self.factors) factors = {} for factor, exp in self.factors.items(): factor, exp = sympify(factor), sympify(exp) if factor in other.factors: lt = (exp - other.factors[factor]).is_negative if lt == True: factors[factor] = exp elif lt == False: factors[factor] = other.factors[factor] return Factors(factors) def lcm(self, other): # Factors """Return Factors of ``lcm(self, other)`` which are the union of factors with the maximum exponent for each factor. Examples ======== >>> from sympy.core.exprtools import Factors >>> from sympy.abc import x, y, z >>> a = Factors((x*y**2).as_powers_dict()) >>> b = Factors((x*y/z).as_powers_dict()) >>> a.lcm(b) Factors({x: 1, y: 2, z: -1}) """ if not isinstance(other, Factors): other = Factors(other) if any(f.is_zero for f in (self, other)): return Factors(S.Zero) factors = dict(self.factors) for factor, exp in other.factors.items(): if factor in factors: exp = max(exp, factors[factor]) factors[factor] = exp return Factors(factors) def __mul__(self, other): # Factors return self.mul(other) def __divmod__(self, other): # Factors return self.div(other) def __truediv__(self, other): # Factors return self.quo(other) def __mod__(self, other): # Factors return self.rem(other) def __pow__(self, other): # Factors return self.pow(other) def __eq__(self, other): # Factors if not isinstance(other, Factors): other = Factors(other) return self.factors == other.factors def __ne__(self, other): # Factors return not self == other class Term: """Efficient representation of ``coeff*(numer/denom)``. """ __slots__ = ('coeff', 'numer', 'denom') def __init__(self, term, numer=None, denom=None): # Term if numer is None and denom is None: if not term.is_commutative: raise NonCommutativeExpression( 'commutative expression expected') coeff, factors = term.as_coeff_mul() numer, denom = defaultdict(int), defaultdict(int) for factor in factors: base, exp = decompose_power(factor) if base.is_Add: cont, base = base.primitive() coeff *= cont**exp if exp > 0: numer[base] += exp else: denom[base] += -exp numer = Factors(numer) denom = Factors(denom) else: coeff = term if numer is None: numer = Factors() if denom is None: denom = Factors() self.coeff = coeff self.numer = numer self.denom = denom def __hash__(self): # Term return hash((self.coeff, self.numer, self.denom)) def __repr__(self): # Term return "Term(%s, %s, %s)" % (self.coeff, self.numer, self.denom) def as_expr(self): # Term return self.coeff*(self.numer.as_expr()/self.denom.as_expr()) def mul(self, other): # Term coeff = self.coeff*other.coeff numer = self.numer.mul(other.numer) denom = self.denom.mul(other.denom) numer, denom = numer.normal(denom) return Term(coeff, numer, denom) def inv(self): # Term return Term(1/self.coeff, self.denom, self.numer) def quo(self, other): # Term return self.mul(other.inv()) def pow(self, other): # Term if other < 0: return self.inv().pow(-other) else: return Term(self.coeff ** other, self.numer.pow(other), self.denom.pow(other)) def gcd(self, other): # Term return Term(self.coeff.gcd(other.coeff), self.numer.gcd(other.numer), self.denom.gcd(other.denom)) def lcm(self, other): # Term return Term(self.coeff.lcm(other.coeff), self.numer.lcm(other.numer), self.denom.lcm(other.denom)) def __mul__(self, other): # Term if isinstance(other, Term): return self.mul(other) else: return NotImplemented def __truediv__(self, other): # Term if isinstance(other, Term): return self.quo(other) else: return NotImplemented def __pow__(self, other): # Term if isinstance(other, SYMPY_INTS): return self.pow(other) else: return NotImplemented def __eq__(self, other): # Term return (self.coeff == other.coeff and self.numer == other.numer and self.denom == other.denom) def __ne__(self, other): # Term return not self == other def _gcd_terms(terms, isprimitive=False, fraction=True): """Helper function for :func:`gcd_terms`. Parameters ========== isprimitive : boolean, optional If ``isprimitive`` is True then the call to primitive for an Add will be skipped. This is useful when the content has already been extrated. fraction : boolean, optional If ``fraction`` is True then the expression will appear over a common denominator, the lcm of all term denominators. """ if isinstance(terms, Basic) and not isinstance(terms, Tuple): terms = Add.make_args(terms) terms = list(map(Term, [t for t in terms if t])) # there is some simplification that may happen if we leave this # here rather than duplicate it before the mapping of Term onto # the terms if len(terms) == 0: return S.Zero, S.Zero, S.One if len(terms) == 1: cont = terms[0].coeff numer = terms[0].numer.as_expr() denom = terms[0].denom.as_expr() else: cont = terms[0] for term in terms[1:]: cont = cont.gcd(term) for i, term in enumerate(terms): terms[i] = term.quo(cont) if fraction: denom = terms[0].denom for term in terms[1:]: denom = denom.lcm(term.denom) numers = [] for term in terms: numer = term.numer.mul(denom.quo(term.denom)) numers.append(term.coeff*numer.as_expr()) else: numers = [t.as_expr() for t in terms] denom = Term(S.One).numer cont = cont.as_expr() numer = Add(*numers) denom = denom.as_expr() if not isprimitive and numer.is_Add: _cont, numer = numer.primitive() cont *= _cont return cont, numer, denom def gcd_terms(terms, isprimitive=False, clear=True, fraction=True): """Compute the GCD of ``terms`` and put them together. Parameters ========== terms : Expr Can be an expression or a non-Basic sequence of expressions which will be handled as though they are terms from a sum. isprimitive : bool, optional If ``isprimitive`` is True the _gcd_terms will not run the primitive method on the terms. clear : bool, optional It controls the removal of integers from the denominator of an Add expression. When True (default), all numerical denominator will be cleared; when False the denominators will be cleared only if all terms had numerical denominators other than 1. fraction : bool, optional When True (default), will put the expression over a common denominator. Examples ======== >>> from sympy.core import gcd_terms >>> from sympy.abc import x, y >>> gcd_terms((x + 1)**2*y + (x + 1)*y**2) y*(x + 1)*(x + y + 1) >>> gcd_terms(x/2 + 1) (x + 2)/2 >>> gcd_terms(x/2 + 1, clear=False) x/2 + 1 >>> gcd_terms(x/2 + y/2, clear=False) (x + y)/2 >>> gcd_terms(x/2 + 1/x) (x**2 + 2)/(2*x) >>> gcd_terms(x/2 + 1/x, fraction=False) (x + 2/x)/2 >>> gcd_terms(x/2 + 1/x, fraction=False, clear=False) x/2 + 1/x >>> gcd_terms(x/2/y + 1/x/y) (x**2 + 2)/(2*x*y) >>> gcd_terms(x/2/y + 1/x/y, clear=False) (x**2/2 + 1)/(x*y) >>> gcd_terms(x/2/y + 1/x/y, clear=False, fraction=False) (x/2 + 1/x)/y The ``clear`` flag was ignored in this case because the returned expression was a rational expression, not a simple sum. See Also ======== factor_terms, sympy.polys.polytools.terms_gcd """ def mask(terms): """replace nc portions of each term with a unique Dummy symbols and return the replacements to restore them""" args = [(a, []) if a.is_commutative else a.args_cnc() for a in terms] reps = [] for i, (c, nc) in enumerate(args): if nc: nc = Mul(*nc) d = Dummy() reps.append((d, nc)) c.append(d) args[i] = Mul(*c) else: args[i] = c return args, dict(reps) isadd = isinstance(terms, Add) addlike = isadd or not isinstance(terms, Basic) and \ is_sequence(terms, include=set) and \ not isinstance(terms, Dict) if addlike: if isadd: # i.e. an Add terms = list(terms.args) else: terms = sympify(terms) terms, reps = mask(terms) cont, numer, denom = _gcd_terms(terms, isprimitive, fraction) numer = numer.xreplace(reps) coeff, factors = cont.as_coeff_Mul() if not clear: c, _coeff = coeff.as_coeff_Mul() if not c.is_Integer and not clear and numer.is_Add: n, d = c.as_numer_denom() _numer = numer/d if any(a.as_coeff_Mul()[0].is_Integer for a in _numer.args): numer = _numer coeff = n*_coeff return _keep_coeff(coeff, factors*numer/denom, clear=clear) if not isinstance(terms, Basic): return terms if terms.is_Atom: return terms if terms.is_Mul: c, args = terms.as_coeff_mul() return _keep_coeff(c, Mul(*[gcd_terms(i, isprimitive, clear, fraction) for i in args]), clear=clear) def handle(a): # don't treat internal args like terms of an Add if not isinstance(a, Expr): if isinstance(a, Basic): return a.func(*[handle(i) for i in a.args]) return type(a)([handle(i) for i in a]) return gcd_terms(a, isprimitive, clear, fraction) if isinstance(terms, Dict): return Dict(*[(k, handle(v)) for k, v in terms.args]) return terms.func(*[handle(i) for i in terms.args]) def _factor_sum_int(expr, **kwargs): """Return Sum or Integral object with factors that are not in the wrt variables removed. In cases where there are additive terms in the function of the object that are independent, the object will be separated into two objects. Examples ======== >>> from sympy import Sum, factor_terms >>> from sympy.abc import x, y >>> factor_terms(Sum(x + y, (x, 1, 3))) y*Sum(1, (x, 1, 3)) + Sum(x, (x, 1, 3)) >>> factor_terms(Sum(x*y, (x, 1, 3))) y*Sum(x, (x, 1, 3)) Notes ===== If a function in the summand or integrand is replaced with a symbol, then this simplification should not be done or else an incorrect result will be obtained when the symbol is replaced with an expression that depends on the variables of summation/integration: >>> eq = Sum(y, (x, 1, 3)) >>> factor_terms(eq).subs(y, x).doit() 3*x >>> eq.subs(y, x).doit() 6 """ result = expr.function if result == 0: return S.Zero limits = expr.limits # get the wrt variables wrt = {i.args[0] for i in limits} # factor out any common terms that are independent of wrt f = factor_terms(result, **kwargs) i, d = f.as_independent(*wrt) if isinstance(f, Add): return i * expr.func(1, *limits) + expr.func(d, *limits) else: return i * expr.func(d, *limits) def factor_terms(expr, radical=False, clear=False, fraction=False, sign=True): """Remove common factors from terms in all arguments without changing the underlying structure of the expr. No expansion or simplification (and no processing of non-commutatives) is performed. Parameters ========== radical: bool, optional If radical=True then a radical common to all terms will be factored out of any Add sub-expressions of the expr. clear : bool, optional If clear=False (default) then coefficients will not be separated from a single Add if they can be distributed to leave one or more terms with integer coefficients. fraction : bool, optional If fraction=True (default is False) then a common denominator will be constructed for the expression. sign : bool, optional If sign=True (default) then even if the only factor in common is a -1, it will be factored out of the expression. Examples ======== >>> from sympy import factor_terms, Symbol >>> from sympy.abc import x, y >>> factor_terms(x + x*(2 + 4*y)**3) x*(8*(2*y + 1)**3 + 1) >>> A = Symbol('A', commutative=False) >>> factor_terms(x*A + x*A + x*y*A) x*(y*A + 2*A) When ``clear`` is False, a rational will only be factored out of an Add expression if all terms of the Add have coefficients that are fractions: >>> factor_terms(x/2 + 1, clear=False) x/2 + 1 >>> factor_terms(x/2 + 1, clear=True) (x + 2)/2 If a -1 is all that can be factored out, to *not* factor it out, the flag ``sign`` must be False: >>> factor_terms(-x - y) -(x + y) >>> factor_terms(-x - y, sign=False) -x - y >>> factor_terms(-2*x - 2*y, sign=False) -2*(x + y) See Also ======== gcd_terms, sympy.polys.polytools.terms_gcd """ def do(expr): from sympy.concrete.summations import Sum from sympy.integrals.integrals import Integral is_iterable = iterable(expr) if not isinstance(expr, Basic) or expr.is_Atom: if is_iterable: return type(expr)([do(i) for i in expr]) return expr if expr.is_Pow or expr.is_Function or \ is_iterable or not hasattr(expr, 'args_cnc'): args = expr.args newargs = tuple([do(i) for i in args]) if newargs == args: return expr return expr.func(*newargs) if isinstance(expr, (Sum, Integral)): return _factor_sum_int(expr, radical=radical, clear=clear, fraction=fraction, sign=sign) cont, p = expr.as_content_primitive(radical=radical, clear=clear) if p.is_Add: list_args = [do(a) for a in Add.make_args(p)] # get a common negative (if there) which gcd_terms does not remove if all(a.as_coeff_Mul()[0].extract_multiplicatively(-1) is not None for a in list_args): cont = -cont list_args = [-a for a in list_args] # watch out for exp(-(x+2)) which gcd_terms will change to exp(-x-2) special = {} for i, a in enumerate(list_args): b, e = a.as_base_exp() if e.is_Mul and e != Mul(*e.args): list_args[i] = Dummy() special[list_args[i]] = a # rebuild p not worrying about the order which gcd_terms will fix p = Add._from_args(list_args) p = gcd_terms(p, isprimitive=True, clear=clear, fraction=fraction).xreplace(special) elif p.args: p = p.func( *[do(a) for a in p.args]) rv = _keep_coeff(cont, p, clear=clear, sign=sign) return rv expr = sympify(expr) return do(expr) def _mask_nc(eq, name=None): """ Return ``eq`` with non-commutative objects replaced with Dummy symbols. A dictionary that can be used to restore the original values is returned: if it is None, the expression is noncommutative and cannot be made commutative. The third value returned is a list of any non-commutative symbols that appear in the returned equation. Explanation =========== All non-commutative objects other than Symbols are replaced with a non-commutative Symbol. Identical objects will be identified by identical symbols. If there is only 1 non-commutative object in an expression it will be replaced with a commutative symbol. Otherwise, the non-commutative entities are retained and the calling routine should handle replacements in this case since some care must be taken to keep track of the ordering of symbols when they occur within Muls. Parameters ========== name : str ``name``, if given, is the name that will be used with numbered Dummy variables that will replace the non-commutative objects and is mainly used for doctesting purposes. Examples ======== >>> from sympy.physics.secondquant import Commutator, NO, F, Fd >>> from sympy import symbols >>> from sympy.core.exprtools import _mask_nc >>> from sympy.abc import x, y >>> A, B, C = symbols('A,B,C', commutative=False) One nc-symbol: >>> _mask_nc(A**2 - x**2, 'd') (_d0**2 - x**2, {_d0: A}, []) Multiple nc-symbols: >>> _mask_nc(A**2 - B**2, 'd') (A**2 - B**2, {}, [A, B]) An nc-object with nc-symbols but no others outside of it: >>> _mask_nc(1 + x*Commutator(A, B), 'd') (_d0*x + 1, {_d0: Commutator(A, B)}, []) >>> _mask_nc(NO(Fd(x)*F(y)), 'd') (_d0, {_d0: NO(CreateFermion(x)*AnnihilateFermion(y))}, []) Multiple nc-objects: >>> eq = x*Commutator(A, B) + x*Commutator(A, C)*Commutator(A, B) >>> _mask_nc(eq, 'd') (x*_d0 + x*_d1*_d0, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1]) Multiple nc-objects and nc-symbols: >>> eq = A*Commutator(A, B) + B*Commutator(A, C) >>> _mask_nc(eq, 'd') (A*_d0 + B*_d1, {_d0: Commutator(A, B), _d1: Commutator(A, C)}, [_d0, _d1, A, B]) """ name = name or 'mask' # Make Dummy() append sequential numbers to the name def numbered_names(): i = 0 while True: yield name + str(i) i += 1 names = numbered_names() def Dummy(*args, **kwargs): from sympy import Dummy return Dummy(next(names), *args, **kwargs) expr = eq if expr.is_commutative: return eq, {}, [] # identify nc-objects; symbols and other rep = [] nc_obj = set() nc_syms = set() pot = preorder_traversal(expr, keys=default_sort_key) for i, a in enumerate(pot): if any(a == r[0] for r in rep): pot.skip() elif not a.is_commutative: if a.is_symbol: nc_syms.add(a) pot.skip() elif not (a.is_Add or a.is_Mul or a.is_Pow): nc_obj.add(a) pot.skip() # If there is only one nc symbol or object, it can be factored regularly # but polys is going to complain, so replace it with a Dummy. if len(nc_obj) == 1 and not nc_syms: rep.append((nc_obj.pop(), Dummy())) elif len(nc_syms) == 1 and not nc_obj: rep.append((nc_syms.pop(), Dummy())) # Any remaining nc-objects will be replaced with an nc-Dummy and # identified as an nc-Symbol to watch out for nc_obj = sorted(nc_obj, key=default_sort_key) for n in nc_obj: nc = Dummy(commutative=False) rep.append((n, nc)) nc_syms.add(nc) expr = expr.subs(rep) nc_syms = list(nc_syms) nc_syms.sort(key=default_sort_key) return expr, {v: k for k, v in rep}, nc_syms def factor_nc(expr): """Return the factored form of ``expr`` while handling non-commutative expressions. Examples ======== >>> from sympy.core.exprtools import factor_nc >>> from sympy import Symbol >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> B = Symbol('B', commutative=False) >>> factor_nc((x**2 + 2*A*x + A**2).expand()) (x + A)**2 >>> factor_nc(((x + A)*(x + B)).expand()) (x + A)*(x + B) """ from sympy.simplify.simplify import powsimp from sympy.polys import gcd, factor def _pemexpand(expr): "Expand with the minimal set of hints necessary to check the result." return expr.expand(deep=True, mul=True, power_exp=True, power_base=False, basic=False, multinomial=True, log=False) expr = sympify(expr) if not isinstance(expr, Expr) or not expr.args: return expr if not expr.is_Add: return expr.func(*[factor_nc(a) for a in expr.args]) expr, rep, nc_symbols = _mask_nc(expr) if rep: return factor(expr).subs(rep) else: args = [a.args_cnc() for a in Add.make_args(expr)] c = g = l = r = S.One hit = False # find any commutative gcd term for i, a in enumerate(args): if i == 0: c = Mul._from_args(a[0]) elif a[0]: c = gcd(c, Mul._from_args(a[0])) else: c = S.One if c is not S.One: hit = True c, g = c.as_coeff_Mul() if g is not S.One: for i, (cc, _) in enumerate(args): cc = list(Mul.make_args(Mul._from_args(list(cc))/g)) args[i][0] = cc for i, (cc, _) in enumerate(args): cc[0] = cc[0]/c args[i][0] = cc # find any noncommutative common prefix for i, a in enumerate(args): if i == 0: n = a[1][:] else: n = common_prefix(n, a[1]) if not n: # is there a power that can be extracted? if not args[0][1]: break b, e = args[0][1][0].as_base_exp() ok = False if e.is_Integer: for t in args: if not t[1]: break bt, et = t[1][0].as_base_exp() if et.is_Integer and bt == b: e = min(e, et) else: break else: ok = hit = True l = b**e il = b**-e for _ in args: _[1][0] = il*_[1][0] break if not ok: break else: hit = True lenn = len(n) l = Mul(*n) for _ in args: _[1] = _[1][lenn:] # find any noncommutative common suffix for i, a in enumerate(args): if i == 0: n = a[1][:] else: n = common_suffix(n, a[1]) if not n: # is there a power that can be extracted? if not args[0][1]: break b, e = args[0][1][-1].as_base_exp() ok = False if e.is_Integer: for t in args: if not t[1]: break bt, et = t[1][-1].as_base_exp() if et.is_Integer and bt == b: e = min(e, et) else: break else: ok = hit = True r = b**e il = b**-e for _ in args: _[1][-1] = _[1][-1]*il break if not ok: break else: hit = True lenn = len(n) r = Mul(*n) for _ in args: _[1] = _[1][:len(_[1]) - lenn] if hit: mid = Add(*[Mul(*cc)*Mul(*nc) for cc, nc in args]) else: mid = expr # sort the symbols so the Dummys would appear in the same # order as the original symbols, otherwise you may introduce # a factor of -1, e.g. A**2 - B**2) -- {A:y, B:x} --> y**2 - x**2 # and the former factors into two terms, (A - B)*(A + B) while the # latter factors into 3 terms, (-1)*(x - y)*(x + y) rep1 = [(n, Dummy()) for n in sorted(nc_symbols, key=default_sort_key)] unrep1 = [(v, k) for k, v in rep1] unrep1.reverse() new_mid, r2, _ = _mask_nc(mid.subs(rep1)) new_mid = powsimp(factor(new_mid)) new_mid = new_mid.subs(r2).subs(unrep1) if new_mid.is_Pow: return _keep_coeff(c, g*l*new_mid*r) if new_mid.is_Mul: # XXX TODO there should be a way to inspect what order the terms # must be in and just select the plausible ordering without # checking permutations cfac = [] ncfac = [] for f in new_mid.args: if f.is_commutative: cfac.append(f) else: b, e = f.as_base_exp() if e.is_Integer: ncfac.extend([b]*e) else: ncfac.append(f) pre_mid = g*Mul(*cfac)*l target = _pemexpand(expr/c) for s in variations(ncfac, len(ncfac)): ok = pre_mid*Mul(*s)*r if _pemexpand(ok) == target: return _keep_coeff(c, ok) # mid was an Add that didn't factor successfully return _keep_coeff(c, g*l*mid*r)
88dad447e3bce8f83cdfda2392a5b08c8dfba5ffabf3dadd7343e6ce9485c386
""" This module contains the machinery handling assumptions. All symbolic objects have assumption attributes that can be accessed via .is_<assumption name> attribute. Assumptions determine certain properties of symbolic objects and can have 3 possible values: True, False, None. True is returned if the object has the property and False is returned if it doesn't or can't (i.e. doesn't make sense): >>> from sympy import I >>> I.is_algebraic True >>> I.is_real False >>> I.is_prime False When the property cannot be determined (or when a method is not implemented) None will be returned, e.g. a generic symbol, x, may or may not be positive so a value of None is returned for x.is_positive. By default, all symbolic values are in the largest set in the given context without specifying the property. For example, a symbol that has a property being integer, is also real, complex, etc. Here follows a list of possible assumption names: .. glossary:: commutative object commutes with any other object with respect to multiplication operation. complex object can have only values from the set of complex numbers. imaginary object value is a number that can be written as a real number multiplied by the imaginary unit ``I``. See [3]_. Please note, that ``0`` is not considered to be an imaginary number, see `issue #7649 <https://github.com/sympy/sympy/issues/7649>`_. real object can have only values from the set of real numbers. integer object can have only values from the set of integers. odd even object can have only values from the set of odd (even) integers [2]_. prime object is a natural number greater than ``1`` that has no positive divisors other than ``1`` and itself. See [6]_. composite object is a positive integer that has at least one positive divisor other than ``1`` or the number itself. See [4]_. zero object has the value of ``0``. nonzero object is a real number that is not zero. rational object can have only values from the set of rationals. algebraic object can have only values from the set of algebraic numbers [11]_. transcendental object can have only values from the set of transcendental numbers [10]_. irrational object value cannot be represented exactly by Rational, see [5]_. finite infinite object absolute value is bounded (arbitrarily large). See [7]_, [8]_, [9]_. negative nonnegative object can have only negative (nonnegative) values [1]_. positive nonpositive object can have only positive (only nonpositive) values. hermitian antihermitian object belongs to the field of hermitian (antihermitian) operators. Examples ======== >>> from sympy import Symbol >>> x = Symbol('x', real=True); x x >>> x.is_real True >>> x.is_complex True See Also ======== .. seealso:: :py:class:`sympy.core.numbers.ImaginaryUnit` :py:class:`sympy.core.numbers.Zero` :py:class:`sympy.core.numbers.One` Notes ===== The fully-resolved assumptions for any SymPy expression can be obtained as follows: >>> from sympy.core.assumptions import assumptions >>> x = Symbol('x',positive=True) >>> assumptions(x + I) {'commutative': True, 'complex': True, 'composite': False, 'even': False, 'extended_negative': False, 'extended_nonnegative': False, 'extended_nonpositive': False, 'extended_nonzero': False, 'extended_positive': False, 'extended_real': False, 'finite': True, 'imaginary': False, 'infinite': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'zero': False} Developers Notes ================ The current (and possibly incomplete) values are stored in the ``obj._assumptions dictionary``; queries to getter methods (with property decorators) or attributes of objects/classes will return values and update the dictionary. >>> eq = x**2 + I >>> eq._assumptions {} >>> eq.is_finite True >>> eq._assumptions {'finite': True, 'infinite': False} For a Symbol, there are two locations for assumptions that may be of interest. The ``assumptions0`` attribute gives the full set of assumptions derived from a given set of initial assumptions. The latter assumptions are stored as ``Symbol._assumptions.generator`` >>> Symbol('x', prime=True, even=True)._assumptions.generator {'even': True, 'prime': True} The ``generator`` is not necessarily canonical nor is it filtered in any way: it records the assumptions used to instantiate a Symbol and (for storage purposes) represents a more compact representation of the assumptions needed to recreate the full set in `Symbol.assumptions0`. References ========== .. [1] https://en.wikipedia.org/wiki/Negative_number .. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29 .. [3] https://en.wikipedia.org/wiki/Imaginary_number .. [4] https://en.wikipedia.org/wiki/Composite_number .. [5] https://en.wikipedia.org/wiki/Irrational_number .. [6] https://en.wikipedia.org/wiki/Prime_number .. [7] https://en.wikipedia.org/wiki/Finite .. [8] https://docs.python.org/3/library/math.html#math.isfinite .. [9] http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html .. [10] https://en.wikipedia.org/wiki/Transcendental_number .. [11] https://en.wikipedia.org/wiki/Algebraic_number """ from sympy.core.facts import FactRules, FactKB from sympy.core.core import BasicMeta from sympy.core.sympify import sympify from random import shuffle _assume_rules = FactRules([ 'integer -> rational', 'rational -> real', 'rational -> algebraic', 'algebraic -> complex', 'transcendental == complex & !algebraic', 'real -> hermitian', 'imaginary -> complex', 'imaginary -> antihermitian', 'extended_real -> commutative', 'complex -> commutative', 'complex -> finite', 'odd == integer & !even', 'even == integer & !odd', 'real -> complex', 'extended_real -> real | infinite', 'real == extended_real & finite', 'extended_real == extended_negative | zero | extended_positive', 'extended_negative == extended_nonpositive & extended_nonzero', 'extended_positive == extended_nonnegative & extended_nonzero', 'extended_nonpositive == extended_real & !extended_positive', 'extended_nonnegative == extended_real & !extended_negative', 'real == negative | zero | positive', 'negative == nonpositive & nonzero', 'positive == nonnegative & nonzero', 'nonpositive == real & !positive', 'nonnegative == real & !negative', 'positive == extended_positive & finite', 'negative == extended_negative & finite', 'nonpositive == extended_nonpositive & finite', 'nonnegative == extended_nonnegative & finite', 'nonzero == extended_nonzero & finite', 'zero -> even & finite', 'zero == extended_nonnegative & extended_nonpositive', 'zero == nonnegative & nonpositive', 'nonzero -> real', 'prime -> integer & positive', 'composite -> integer & positive & !prime', '!composite -> !positive | !even | prime', 'irrational == real & !rational', 'imaginary -> !extended_real', 'infinite == !finite', 'noninteger == extended_real & !integer', 'extended_nonzero == extended_real & !zero', ]) _assume_defined = _assume_rules.defined_facts.copy() _assume_defined.add('polar') _assume_defined = frozenset(_assume_defined) def assumptions(expr, _check=None): """return the T/F assumptions of ``expr``""" n = sympify(expr) if n.is_Symbol: rv = n.assumptions0 # are any important ones missing? if _check is not None: rv = {k: rv[k] for k in set(rv) & set(_check)} return rv rv = {} for k in _assume_defined if _check is None else _check: v = getattr(n, 'is_{}'.format(k)) if v is not None: rv[k] = v return rv def common_assumptions(exprs, check=None): """return those assumptions which have the same True or False value for all the given expressions. Examples ======== >>> from sympy.core.assumptions import common_assumptions >>> from sympy import oo, pi, sqrt >>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo]) {'commutative': True, 'composite': False, 'extended_real': True, 'imaginary': False, 'odd': False} By default, all assumptions are tested; pass an iterable of the assumptions to limit those that are reported: >>> common_assumptions([0, 1, 2], ['positive', 'integer']) {'integer': True} """ check = _assume_defined if check is None else set(check) if not check or not exprs: return {} # get all assumptions for each assume = [assumptions(i, _check=check) for i in sympify(exprs)] # focus on those of interest that are True for i, e in enumerate(assume): assume[i] = {k: e[k] for k in set(e) & check} # what assumptions are in common? common = set.intersection(*[set(i) for i in assume]) # which ones hold the same value a = assume[0] return {k: a[k] for k in common if all(a[k] == b[k] for b in assume)} def failing_assumptions(expr, **assumptions): """ Return a dictionary containing assumptions with values not matching those of the passed assumptions. Examples ======== >>> from sympy import failing_assumptions, Symbol >>> x = Symbol('x', real=True, positive=True) >>> y = Symbol('y') >>> failing_assumptions(6*x + y, real=True, positive=True) {'positive': None, 'real': None} >>> failing_assumptions(x**2 - 1, positive=True) {'positive': None} If *expr* satisfies all of the assumptions, an empty dictionary is returned. >>> failing_assumptions(x**2, positive=True) {} """ expr = sympify(expr) failed = {} for k in assumptions: test = getattr(expr, 'is_%s' % k, None) if test is not assumptions[k]: failed[k] = test return failed # {} or {assumption: value != desired} def check_assumptions(expr, against=None, **assume): """ Checks whether assumptions of ``expr`` match the T/F assumptions given (or possessed by ``against``). True is returned if all assumptions match; False is returned if there is a mismatch and the assumption in ``expr`` is not None; else None is returned. Explanation =========== *assume* is a dict of assumptions with True or False values Examples ======== >>> from sympy import Symbol, pi, I, exp, check_assumptions >>> check_assumptions(-5, integer=True) True >>> check_assumptions(pi, real=True, integer=False) True >>> check_assumptions(pi, real=True, negative=True) False >>> check_assumptions(exp(I*pi/7), real=False) True >>> x = Symbol('x', real=True, positive=True) >>> check_assumptions(2*x + 1, real=True, positive=True) True >>> check_assumptions(-2*x - 5, real=True, positive=True) False To check assumptions of *expr* against another variable or expression, pass the expression or variable as ``against``. >>> check_assumptions(2*x + 1, x) True To see if a number matches the assumptions of an expression, pass the number as the first argument, else its specific assumptions may not have a non-None value in the expression: >>> check_assumptions(x, 3) >>> check_assumptions(3, x) True ``None`` is returned if ``check_assumptions()`` could not conclude. >>> check_assumptions(2*x - 1, x) >>> z = Symbol('z') >>> check_assumptions(z, real=True) See Also ======== failing_assumptions """ expr = sympify(expr) if against is not None: if assume: raise ValueError( 'Expecting `against` or `assume`, not both.') assume = assumptions(against) known = True for k, v in assume.items(): if v is None: continue e = getattr(expr, 'is_' + k, None) if e is None: known = None elif v != e: return False return known class StdFactKB(FactKB): """A FactKB specialized for the built-in rules This is the only kind of FactKB that Basic objects should use. """ def __init__(self, facts=None): super().__init__(_assume_rules) # save a copy of the facts dict if not facts: self._generator = {} elif not isinstance(facts, FactKB): self._generator = facts.copy() else: self._generator = facts.generator if facts: self.deduce_all_facts(facts) def copy(self): return self.__class__(self) @property def generator(self): return self._generator.copy() def as_property(fact): """Convert a fact name to the name of the corresponding property""" return 'is_%s' % fact def make_property(fact): """Create the automagic property corresponding to a fact.""" def getit(self): try: return self._assumptions[fact] except KeyError: if self._assumptions is self.default_assumptions: self._assumptions = self.default_assumptions.copy() return _ask(fact, self) getit.func_name = as_property(fact) return property(getit) def _ask(fact, obj): """ Find the truth value for a property of an object. This function is called when a request is made to see what a fact value is. For this we use several techniques: First, the fact-evaluation function is tried, if it exists (for example _eval_is_integer). Then we try related facts. For example rational --> integer another example is joined rule: integer & !odd --> even so in the latter case if we are looking at what 'even' value is, 'integer' and 'odd' facts will be asked. In all cases, when we settle on some fact value, its implications are deduced, and the result is cached in ._assumptions. """ assumptions = obj._assumptions handler_map = obj._prop_handler # Store None into the assumptions so that recursive attempts at # evaluating the same fact don't trigger infinite recursion. assumptions._tell(fact, None) # First try the assumption evaluation function if it exists try: evaluate = handler_map[fact] except KeyError: pass else: a = evaluate(obj) if a is not None: assumptions.deduce_all_facts(((fact, a),)) return a # Try assumption's prerequisites prereq = list(_assume_rules.prereq[fact]) shuffle(prereq) for pk in prereq: if pk in assumptions: continue if pk in handler_map: _ask(pk, obj) # we might have found the value of fact ret_val = assumptions.get(fact) if ret_val is not None: return ret_val # Note: the result has already been cached return None class ManagedProperties(BasicMeta): """Metaclass for classes with old-style assumptions""" def __init__(cls, *args, **kws): BasicMeta.__init__(cls, *args, **kws) local_defs = {} for k in _assume_defined: attrname = as_property(k) v = cls.__dict__.get(attrname, '') if isinstance(v, (bool, int, type(None))): if v is not None: v = bool(v) local_defs[k] = v defs = {} for base in reversed(cls.__bases__): assumptions = getattr(base, '_explicit_class_assumptions', None) if assumptions is not None: defs.update(assumptions) defs.update(local_defs) cls._explicit_class_assumptions = defs cls.default_assumptions = StdFactKB(defs) cls._prop_handler = {} for k in _assume_defined: eval_is_meth = getattr(cls, '_eval_is_%s' % k, None) if eval_is_meth is not None: cls._prop_handler[k] = eval_is_meth # Put definite results directly into the class dict, for speed for k, v in cls.default_assumptions.items(): setattr(cls, as_property(k), v) # protection e.g. for Integer.is_even=F <- (Rational.is_integer=F) derived_from_bases = set() for base in cls.__bases__: default_assumptions = getattr(base, 'default_assumptions', None) # is an assumption-aware class if default_assumptions is not None: derived_from_bases.update(default_assumptions) for fact in derived_from_bases - set(cls.default_assumptions): pname = as_property(fact) if pname not in cls.__dict__: setattr(cls, pname, make_property(fact)) # Finally, add any missing automagic property (e.g. for Basic) for fact in _assume_defined: pname = as_property(fact) if not hasattr(cls, pname): setattr(cls, pname, make_property(fact))
2cad2e22c4d8ba8a0b41c34afc4f84468315cf4152f061a290b3a05e2d630657
""" There are three types of functions implemented in SymPy: 1) defined functions (in the sense that they can be evaluated) like exp or sin; they have a name and a body: f = exp 2) undefined function which have a name but no body. Undefined functions can be defined using a Function class as follows: f = Function('f') (the result will be a Function instance) 3) anonymous function (or lambda function) which have a body (defined with dummy variables) but have no name: f = Lambda(x, exp(x)*x) f = Lambda((x, y), exp(x)*y) The fourth type of functions are composites, like (sin + cos)(x); these work in SymPy core, but are not yet part of SymPy. Examples ======== >>> import sympy >>> f = sympy.Function("f") >>> from sympy.abc import x >>> f(x) f(x) >>> print(sympy.srepr(f(x).func)) Function('f') >>> f(x).args (x,) """ from typing import Any, Dict as tDict, Optional, Set as tSet, Tuple as tTuple, Union from .add import Add from .assumptions import ManagedProperties from .basic import Basic, _atomic from .cache import cacheit from .compatibility import iterable, is_sequence, as_int, ordered, Iterable from .decorators import _sympifyit from .expr import Expr, AtomicExpr from .numbers import Rational, Float from .operations import LatticeOp from .rules import Transform from .singleton import S from .sympify import sympify from sympy.core.containers import Tuple, Dict from sympy.core.parameters import global_parameters from sympy.core.logic import fuzzy_and, fuzzy_or, fuzzy_not, FuzzyBool from sympy.utilities import default_sort_key from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import has_dups, sift from sympy.utilities.misc import filldedent import mpmath import mpmath.libmp as mlib import inspect from collections import Counter def _coeff_isneg(a): """Return True if the leading Number is negative. Examples ======== >>> from sympy.core.function import _coeff_isneg >>> from sympy import S, Symbol, oo, pi >>> _coeff_isneg(-3*pi) True >>> _coeff_isneg(S(3)) False >>> _coeff_isneg(-oo) True >>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1 False For matrix expressions: >>> from sympy import MatrixSymbol, sqrt >>> A = MatrixSymbol("A", 3, 3) >>> _coeff_isneg(-sqrt(2)*A) True >>> _coeff_isneg(sqrt(2)*A) False """ if a.is_MatMul: a = a.args[0] if a.is_Mul: a = a.args[0] return a.is_Number and a.is_extended_negative class PoleError(Exception): pass class ArgumentIndexError(ValueError): def __str__(self): return ("Invalid operation with argument number %s for Function %s" % (self.args[1], self.args[0])) class BadSignatureError(TypeError): '''Raised when a Lambda is created with an invalid signature''' pass class BadArgumentsError(TypeError): '''Raised when a Lambda is called with an incorrect number of arguments''' pass # Python 2/3 version that does not raise a Deprecation warning def arity(cls): """Return the arity of the function if it is known, else None. Explanation =========== When default values are specified for some arguments, they are optional and the arity is reported as a tuple of possible values. Examples ======== >>> from sympy.core.function import arity >>> from sympy import log >>> arity(lambda x: x) 1 >>> arity(log) (1, 2) >>> arity(lambda *x: sum(x)) is None True """ eval_ = getattr(cls, 'eval', cls) parameters = inspect.signature(eval_).parameters.items() if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]: return p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD] # how many have no default and how many have a default value no, yes = map(len, sift(p_or_k, lambda p:p.default == p.empty, binary=True)) return no if not yes else tuple(range(no, no + yes + 1)) class FunctionClass(ManagedProperties): """ Base class for function classes. FunctionClass is a subclass of type. Use Function('<function name>' [ , signature ]) to create undefined function classes. """ _new = type.__new__ def __init__(cls, *args, **kwargs): # honor kwarg value or class-defined value before using # the number of arguments in the eval function (if present) nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls))) if nargs is None and 'nargs' not in cls.__dict__: for supcls in cls.__mro__: if hasattr(supcls, '_nargs'): nargs = supcls._nargs break else: continue # Canonicalize nargs here; change to set in nargs. if is_sequence(nargs): if not nargs: raise ValueError(filldedent(''' Incorrectly specified nargs as %s: if there are no arguments, it should be `nargs = 0`; if there are any number of arguments, it should be `nargs = None`''' % str(nargs))) nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) cls._nargs = nargs super().__init__(*args, **kwargs) @property def __signature__(self): """ Allow Python 3's inspect.signature to give a useful signature for Function subclasses. """ # Python 3 only, but backports (like the one in IPython) still might # call this. try: from inspect import signature except ImportError: return None # TODO: Look at nargs return signature(self.eval) @property def free_symbols(self): return set() @property def xreplace(self): # Function needs args so we define a property that returns # a function that takes args...and then use that function # to return the right value return lambda rule, **_: rule.get(self, self) @property def nargs(self): """Return a set of the allowed number of arguments for the function. Examples ======== >>> from sympy.core.function import Function >>> f = Function('f') If the function can take any number of arguments, the set of whole numbers is returned: >>> Function('f').nargs Naturals0 If the function was initialized to accept one or more arguments, a corresponding set will be returned: >>> Function('f', nargs=1).nargs FiniteSet(1) >>> Function('f', nargs=(2, 1)).nargs FiniteSet(1, 2) The undefined function, after application, also has the nargs attribute; the actual number of arguments is always available by checking the ``args`` attribute: >>> f = Function('f') >>> f(1).nargs Naturals0 >>> len(f(1).args) 1 """ from sympy.sets.sets import FiniteSet # XXX it would be nice to handle this in __init__ but there are import # problems with trying to import FiniteSet there return FiniteSet(*self._nargs) if self._nargs else S.Naturals0 def __repr__(cls): return cls.__name__ class Application(Basic, metaclass=FunctionClass): """ Base class for applied functions. Explanation =========== Instances of Application represent the result of applying an application of any type to any object. """ is_Function = True @cacheit def __new__(cls, *args, **options): from sympy.sets.fancysets import Naturals0 from sympy.sets.sets import FiniteSet args = list(map(sympify, args)) evaluate = options.pop('evaluate', global_parameters.evaluate) # WildFunction (and anything else like it) may have nargs defined # and we throw that value away here options.pop('nargs', None) if options: raise ValueError("Unknown options: %s" % options) if evaluate: evaluated = cls.eval(*args) if evaluated is not None: return evaluated obj = super().__new__(cls, *args, **options) # make nargs uniform here sentinel = object() objnargs = getattr(obj, "nargs", sentinel) if objnargs is not sentinel: # things passing through here: # - functions subclassed from Function (e.g. myfunc(1).nargs) # - functions like cos(1).nargs # - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs # Canonicalize nargs here if is_sequence(objnargs): nargs = tuple(ordered(set(objnargs))) elif objnargs is not None: nargs = (as_int(objnargs),) else: nargs = None else: # things passing through here: # - WildFunction('f').nargs # - AppliedUndef with no nargs like Function('f')(1).nargs nargs = obj._nargs # note the underscore here # convert to FiniteSet obj.nargs = FiniteSet(*nargs) if nargs else Naturals0() return obj @classmethod def eval(cls, *args): """ Returns a canonical form of cls applied to arguments args. Explanation =========== The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None. Examples of eval() for the function "sign" --------------------------------------------- .. code-block:: python @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN if arg.is_zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul): coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One: return cls(coeff) * cls(terms) """ return @property def func(self): return self.__class__ def _eval_subs(self, old, new): if (old.is_Function and new.is_Function and callable(old) and callable(new) and old == self.func and len(self.args) in new.nargs): return new(*[i._subs(old, new) for i in self.args]) class Function(Application, Expr): """ Base class for applied mathematical functions. It also serves as a constructor for undefined function classes. Examples ======== First example shows how to use Function as a constructor for undefined function classes: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> g = Function('g')(x) >>> f f >>> f(x) f(x) >>> g g(x) >>> f(x).diff(x) Derivative(f(x), x) >>> g.diff(x) Derivative(g(x), x) Assumptions can be passed to Function, and if function is initialized with a Symbol, the function inherits the name and assumptions associated with the Symbol: >>> f_real = Function('f', real=True) >>> f_real(x).is_real True >>> f_real_inherit = Function(Symbol('f', real=True)) >>> f_real_inherit(x).is_real True Note that assumptions on a function are unrelated to the assumptions on the variable it is called on. If you want to add a relationship, subclass Function and define the appropriate ``_eval_is_assumption`` methods. In the following example Function is used as a base class for ``my_func`` that represents a mathematical function *my_func*. Suppose that it is well known, that *my_func(0)* is *1* and *my_func* at infinity goes to *0*, so we want those two simplifications to occur automatically. Suppose also that *my_func(x)* is real exactly when *x* is real. Here is an implementation that honours those requirements: >>> from sympy import Function, S, oo, I, sin >>> class my_func(Function): ... ... @classmethod ... def eval(cls, x): ... if x.is_Number: ... if x.is_zero: ... return S.One ... elif x is S.Infinity: ... return S.Zero ... ... def _eval_is_real(self): ... return self.args[0].is_real ... >>> x = S('x') >>> my_func(0) + sin(0) 1 >>> my_func(oo) 0 >>> my_func(3.54).n() # Not yet implemented for my_func. my_func(3.54) >>> my_func(I).is_real False In order for ``my_func`` to become useful, several other methods would need to be implemented. See source code of some of the already implemented functions for more complete examples. Also, if the function can take more than one argument, then ``nargs`` must be defined, e.g. if ``my_func`` can take one or two arguments then, >>> class my_func(Function): ... nargs = (1, 2) ... >>> """ @property def _diff_wrt(self): return False @cacheit def __new__(cls, *args, **options): # Handle calls like Function('f') if cls is Function: return UndefinedFunction(*args, **options) n = len(args) if n not in cls.nargs: # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. temp = ('%(name)s takes %(qual)s %(args)s ' 'argument%(plural)s (%(given)s given)') raise TypeError(temp % { 'name': cls, 'qual': 'exactly' if len(cls.nargs) == 1 else 'at least', 'args': min(cls.nargs), 'plural': 's'*(min(cls.nargs) != 1), 'given': n}) evaluate = options.get('evaluate', global_parameters.evaluate) result = super().__new__(cls, *args, **options) if evaluate and isinstance(result, cls) and result.args: pr2 = min(cls._should_evalf(a) for a in result.args) if pr2 > 0: pr = max(cls._should_evalf(a) for a in result.args) result = result.evalf(mlib.libmpf.prec_to_dps(pr)) return result @classmethod def _should_evalf(cls, arg): """ Decide if the function should automatically evalf(). Explanation =========== By default (in this implementation), this happens if (and only if) the ARG is a floating point number. This function is used by __new__. Returns the precision to evalf to, or -1 if it shouldn't evalf. """ from sympy.core.evalf import pure_complex if arg.is_Float: return arg._prec if not arg.is_Add: return -1 m = pure_complex(arg) if m is None or not (m[0].is_Float or m[1].is_Float): return -1 l = [i._prec for i in m if i.is_Float] l.append(-1) return max(l) @classmethod def class_key(cls): from sympy.sets.fancysets import Naturals0 funcs = { 'exp': 10, 'log': 11, 'sin': 20, 'cos': 21, 'tan': 22, 'cot': 23, 'sinh': 30, 'cosh': 31, 'tanh': 32, 'coth': 33, 'conjugate': 40, 're': 41, 'im': 42, 'arg': 43, } name = cls.__name__ try: i = funcs[name] except KeyError: i = 0 if isinstance(cls.nargs, Naturals0) else 10000 return 4, i, name def _eval_evalf(self, prec): def _get_mpmath_func(fname): """Lookup mpmath function based on name""" if isinstance(self, AppliedUndef): # Shouldn't lookup in mpmath but might have ._imp_ return None if not hasattr(mpmath, fname): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS fname = MPMATH_TRANSLATIONS.get(fname, None) if fname is None: return None return getattr(mpmath, fname) _eval_mpmath = getattr(self, '_eval_mpmath', None) if _eval_mpmath is None: func = _get_mpmath_func(self.func.__name__) args = self.args else: func, args = _eval_mpmath() # Fall-back evaluation if func is None: imp = getattr(self, '_imp_', None) if imp is None: return None try: return Float(imp(*[i.evalf(prec) for i in self.args]), prec) except (TypeError, ValueError): return None # Convert all args to mpf or mpc # Convert the arguments to *higher* precision than requested for the # final result. # XXX + 5 is a guess, it is similar to what is used in evalf.py. Should # we be more intelligent about it? try: args = [arg._to_mpmath(prec + 5) for arg in args] def bad(m): from mpmath import mpf, mpc # the precision of an mpf value is the last element # if that is 1 (and m[1] is not 1 which would indicate a # power of 2), then the eval failed; so check that none of # the arguments failed to compute to a finite precision. # Note: An mpc value has two parts, the re and imag tuple; # check each of those parts, too. Anything else is allowed to # pass if isinstance(m, mpf): m = m._mpf_ return m[1] !=1 and m[-1] == 1 elif isinstance(m, mpc): m, n = m._mpc_ return m[1] !=1 and m[-1] == 1 and \ n[1] !=1 and n[-1] == 1 else: return False if any(bad(a) for a in args): raise ValueError # one or more args failed to compute with significance except ValueError: return with mpmath.workprec(prec): v = func(*args) return Expr._from_mpmath(v, prec) def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_is_commutative(self): return fuzzy_and(a.is_commutative for a in self.args) def _eval_is_meromorphic(self, x, a): if not self.args: return True if any(arg.has(x) for arg in self.args[1:]): return False arg = self.args[0] if not arg._eval_is_meromorphic(x, a): return None return fuzzy_not(type(self).is_singular(arg.subs(x, a))) _singularities = None # type: Union[FuzzyBool, tTuple[Expr, ...]] @classmethod def is_singular(cls, a): """ Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic. """ ss = cls._singularities if ss in (True, None, False): return ss return fuzzy_or(a.is_infinite if s is S.ComplexInfinity else (a - s).is_zero for s in ss) def as_base_exp(self): """ Returns the method as the 2-tuple (base, exponent). """ return self, S.One def _eval_aseries(self, n, args0, x, logx): """ Compute an asymptotic expansion around args0, in terms of self.args. This function is only used internally by _eval_nseries and should not be called directly; derived classes can overwrite this to implement asymptotic expansions. """ from sympy.utilities.misc import filldedent raise PoleError(filldedent(''' Asymptotic expansion of %s around %s is not implemented.''' % (type(self), args0))) def _eval_nseries(self, x, n, logx, cdir=0): """ This function does compute series for multivariate functions, but the expansion is always in terms of *one* variable. Examples ======== >>> from sympy import atan2 >>> from sympy.abc import x, y >>> atan2(x, y).series(x, n=2) atan2(0, y) + x/y + O(x**2) >>> atan2(x, y).series(y, n=2) -y/x + atan2(x, 0) + O(y**2) This function also computes asymptotic expansions, if necessary and possible: >>> from sympy import loggamma >>> loggamma(1/x)._eval_nseries(x,0,None) -1/x - log(x)/x + log(x)/2 + O(1) """ from sympy import Order from sympy.core.symbol import uniquely_named_symbol from sympy.sets.sets import FiniteSet args = self.args args0 = [t.limit(x, 0) for t in args] if any(t.is_finite is False for t in args0): from sympy import oo, zoo, nan # XXX could use t.as_leading_term(x) here but it's a little # slower a = [t.compute_leading_term(x, logx=logx) for t in args] a0 = [t.limit(x, 0) for t in a] if any([t.has(oo, -oo, zoo, nan) for t in a0]): return self._eval_aseries(n, args0, x, logx) # Careful: the argument goes to oo, but only logarithmically so. We # are supposed to do a power series expansion "around the # logarithmic term". e.g. # f(1+x+log(x)) # -> f(1+logx) + x*f'(1+logx) + O(x**2) # where 'logx' is given in the argument a = [t._eval_nseries(x, n, logx) for t in args] z = [r - r0 for (r, r0) in zip(a, a0)] p = [Dummy() for _ in z] q = [] v = None for ai, zi, pi in zip(a0, z, p): if zi.has(x): if v is not None: raise NotImplementedError q.append(ai + pi) v = pi else: q.append(ai) e1 = self.func(*q) if v is None: return e1 s = e1._eval_nseries(v, n, logx) o = s.getO() s = s.removeO() s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x) return s if (self.func.nargs is S.Naturals0 or (self.func.nargs == FiniteSet(1) and args0[0]) or any(c > 1 for c in self.func.nargs)): e = self e1 = e.expand() if e == e1: #for example when e = sin(x+1) or e = sin(cos(x)) #let's try the general algorithm if len(e.args) == 1: # issue 14411 e = e.func(e.args[0].cancel()) term = e.subs(x, S.Zero) if term.is_finite is False or term is S.NaN: raise PoleError("Cannot expand %s around 0" % (self)) series = term fact = S.One _x = uniquely_named_symbol('xi', self) e = e.subs(x, _x) for i in range(n - 1): i += 1 fact *= Rational(i) e = e.diff(_x) subs = e.subs(_x, S.Zero) if subs is S.NaN: # try to evaluate a limit if we have to subs = e.limit(_x, S.Zero) if subs.is_finite is False: raise PoleError("Cannot expand %s around 0" % (self)) term = subs*(x**i)/fact term = term.expand() series += term return series + Order(x**n, x) return e1.nseries(x, n=n, logx=logx) arg = self.args[0] l = [] g = None # try to predict a number of terms needed nterms = n + 2 cf = Order(arg.as_leading_term(x), x).getn() if cf != 0: nterms = (n/cf).ceiling() for i in range(nterms): g = self.taylor_term(i, arg, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return Add(*l) + Order(x**n, x) def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if not (1 <= argindex <= len(self.args)): raise ArgumentIndexError(self, argindex) ix = argindex - 1 A = self.args[ix] if A._diff_wrt: if len(self.args) == 1 or not A.is_Symbol: return _derivative_dispatch(self, A) for i, v in enumerate(self.args): if i != ix and A in v.free_symbols: # it can't be in any other argument's free symbols # issue 8510 break else: return _derivative_dispatch(self, A) # See issue 4624 and issue 4719, 5600 and 8510 D = Dummy('xi_%i' % argindex, dummy_index=hash(A)) args = self.args[:ix] + (D,) + self.args[ix + 1:] return Subs(Derivative(self.func(*args), D), D, A) def _eval_as_leading_term(self, x, cdir=0): """Stub that should be overridden by new Functions to return the first non-zero term in a series if ever an x-dependent argument whose leading term vanishes as x -> 0 might be encountered. See, for example, cos._eval_as_leading_term. """ from sympy import Order args = [a.as_leading_term(x) for a in self.args] o = Order(1, x) if any(x in a.free_symbols and o.contains(a) for a in args): # Whereas x and any finite number are contained in O(1, x), # expressions like 1/x are not. If any arg simplified to a # vanishing expression as x -> 0 (like x or x**2, but not # 3, 1/x, etc...) then the _eval_as_leading_term is needed # to supply the first non-zero term of the series, # # e.g. expression leading term # ---------- ------------ # cos(1/x) cos(1/x) # cos(cos(x)) cos(1) # cos(x) 1 <- _eval_as_leading_term needed # sin(x) x <- _eval_as_leading_term needed # raise NotImplementedError( '%s has no _eval_as_leading_term routine' % self.func) else: return self.func(*args) def _sage_(self): import sage.all as sage fname = self.func.__name__ func = getattr(sage, fname, None) args = [arg._sage_() for arg in self.args] # In the case the function is not known in sage: if func is None: import sympy if getattr(sympy, fname, None) is None: # abstract function return sage.function(fname)(*args) else: # the function defined in sympy is not known in sage # this exception is caught in sage raise AttributeError return func(*args) class AppliedUndef(Function): """ Base class for expressions resulting from the application of an undefined function. """ is_number = False def __new__(cls, *args, **options): args = list(map(sympify, args)) u = [a.name for a in args if isinstance(a, UndefinedFunction)] if u: raise TypeError('Invalid argument: expecting an expression, not UndefinedFunction%s: %s' % ( 's'*(len(u) > 1), ', '.join(u))) obj = super().__new__(cls, *args, **options) return obj def _eval_as_leading_term(self, x, cdir=0): return self def _sage_(self): import sage.all as sage fname = str(self.func) args = [arg._sage_() for arg in self.args] func = sage.function(fname)(*args) return func @property def _diff_wrt(self): """ Allow derivatives wrt to undefined functions. Examples ======== >>> from sympy import Function, Symbol >>> f = Function('f') >>> x = Symbol('x') >>> f(x)._diff_wrt True >>> f(x).diff(x) Derivative(f(x), x) """ return True class UndefSageHelper: """ Helper to facilitate Sage conversion. """ def __get__(self, ins, typ): import sage.all as sage if ins is None: return lambda: sage.function(typ.__name__) else: args = [arg._sage_() for arg in ins.args] return lambda : sage.function(ins.__class__.__name__)(*args) _undef_sage_helper = UndefSageHelper() class UndefinedFunction(FunctionClass): """ The (meta)class of undefined functions. """ def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs): from .symbol import _filter_assumptions # Allow Function('f', real=True) # and/or Function(Symbol('f', real=True)) assumptions, kwargs = _filter_assumptions(kwargs) if isinstance(name, Symbol): assumptions = name._merge(assumptions) name = name.name elif not isinstance(name, str): raise TypeError('expecting string or Symbol for name') else: commutative = assumptions.get('commutative', None) assumptions = Symbol(name, **assumptions).assumptions0 if commutative is None: assumptions.pop('commutative') __dict__ = __dict__ or {} # put the `is_*` for into __dict__ __dict__.update({'is_%s' % k: v for k, v in assumptions.items()}) # You can add other attributes, although they do have to be hashable # (but seriously, if you want to add anything other than assumptions, # just subclass Function) __dict__.update(kwargs) # add back the sanitized assumptions without the is_ prefix kwargs.update(assumptions) # Save these for __eq__ __dict__.update({'_kwargs': kwargs}) # do this for pickling __dict__['__module__'] = None obj = super().__new__(mcl, name, bases, __dict__) obj.name = name obj._sage_ = _undef_sage_helper return obj def __instancecheck__(cls, instance): return cls in type(instance).__mro__ _kwargs = {} # type: tDict[str, Optional[bool]] def __hash__(self): return hash((self.class_key(), frozenset(self._kwargs.items()))) def __eq__(self, other): return (isinstance(other, self.__class__) and self.class_key() == other.class_key() and self._kwargs == other._kwargs) def __ne__(self, other): return not self == other @property def _diff_wrt(self): return False # XXX: The type: ignore on WildFunction is because mypy complains: # # sympy/core/function.py:939: error: Cannot determine type of 'sort_key' in # base class 'Expr' # # Somehow this is because of the @cacheit decorator but it is not clear how to # fix it. class WildFunction(Function, AtomicExpr): # type: ignore """ A WildFunction function matches any function (with its arguments). Examples ======== >>> from sympy import WildFunction, Function, cos >>> from sympy.abc import x, y >>> F = WildFunction('F') >>> f = Function('f') >>> F.nargs Naturals0 >>> x.match(F) >>> F.match(F) {F_: F_} >>> f(x).match(F) {F_: f(x)} >>> cos(x).match(F) {F_: cos(x)} >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a given number of arguments, set ``nargs`` to the desired value at instantiation: >>> F = WildFunction('F', nargs=2) >>> F.nargs FiniteSet(2) >>> f(x).match(F) >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a range of arguments, set ``nargs`` to a tuple containing the desired number of arguments, e.g. if ``nargs = (1, 2)`` then functions with 1 or 2 arguments will be matched. >>> F = WildFunction('F', nargs=(1, 2)) >>> F.nargs FiniteSet(1, 2) >>> f(x).match(F) {F_: f(x)} >>> f(x, y).match(F) {F_: f(x, y)} >>> f(x, y, 1).match(F) """ # XXX: What is this class attribute used for? include = set() # type: tSet[Any] def __init__(cls, name, **assumptions): from sympy.sets.sets import Set, FiniteSet cls.name = name nargs = assumptions.pop('nargs', S.Naturals0) if not isinstance(nargs, Set): # Canonicalize nargs here. See also FunctionClass. if is_sequence(nargs): nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) nargs = FiniteSet(*nargs) cls.nargs = nargs def matches(self, expr, repl_dict={}, old=False): if not isinstance(expr, (AppliedUndef, Function)): return None if len(expr.args) not in self.nargs: return None repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict class Derivative(Expr): """ Carries out differentiation of the given expression with respect to symbols. Examples ======== >>> from sympy import Derivative, Function, symbols, Subs >>> from sympy.abc import x, y >>> f, g = symbols('f g', cls=Function) >>> Derivative(x**2, x, evaluate=True) 2*x Denesting of derivatives retains the ordering of variables: >>> Derivative(Derivative(f(x, y), y), x) Derivative(f(x, y), y, x) Contiguously identical symbols are merged into a tuple giving the symbol and the count: >>> Derivative(f(x), x, x, y, x) Derivative(f(x), (x, 2), y, x) If the derivative cannot be performed, and evaluate is True, the order of the variables of differentiation will be made canonical: >>> Derivative(f(x, y), y, x, evaluate=True) Derivative(f(x, y), x, y) Derivatives with respect to undefined functions can be calculated: >>> Derivative(f(x)**2, f(x), evaluate=True) 2*f(x) Such derivatives will show up when the chain rule is used to evalulate a derivative: >>> f(g(x)).diff(x) Derivative(f(g(x)), g(x))*Derivative(g(x), x) Substitution is used to represent derivatives of functions with arguments that are not symbols or functions: >>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3) True Notes ===== Simplification of high-order derivatives: Because there can be a significant amount of simplification that can be done when multiple differentiations are performed, results will be automatically simplified in a fairly conservative fashion unless the keyword ``simplify`` is set to False. >>> from sympy import sqrt, diff, Function, symbols >>> from sympy.abc import x, y, z >>> f, g = symbols('f,g', cls=Function) >>> e = sqrt((x + 1)**2 + x) >>> diff(e, (x, 5), simplify=False).count_ops() 136 >>> diff(e, (x, 5)).count_ops() 30 Ordering of variables: If evaluate is set to True and the expression cannot be evaluated, the list of differentiation symbols will be sorted, that is, the expression is assumed to have continuous derivatives up to the order asked. Derivative wrt non-Symbols: For the most part, one may not differentiate wrt non-symbols. For example, we do not allow differentiation wrt `x*y` because there are multiple ways of structurally defining where x*y appears in an expression: a very strict definition would make (x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like cos(x)) are not allowed, either: >>> (x*y*z).diff(x*y) Traceback (most recent call last): ... ValueError: Can't calculate derivative wrt x*y. To make it easier to work with variational calculus, however, derivatives wrt AppliedUndef and Derivatives are allowed. For example, in the Euler-Lagrange method one may write F(t, u, v) where u = f(t) and v = f'(t). These variables can be written explicitly as functions of time:: >>> from sympy.abc import t >>> F = Function('F') >>> U = f(t) >>> V = U.diff(t) The derivative wrt f(t) can be obtained directly: >>> direct = F(t, U, V).diff(U) When differentiation wrt a non-Symbol is attempted, the non-Symbol is temporarily converted to a Symbol while the differentiation is performed and the same answer is obtained: >>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U) >>> assert direct == indirect The implication of this non-symbol replacement is that all functions are treated as independent of other functions and the symbols are independent of the functions that contain them:: >>> x.diff(f(x)) 0 >>> g(x).diff(f(x)) 0 It also means that derivatives are assumed to depend only on the variables of differentiation, not on anything contained within the expression being differentiated:: >>> F = f(x) >>> Fx = F.diff(x) >>> Fx.diff(F) # derivative depends on x, not F 0 >>> Fxx = Fx.diff(x) >>> Fxx.diff(Fx) # derivative depends on x, not Fx 0 The last example can be made explicit by showing the replacement of Fx in Fxx with y: >>> Fxx.subs(Fx, y) Derivative(y, x) Since that in itself will evaluate to zero, differentiating wrt Fx will also be zero: >>> _.doit() 0 Replacing undefined functions with concrete expressions One must be careful to replace undefined functions with expressions that contain variables consistent with the function definition and the variables of differentiation or else insconsistent result will be obtained. Consider the following example: >>> eq = f(x)*g(y) >>> eq.subs(f(x), x*y).diff(x, y).doit() y*Derivative(g(y), y) + g(y) >>> eq.diff(x, y).subs(f(x), x*y).doit() y*Derivative(g(y), y) The results differ because `f(x)` was replaced with an expression that involved both variables of differentiation. In the abstract case, differentiation of `f(x)` by `y` is 0; in the concrete case, the presence of `y` made that derivative nonvanishing and produced the extra `g(y)` term. Defining differentiation for an object An object must define ._eval_derivative(symbol) method that returns the differentiation result. This function only needs to consider the non-trivial case where expr contains symbol and it should call the diff() method internally (not _eval_derivative); Derivative should be the only one to call _eval_derivative. Any class can allow derivatives to be taken with respect to itself (while indicating its scalar nature). See the docstring of Expr._diff_wrt. See Also ======== _sort_variable_count """ is_Derivative = True @property def _diff_wrt(self): """An expression may be differentiated wrt a Derivative if it is in elementary form. Examples ======== >>> from sympy import Function, Derivative, cos >>> from sympy.abc import x >>> f = Function('f') >>> Derivative(f(x), x)._diff_wrt True >>> Derivative(cos(x), x)._diff_wrt False >>> Derivative(x + 1, x)._diff_wrt False A Derivative might be an unevaluated form of what will not be a valid variable of differentiation if evaluated. For example, >>> Derivative(f(f(x)), x).doit() Derivative(f(x), x)*Derivative(f(f(x)), f(x)) Such an expression will present the same ambiguities as arise when dealing with any other product, like ``2*x``, so ``_diff_wrt`` is False: >>> Derivative(f(f(x)), x)._diff_wrt False """ return self.expr._diff_wrt and isinstance(self.doit(), Derivative) def __new__(cls, expr, *variables, **kwargs): from sympy.matrices.common import MatrixCommon from sympy import Integer, MatrixExpr from sympy.tensor.array import Array, NDimArray from sympy.utilities.misc import filldedent expr = sympify(expr) symbols_or_none = getattr(expr, "free_symbols", None) has_symbol_set = isinstance(symbols_or_none, set) if not has_symbol_set: raise ValueError(filldedent(''' Since there are no variables in the expression %s, it cannot be differentiated.''' % expr)) # determine value for variables if it wasn't given if not variables: variables = expr.free_symbols if len(variables) != 1: if expr.is_number: return S.Zero if len(variables) == 0: raise ValueError(filldedent(''' Since there are no variables in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) else: raise ValueError(filldedent(''' Since there is more than one variable in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) # Standardize the variables by sympifying them: variables = list(sympify(variables)) # Split the list of variables into a list of the variables we are diff # wrt, where each element of the list has the form (s, count) where # s is the entity to diff wrt and count is the order of the # derivative. variable_count = [] array_likes = (tuple, list, Tuple) for i, v in enumerate(variables): if isinstance(v, Integer): if i == 0: raise ValueError("First variable cannot be a number: %i" % v) count = v prev, prevcount = variable_count[-1] if prevcount != 1: raise TypeError("tuple {} followed by number {}".format((prev, prevcount), v)) if count == 0: variable_count.pop() else: variable_count[-1] = Tuple(prev, count) else: if isinstance(v, array_likes): if len(v) == 0: # Ignore empty tuples: Derivative(expr, ... , (), ... ) continue if isinstance(v[0], array_likes): # Derive by array: Derivative(expr, ... , [[x, y, z]], ... ) if len(v) == 1: v = Array(v[0]) count = 1 else: v, count = v v = Array(v) else: v, count = v if count == 0: continue elif isinstance(v, UndefinedFunction): raise TypeError( "cannot differentiate wrt " "UndefinedFunction: %s" % v) else: count = 1 variable_count.append(Tuple(v, count)) # light evaluation of contiguous, identical # items: (x, 1), (x, 1) -> (x, 2) merged = [] for t in variable_count: v, c = t if c.is_negative: raise ValueError( 'order of differentiation must be nonnegative') if merged and merged[-1][0] == v: c += merged[-1][1] if not c: merged.pop() else: merged[-1] = Tuple(v, c) else: merged.append(t) variable_count = merged # sanity check of variables of differentation; we waited # until the counts were computed since some variables may # have been removed because the count was 0 for v, c in variable_count: # v must have _diff_wrt True if not v._diff_wrt: __ = '' # filler to make error message neater raise ValueError(filldedent(''' Can't calculate derivative wrt %s.%s''' % (v, __))) # We make a special case for 0th derivative, because there is no # good way to unambiguously print this. if len(variable_count) == 0: return expr evaluate = kwargs.get('evaluate', False) if evaluate: if isinstance(expr, Derivative): expr = expr.canonical variable_count = [ (v.canonical if isinstance(v, Derivative) else v, c) for v, c in variable_count] # Look for a quick exit if there are symbols that don't appear in # expression at all. Note, this cannot check non-symbols like # Derivatives as those can be created by intermediate # derivatives. zero = False free = expr.free_symbols for v, c in variable_count: vfree = v.free_symbols if c.is_positive and vfree: if isinstance(v, AppliedUndef): # these match exactly since # x.diff(f(x)) == g(x).diff(f(x)) == 0 # and are not created by differentiation D = Dummy() if not expr.xreplace({v: D}).has(D): zero = True break elif isinstance(v, MatrixExpr): zero = False break elif isinstance(v, Symbol) and v not in free: zero = True break else: if not free & vfree: # e.g. v is IndexedBase or Matrix zero = True break if zero: return cls._get_zero_with_shape_like(expr) # make the order of symbols canonical #TODO: check if assumption of discontinuous derivatives exist variable_count = cls._sort_variable_count(variable_count) # denest if isinstance(expr, Derivative): variable_count = list(expr.variable_count) + variable_count expr = expr.expr return _derivative_dispatch(expr, *variable_count, **kwargs) # we return here if evaluate is False or if there is no # _eval_derivative method if not evaluate or not hasattr(expr, '_eval_derivative'): # return an unevaluated Derivative if evaluate and variable_count == [(expr, 1)] and expr.is_scalar: # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined return S.One return Expr.__new__(cls, expr, *variable_count) # evaluate the derivative by calling _eval_derivative method # of expr for each variable # ------------------------------------------------------------- nderivs = 0 # how many derivatives were performed unhandled = [] for i, (v, count) in enumerate(variable_count): old_expr = expr old_v = None is_symbol = v.is_symbol or isinstance(v, (Iterable, Tuple, MatrixCommon, NDimArray)) if not is_symbol: old_v = v v = Dummy('xi') expr = expr.xreplace({old_v: v}) # Derivatives and UndefinedFunctions are independent # of all others clashing = not (isinstance(old_v, Derivative) or \ isinstance(old_v, AppliedUndef)) if not v in expr.free_symbols and not clashing: return expr.diff(v) # expr's version of 0 if not old_v.is_scalar and not hasattr( old_v, '_eval_derivative'): # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined expr *= old_v.diff(old_v) obj = cls._dispatch_eval_derivative_n_times(expr, v, count) if obj is not None and obj.is_zero: return obj nderivs += count if old_v is not None: if obj is not None: # remove the dummy that was used obj = obj.subs(v, old_v) # restore expr expr = old_expr if obj is None: # we've already checked for quick-exit conditions # that give 0 so the remaining variables # are contained in the expression but the expression # did not compute a derivative so we stop taking # derivatives unhandled = variable_count[i:] break expr = obj # what we have so far can be made canonical expr = expr.replace( lambda x: isinstance(x, Derivative), lambda x: x.canonical) if unhandled: if isinstance(expr, Derivative): unhandled = list(expr.variable_count) + unhandled expr = expr.expr expr = Expr.__new__(cls, expr, *unhandled) if (nderivs > 1) == True and kwargs.get('simplify', True): from sympy.core.exprtools import factor_terms from sympy.simplify.simplify import signsimp expr = factor_terms(signsimp(expr)) return expr @property def canonical(cls): return cls.func(cls.expr, *Derivative._sort_variable_count(cls.variable_count)) @classmethod def _sort_variable_count(cls, vc): """ Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation: * symbols and functions commute with each other * derivatives commute with each other * a derivative doesn't commute with anything it contains * any other object is not allowed to commute if it has free symbols in common with another object Examples ======== >>> from sympy import Derivative, Function, symbols >>> vsort = Derivative._sort_variable_count >>> x, y, z = symbols('x y z') >>> f, g, h = symbols('f g h', cls=Function) Contiguous items are collapsed into one pair: >>> vsort([(x, 1), (x, 1)]) [(x, 2)] >>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)]) [(y, 2), (f(x), 2)] Ordering is canonical. >>> def vsort0(*v): ... # docstring helper to ... # change vi -> (vi, 0), sort, and return vi vals ... return [i[0] for i in vsort([(i, 0) for i in v])] >>> vsort0(y, x) [x, y] >>> vsort0(g(y), g(x), f(y)) [f(y), g(x), g(y)] Symbols are sorted as far to the left as possible but never move to the left of a derivative having the same symbol in its variables; the same applies to AppliedUndef which are always sorted after Symbols: >>> dfx = f(x).diff(x) >>> assert vsort0(dfx, y) == [y, dfx] >>> assert vsort0(dfx, x) == [dfx, x] """ from sympy.utilities.iterables import uniq, topological_sort if not vc: return [] vc = list(vc) if len(vc) == 1: return [Tuple(*vc[0])] V = list(range(len(vc))) E = [] v = lambda i: vc[i][0] D = Dummy() def _block(d, v, wrt=False): # return True if v should not come before d else False if d == v: return wrt if d.is_Symbol: return False if isinstance(d, Derivative): # a derivative blocks if any of it's variables contain # v; the wrt flag will return True for an exact match # and will cause an AppliedUndef to block if v is in # the arguments if any(_block(k, v, wrt=True) for k in d._wrt_variables): return True return False if not wrt and isinstance(d, AppliedUndef): return False if v.is_Symbol: return v in d.free_symbols if isinstance(v, AppliedUndef): return _block(d.xreplace({v: D}), D) return d.free_symbols & v.free_symbols for i in range(len(vc)): for j in range(i): if _block(v(j), v(i)): E.append((j,i)) # this is the default ordering to use in case of ties O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc)))) ix = topological_sort((V, E), key=lambda i: O[v(i)]) # merge counts of contiguously identical items merged = [] for v, c in [vc[i] for i in ix]: if merged and merged[-1][0] == v: merged[-1][1] += c else: merged.append([v, c]) return [Tuple(*i) for i in merged] def _eval_is_commutative(self): return self.expr.is_commutative def _eval_derivative(self, v): # If v (the variable of differentiation) is not in # self.variables, we might be able to take the derivative. if v not in self._wrt_variables: dedv = self.expr.diff(v) if isinstance(dedv, Derivative): return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count)) # dedv (d(self.expr)/dv) could have simplified things such that the # derivative wrt things in self.variables can now be done. Thus, # we set evaluate=True to see if there are any other derivatives # that can be done. The most common case is when dedv is a simple # number so that the derivative wrt anything else will vanish. return self.func(dedv, *self.variables, evaluate=True) # In this case v was in self.variables so the derivative wrt v has # already been attempted and was not computed, either because it # couldn't be or evaluate=False originally. variable_count = list(self.variable_count) variable_count.append((v, 1)) return self.func(self.expr, *variable_count, evaluate=False) def doit(self, **hints): expr = self.expr if hints.get('deep', True): expr = expr.doit(**hints) hints['evaluate'] = True rv = self.func(expr, *self.variable_count, **hints) if rv!= self and rv.has(Derivative): rv = rv.doit(**hints) return rv @_sympifyit('z0', NotImplementedError) def doit_numerically(self, z0): """ Evaluate the derivative at z numerically. When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method. """ if len(self.free_symbols) != 1 or len(self.variables) != 1: raise NotImplementedError('partials and higher order derivatives') z = list(self.free_symbols)[0] def eval(x): f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec)) f0 = f0.evalf(mlib.libmpf.prec_to_dps(mpmath.mp.prec)) return f0._to_mpmath(mpmath.mp.prec) return Expr._from_mpmath(mpmath.diff(eval, z0._to_mpmath(mpmath.mp.prec)), mpmath.mp.prec) @property def expr(self): return self._args[0] @property def _wrt_variables(self): # return the variables of differentiation without # respect to the type of count (int or symbolic) return [i[0] for i in self.variable_count] @property def variables(self): # TODO: deprecate? YES, make this 'enumerated_variables' and # name _wrt_variables as variables # TODO: support for `d^n`? rv = [] for v, count in self.variable_count: if not count.is_Integer: raise TypeError(filldedent(''' Cannot give expansion for symbolic count. If you just want a list of all variables of differentiation, use _wrt_variables.''')) rv.extend([v]*count) return tuple(rv) @property def variable_count(self): return self._args[1:] @property def derivative_count(self): return sum([count for var, count in self.variable_count], 0) @property def free_symbols(self): ret = self.expr.free_symbols # Add symbolic counts to free_symbols for var, count in self.variable_count: ret.update(count.free_symbols) return ret def _eval_subs(self, old, new): # The substitution (old, new) cannot be done inside # Derivative(expr, vars) for a variety of reasons # as handled below. if old in self._wrt_variables: # first handle the counts expr = self.func(self.expr, *[(v, c.subs(old, new)) for v, c in self.variable_count]) if expr != self: return expr._eval_subs(old, new) # quick exit case if not getattr(new, '_diff_wrt', False): # case (0): new is not a valid variable of # differentiation if isinstance(old, Symbol): # don't introduce a new symbol if the old will do return Subs(self, old, new) else: xi = Dummy('xi') return Subs(self.xreplace({old: xi}), xi, new) # If both are Derivatives with the same expr, check if old is # equivalent to self or if old is a subderivative of self. if old.is_Derivative and old.expr == self.expr: if self.canonical == old.canonical: return new # collections.Counter doesn't have __le__ def _subset(a, b): return all((a[i] <= b[i]) == True for i in a) old_vars = Counter(dict(reversed(old.variable_count))) self_vars = Counter(dict(reversed(self.variable_count))) if _subset(old_vars, self_vars): return _derivative_dispatch(new, *(self_vars - old_vars).items()).canonical args = list(self.args) newargs = list(x._subs(old, new) for x in args) if args[0] == old: # complete replacement of self.expr # we already checked that the new is valid so we know # it won't be a problem should it appear in variables return _derivative_dispatch(*newargs) if newargs[0] != args[0]: # case (1) can't change expr by introducing something that is in # the _wrt_variables if it was already in the expr # e.g. # for Derivative(f(x, g(y)), y), x cannot be replaced with # anything that has y in it; for f(g(x), g(y)).diff(g(y)) # g(x) cannot be replaced with anything that has g(y) syms = {vi: Dummy() for vi in self._wrt_variables if not vi.is_Symbol} wrt = {syms.get(vi, vi) for vi in self._wrt_variables} forbidden = args[0].xreplace(syms).free_symbols & wrt nfree = new.xreplace(syms).free_symbols ofree = old.xreplace(syms).free_symbols if (nfree - ofree) & forbidden: return Subs(self, old, new) viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:])) if any(i != j for i, j in viter): # a wrt-variable change # case (2) can't change vars by introducing a variable # that is contained in expr, e.g. # for Derivative(f(z, g(h(x), y)), y), y cannot be changed to # x, h(x), or g(h(x), y) for a in _atomic(self.expr, recursive=True): for i in range(1, len(newargs)): vi, _ = newargs[i] if a == vi and vi != args[i][0]: return Subs(self, old, new) # more arg-wise checks vc = newargs[1:] oldv = self._wrt_variables newe = self.expr subs = [] for i, (vi, ci) in enumerate(vc): if not vi._diff_wrt: # case (3) invalid differentiation expression so # create a replacement dummy xi = Dummy('xi_%i' % i) # replace the old valid variable with the dummy # in the expression newe = newe.xreplace({oldv[i]: xi}) # and replace the bad variable with the dummy vc[i] = (xi, ci) # and record the dummy with the new (invalid) # differentiation expression subs.append((xi, vi)) if subs: # handle any residual substitution in the expression newe = newe._subs(old, new) # return the Subs-wrapped derivative return Subs(Derivative(newe, *vc), *zip(*subs)) # everything was ok return _derivative_dispatch(*newargs) def _eval_lseries(self, x, logx, cdir=0): dx = self.variables for term in self.expr.lseries(x, logx=logx, cdir=cdir): yield self.func(term, *dx) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.expr.nseries(x, n=n, logx=logx) o = arg.getO() dx = self.variables rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())] if o: rv.append(o/x) return Add(*rv) def _eval_as_leading_term(self, x, cdir=0): series_gen = self.expr.lseries(x) d = S.Zero for leading_term in series_gen: d = diff(leading_term, *self.variables) if d != 0: break return d def _sage_(self): import sage.all as sage args = [arg._sage_() for arg in self.args] return sage.derivative(*args) def as_finite_difference(self, points=1, x0=None, wrt=None): """ Expresses a Derivative instance as a finite difference. Parameters ========== points : sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around ``x0``. Default: 1 (step-size 1) x0 : number or Symbol, optional the value of the independent variable (``wrt``) at which the derivative is to be approximated. Default: same as ``wrt``. wrt : Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the derivative is ordinary. Default: ``None``. Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol >>> x, h = symbols('x h') >>> f = Function('f') >>> f(x).diff(x).as_finite_difference() -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> f(x).diff(x).as_finite_difference(h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around ``x0``, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/... To approximate ``Derivative`` around ``x0`` using a non-equidistant spacing step, the algorithm supports assignment of undefined functions to ``points``: >>> dx = Function('dx') >>> f(x).diff(x).as_finite_difference(points=dx(x), x0=x-h) -f(-h + x - dx(-h + x)/2)/dx(-h + x) + f(-h + x + dx(-h + x)/2)/dx(-h + x) Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> d2fdxdy.as_finite_difference(wrt=x) -Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y) We can apply ``as_finite_difference`` to ``Derivative`` instances in compound expressions using ``replace``: >>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative, ... lambda arg: arg.as_finite_difference()) 42**(-f(x - 1/2) + f(x + 1/2)) + 1 See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.differentiate_finite sympy.calculus.finite_diff.finite_diff_weights """ from ..calculus.finite_diff import _as_finite_diff return _as_finite_diff(self, points, x0, wrt) @classmethod def _get_zero_with_shape_like(cls, expr): return S.Zero @classmethod def _dispatch_eval_derivative_n_times(cls, expr, v, count): # Evaluate the derivative `n` times. If # `_eval_derivative_n_times` is not overridden by the current # object, the default in `Basic` will call a loop over # `_eval_derivative`: return expr._eval_derivative_n_times(v, count) def _derivative_dispatch(expr, *variables, **kwargs): from sympy.matrices.common import MatrixCommon from sympy import MatrixExpr from sympy import NDimArray array_types = (MatrixCommon, MatrixExpr, NDimArray, list, tuple, Tuple) if isinstance(expr, array_types) or any(isinstance(i[0], array_types) if isinstance(i, (tuple, list, Tuple)) else isinstance(i, array_types) for i in variables): from sympy.tensor.array.array_derivatives import ArrayDerivative return ArrayDerivative(expr, *variables, **kwargs) return Derivative(expr, *variables, **kwargs) class Lambda(Expr): """ Lambda(x, expr) represents a lambda function similar to Python's 'lambda x: expr'. A function of several variables is written as Lambda((x, y, ...), expr). Examples ======== A simple example: >>> from sympy import Lambda >>> from sympy.abc import x >>> f = Lambda(x, x**2) >>> f(4) 16 For multivariate functions, use: >>> from sympy.abc import y, z, t >>> f2 = Lambda((x, y, z, t), x + y**z + t**z) >>> f2(1, 2, 3, 4) 73 It is also possible to unpack tuple arguments: >>> f = Lambda( ((x, y), z) , x + y + z) >>> f((1, 2), 3) 6 A handy shortcut for lots of arguments: >>> p = x, y, z >>> f = Lambda(p, x + y*z) >>> f(*p) x + y*z """ is_Function = True def __new__(cls, signature, expr): if iterable(signature) and not isinstance(signature, (tuple, Tuple)): SymPyDeprecationWarning( feature="non tuple iterable of argument symbols to Lambda", useinstead="tuple of argument symbols", issue=17474, deprecated_since_version="1.5").warn() signature = tuple(signature) sig = signature if iterable(signature) else (signature,) sig = sympify(sig) cls._check_signature(sig) if len(sig) == 1 and sig[0] == expr: return S.IdentityFunction return Expr.__new__(cls, sig, sympify(expr)) @classmethod def _check_signature(cls, sig): syms = set() def rcheck(args): for a in args: if a.is_symbol: if a in syms: raise BadSignatureError("Duplicate symbol %s" % a) syms.add(a) elif isinstance(a, Tuple): rcheck(a) else: raise BadSignatureError("Lambda signature should be only tuples" " and symbols, not %s" % a) if not isinstance(sig, Tuple): raise BadSignatureError("Lambda signature should be a tuple not %s" % sig) # Recurse through the signature: rcheck(sig) @property def signature(self): """The expected form of the arguments to be unpacked into variables""" return self._args[0] @property def expr(self): """The return value of the function""" return self._args[1] @property def variables(self): """The variables used in the internal representation of the function""" def _variables(args): if isinstance(args, Tuple): for arg in args: yield from _variables(arg) else: yield args return tuple(_variables(self.signature)) @property def nargs(self): from sympy.sets.sets import FiniteSet return FiniteSet(len(self.signature)) bound_symbols = variables @property def free_symbols(self): return self.expr.free_symbols - set(self.variables) def __call__(self, *args): n = len(args) if n not in self.nargs: # Lambda only ever has 1 value in nargs # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. ## XXX does this apply to Lambda? If not, remove this comment. temp = ('%(name)s takes exactly %(args)s ' 'argument%(plural)s (%(given)s given)') raise BadArgumentsError(temp % { 'name': self, 'args': list(self.nargs)[0], 'plural': 's'*(list(self.nargs)[0] != 1), 'given': n}) d = self._match_signature(self.signature, args) return self.expr.xreplace(d) def _match_signature(self, sig, args): symargmap = {} def rmatch(pars, args): for par, arg in zip(pars, args): if par.is_symbol: symargmap[par] = arg elif isinstance(par, Tuple): if not isinstance(arg, (tuple, Tuple)) or len(args) != len(pars): raise BadArgumentsError("Can't match %s and %s" % (args, pars)) rmatch(par, arg) rmatch(sig, args) return symargmap @property def is_identity(self): """Return ``True`` if this ``Lambda`` is an identity function. """ return self.signature == self.expr def _eval_evalf(self, prec): from sympy.core.evalf import prec_to_dps return self.func(self.args[0], self.args[1].evalf(n=prec_to_dps(prec))) class Subs(Expr): """ Represents unevaluated substitutions of an expression. ``Subs(expr, x, x0)`` represents the expression resulting from substituting x with x0 in expr. Parameters ========== expr : Expr An expression. x : tuple, variable A variable or list of distinct variables. x0 : tuple or list of tuples A point or list of evaluation points corresponding to those variables. Notes ===== ``Subs`` objects are generally useful to represent unevaluated derivatives calculated at a point. The variables may be expressions, but they are subjected to the limitations of subs(), so it is usually a good practice to use only symbols for variables, since in that case there can be no ambiguity. There's no automatic expansion - use the method .doit() to effect all possible substitutions of the object and also of objects inside the expression. When evaluating derivatives at a point that is not a symbol, a Subs object is returned. One is also able to calculate derivatives of Subs objects - in this case the expression is always expanded (for the unevaluated form, use Derivative()). Examples ======== >>> from sympy import Subs, Function, sin, cos >>> from sympy.abc import x, y, z >>> f = Function('f') Subs are created when a particular substitution cannot be made. The x in the derivative cannot be replaced with 0 because 0 is not a valid variables of differentiation: >>> f(x).diff(x).subs(x, 0) Subs(Derivative(f(x), x), x, 0) Once f is known, the derivative and evaluation at 0 can be done: >>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0) True Subs can also be created directly with one or more variables: >>> Subs(f(x)*sin(y) + z, (x, y), (0, 1)) Subs(z + f(x)*sin(y), (x, y), (0, 1)) >>> _.doit() z + f(0)*sin(1) Notes ===== In order to allow expressions to combine before doit is done, a representation of the Subs expression is used internally to make expressions that are superficially different compare the same: >>> a, b = Subs(x, x, 0), Subs(y, y, 0) >>> a + b 2*Subs(x, x, 0) This can lead to unexpected consequences when using methods like `has` that are cached: >>> s = Subs(x, x, 0) >>> s.has(x), s.has(y) (True, False) >>> ss = s.subs(x, y) >>> ss.has(x), ss.has(y) (True, False) >>> s, ss (Subs(x, x, 0), Subs(y, y, 0)) """ def __new__(cls, expr, variables, point, **assumptions): from sympy import Symbol if not is_sequence(variables, Tuple): variables = [variables] variables = Tuple(*variables) if has_dups(variables): repeated = [str(v) for v, i in Counter(variables).items() if i > 1] __ = ', '.join(repeated) raise ValueError(filldedent(''' The following expressions appear more than once: %s ''' % __)) point = Tuple(*(point if is_sequence(point, Tuple) else [point])) if len(point) != len(variables): raise ValueError('Number of point values must be the same as ' 'the number of variables.') if not point: return sympify(expr) # denest if isinstance(expr, Subs): variables = expr.variables + variables point = expr.point + point expr = expr.expr else: expr = sympify(expr) # use symbols with names equal to the point value (with prepended _) # to give a variable-independent expression pre = "_" pts = sorted(set(point), key=default_sort_key) from sympy.printing import StrPrinter class CustomStrPrinter(StrPrinter): def _print_Dummy(self, expr): return str(expr) + str(expr.dummy_index) def mystr(expr, **settings): p = CustomStrPrinter(settings) return p.doprint(expr) while 1: s_pts = {p: Symbol(pre + mystr(p)) for p in pts} reps = [(v, s_pts[p]) for v, p in zip(variables, point)] # if any underscore-prepended symbol is already a free symbol # and is a variable with a different point value, then there # is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0)) # because the new symbol that would be created is _1 but _1 # is already mapped to 0 so __0 and __1 are used for the new # symbols if any(r in expr.free_symbols and r in variables and Symbol(pre + mystr(point[variables.index(r)])) != r for _, r in reps): pre += "_" continue break obj = Expr.__new__(cls, expr, Tuple(*variables), point) obj._expr = expr.xreplace(dict(reps)) return obj def _eval_is_commutative(self): return self.expr.is_commutative def doit(self, **hints): e, v, p = self.args # remove self mappings for i, (vi, pi) in enumerate(zip(v, p)): if vi == pi: v = v[:i] + v[i + 1:] p = p[:i] + p[i + 1:] if not v: return self.expr if isinstance(e, Derivative): # apply functions first, e.g. f -> cos undone = [] for i, vi in enumerate(v): if isinstance(vi, FunctionClass): e = e.subs(vi, p[i]) else: undone.append((vi, p[i])) if not isinstance(e, Derivative): e = e.doit() if isinstance(e, Derivative): # do Subs that aren't related to differentiation undone2 = [] D = Dummy() arg = e.args[0] for vi, pi in undone: if D not in e.xreplace({vi: D}).free_symbols: if arg.has(vi): e = e.subs(vi, pi) else: undone2.append((vi, pi)) undone = undone2 # differentiate wrt variables that are present wrt = [] D = Dummy() expr = e.expr free = expr.free_symbols for vi, ci in e.variable_count: if isinstance(vi, Symbol) and vi in free: expr = expr.diff((vi, ci)) elif D in expr.subs(vi, D).free_symbols: expr = expr.diff((vi, ci)) else: wrt.append((vi, ci)) # inject remaining subs rv = expr.subs(undone) # do remaining differentiation *in order given* for vc in wrt: rv = rv.diff(vc) else: # inject remaining subs rv = e.subs(undone) else: rv = e.doit(**hints).subs(list(zip(v, p))) if hints.get('deep', True) and rv != self: rv = rv.doit(**hints) return rv def evalf(self, prec=None, **options): return self.doit().evalf(prec, **options) n = evalf @property def variables(self): """The variables to be evaluated""" return self._args[1] bound_symbols = variables @property def expr(self): """The expression on which the substitution operates""" return self._args[0] @property def point(self): """The values for which the variables are to be substituted""" return self._args[2] @property def free_symbols(self): return (self.expr.free_symbols - set(self.variables) | set(self.point.free_symbols)) @property def expr_free_symbols(self): from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return (self.expr.expr_free_symbols - set(self.variables) | set(self.point.expr_free_symbols)) def __eq__(self, other): if not isinstance(other, Subs): return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): return not(self == other) def __hash__(self): return super().__hash__() def _hashable_content(self): return (self._expr.xreplace(self.canonical_variables), ) + tuple(ordered([(v, p) for v, p in zip(self.variables, self.point) if not self.expr.has(v)])) def _eval_subs(self, old, new): # Subs doit will do the variables in order; the semantics # of subs for Subs is have the following invariant for # Subs object foo: # foo.doit().subs(reps) == foo.subs(reps).doit() pt = list(self.point) if old in self.variables: if _atomic(new) == {new} and not any( i.has(new) for i in self.args): # the substitution is neutral return self.xreplace({old: new}) # any occurrence of old before this point will get # handled by replacements from here on i = self.variables.index(old) for j in range(i, len(self.variables)): pt[j] = pt[j]._subs(old, new) return self.func(self.expr, self.variables, pt) v = [i._subs(old, new) for i in self.variables] if v != list(self.variables): return self.func(self.expr, self.variables + (old,), pt + [new]) expr = self.expr._subs(old, new) pt = [i._subs(old, new) for i in self.point] return self.func(expr, v, pt) def _eval_derivative(self, s): # Apply the chain rule of the derivative on the substitution variables: f = self.expr vp = V, P = self.variables, self.point val = Add.fromiter(p.diff(s)*Subs(f.diff(v), *vp).doit() for v, p in zip(V, P)) # these are all the free symbols in the expr efree = f.free_symbols # some symbols like IndexedBase include themselves and args # as free symbols compound = {i for i in efree if len(i.free_symbols) > 1} # hide them and see what independent free symbols remain dums = {Dummy() for i in compound} masked = f.xreplace(dict(zip(compound, dums))) ifree = masked.free_symbols - dums # include the compound symbols free = ifree | compound # remove the variables already handled free -= set(V) # add back any free symbols of remaining compound symbols free |= {i for j in free & compound for i in j.free_symbols} # if symbols of s are in free then there is more to do if free & s.free_symbols: val += Subs(f.diff(s), self.variables, self.point).doit() return val def _eval_nseries(self, x, n, logx, cdir=0): if x in self.point: # x is the variable being substituted into apos = self.point.index(x) other = self.variables[apos] else: other = x arg = self.expr.nseries(other, n=n, logx=logx) o = arg.getO() terms = Add.make_args(arg.removeO()) rv = Add(*[self.func(a, *self.args[1:]) for a in terms]) if o: rv += o.subs(other, x) return rv def _eval_as_leading_term(self, x, cdir=0): if x in self.point: ipos = self.point.index(x) xvar = self.variables[ipos] return self.expr.as_leading_term(xvar) if x in self.variables: # if `x` is a dummy variable, it means it won't exist after the # substitution has been performed: return self # The variable is independent of the substitution: return self.expr.as_leading_term(x) def diff(f, *symbols, **kwargs): """ Differentiate f with respect to symbols. Explanation =========== This is just a wrapper to unify .diff() and the Derivative class; its interface is similar to that of integrate(). You can use the same shortcuts for multiple variables as with Derivative. For example, diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative of f(x). You can pass evaluate=False to get an unevaluated Derivative class. Note that if there are 0 symbols (such as diff(f(x), x, 0), then the result will be the function (the zeroth derivative), even if evaluate=False. Examples ======== >>> from sympy import sin, cos, Function, diff >>> from sympy.abc import x, y >>> f = Function('f') >>> diff(sin(x), x) cos(x) >>> diff(f(x), x, x, x) Derivative(f(x), (x, 3)) >>> diff(f(x), x, 3) Derivative(f(x), (x, 3)) >>> diff(sin(x)*cos(y), x, 2, y, 2) sin(x)*cos(y) >>> type(diff(sin(x), x)) cos >>> type(diff(sin(x), x, evaluate=False)) <class 'sympy.core.function.Derivative'> >>> type(diff(sin(x), x, 0)) sin >>> type(diff(sin(x), x, 0, evaluate=False)) sin >>> diff(sin(x)) cos(x) >>> diff(sin(x*y)) Traceback (most recent call last): ... ValueError: specify differentiation variables to differentiate sin(x*y) Note that ``diff(sin(x))`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. References ========== http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html See Also ======== Derivative idiff: computes the derivative implicitly """ if hasattr(f, 'diff'): return f.diff(*symbols, **kwargs) kwargs.setdefault('evaluate', True) return _derivative_dispatch(f, *symbols, **kwargs) def expand(e, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): r""" Expand an expression using methods given as hints. Explanation =========== Hints evaluated unless explicitly set to False are: ``basic``, ``log``, ``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following hints are supported but not applied unless set to True: ``complex``, ``func``, and ``trig``. In addition, the following meta-hints are supported by some or all of the other hints: ``frac``, ``numer``, ``denom``, ``modulus``, and ``force``. ``deep`` is supported by all hints. Additionally, subclasses of Expr may define their own hints or meta-hints. The ``basic`` hint is used for any special rewriting of an object that should be done automatically (along with the other hints like ``mul``) when expand is called. This is a catch-all hint to handle any sort of expansion that may not be described by the existing hint names. To use this hint an object should override the ``_eval_expand_basic`` method. Objects may also define their own expand methods, which are not run by default. See the API section below. If ``deep`` is set to ``True`` (the default), things like arguments of functions are recursively expanded. Use ``deep=False`` to only expand on the top level. If the ``force`` hint is used, assumptions about variables will be ignored in making the expansion. Hints ===== These hints are run by default mul --- Distributes multiplication over addition: >>> from sympy import cos, exp, sin >>> from sympy.abc import x, y, z >>> (y*(x + z)).expand(mul=True) x*y + y*z multinomial ----------- Expand (x + y + ...)**n where n is a positive integer. >>> ((x + y + z)**2).expand(multinomial=True) x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2 power_exp --------- Expand addition in exponents into multiplied bases. >>> exp(x + y).expand(power_exp=True) exp(x)*exp(y) >>> (2**(x + y)).expand(power_exp=True) 2**x*2**y power_base ---------- Split powers of multiplied bases. This only happens by default if assumptions allow, or if the ``force`` meta-hint is used: >>> ((x*y)**z).expand(power_base=True) (x*y)**z >>> ((x*y)**z).expand(power_base=True, force=True) x**z*y**z >>> ((2*y)**z).expand(power_base=True) 2**z*y**z Note that in some cases where this expansion always holds, SymPy performs it automatically: >>> (x*y)**2 x**2*y**2 log --- Pull out power of an argument as a coefficient and split logs products into sums of logs. Note that these only work if the arguments of the log function have the proper assumptions--the arguments must be positive and the exponents must be real--or else the ``force`` hint must be True: >>> from sympy import log, symbols >>> log(x**2*y).expand(log=True) log(x**2*y) >>> log(x**2*y).expand(log=True, force=True) 2*log(x) + log(y) >>> x, y = symbols('x,y', positive=True) >>> log(x**2*y).expand(log=True) 2*log(x) + log(y) basic ----- This hint is intended primarily as a way for custom subclasses to enable expansion by default. These hints are not run by default: complex ------- Split an expression into real and imaginary parts. >>> x, y = symbols('x,y') >>> (x + y).expand(complex=True) re(x) + re(y) + I*im(x) + I*im(y) >>> cos(x).expand(complex=True) -I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x)) Note that this is just a wrapper around ``as_real_imag()``. Most objects that wish to redefine ``_eval_expand_complex()`` should consider redefining ``as_real_imag()`` instead. func ---- Expand other functions. >>> from sympy import gamma >>> gamma(x + 1).expand(func=True) x*gamma(x) trig ---- Do trigonometric expansions. >>> cos(x + y).expand(trig=True) -sin(x)*sin(y) + cos(x)*cos(y) >>> sin(2*x).expand(trig=True) 2*sin(x)*cos(x) Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)`` and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x) = 1`. The current implementation uses the form obtained from Chebyshev polynomials, but this may change. See `this MathWorld article <http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more information. Notes ===== - You can shut off unwanted methods:: >>> (exp(x + y)*(x + y)).expand() x*exp(x)*exp(y) + y*exp(x)*exp(y) >>> (exp(x + y)*(x + y)).expand(power_exp=False) x*exp(x + y) + y*exp(x + y) >>> (exp(x + y)*(x + y)).expand(mul=False) (x + y)*exp(x)*exp(y) - Use deep=False to only expand on the top level:: >>> exp(x + exp(x + y)).expand() exp(x)*exp(exp(x)*exp(y)) >>> exp(x + exp(x + y)).expand(deep=False) exp(x)*exp(exp(x + y)) - Hints are applied in an arbitrary, but consistent order (in the current implementation, they are applied in alphabetical order, except multinomial comes before mul, but this may change). Because of this, some hints may prevent expansion by other hints if they are applied first. For example, ``mul`` may distribute multiplications and prevent ``log`` and ``power_base`` from expanding them. Also, if ``mul`` is applied before ``multinomial`, the expression might not be fully distributed. The solution is to use the various ``expand_hint`` helper functions or to use ``hint=False`` to this function to finely control which hints are applied. Here are some examples:: >>> from sympy import expand, expand_mul, expand_power_base >>> x, y, z = symbols('x,y,z', positive=True) >>> expand(log(x*(y + z))) log(x) + log(y + z) Here, we see that ``log`` was applied before ``mul``. To get the mul expanded form, either of the following will work:: >>> expand_mul(log(x*(y + z))) log(x*y + x*z) >>> expand(log(x*(y + z)), log=False) log(x*y + x*z) A similar thing can happen with the ``power_base`` hint:: >>> expand((x*(y + z))**x) (x*y + x*z)**x To get the ``power_base`` expanded form, either of the following will work:: >>> expand((x*(y + z))**x, mul=False) x**x*(y + z)**x >>> expand_power_base((x*(y + z))**x) x**x*(y + z)**x >>> expand((x + y)*y/x) y + y**2/x The parts of a rational expression can be targeted:: >>> expand((x + y)*y/x/(x + 1), frac=True) (x*y + y**2)/(x**2 + x) >>> expand((x + y)*y/x/(x + 1), numer=True) (x*y + y**2)/(x*(x + 1)) >>> expand((x + y)*y/x/(x + 1), denom=True) y*(x + y)/(x**2 + x) - The ``modulus`` meta-hint can be used to reduce the coefficients of an expression post-expansion:: >>> expand((3*x + 1)**2) 9*x**2 + 6*x + 1 >>> expand((3*x + 1)**2, modulus=5) 4*x**2 + x + 1 - Either ``expand()`` the function or ``.expand()`` the method can be used. Both are equivalent:: >>> expand((x + 1)**2) x**2 + 2*x + 1 >>> ((x + 1)**2).expand() x**2 + 2*x + 1 API === Objects can define their own expand hints by defining ``_eval_expand_hint()``. The function should take the form:: def _eval_expand_hint(self, **hints): # Only apply the method to the top-level expression ... See also the example below. Objects should define ``_eval_expand_hint()`` methods only if ``hint`` applies to that specific object. The generic ``_eval_expand_hint()`` method defined in Expr will handle the no-op case. Each hint should be responsible for expanding that hint only. Furthermore, the expansion should be applied to the top-level expression only. ``expand()`` takes care of the recursion that happens when ``deep=True``. You should only call ``_eval_expand_hint()`` methods directly if you are 100% sure that the object has the method, as otherwise you are liable to get unexpected ``AttributeError``s. Note, again, that you do not need to recursively apply the hint to args of your object: this is handled automatically by ``expand()``. ``_eval_expand_hint()`` should generally not be used at all outside of an ``_eval_expand_hint()`` method. If you want to apply a specific expansion from within another method, use the public ``expand()`` function, method, or ``expand_hint()`` functions. In order for expand to work, objects must be rebuildable by their args, i.e., ``obj.func(*obj.args) == obj`` must hold. Expand methods are passed ``**hints`` so that expand hints may use 'metahints'--hints that control how different expand methods are applied. For example, the ``force=True`` hint described above that causes ``expand(log=True)`` to ignore assumptions is such a metahint. The ``deep`` meta-hint is handled exclusively by ``expand()`` and is not passed to ``_eval_expand_hint()`` methods. Note that expansion hints should generally be methods that perform some kind of 'expansion'. For hints that simply rewrite an expression, use the .rewrite() API. Examples ======== >>> from sympy import Expr, sympify >>> class MyClass(Expr): ... def __new__(cls, *args): ... args = sympify(args) ... return Expr.__new__(cls, *args) ... ... def _eval_expand_double(self, *, force=False, **hints): ... ''' ... Doubles the args of MyClass. ... ... If there more than four args, doubling is not performed, ... unless force=True is also used (False by default). ... ''' ... if not force and len(self.args) > 4: ... return self ... return self.func(*(self.args + self.args)) ... >>> a = MyClass(1, 2, MyClass(3, 4)) >>> a MyClass(1, 2, MyClass(3, 4)) >>> a.expand(double=True) MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4)) >>> a.expand(double=True, deep=False) MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4)) >>> b = MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True) MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True, force=True) MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5) See Also ======== expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig, expand_power_base, expand_power_exp, expand_func, sympy.simplify.hyperexpand.hyperexpand """ # don't modify this; modify the Expr.expand method hints['power_base'] = power_base hints['power_exp'] = power_exp hints['mul'] = mul hints['log'] = log hints['multinomial'] = multinomial hints['basic'] = basic return sympify(e).expand(deep=deep, modulus=modulus, **hints) # This is a special application of two hints def _mexpand(expr, recursive=False): # expand multinomials and then expand products; this may not always # be sufficient to give a fully expanded expression (see # test_issue_8247_8354 in test_arit) if expr is None: return was = None while was != expr: was, expr = expr, expand_mul(expand_multinomial(expr)) if not recursive: break return expr # These are simple wrappers around single hints. def expand_mul(expr, deep=True): """ Wrapper around expand that only uses the mul hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_mul, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_mul(exp(x+y)*(x+y)*log(x*y**2)) x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2) """ return sympify(expr).expand(deep=deep, mul=True, power_exp=False, power_base=False, basic=False, multinomial=False, log=False) def expand_multinomial(expr, deep=True): """ Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_multinomial, exp >>> x, y = symbols('x y', positive=True) >>> expand_multinomial((x + exp(x + 1))**2) x**2 + 2*x*exp(x + 1) + exp(2*x + 2) """ return sympify(expr).expand(deep=deep, mul=False, power_exp=False, power_base=False, basic=False, multinomial=True, log=False) def expand_log(expr, deep=True, force=False, factor=False): """ Wrapper around expand that only uses the log hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_log, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_log(exp(x+y)*(x+y)*log(x*y**2)) (x + y)*(log(x) + 2*log(y))*exp(x + y) """ from sympy import Mul, log if factor is False: def _handle(x): x1 = expand_mul(expand_log(x, deep=deep, force=force, factor=True)) if x1.count(log) <= x.count(log): return x1 return x expr = expr.replace( lambda x: x.is_Mul and all(any(isinstance(i, log) and i.args[0].is_Rational for i in Mul.make_args(j)) for j in x.as_numer_denom()), lambda x: _handle(x)) return sympify(expr).expand(deep=deep, log=True, mul=False, power_exp=False, power_base=False, multinomial=False, basic=False, force=force, factor=factor) def expand_func(expr, deep=True): """ Wrapper around expand that only uses the func hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_func, gamma >>> from sympy.abc import x >>> expand_func(gamma(x + 2)) x*(x + 1)*gamma(x) """ return sympify(expr).expand(deep=deep, func=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_trig(expr, deep=True): """ Wrapper around expand that only uses the trig hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_trig, sin >>> from sympy.abc import x, y >>> expand_trig(sin(x+y)*(x+y)) (x + y)*(sin(x)*cos(y) + sin(y)*cos(x)) """ return sympify(expr).expand(deep=deep, trig=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_complex(expr, deep=True): """ Wrapper around expand that only uses the complex hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_complex, exp, sqrt, I >>> from sympy.abc import z >>> expand_complex(exp(z)) I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z)) >>> expand_complex(sqrt(I)) sqrt(2)/2 + sqrt(2)*I/2 See Also ======== sympy.core.expr.Expr.as_real_imag """ return sympify(expr).expand(deep=deep, complex=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_power_base(expr, deep=True, force=False): """ Wrapper around expand that only uses the power_base hint. A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other expansions, provided that assumptions about the power's base and exponent allow. deep=False (default is True) will only apply to the top-level expression. force=True (default is False) will cause the expansion to ignore assumptions about the base and exponent. When False, the expansion will only happen if the base is non-negative or the exponent is an integer. >>> from sympy.abc import x, y, z >>> from sympy import expand_power_base, sin, cos, exp >>> (x*y)**2 x**2*y**2 >>> (2*x)**y (2*x)**y >>> expand_power_base(_) 2**y*x**y >>> expand_power_base((x*y)**z) (x*y)**z >>> expand_power_base((x*y)**z, force=True) x**z*y**z >>> expand_power_base(sin((x*y)**z), deep=False) sin((x*y)**z) >>> expand_power_base(sin((x*y)**z), force=True) sin(x**z*y**z) >>> expand_power_base((2*sin(x))**y + (2*cos(x))**y) 2**y*sin(x)**y + 2**y*cos(x)**y >>> expand_power_base((2*exp(y))**x) 2**x*exp(y)**x >>> expand_power_base((2*cos(x))**y) 2**y*cos(x)**y Notice that sums are left untouched. If this is not the desired behavior, apply full ``expand()`` to the expression: >>> expand_power_base(((x+y)*z)**2) z**2*(x + y)**2 >>> (((x+y)*z)**2).expand() x**2*z**2 + 2*x*y*z**2 + y**2*z**2 >>> expand_power_base((2*y)**(1+z)) 2**(z + 1)*y**(z + 1) >>> ((2*y)**(1+z)).expand() 2*2**z*y*y**z See Also ======== expand """ return sympify(expr).expand(deep=deep, log=False, mul=False, power_exp=False, power_base=True, multinomial=False, basic=False, force=force) def expand_power_exp(expr, deep=True): """ Wrapper around expand that only uses the power_exp hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_power_exp >>> from sympy.abc import x, y >>> expand_power_exp(x**(y + 2)) x**2*x**y """ return sympify(expr).expand(deep=deep, complex=False, basic=False, log=False, mul=False, power_exp=True, power_base=False, multinomial=False) def count_ops(expr, visual=False): """ Return a representation (integer or expression) of the operations in expr. Parameters ========== expr : Expr If expr is an iterable, the sum of the op counts of the items will be returned. visual : bool, optional If ``False`` (default) then the sum of the coefficients of the visual expression will be returned. If ``True`` then the number of each type of operation is shown with the core class types (or their virtual equivalent) multiplied by the number of times they occur. Examples ======== >>> from sympy.abc import a, b, x, y >>> from sympy import sin, count_ops Although there isn't a SUB object, minus signs are interpreted as either negations or subtractions: >>> (x - y).count_ops(visual=True) SUB >>> (-x).count_ops(visual=True) NEG Here, there are two Adds and a Pow: >>> (1 + a + b**2).count_ops(visual=True) 2*ADD + POW In the following, an Add, Mul, Pow and two functions: >>> (sin(x)*x + sin(x)**2).count_ops(visual=True) ADD + MUL + POW + 2*SIN for a total of 5: >>> (sin(x)*x + sin(x)**2).count_ops(visual=False) 5 Note that "what you type" is not always what you get. The expression 1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather than two DIVs: >>> (1/x/y).count_ops(visual=True) DIV + MUL The visual option can be used to demonstrate the difference in operations for expressions in different forms. Here, the Horner representation is compared with the expanded form of a polynomial: >>> eq=x*(1 + x*(2 + x*(3 + x))) >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True) -MUL + 3*POW The count_ops function also handles iterables: >>> count_ops([x, sin(x), None, True, x + 2], visual=False) 2 >>> count_ops([x, sin(x), None, True, x + 2], visual=True) ADD + SIN >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True) 2*ADD + SIN """ from sympy import Integral, Sum, Symbol from sympy.core.relational import Relational from sympy.simplify.radsimp import fraction from sympy.logic.boolalg import BooleanFunction from sympy.utilities.misc import func_name expr = sympify(expr) if isinstance(expr, Expr) and not expr.is_Relational: ops = [] args = [expr] NEG = Symbol('NEG') DIV = Symbol('DIV') SUB = Symbol('SUB') ADD = Symbol('ADD') EXP = Symbol('EXP') while args: a = args.pop() if a.is_Rational: #-1/3 = NEG + DIV if a is not S.One: if a.p < 0: ops.append(NEG) if a.q != 1: ops.append(DIV) continue elif a.is_Mul or a.is_MatMul: if _coeff_isneg(a): ops.append(NEG) if a.args[0] is S.NegativeOne: a = a.as_two_terms()[1] else: a = -a n, d = fraction(a) if n.is_Integer: ops.append(DIV) if n < 0: ops.append(NEG) args.append(d) continue # won't be -Mul but could be Add elif d is not S.One: if not d.is_Integer: args.append(d) ops.append(DIV) args.append(n) continue # could be -Mul elif a.is_Add or a.is_MatAdd: aargs = list(a.args) negs = 0 for i, ai in enumerate(aargs): if _coeff_isneg(ai): negs += 1 args.append(-ai) if i > 0: ops.append(SUB) else: args.append(ai) if i > 0: ops.append(ADD) if negs == len(aargs): # -x - y = NEG + SUB ops.append(NEG) elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD ops.append(SUB - ADD) continue if a.is_Pow and a.exp is S.NegativeOne: ops.append(DIV) args.append(a.base) # won't be -Mul but could be Add continue if a == S.Exp1: ops.append(EXP) continue if a.is_Pow and a.base == S.Exp1: ops.append(EXP) args.append(a.exp) continue if a.is_Mul or isinstance(a, LatticeOp): o = Symbol(a.func.__name__.upper()) # count the args ops.append(o*(len(a.args) - 1)) elif a.args and ( a.is_Pow or a.is_Function or isinstance(a, Derivative) or isinstance(a, Integral) or isinstance(a, Sum)): # if it's not in the list above we don't # consider a.func something to count, e.g. # Tuple, MatrixSymbol, etc... o = Symbol(a.func.__name__.upper()) ops.append(o) if not a.is_Symbol: args.extend(a.args) elif isinstance(expr, Dict): ops = [count_ops(k, visual=visual) + count_ops(v, visual=visual) for k, v in expr.items()] elif iterable(expr): ops = [count_ops(i, visual=visual) for i in expr] elif isinstance(expr, (Relational, BooleanFunction)): ops = [] for arg in expr.args: ops.append(count_ops(arg, visual=True)) o = Symbol(func_name(expr, short=True).upper()) ops.append(o) elif not isinstance(expr, Basic): ops = [] else: # it's Basic not isinstance(expr, Expr): if not isinstance(expr, Basic): raise TypeError("Invalid type of expr") else: ops = [] args = [expr] while args: a = args.pop() if a.args: o = Symbol(type(a).__name__.upper()) if a.is_Boolean: ops.append(o*(len(a.args)-1)) else: ops.append(o) args.extend(a.args) if not ops: if visual: return S.Zero return 0 ops = Add(*ops) if visual: return ops if ops.is_Number: return int(ops) return sum(int((a.args or [1])[0]) for a in Add.make_args(ops)) def nfloat(expr, n=15, exponent=False, dkeys=False): """Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True). When processing dictionaries, don't modify the keys unless ``dkeys=True``. Examples ======== >>> from sympy.core.function import nfloat >>> from sympy.abc import x, y >>> from sympy import cos, pi, sqrt >>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y)) x**4 + 0.5*x + sqrt(y) + 1.5 >>> nfloat(x**4 + sqrt(y), exponent=True) x**4.0 + y**0.5 Container types are not modified: >>> type(nfloat((1, 2))) is tuple True """ from sympy.core.power import Pow from sympy.polys.rootoftools import RootOf from sympy import MatrixBase kw = dict(n=n, exponent=exponent, dkeys=dkeys) if isinstance(expr, MatrixBase): return expr.applyfunc(lambda e: nfloat(e, **kw)) # handling of iterable containers if iterable(expr, exclude=str): if isinstance(expr, (dict, Dict)): if dkeys: args = [tuple(map(lambda i: nfloat(i, **kw), a)) for a in expr.items()] else: args = [(k, nfloat(v, **kw)) for k, v in expr.items()] if isinstance(expr, dict): return type(expr)(args) else: return expr.func(*args) elif isinstance(expr, Basic): return expr.func(*[nfloat(a, **kw) for a in expr.args]) return type(expr)([nfloat(a, **kw) for a in expr]) rv = sympify(expr) if rv.is_Number: return Float(rv, n) elif rv.is_number: # evalf doesn't always set the precision rv = rv.n(n) if rv.is_Number: rv = Float(rv.n(n), n) else: pass # pure_complex(rv) is likely True return rv elif rv.is_Atom: return rv elif rv.is_Relational: args_nfloat = (nfloat(arg, **kw) for arg in rv.args) return rv.func(*args_nfloat) # watch out for RootOf instances that don't like to have # their exponents replaced with Dummies and also sometimes have # problems with evaluating at low precision (issue 6393) rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)}) if not exponent: reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)] rv = rv.xreplace(dict(reps)) rv = rv.n(n) if not exponent: rv = rv.xreplace({d.exp: p.exp for p, d in reps}) else: # Pow._eval_evalf special cases Integer exponents so if # exponent is suppose to be handled we have to do so here rv = rv.xreplace(Transform( lambda x: Pow(x.base, Float(x.exp, n)), lambda x: x.is_Pow and x.exp.is_Integer)) return rv.xreplace(Transform( lambda x: x.func(*nfloat(x.args, n, exponent)), lambda x: isinstance(x, Function))) from sympy.core.symbol import Dummy, Symbol
789b5114213cd9e471ad581864f55d086311f99f39733512183da98e3d90b268
from collections import defaultdict from functools import cmp_to_key, reduce from operator import attrgetter from .basic import Basic from .compatibility import is_sequence from .parameters import global_parameters from .logic import _fuzzy_group, fuzzy_or, fuzzy_not from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .numbers import ilcm, igcd from .expr import Expr from .kind import UndefinedKind # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _addsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Add(*args): """Return a well-formed unevaluated Add: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Add. Examples ======== >>> from sympy.core.add import _unevaluated_Add as uAdd >>> from sympy import S, Add >>> from sympy.abc import x, y >>> a = uAdd(*[S(1.0), x, S(2)]) >>> a.args[0] 3.00000000000000 >>> a.args[1] x Beyond the Number being in slot 0, there is no other assurance of order for the arguments since they are hash sorted. So, for testing purposes, output produced by this in some other function can only be tested against the output of this function or as one of several options: >>> opts = (Add(x, y, evaluate=False), Add(y, x, evaluate=False)) >>> a = uAdd(x, y) >>> assert a in opts and a == uAdd(x, y) >>> uAdd(x + 1, x + 2) x + x + 3 """ args = list(args) newargs = [] co = S.Zero while args: a = args.pop() if a.is_Add: # this will keep nesting from building up # so that x + (x + 1) -> x + x + 1 (3 args) args.extend(a.args) elif a.is_Number: co += a else: newargs.append(a) _addsort(newargs) if co: newargs.insert(0, co) return Add._from_args(newargs) class Add(Expr, AssocOp): """ Expression representing addition operation for algebraic group. Every argument of ``Add()`` must be ``Expr``. Infix operator ``+`` on most scalar objects in SymPy calls this class. Another use of ``Add()`` is to represent the structure of abstract addition so that its arguments can be substituted to return different class. Refer to examples section for this. ``Add()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Add(x, Add(y, z))`` -> ``Add(x, y, z)`` 2. Identity removing ``Add(x, 0, y)`` -> ``Add(x, y)`` 3. Coefficient collecting by ``.as_coeff_Mul()`` ``Add(x, 2*x)`` -> ``Mul(3, x)`` 4. Term sorting ``Add(y, x, 2)`` -> ``Add(2, x, y)`` If no argument is passed, identity element 0 is returned. If single element is passed, that element is returned. Note that ``Add(*args)`` is more efficient than ``sum(args)`` because it flattens the arguments. ``sum(a, b, c, ...)`` recursively adds the arguments as ``a + (b + (c + ...))``, which has quadratic complexity. On the other hand, ``Add(a, b, c, d)`` does not assume nested structure, making the complexity linear. Since addition is group operation, every argument should have the same :obj:`sympy.core.kind.Kind()`. Examples ======== >>> from sympy import Add, I >>> from sympy.abc import x, y >>> Add(x, 1) x + 1 >>> Add(x, x) 2*x >>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1 2*x**2 + 17*x/5 + 3.0*y + I*y + 1 If ``evaluate=False`` is passed, result is not evaluated. >>> Add(1, 2, evaluate=False) 1 + 2 >>> Add(x, x, evaluate=False) x + x ``Add()`` also represents the general structure of addition operation. >>> from sympy import MatrixSymbol >>> A,B = MatrixSymbol('A', 2,2), MatrixSymbol('B', 2,2) >>> expr = Add(x,y).subs({x:A, y:B}) >>> expr A + B >>> type(expr) <class 'sympy.matrices.expressions.matadd.MatAdd'> Note that the printers don't display in args order. >>> Add(x, 1) x + 1 >>> Add(x, 1).args (1, x) See Also ======== MatAdd """ __slots__ = () is_Add = True _args_type = Expr @classmethod def flatten(cls, seq): """ Takes the sequence "seq" of nested Adds and returns a flatten list. Returns: (commutative_part, noncommutative_part, order_symbols) Applies associativity, all terms are commutable with respect to addition. NB: the removal of 0 is already handled by AssocOp.__new__ See also ======== sympy.core.mul.Mul.flatten """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr from sympy.tensor.tensor import TensExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a if a.is_Rational: if b.is_Mul: rv = [a, b], [], None if rv: if all(s.is_commutative for s in rv[0]): return rv return [], rv[0], None terms = {} # term -> coeff # e.g. x**2 -> 5 for ... + 5*x**2 + ... coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0 # e.g. 3 + ... order_factors = [] extra = [] for o in seq: # O(x) if o.is_Order: if o.expr.is_zero: continue for o1 in order_factors: if o1.contains(o): o = None break if o is None: continue order_factors = [o] + [ o1 for o1 in order_factors if not o.contains(o1)] continue # 3 or NaN elif o.is_Number: if (o is S.NaN or coeff is S.ComplexInfinity and o.is_finite is False) and not extra: # we know for sure the result will be nan return [S.NaN], [], None if coeff.is_Number or isinstance(coeff, AccumBounds): coeff += o if coeff is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__add__(coeff) continue elif isinstance(o, MatrixExpr): # can't add 0 to Matrix so make sure coeff is not 0 extra.append(o) continue elif isinstance(o, TensExpr): coeff = o.__add__(coeff) if coeff else o continue elif o is S.ComplexInfinity: if coeff.is_finite is False and not extra: # we know for sure the result will be nan return [S.NaN], [], None coeff = S.ComplexInfinity continue # Add([...]) elif o.is_Add: # NB: here we assume Add is always commutative seq.extend(o.args) # TODO zerocopy? continue # Mul([...]) elif o.is_Mul: c, s = o.as_coeff_Mul() # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2) elif o.is_Pow: b, e = o.as_base_exp() if b.is_Number and (e.is_Integer or (e.is_Rational and e.is_negative)): seq.append(b**e) continue c, s = S.One, o else: # everything else c = S.One s = o # now we have: # o = c*s, where # # c is a Number # s is an expression with number factor extracted # let's collect terms with the same s, so e.g. # 2*x**2 + 3*x**2 -> 5*x**2 if s in terms: terms[s] += c if terms[s] is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None else: terms[s] = c # now let's construct new args: # [2*x**2, x**3, 7*x**4, pi, ...] newseq = [] noncommutative = False for s, c in terms.items(): # 0*s if c.is_zero: continue # 1*s elif c is S.One: newseq.append(s) # c*s else: if s.is_Mul: # Mul, already keeps its arguments in perfect order. # so we can simply put c in slot0 and go the fast way. cs = s._new_rawargs(*((c,) + s.args)) newseq.append(cs) elif s.is_Add: # we just re-create the unevaluated Mul newseq.append(Mul(c, s, evaluate=False)) else: # alternatively we have to call all Mul's machinery (slow) newseq.append(Mul(c, s)) noncommutative = noncommutative or not s.is_commutative # oo, -oo if coeff is S.Infinity: newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)] elif coeff is S.NegativeInfinity: newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)] if coeff is S.ComplexInfinity: # zoo might be # infinite_real + finite_im # finite_real + infinite_im # infinite_real + infinite_im # addition of a finite real or imaginary number won't be able to # change the zoo nature; adding an infinite qualtity would result # in a NaN condition if it had sign opposite of the infinite # portion of zoo, e.g., infinite_real - infinite_real. newseq = [c for c in newseq if not (c.is_finite and c.is_extended_real is not None)] # process O(x) if order_factors: newseq2 = [] for t in newseq: for o in order_factors: # x + O(x) -> O(x) if o.contains(t): t = None break # x + O(x**2) -> x + O(x**2) if t is not None: newseq2.append(t) newseq = newseq2 + order_factors # 1 + O(1) -> O(1) for o in order_factors: if o.contains(coeff): coeff = S.Zero break # order args canonically _addsort(newseq) # current code expects coeff to be first if coeff is not S.Zero: newseq.insert(0, coeff) if extra: newseq += extra noncommutative = True # we are done if noncommutative: return [], newseq, None else: return newseq, [], None @classmethod def class_key(cls): """Nice order of classes""" return 3, 1, cls.__name__ @property def kind(self): k = attrgetter('kind') kinds = map(k, self.args) kinds = frozenset(kinds) if len(kinds) != 1: # Since addition is group operator, kind must be same. # We know that this is unexpected signature, so return this. result = UndefinedKind else: result, = kinds return result def as_coefficients_dict(a): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ d = defaultdict(list) for ai in a.args: c, m = ai.as_coeff_Mul() d[m].append(c) for k, v in d.items(): if len(v) == 1: d[k] = v[0] else: d[k] = Add(*v) di = defaultdict(int) di.update(d) return di @cacheit def as_coeff_add(self, *deps): """ Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms. Examples ======== >>> from sympy.abc import x >>> (7 + 3*x).as_coeff_add() (7, (3*x,)) >>> (7*x).as_coeff_add() (0, (7*x,)) """ if deps: from sympy.utilities.iterables import sift l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) coeff, notrat = self.args[0].as_coeff_add() if coeff is not S.Zero: return coeff, notrat + self.args[1:] return S.Zero, self.args def as_coeff_Add(self, rational=False, deps=None): """ Efficiently extract the coefficient of a summation. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not rational or coeff.is_Rational: return coeff, self._new_rawargs(*args) return S.Zero, self # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See # issue 5524. def _eval_power(self, e): if e.is_Rational and self.is_number: from sympy.core.evalf import pure_complex from sympy.core.mul import _unevaluated_Mul from sympy.core.exprtools import factor_terms from sympy.core.function import expand_multinomial from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.miscellaneous import sqrt ri = pure_complex(self) if ri: r, i = ri if e.q == 2: D = sqrt(r**2 + i**2) if D.is_Rational: # (r, i, D) is a Pythagorean triple root = sqrt(factor_terms((D - r)/2))**e.p return root*expand_multinomial(( # principle value (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p) elif e == -1: return _unevaluated_Mul( r - i*S.ImaginaryUnit, 1/(r**2 + i**2)) elif e.is_Number and abs(e) != 1: # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e c, m = zip(*[i.as_coeff_Mul() for i in self.args]) if any(i.is_Float for i in c): # XXX should this always be done? big = -1 for i in c: if abs(i) >= big: big = abs(i) if big > 0 and big != 1: from sympy.functions.elementary.complexes import sign bigs = (big, -big) c = [sign(i) if i in bigs else i/big for i in c] addpow = Add(*[c*m for c, m in zip(c, m)])**e return big**e*addpow @cacheit def _eval_derivative(self, s): return self.func(*[a.diff(s) for a in self.args]) def _eval_nseries(self, x, n, logx, cdir=0): terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args] return self.func(*terms) def _matches_simple(self, expr, repl_dict): # handle (w+3).matches('x+5') -> {w: x+2} coeff, terms = self.as_coeff_add() if len(terms) == 1: return terms[0].matches(expr - coeff, repl_dict) return def matches(self, expr, repl_dict={}, old=False): return self._matches_commutative(expr, repl_dict, old) @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs - rhs, but treats oo like a symbol so oo - oo returns 0, instead of a nan. """ from sympy.simplify.simplify import signsimp from sympy.core.symbol import Dummy inf = (S.Infinity, S.NegativeInfinity) if lhs.has(*inf) or rhs.has(*inf): oo = Dummy('oo') reps = { S.Infinity: oo, S.NegativeInfinity: -oo} ireps = {v: k for k, v in reps.items()} eq = signsimp(lhs.xreplace(reps) - rhs.xreplace(reps)) if eq.has(oo): eq = eq.replace( lambda x: x.is_Pow and x.base is oo, lambda x: x.base) return eq.xreplace(ireps) else: return signsimp(lhs - rhs) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add. - if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0] >>> from sympy.abc import x, y >>> (3*x - 2*y + 5).as_two_terms() (5, 3*x - 2*y) """ return self.args[0], self._new_rawargs(*self.args[1:]) def as_numer_denom(self): """ Decomposes an expression to its numerator part and its denominator part. Examples ======== >>> from sympy.abc import x, y, z >>> (x*y/z).as_numer_denom() (x*y, z) >>> (x*(y + 1)/y**7).as_numer_denom() (x*(y + 1), y**7) See Also ======== sympy.core.expr.Expr.as_numer_denom """ # clear rational denominator content, expr = self.primitive() ncon, dcon = content.as_numer_denom() # collect numerators and denominators of the terms nd = defaultdict(list) for f in expr.args: ni, di = f.as_numer_denom() nd[di].append(ni) # check for quick exit if len(nd) == 1: d, n = nd.popitem() return self.func( *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d) # sum up the terms having a common denominator for d, n in nd.items(): if len(n) == 1: nd[d] = n[0] else: nd[d] = self.func(*n) # assemble single numerator and denominator denoms, numers = [list(i) for i in zip(*iter(nd.items()))] n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:])) for i in range(len(numers))]), Mul(*denoms) return _keep_coeff(ncon, n), _keep_coeff(dcon, d) def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) # assumption methods _eval_is_real = lambda self: _fuzzy_group( (a.is_real for a in self.args), quick_exit=True) _eval_is_extended_real = lambda self: _fuzzy_group( (a.is_extended_real for a in self.args), quick_exit=True) _eval_is_complex = lambda self: _fuzzy_group( (a.is_complex for a in self.args), quick_exit=True) _eval_is_antihermitian = lambda self: _fuzzy_group( (a.is_antihermitian for a in self.args), quick_exit=True) _eval_is_finite = lambda self: _fuzzy_group( (a.is_finite for a in self.args), quick_exit=True) _eval_is_hermitian = lambda self: _fuzzy_group( (a.is_hermitian for a in self.args), quick_exit=True) _eval_is_integer = lambda self: _fuzzy_group( (a.is_integer for a in self.args), quick_exit=True) _eval_is_rational = lambda self: _fuzzy_group( (a.is_rational for a in self.args), quick_exit=True) _eval_is_algebraic = lambda self: _fuzzy_group( (a.is_algebraic for a in self.args), quick_exit=True) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_infinite(self): sawinf = False for a in self.args: ainf = a.is_infinite if ainf is None: return None elif ainf is True: # infinite+infinite might not be infinite if sawinf is True: return None sawinf = True return sawinf def _eval_is_imaginary(self): nz = [] im_I = [] for a in self.args: if a.is_extended_real: if a.is_zero: pass elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im_I.append(a*S.ImaginaryUnit) elif (S.ImaginaryUnit*a).is_extended_real: im_I.append(a*S.ImaginaryUnit) else: return b = self.func(*nz) if b.is_zero: return fuzzy_not(self.func(*im_I).is_zero) elif b.is_zero is False: return False def _eval_is_zero(self): if self.is_commutative is False: # issue 10528: there is no way to know if a nc symbol # is zero or not return nz = [] z = 0 im_or_z = False im = 0 for a in self.args: if a.is_extended_real: if a.is_zero: z += 1 elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im += 1 elif (S.ImaginaryUnit*a).is_extended_real: im_or_z = True else: return if z == len(self.args): return True if len(nz) == 0 or len(nz) == len(self.args): return None b = self.func(*nz) if b.is_zero: if not im_or_z: if im == 0: return True elif im == 1: return False if b.is_zero is False: return False def _eval_is_odd(self): l = [f for f in self.args if not (f.is_even is True)] if not l: return False if l[0].is_odd: return self._new_rawargs(*l[1:]).is_even def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_extended_positive(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super()._eval_is_extended_positive() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_positive and a.is_extended_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_positive: return True pos = nonneg = nonpos = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: ispos = a.is_extended_positive infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative))) if True in saw_INF and False in saw_INF: return if ispos: pos = True continue elif a.is_extended_nonnegative: nonneg = True continue elif a.is_extended_nonpositive: nonpos = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonpos and not nonneg and pos: return True elif not nonpos and pos: return True elif not pos and not nonneg: return False def _eval_is_extended_nonnegative(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_extended_nonnegative: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_nonnegative: return True def _eval_is_extended_nonpositive(self): from sympy.core.exprtools import _monotonic_sign if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_extended_nonpositive: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_nonpositive: return True def _eval_is_extended_negative(self): from sympy.core.exprtools import _monotonic_sign if self.is_number: return super()._eval_is_extended_negative() c, a = self.as_coeff_Add() if not c.is_zero: v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_negative and a.is_extended_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_negative: return True neg = nonpos = nonneg = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: isneg = a.is_extended_negative infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive))) if True in saw_INF and False in saw_INF: return if isneg: neg = True continue elif a.is_extended_nonpositive: nonpos = True continue elif a.is_extended_nonnegative: nonneg = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonneg and not nonpos and neg: return True elif not nonneg and neg: return True elif not neg and not nonpos: return False def _eval_subs(self, old, new): if not old.is_Add: if old is S.Infinity and -old in self.args: # foo - oo is foo + (-oo) internally return self.xreplace({-old: -new}) return None coeff_self, terms_self = self.as_coeff_Add() coeff_old, terms_old = old.as_coeff_Add() if coeff_self.is_Rational and coeff_old.is_Rational: if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y return self.func(new, coeff_self, -coeff_old) if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y return self.func(-new, coeff_self, coeff_old) if coeff_self.is_Rational and coeff_old.is_Rational \ or coeff_self == coeff_old: args_old, args_self = self.func.make_args( terms_old), self.func.make_args(terms_self) if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x self_set = set(args_self) old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(new, coeff_self, -coeff_old, *[s._subs(old, new) for s in ret_set]) args_old = self.func.make_args( -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(-new, coeff_self, coeff_old, *[s._subs(old, new) for s in ret_set]) def removeO(self): args = [a for a in self.args if not a.is_Order] return self._new_rawargs(*args) def getO(self): args = [a for a in self.args if a.is_Order] if args: return self._new_rawargs(*args) @cacheit def extract_leading_order(self, symbols, point=None): """ Returns the leading term and its order. Examples ======== >>> from sympy.abc import x >>> (x + 1 + 1/x**5).extract_leading_order(x) ((x**(-5), O(x**(-5))),) >>> (1 + x).extract_leading_order(x) ((1, O(1)),) >>> (x + x**2).extract_leading_order(x) ((x, O(x)),) """ from sympy import Order lst = [] symbols = list(symbols if is_sequence(symbols) else [symbols]) if not point: point = [0]*len(symbols) seq = [(f, Order(f, *zip(symbols, point))) for f in self.args] for ef, of in seq: for e, o in lst: if o.contains(of) and o != of: of = None break if of is None: continue new_lst = [(ef, of)] for e, o in lst: if of.contains(o) and o != of: continue new_lst.append((e, o)) lst = new_lst return tuple(lst) def as_real_imag(self, deep=True, **hints): """ returns a tuple representing a complex number Examples ======== >>> from sympy import I >>> (7 + 9*I).as_real_imag() (7, 9) >>> ((1 + I)/(1 - I)).as_real_imag() (0, 1) >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag() (-5, 5) """ sargs = self.args re_part, im_part = [], [] for term in sargs: re, im = term.as_real_imag(deep=deep) re_part.append(re) im_part.append(im) return (self.func(*re_part), self.func(*im_part)) def _eval_as_leading_term(self, x, cdir=0): from sympy import expand_mul, Order old = self expr = expand_mul(self) if not expr.is_Add: return expr.as_leading_term(x, cdir=cdir) infinite = [t for t in expr.args if t.is_infinite] leading_terms = [t.as_leading_term(x, cdir=cdir) for t in expr.args] min, new_expr = Order(0), 0 try: for term in leading_terms: order = Order(term, x) if not min or order not in min: min = order new_expr = term elif min in order: new_expr += term except TypeError: return expr is_zero = new_expr.is_zero if is_zero is None: new_expr = new_expr.trigsimp().cancel() is_zero = new_expr.is_zero if is_zero is True: # simple leading term analysis gave us cancelled terms but we have to send # back a term, so compute the leading term (via series) n0 = min.getn() res = Order(1) incr = S.One while res.is_Order: res = old._eval_nseries(x, n=n0+incr, logx=None, cdir=cdir).cancel().trigsimp() incr *= 2 return res.as_leading_term(x, cdir=cdir) elif new_expr is S.NaN: return old.func._from_args(infinite) else: return new_expr def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args]) def _sage_(self): s = 0 for x in self.args: s += x._sage_() return s def primitive(self): """ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```. ``R`` is collected only from the leading coefficient of each term. Examples ======== >>> from sympy.abc import x, y >>> (2*x + 4*y).primitive() (2, x + 2*y) >>> (2*x/3 + 4*y/9).primitive() (2/9, 3*x + 2*y) >>> (2*x/3 + 4.2*y).primitive() (1/3, 2*x + 12.6*y) No subprocessing of term factors is performed: >>> ((2 + 2*x)*x + 2).primitive() (1, x*(2*x + 2) + 2) Recursive processing can be done with the ``as_content_primitive()`` method: >>> ((2 + 2*x)*x + 2).as_content_primitive() (2, x*(x + 1) + 1) See also: primitive() function in polytools.py """ terms = [] inf = False for a in self.args: c, m = a.as_coeff_Mul() if not c.is_Rational: c = S.One m = a inf = inf or m is S.ComplexInfinity terms.append((c.p, c.q, m)) if not inf: ngcd = reduce(igcd, [t[0] for t in terms], 0) dlcm = reduce(ilcm, [t[1] for t in terms], 1) else: ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0) dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1) if ngcd == dlcm == 1: return S.One, self if not inf: for i, (p, q, term) in enumerate(terms): terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: for i, (p, q, term) in enumerate(terms): if q: terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: terms[i] = _keep_coeff(Rational(p, q), term) # we don't need a complete re-flattening since no new terms will join # so we just use the same sort as is used in Add.flatten. When the # coefficient changes, the ordering of terms may change, e.g. # (3*x, 6*y) -> (2*y, x) # # We do need to make sure that term[0] stays in position 0, however. # if terms[0].is_Number or terms[0] is S.ComplexInfinity: c = terms.pop(0) else: c = None _addsort(terms) if c: terms.insert(0, c) return Rational(ngcd, dlcm), self._new_rawargs(*terms) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression. Examples ======== >>> from sympy import sqrt >>> (3 + 3*sqrt(2)).as_content_primitive() (3, 1 + sqrt(2)) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) See docstring of Expr.as_content_primitive for more examples. """ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive( radical=radical, clear=clear)) for a in self.args]).primitive() if not clear and not con.is_Integer and prim.is_Add: con, d = con.as_numer_denom() _p = prim/d if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args): prim = _p else: con /= d if radical and prim.is_Add: # look for common radicals that can be removed args = prim.args rads = [] common_q = None for m in args: term_rads = defaultdict(list) for ai in Mul.make_args(m): if ai.is_Pow: b, e = ai.as_base_exp() if e.is_Rational and b.is_Integer: term_rads[e.q].append(abs(int(b))**e.p) if not term_rads: break if common_q is None: common_q = set(term_rads.keys()) else: common_q = common_q & set(term_rads.keys()) if not common_q: break rads.append(term_rads) else: # process rads # keep only those in common_q for r in rads: for q in list(r.keys()): if q not in common_q: r.pop(q) for q in r: r[q] = prod(r[q]) # find the gcd of bases for each q G = [] for q in common_q: g = reduce(igcd, [r[q] for r in rads], 0) if g != 1: G.append(g**Rational(1, q)) if G: G = Mul(*G) args = [ai/G for ai in args] prim = G*prim.func(*args) return con, prim @property def _sorted_args(self): from sympy.core.compatibility import default_sort_key return tuple(sorted(self.args, key=default_sort_key)) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd return self.func(*[dd(a, n, step) for a in self.args]) @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float re_part, rest = self.as_coeff_Add() im_part, imag_unit = rest.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I") return (Float(re_part)._mpf_, Float(im_part)._mpf_) def __neg__(self): if not global_parameters.distribute: return super().__neg__() return Add(*[-i for i in self.args]) add = AssocOpDispatcher('add') from .mul import Mul, _keep_coeff, prod from sympy.core.numbers import Rational
ed1466879dd1213b31fcc62e758a6660d525f6974528a11703733850e0924d1a
from typing import Tuple as tTuple from collections.abc import Iterable from functools import reduce from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex from .decorators import call_highest_priority, sympify_method_args, sympify_return from .cache import cacheit from .compatibility import as_int, default_sort_key from sympy.utilities.misc import func_name from mpmath.libmp import mpf_log, prec_to_dps from collections import defaultdict @sympify_method_args class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Explanation =========== Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). If you want to override the comparisons of expressions: Should use _eval_is_ge for inequality, or _eval_is_eq, with multiple dispatch. _eval_is_ge return true if x >= y, false if x < y, and None if the two types are not comparable or the comparison is indeterminate See Also ======== sympy.core.basic.Basic """ __slots__ = () # type: tTuple[str, ...] is_scalar = True # self derivative is 1 @property def _diff_wrt(self): """Return True if one can differentiate with respect to this object, else False. Explanation =========== Subclasses such as Symbol, Function and Derivative return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol (_diff_wrt=True) variables and temporarily converts the non-Symbols into Symbols when performing the differentiation. By default, any object deriving from Expr will behave like a scalar with self.diff(self) == 1. If this is not desired then the object must also set `is_scalar = False` or else define an _eval_derivative routine. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyScalar(Expr): ... _diff_wrt = True ... >>> MyScalar().diff(MyScalar()) 1 >>> class MySymbol(Expr): ... _diff_wrt = True ... is_scalar = False ... >>> MySymbol().diff(MySymbol()) Derivative(MySymbol(), MySymbol()) """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: if expr.base is S.Exp1: # If we remove this, many doctests will go crazy: # (keeps E**x sorted like the exp(x) function, # part of exp(x) to E**x transition) expr, exp = Function("exp")(expr.exp), S.One else: expr, exp = expr.args else: expr, exp = expr, S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff def __hash__(self) -> int: # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args def __eq__(self, other): try: other = _sympify(other) if not isinstance(other, Expr): return False except (SympifyError, SyntaxError): return False # check for pure number expr if not (self.is_Number and other.is_Number) and ( type(self) != type(other)): return False a, b = self._hashable_content(), other._hashable_content() if a != b: return False # check number *in* an expression for a, b in zip(a, b): if not isinstance(a, Expr): continue if a.is_Number and type(a) != type(b): return False return True # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 @property def _add_handler(self): return Add @property def _mul_handler(self): return Mul def __pos__(self): return self def __neg__(self): # Mul has its own __neg__ routine, so we just # create a 2-args Mul with the -1 in the canonical # slot 0. c = self.is_commutative return Mul._from_args((S.NegativeOne, self), c) def __abs__(self): from sympy import Abs return Abs(self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rpow__') def _pow(self, other): return Pow(self, other) def __pow__(self, other, mod=None): if mod is None: return self._pow(other) try: _self, other, mod = as_int(self), as_int(other), as_int(mod) if other >= 0: return pow(_self, other, mod) else: from sympy.core.numbers import mod_inverse return mod_inverse(pow(_self, -other, mod), mod) except ValueError: power = self._pow(other) try: return power%mod except TypeError: return NotImplemented @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): denom = Pow(other, S.NegativeOne) if self is S.One: return denom else: return Mul(self, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): denom = Pow(self, S.NegativeOne) if other is S.One: return denom else: return Mul(other, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rfloordiv__') def __floordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__floordiv__') def __rfloordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rdivmod__') def __divmod__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other), Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__divmod__') def __rdivmod__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self), Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. from sympy import Dummy if not self.is_number: raise TypeError("can't convert symbols to int") r = self.round(2) if not r.is_Number: raise TypeError("can't convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("can't convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("can't convert complex to float") raise TypeError("can't convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) @sympify_return([('other', 'Expr')], NotImplemented) def __ge__(self, other): from .relational import GreaterThan return GreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __le__(self, other): from .relational import LessThan return LessThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __gt__(self, other): from .relational import StrictGreaterThan return StrictGreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __lt__(self, other): from .relational import StrictLessThan return StrictLessThan(self, other) def __trunc__(self): if not self.is_number: raise TypeError("can't truncate symbols and expressions") else: return Integer(self) @staticmethod def _from_mpmath(x, prec): from sympy import Float if hasattr(x, "_mpf_"): return Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = Float._new(re, prec) im = Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if ``self`` has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than ``if not self.free_symbols``, however, since ``is_number`` will fail as soon as it hits a free symbol or undefined function. Examples ======== >>> from sympy import Integral, cos, sin, pi >>> from sympy.core.function import Function >>> from sympy.abc import x >>> f = Function('f') >>> x.is_number False >>> f(1).is_number False >>> (2*x).is_number False >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True Not all numbers are Numbers in the SymPy sense: >>> pi.is_number, pi.is_Number (True, False) If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision. >>> cos(1).is_number and cos(1).is_comparable True >>> z = cos(1)**2 + sin(1)**2 - 1 >>> z.is_number True >>> z.is_comparable False See Also ======== sympy.core.basic.Basic.is_comparable """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. Explanation =========== The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.testing.randtest.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.testing.randtest import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance from mpmath.libmp.libintmath import giant_steps from sympy.core.evalf import DEFAULT_MAXPREC as target # evaluate for prec in giant_steps(2, target): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. Explanation =========== If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, a few strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. 3) finding out zeros of denominator expression with free_symbols. It won't be constant if there are zeros. It gives more negative answers for expression that are not constant. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ def check_denominator_zeros(expression): from sympy.solvers.solvers import denoms retNone = False for den in denoms(expression): z = den.is_zero if z is True: return True if z is None: retNone = True if retNone: return None return False simplify = flags.get('simplify', True) if self.is_number: return True free = self.free_symbols if not free: return True # assume f(1) is some constant # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # try numerical evaluation to see if we get two different values failing_number = None if wrt == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (pure_complex(deriv, or_real=True)): if flags.get('failing_number', False): return failing_number elif deriv.free_symbols: # dead line provided _random returns None in such cases return None return False cd = check_denominator_zeros(self) if cd is True: return False elif cd is None: return None return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. Explanation =========== If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solvers import solve from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms(simplify(self - other), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if not diff.is_number: if constant is None: # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: # this gives a number whether there are free symbols or not ndiff = diff._random() # is_comparable will work whether the result is real # or complex; it could be None, however. if ndiff and ndiff.is_comparable: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. # # removed # ns = nsimplify(diff) # if diff.is_number and (not ns or ns == diff): # # The thought was that if it nsimplifies to 0 that's a sure sign # to try the following to prove it; or if it changed but wasn't # zero that might be a sign that it's not going to be easy to # prove. But tests seem to be working without that logic. # if diff.is_number: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. sol = solve(diff, s, simplify=False) if sol: if s in sol: # the self-consistent result is present return True if all(si.is_Integer for si in sol): # perfect powers are removed at instantiation # so surd s cannot be an integer return False if all(i.is_algebraic is False for i in sol): # a surd is algebraic return False if any(si in surds for si in sol): # it wasn't equal to s but it is in surds # and different surds are not equal return False if any(nsimplify(s - si) == 0 and simplify(s - si) == 0 for si in sol): return True if s.is_real: if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (is_comparable) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_positive(self): finite = self.is_finite if finite is False: return False extended_positive = self.is_extended_positive if finite is True: return extended_positive if extended_positive is False: return False def _eval_is_negative(self): finite = self.is_finite if finite is False: return False extended_negative = self.is_extended_negative if finite is True: return extended_negative if extended_negative is False: return False def _eval_is_extended_positive_negative(self, positive): from sympy.core.numbers import pure_complex from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_extended_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 is S.NaN: return None f = self.evalf(2) if f.is_Float: match = f, S.Zero else: match = pure_complex(f) if match is None: return False r, i = match if not (i.is_Number and r.is_Number): return False if r._prec != 1 and i._prec != 1: return bool(not i and ((r > 0) if positive else (r < 0))) elif r._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_extended_positive(self): return self._eval_is_extended_positive_negative(positive=True) def _eval_is_extended_negative(self): return self._eval_is_extended_positive_negative(positive=False) def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs, or if singularities are found between a and b. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.series import limit, Limit from sympy.solvers.solveset import solveset from sympy.sets.sets import Interval from sympy.functions.elementary.exponential import log from sympy.calculus.util import AccumBounds if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') def _eval_endpoint(left): c = a if left else b if c is None: return 0 else: C = self.subs(x, c) if C.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: C = limit(self, x, c, "+" if left else "-") else: C = limit(self, x, c, "-" if left else "+") if isinstance(C, Limit): raise NotImplementedError("Could not compute limit") return C if a == b: return 0 A = _eval_endpoint(left=True) if A is S.NaN: return A B = _eval_endpoint(left=False) if (a and b) is None: return B - A value = B - A if a.is_comparable and b.is_comparable: if a < b: domain = Interval(a, b) else: domain = Interval(b, a) # check the singularities of self within the interval # if singularities is a ConditionSet (not iterable), catch the exception and pass singularities = solveset(self.cancel().as_numer_denom()[1], x, domain=domain) for logterm in self.atoms(log): singularities = singularities | solveset(logterm.args[0], x, domain=domain) try: for s in singularities: if value is S.NaN: # no need to keep adding, it will stay NaN break if not s.is_comparable: continue if (a < s) == (s < b) == True: value += -limit(self, x, s, "+") + limit(self, x, s, "-") elif (b < s) == (s < a) == True: value += limit(self, x, s, "+") - limit(self, x, s, "-") except TypeError: pass return value def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_extended_real: return self elif self.is_imaginary: return -self def conjugate(self): """Returns the complex conjugate of 'self'.""" from sympy.functions.elementary.complexes import conjugate as c return c(self) def dir(self, x, cdir): from sympy import log minexp = S.Zero if self.is_zero: return S.Zero arg = self while arg: minexp += S.One arg = arg.diff(x) coeff = arg.subs(x, 0) if coeff in (S.NaN, S.ComplexInfinity): try: coeff, _ = arg.leadterm(x) if coeff.has(log(x)): raise ValueError() except ValueError: coeff = arg.limit(x, 0) if coeff != S.Zero: break return coeff*cdir**minexp def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if (self.is_complex or self.is_infinite): return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key startswith = getattr(order, "startswith", None) if startswith is None: reverse = False else: reverse = startswith('rev-') if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([e.sort_key(order=order) for e in ncpart]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. Explanation =========== >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys import Poly, PolynomialError try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ from .numbers import Number, NumberSymbol if order is None and self.is_Add: # Spot the special case of Add(Number, Mul(Number, expr)) with the # first number positive and thhe second number nagative key = lambda x:not isinstance(x, (Number, NumberSymbol)) add_args = sorted(Add.make_args(self), key=key) if (len(add_args) == 2 and isinstance(add_args[0], (Number, NumberSymbol)) and isinstance(add_args[1], Mul)): mul_args = sorted(Mul.make_args(add_args[1]), key=key) if (len(mul_args) == 2 and isinstance(mul_args[0], Number) and add_args[0].is_positive and mul_args[0].is_negative): return add_args key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [term for term, _ in ordered] def as_terms(self): """Transform an expression to a list of terms. """ from .add import Add from .mul import Mul from .exprtools import decompose_power gens, terms = set(), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except (TypeError, ValueError): pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. Explanation =========== The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ from sympy import Dummy, Symbol o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: syms = oi.atoms(Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. Explanation =========== self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. Examples ======== >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [{-1, 2, x, y}, []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_extended_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False): """ Returns the coefficient from the term(s) containing ``x**n``. If ``n`` is zero then all terms independent of ``x`` will be returned. Explanation =========== When ``x`` is noncommutative, the coefficient to the left (default) or right of ``x`` can be returned. The keyword 'right' is ignored when ``x`` is commutative. Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurrence from the left is returned, else the last occurrence is returned. Return None if sub is not in l. Examples ======== >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero one_c = self_c or x_c xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c)) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True, warn=bool(not self_c)) if nc is None: nc = [] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): if one_c: co.append(Mul(*(list(resid) + nc))) else: co.append((resid, nc)) if one_c: if co == []: return S.Zero elif co: return Add(*co) else: # both nc # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0, 1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for `self` of zero regardless of hints. For nonzero `self`, the returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul) * if self is an Add then self = i + d * if self is a Mul then self = i*d * otherwise (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b', positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See Also ======== .separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(), sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from .symbol import Symbol from .add import _unevaluated_Add from .mul import _unevaluated_Mul from sympy.utilities.iterables import sift if self.is_zero: return S.Zero, S.Zero func = self.func if hint.get('as_Add', isinstance(self, Add) ): want = Add else: want = Mul # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, lambda x: has(x)) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), _unevaluated_Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), ( Mul(*depend, evaluate=False) if nc else _unevaluated_Mul(*depend)) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method can't be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ from sympy import im, re if hints.get('ignore') == self: return None else: return (re(self), im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary. See Also ======== as_ordered_factors: An alternative for noncommutative applications, returning an ordered list of factors. args_cnc: Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors. """ d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any factors of the Mul that are independent of deps. args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you don't know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you don't want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False, clear=True): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive() (1, 4.84*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients. >>> (x/2 + y).as_content_primitive() (1/2, x + 2*y) >>> (x/2 + y).as_content_primitive(clear=False) (1, x/2 + y) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return ``a/b`` instead of ``(a, b)`` """ return self, S.One def normal(self): """ expression -> a/b See Also ======== as_numer_denom: return ``(a, b)`` instead of ``a/b`` """ from .mul import _unevaluated_Mul n, d = self.as_numer_denom() if d is S.One: return n if d.is_Number: return _unevaluated_Mul(n, 1/d) else: return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. Examples ======== >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1, 2)*x).extract_multiplicatively(3) x/6 """ from .add import _unevaluated_Add c = sympify(c) if self is S.NaN: return None if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) else: return x quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() # assert cs >= 1 if c.is_Number and c is not S.NegativeOne: # assert c != 1 (handled at top) if cs is not S.One: if c.is_negative: xc = -(cs.extract_multiplicatively(-c)) else: xc = cs.extract_multiplicatively(c) if xc is not None: return xc*ps # rely on 2-arg Mul to restore Add return # |c| != 1 can only be extracted from cs if c == ps: return cs # check args of ps newargs = [] for arg in ps.args: newarg = arg.extract_multiplicatively(c) if newarg is None: return # all or nothing newargs.append(newarg) if cs is not S.One: args = [cs*t for t in newargs] # args may be in different order return _unevaluated_Add(*args) else: return Add._from_args(newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow: if c.is_Pow and c.base == self.base: new_exp = self.exp.extract_additively(c.exp) if new_exp is not None: return self.base ** (new_exp) elif c == self.base: new_exp = self.exp.extract_additively(1) if new_exp is not None: return self.base ** (new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if self is S.NaN: return None if c.is_zero: return self elif c == self: return S.Zero elif self == S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) @property def expr_free_symbols(self): """ Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node. Examples ======== >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> import warnings >>> warnings.simplefilter("ignore", SymPyDeprecationWarning) >>> from sympy.abc import x, y >>> (x + y).expr_free_symbols {x, y} If the expression is contained in a non-expression object, don't return the free symbols. Compare: >>> from sympy import Tuple >>> t = Tuple(x + y) >>> t.expr_free_symbols set() >>> t.free_symbols {x, y} """ from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return {j for i in self.args for j in i.expr_free_symbols} def could_extract_minus_sign(self): """Return True if self is not in a canonical form with respect to its sign. For most expressions, e, there will be a difference in e and -e. When there is, True will be returned for one and False for the other; False will be returned if there is no difference. Examples ======== >>> from sympy.abc import x, y >>> e = x - y >>> {i.could_extract_minus_sign() for i in (e, -e)} {False, True} """ negative_self = -self if self == negative_self: return False # e.g. zoo*x == -zoo*x self_has_minus = (self.extract_multiplicatively(-1) is not None) negative_self_has_minus = ( (negative_self).extract_multiplicatively(-1) is not None) if self_has_minus != negative_self_has_minus: return self_has_minus else: if self.is_Add: # We choose the one with less arguments with minus signs all_args = len(self.args) negative_args = len([False for arg in self.args if arg.could_extract_minus_sign()]) positive_args = all_args - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True elif self.is_Mul: # We choose the one with an odd number of minus signs num, den = self.as_numer_denom() args = Mul.make_args(num) + Mul.make_args(den) arg_signs = [arg.could_extract_minus_sign() for arg in args] negative_args = list(filter(None, arg_signs)) return len(negative_args) % 2 == 1 # As a last resort, we choose the one with greater value of .sort_key() return bool(self.sort_key() < negative_self.sort_key()) def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy import exp_polar, pi, I, ceiling, Add n = S.Zero res = S.One args = Mul.make_args(self) exps = [] for arg in args: if isinstance(arg, exp_polar): exps += [arg.exp] else: res *= arg piimult = S.Zero extras = [] while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(pi*I) if coeff is not None: piimult += coeff continue extras += [exp] if piimult.is_number: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S.Half)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S.Half c = nc newexp = pi*I*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def _eval_is_polynomial(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_polynomial(self, *syms): r""" Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant polynomial return True else: return self._eval_is_polynomial(syms) def _eval_is_rational_function(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return False if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant rational function return True else: return self._eval_is_rational_function(syms) def _eval_is_meromorphic(self, x, a): # Default implementation, return True for constants. return None if self.has(x) else True def is_meromorphic(self, x, a): """ This tests whether an expression is meromorphic as a function of the given symbol ``x`` at the point ``a``. This method is intended as a quick test that will return None if no decision can be made without simplification or more detailed analysis. Examples ======== >>> from sympy import zoo, log, sin, sqrt >>> from sympy.abc import x >>> f = 1/x**2 + 1 - 2*x**3 >>> f.is_meromorphic(x, 0) True >>> f.is_meromorphic(x, 1) True >>> f.is_meromorphic(x, zoo) True >>> g = x**log(3) >>> g.is_meromorphic(x, 0) False >>> g.is_meromorphic(x, 1) True >>> g.is_meromorphic(x, zoo) False >>> h = sin(1/x)*x**2 >>> h.is_meromorphic(x, 0) False >>> h.is_meromorphic(x, 1) True >>> h.is_meromorphic(x, zoo) True Multivalued functions are considered meromorphic when their branches are meromorphic. Thus most functions are meromorphic everywhere except at essential singularities and branch points. In particular, they will be meromorphic also on branch cuts except at their endpoints. >>> log(x).is_meromorphic(x, -1) True >>> log(x).is_meromorphic(x, 0) False >>> sqrt(x).is_meromorphic(x, -1) True >>> sqrt(x).is_meromorphic(x, 0) False """ if not x.is_symbol: raise TypeError("{} should be of symbol type".format(x)) a = sympify(a) return self._eval_is_meromorphic(x, a) def _eval_is_algebraic_expr(self, syms): if self.free_symbols.intersection(syms) == set(): return True return False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== - https://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if syms.intersection(self.free_symbols) == set(): # constant algebraic expression return True else: return self._eval_is_algebraic_expr(syms) ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None, cdir=0): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. Parameters ========== expr : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. x0 : Value The value around which ``x`` is calculated. Can be any value from ``-oo`` to ``oo``. n : Value The number of terms upto which the series is to be expanded. dir : String, optional The series-expansion can be bi-directional. If ``dir="+"``, then (x->x0+). If ``dir="-", then (x->x0-). For infinite ``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). logx : optional It is used to replace any log(x) in the returned series with a symbolic value rather than evaluating the actual value. cdir : optional It stands for complex direction, and indicates the direction from which the expansion needs to be evaluated. Examples ======== >>> from sympy import cos, exp, tan >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x >>> f = tan(x) >>> f.series(x, 2, 6, "+") tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) + (x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 + 5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 + 2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2)) >>> f.series(x, 2, 3, "-") tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) + O((x - 2)**3, (x, 2)) Returns ======= Expr : Expression Series expansion of the expression about x0 Raises ====== TypeError If "n" and "x0" are infinity objects PoleError If "x0" is an infinity object """ from sympy import collect, Dummy, Order, Rational, Symbol, ceiling if x is None: syms = self.free_symbols if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() if isinstance(x, Symbol): dep = x in self.free_symbols else: d = Dummy() dep = d in self.xreplace({x: d}).free_symbols if not dep: if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: sgn = 1 if x0 is S.Infinity else -1 s = self.subs(x, sgn/x).series(x, n=n, dir='+', cdir=cdir) if n is None: return (si.subs(x, sgn/x) for si in s) return s.subs(x, sgn/x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx, cdir=cdir) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = Dummy('x', positive=True, finite=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx, cdir=cdir) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**Rational(n, ngot)) else: s1 += Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx, cdir=cdir) newn = s1.getn() if newn != ngot: ndo = n + ceiling((n - ngot)*more/(newn - ngot)) s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += Order(x**n, x) o = s1.getO() s1 = s1.removeO() elif s1.has(Order): # asymptotic expansion return s1 else: o = Order(x**n, x) s1done = s1.doit() if (s1done + o).removeO() == s1done: o = S.Zero try: return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx, cdir=cdir)) def aseries(self, x=None, n=6, bound=0, hir=False): """Asymptotic Series expansion of self. This is equivalent to ``self.series(x, oo, n)``. Parameters ========== self : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. n : Value The number of terms upto which the series is to be expanded. hir : Boolean Set this parameter to be True to produce hierarchical series. It stops the recursion at an early level and may provide nicer and more useful results. bound : Value, Integer Use the ``bound`` parameter to give limit on rewriting coefficients in its normalised form. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x >>> e = sin(1/x + exp(-x)) - sin(1/x) >>> e.aseries(x) (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x) >>> e.aseries(x, n=3, hir=True) -exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo)) >>> e = exp(exp(x)/(1 - 1/x)) >>> e.aseries(x) exp(exp(x)/(1 - 1/x)) >>> e.aseries(x, bound=3) exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x)) Returns ======= Expr Asymptotic series expansion of the expression. Notes ===== This algorithm is directly induced from the limit computational algorithm provided by Gruntz. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w. Then same thing is recursively done on the leading coefficient till we get constant coefficients. If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalised representation of the mrv set and rewrites f using this normalised representation. If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))`` where ``w`` belongs to the most rapidly varying expression of ``self``. References ========== .. [1] A New Algorithm for Computing Asymptotic Series - Dominik Gruntz .. [2] Gruntz thesis - p90 .. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion See Also ======== Expr.aseries: See the docstring of this function for complete details of this wrapper. """ from sympy import Order, Dummy from sympy.functions import exp, log from sympy.series.gruntz import mrv, rewrite if x.is_positive is x.is_negative is None: xpos = Dummy('x', positive=True) return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x) om, exps = mrv(self, x) # We move one level up by replacing `x` by `exp(x)`, and then # computing the asymptotic series for f(exp(x)). Then asymptotic series # can be obtained by moving one-step back, by replacing x by ln(x). if x in om: s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x)) if s.getO(): return s + Order(1/x**n, (x, S.Infinity)) return s k = Dummy('k', positive=True) # f is rewritten in terms of omega func, logw = rewrite(exps, om, x, k) if self in om: if bound <= 0: return self s = (self.exp).aseries(x, n, bound=bound) s = s.func(*[t.removeO() for t in s.args]) res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x)) func = exp(self.args[0] - res.args[0]) / k logw = log(1/res) s = func.series(k, 0, n) # Hierarchical series if hir: return s.subs(k, exp(logw)) o = s.getO() terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1])) s = S.Zero has_ord = False # Then we recursively expand these coefficients one by one into # their asymptotic series in terms of their most rapidly varying subexpressions. for t in terms: coeff, expo = t.as_coeff_exponent(k) if coeff.has(x): # Recursive step snew = coeff.aseries(x, n, bound=bound-1) if has_ord and snew.getO(): break elif snew.getO(): has_ord = True s += (snew * k**expo) else: s += t if not o or has_ord: return s.subs(k, exp(logw)) return (s + o).subs(k, exp(logw)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ from sympy import Dummy, factorial x = sympify(x) _x = Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None, cdir=0): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you don't know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx, cdir=cdir) def _eval_lseries(self, x, logx=None, cdir=0): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) e = series.removeO() yield e if e is S.Zero: return while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir).removeO() if e != series: break if (series - self).cancel() is S.Zero: return yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we don't have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and not x in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir, cdir=cdir) else: return self._eval_nseries(x, n=n, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you don't have to write docstrings for _eval_nseries(). """ from sympy.utilities.misc import filldedent raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy import Dummy, log, Piecewise, piecewise_fold from sympy.series.gruntz import calculate_series if self.has(Piecewise): expr = piecewise_fold(self) else: expr = self if self.removeO() == 0: return self if logx is None: d = Dummy('logx') s = calculate_series(expr, x, d).subs(d, log(x)) else: s = calculate_series(expr, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols, cdir=0): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ from sympy import powsimp if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x, cdir=cdir) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x, cdir=cdir) if obj is not None: return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x, cdir=0): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x, cdir=0): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ from sympy import Dummy, log l = self.as_leading_term(x, cdir=cdir) d = Dummy('logx') if l.has(log(x)): l = l.subs(log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: from sympy.utilities.misc import filldedent raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of %s but got %s""" % (self, x, x, c))) c = c.subs(d, log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return S.Zero, self def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Compute formal power power series of self. See the docstring of the :func:`fps` function in sympy.series.formal for more information. """ from sympy.series.formal import fps return fps(self, x, x0, dir, hyper, order, rational, full) def fourier_series(self, limits=None): """Compute fourier sine/cosine series of self. See the docstring of the :func:`fourier_series` in sympy.series.fourier for more information. """ from sympy.series.fourier import fourier_series return fourier_series(self, limits) ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return _derivative_dispatch(self, *symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.radsimp import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def nsimplify(self, constants=[], tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from sympy.core.function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify import trigsimp return trigsimp(self, **args) def radsimp(self, **kwargs): """See the radsimp function in sympy.simplify""" from sympy.simplify import radsimp return radsimp(self, **kwargs) def powsimp(self, *args, **kwargs): """See the powsimp function in sympy.simplify""" from sympy.simplify import powsimp return powsimp(self, *args, **kwargs) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify import combsimp return combsimp(self) def gammasimp(self): """See the gammasimp function in sympy.simplify""" from sympy.simplify import gammasimp return gammasimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys import factor return factor(self, *gens, **args) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys import cancel return cancel(self, *gens, **args) def invert(self, g, *gens, **args): """Return the multiplicative inverse of ``self`` mod ``g`` where ``self`` (and ``g``) may be symbolic expressions). See Also ======== sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert """ from sympy.polys.polytools import invert from sympy.core.numbers import mod_inverse if self.is_number and getattr(g, 'is_number', True): return mod_inverse(self, g) return invert(self, g, *gens, **args) def round(self, n=None): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Number >>> pi.round() 3 >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6 + 3*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6 >>> (pi/10 + 2*I).round() 2*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== The Python ``round`` function uses the SymPy ``round`` method so it will always return a SymPy number (not a Python float or int): >>> isinstance(round(S(123), -2), Number) True """ from sympy.core.numbers import Float x = self if not x.is_number: raise TypeError("can't round symbolic expression") if not x.is_Atom: if not pure_complex(x.n(2), or_real=True): raise TypeError( 'Expected a number but got %s:' % func_name(x)) elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if x.is_extended_real is False: r, i = x.as_real_imag() return r.round(n) + S.ImaginaryUnit*i.round(n) if not x: return S.Zero if n is None else x p = as_int(n or 0) if x.is_Integer: return Integer(round(int(x), p)) digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1 allow = digits_to_decimal + p precs = [f._prec for f in x.atoms(Float)] dps = prec_to_dps(max(precs)) if precs else None if dps is None: # assume everything is exact so use the Python # float default or whatever was requested dps = max(15, allow) else: allow = min(allow, dps) # this will shift all digits to right of decimal # and give us dps to work with as an int shift = -digits_to_decimal + dps extra = 1 # how far we look past known digits # NOTE # mpmath will calculate the binary representation to # an arbitrary number of digits but we must base our # answer on a finite number of those digits, e.g. # .575 2589569785738035/2**52 in binary. # mpmath shows us that the first 18 digits are # >>> Float(.575).n(18) # 0.574999999999999956 # The default precision is 15 digits and if we ask # for 15 we get # >>> Float(.575).n(15) # 0.575000000000000 # mpmath handles rounding at the 15th digit. But we # need to be careful since the user might be asking # for rounding at the last digit and our semantics # are to round toward the even final digit when there # is a tie. So the extra digit will be used to make # that decision. In this case, the value is the same # to 15 digits: # >>> Float(.575).n(16) # 0.5750000000000000 # Now converting this to the 15 known digits gives # 575000000000000.0 # which rounds to integer # 5750000000000000 # And now we can round to the desired digt, e.g. at # the second from the left and we get # 5800000000000000 # and rescaling that gives # 0.58 # as the final result. # If the value is made slightly less than 0.575 we might # still obtain the same value: # >>> Float(.575-1e-16).n(16)*10**15 # 574999999999999.8 # What 15 digits best represents the known digits (which are # to the left of the decimal? 5750000000000000, the same as # before. The only way we will round down (in this case) is # if we declared that we had more than 15 digits of precision. # For example, if we use 16 digits of precision, the integer # we deal with is # >>> Float(.575-1e-16).n(17)*10**16 # 5749999999999998.4 # and this now rounds to 5749999999999998 and (if we round to # the 2nd digit from the left) we get 5700000000000000. # xf = x.n(dps + extra)*Pow(10, shift) xi = Integer(xf) # use the last digit to select the value of xi # nearest to x before rounding at the desired digit sign = 1 if x > 0 else -1 dif2 = sign*(xf - xi).n(extra) if dif2 < 0: raise NotImplementedError( 'not expecting int(x) to round away from 0') if dif2 > .5: xi += sign # round away from 0 elif dif2 == .5: xi += sign if xi%2 else -sign # round toward even # shift p to the new position ip = p - shift # let Python handle the int rounding then rescale xr = round(xi.p, ip) # restore scale rv = Rational(xr, Pow(10, shift)) # return Float or Integer if rv.is_Integer: if n is None: # the single-arg case return rv # use str or else it won't be a float return Float(str(rv), dps) # keep same precision else: if not allow and rv > self: allow += 1 return Float(rv, allow) __round__ = round def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.matexpr import _LeftRightArgs return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))] class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = () def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_derivative_n_times(self, s, n): from sympy import Piecewise, Eq from sympy import Tuple, MatrixExpr from sympy.matrices.common import MatrixCommon if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)): return super()._eval_derivative_n_times(s, n) if self == s: return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) else: return Piecewise((self, Eq(n, 0)), (0, True)) def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_meromorphic(self, x, a): from sympy.calculus.util import AccumBounds return (not self.is_Number or self.is_finite) and not isinstance(self, AccumBounds) def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx, cdir=0): return self @property def expr_free_symbols(self): from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return {self} def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log from sympy import Float xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig class UnevaluatedExpr(Expr): """ Expression that is not evaluated unless released. Examples ======== >>> from sympy import UnevaluatedExpr >>> from sympy.abc import x >>> x*(1/x) 1 >>> x*UnevaluatedExpr(1/x) x*1/x """ def __new__(cls, arg, **kwargs): arg = _sympify(arg) obj = Expr.__new__(cls, arg, **kwargs) return obj def doit(self, **kwargs): if kwargs.get("deep", True): return self.args[0].doit(**kwargs) else: return self.args[0] def unchanged(func, *args): """Return True if `func` applied to the `args` is unchanged. Can be used instead of `assert foo == foo`. Examples ======== >>> from sympy import Piecewise, cos, pi >>> from sympy.core.expr import unchanged >>> from sympy.abc import x >>> unchanged(cos, 1) # instead of assert cos(1) == cos(1) True >>> unchanged(cos, pi) False Comparison of args uses the builtin capabilities of the object's arguments to test for equality so args can be defined loosely. Here, the ExprCondPair arguments of Piecewise compare as equal to the tuples that can be used to create the Piecewise: >>> unchanged(Piecewise, (x, x > 1), (0, True)) True """ f = func(*args) return f.func == func and f.args == args class ExprBuilder: def __init__(self, op, args=[], validator=None, check=True): if not hasattr(op, "__call__"): raise TypeError("op {} needs to be callable".format(op)) self.op = op self.args = args self.validator = validator if (validator is not None) and check: self.validate() @staticmethod def _build_args(args): return [i.build() if isinstance(i, ExprBuilder) else i for i in args] def validate(self): if self.validator is None: return args = self._build_args(self.args) self.validator(*args) def build(self, check=True): args = self._build_args(self.args) if self.validator and check: self.validator(*args) return self.op(*args) def append_argument(self, arg, check=True): self.args.append(arg) if self.validator and check: self.validate(*self.args) def __getitem__(self, item): if item == 0: return self.op else: return self.args[item-1] def __repr__(self): return str(self.build()) def search_element(self, elem): for i, arg in enumerate(self.args): if isinstance(arg, ExprBuilder): ret = arg.search_index(elem) if ret is not None: return (i,) + ret elif id(arg) == id(elem): return (i,) return None from .mul import Mul from .add import Add from .power import Pow from .function import Function, _derivative_dispatch from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
7d92200c24ecc46ad5d25f9e6cf5fab0873ddd2ba4df09c4e80b163ea40439e1
from typing import Dict, Union, Type from sympy.utilities.exceptions import SymPyDeprecationWarning from .basic import S, Atom from .compatibility import ordered from .basic import Basic from .evalf import EvalfMixin from .function import AppliedUndef from .sympify import _sympify, SympifyError from .parameters import global_parameters from sympy.core.logic import fuzzy_bool, fuzzy_xor, fuzzy_and, fuzzy_not from sympy.logic.boolalg import Boolean, BooleanAtom __all__ = ( 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Relational', 'Equality', 'Unequality', 'StrictLessThan', 'LessThan', 'StrictGreaterThan', 'GreaterThan', ) from .expr import Expr from sympy.multipledispatch import dispatch from .containers import Tuple from .symbol import Symbol def _nontrivBool(side): return isinstance(side, Boolean) and \ not isinstance(side, Atom) # Note, see issue 4986. Ideally, we wouldn't want to subclass both Boolean # and Expr. # from .. import Expr def _canonical(cond): # return a condition in which all relationals are canonical reps = {r: r.canonical for r in cond.atoms(Relational)} return cond.xreplace(reps) # XXX: AttributeError was being caught here but it wasn't triggered by any of # the tests so I've removed it... class Relational(Boolean, EvalfMixin): """Base class for all relation types. Explanation =========== Subclasses of Relational should generally be instantiated directly, but Relational can be instantiated with a valid ``rop`` value to dispatch to the appropriate subclass. Parameters ========== rop : str or None Indicates what subclass to instantiate. Valid values can be found in the keys of Relational.ValidRelationOperator. Examples ======== >>> from sympy import Rel >>> from sympy.abc import x, y >>> Rel(y, x + x**2, '==') Eq(y, x**2 + x) """ __slots__ = () ValidRelationOperator = {} # type: Dict[Union[str, None], Type[Relational]] is_Relational = True # ValidRelationOperator - Defined below, because the necessary classes # have not yet been defined def __new__(cls, lhs, rhs, rop=None, **assumptions): # If called by a subclass, do nothing special and pass on to Basic. if cls is not Relational: return Basic.__new__(cls, lhs, rhs, **assumptions) # XXX: Why do this? There should be a separate function to make a # particular subclass of Relational from a string. # # If called directly with an operator, look up the subclass # corresponding to that operator and delegate to it cls = cls.ValidRelationOperator.get(rop, None) if cls is None: raise ValueError("Invalid relational operator symbol: %r" % rop) if not issubclass(cls, (Eq, Ne)): # validate that Booleans are not being used in a relational # other than Eq/Ne; # Note: Symbol is a subclass of Boolean but is considered # acceptable here. if any(map(_nontrivBool, (lhs, rhs))): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) return cls(lhs, rhs, **assumptions) @property def lhs(self): """The left-hand side of the relation.""" return self._args[0] @property def rhs(self): """The right-hand side of the relation.""" return self._args[1] @property def reversed(self): """Return the relationship with sides reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversed Eq(1, x) >>> x < 1 x < 1 >>> _.reversed 1 > x """ ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne} a, b = self.args return Relational.__new__(ops.get(self.func, self.func), b, a) @property def reversedsign(self): """Return the relationship with signs reversed. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.reversedsign Eq(-x, -1) >>> x < 1 x < 1 >>> _.reversedsign -x > -1 """ a, b = self.args if not (isinstance(a, BooleanAtom) or isinstance(b, BooleanAtom)): ops = {Eq: Eq, Gt: Lt, Ge: Le, Lt: Gt, Le: Ge, Ne: Ne} return Relational.__new__(ops.get(self.func, self.func), -a, -b) else: return self @property def negated(self): """Return the negated relationship. Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x, 1) Eq(x, 1) >>> _.negated Ne(x, 1) >>> x < 1 x < 1 >>> _.negated x >= 1 Notes ===== This works more or less identical to ``~``/``Not``. The difference is that ``negated`` returns the relationship even if ``evaluate=False``. Hence, this is useful in code when checking for e.g. negated relations to existing ones as it will not be affected by the `evaluate` flag. """ ops = {Eq: Ne, Ge: Lt, Gt: Le, Le: Gt, Lt: Ge, Ne: Eq} # If there ever will be new Relational subclasses, the following line # will work until it is properly sorted out # return ops.get(self.func, lambda a, b, evaluate=False: ~(self.func(a, # b, evaluate=evaluate)))(*self.args, evaluate=False) return Relational.__new__(ops.get(self.func), *self.args) def _eval_evalf(self, prec): return self.func(*[s._evalf(prec) for s in self.args]) @property def canonical(self): """Return a canonical form of the relational by putting a number on the rhs, canonically removing a sign or else ordering the args canonically. No other simplification is attempted. Examples ======== >>> from sympy.abc import x, y >>> x < 2 x < 2 >>> _.reversed.canonical x < 2 >>> (-y < x).canonical x > -y >>> (-y > x).canonical x < -y >>> (-y < -x).canonical x < y """ args = self.args r = self if r.rhs.is_number: if r.rhs.is_Number and r.lhs.is_Number and r.lhs > r.rhs: r = r.reversed elif r.lhs.is_number: r = r.reversed elif tuple(ordered(args)) != args: r = r.reversed LHS_CEMS = getattr(r.lhs, 'could_extract_minus_sign', None) RHS_CEMS = getattr(r.rhs, 'could_extract_minus_sign', None) if isinstance(r.lhs, BooleanAtom) or isinstance(r.rhs, BooleanAtom): return r # Check if first value has negative sign if LHS_CEMS and LHS_CEMS(): return r.reversedsign elif not r.rhs.is_number and RHS_CEMS and RHS_CEMS(): # Right hand side has a minus, but not lhs. # How does the expression with reversed signs behave? # This is so that expressions of the type # Eq(x, -y) and Eq(-x, y) # have the same canonical representation expr1, _ = ordered([r.lhs, -r.rhs]) if expr1 != r.lhs: return r.reversed.reversedsign return r def equals(self, other, failing_expression=False): """Return True if the sides of the relationship are mathematically identical and the type of relationship is the same. If failing_expression is True, return the expression whose truth value was unknown.""" if isinstance(other, Relational): if self == other or self.reversed == other: return True a, b = self, other if a.func in (Eq, Ne) or b.func in (Eq, Ne): if a.func != b.func: return False left, right = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.args)] if left is True: return right if right is True: return left lr, rl = [i.equals(j, failing_expression=failing_expression) for i, j in zip(a.args, b.reversed.args)] if lr is True: return rl if rl is True: return lr e = (left, right, lr, rl) if all(i is False for i in e): return False for i in e: if i not in (True, False): return i else: if b.func != a.func: b = b.reversed if a.func != b.func: return False left = a.lhs.equals(b.lhs, failing_expression=failing_expression) if left is False: return False right = a.rhs.equals(b.rhs, failing_expression=failing_expression) if right is False: return False if left is True: return right return left def _eval_simplify(self, **kwargs): from .add import Add from sympy.core.expr import Expr r = self r = r.func(*[i.simplify(**kwargs) for i in r.args]) if r.is_Relational: if not isinstance(r.lhs, Expr) or not isinstance(r.rhs, Expr): return r dif = r.lhs - r.rhs # replace dif with a valid Number that will # allow a definitive comparison with 0 v = None if dif.is_comparable: v = dif.n(2) elif dif.equals(0): # XXX this is expensive v = S.Zero if v is not None: r = r.func._eval_relation(v, S.Zero) r = r.canonical # If there is only one symbol in the expression, # try to write it on a simplified form free = list(filter(lambda x: x.is_real is not False, r.free_symbols)) if len(free) == 1: try: from sympy.solvers.solveset import linear_coeffs x = free.pop() dif = r.lhs - r.rhs m, b = linear_coeffs(dif, x) if m.is_zero is False: if m.is_negative: # Dividing with a negative number, so change order of arguments # canonical will put the symbol back on the lhs later r = r.func(-b / m, x) else: r = r.func(x, -b / m) else: r = r.func(b, S.zero) except ValueError: # maybe not a linear function, try polynomial from sympy.polys import Poly, poly, PolynomialError, gcd try: p = poly(dif, x) c = p.all_coeffs() constant = c[-1] c[-1] = 0 scale = gcd(c) c = [ctmp / scale for ctmp in c] r = r.func(Poly.from_list(c, x).as_expr(), -constant / scale) except PolynomialError: pass elif len(free) >= 2: try: from sympy.solvers.solveset import linear_coeffs from sympy.polys import gcd free = list(ordered(free)) dif = r.lhs - r.rhs m = linear_coeffs(dif, *free) constant = m[-1] del m[-1] scale = gcd(m) m = [mtmp / scale for mtmp in m] nzm = list(filter(lambda f: f[0] != 0, list(zip(m, free)))) if scale.is_zero is False: if constant != 0: # lhs: expression, rhs: constant newexpr = Add(*[i * j for i, j in nzm]) r = r.func(newexpr, -constant / scale) else: # keep first term on lhs lhsterm = nzm[0][0] * nzm[0][1] del nzm[0] newexpr = Add(*[i * j for i, j in nzm]) r = r.func(lhsterm, -newexpr) else: r = r.func(constant, S.zero) except ValueError: pass # Did we get a simplified result? r = r.canonical measure = kwargs['measure'] if measure(r) < kwargs['ratio'] * measure(self): return r else: return self def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.func(trigsimp(self.lhs, **opts), trigsimp(self.rhs, **opts)) def expand(self, **kwargs): args = (arg.expand(**kwargs) for arg in self.args) return self.func(*args) def __bool__(self): raise TypeError("cannot determine truth value of Relational") def _eval_as_set(self): # self is univariate and periodicity(self, x) in (0, None) from sympy.solvers.inequalities import solve_univariate_inequality from sympy.sets.conditionset import ConditionSet syms = self.free_symbols assert len(syms) == 1 x = syms.pop() try: xset = solve_univariate_inequality(self, x, relational=False) except NotImplementedError: # solve_univariate_inequality raises NotImplementedError for # unsolvable equations/inequalities. xset = ConditionSet(x, self, S.Reals) return xset @property def binary_symbols(self): # override where necessary return set() Rel = Relational class Equality(Relational): """An equal relation between two objects. Explanation =========== Represents that two objects are equal. If they can be easily shown to be definitively equal (or unequal), this will reduce to True (or False). Otherwise, the relation is maintained as an unevaluated Equality object. Use the ``simplify`` function on this object for more nontrivial evaluation of the equality relation. As usual, the keyword argument ``evaluate=False`` can be used to prevent any evaluation. Examples ======== >>> from sympy import Eq, simplify, exp, cos >>> from sympy.abc import x, y >>> Eq(y, x + x**2) Eq(y, x**2 + x) >>> Eq(2, 5) False >>> Eq(2, 5, evaluate=False) Eq(2, 5) >>> _.doit() False >>> Eq(exp(x), exp(x).rewrite(cos)) Eq(exp(x), sinh(x) + cosh(x)) >>> simplify(_) True See Also ======== sympy.logic.boolalg.Equivalent : for representing equality between two boolean expressions Notes ===== Python treats 1 and True (and 0 and False) as being equal; SymPy does not. And integer will always compare as unequal to a Boolean: >>> Eq(True, 1), True == 1 (False, True) This class is not the same as the == operator. The == operator tests for exact structural equality between two expressions; this class compares expressions mathematically. If either object defines an ``_eval_Eq`` method, it can be used in place of the default algorithm. If ``lhs._eval_Eq(rhs)`` or ``rhs._eval_Eq(lhs)`` returns anything other than None, that return value will be substituted for the Equality. If None is returned by ``_eval_Eq``, an Equality object will be created as usual. Since this object is already an expression, it does not respond to the method ``as_expr`` if one tries to create `x - y` from ``Eq(x, y)``. This can be done with the ``rewrite(Add)`` method. """ rel_op = '==' __slots__ = () is_Equality = True def __new__(cls, lhs, rhs=None, **options): if rhs is None: SymPyDeprecationWarning( feature="Eq(expr) with rhs default to 0", useinstead="Eq(expr, 0)", issue=16587, deprecated_since_version="1.5" ).warn() rhs = 0 evaluate = options.pop('evaluate', global_parameters.evaluate) lhs = _sympify(lhs) rhs = _sympify(rhs) if evaluate: val = is_eq(lhs, rhs) if val is None: return cls(lhs, rhs, evaluate=False) else: return _sympify(val) return Relational.__new__(cls, lhs, rhs) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs == rhs) def _eval_rewrite_as_Add(self, *args, **kwargs): """ return Eq(L, R) as L - R. To control the evaluation of the result set pass `evaluate=True` to give L - R; if `evaluate=None` then terms in L and R will not cancel but they will be listed in canonical order; otherwise non-canonical args will be returned. Examples ======== >>> from sympy import Eq, Add >>> from sympy.abc import b, x >>> eq = Eq(x + b, x - b) >>> eq.rewrite(Add) 2*b >>> eq.rewrite(Add, evaluate=None).args (b, b, x, -x) >>> eq.rewrite(Add, evaluate=False).args (b, x, b, -x) """ from .add import _unevaluated_Add, Add L, R = args evaluate = kwargs.get('evaluate', True) if evaluate: # allow cancellation of args return L - R args = Add.make_args(L) + Add.make_args(-R) if evaluate is None: # no cancellation, but canonical return _unevaluated_Add(*args) # no cancellation, not canonical return Add._from_args(args) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return {self.lhs} elif self.rhs.is_Symbol: return {self.rhs} return set() def _eval_simplify(self, **kwargs): from .add import Add from sympy.core.expr import Expr from sympy.solvers.solveset import linear_coeffs # standard simplify e = super()._eval_simplify(**kwargs) if not isinstance(e, Equality): return e if not isinstance(e.lhs, Expr) or not isinstance(e.rhs, Expr): return e free = self.free_symbols if len(free) == 1: try: x = free.pop() m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) if m.is_zero is False: enew = e.func(x, -b / m) else: enew = e.func(m * x, -b) measure = kwargs['measure'] if measure(enew) <= kwargs['ratio'] * measure(e): e = enew except ValueError: pass return e.canonical def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals import integrate return integrate(self, *args, **kwargs) def as_poly(self, *gens, **kwargs): '''Returns lhs-rhs as a Poly Examples ======== >>> from sympy import Eq >>> from sympy.abc import x >>> Eq(x**2, 1).as_poly(x) Poly(x**2 - 1, x, domain='ZZ') ''' return (self.lhs - self.rhs).as_poly(*gens, **kwargs) Eq = Equality class Unequality(Relational): """An unequal relation between two objects. Explanation =========== Represents that two objects are not equal. If they can be shown to be definitively equal, this will reduce to False; if definitively unequal, this will reduce to True. Otherwise, the relation is maintained as an Unequality object. Examples ======== >>> from sympy import Ne >>> from sympy.abc import x, y >>> Ne(y, x+x**2) Ne(y, x**2 + x) See Also ======== Equality Notes ===== This class is not the same as the != operator. The != operator tests for exact structural equality between two expressions; this class compares expressions mathematically. This class is effectively the inverse of Equality. As such, it uses the same algorithms, including any available `_eval_Eq` methods. """ rel_op = '!=' __slots__ = () def __new__(cls, lhs, rhs, **options): lhs = _sympify(lhs) rhs = _sympify(rhs) evaluate = options.pop('evaluate', global_parameters.evaluate) if evaluate: val = is_neq(lhs, rhs) if val is None: return cls(lhs, rhs, evaluate=False) else: return _sympify(val) return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs): return _sympify(lhs != rhs) @property def binary_symbols(self): if S.true in self.args or S.false in self.args: if self.lhs.is_Symbol: return {self.lhs} elif self.rhs.is_Symbol: return {self.rhs} return set() def _eval_simplify(self, **kwargs): # simplify as an equality eq = Equality(*self.args)._eval_simplify(**kwargs) if isinstance(eq, Equality): # send back Ne with the new args return self.func(*eq.args) return eq.negated # result of Ne is the negated Eq Ne = Unequality class _Inequality(Relational): """Internal base class for all *Than types. Each subclass must implement _eval_relation to provide the method for comparing two real numbers. """ __slots__ = () def __new__(cls, lhs, rhs, **options): try: lhs = _sympify(lhs) rhs = _sympify(rhs) except SympifyError: return NotImplemented evaluate = options.pop('evaluate', global_parameters.evaluate) if evaluate: for me in (lhs, rhs): if me.is_extended_real is False: raise TypeError("Invalid comparison of non-real %s" % me) if me is S.NaN: raise TypeError("Invalid NaN comparison") # First we invoke the appropriate inequality method of `lhs` # (e.g., `lhs.__lt__`). That method will try to reduce to # boolean or raise an exception. It may keep calling # superclasses until it reaches `Expr` (e.g., `Expr.__lt__`). # In some cases, `Expr` will just invoke us again (if neither it # nor a subclass was able to reduce to boolean or raise an # exception). In that case, it must call us with # `evaluate=False` to prevent infinite recursion. return cls._eval_relation(lhs, rhs, **options) # make a "non-evaluated" Expr for the inequality return Relational.__new__(cls, lhs, rhs, **options) @classmethod def _eval_relation(cls, lhs, rhs, **options): val = cls._eval_fuzzy_relation(lhs, rhs) if val is None: return cls(lhs, rhs, evaluate=False) else: return _sympify(val) class _Greater(_Inequality): """Not intended for general use _Greater is only used so that GreaterThan and StrictGreaterThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[0] @property def lts(self): return self._args[1] class _Less(_Inequality): """Not intended for general use. _Less is only used so that LessThan and StrictLessThan may subclass it for the .gts and .lts properties. """ __slots__ = () @property def gts(self): return self._args[1] @property def lts(self): return self._args[0] class GreaterThan(_Greater): """Class representations of inequalities. Explanation =========== The ``*Than`` classes represent inequal relationships, where the left-hand side is generally bigger or smaller than the right-hand side. For example, the GreaterThan class represents an inequal relationship where the left-hand side is at least as big as the right side, if not bigger. In mathematical notation: lhs >= rhs In total, there are four ``*Than`` classes, to represent the four inequalities: +-----------------+--------+ |Class Name | Symbol | +=================+========+ |GreaterThan | (>=) | +-----------------+--------+ |LessThan | (<=) | +-----------------+--------+ |StrictGreaterThan| (>) | +-----------------+--------+ |StrictLessThan | (<) | +-----------------+--------+ All classes take two arguments, lhs and rhs. +----------------------------+-----------------+ |Signature Example | Math equivalent | +============================+=================+ |GreaterThan(lhs, rhs) | lhs >= rhs | +----------------------------+-----------------+ |LessThan(lhs, rhs) | lhs <= rhs | +----------------------------+-----------------+ |StrictGreaterThan(lhs, rhs) | lhs > rhs | +----------------------------+-----------------+ |StrictLessThan(lhs, rhs) | lhs < rhs | +----------------------------+-----------------+ In addition to the normal .lhs and .rhs of Relations, ``*Than`` inequality objects also have the .lts and .gts properties, which represent the "less than side" and "greater than side" of the operator. Use of .lts and .gts in an algorithm rather than .lhs and .rhs as an assumption of inequality direction will make more explicit the intent of a certain section of code, and will make it similarly more robust to client code changes: >>> from sympy import GreaterThan, StrictGreaterThan >>> from sympy import LessThan, StrictLessThan >>> from sympy import And, Ge, Gt, Le, Lt, Rel, S >>> from sympy.abc import x, y, z >>> from sympy.core.relational import Relational >>> e = GreaterThan(x, 1) >>> e x >= 1 >>> '%s >= %s is the same as %s <= %s' % (e.gts, e.lts, e.lts, e.gts) 'x >= 1 is the same as 1 <= x' Examples ======== One generally does not instantiate these classes directly, but uses various convenience methods: >>> for f in [Ge, Gt, Le, Lt]: # convenience wrappers ... print(f(x, 2)) x >= 2 x > 2 x <= 2 x < 2 Another option is to use the Python inequality operators (>=, >, <=, <) directly. Their main advantage over the Ge, Gt, Le, and Lt counterparts, is that one can write a more "mathematical looking" statement rather than littering the math with oddball function calls. However there are certain (minor) caveats of which to be aware (search for 'gotcha', below). >>> x >= 2 x >= 2 >>> _ == Ge(x, 2) True However, it is also perfectly valid to instantiate a ``*Than`` class less succinctly and less conveniently: >>> Rel(x, 1, ">") x > 1 >>> Relational(x, 1, ">") x > 1 >>> StrictGreaterThan(x, 1) x > 1 >>> GreaterThan(x, 1) x >= 1 >>> LessThan(x, 1) x <= 1 >>> StrictLessThan(x, 1) x < 1 Notes ===== There are a couple of "gotchas" to be aware of when using Python's operators. The first is that what your write is not always what you get: >>> 1 < x x > 1 Due to the order that Python parses a statement, it may not immediately find two objects comparable. When "1 < x" is evaluated, Python recognizes that the number 1 is a native number and that x is *not*. Because a native Python number does not know how to compare itself with a SymPy object Python will try the reflective operation, "x > 1" and that is the form that gets evaluated, hence returned. If the order of the statement is important (for visual output to the console, perhaps), one can work around this annoyance in a couple ways: (1) "sympify" the literal before comparison >>> S(1) < x 1 < x (2) use one of the wrappers or less succinct methods described above >>> Lt(1, x) 1 < x >>> Relational(1, x, "<") 1 < x The second gotcha involves writing equality tests between relationals when one or both sides of the test involve a literal relational: >>> e = x < 1; e x < 1 >>> e == e # neither side is a literal True >>> e == x < 1 # expecting True, too False >>> e != x < 1 # expecting False x < 1 >>> x < 1 != x < 1 # expecting False or the same thing as before Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational The solution for this case is to wrap literal relationals in parentheses: >>> e == (x < 1) True >>> e != (x < 1) False >>> (x < 1) != (x < 1) False The third gotcha involves chained inequalities not involving '==' or '!='. Occasionally, one may be tempted to write: >>> e = x < y < z Traceback (most recent call last): ... TypeError: symbolic boolean expression has no truth value. Due to an implementation detail or decision of Python [1]_, there is no way for SymPy to create a chained inequality with that syntax so one must use And: >>> e = And(x < y, y < z) >>> type( e ) And >>> e (x < y) & (y < z) Although this can also be done with the '&' operator, it cannot be done with the 'and' operarator: >>> (x < y) & (y < z) (x < y) & (y < z) >>> (x < y) and (y < z) Traceback (most recent call last): ... TypeError: cannot determine truth value of Relational .. [1] This implementation detail is that Python provides no reliable method to determine that a chained inequality is being built. Chained comparison operators are evaluated pairwise, using "and" logic (see http://docs.python.org/2/reference/expressions.html#notin). This is done in an efficient way, so that each object being compared is only evaluated once and the comparison can short-circuit. For example, ``1 > 2 > 3`` is evaluated by Python as ``(1 > 2) and (2 > 3)``. The ``and`` operator coerces each side into a bool, returning the object itself when it short-circuits. The bool of the --Than operators will raise TypeError on purpose, because SymPy cannot determine the mathematical ordering of symbolic expressions. Thus, if we were to compute ``x > y > z``, with ``x``, ``y``, and ``z`` being Symbols, Python converts the statement (roughly) into these steps: (1) x > y > z (2) (x > y) and (y > z) (3) (GreaterThanObject) and (y > z) (4) (GreaterThanObject.__bool__()) and (y > z) (5) TypeError Because of the "and" added at step 2, the statement gets turned into a weak ternary statement, and the first object's __bool__ method will raise TypeError. Thus, creating a chained inequality is not possible. In Python, there is no way to override the ``and`` operator, or to control how it short circuits, so it is impossible to make something like ``x > y > z`` work. There was a PEP to change this, :pep:`335`, but it was officially closed in March, 2012. """ __slots__ = () rel_op = '>=' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_ge(lhs, rhs) Ge = GreaterThan class LessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<=' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_le(lhs, rhs) Le = LessThan class StrictGreaterThan(_Greater): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '>' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_gt(lhs, rhs) Gt = StrictGreaterThan class StrictLessThan(_Less): __doc__ = GreaterThan.__doc__ __slots__ = () rel_op = '<' @classmethod def _eval_fuzzy_relation(cls, lhs, rhs): return is_lt(lhs, rhs) Lt = StrictLessThan # A class-specific (not object-specific) data item used for a minor speedup. # It is defined here, rather than directly in the class, because the classes # that it references have not been defined until now (e.g. StrictLessThan). Relational.ValidRelationOperator = { None: Equality, '==': Equality, 'eq': Equality, '!=': Unequality, '<>': Unequality, 'ne': Unequality, '>=': GreaterThan, 'ge': GreaterThan, '<=': LessThan, 'le': LessThan, '>': StrictGreaterThan, 'gt': StrictGreaterThan, '<': StrictLessThan, 'lt': StrictLessThan, } def _n2(a, b): """Return (a - b).evalf(2) if a and b are comparable, else None. This should only be used when a and b are already sympified. """ # /!\ it is very important (see issue 8245) not to # use a re-evaluated number in the calculation of dif if a.is_comparable and b.is_comparable: dif = (a - b).evalf(2) if dif.is_comparable: return dif @dispatch(Expr, Expr) def _eval_is_ge(lhs, rhs): return None @dispatch(Basic, Basic) def _eval_is_eq(lhs, rhs): return None @dispatch(Tuple, Expr) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return False @dispatch(Tuple, AppliedUndef) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return None @dispatch(Tuple, Symbol) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 return None @dispatch(Tuple, Tuple) # type: ignore def _eval_is_eq(lhs, rhs): # noqa:F811 if len(lhs) != len(rhs): return False return fuzzy_and(fuzzy_bool(is_eq(s, o)) for s, o in zip(lhs, rhs)) def is_lt(lhs, rhs, assumptions=None): """Fuzzy bool for lhs is strictly less than rhs. See the docstring for :func:`~.is_ge` for more. """ return fuzzy_not(is_ge(lhs, rhs, assumptions)) def is_gt(lhs, rhs, assumptions=None): """Fuzzy bool for lhs is strictly greater than rhs. See the docstring for :func:`~.is_ge` for more. """ return fuzzy_not(is_le(lhs, rhs, assumptions)) def is_le(lhs, rhs, assumptions=None): """Fuzzy bool for lhs is less than or equal to rhs. See the docstring for :func:`~.is_ge` for more. """ return is_ge(rhs, lhs, assumptions) def is_ge(lhs, rhs, assumptions=None): """ Fuzzy bool for *lhs* is greater than or equal to *rhs*. Parameters ========== lhs : Expr The left-hand side of the expression, must be sympified, and an instance of expression. Throws an exception if lhs is not an instance of expression. rhs : Expr The right-hand side of the expression, must be sympified and an instance of expression. Throws an exception if lhs is not an instance of expression. assumptions: Boolean, optional Assumptions taken to evaluate the inequality. Returns ======= ``True`` if *lhs* is greater than or equal to *rhs*, ``False`` if *lhs* is less than *rhs*, and ``None`` if the comparison between *lhs* and *rhs* is indeterminate. Explanation =========== This function is intended to give a relatively fast determination and deliberately does not attempt slow calculations that might help in obtaining a determination of True or False in more difficult cases. The four comparison functions ``is_le``, ``is_lt``, ``is_ge``, and ``is_gt`` are each implemented in terms of ``is_ge`` in the following way: is_ge(x, y) := is_ge(x, y) is_le(x, y) := is_ge(y, x) is_lt(x, y) := fuzzy_not(is_ge(x, y)) is_gt(x, y) := fuzzy_not(is_ge(y, x)) Therefore, supporting new type with this function will ensure behavior for other three functions as well. To maintain these equivalences in fuzzy logic it is important that in cases where either x or y is non-real all comparisons will give None. Examples ======== >>> from sympy import S, Q >>> from sympy.core.relational import is_ge, is_le, is_gt, is_lt >>> from sympy.abc import x >>> is_ge(S(2), S(0)) True >>> is_ge(S(0), S(2)) False >>> is_le(S(0), S(2)) True >>> is_gt(S(0), S(2)) False >>> is_lt(S(2), S(0)) False Assumptions can be passed to evaluate the quality which is otherwise indeterminate. >>> print(is_ge(x, S(0))) None >>> is_ge(x, S(0), assumptions=Q.positive(x)) True New types can be supported by dispatching to ``_eval_is_ge``. >>> from sympy import Expr, sympify >>> from sympy.multipledispatch import dispatch >>> class MyExpr(Expr): ... def __new__(cls, arg): ... return super().__new__(cls, sympify(arg)) ... @property ... def value(self): ... return self.args[0] >>> @dispatch(MyExpr, MyExpr) ... def _eval_is_ge(a, b): ... return is_ge(a.value, b.value) >>> a = MyExpr(1) >>> b = MyExpr(2) >>> is_ge(b, a) True >>> is_le(a, b) True """ from sympy.assumptions.wrapper import AssumptionsWrapper, is_extended_nonnegative if not (isinstance(lhs, Expr) and isinstance(rhs, Expr)): raise TypeError("Can only compare inequalities with Expr") retval = _eval_is_ge(lhs, rhs) if retval is not None: return retval else: n2 = _n2(lhs, rhs) if n2 is not None: # use float comparison for infinity. # otherwise get stuck in infinite recursion if n2 in (S.Infinity, S.NegativeInfinity): n2 = float(n2) return n2 >= 0 _lhs = AssumptionsWrapper(lhs, assumptions) _rhs = AssumptionsWrapper(rhs, assumptions) if _lhs.is_extended_real and _rhs.is_extended_real: if (_lhs.is_infinite and _lhs.is_extended_positive) or (_rhs.is_infinite and _rhs.is_extended_negative): return True diff = lhs - rhs if diff is not S.NaN: rv = is_extended_nonnegative(diff, assumptions) if rv is not None: return rv def is_neq(lhs, rhs, assumptions=None): """Fuzzy bool for lhs does not equal rhs. See the docstring for :func:`~.is_eq` for more. """ return fuzzy_not(is_eq(lhs, rhs, assumptions)) def is_eq(lhs, rhs, assumptions=None): """ Fuzzy bool representing mathematical equality between *lhs* and *rhs*. Parameters ========== lhs : Expr The left-hand side of the expression, must be sympified. rhs : Expr The right-hand side of the expression, must be sympified. assumptions: Boolean, optional Assumptions taken to evaluate the equality. Returns ======= ``True`` if *lhs* is equal to *rhs*, ``False`` is *lhs* is not equal to *rhs*, and ``None`` if the comparison between *lhs* and *rhs* is indeterminate. Explanation =========== This function is intended to give a relatively fast determination and deliberately does not attempt slow calculations that might help in obtaining a determination of True or False in more difficult cases. :func:`~.is_neq` calls this function to return its value, so supporting new type with this function will ensure correct behavior for ``is_neq`` as well. Examples ======== >>> from sympy import Q, S >>> from sympy.core.relational import is_eq, is_neq >>> from sympy.abc import x >>> is_eq(S(0), S(0)) True >>> is_neq(S(0), S(0)) False >>> is_eq(S(0), S(2)) False >>> is_neq(S(0), S(2)) True Assumptions can be passed to evaluate the equality which is otherwise indeterminate. >>> print(is_eq(x, S(0))) None >>> is_eq(x, S(0), assumptions=Q.zero(x)) True New types can be supported by dispatching to ``_eval_is_eq``. >>> from sympy import Basic, sympify >>> from sympy.multipledispatch import dispatch >>> class MyBasic(Basic): ... def __new__(cls, arg): ... return Basic.__new__(cls, sympify(arg)) ... @property ... def value(self): ... return self.args[0] ... >>> @dispatch(MyBasic, MyBasic) ... def _eval_is_eq(a, b): ... return is_eq(a.value, b.value) ... >>> a = MyBasic(1) >>> b = MyBasic(1) >>> is_eq(a, b) True >>> is_neq(a, b) False """ from sympy.assumptions.wrapper import (AssumptionsWrapper, is_infinite, is_extended_real) from sympy.core.add import Add from sympy.functions.elementary.complexes import arg from sympy.simplify.simplify import clear_coefficients from sympy.utilities.iterables import sift # here, _eval_Eq is only called for backwards compatibility # new code should use is_eq with multiple dispatch as # outlined in the docstring for side1, side2 in (lhs, rhs), (rhs, lhs): eval_func = getattr(side1, '_eval_Eq', None) if eval_func is not None: retval = eval_func(side2) if retval is not None: return retval retval = _eval_is_eq(lhs, rhs) if retval is not None: return retval if dispatch(type(lhs), type(rhs)) != dispatch(type(rhs), type(lhs)): retval = _eval_is_eq(rhs, lhs) if retval is not None: return retval # retval is still None, so go through the equality logic # If expressions have the same structure, they must be equal. if lhs == rhs: return True # e.g. True == True elif all(isinstance(i, BooleanAtom) for i in (rhs, lhs)): return False # True != False elif not (lhs.is_Symbol or rhs.is_Symbol) and ( isinstance(lhs, Boolean) != isinstance(rhs, Boolean)): return False # only Booleans can equal Booleans _lhs = AssumptionsWrapper(lhs, assumptions) _rhs = AssumptionsWrapper(rhs, assumptions) if _lhs.is_infinite or _rhs.is_infinite: if fuzzy_xor([_lhs.is_infinite, _rhs.is_infinite]): return False if fuzzy_xor([_lhs.is_extended_real, _rhs.is_extended_real]): return False if fuzzy_and([_lhs.is_extended_real, _rhs.is_extended_real]): return fuzzy_xor([_lhs.is_extended_positive, fuzzy_not(_rhs.is_extended_positive)]) # Try to split real/imaginary parts and equate them I = S.ImaginaryUnit def split_real_imag(expr): real_imag = lambda t: ( 'real' if is_extended_real(t, assumptions) else 'imag' if is_extended_real(I*t, assumptions) else None) return sift(Add.make_args(expr), real_imag) lhs_ri = split_real_imag(lhs) if not lhs_ri[None]: rhs_ri = split_real_imag(rhs) if not rhs_ri[None]: eq_real = is_eq(Add(*lhs_ri['real']), Add(*rhs_ri['real']), assumptions) eq_imag = is_eq(I * Add(*lhs_ri['imag']), I * Add(*rhs_ri['imag']), assumptions) return fuzzy_and(map(fuzzy_bool, [eq_real, eq_imag])) # Compare e.g. zoo with 1+I*oo by comparing args arglhs = arg(lhs) argrhs = arg(rhs) # Guard against Eq(nan, nan) -> False if not (arglhs == S.NaN and argrhs == S.NaN): return fuzzy_bool(is_eq(arglhs, argrhs, assumptions)) if all(isinstance(i, Expr) for i in (lhs, rhs)): # see if the difference evaluates dif = lhs - rhs _dif = AssumptionsWrapper(dif, assumptions) z = _dif.is_zero if z is not None: if z is False and _dif.is_commutative: # issue 10728 return False if z: return True n2 = _n2(lhs, rhs) if n2 is not None: return _sympify(n2 == 0) # see if the ratio evaluates n, d = dif.as_numer_denom() rv = None _n = AssumptionsWrapper(n, assumptions) _d = AssumptionsWrapper(d, assumptions) if _n.is_zero: rv = _d.is_nonzero elif _n.is_finite: if _d.is_infinite: rv = True elif _n.is_zero is False: rv = _d.is_infinite if rv is None: # if the condition that makes the denominator # infinite does not make the original expression # True then False can be returned l, r = clear_coefficients(d, S.Infinity) args = [_.subs(l, r) for _ in (lhs, rhs)] if args != [lhs, rhs]: rv = fuzzy_bool(is_eq(*args, assumptions)) if rv is True: rv = None elif any(is_infinite(a, assumptions) for a in Add.make_args(n)): # (inf or nan)/x != 0 rv = False if rv is not None: return rv
882b9b8528df105dbcbb4e3a8a93661605235687f495a2626985c88e40f39306
import numbers import decimal import fractions import math import re as regex import sys from .containers import Tuple from .sympify import (SympifyError, converter, sympify, _convert_numpy_types, _sympify, _is_numpy_instance) from .singleton import S, Singleton from .expr import Expr, AtomicExpr from .evalf import pure_complex from .decorators import _sympifyit from .cache import cacheit, clear_cache from .logic import fuzzy_not from sympy.core.compatibility import (as_int, HAS_GMPY, SYMPY_INTS, gmpy) from sympy.core.cache import lru_cache from .kind import NumberKind from sympy.multipledispatch import dispatch import mpmath import mpmath.libmp as mlib from mpmath.libmp import bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero, _normalize as mpf_normalize, prec_to_dps) from sympy.utilities.misc import debug, filldedent from .parameters import global_parameters from sympy.utilities.exceptions import SymPyDeprecationWarning rnd = mlib.round_nearest _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. Examples ======== If ``tol`` is None then True will be returned if ``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the decimal precision of each value. >>> from sympy.core.numbers import comp, pi >>> pi4 = pi.n(4); pi4 3.142 >>> comp(_, 3.142) True >>> comp(pi4, 3.141) False >>> comp(pi4, 3.143) False A comparison of strings will be made if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''. >>> comp(pi4, 3.1415) True >>> comp(pi4, 3.1415, '') False When ``tol`` is provided and ``z2`` is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``: >>> abs(pi4 - 3.14)/pi4 0.000509791731426756 >>> comp(pi4, 3.14, .001) # difference less than 0.1% True >>> comp(pi4, 3.14, .0005) # difference less than 0.1% False When ``|z1| <= 1`` the absolute error is used: >>> 1/pi4 0.3183 >>> abs(1/pi4 - 0.3183)/(1/pi4) 3.07371499106316e-5 >>> abs(1/pi4 - 0.3183) 9.78393554684764e-6 >>> comp(1/pi4, 0.3183, 1e-5) True To see if the absolute error between ``z1`` and ``z2`` is less than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)`` or ``comp(z1 - z2, tol=tol)``: >>> abs(pi4 - 3.14) 0.00160156249999988 >>> comp(pi4 - 3.14, 0, .002) True >>> comp(pi4 - 3.14, 0, .001) False """ if type(z2) is str: if not pure_complex(z1, or_real=True): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: a, b = z1, z2 if tol == '': return str(a) == str(b) if tol is None: a, b = sympify(a), sympify(b) if not all(i.is_number for i in (a, b)): raise ValueError('expecting 2 numbers') fa = a.atoms(Float) fb = b.atoms(Float) if not fa and not fb: # no floats -- compare exactly return a == b # get a to be pure_complex for do in range(2): ca = pure_complex(a, or_real=True) if not ca: if fa: a = a.n(prec_to_dps(min([i._prec for i in fa]))) ca = pure_complex(a, or_real=True) break else: fa, fb = fb, fa a, b = b, a cb = pure_complex(b) if not cb and fb: b = b.n(prec_to_dps(min([i._prec for i in fb]))) cb = pure_complex(b, or_real=True) if ca and cb and (ca[1] or cb[1]): return all(comp(i, j) for i, j in zip(ca, cb)) tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec))) return int(abs(a - b)*tol) <= 5 diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return fzero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should sympy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, bc = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec _floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") def _literal_float(f): """Return True if n starts like a floating point number.""" return bool(_floatpat.match(f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. Explanation =========== The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy.core.numbers import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() if HAS_GMPY: # Using gmpy if present to speed up. for b in args_temp: a = gmpy.gcd(a, b) if b else a return as_int(a) for b in args_temp: a = math.gcd(a, b) return a igcd2 = math.gcd def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Explanation =========== Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*sys.int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy.core.numbers import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). Examples ======== >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import S >>> from sympy.core.numbers import mod_inverse Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value returned by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== .. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse .. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, y, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if not (big is S.true or big is S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Explanation =========== Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = () # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 kind = NumberKind def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, str): _obj = obj.lower() # float('INF') == float('inf') if _obj == 'nan': return S.NaN elif _obj == 'inf': return S.Infinity elif _obj == '+inf': return S.Infinity elif _obj == '-inf': return S.NegativeInfinity val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from .containers import Tuple from sympy.functions.elementary.complexes import sign try: other = Number(other) if self.is_infinite or S.NaN in (self, other): return (S.NaN, S.NaN) except TypeError: return NotImplemented if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) elif isinstance(other, Float): rat = self/Rational(other) else: rat = self/other if other.is_finite: w = int(rat) if rat >= 0 else int(rat) - 1 r = self - other*w else: w = 0 if not self or (sign(self) == sign(other)) else -1 r = other if w else self return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: return NotImplemented return divmod(other, self) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity or other is S.NegativeInfinity: return S.Zero return AtomicExpr.__truediv__(self, other) def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super().__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, rational=True, **kwargs): # a -> c*t if self.is_Rational or not rational: return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: >>> Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; spaces or underscores are also allowed. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789.123_456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. In SymPy, a Float is a number that can be computed with arbitrary precision. Although floating point 'inf' and 'nan' are not such numbers, Float can create these numbers: >>> Float('-inf') -oo >>> _.is_Float False """ __slots__ = ('_mpf_', '_prec') # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_extended_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, str): # Float accepts spaces as digit separators num = num.replace(' ', '').lower() # in Py 3.6 # underscores are allowed. In anticipation of that, we ignore # legally placed underscores if '_' in num: parts = num.split('_') if not (all(parts) and all(parts[i][-1].isdigit() for i in range(0, len(parts), 2)) and all(parts[i][0].isdigit() for i in range(1, len(parts), 2))): # copy Py 3.6 error raise ValueError("could not convert string to float: '%s'" % num) num = ''.join(parts) if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif num in ('inf', '+inf'): return S.Infinity elif num == '-inf': return S.NegativeInfinity elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, float) and num == float('inf'): return S.Infinity elif isinstance(num, float) and num == float('-inf'): return S.NegativeInfinity elif isinstance(num, float) and num == float('nan'): return S.NaN elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) elif num is S.Infinity: return num elif num is S.NegativeInfinity: return num elif num is S.NaN: return num elif _is_numpy_instance(num): # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, str) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = mlib.libmpf.dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, str): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = mlib.libmpf.dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = mlib.libmpf.dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, str): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): return S.NaN elif num.is_infinite(): if num > 0: return S.Infinity return S.NegativeInfinity else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if type(num[1]) is str: # it's a hexadecimal (coming from a pickled object) # assume that it is in standard form num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: if not all(( num[0] in (0, 1), num[1] >= 0, all(type(i) in (int, int) for i in num) )): raise ValueError('malformed mpf: %s' % (num,)) # don't compute number or else it may # over/underflow return Float._new( (num[0], num[1], num[2], bitcount(num[1])), precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ return cls._new(_mpf_, precision, zero=False) @classmethod def _new(cls, _mpf_, _prec, zero=True): # special cases if zero and _mpf_ == fzero: return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0 elif _mpf_ == _mpf_nan: return S.NaN elif _mpf_ == _mpf_inf: return S.Infinity elif _mpf_ == _mpf_ninf: return S.NegativeInfinity obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) obj._prec = _prec return obj # mpz can't be pickled def __getnewargs_ex__(self): return ((mlib.to_pickable(self._mpf_),), {'precision': self._prec}) def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == fzero def _eval_is_negative(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ == _mpf_ninf or self._mpf_ == _mpf_inf: return False return self.num > 0 def _eval_is_extended_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_extended_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == fzero def __bool__(self): return self._mpf_ != fzero def __neg__(self): return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and other != 0 and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_parameters.evaluate: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_parameters.evaluate: return other.__mod__(self) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_positive: return S.Zero if expt.is_negative: return S.Infinity if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, fzero), (expt, fzero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == fzero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down def __eq__(self, other): from sympy.logic.boolalg import Boolean try: other = _sympify(other) except SympifyError: return NotImplemented if isinstance(other, Boolean): return False if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: # comparison is exact # so Float(.1, 3) != Float(.1, 33) return self._mpf_ == other._mpf_ if other.is_Rational: return other.__eq__(self) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) if not self: return not other return False # Float != non-Number def __ne__(self, other): return not self == other def _Frel(self, other, op): from sympy.core.numbers import prec_to_dps try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Rational: # test self*other.q <?> other.p without losing precision ''' >>> f = Float(.1,2) >>> i = 1234567890 >>> (f*i)._mpf_ (0, 471, 18, 9) >>> mlib.mpf_mul(f._mpf_, mlib.from_int(i)) (0, 505555550955, -12, 39) ''' smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q)) ompf = mlib.from_int(other.p) return _sympify(bool(op(smpf, ompf))) elif other.is_Float: return _sympify(bool( op(self._mpf_, other._mpf_))) elif other.is_comparable and other not in ( S.Infinity, S.NegativeInfinity): other = other.evalf(prec_to_dps(self._prec)) if other._prec > 1: if other.is_Number: return _sympify(bool( op(self._mpf_, other._as_mpf_val(self._prec)))) def __gt__(self, other): if isinstance(other, NumberSymbol): return other.__lt__(self) rv = self._Frel(other, mlib.mpf_gt) if rv is None: return Expr.__gt__(self, other) return rv def __ge__(self, other): if isinstance(other, NumberSymbol): return other.__le__(self) rv = self._Frel(other, mlib.mpf_ge) if rv is None: return Expr.__ge__(self, other) return rv def __lt__(self, other): if isinstance(other, NumberSymbol): return other.__gt__(self) rv = self._Frel(other, mlib.mpf_lt) if rv is None: return Expr.__lt__(self, other) return rv def __le__(self, other): if isinstance(other, NumberSymbol): return other.__ge__(self) rv = self._Frel(other, mlib.mpf_le) if rv is None: return Expr.__le__(self, other) return rv def __hash__(self): return super().__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def _sage_(self): import sage.all as sage return sage.RealNumber(str(self)) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 See Also ======== sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ('p', 'q') is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, str): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 else: p = Rational(p) q = Rational(q) if isinstance(q, Rational): p *= q.q q = q.p if isinstance(p, Rational): q *= p.q p = p.p # p and q are now integers if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. Examples ======== >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__truediv__(self, other) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __rtruediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rtruediv__(self, other) return Number.__rtruediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_extended_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): if self.p != 1: # (4/3)**(5/6) -> 4**(5/6)*3**(-5/6) return Integer(self.p)**expt*Integer(self.q)**(-expt) # as the above caught negative self.p, now self is positive return Integer(self.q)**Rational( expt.p*(expt.q - 1), expt.q) / \ Integer(self.q)**Integer(expt.p) if self.is_extended_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __eq__(self, other): from sympy.core.power import integer_log try: other = _sympify(other) except SympifyError: return NotImplemented if not isinstance(other, Number): # S(0) == S.false is False # S(0) == False is True return False if not self: return not other if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: # all Floats have a denominator that is a power of 2 # so if self doesn't, it can't be equal to other if self.q & (self.q - 1): return False s, m, t = other._mpf_[:3] if s: m = -m if not t: # other is an odd integer if not self.is_Integer or self.is_even: return False return m == self.p if t > 0: # other is an even integer if not self.is_Integer: return False # does m*2**t == self.p return self.p and not self.p % m and \ integer_log(self.p//m, 2) == (t, True) # does non-integer s*m/2**-t = p/q? if self.is_Integer: return False return m == self.p and integer_log(self.q, 2) == (-t, True) return False def __ne__(self, other): return not self == other def _Rrel(self, other, attr): # if you want self < other, pass self, other, __gt__ try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Number: op = None s, o = self, other if other.is_NumberSymbol: op = getattr(o, attr) elif other.is_Float: op = getattr(o, attr) elif other.is_Rational: s, o = Integer(s.p*o.q), Integer(s.q*o.p) op = getattr(o, attr) if op: return op(s) if o.is_number and o.is_extended_real: return Integer(s.p), s.q*o def __gt__(self, other): rv = self._Rrel(other, '__lt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__gt__(*rv) def __ge__(self, other): rv = self._Rrel(other, '__le__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__ge__(*rv) def __lt__(self, other): rv = self._Rrel(other, '__gt__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__lt__(*rv) def __le__(self, other): rv = self._Rrel(other, '__ge__') if rv is None: rv = self, other elif not type(rv) is tuple: return rv return Expr.__le__(*rv) def __hash__(self): return super().__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() @property def numerator(self): return self.p @property def denominator(self): return self.q @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other == S.Zero: return other return Rational( Integer(igcd(self.p, other.p)), Integer(ilcm(self.q, other.q))) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def _sage_(self): import sage.all as sage return sage.Integer(self.p)/sage.Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ('p',) def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) @cacheit def __new__(cls, i): if isinstance(i, str): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. if ival == 1: return S.One if ival == -1: return S.NegativeOne if ival == 0: return S.Zero obj = Expr.__new__(cls) obj.p = ival return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): from .containers import Tuple if isinstance(other, Integer) and global_parameters.evaluate: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): from .containers import Tuple if isinstance(other, int) and global_parameters.evaluate: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, int): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done. Explanation =========== When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy.ntheory.factor_ import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super()._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self)**ne else: return Rational(1, self.p)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One @_sympifyit('other', NotImplemented) def __floordiv__(self, other): if not isinstance(other, Expr): return NotImplemented if isinstance(other, Integer): return Integer(self.p // other) return Integer(divmod(self, other)[0]) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # Add sympify converters converter[int] = Integer class AlgebraicNumber(Expr): """Class for representing algebraic numbers in SymPy. """ __slots__ = ('rep', 'root', 'alias', 'minpoly') is_AlgebraicNumber = True is_algebraic = True is_number = True kind = NumberKind # Optional alias symbol is not free. # Actually, alias should be a Str, but some methods # expect that it be an instance of Expr. free_symbols = set() def __new__(cls, expr, coeffs=None, alias=None, **args): """Construct a new algebraic number. """ from sympy import Poly from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial from sympy.core.symbol import Symbol expr = sympify(expr) if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root = expr.minpoly, expr.root else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) sargs = (root, scoeffs) if alias is not None: if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly return obj def __hash__(self): return super().__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy import Dummy, Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, **kwargs): from sympy.polys import CRootOf, minpoly measure, ratio = kwargs['measure'], kwargs['ratio'] for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class Zero(IntegerConstant, metaclass=Singleton): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True is_comparable = True __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_positive: return self if expt.is_negative: return S.ComplexInfinity if expt.is_extended_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __bool__(self): return False def as_coeff_Mul(self, rational=False): # XXX this routine should be deleted """Efficiently extract the coefficient of a summation. """ return S.One, self class One(IntegerConstant, metaclass=Singleton): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True is_positive = True p = 1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(IntegerConstant, metaclass=Singleton): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt is S.Infinity or expt is S.NegativeInfinity: return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(RationalConstant, metaclass=Singleton): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Half class Infinity(Number, metaclass=Singleton): r"""Positive infinite quantity. Explanation =========== In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_number = True is_complex = False is_extended_real = True is_infinite = True is_comparable = True is_extended_positive = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or other is S.NaN: return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.NegativeInfinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.NegativeInfinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ from sympy.functions import re if expt.is_extended_positive: return S.Infinity if expt.is_extended_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_extended_real is False and expt.is_number: expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def _sage_(self): import sage.all as sage return sage.oo def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.Infinity or other == float('inf') def __ne__(self, other): return other is not S.Infinity and other != float('inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(Number, metaclass=Singleton): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_extended_real = True is_complex = False is_commutative = True is_infinite = True is_comparable = True is_extended_negative = True is_number = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('-inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or other is S.NaN: return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NegativeInfinity or other is S.NaN: return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.Infinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.Infinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_extended_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity return S.NegativeOne**expt*S.Infinity**expt def _as_mpf_val(self, prec): return mlib.fninf def _sage_(self): import sage.all as sage return -(sage.oo) def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.NegativeInfinity or other == float('-inf') def __ne__(self, other): return other is not S.NegativeInfinity and other != float('-inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self def as_powers_dict(self): return {S.NegativeOne: 1, S.Infinity: 1} class NaN(Number, metaclass=Singleton): """ Not a Number. Explanation =========== This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in contrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_extended_real = None is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\text{NaN}" def __neg__(self): return self @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __truediv__(self, other): return self def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def _sage_(self): import sage.all as sage return sage.NaN def __hash__(self): return super().__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN @dispatch(NaN, Expr) # type:ignore def _eval_is_eq(a, b): # noqa:F811 return False class ComplexInfinity(AtomicExpr, metaclass=Singleton): r"""Complex infinity. Explanation =========== In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = False is_extended_real = False kind = NumberKind __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt.is_zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero def _sage_(self): import sage.all as sage return sage.UnsignedInfinityRing.gen() zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = () is_NumberSymbol = True kind = NumberKind def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __hash__(self): return super().__hash__() class Exp1(NumberSymbol, metaclass=Singleton): r"""The `e` constant. Explanation =========== The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): from sympy import exp if global_parameters.exp_is_pow: return self._eval_power_exp_is_pow(expt) else: return exp(expt) def _eval_power_exp_is_pow(self, arg): from ..functions.elementary.exponential import log from . import Add, Mul, Pow if arg.is_Number: if arg is oo: return oo elif arg == -oo: return S.Zero elif isinstance(arg, log): return arg.args[0] # don't autoexpand Pow or Mul (see the issue 3351): elif not arg.is_Add: Ioo = I*oo if arg in [Ioo, -Ioo]: return nan coeff = arg.coeff(pi*I) if coeff: if (2*coeff).is_integer: if coeff.is_even: return S.One elif coeff.is_odd: return S.NegativeOne elif (coeff + S.Half).is_even: return -I elif (coeff + S.Half).is_odd: return I elif coeff.is_Rational: ncoeff = coeff % 2 # restrict to [0, 2pi) if ncoeff > 1: # restrict to (-pi, pi] ncoeff -= 2 if ncoeff != coeff: return S.Exp1**(ncoeff*S.Pi*S.ImaginaryUnit) # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in (oo, -oo): return coeffs, log_term = [coeff], None for term in Mul.make_args(terms): if isinstance(term, log): if log_term is None: log_term = term.args[0] else: return elif term.is_comparable: coeffs.append(term) else: return return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] argchanged = False for a in arg.args: if a is S.One: add.append(a) continue newa = self**a if isinstance(newa, Pow) and newa.base is self: if newa.exp != a: add.append(newa.exp) argchanged = True else: add.append(a) else: out.append(newa) if out or argchanged: return Mul(*out)*Pow(self, Add(*add), evaluate=False) elif arg.is_Matrix: return arg.exp() def _eval_rewrite_as_sin(self, **kwargs): from sympy import sin I = S.ImaginaryUnit return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy import cos I = S.ImaginaryUnit return cos(I) + I*cos(I + S.Pi/2) def _sage_(self): import sage.all as sage return sage.e E = S.Exp1 class Pi(NumberSymbol, metaclass=Singleton): r"""The `\pi` constant. Explanation =========== The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71), Rational(22, 7)) def _sage_(self): import sage.all as sage return sage.pi pi = S.Pi class GoldenRatio(NumberSymbol, metaclass=Singleton): r"""The golden ratio, `\phi`. Explanation =========== `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass def _sage_(self): import sage.all as sage return sage.golden_ratio _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(NumberSymbol, metaclass=Singleton): r"""The tribonacci constant. Explanation =========== The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\text{TribonacciConstant}" def __int__(self): return 2 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy import sqrt, cbrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(NumberSymbol, metaclass=Singleton): r"""The Euler-Mascheroni constant. Explanation =========== `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5)) def _sage_(self): import sage.all as sage return sage.euler_gamma class Catalan(NumberSymbol, metaclass=Singleton): r"""Catalan's constant. Explanation =========== `K = 0.91596559\ldots` is given by the infinite series .. math:: K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10), S.One) def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None): from sympy import Sum, Dummy if (k_sym is not None) or (symbols is not None): return self k = Dummy('k', integer=True, nonnegative=True) return Sum((-1)**k / (2*k+1)**2, (k, 0, S.Infinity)) def _sage_(self): import sage.all as sage return sage.catalan class ImaginaryUnit(AtomicExpr, metaclass=Singleton): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False kind = NumberKind __slots__ = () def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Integer): expt = expt % 4 if expt == 0: return S.One elif expt == 1: return S.ImaginaryUnit elif expt == 2: return S.NegativeOne elif expt == 3: return -S.ImaginaryUnit if isinstance(expt, Rational): i, r = divmod(expt, 2) rv = Pow(S.ImaginaryUnit, r, evaluate=False) if i % 2: return Mul(S.NegativeOne, rv, evaluate=False) return rv def as_base_exp(self): return S.NegativeOne, S.Half def _sage_(self): import sage.all as sage return sage.I @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit @dispatch(Tuple, Number) # type:ignore def _eval_is_eq(self, other): # noqa: F811 return False def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions if HAS_GMPY: def sympify_mpz(x): return Integer(int(x)) # XXX: The sympify_mpq function here was never used because it is # overridden by the other sympify_mpq function below. Maybe it should just # be removed or maybe it should be used for something... def sympify_mpq(x): return Rational(int(x.numerator), int(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq def sympify_mpmath_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero() def _register_classes(): numbers.Number.register(Number) numbers.Real.register(Float) numbers.Rational.register(Rational) numbers.Rational.register(Integer) _register_classes()
c82782a11869e23f637f502efe2e94f1528e87e610b05f406d942b1c92c6e702
from sympy.core.numbers import nan from .function import Function from .kind import NumberKind class Mod(Function): """Represents a modulo operation on symbolic expressions. Parameters ========== p : Expr Dividend. q : Expr Divisor. Notes ===== The convention used is the same as Python's: the remainder always has the same sign as the divisor. Examples ======== >>> from sympy.abc import x, y >>> x**2 % y Mod(x**2, y) >>> _.subs({x: 5, y: 6}) 1 """ kind = NumberKind @classmethod def eval(cls, p, q): from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.core.exprtools import gcd_terms from sympy.polys.polyerrors import PolynomialError from sympy.polys.polytools import gcd def doit(p, q): """Try to return p % q if both are numbers or +/-p is known to be less than or equal q. """ if q.is_zero: raise ZeroDivisionError("Modulo by zero") if p.is_finite is False or q.is_finite is False or p is nan or q is nan: return nan if p is S.Zero or p == q or p == -q or (p.is_integer and q == 1): return S.Zero if q.is_Number: if p.is_Number: return p%q if q == 2: if p.is_even: return S.Zero elif p.is_odd: return S.One if hasattr(p, '_eval_Mod'): rv = getattr(p, '_eval_Mod')(q) if rv is not None: return rv # by ratio r = p/q if r.is_integer: return S.Zero try: d = int(r) except TypeError: pass else: if isinstance(d, int): rv = p - d*q if (rv*q < 0) == True: rv += q return rv # by difference # -2|q| < p < 2|q| d = abs(p) for _ in range(2): d -= abs(q) if d.is_negative: if q.is_positive: if p.is_positive: return d + q elif p.is_negative: return -d elif q.is_negative: if p.is_positive: return d elif p.is_negative: return -d + q break rv = doit(p, q) if rv is not None: return rv # denest if isinstance(p, cls): qinner = p.args[1] if qinner % q == 0: return cls(p.args[0], q) elif (qinner*(q - qinner)).is_nonnegative: # |qinner| < |q| and have same sign return p elif isinstance(-p, cls): qinner = (-p).args[1] if qinner % q == 0: return cls(-(-p).args[0], q) elif (qinner*(q + qinner)).is_nonpositive: # |qinner| < |q| and have different sign return p elif isinstance(p, Add): # separating into modulus and non modulus both_l = non_mod_l, mod_l = [], [] for arg in p.args: both_l[isinstance(arg, cls)].append(arg) # if q same for all if mod_l and all(inner.args[1] == q for inner in mod_l): net = Add(*non_mod_l) + Add(*[i.args[0] for i in mod_l]) return cls(net, q) elif isinstance(p, Mul): # separating into modulus and non modulus both_l = non_mod_l, mod_l = [], [] for arg in p.args: both_l[isinstance(arg, cls)].append(arg) if mod_l and all(inner.args[1] == q for inner in mod_l): # finding distributive term non_mod_l = [cls(x, q) for x in non_mod_l] mod = [] non_mod = [] for j in non_mod_l: if isinstance(j, cls): mod.append(j.args[0]) else: non_mod.append(j) prod_mod = Mul(*mod) prod_non_mod = Mul(*non_mod) prod_mod1 = Mul(*[i.args[0] for i in mod_l]) net = prod_mod1*prod_mod return prod_non_mod*cls(net, q) if q.is_Integer and q is not S.One: _ = [] for i in non_mod_l: if i.is_Integer and (i % q is not S.Zero): _.append(i%q) else: _.append(i) non_mod_l = _ p = Mul(*(non_mod_l + mod_l)) # XXX other possibilities? # extract gcd; any further simplification should be done by the user try: G = gcd(p, q) if G != 1: p, q = [gcd_terms(i/G, clear=False, fraction=False) for i in (p, q)] except PolynomialError: # issue 21373 G = S.One pwas, qwas = p, q # simplify terms # (x + y + 2) % x -> Mod(y + 2, x) if p.is_Add: args = [] for i in p.args: a = cls(i, q) if a.count(cls) > i.count(cls): args.append(i) else: args.append(a) if args != list(p.args): p = Add(*args) else: # handle coefficients if they are not Rational # since those are not handled by factor_terms # e.g. Mod(.6*x, .3*y) -> 0.3*Mod(2*x, y) cp, p = p.as_coeff_Mul() cq, q = q.as_coeff_Mul() ok = False if not cp.is_Rational or not cq.is_Rational: r = cp % cq if r == 0: G *= cq p *= int(cp/cq) ok = True if not ok: p = cp*p q = cq*q # simple -1 extraction if p.could_extract_minus_sign() and q.could_extract_minus_sign(): G, p, q = [-i for i in (G, p, q)] # check again to see if p and q can now be handled as numbers rv = doit(p, q) if rv is not None: return rv*G # put 1.0 from G on inside if G.is_Float and G == 1: p *= G return cls(p, q, evaluate=False) elif G.is_Mul and G.args[0].is_Float and G.args[0] == 1: p = G.args[0]*p G = Mul._from_args(G.args[1:]) return G*cls(p, q, evaluate=(p, q) != (pwas, qwas)) def _eval_is_integer(self): from sympy.core.logic import fuzzy_and, fuzzy_not p, q = self.args if fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]): return True def _eval_is_nonnegative(self): if self.args[1].is_positive: return True def _eval_is_nonpositive(self): if self.args[1].is_negative: return True def _eval_rewrite_as_floor(self, a, b, **kwargs): from sympy.functions.elementary.integers import floor return a - b*floor(a/b)
4936a6fcce4211159d3b82b91e41d5d87fe4ae1a22dd9eabd6dd1c689e754e43
"""sympify -- convert objects SymPy internal format""" import typing if typing.TYPE_CHECKING: from typing import Any, Callable, Dict, Type from inspect import getmro from .compatibility import iterable from .parameters import global_parameters class SympifyError(ValueError): def __init__(self, expr, base_exc=None): self.expr = expr self.base_exc = base_exc def __str__(self): if self.base_exc is None: return "SympifyError: %r" % (self.expr,) return ("Sympify of expression '%s' failed, because of exception being " "raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__, str(self.base_exc))) # See sympify docstring. converter = {} # type: Dict[Type[Any], Callable[[Any], Basic]] class CantSympify: """ Mix in this trait to a class to disallow sympification of its instances. Examples ======== >>> from sympy.core.sympify import sympify, CantSympify >>> class Something(dict): ... pass ... >>> sympify(Something()) {} >>> class Something(dict, CantSympify): ... pass ... >>> sympify(Something()) Traceback (most recent call last): ... SympifyError: SympifyError: {} """ pass def _is_numpy_instance(a): """ Checks if an object is an instance of a type from the numpy module. """ # This check avoids unnecessarily importing NumPy. We check the whole # __mro__ in case any base type is a numpy type. return any(type_.__module__ == 'numpy' for type_ in type(a).__mro__) def _convert_numpy_types(a, **sympify_args): """ Converts a numpy datatype input to an appropriate SymPy type. """ import numpy as np if not isinstance(a, np.floating): if np.iscomplex(a): return converter[complex](a.item()) else: return sympify(a.item(), **sympify_args) else: try: from sympy.core.numbers import Float prec = np.finfo(a).nmant + 1 # E.g. double precision means prec=53 but nmant=52 # Leading bit of mantissa is always 1, so is not stored a = str(list(np.reshape(np.asarray(a), (1, np.size(a)))[0]))[1:-1] return Float(a, precision=prec) except NotImplementedError: raise SympifyError('Translation for numpy float : %s ' 'is not implemented' % a) def sympify(a, locals=None, convert_xor=True, strict=False, rational=False, evaluate=None): """ Converts an arbitrary expression to a type that can be used inside SymPy. Explanation =========== It will convert Python ints into instances of sympy.Integer, floats into instances of sympy.Float, etc. It is also able to coerce symbolic expressions which inherit from Basic. This can be useful in cooperation with SAGE. .. warning:: Note that this function uses ``eval``, and thus shouldn't be used on unsanitized input. If the argument is already a type that SymPy understands, it will do nothing but return that value. This can be used at the beginning of a function to ensure you are working with the correct type. Examples ======== >>> from sympy import sympify >>> sympify(2).is_integer True >>> sympify(2).is_real True >>> sympify(2.0).is_real True >>> sympify("2.0").is_real True >>> sympify("2e-45").is_real True If the expression could not be converted, a SympifyError is raised. >>> sympify("x***2") Traceback (most recent call last): ... SympifyError: SympifyError: "could not parse 'x***2'" Locals ------ The sympification happens with access to everything that is loaded by ``from sympy import *``; anything used in a string that is not defined by that import will be converted to a symbol. In the following, the ``bitcount`` function is treated as a symbol and the ``O`` is interpreted as the Order object (used with series) and it raises an error when used improperly: >>> s = 'bitcount(42)' >>> sympify(s) bitcount(42) >>> sympify("O(x)") O(x) >>> sympify("O + 1") Traceback (most recent call last): ... TypeError: unbound method... In order to have ``bitcount`` be recognized it can be imported into a namespace dictionary and passed as locals: >>> ns = {} >>> exec('from sympy.core.evalf import bitcount', ns) >>> sympify(s, locals=ns) 6 In order to have the ``O`` interpreted as a Symbol, identify it as such in the namespace dictionary. This can be done in a variety of ways; all three of the following are possibilities: >>> from sympy import Symbol >>> ns["O"] = Symbol("O") # method 1 >>> exec('from sympy.abc import O', ns) # method 2 >>> ns.update(dict(O=Symbol("O"))) # method 3 >>> sympify("O + 1", locals=ns) O + 1 If you want *all* single-letter and Greek-letter variables to be symbols then you can use the clashing-symbols dictionaries that have been defined there as private variables: _clash1 (single-letter variables), _clash2 (the multi-letter Greek names) or _clash (both single and multi-letter names that are defined in abc). >>> from sympy.abc import _clash1 >>> set(_clash1) {'E', 'I', 'N', 'O', 'Q', 'S'} >>> sympify('I & Q', _clash1) I & Q Strict ------ If the option ``strict`` is set to ``True``, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised. >>> print(sympify(None)) None >>> sympify(None, strict=True) Traceback (most recent call last): ... SympifyError: SympifyError: None Evaluation ---------- If the option ``evaluate`` is set to ``False``, then arithmetic and operators will be converted into their SymPy equivalents and the ``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will be denested first. This is done via an AST transformation that replaces operators with their SymPy equivalents, so if an operand redefines any of those operations, the redefined operators will not be used. If argument a is not a string, the mathematical expression is evaluated before being passed to sympify, so adding evaluate=False will still return the evaluated result of expression. >>> sympify('2**2 / 3 + 5') 19/3 >>> sympify('2**2 / 3 + 5', evaluate=False) 2**2/3 + 5 >>> sympify('4/2+7', evaluate=True) 9 >>> sympify('4/2+7', evaluate=False) 4/2 + 7 >>> sympify(4/2+7, evaluate=False) 9.00000000000000 Extending --------- To extend ``sympify`` to convert custom objects (not derived from ``Basic``), just define a ``_sympy_`` method to your class. You can do that even to classes that you do not own by subclassing or adding the method at runtime. >>> from sympy import Matrix >>> class MyList1(object): ... def __iter__(self): ... yield 1 ... yield 2 ... return ... def __getitem__(self, i): return list(self)[i] ... def _sympy_(self): return Matrix(self) >>> sympify(MyList1()) Matrix([ [1], [2]]) If you do not have control over the class definition you could also use the ``converter`` global dictionary. The key is the class and the value is a function that takes a single argument and returns the desired SymPy object, e.g. ``converter[MyList] = lambda x: Matrix(x)``. >>> class MyList2(object): # XXX Do not do this if you control the class! ... def __iter__(self): # Use _sympy_! ... yield 1 ... yield 2 ... return ... def __getitem__(self, i): return list(self)[i] >>> from sympy.core.sympify import converter >>> converter[MyList2] = lambda x: Matrix(x) >>> sympify(MyList2()) Matrix([ [1], [2]]) Notes ===== The keywords ``rational`` and ``convert_xor`` are only used when the input is a string. convert_xor ----------- >>> sympify('x^y',convert_xor=True) x**y >>> sympify('x^y',convert_xor=False) x ^ y rational -------- >>> sympify('0.1',rational=False) 0.1 >>> sympify('0.1',rational=True) 1/10 Sometimes autosimplification during sympification results in expressions that are very different in structure than what was entered. Until such autosimplification is no longer done, the ``kernS`` function might be of some use. In the example below you can see how an expression reduces to -1 by autosimplification, but does not do so when ``kernS`` is used. >>> from sympy.core.sympify import kernS >>> from sympy.abc import x >>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1 -1 >>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1' >>> sympify(s) -1 >>> kernS(s) -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1 Parameters ========== a : - any object defined in SymPy - standard numeric python types: int, long, float, Decimal - strings (like "0.09", "2e-19" or 'sin(x)') - booleans, including ``None`` (will leave ``None`` unchanged) - dict, lists, sets or tuples containing any of the above convert_xor : boolean, optional If true, treats XOR as exponentiation. If False, treats XOR as XOR itself. Used only when input is a string. locals : any object defined in SymPy, optional In order to have strings be recognized it can be imported into a namespace dictionary and passed as locals. strict : boolean, optional If the option strict is set to True, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised. rational : boolean, optional If true, converts floats into Rational. If false, it lets floats remain as it is. Used only when input is a string. evaluate : boolean, optional If False, then arithmetic and operators will be converted into their SymPy equivalents. If True the expression will be evaluated and the result will be returned. """ # XXX: If a is a Basic subclass rather than instance (e.g. sin rather than # sin(x)) then a.__sympy__ will be the property. Only on the instance will # a.__sympy__ give the *value* of the property (True). Since sympify(sin) # was used for a long time we allow it to pass. However if strict=True as # is the case in internal calls to _sympify then we only allow # is_sympy=True. # # https://github.com/sympy/sympy/issues/20124 is_sympy = getattr(a, '__sympy__', None) if is_sympy is True: return a elif is_sympy is not None: if not strict: return a else: raise SympifyError(a) if isinstance(a, CantSympify): raise SympifyError(a) cls = getattr(a, "__class__", None) if cls is None: cls = type(a) # Probably an old-style class conv = converter.get(cls, None) if conv is not None: return conv(a) for superclass in getmro(cls): try: return converter[superclass](a) except KeyError: continue if cls is type(None): if strict: raise SympifyError(a) else: return a if evaluate is None: evaluate = global_parameters.evaluate # Support for basic numpy datatypes if _is_numpy_instance(a): import numpy as np if np.isscalar(a): return _convert_numpy_types(a, locals=locals, convert_xor=convert_xor, strict=strict, rational=rational, evaluate=evaluate) _sympy_ = getattr(a, "_sympy_", None) if _sympy_ is not None: try: return a._sympy_() # XXX: Catches AttributeError: 'SympyConverter' object has no # attribute 'tuple' # This is probably a bug somewhere but for now we catch it here. except AttributeError: pass if not strict: # Put numpy array conversion _before_ float/int, see # <https://github.com/sympy/sympy/issues/13924>. flat = getattr(a, "flat", None) if flat is not None: shape = getattr(a, "shape", None) if shape is not None: from ..tensor.array import Array return Array(a.flat, a.shape) # works with e.g. NumPy arrays if not isinstance(a, str): if _is_numpy_instance(a): import numpy as np assert not isinstance(a, np.number) if isinstance(a, np.ndarray): # Scalar arrays (those with zero dimensions) have sympify # called on the scalar element. if a.ndim == 0: try: return sympify(a.item(), locals=locals, convert_xor=convert_xor, strict=strict, rational=rational, evaluate=evaluate) except SympifyError: pass else: # float and int can coerce size-one numpy arrays to their lone # element. See issue https://github.com/numpy/numpy/issues/10404. for coerce in (float, int): try: return sympify(coerce(a)) except (TypeError, ValueError, AttributeError, SympifyError): continue if strict: raise SympifyError(a) if iterable(a): try: return type(a)([sympify(x, locals=locals, convert_xor=convert_xor, rational=rational, evaluate=evaluate) for x in a]) except TypeError: # Not all iterables are rebuildable with their type. pass if not isinstance(a, str): try: a = str(a) except Exception as exc: raise SympifyError(a, exc) from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning( feature="String fallback in sympify", useinstead= \ 'sympify(str(obj)) or ' + \ 'sympy.core.sympify.converter or obj._sympy_', issue=18066, deprecated_since_version='1.6' ).warn() from sympy.parsing.sympy_parser import (parse_expr, TokenError, standard_transformations) from sympy.parsing.sympy_parser import convert_xor as t_convert_xor from sympy.parsing.sympy_parser import rationalize as t_rationalize transformations = standard_transformations if rational: transformations += (t_rationalize,) if convert_xor: transformations += (t_convert_xor,) try: a = a.replace('\n', '') expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate) except (TokenError, SyntaxError) as exc: raise SympifyError('could not parse %r' % a, exc) return expr def _sympify(a): """ Short version of sympify for internal usage for __add__ and __eq__ methods where it is ok to allow some things (like Python integers and floats) in the expression. This excludes things (like strings) that are unwise to allow into such an expression. >>> from sympy import Integer >>> Integer(1) == 1 True >>> Integer(1) == '1' False >>> from sympy.abc import x >>> x + 1 x + 1 >>> x + '1' Traceback (most recent call last): ... TypeError: unsupported operand type(s) for +: 'Symbol' and 'str' see: sympify """ return sympify(a, strict=True) def kernS(s): """Use a hack to try keep autosimplification from distributing a a number into an Add; this modification doesn't prevent the 2-arg Mul from becoming an Add, however. Examples ======== >>> from sympy.core.sympify import kernS >>> from sympy.abc import x, y The 2-arg Mul distributes a number (or minus sign) across the terms of an expression, but kernS will prevent that: >>> 2*(x + y), -(x + 1) (2*x + 2*y, -x - 1) >>> kernS('2*(x + y)') 2*(x + y) >>> kernS('-(x + 1)') -(x + 1) If use of the hack fails, the un-hacked string will be passed to sympify... and you get what you get. XXX This hack should not be necessary once issue 4596 has been resolved. """ import string from random import choice from sympy.core.symbol import Symbol hit = False quoted = '"' in s or "'" in s if '(' in s and not quoted: if s.count('(') != s.count(")"): raise SympifyError('unmatched left parenthesis') # strip all space from s s = ''.join(s.split()) olds = s # now use space to represent a symbol that # will # step 1. turn potential 2-arg Muls into 3-arg versions # 1a. *( -> * *( s = s.replace('*(', '* *(') # 1b. close up exponentials s = s.replace('** *', '**') # 2. handle the implied multiplication of a negated # parenthesized expression in two steps # 2a: -(...) --> -( *(...) target = '-( *(' s = s.replace('-(', target) # 2b: double the matching closing parenthesis # -( *(...) --> -( *(...)) i = nest = 0 assert target.endswith('(') # assumption below while True: j = s.find(target, i) if j == -1: break j += len(target) - 1 for j in range(j, len(s)): if s[j] == "(": nest += 1 elif s[j] == ")": nest -= 1 if nest == 0: break s = s[:j] + ")" + s[j:] i = j + 2 # the first char after 2nd ) if ' ' in s: # get a unique kern kern = '_' while kern in s: kern += choice(string.ascii_letters + string.digits) s = s.replace(' ', kern) hit = kern in s else: hit = False for i in range(2): try: expr = sympify(s) break except TypeError: # the kern might cause unknown errors... if hit: s = olds # maybe it didn't like the kern; use un-kerned s hit = False continue expr = sympify(s) # let original error raise if not hit: return expr rep = {Symbol(kern): 1} def _clear(expr): if isinstance(expr, (list, tuple, set)): return type(expr)([_clear(e) for e in expr]) if hasattr(expr, 'subs'): return expr.subs(rep, hack2=True) return expr expr = _clear(expr) # hope that kern is not there anymore return expr # Avoid circular import from .basic import Basic
5a85efb51a4cc58b3e735774d8ccbf69e23de86fad185a716e04cf59ae6ed879
from collections import defaultdict from functools import cmp_to_key, reduce import operator from .sympify import sympify from .basic import Basic from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .logic import fuzzy_not, _fuzzy_group from .expr import Expr from .parameters import global_parameters from .kind import KindDispatcher # internal marker to indicate: # "there are still non-commutative objects -- don't forget to process them" class NC_Marker: is_Order = False is_Mul = False is_Number = False is_Poly = False is_commutative = False # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _mulsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Mul(*args): """Return a well-formed unevaluated Mul: Numbers are collected and put in slot 0, any arguments that are Muls will be flattened, and args are sorted. Use this when args have changed but you still want to return an unevaluated Mul. Examples ======== >>> from sympy.core.mul import _unevaluated_Mul as uMul >>> from sympy import S, sqrt, Mul >>> from sympy.abc import x >>> a = uMul(*[S(3.0), x, S(2)]) >>> a.args[0] 6.00000000000000 >>> a.args[1] x Two unevaluated Muls with the same arguments will always compare as equal during testing: >>> m = uMul(sqrt(2), sqrt(3)) >>> m == uMul(sqrt(3), sqrt(2)) True >>> u = Mul(sqrt(3), sqrt(2), evaluate=False) >>> m == uMul(u) True >>> m == Mul(*m.args) False """ args = list(args) newargs = [] ncargs = [] co = S.One while args: a = args.pop() if a.is_Mul: c, nc = a.args_cnc() args.extend(c) if nc: ncargs.append(Mul._from_args(nc)) elif a.is_Number: co *= a else: newargs.append(a) _mulsort(newargs) if co is not S.One: newargs.insert(0, co) if ncargs: newargs.append(Mul._from_args(ncargs)) return Mul._from_args(newargs) class Mul(Expr, AssocOp): """ Expression representing multiplication operation for algebraic field. Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*`` on most scalar objects in SymPy calls this class. Another use of ``Mul()`` is to represent the structure of abstract multiplication so that its arguments can be substituted to return different class. Refer to examples section for this. ``Mul()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)`` 2. Identity removing ``Mul(x, 1, y)`` -> ``Mul(x, y)`` 3. Exponent collecting by ``.as_base_exp()`` ``Mul(x, x**2)`` -> ``Pow(x, 3)`` 4. Term sorting ``Mul(y, x, 2)`` -> ``Mul(2, x, y)`` Since multiplication can be vector space operation, arguments may have the different :obj:`sympy.core.kind.Kind()`. Kind of the resulting object is automatically inferred. Examples ======== >>> from sympy import Mul >>> from sympy.abc import x, y >>> Mul(x, 1) x >>> Mul(x, x) x**2 If ``evaluate=False`` is passed, result is not evaluated. >>> Mul(1, 2, evaluate=False) 1*2 >>> Mul(x, x, evaluate=False) x*x ``Mul()`` also represents the general structure of multiplication operation. >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2,2) >>> expr = Mul(x,y).subs({y:A}) >>> expr x*A >>> type(expr) <class 'sympy.matrices.expressions.matmul.MatMul'> See Also ======== MatMul """ __slots__ = () is_Mul = True _args_type = Expr _kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True) @property def kind(self): arg_kinds = (a.kind for a in self.args) return self._kind_dispatcher(*arg_kinds) def __neg__(self): c, args = self.as_coeff_mul() c = -c if c is not S.One: if args[0].is_Number: args = list(args) if c is S.NegativeOne: args[0] = -args[0] else: args[0] *= c else: args = (c,) + args return self._from_args(args, self.is_commutative) @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, python process this through sympy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. https://github.com/sympy/sympy/issues/4596} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. https://github.com/sympy/sympy/issues/5728} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. https://github.com/sympy/sympy/issues/5706} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ from sympy.calculus.util import AccumBounds from sympy.matrices.expressions import MatrixExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a seq = [a, b] assert not a is S.One if not a.is_zero and a.is_Rational: r, b = b.as_coeff_Mul() if b.is_Add: if r is not S.One: # 2-arg hack # leave the Mul as a Mul? ar = a*r if ar is S.One: arb = b else: arb = cls(a*r, b, evaluate=False) rv = [arb], [], None elif global_parameters.distribute and b.is_commutative: r, b = b.as_coeff_Add() bargs = [_keep_coeff(a, bi) for bi in Add.make_args(b)] _addsort(bargs) ar = a*r if ar: bargs.insert(0, ar) bargs = [Add._from_args(bargs)] rv = bargs, [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__mul__(coeff) continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: neg1e += S.Half continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow: if b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault( co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) new_c_powers = [] for b, e in common_b.items(): new_c_powers.extend([(b, c*t) for t, c in e.items()]) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x # this should only need to run twice; if it fails because # it needs to be run more times, perhaps this should be # changed to a "while True" loop -- the only reason it # isn't such now is to allow a less-than-perfect result to # be obtained rather than raising an error or entering an # infinite loop for i in range(2): new_c_powers = [] changed = False for b, e in c_powers: if e.is_zero: # canceling out infinities yields NaN if (b.is_Add or b.is_Mul) and any(infty in b.args for infty in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity)): return [S.NaN], [], None continue if e is S.One: if b.is_Number: coeff *= b continue p = b if e is not S.One: p = Pow(b, e) # check to make sure that the base doesn't change # after exponentiation; to allow for unevaluated # Pow, we only do so if b is not already a Pow if p.is_Pow and not b.is_Pow: bi = b b, e = p.as_base_exp() if b != bi: changed = True c_part.append(p) new_c_powers.append((b, e)) # there might have been a change, but unless the base # matches some other base, there is nothing to do if changed and len({ b for b, e in new_c_powers}) != len(new_c_powers): # start over again c_part = [] c_powers = _gather(new_c_powers) else: break # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = cls(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.items(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.items(): b = cls(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = bi.gcd(bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.items(): pnew[e] = cls(*b) # handle -1 and I if neg1e: # treat I as (-1)**(1/2) and compute -1's total exponent p, q = neg1e.as_numer_denom() # if the integer part is odd, extract -1 n, p = divmod(p, q) if n % 2: coeff = -coeff # if it's a multiple of 1/2 extract I if q == 2: c_part.append(S.ImaginaryUnit) elif p: # see if there is any positive base this power of # -1 can join neg1e = Rational(p, q) for e, b in pnew.items(): if e == neg1e and b.is_positive: pnew[e] = -b break else: # keep it separate; we've already evaluated it as # much as possible so evaluate=False c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.items()]) # oo, -oo if (coeff is S.Infinity) or (coeff is S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_extended_positive: continue if t.is_extended_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # infinite_real + bounded_im # bounded_real + infinite_im # infinite_real + infinite_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] # 0 elif coeff.is_zero: # we know for sure the result will be 0 except the multiplicand # is infinity or a matrix if any(isinstance(c, MatrixExpr) for c in nc_part): return [coeff], nc_part, order_symbols if any(c.is_finite == False for c in c_part): return [S.NaN], [], order_symbols return [coeff], [], order_symbols # check for straggling Numbers that were produced _new = [] for i in c_part: if i.is_Number: coeff *= i else: _new.append(i) c_part = _new # order commutative part canonically _mulsort(c_part) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if (global_parameters.distribute and not nc_part and len(c_part) == 2 and c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add): # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(self, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = self.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) if e.is_Rational and e.q == 2: from sympy.core.power import integer_nthroot from sympy.functions.elementary.complexes import sign if self.is_imaginary: a = self.as_real_imag()[1] if a.is_Rational: n, d = abs(a/2).as_numer_denom() n, t = integer_nthroot(n, 2) if t: d, t = integer_nthroot(d, 2) if t: r = sympify(n)/d return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p) p = Pow(self, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from sympy.core.numbers import I, Float im_part, imag_unit = self.as_coeff_Mul() if not imag_unit == I: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I") return (Float(0)._mpf_, Float(im_part)._mpf_) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] Examples ======== >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coefficients_dict(self): """Return a dictionary mapping terms to their coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. The dictionary is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*a*x).as_coefficients_dict() {a*x: 3} >>> _[a] 0 """ d = defaultdict(int) args = self.args if len(args) == 1 or not args[0].is_Number: d[self] = S.One else: d[self._new_rawargs(*args[1:])] = args[0] return d @cacheit def as_coeff_mul(self, *deps, rational=True, **kwargs): if deps: from sympy.utilities.iterables import sift l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) args = self.args if args[0].is_Number: if not rational or args[0].is_Rational: return args[0], args[1:] elif args[0].is_extended_negative: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """ Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number: if not rational or coeff.is_Rational: if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) elif coeff.is_extended_negative: return S.NegativeOne, self._new_rawargs(*((-coeff,) + args)) return S.One, self def as_real_imag(self, deep=True, **hints): from sympy import Abs, expand_mul, im, re other = [] coeffr = [] coeffi = [] addterms = S.One for a in self.args: r, i = a.as_real_imag() if i.is_zero: coeffr.append(r) elif r.is_zero: coeffi.append(i*S.ImaginaryUnit) elif a.is_commutative: # search for complex conjugate pairs: for i, x in enumerate(other): if x == a.conjugate(): coeffr.append(Abs(x)**2) del other[i] break else: if a.is_Add: addterms *= a else: other.append(a) else: other.append(a) m = self.func(*other) if hints.get('ignore') == m: return if len(coeffi) % 2: imco = im(coeffi.pop(0)) # all other pairs make a real factor; they will be # put into reco below else: imco = S.Zero reco = self.func(*(coeffr + coeffi)) r, i = (reco*re(m), reco*im(m)) if addterms == 1: if m == 1: if imco.is_zero: return (reco, S.Zero) else: return (S.Zero, reco*imco) if imco is S.Zero: return (r, i) return (-imco*i, imco*r) addre, addim = expand_mul(addterms, deep=False).as_real_imag() if imco is S.Zero: return (r*addre - i*addim, i*addre + r*addim) else: r, i = -imco*i, imco*r return (r*addre - i*addim, r*addim + i*addre) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy import fraction # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i for i in (n, d)] expr = n/d if not expr.is_Mul: return expr plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = self.func(*plain) if sums: deep = hints.get("deep", False) terms = self.func._expandsums(sums) args = [] for term in terms: t = self.func(plain, term) if t.is_Mul and any(a.is_Add for a in t.args) and deep: t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain @cacheit def _eval_derivative(self, s): args = list(self.args) terms = [] for i in range(len(args)): d = args[i].diff(s) if d: # Note: reduce is used in step of Mul as Mul is unable to # handle subtypes and operation priority: terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One)) return Add.fromiter(terms) @cacheit def _eval_derivative_n_times(self, s, n): from sympy import Integer, factorial, prod, Sum, Max from sympy.ntheory.multinomial import multinomial_coefficients_iterator from .function import AppliedUndef from .symbol import Symbol, symbols, Dummy if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol): # other types of s may not be well behaved, e.g. # (cos(x)*sin(y)).diff([[x, y, z]]) return super()._eval_derivative_n_times(s, n) args = self.args m = len(args) if isinstance(n, (int, Integer)): # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors terms = [] for kvals, c in multinomial_coefficients_iterator(m, n): p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)]) terms.append(c * p) return Add(*terms) kvals = symbols("k1:%i" % m, cls=Dummy) klast = n - sum(kvals) nfact = factorial(n) e, l = (# better to use the multinomial? nfact/prod(map(factorial, kvals))/factorial(klast)*\ prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\ args[-1].diff((s, Max(0, klast))), [(k, 0, n) for k in kvals]) return Sum(e, *l) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd arg0 = self.args[0] rest = Mul(*self.args[1:]) return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) * rest) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict={}, old=False): expr = sympify(expr) repl_dict = repl_dict.copy() if self.is_commutative and expr.is_commutative: return self._matches_commutative(expr, repl_dict, old) elif self.is_commutative is not expr.is_commutative: return None # Proceed only if both both expressions are non-commutative c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() c1, c2 = [c or [1] for c in [c1, c2]] # TODO: Should these be self.func? comm_mul_self = Mul(*c1) comm_mul_expr = Mul(*c2) repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old) # If the commutative arguments didn't match and aren't equal, then # then the expression as a whole doesn't match if repl_dict is None and c1 != c2: return None # Now match the non-commutative arguments, expanding powers to # multiplications nc1 = Mul._matches_expand_pows(nc1) nc2 = Mul._matches_expand_pows(nc2) repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict) return repl_dict or None @staticmethod def _matches_expand_pows(arg_list): new_args = [] for arg in arg_list: if arg.is_Pow and arg.exp > 0: new_args.extend([arg.base] * arg.exp) else: new_args.append(arg) return new_args @staticmethod def _matches_noncomm(nodes, targets, repl_dict={}): """Non-commutative multiplication matcher. `nodes` is a list of symbols within the matcher multiplication expression, while `targets` is a list of arguments in the multiplication expression being matched against. """ repl_dict = repl_dict.copy() # List of possible future states to be considered agenda = [] # The current matching state, storing index in nodes and targets state = (0, 0) node_ind, target_ind = state # Mapping between wildcard indices and the index ranges they match wildcard_dict = {} repl_dict = repl_dict.copy() while target_ind < len(targets) and node_ind < len(nodes): node = nodes[node_ind] if node.is_Wild: Mul._matches_add_wildcard(wildcard_dict, state) states_matches = Mul._matches_new_states(wildcard_dict, state, nodes, targets) if states_matches: new_states, new_matches = states_matches agenda.extend(new_states) if new_matches: for match in new_matches: repl_dict[match] = new_matches[match] if not agenda: return None else: state = agenda.pop() node_ind, target_ind = state return repl_dict @staticmethod def _matches_add_wildcard(dictionary, state): node_ind, target_ind = state if node_ind in dictionary: begin, end = dictionary[node_ind] dictionary[node_ind] = (begin, target_ind) else: dictionary[node_ind] = (target_ind, target_ind) @staticmethod def _matches_new_states(dictionary, state, nodes, targets): node_ind, target_ind = state node = nodes[node_ind] target = targets[target_ind] # Don't advance at all if we've exhausted the targets but not the nodes if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1: return None if node.is_Wild: match_attempt = Mul._matches_match_wilds(dictionary, node_ind, nodes, targets) if match_attempt: # If the same node has been matched before, don't return # anything if the current match is diverging from the previous # match other_node_inds = Mul._matches_get_other_nodes(dictionary, nodes, node_ind) for ind in other_node_inds: other_begin, other_end = dictionary[ind] curr_begin, curr_end = dictionary[node_ind] other_targets = targets[other_begin:other_end + 1] current_targets = targets[curr_begin:curr_end + 1] for curr, other in zip(current_targets, other_targets): if curr != other: return None # A wildcard node can match more than one target, so only the # target index is advanced new_state = [(node_ind, target_ind + 1)] # Only move on to the next node if there is one if node_ind < len(nodes) - 1: new_state.append((node_ind + 1, target_ind + 1)) return new_state, match_attempt else: # If we're not at a wildcard, then make sure we haven't exhausted # nodes but not targets, since in this case one node can only match # one target if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1: return None match_attempt = node.matches(target) if match_attempt: return [(node_ind + 1, target_ind + 1)], match_attempt elif node == target: return [(node_ind + 1, target_ind + 1)], None else: return None @staticmethod def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets): """Determine matches of a wildcard with sub-expression in `target`.""" wildcard = nodes[wildcard_ind] begin, end = dictionary[wildcard_ind] terms = targets[begin:end + 1] # TODO: Should this be self.func? mul = Mul(*terms) if len(terms) > 1 else terms[0] return wildcard.matches(mul) @staticmethod def _matches_get_other_nodes(dictionary, nodes, node_ind): """Find other wildcards that may have already been matched.""" other_node_inds = [] for ind in dictionary: if nodes[ind] == nodes[node_ind]: other_node_inds.append(ind) return other_node_inds @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1 (instead of a nan) and ``I`` behaves like a symbol instead of sqrt(-1). """ from sympy.simplify.simplify import signsimp from .symbol import Dummy if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)): # gruntz and limit wants a literal I to not combine # with a power of -1 d = Dummy('I') _i = {S.ImaginaryUnit: d} i_ = {d: S.ImaginaryUnit} a = lhs.xreplace(_i).as_powers_dict() b = rhs.xreplace(_i).as_powers_dict() blen = len(b) for bi in tuple(b.keys()): if bi in a: a[bi] -= b.pop(bi) if not a[bi]: a.pop(bi) if len(b) != blen: lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_) rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_) return signsimp(lhs/rhs) def as_powers_dict(self): d = defaultdict(int) for term in self.args: for b, e in term.as_powers_dict().items(): d[b] += e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args])) return self.func(*numers), self.func(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return self.func(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_complex(self): comp = _fuzzy_group(a.is_complex for a in self.args) if comp is False: if any(a.is_infinite for a in self.args): if any(a.is_zero is not False for a in self.args): return None return False return comp def _eval_is_finite(self): if all(a.is_finite for a in self.args): return True if any(a.is_infinite for a in self.args): if all(a.is_zero is False for a in self.args): return False def _eval_is_infinite(self): if any(a.is_infinite for a in self.args): if any(a.is_zero for a in self.args): return S.NaN.is_infinite if any(a.is_zero is None for a in self.args): return None return True def _eval_is_rational(self): r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_algebraic(self): r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_zero(self): zero = infinite = False for a in self.args: z = a.is_zero if z: if infinite: return # 0*oo is nan and nan.is_zero is None zero = True else: if not a.is_finite: if zero: return # 0*oo is nan and nan.is_zero is None infinite = True if zero is False and z is None: # trap None zero = None return zero # without involving odd/even checks this code would suffice: #_eval_is_integer = lambda self: _fuzzy_group( # (a.is_integer for a in self.args), quick_exit=True) def _eval_is_integer(self): is_rational = self._eval_is_rational() if is_rational is False: return False numerators = [] denominators = [] for a in self.args: if a.is_integer: numerators.append(a) elif a.is_Rational: n, d = a.as_numer_denom() numerators.append(n) denominators.append(d) elif a.is_Pow: b, e = a.as_base_exp() if not b.is_integer or not e.is_integer: return if e.is_negative: denominators.append(b) else: # for integer b and positive integer e: a = b**e would be integer assert not e.is_positive # for self being rational and e equal to zero: a = b**e would be 1 assert not e.is_zero return # sign of e unknown -> self.is_integer cannot be decided else: return if not denominators: return True odd = lambda ints: all(i.is_odd for i in ints) even = lambda ints: any(i.is_even for i in ints) if odd(numerators) and even(denominators): return False elif even(numerators) and denominators == [2]: return True def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) def _eval_is_extended_real(self): return self._eval_real_imag(True) def _eval_real_imag(self, real): zero = False t_not_re_im = None for t in self.args: if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False: return False elif t.is_imaginary: # I real = not real elif t.is_extended_real: # 2 if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_extended_real is False: # symbolic or literal like `2 + I` or symbolic imaginary if t_not_re_im: return # complex terms might cancel t_not_re_im = t elif t.is_imaginary is False: # symbolic like `2` or `2 + I` if t_not_re_im: return # complex terms might cancel t_not_re_im = t else: return if t_not_re_im: if t_not_re_im.is_extended_real is False: if real: # like 3 return zero # 3*(smthng like 2 + I or i) is not real if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I if not real: # like I return zero # I*(smthng like 2 or 2 + I) is not real elif zero is False: return real # can't be trumped by 0 elif real: return real # doesn't matter what zero is def _eval_is_imaginary(self): z = self.is_zero if z: return False if self.is_finite is False: return False elif z is False and self.is_finite is True: return self._eval_real_imag(False) def _eval_is_hermitian(self): return self._eval_herm_antiherm(True) def _eval_herm_antiherm(self, real): one_nc = zero = one_neither = False for t in self.args: if not t.is_commutative: if one_nc: return one_nc = True if t.is_antihermitian: real = not real elif t.is_hermitian: if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_hermitian is False: if one_neither: return one_neither = True else: return if one_neither: if real: return zero elif zero is False or real: return real def _eval_is_antihermitian(self): z = self.is_zero if z: return False elif z is False: return self._eval_herm_antiherm(False) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others): return True return if a is None: return if all(x.is_real for x in self.args): return False def _eval_is_extended_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. Explanation =========== This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ return self._eval_pos_neg(1) def _eval_pos_neg(self, sign): saw_NON = saw_NOT = False for t in self.args: if t.is_extended_positive: continue elif t.is_extended_negative: sign = -sign elif t.is_zero: if all(a.is_finite for a in self.args): return False return elif t.is_extended_nonpositive: sign = -sign saw_NON = True elif t.is_extended_nonnegative: saw_NON = True # FIXME: is_positive/is_negative is False doesn't take account of # Symbol('x', infinite=True, extended_real=True) which has # e.g. is_positive is False but has uncertain sign. elif t.is_positive is False: sign = -sign if saw_NOT: return saw_NOT = True elif t.is_negative is False: if saw_NOT: return saw_NOT = True else: return if sign == 1 and saw_NON is False and saw_NOT is False: return True if sign < 0: return False def _eval_is_extended_negative(self): return self._eval_pos_neg(-1) def _eval_is_odd(self): is_integer = self.is_integer if is_integer: r, acc = True, 1 for t in self.args: if not t.is_integer: return None elif t.is_even: r = False elif t.is_integer: if r is False: pass elif acc != 1 and (acc + t).is_odd: r = False elif t.is_odd is None: r = None acc = t return r # !integer -> !odd elif is_integer is False: return False def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self.is_odd) elif is_integer is False: return False def _eval_is_composite(self): """ Here we count the number of arguments that have a minimum value greater than two. If there are more than one of such a symbol then the result is composite. Else, the result cannot be determined. """ number_of_args = 0 # count of symbols with minimum value greater than one for arg in self.args: if not (arg.is_integer and arg.is_positive): return None if (arg-1).is_positive: number_of_args += 1 if number_of_args > 1: return True def _eval_subs(self, old, new): from sympy.functions.elementary.complexes import sign from sympy.ntheory.factor_ import multiplicity from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import fraction if not old.is_Mul: return None # try keep replacement literal so -2*x doesn't replace 4*x if old.args[0].is_Number and old.args[0] < 0: if self.args[0].is_Number: if self.args[0] < 0: return self._subs(-old, -new) return None def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 6421); all we want here are the # true Pow or exp separated into base and exponent from sympy import exp if a.is_Pow or isinstance(a, exp): return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 5651) # rv will be the default return value rv = None n, d = fraction(self) self2 = self if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self2.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self2) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational and abs(co_old) != 1: mult = S(multiplicity(abs(co_old), co_self)) c.pop(co_self) if co_old in c: c[co_old] += mult else: c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif {i[0] for i in old_nc}.difference({i[0] for i in nc}): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal in between. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*self2.func(*margs)*self2.func(*nc) def _eval_nseries(self, x, n, logx, cdir=0): from sympy import degree, Mul, Order, ceiling, powsimp, PolynomialError from itertools import product def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp ords = [] try: for t in self.args: coeff, exp = t.leadterm(x) if not coeff.has(x): ords.append((t, exp)) else: raise ValueError n0 = sum(t[1] for t in ords) facs = [] for t, m in ords: n1 = ceiling(n - n0 + m) s = t.nseries(x, n=n1, logx=logx, cdir=cdir) ns = s.getn() if ns is not None: if ns < n1: # less than expected n -= n1 - ns # reduce n facs.append(s.removeO()) except (ValueError, NotImplementedError, TypeError, AttributeError): facs = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args] res = powsimp(self.func(*facs).expand(), combine='exp', deep=True) if res.has(Order): res += Order(x**n, x) return res res = S.Zero ords2 = [Add.make_args(factor) for factor in facs] for fac in product(*ords2): ords3 = [coeff_exp(term, x) for term in fac] coeffs, powers = zip(*ords3) power = sum(powers) if power < n: res += Mul(*coeffs)*(x**power) if self.is_polynomial(x): try: if degree(self, x) != degree(res, x): res += Order(x**n, x) except PolynomialError: pass else: return res for i in (1, 2, 3): if (res - self).subs(x, i) is not S.Zero: res += Order(x**n, x) break return res def _eval_as_leading_term(self, x, cdir=0): return self.func(*[t.as_leading_term(x, cdir=cdir) for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args[::-1]]) def _sage_(self): s = 1 for x in self.args: s *= x._sage_() return s def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(1 - sqrt(2))) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for i, a in enumerate(self.args): c, p = a.as_content_primitive(radical=radical, clear=clear) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, self.func(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return tuple(self.as_ordered_factors()) mul = AssocOpDispatcher('mul') def prod(a, start=1): """Return product of elements of a. Start with int 1 so if only ints are included then an int result is returned. Examples ======== >>> from sympy import prod, S >>> prod(range(3)) 0 >>> type(_) is int True >>> prod([S(2), 3]) 6 >>> _.is_Integer True You can start the product at something other than 1: >>> prod([1, 2], 3) 6 """ return reduce(operator.mul, a, start) def _keep_coeff(coeff, factors, clear=True, sign=False): """Return ``coeff*factors`` unevaluated if necessary. If ``clear`` is False, do not keep the coefficient as a factor if it can be distributed on a single factor such that one or more terms will still have integer coefficients. If ``sign`` is True, allow a coefficient of -1 to remain factored out. Examples ======== >>> from sympy.core.mul import _keep_coeff >>> from sympy.abc import x, y >>> from sympy import S >>> _keep_coeff(S.Half, x + 2) (x + 2)/2 >>> _keep_coeff(S.Half, x + 2, clear=False) x/2 + 1 >>> _keep_coeff(S.Half, (x + 2)*y, clear=False) y*(x + 2)/2 >>> _keep_coeff(S(-1), x + y) -x - y >>> _keep_coeff(S(-1), x + y, sign=True) -(x + y) """ if not coeff.is_Number: if factors.is_Number: factors, coeff = coeff, factors else: return coeff*factors if factors is S.One: return coeff if coeff is S.One: return factors elif coeff is S.NegativeOne and not sign: return -factors elif factors.is_Add: if not clear and coeff.is_Rational and coeff.q != 1: args = [i.as_coeff_Mul() for i in factors.args] args = [(_keep_coeff(c, coeff), m) for c, m in args] if any(c == int(c) for c, _ in args): return Add._from_args([Mul._from_args( i[1:] if i[0] == 1 else i) for i in args]) return Mul(coeff, factors, evaluate=False) elif factors.is_Mul: margs = list(factors.args) if margs[0].is_Number: margs[0] *= coeff if margs[0] == 1: margs.pop(0) else: margs.insert(0, coeff) return Mul._from_args(margs) else: m = coeff*factors if m.is_Number and not factors.is_Number: m = Mul._from_args((coeff, factors)) return m def expand_2arg(e): from sympy.simplify.simplify import bottom_up def do(e): if e.is_Mul: c, r = e.as_coeff_Mul() if c.is_Number and r.is_Add: return _unevaluated_Add(*[c*ri for ri in r.args]) return e return bottom_up(e, do) from .numbers import Rational from .power import Pow from .add import Add, _addsort, _unevaluated_Add
f021803dff8716de667aeb2ea5a4e54154165e024143a2c399c7525e29cefe11
from sympy.core.expr import Expr from sympy.core.symbol import Dummy from sympy.core.sympify import _sympify from sympy.polys.polyerrors import CoercionFailed from sympy.polys.polytools import Poly, parallel_poly_from_expr from sympy.polys.domains import QQ from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.domainscalar import DomainScalar class MutablePolyDenseMatrix: """ A mutable matrix of objects from poly module or to operate with them. Examples ======== >>> from sympy.polys.polymatrix import PolyMatrix >>> from sympy import Symbol, Poly >>> x = Symbol('x') >>> pm1 = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(x**3, x), Poly(-1 + x, x)]]) >>> v1 = PolyMatrix([[1, 0], [-1, 0]], x) >>> pm1*v1 PolyMatrix([ [ x**2 + x, 0], [x**3 - x + 1, 0]], ring=QQ[x]) >>> pm1.ring ZZ[x] >>> v1*pm1 PolyMatrix([ [ x**2, -x], [-x**2, x]], ring=QQ[x]) >>> pm2 = PolyMatrix([[Poly(x**2, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(1, x, domain='QQ'), \ Poly(x**3, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**3, x, domain='QQ')]]) >>> v2 = PolyMatrix([1, 0, 0, 0, 0, 0], x) >>> v2.ring QQ[x] >>> pm2*v2 PolyMatrix([[x**2]], ring=QQ[x]) """ def __new__(cls, *args, ring=None): if not args: # PolyMatrix(ring=QQ[x]) if ring is None: raise TypeError("The ring needs to be specified for an empty PolyMatrix") rows, cols, items, gens = 0, 0, [], () elif isinstance(args[0], list): elements, gens = args[0], args[1:] if not elements: # PolyMatrix([]) rows, cols, items = 0, 0, [] elif isinstance(elements[0], (list, tuple)): # PolyMatrix([[1, 2]], x) rows, cols = len(elements), len(elements[0]) items = [e for row in elements for e in row] else: # PolyMatrix([1, 2], x) rows, cols = len(elements), 1 items = elements elif [type(a) for a in args[:3]] == [int, int, list]: # PolyMatrix(2, 2, [1, 2, 3, 4], x) rows, cols, items, gens = args[0], args[1], args[2], args[3:] elif [type(a) for a in args[:3]] == [int, int, type(lambda: 0)]: # PolyMatrix(2, 2, lambda i, j: i+j, x) rows, cols, func, gens = args[0], args[1], args[2], args[3:] items = [func(i, j) for i in range(rows) for j in range(cols)] else: raise TypeError("Invalid arguments") # PolyMatrix([[1]], x, y) vs PolyMatrix([[1]], (x, y)) if len(gens) == 1 and isinstance(gens[0], tuple): gens = gens[0] # gens is now a tuple (x, y) return cls.from_list(rows, cols, items, gens, ring) @classmethod def from_list(cls, rows, cols, items, gens, ring): # items can be Expr, Poly, or a mix of Expr and Poly items = [_sympify(item) for item in items] if items and all(isinstance(item, Poly) for item in items): polys = True else: polys = False # Identify the ring for the polys if ring is not None: # Parse a domain string like 'QQ[x]' if isinstance(ring, str): ring = Poly(0, Dummy(), domain=ring).domain elif polys: p = items[0] for p2 in items[1:]: p, _ = p.unify(p2) ring = p.domain[p.gens] else: items, info = parallel_poly_from_expr(items, gens, field=True) ring = info['domain'][info['gens']] polys = True # Efficiently convert when all elements are Poly if polys: p_ring = Poly(0, ring.symbols, domain=ring.domain) to_ring = ring.ring.from_list convert_poly = lambda p: to_ring(p.unify(p_ring)[0].rep.rep) elements = [convert_poly(p) for p in items] else: convert_expr = ring.from_sympy elements = [convert_expr(e.as_expr()) for e in items] # Convert to domain elements and construct DomainMatrix elements_lol = [[elements[i*cols + j] for j in range(cols)] for i in range(rows)] dm = DomainMatrix(elements_lol, (rows, cols), ring) return cls.from_dm(dm) @classmethod def from_dm(cls, dm): obj = super().__new__(cls) dm = dm.to_sparse() R = dm.domain obj._dm = dm obj.ring = R obj.domain = R.domain obj.gens = R.symbols return obj def to_Matrix(self): return self._dm.to_Matrix() @classmethod def from_Matrix(cls, other, *gens, ring=None): return cls(*other.shape, other._mat, *gens, ring=ring) def set_gens(self, gens): return self.from_Matrix(self.to_Matrix(), gens) def __repr__(self): if self.rows * self.cols: return 'Poly' + repr(self.to_Matrix())[:-1] + f', ring={self.ring})' else: return f'PolyMatrix({self.rows}, {self.cols}, [], ring={self.ring})' @property def shape(self): return self._dm.shape @property def rows(self): return self.shape[0] @property def cols(self): return self.shape[1] def __len__(self): return self.rows * self.cols def __getitem__(self, key): def to_poly(v): ground = self._dm.domain.domain gens = self._dm.domain.symbols return Poly(v.to_dict(), gens, domain=ground) dm = self._dm if isinstance(key, slice): items = dm.flat()[key] return [to_poly(item) for item in items] elif isinstance(key, int): i, j = divmod(key, self.cols) e = dm[i,j] return to_poly(e.element) i, j = key if isinstance(i, int) and isinstance(j, int): return to_poly(dm[i, j].element) else: return self.from_dm(dm[i, j]) def __eq__(self, other): if not isinstance(self, type(other)): return NotImplemented return self._dm == other._dm def __add__(self, other): if isinstance(other, type(self)): return self.from_dm(self._dm + other._dm) return NotImplemented def __sub__(self, other): if isinstance(other, type(self)): return self.from_dm(self._dm - other._dm) return NotImplemented def __mul__(self, other): if isinstance(other, type(self)): return self.from_dm(self._dm * other._dm) elif isinstance(other, int): other = _sympify(other) if isinstance(other, Expr): Kx = self.ring try: other_ds = DomainScalar(Kx.from_sympy(other), Kx) except (CoercionFailed, ValueError): other_ds = DomainScalar.from_sympy(other) return self.from_dm(self._dm * other_ds) return NotImplemented def __rmul__(self, other): if isinstance(other, int): other = _sympify(other) if isinstance(other, Expr): other_ds = DomainScalar.from_sympy(other) return self.from_dm(other_ds * self._dm) return NotImplemented def __truediv__(self, other): if isinstance(other, Poly): other = other.as_expr() elif isinstance(other, int): other = _sympify(other) if not isinstance(other, Expr): return NotImplemented other = self.domain.from_sympy(other) inverse = self.ring.convert_from(1/other, self.domain) inverse = DomainScalar(inverse, self.ring) dm = self._dm * inverse return self.from_dm(dm) def __neg__(self): return self.from_dm(-self._dm) def transpose(self): return self.from_dm(self._dm.transpose()) def row_join(self, other): dm = DomainMatrix.hstack(self._dm, other._dm) return self.from_dm(dm) def col_join(self, other): dm = DomainMatrix.vstack(self._dm, other._dm) return self.from_dm(dm) def applyfunc(self, func): M = self.to_Matrix().applyfunc(func) return self.from_Matrix(M, self.gens) @classmethod def eye(cls, n, gens): return cls.from_dm(DomainMatrix.eye(n, QQ[gens])) @classmethod def zeros(cls, m, n, gens): return cls.from_dm(DomainMatrix.zeros((m, n), QQ[gens])) def rref(self, simplify='ignore', normalize_last='ignore'): # If this is K[x] then computes RREF in ground field K. if not (self.domain.is_Field and all(p.is_ground for p in self)): raise ValueError("PolyMatrix rref is only for ground field elements") dm = self._dm dm_ground = dm.convert_to(dm.domain.domain) dm_rref, pivots = dm_ground.rref() dm_rref = dm_rref.convert_to(dm.domain) return self.from_dm(dm_rref), pivots def nullspace(self): # If this is K[x] then computes nullspace in ground field K. if not (self.domain.is_Field and all(p.is_ground for p in self)): raise ValueError("PolyMatrix nullspace is only for ground field elements") dm = self._dm K, Kx = self.domain, self.ring dm_null_rows = dm.convert_to(K).nullspace().convert_to(Kx) dm_null = dm_null_rows.transpose() dm_basis = [dm_null[:,i] for i in range(dm_null.shape[1])] return [self.from_dm(dmvec) for dmvec in dm_basis] def rank(self): return self.cols - len(self.nullspace()) MutablePolyMatrix = PolyMatrix = MutablePolyDenseMatrix
61db39fc398ac7a14649caf5ca5353409d46a0635d227602b1fc0cfc3ade45a2
"""OO layer for several polynomial representations. """ from sympy import oo from sympy.core.sympify import CantSympify from sympy.polys.polyerrors import CoercionFailed, NotReversible, NotInvertible from sympy.polys.polyutils import PicklableWithSlots class GenericPoly(PicklableWithSlots): """Base class for low-level polynomial representations. """ def ground_to_ring(f): """Make the ground domain a ring. """ return f.set_domain(f.dom.get_ring()) def ground_to_field(f): """Make the ground domain a field. """ return f.set_domain(f.dom.get_field()) def ground_to_exact(f): """Make the ground domain exact. """ return f.set_domain(f.dom.get_exact()) @classmethod def _perify_factors(per, result, include): if include: coeff, factors = result else: coeff = result factors = [ (per(g), k) for g, k in factors ] if include: return coeff, factors else: return factors from sympy.polys.densebasic import ( dmp_validate, dup_normal, dmp_normal, dup_convert, dmp_convert, dmp_from_sympy, dup_strip, dup_degree, dmp_degree_in, dmp_degree_list, dmp_negative_p, dup_LC, dmp_ground_LC, dup_TC, dmp_ground_TC, dmp_ground_nth, dmp_one, dmp_ground, dmp_zero_p, dmp_one_p, dmp_ground_p, dup_from_dict, dmp_from_dict, dmp_to_dict, dmp_deflate, dmp_inject, dmp_eject, dmp_terms_gcd, dmp_list_terms, dmp_exclude, dmp_slice_in, dmp_permute, dmp_to_tuple,) from sympy.polys.densearith import ( dmp_add_ground, dmp_sub_ground, dmp_mul_ground, dmp_quo_ground, dmp_exquo_ground, dmp_abs, dup_neg, dmp_neg, dup_add, dmp_add, dup_sub, dmp_sub, dup_mul, dmp_mul, dmp_sqr, dup_pow, dmp_pow, dmp_pdiv, dmp_prem, dmp_pquo, dmp_pexquo, dmp_div, dup_rem, dmp_rem, dmp_quo, dmp_exquo, dmp_add_mul, dmp_sub_mul, dmp_max_norm, dmp_l1_norm) from sympy.polys.densetools import ( dmp_clear_denoms, dmp_integrate_in, dmp_diff_in, dmp_eval_in, dup_revert, dmp_ground_trunc, dmp_ground_content, dmp_ground_primitive, dmp_ground_monic, dmp_compose, dup_decompose, dup_shift, dup_transform, dmp_lift) from sympy.polys.euclidtools import ( dup_half_gcdex, dup_gcdex, dup_invert, dmp_subresultants, dmp_resultant, dmp_discriminant, dmp_inner_gcd, dmp_gcd, dmp_lcm, dmp_cancel) from sympy.polys.sqfreetools import ( dup_gff_list, dmp_norm, dmp_sqf_p, dmp_sqf_norm, dmp_sqf_part, dmp_sqf_list, dmp_sqf_list_include) from sympy.polys.factortools import ( dup_cyclotomic_p, dmp_irreducible_p, dmp_factor_list, dmp_factor_list_include) from sympy.polys.rootisolation import ( dup_isolate_real_roots_sqf, dup_isolate_real_roots, dup_isolate_all_roots_sqf, dup_isolate_all_roots, dup_refine_real_root, dup_count_real_roots, dup_count_complex_roots, dup_sturm) from sympy.polys.polyerrors import ( UnificationFailed, PolynomialError) def init_normal_DMP(rep, lev, dom): return DMP(dmp_normal(rep, lev, dom), dom, lev) class DMP(PicklableWithSlots, CantSympify): """Dense Multivariate Polynomials over `K`. """ __slots__ = ('rep', 'lev', 'dom', 'ring') def __init__(self, rep, dom, lev=None, ring=None): if lev is not None: if type(rep) is dict: rep = dmp_from_dict(rep, lev, dom) elif type(rep) is not list: rep = dmp_ground(dom.convert(rep), lev) else: rep, lev = dmp_validate(rep) self.rep = rep self.lev = lev self.dom = dom self.ring = ring def __repr__(f): return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.dom, f.ring) def __hash__(f): return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom, f.ring)) def unify(f, g): """Unify representations of two multivariate polynomials. """ if not isinstance(g, DMP) or f.lev != g.lev: raise UnificationFailed("can't unify %s with %s" % (f, g)) if f.dom == g.dom and f.ring == g.ring: return f.lev, f.dom, f.per, f.rep, g.rep else: lev, dom = f.lev, f.dom.unify(g.dom) ring = f.ring if g.ring is not None: if ring is not None: ring = ring.unify(g.ring) else: ring = g.ring F = dmp_convert(f.rep, lev, f.dom, dom) G = dmp_convert(g.rep, lev, g.dom, dom) def per(rep, dom=dom, lev=lev, kill=False): if kill: if not lev: return rep else: lev -= 1 return DMP(rep, dom, lev, ring) return lev, dom, per, F, G def per(f, rep, dom=None, kill=False, ring=None): """Create a DMP out of the given representation. """ lev = f.lev if kill: if not lev: return rep else: lev -= 1 if dom is None: dom = f.dom if ring is None: ring = f.ring return DMP(rep, dom, lev, ring) @classmethod def zero(cls, lev, dom, ring=None): return DMP(0, dom, lev, ring) @classmethod def one(cls, lev, dom, ring=None): return DMP(1, dom, lev, ring) @classmethod def from_list(cls, rep, lev, dom): """Create an instance of ``cls`` given a list of native coefficients. """ return cls(dmp_convert(rep, lev, None, dom), dom, lev) @classmethod def from_sympy_list(cls, rep, lev, dom): """Create an instance of ``cls`` given a list of SymPy coefficients. """ return cls(dmp_from_sympy(rep, lev, dom), dom, lev) def to_dict(f, zero=False): """Convert ``f`` to a dict representation with native coefficients. """ return dmp_to_dict(f.rep, f.lev, f.dom, zero=zero) def to_sympy_dict(f, zero=False): """Convert ``f`` to a dict representation with SymPy coefficients. """ rep = dmp_to_dict(f.rep, f.lev, f.dom, zero=zero) for k, v in rep.items(): rep[k] = f.dom.to_sympy(v) return rep def to_list(f): """Convert ``f`` to a list representation with native coefficients. """ return f.rep def to_sympy_list(f): """Convert ``f`` to a list representation with SymPy coefficients. """ def sympify_nested_list(rep): out = [] for val in rep: if isinstance(val, list): out.append(sympify_nested_list(val)) else: out.append(f.dom.to_sympy(val)) return out return sympify_nested_list(f.rep) def to_tuple(f): """ Convert ``f`` to a tuple representation with native coefficients. This is needed for hashing. """ return dmp_to_tuple(f.rep, f.lev) @classmethod def from_dict(cls, rep, lev, dom): """Construct and instance of ``cls`` from a ``dict`` representation. """ return cls(dmp_from_dict(rep, lev, dom), dom, lev) @classmethod def from_monoms_coeffs(cls, monoms, coeffs, lev, dom, ring=None): return DMP(dict(list(zip(monoms, coeffs))), dom, lev, ring) def to_ring(f): """Make the ground domain a ring. """ return f.convert(f.dom.get_ring()) def to_field(f): """Make the ground domain a field. """ return f.convert(f.dom.get_field()) def to_exact(f): """Make the ground domain exact. """ return f.convert(f.dom.get_exact()) def convert(f, dom): """Convert the ground domain of ``f``. """ if f.dom == dom: return f else: return DMP(dmp_convert(f.rep, f.lev, f.dom, dom), dom, f.lev) def slice(f, m, n, j=0): """Take a continuous subsequence of terms of ``f``. """ return f.per(dmp_slice_in(f.rep, m, n, j, f.lev, f.dom)) def coeffs(f, order=None): """Returns all non-zero coefficients from ``f`` in lex order. """ return [ c for _, c in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ] def monoms(f, order=None): """Returns all non-zero monomials from ``f`` in lex order. """ return [ m for m, _ in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ] def terms(f, order=None): """Returns all non-zero terms from ``f`` in lex order. """ return dmp_list_terms(f.rep, f.lev, f.dom, order=order) def all_coeffs(f): """Returns all coefficients from ``f``. """ if not f.lev: if not f: return [f.dom.zero] else: return [ c for c in f.rep ] else: raise PolynomialError('multivariate polynomials not supported') def all_monoms(f): """Returns all monomials from ``f``. """ if not f.lev: n = dup_degree(f.rep) if n < 0: return [(0,)] else: return [ (n - i,) for i, c in enumerate(f.rep) ] else: raise PolynomialError('multivariate polynomials not supported') def all_terms(f): """Returns all terms from a ``f``. """ if not f.lev: n = dup_degree(f.rep) if n < 0: return [((0,), f.dom.zero)] else: return [ ((n - i,), c) for i, c in enumerate(f.rep) ] else: raise PolynomialError('multivariate polynomials not supported') def lift(f): """Convert algebraic coefficients to rationals. """ return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom) def deflate(f): """Reduce degree of `f` by mapping `x_i^m` to `y_i`. """ J, F = dmp_deflate(f.rep, f.lev, f.dom) return J, f.per(F) def inject(f, front=False): """Inject ground domain generators into ``f``. """ F, lev = dmp_inject(f.rep, f.lev, f.dom, front=front) return f.__class__(F, f.dom.dom, lev) def eject(f, dom, front=False): """Eject selected generators into the ground domain. """ F = dmp_eject(f.rep, f.lev, dom, front=front) return f.__class__(F, dom, f.lev - len(dom.symbols)) def exclude(f): r""" Remove useless generators from ``f``. Returns the removed generators and the new excluded ``f``. Examples ======== >>> from sympy.polys.polyclasses import DMP >>> from sympy.polys.domains import ZZ >>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude() ([2], DMP([[1], [1, 2]], ZZ, None)) """ J, F, u = dmp_exclude(f.rep, f.lev, f.dom) return J, f.__class__(F, f.dom, u) def permute(f, P): r""" Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. Examples ======== >>> from sympy.polys.polyclasses import DMP >>> from sympy.polys.domains import ZZ >>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2]) DMP([[[2], []], [[1, 0], []]], ZZ, None) >>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0]) DMP([[[1], []], [[2, 0], []]], ZZ, None) """ return f.per(dmp_permute(f.rep, P, f.lev, f.dom)) def terms_gcd(f): """Remove GCD of terms from the polynomial ``f``. """ J, F = dmp_terms_gcd(f.rep, f.lev, f.dom) return J, f.per(F) def add_ground(f, c): """Add an element of the ground domain to ``f``. """ return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def sub_ground(f, c): """Subtract an element of the ground domain from ``f``. """ return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def mul_ground(f, c): """Multiply ``f`` by a an element of the ground domain. """ return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def quo_ground(f, c): """Quotient of ``f`` by a an element of the ground domain. """ return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def exquo_ground(f, c): """Exact quotient of ``f`` by a an element of the ground domain. """ return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def abs(f): """Make all coefficients in ``f`` positive. """ return f.per(dmp_abs(f.rep, f.lev, f.dom)) def neg(f): """Negate all coefficients in ``f``. """ return f.per(dmp_neg(f.rep, f.lev, f.dom)) def add(f, g): """Add two multivariate polynomials ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_add(F, G, lev, dom)) def sub(f, g): """Subtract two multivariate polynomials ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_sub(F, G, lev, dom)) def mul(f, g): """Multiply two multivariate polynomials ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_mul(F, G, lev, dom)) def sqr(f): """Square a multivariate polynomial ``f``. """ return f.per(dmp_sqr(f.rep, f.lev, f.dom)) def pow(f, n): """Raise ``f`` to a non-negative power ``n``. """ if isinstance(n, int): return f.per(dmp_pow(f.rep, n, f.lev, f.dom)) else: raise TypeError("``int`` expected, got %s" % type(n)) def pdiv(f, g): """Polynomial pseudo-division of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) q, r = dmp_pdiv(F, G, lev, dom) return per(q), per(r) def prem(f, g): """Polynomial pseudo-remainder of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_prem(F, G, lev, dom)) def pquo(f, g): """Polynomial pseudo-quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_pquo(F, G, lev, dom)) def pexquo(f, g): """Polynomial exact pseudo-quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_pexquo(F, G, lev, dom)) def div(f, g): """Polynomial division with remainder of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) q, r = dmp_div(F, G, lev, dom) return per(q), per(r) def rem(f, g): """Computes polynomial remainder of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_rem(F, G, lev, dom)) def quo(f, g): """Computes polynomial quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_quo(F, G, lev, dom)) def exquo(f, g): """Computes polynomial exact quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) res = per(dmp_exquo(F, G, lev, dom)) if f.ring and res not in f.ring: from sympy.polys.polyerrors import ExactQuotientFailed raise ExactQuotientFailed(f, g, f.ring) return res def degree(f, j=0): """Returns the leading degree of ``f`` in ``x_j``. """ if isinstance(j, int): return dmp_degree_in(f.rep, j, f.lev) else: raise TypeError("``int`` expected, got %s" % type(j)) def degree_list(f): """Returns a list of degrees of ``f``. """ return dmp_degree_list(f.rep, f.lev) def total_degree(f): """Returns the total degree of ``f``. """ return max(sum(m) for m in f.monoms()) def homogenize(f, s): """Return homogeneous polynomial of ``f``""" td = f.total_degree() result = {} new_symbol = (s == len(f.terms()[0][0])) for term in f.terms(): d = sum(term[0]) if d < td: i = td - d else: i = 0 if new_symbol: result[term[0] + (i,)] = term[1] else: l = list(term[0]) l[s] += i result[tuple(l)] = term[1] return DMP(result, f.dom, f.lev + int(new_symbol), f.ring) def homogeneous_order(f): """Returns the homogeneous order of ``f``. """ if f.is_zero: return -oo monoms = f.monoms() tdeg = sum(monoms[0]) for monom in monoms: _tdeg = sum(monom) if _tdeg != tdeg: return None return tdeg def LC(f): """Returns the leading coefficient of ``f``. """ return dmp_ground_LC(f.rep, f.lev, f.dom) def TC(f): """Returns the trailing coefficient of ``f``. """ return dmp_ground_TC(f.rep, f.lev, f.dom) def nth(f, *N): """Returns the ``n``-th coefficient of ``f``. """ if all(isinstance(n, int) for n in N): return dmp_ground_nth(f.rep, N, f.lev, f.dom) else: raise TypeError("a sequence of integers expected") def max_norm(f): """Returns maximum norm of ``f``. """ return dmp_max_norm(f.rep, f.lev, f.dom) def l1_norm(f): """Returns l1 norm of ``f``. """ return dmp_l1_norm(f.rep, f.lev, f.dom) def clear_denoms(f): """Clear denominators, but keep the ground domain. """ coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom) return coeff, f.per(F) def integrate(f, m=1, j=0): """Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """ if not isinstance(m, int): raise TypeError("``int`` expected, got %s" % type(m)) if not isinstance(j, int): raise TypeError("``int`` expected, got %s" % type(j)) return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom)) def diff(f, m=1, j=0): """Computes the ``m``-th order derivative of ``f`` in ``x_j``. """ if not isinstance(m, int): raise TypeError("``int`` expected, got %s" % type(m)) if not isinstance(j, int): raise TypeError("``int`` expected, got %s" % type(j)) return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom)) def eval(f, a, j=0): """Evaluates ``f`` at the given point ``a`` in ``x_j``. """ if not isinstance(j, int): raise TypeError("``int`` expected, got %s" % type(j)) return f.per(dmp_eval_in(f.rep, f.dom.convert(a), j, f.lev, f.dom), kill=True) def half_gcdex(f, g): """Half extended Euclidean algorithm, if univariate. """ lev, dom, per, F, G = f.unify(g) if not lev: s, h = dup_half_gcdex(F, G, dom) return per(s), per(h) else: raise ValueError('univariate polynomial expected') def gcdex(f, g): """Extended Euclidean algorithm, if univariate. """ lev, dom, per, F, G = f.unify(g) if not lev: s, t, h = dup_gcdex(F, G, dom) return per(s), per(t), per(h) else: raise ValueError('univariate polynomial expected') def invert(f, g): """Invert ``f`` modulo ``g``, if possible. """ lev, dom, per, F, G = f.unify(g) if not lev: return per(dup_invert(F, G, dom)) else: raise ValueError('univariate polynomial expected') def revert(f, n): """Compute ``f**(-1)`` mod ``x**n``. """ if not f.lev: return f.per(dup_revert(f.rep, n, f.dom)) else: raise ValueError('univariate polynomial expected') def subresultants(f, g): """Computes subresultant PRS sequence of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) R = dmp_subresultants(F, G, lev, dom) return list(map(per, R)) def resultant(f, g, includePRS=False): """Computes resultant of ``f`` and ``g`` via PRS. """ lev, dom, per, F, G = f.unify(g) if includePRS: res, R = dmp_resultant(F, G, lev, dom, includePRS=includePRS) return per(res, kill=True), list(map(per, R)) return per(dmp_resultant(F, G, lev, dom), kill=True) def discriminant(f): """Computes discriminant of ``f``. """ return f.per(dmp_discriminant(f.rep, f.lev, f.dom), kill=True) def cofactors(f, g): """Returns GCD of ``f`` and ``g`` and their cofactors. """ lev, dom, per, F, G = f.unify(g) h, cff, cfg = dmp_inner_gcd(F, G, lev, dom) return per(h), per(cff), per(cfg) def gcd(f, g): """Returns polynomial GCD of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_gcd(F, G, lev, dom)) def lcm(f, g): """Returns polynomial LCM of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_lcm(F, G, lev, dom)) def cancel(f, g, include=True): """Cancel common factors in a rational function ``f/g``. """ lev, dom, per, F, G = f.unify(g) if include: F, G = dmp_cancel(F, G, lev, dom, include=True) else: cF, cG, F, G = dmp_cancel(F, G, lev, dom, include=False) F, G = per(F), per(G) if include: return F, G else: return cF, cG, F, G def trunc(f, p): """Reduce ``f`` modulo a constant ``p``. """ return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom)) def monic(f): """Divides all coefficients by ``LC(f)``. """ return f.per(dmp_ground_monic(f.rep, f.lev, f.dom)) def content(f): """Returns GCD of polynomial coefficients. """ return dmp_ground_content(f.rep, f.lev, f.dom) def primitive(f): """Returns content and a primitive form of ``f``. """ cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom) return cont, f.per(F) def compose(f, g): """Computes functional composition of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_compose(F, G, lev, dom)) def decompose(f): """Computes functional decomposition of ``f``. """ if not f.lev: return list(map(f.per, dup_decompose(f.rep, f.dom))) else: raise ValueError('univariate polynomial expected') def shift(f, a): """Efficiently compute Taylor shift ``f(x + a)``. """ if not f.lev: return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom)) else: raise ValueError('univariate polynomial expected') def transform(f, p, q): """Evaluate functional transformation ``q**n * f(p/q)``.""" if f.lev: raise ValueError('univariate polynomial expected') lev, dom, per, P, Q = p.unify(q) lev, dom, per, F, P = f.unify(per(P, dom, lev)) lev, dom, per, F, Q = per(F, dom, lev).unify(per(Q, dom, lev)) if not lev: return per(dup_transform(F, P, Q, dom)) else: raise ValueError('univariate polynomial expected') def sturm(f): """Computes the Sturm sequence of ``f``. """ if not f.lev: return list(map(f.per, dup_sturm(f.rep, f.dom))) else: raise ValueError('univariate polynomial expected') def gff_list(f): """Computes greatest factorial factorization of ``f``. """ if not f.lev: return [ (f.per(g), k) for g, k in dup_gff_list(f.rep, f.dom) ] else: raise ValueError('univariate polynomial expected') def norm(f): """Computes ``Norm(f)``.""" r = dmp_norm(f.rep, f.lev, f.dom) return f.per(r, dom=f.dom.dom) def sqf_norm(f): """Computes square-free norm of ``f``. """ s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom) return s, f.per(g), f.per(r, dom=f.dom.dom) def sqf_part(f): """Computes square-free part of ``f``. """ return f.per(dmp_sqf_part(f.rep, f.lev, f.dom)) def sqf_list(f, all=False): """Returns a list of square-free factors of ``f``. """ coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all) return coeff, [ (f.per(g), k) for g, k in factors ] def sqf_list_include(f, all=False): """Returns a list of square-free factors of ``f``. """ factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all) return [ (f.per(g), k) for g, k in factors ] def factor_list(f): """Returns a list of irreducible factors of ``f``. """ coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom) return coeff, [ (f.per(g), k) for g, k in factors ] def factor_list_include(f): """Returns a list of irreducible factors of ``f``. """ factors = dmp_factor_list_include(f.rep, f.lev, f.dom) return [ (f.per(g), k) for g, k in factors ] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): """Compute isolating intervals for roots of ``f``. """ if not f.lev: if not all: if not sqf: return dup_isolate_real_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: return dup_isolate_real_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: if not sqf: return dup_isolate_all_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: return dup_isolate_all_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: raise PolynomialError( "can't isolate roots of a multivariate polynomial") def refine_root(f, s, t, eps=None, steps=None, fast=False): """ Refine an isolating interval to the given precision. ``eps`` should be a rational number. """ if not f.lev: return dup_refine_real_root(f.rep, s, t, f.dom, eps=eps, steps=steps, fast=fast) else: raise PolynomialError( "can't refine a root of a multivariate polynomial") def count_real_roots(f, inf=None, sup=None): """Return the number of real roots of ``f`` in ``[inf, sup]``. """ return dup_count_real_roots(f.rep, f.dom, inf=inf, sup=sup) def count_complex_roots(f, inf=None, sup=None): """Return the number of complex roots of ``f`` in ``[inf, sup]``. """ return dup_count_complex_roots(f.rep, f.dom, inf=inf, sup=sup) @property def is_zero(f): """Returns ``True`` if ``f`` is a zero polynomial. """ return dmp_zero_p(f.rep, f.lev) @property def is_one(f): """Returns ``True`` if ``f`` is a unit polynomial. """ return dmp_one_p(f.rep, f.lev, f.dom) @property def is_ground(f): """Returns ``True`` if ``f`` is an element of the ground domain. """ return dmp_ground_p(f.rep, None, f.lev) @property def is_sqf(f): """Returns ``True`` if ``f`` is a square-free polynomial. """ return dmp_sqf_p(f.rep, f.lev, f.dom) @property def is_monic(f): """Returns ``True`` if the leading coefficient of ``f`` is one. """ return f.dom.is_one(dmp_ground_LC(f.rep, f.lev, f.dom)) @property def is_primitive(f): """Returns ``True`` if the GCD of the coefficients of ``f`` is one. """ return f.dom.is_one(dmp_ground_content(f.rep, f.lev, f.dom)) @property def is_linear(f): """Returns ``True`` if ``f`` is linear in all its variables. """ return all(sum(monom) <= 1 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys()) @property def is_quadratic(f): """Returns ``True`` if ``f`` is quadratic in all its variables. """ return all(sum(monom) <= 2 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys()) @property def is_monomial(f): """Returns ``True`` if ``f`` is zero or has only one term. """ return len(f.to_dict()) <= 1 @property def is_homogeneous(f): """Returns ``True`` if ``f`` is a homogeneous polynomial. """ return f.homogeneous_order() is not None @property def is_irreducible(f): """Returns ``True`` if ``f`` has no factors over its domain. """ return dmp_irreducible_p(f.rep, f.lev, f.dom) @property def is_cyclotomic(f): """Returns ``True`` if ``f`` is a cyclotomic polynomial. """ if not f.lev: return dup_cyclotomic_p(f.rep, f.dom) else: return False def __abs__(f): return f.abs() def __neg__(f): return f.neg() def __add__(f, g): if not isinstance(g, DMP): try: g = f.per(dmp_ground(f.dom.convert(g), f.lev)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: g = f.ring.convert(g) except (CoercionFailed, NotImplementedError): return NotImplemented return f.add(g) def __radd__(f, g): return f.__add__(g) def __sub__(f, g): if not isinstance(g, DMP): try: g = f.per(dmp_ground(f.dom.convert(g), f.lev)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: g = f.ring.convert(g) except (CoercionFailed, NotImplementedError): return NotImplemented return f.sub(g) def __rsub__(f, g): return (-f).__add__(g) def __mul__(f, g): if isinstance(g, DMP): return f.mul(g) else: try: return f.mul_ground(g) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.mul(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __truediv__(f, g): if isinstance(g, DMP): return f.exquo(g) else: try: return f.mul_ground(g) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.exquo(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rtruediv__(f, g): if isinstance(g, DMP): return g.exquo(f) elif f.ring is not None: try: return f.ring.convert(g).exquo(f) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rmul__(f, g): return f.__mul__(g) def __pow__(f, n): return f.pow(n) def __divmod__(f, g): return f.div(g) def __mod__(f, g): return f.rem(g) def __floordiv__(f, g): if isinstance(g, DMP): return f.quo(g) else: try: return f.quo_ground(g) except TypeError: return NotImplemented def __eq__(f, g): try: _, _, _, F, G = f.unify(g) if f.lev == g.lev: return F == G except UnificationFailed: pass return False def __ne__(f, g): return not f == g def eq(f, g, strict=False): if not strict: return f == g else: return f._strict_eq(g) def ne(f, g, strict=False): return not f.eq(g, strict=strict) def _strict_eq(f, g): return isinstance(g, f.__class__) and f.lev == g.lev \ and f.dom == g.dom \ and f.rep == g.rep def __lt__(f, g): _, _, _, F, G = f.unify(g) return F < G def __le__(f, g): _, _, _, F, G = f.unify(g) return F <= G def __gt__(f, g): _, _, _, F, G = f.unify(g) return F > G def __ge__(f, g): _, _, _, F, G = f.unify(g) return F >= G def __bool__(f): return not dmp_zero_p(f.rep, f.lev) def init_normal_DMF(num, den, lev, dom): return DMF(dmp_normal(num, lev, dom), dmp_normal(den, lev, dom), dom, lev) class DMF(PicklableWithSlots, CantSympify): """Dense Multivariate Fractions over `K`. """ __slots__ = ('num', 'den', 'lev', 'dom', 'ring') def __init__(self, rep, dom, lev=None, ring=None): num, den, lev = self._parse(rep, dom, lev) num, den = dmp_cancel(num, den, lev, dom) self.num = num self.den = den self.lev = lev self.dom = dom self.ring = ring @classmethod def new(cls, rep, dom, lev=None, ring=None): num, den, lev = cls._parse(rep, dom, lev) obj = object.__new__(cls) obj.num = num obj.den = den obj.lev = lev obj.dom = dom obj.ring = ring return obj @classmethod def _parse(cls, rep, dom, lev=None): if type(rep) is tuple: num, den = rep if lev is not None: if type(num) is dict: num = dmp_from_dict(num, lev, dom) if type(den) is dict: den = dmp_from_dict(den, lev, dom) else: num, num_lev = dmp_validate(num) den, den_lev = dmp_validate(den) if num_lev == den_lev: lev = num_lev else: raise ValueError('inconsistent number of levels') if dmp_zero_p(den, lev): raise ZeroDivisionError('fraction denominator') if dmp_zero_p(num, lev): den = dmp_one(lev, dom) else: if dmp_negative_p(den, lev, dom): num = dmp_neg(num, lev, dom) den = dmp_neg(den, lev, dom) else: num = rep if lev is not None: if type(num) is dict: num = dmp_from_dict(num, lev, dom) elif type(num) is not list: num = dmp_ground(dom.convert(num), lev) else: num, lev = dmp_validate(num) den = dmp_one(lev, dom) return num, den, lev def __repr__(f): return "%s((%s, %s), %s, %s)" % (f.__class__.__name__, f.num, f.den, f.dom, f.ring) def __hash__(f): return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev), dmp_to_tuple(f.den, f.lev), f.lev, f.dom, f.ring)) def poly_unify(f, g): """Unify a multivariate fraction and a polynomial. """ if not isinstance(g, DMP) or f.lev != g.lev: raise UnificationFailed("can't unify %s with %s" % (f, g)) if f.dom == g.dom and f.ring == g.ring: return (f.lev, f.dom, f.per, (f.num, f.den), g.rep) else: lev, dom = f.lev, f.dom.unify(g.dom) ring = f.ring if g.ring is not None: if ring is not None: ring = ring.unify(g.ring) else: ring = g.ring F = (dmp_convert(f.num, lev, f.dom, dom), dmp_convert(f.den, lev, f.dom, dom)) G = dmp_convert(g.rep, lev, g.dom, dom) def per(num, den, cancel=True, kill=False, lev=lev): if kill: if not lev: return num/den else: lev = lev - 1 if cancel: num, den = dmp_cancel(num, den, lev, dom) return f.__class__.new((num, den), dom, lev, ring=ring) return lev, dom, per, F, G def frac_unify(f, g): """Unify representations of two multivariate fractions. """ if not isinstance(g, DMF) or f.lev != g.lev: raise UnificationFailed("can't unify %s with %s" % (f, g)) if f.dom == g.dom and f.ring == g.ring: return (f.lev, f.dom, f.per, (f.num, f.den), (g.num, g.den)) else: lev, dom = f.lev, f.dom.unify(g.dom) ring = f.ring if g.ring is not None: if ring is not None: ring = ring.unify(g.ring) else: ring = g.ring F = (dmp_convert(f.num, lev, f.dom, dom), dmp_convert(f.den, lev, f.dom, dom)) G = (dmp_convert(g.num, lev, g.dom, dom), dmp_convert(g.den, lev, g.dom, dom)) def per(num, den, cancel=True, kill=False, lev=lev): if kill: if not lev: return num/den else: lev = lev - 1 if cancel: num, den = dmp_cancel(num, den, lev, dom) return f.__class__.new((num, den), dom, lev, ring=ring) return lev, dom, per, F, G def per(f, num, den, cancel=True, kill=False, ring=None): """Create a DMF out of the given representation. """ lev, dom = f.lev, f.dom if kill: if not lev: return num/den else: lev -= 1 if cancel: num, den = dmp_cancel(num, den, lev, dom) if ring is None: ring = f.ring return f.__class__.new((num, den), dom, lev, ring=ring) def half_per(f, rep, kill=False): """Create a DMP out of the given representation. """ lev = f.lev if kill: if not lev: return rep else: lev -= 1 return DMP(rep, f.dom, lev) @classmethod def zero(cls, lev, dom, ring=None): return cls.new(0, dom, lev, ring=ring) @classmethod def one(cls, lev, dom, ring=None): return cls.new(1, dom, lev, ring=ring) def numer(f): """Returns the numerator of ``f``. """ return f.half_per(f.num) def denom(f): """Returns the denominator of ``f``. """ return f.half_per(f.den) def cancel(f): """Remove common factors from ``f.num`` and ``f.den``. """ return f.per(f.num, f.den) def neg(f): """Negate all coefficients in ``f``. """ return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False) def add(f, g): """Add two multivariate fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_add(dmp_mul(F_num, G_den, lev, dom), dmp_mul(F_den, G_num, lev, dom), lev, dom) den = dmp_mul(F_den, G_den, lev, dom) return per(num, den) def sub(f, g): """Subtract two multivariate fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_sub(dmp_mul(F_num, G_den, lev, dom), dmp_mul(F_den, G_num, lev, dom), lev, dom) den = dmp_mul(F_den, G_den, lev, dom) return per(num, den) def mul(f, g): """Multiply two multivariate fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = dmp_mul(F_num, G, lev, dom), F_den else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_mul(F_num, G_num, lev, dom) den = dmp_mul(F_den, G_den, lev, dom) return per(num, den) def pow(f, n): """Raise ``f`` to a non-negative power ``n``. """ if isinstance(n, int): num, den = f.num, f.den if n < 0: num, den, n = den, num, -n return f.per(dmp_pow(num, n, f.lev, f.dom), dmp_pow(den, n, f.lev, f.dom), cancel=False) else: raise TypeError("``int`` expected, got %s" % type(n)) def quo(f, g): """Computes quotient of fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = F_num, dmp_mul(F_den, G, lev, dom) else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_mul(F_num, G_den, lev, dom) den = dmp_mul(F_den, G_num, lev, dom) res = per(num, den) if f.ring is not None and res not in f.ring: from sympy.polys.polyerrors import ExactQuotientFailed raise ExactQuotientFailed(f, g, f.ring) return res exquo = quo def invert(f, check=True): """Computes inverse of a fraction ``f``. """ if check and f.ring is not None and not f.ring.is_unit(f): raise NotReversible(f, f.ring) res = f.per(f.den, f.num, cancel=False) return res @property def is_zero(f): """Returns ``True`` if ``f`` is a zero fraction. """ return dmp_zero_p(f.num, f.lev) @property def is_one(f): """Returns ``True`` if ``f`` is a unit fraction. """ return dmp_one_p(f.num, f.lev, f.dom) and \ dmp_one_p(f.den, f.lev, f.dom) def __neg__(f): return f.neg() def __add__(f, g): if isinstance(g, (DMP, DMF)): return f.add(g) try: return f.add(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.add(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __radd__(f, g): return f.__add__(g) def __sub__(f, g): if isinstance(g, (DMP, DMF)): return f.sub(g) try: return f.sub(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.sub(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rsub__(f, g): return (-f).__add__(g) def __mul__(f, g): if isinstance(g, (DMP, DMF)): return f.mul(g) try: return f.mul(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.mul(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rmul__(f, g): return f.__mul__(g) def __pow__(f, n): return f.pow(n) def __truediv__(f, g): if isinstance(g, (DMP, DMF)): return f.quo(g) try: return f.quo(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.quo(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rtruediv__(self, g): r = self.invert(check=False)*g if self.ring and r not in self.ring: from sympy.polys.polyerrors import ExactQuotientFailed raise ExactQuotientFailed(g, self, self.ring) return r def __eq__(f, g): try: if isinstance(g, DMP): _, _, _, (F_num, F_den), G = f.poly_unify(g) if f.lev == g.lev: return dmp_one_p(F_den, f.lev, f.dom) and F_num == G else: _, _, _, F, G = f.frac_unify(g) if f.lev == g.lev: return F == G except UnificationFailed: pass return False def __ne__(f, g): try: if isinstance(g, DMP): _, _, _, (F_num, F_den), G = f.poly_unify(g) if f.lev == g.lev: return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G) else: _, _, _, F, G = f.frac_unify(g) if f.lev == g.lev: return F != G except UnificationFailed: pass return True def __lt__(f, g): _, _, _, F, G = f.frac_unify(g) return F < G def __le__(f, g): _, _, _, F, G = f.frac_unify(g) return F <= G def __gt__(f, g): _, _, _, F, G = f.frac_unify(g) return F > G def __ge__(f, g): _, _, _, F, G = f.frac_unify(g) return F >= G def __bool__(f): return not dmp_zero_p(f.num, f.lev) def init_normal_ANP(rep, mod, dom): return ANP(dup_normal(rep, dom), dup_normal(mod, dom), dom) class ANP(PicklableWithSlots, CantSympify): """Dense Algebraic Number Polynomials over a field. """ __slots__ = ('rep', 'mod', 'dom') def __init__(self, rep, mod, dom): if type(rep) is dict: self.rep = dup_from_dict(rep, dom) else: if type(rep) is not list: rep = [dom.convert(rep)] self.rep = dup_strip(rep) if isinstance(mod, DMP): self.mod = mod.rep else: if type(mod) is dict: self.mod = dup_from_dict(mod, dom) else: self.mod = dup_strip(mod) self.dom = dom def __repr__(f): return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.mod, f.dom) def __hash__(f): return hash((f.__class__.__name__, f.to_tuple(), dmp_to_tuple(f.mod, 0), f.dom)) def unify(f, g): """Unify representations of two algebraic numbers. """ if not isinstance(g, ANP) or f.mod != g.mod: raise UnificationFailed("can't unify %s with %s" % (f, g)) if f.dom == g.dom: return f.dom, f.per, f.rep, g.rep, f.mod else: dom = f.dom.unify(g.dom) F = dup_convert(f.rep, f.dom, dom) G = dup_convert(g.rep, g.dom, dom) if dom != f.dom and dom != g.dom: mod = dup_convert(f.mod, f.dom, dom) else: if dom == f.dom: mod = f.mod else: mod = g.mod per = lambda rep: ANP(rep, mod, dom) return dom, per, F, G, mod def per(f, rep, mod=None, dom=None): return ANP(rep, mod or f.mod, dom or f.dom) @classmethod def zero(cls, mod, dom): return ANP(0, mod, dom) @classmethod def one(cls, mod, dom): return ANP(1, mod, dom) def to_dict(f): """Convert ``f`` to a dict representation with native coefficients. """ return dmp_to_dict(f.rep, 0, f.dom) def to_sympy_dict(f): """Convert ``f`` to a dict representation with SymPy coefficients. """ rep = dmp_to_dict(f.rep, 0, f.dom) for k, v in rep.items(): rep[k] = f.dom.to_sympy(v) return rep def to_list(f): """Convert ``f`` to a list representation with native coefficients. """ return f.rep def to_sympy_list(f): """Convert ``f`` to a list representation with SymPy coefficients. """ return [ f.dom.to_sympy(c) for c in f.rep ] def to_tuple(f): """ Convert ``f`` to a tuple representation with native coefficients. This is needed for hashing. """ return dmp_to_tuple(f.rep, 0) @classmethod def from_list(cls, rep, mod, dom): return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom) def neg(f): return f.per(dup_neg(f.rep, f.dom)) def add(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_add(F, G, dom)) def sub(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_sub(F, G, dom)) def mul(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_rem(dup_mul(F, G, dom), mod, dom)) def pow(f, n): """Raise ``f`` to a non-negative power ``n``. """ if isinstance(n, int): if n < 0: F, n = dup_invert(f.rep, f.mod, f.dom), -n else: F = f.rep return f.per(dup_rem(dup_pow(F, n, f.dom), f.mod, f.dom)) else: raise TypeError("``int`` expected, got %s" % type(n)) def div(f, g): dom, per, F, G, mod = f.unify(g) return (per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)), f.zero(mod, dom)) def rem(f, g): dom, _, _, G, mod = f.unify(g) s, h = dup_half_gcdex(G, mod, dom) if h == [dom.one]: return f.zero(mod, dom) else: raise NotInvertible("zero divisor") def quo(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)) exquo = quo def LC(f): """Returns the leading coefficient of ``f``. """ return dup_LC(f.rep, f.dom) def TC(f): """Returns the trailing coefficient of ``f``. """ return dup_TC(f.rep, f.dom) @property def is_zero(f): """Returns ``True`` if ``f`` is a zero algebraic number. """ return not f @property def is_one(f): """Returns ``True`` if ``f`` is a unit algebraic number. """ return f.rep == [f.dom.one] @property def is_ground(f): """Returns ``True`` if ``f`` is an element of the ground domain. """ return not f.rep or len(f.rep) == 1 def __pos__(f): return f def __neg__(f): return f.neg() def __add__(f, g): if isinstance(g, ANP): return f.add(g) else: try: return f.add(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __radd__(f, g): return f.__add__(g) def __sub__(f, g): if isinstance(g, ANP): return f.sub(g) else: try: return f.sub(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __rsub__(f, g): return (-f).__add__(g) def __mul__(f, g): if isinstance(g, ANP): return f.mul(g) else: try: return f.mul(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __rmul__(f, g): return f.__mul__(g) def __pow__(f, n): return f.pow(n) def __divmod__(f, g): return f.div(g) def __mod__(f, g): return f.rem(g) def __truediv__(f, g): if isinstance(g, ANP): return f.quo(g) else: try: return f.quo(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __eq__(f, g): try: _, _, F, G, _ = f.unify(g) return F == G except UnificationFailed: return False def __ne__(f, g): try: _, _, F, G, _ = f.unify(g) return F != G except UnificationFailed: return True def __lt__(f, g): _, _, F, G, _ = f.unify(g) return F < G def __le__(f, g): _, _, F, G, _ = f.unify(g) return F <= G def __gt__(f, g): _, _, F, G, _ = f.unify(g) return F > G def __ge__(f, g): _, _, F, G, _ = f.unify(g) return F >= G def __bool__(f): return bool(f.rep)
b215036d6ac3bbffcd352eecd8b846125c8c5aad4e2e7655393943aca65f15b3
"""Sparse polynomial rings. """ from typing import Any, Dict from operator import add, mul, lt, le, gt, ge from functools import reduce from types import GeneratorType from sympy.core.compatibility import is_sequence from sympy.core.expr import Expr from sympy.core.numbers import igcd, oo from sympy.core.symbol import Symbol, symbols as _symbols from sympy.core.sympify import CantSympify, sympify from sympy.ntheory.multinomial import multinomial_coefficients from sympy.polys.compatibility import IPolys from sympy.polys.constructor import construct_domain from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict from sympy.polys.domains.domainelement import DomainElement from sympy.polys.domains.polynomialring import PolynomialRing from sympy.polys.heuristicgcd import heugcd from sympy.polys.monomials import MonomialOps from sympy.polys.orderings import lex from sympy.polys.polyerrors import ( CoercionFailed, GeneratorsError, ExactQuotientFailed, MultivariatePolynomialError) from sympy.polys.polyoptions import (Domain as DomainOpt, Order as OrderOpt, build_options) from sympy.polys.polyutils import (expr_from_dict, _dict_reorder, _parallel_dict_from_expr) from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from sympy.utilities.magic import pollute @public def ring(symbols, domain, order=lex): """Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> R, x, y, z = ring("x,y,z", ZZ, lex) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) return (_ring,) + _ring.gens @public def xring(symbols, domain, order=lex): """Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import xring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> R, (x, y, z) = xring("x,y,z", ZZ, lex) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) return (_ring, _ring.gens) @public def vring(symbols, domain, order=lex): """Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import vring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> vring("x,y,z", ZZ, lex) Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z # noqa: x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) pollute([ sym.name for sym in _ring.symbols ], _ring.gens) return _ring @public def sring(exprs, *symbols, **options): """Construct a ring deriving generators and domain from options and input expressions. Parameters ========== exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable) symbols : sequence of :class:`~.Symbol`/:class:`~.Expr` options : keyword arguments understood by :class:`~.Options` Examples ======== >>> from sympy.core import symbols >>> from sympy.polys.rings import sring >>> x, y, z = symbols("x,y,z") >>> R, f = sring(x + 2*y + 3*z) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> f x + 2*y + 3*z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ single = False if not is_sequence(exprs): exprs, single = [exprs], True exprs = list(map(sympify, exprs)) opt = build_options(symbols, options) # TODO: rewrite this so that it doesn't use expand() (see poly()). reps, opt = _parallel_dict_from_expr(exprs, opt) if opt.domain is None: coeffs = sum([ list(rep.values()) for rep in reps ], []) opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt) coeff_map = dict(zip(coeffs, coeffs_dom)) reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps] _ring = PolyRing(opt.gens, opt.domain, opt.order) polys = list(map(_ring.from_dict, reps)) if single: return (_ring, polys[0]) else: return (_ring, polys) def _parse_symbols(symbols): if isinstance(symbols, str): return _symbols(symbols, seq=True) if symbols else () elif isinstance(symbols, Expr): return (symbols,) elif is_sequence(symbols): if all(isinstance(s, str) for s in symbols): return _symbols(symbols) elif all(isinstance(s, Expr) for s in symbols): return symbols raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions") _ring_cache = {} # type: Dict[Any, Any] class PolyRing(DefaultPrinting, IPolys): """Multivariate distributed polynomial ring. """ def __new__(cls, symbols, domain, order=lex): symbols = tuple(_parse_symbols(symbols)) ngens = len(symbols) domain = DomainOpt.preprocess(domain) order = OrderOpt.preprocess(order) _hash_tuple = (cls.__name__, symbols, ngens, domain, order) obj = _ring_cache.get(_hash_tuple) if obj is None: if domain.is_Composite and set(symbols) & set(domain.symbols): raise GeneratorsError("polynomial ring and it's ground domain share generators") obj = object.__new__(cls) obj._hash_tuple = _hash_tuple obj._hash = hash(_hash_tuple) obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj}) obj.symbols = symbols obj.ngens = ngens obj.domain = domain obj.order = order obj.zero_monom = (0,)*ngens obj.gens = obj._gens() obj._gens_set = set(obj.gens) obj._one = [(obj.zero_monom, domain.one)] if ngens: # These expect monomials in at least one variable codegen = MonomialOps(ngens) obj.monomial_mul = codegen.mul() obj.monomial_pow = codegen.pow() obj.monomial_mulpow = codegen.mulpow() obj.monomial_ldiv = codegen.ldiv() obj.monomial_div = codegen.div() obj.monomial_lcm = codegen.lcm() obj.monomial_gcd = codegen.gcd() else: monunit = lambda a, b: () obj.monomial_mul = monunit obj.monomial_pow = monunit obj.monomial_mulpow = lambda a, b, c: () obj.monomial_ldiv = monunit obj.monomial_div = monunit obj.monomial_lcm = monunit obj.monomial_gcd = monunit if order is lex: obj.leading_expv = lambda f: max(f) else: obj.leading_expv = lambda f: max(f, key=order) for symbol, generator in zip(obj.symbols, obj.gens): if isinstance(symbol, Symbol): name = symbol.name if not hasattr(obj, name): setattr(obj, name, generator) _ring_cache[_hash_tuple] = obj return obj def _gens(self): """Return a list of polynomial generators. """ one = self.domain.one _gens = [] for i in range(self.ngens): expv = self.monomial_basis(i) poly = self.zero poly[expv] = one _gens.append(poly) return tuple(_gens) def __getnewargs__(self): return (self.symbols, self.domain, self.order) def __getstate__(self): state = self.__dict__.copy() del state["leading_expv"] for key, value in state.items(): if key.startswith("monomial_"): del state[key] return state def __hash__(self): return self._hash def __eq__(self, other): return isinstance(other, PolyRing) and \ (self.symbols, self.domain, self.ngens, self.order) == \ (other.symbols, other.domain, other.ngens, other.order) def __ne__(self, other): return not self == other def clone(self, symbols=None, domain=None, order=None): return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order) def monomial_basis(self, i): """Return the ith-basis element. """ basis = [0]*self.ngens basis[i] = 1 return tuple(basis) @property def zero(self): return self.dtype() @property def one(self): return self.dtype(self._one) def domain_new(self, element, orig_domain=None): return self.domain.convert(element, orig_domain) def ground_new(self, coeff): return self.term_new(self.zero_monom, coeff) def term_new(self, monom, coeff): coeff = self.domain_new(coeff) poly = self.zero if coeff: poly[monom] = coeff return poly def ring_new(self, element): if isinstance(element, PolyElement): if self == element.ring: return element elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring: return self.ground_new(element) else: raise NotImplementedError("conversion") elif isinstance(element, str): raise NotImplementedError("parsing") elif isinstance(element, dict): return self.from_dict(element) elif isinstance(element, list): try: return self.from_terms(element) except ValueError: return self.from_list(element) elif isinstance(element, Expr): return self.from_expr(element) else: return self.ground_new(element) __call__ = ring_new def from_dict(self, element, orig_domain=None): domain_new = self.domain_new poly = self.zero for monom, coeff in element.items(): coeff = domain_new(coeff, orig_domain) if coeff: poly[monom] = coeff return poly def from_terms(self, element, orig_domain=None): return self.from_dict(dict(element), orig_domain) def from_list(self, element): return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain)) def _rebuild_expr(self, expr, mapping): domain = self.domain def _rebuild(expr): generator = mapping.get(expr) if generator is not None: return generator elif expr.is_Add: return reduce(add, list(map(_rebuild, expr.args))) elif expr.is_Mul: return reduce(mul, list(map(_rebuild, expr.args))) elif expr.is_Pow and expr.exp.is_Integer and expr.exp >= 0: return _rebuild(expr.base)**int(expr.exp) else: return self.ground_new(domain.convert(expr)) return _rebuild(sympify(expr)) def from_expr(self, expr): mapping = dict(list(zip(self.symbols, self.gens))) try: poly = self._rebuild_expr(expr, mapping) except CoercionFailed: raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr)) else: return self.ring_new(poly) def index(self, gen): """Compute index of ``gen`` in ``self.gens``. """ if gen is None: if self.ngens: i = 0 else: i = -1 # indicate impossible choice elif isinstance(gen, int): i = gen if 0 <= i and i < self.ngens: pass elif -self.ngens <= i and i <= -1: i = -i - 1 else: raise ValueError("invalid generator index: %s" % gen) elif isinstance(gen, self.dtype): try: i = self.gens.index(gen) except ValueError: raise ValueError("invalid generator: %s" % gen) elif isinstance(gen, str): try: i = self.symbols.index(gen) except ValueError: raise ValueError("invalid generator: %s" % gen) else: raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen) return i def drop(self, *gens): """Remove specified generators from this ring. """ indices = set(map(self.index, gens)) symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ] if not symbols: return self.domain else: return self.clone(symbols=symbols) def __getitem__(self, key): symbols = self.symbols[key] if not symbols: return self.domain else: return self.clone(symbols=symbols) def to_ground(self): # TODO: should AlgebraicField be a Composite domain? if self.domain.is_Composite or hasattr(self.domain, 'domain'): return self.clone(domain=self.domain.domain) else: raise ValueError("%s is not a composite domain" % self.domain) def to_domain(self): return PolynomialRing(self) def to_field(self): from sympy.polys.fields import FracField return FracField(self.symbols, self.domain, self.order) @property def is_univariate(self): return len(self.gens) == 1 @property def is_multivariate(self): return len(self.gens) > 1 def add(self, *objs): """ Add a sequence of polynomials or containers of polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> R, x = ring("x", ZZ) >>> R.add([ x**2 + 2*i + 3 for i in range(4) ]) 4*x**2 + 24 >>> _.factor_list() (4, [(x**2 + 6, 1)]) """ p = self.zero for obj in objs: if is_sequence(obj, include=GeneratorType): p += self.add(*obj) else: p += obj return p def mul(self, *objs): """ Multiply a sequence of polynomials or containers of polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> R, x = ring("x", ZZ) >>> R.mul([ x**2 + 2*i + 3 for i in range(4) ]) x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945 >>> _.factor_list() (1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)]) """ p = self.one for obj in objs: if is_sequence(obj, include=GeneratorType): p *= self.mul(*obj) else: p *= obj return p def drop_to_ground(self, *gens): r""" Remove specified generators from the ring and inject them into its domain. """ indices = set(map(self.index, gens)) symbols = [s for i, s in enumerate(self.symbols) if i not in indices] gens = [gen for i, gen in enumerate(self.gens) if i not in indices] if not symbols: return self else: return self.clone(symbols=symbols, domain=self.drop(*gens)) def compose(self, other): """Add the generators of ``other`` to ``self``""" if self != other: syms = set(self.symbols).union(set(other.symbols)) return self.clone(symbols=list(syms)) else: return self def add_gens(self, symbols): """Add the elements of ``symbols`` as generators to ``self``""" syms = set(self.symbols).union(set(symbols)) return self.clone(symbols=list(syms)) class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict): """Element of multivariate distributed polynomial ring. """ def new(self, init): return self.__class__(init) def parent(self): return self.ring.to_domain() def __getnewargs__(self): return (self.ring, list(self.iterterms())) _hash = None def __hash__(self): # XXX: This computes a hash of a dictionary, but currently we don't # protect dictionary from being changed so any use site modifications # will make hashing go wrong. Use this feature with caution until we # figure out how to make a safe API without compromising speed of this # low-level class. _hash = self._hash if _hash is None: self._hash = _hash = hash((self.ring, frozenset(self.items()))) return _hash def copy(self): """Return a copy of polynomial self. Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one can copy the polynomial. This method makes a shallow copy. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> R, x, y = ring('x, y', ZZ) >>> p = (x + y)**2 >>> p1 = p.copy() >>> p2 = p >>> p[R.zero_monom] = 3 >>> p x**2 + 2*x*y + y**2 + 3 >>> p1 x**2 + 2*x*y + y**2 >>> p2 x**2 + 2*x*y + y**2 + 3 """ return self.new(self) def set_ring(self, new_ring): if self.ring == new_ring: return self elif self.ring.symbols != new_ring.symbols: terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols))) return new_ring.from_terms(terms, self.ring.domain) else: return new_ring.from_dict(self, self.ring.domain) def as_expr(self, *symbols): if symbols and len(symbols) != self.ring.ngens: raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols))) else: symbols = self.ring.symbols return expr_from_dict(self.as_expr_dict(), *symbols) def as_expr_dict(self): to_sympy = self.ring.domain.to_sympy return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()} def clear_denoms(self): domain = self.ring.domain if not domain.is_Field or not domain.has_assoc_Ring: return domain.one, self ground_ring = domain.get_ring() common = ground_ring.one lcm = ground_ring.lcm denom = domain.denom for coeff in self.values(): common = lcm(common, denom(coeff)) poly = self.new([ (k, v*common) for k, v in self.items() ]) return common, poly def strip_zero(self): """Eliminate monomials with zero coefficient. """ for k, v in list(self.items()): if not v: del self[k] def __eq__(p1, p2): """Equality test for polynomials. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p1 = (x + y)**2 + (x - y)**2 >>> p1 == 4*x*y False >>> p1 == 2*(x**2 + y**2) True """ if not p2: return not p1 elif isinstance(p2, PolyElement) and p2.ring == p1.ring: return dict.__eq__(p1, p2) elif len(p1) > 1: return False else: return p1.get(p1.ring.zero_monom) == p2 def __ne__(p1, p2): return not p1 == p2 def almosteq(p1, p2, tolerance=None): """Approximate equality test for polynomials. """ ring = p1.ring if isinstance(p2, ring.dtype): if set(p1.keys()) != set(p2.keys()): return False almosteq = ring.domain.almosteq for k in p1.keys(): if not almosteq(p1[k], p2[k], tolerance): return False return True elif len(p1) > 1: return False else: try: p2 = ring.domain.convert(p2) except CoercionFailed: return False else: return ring.domain.almosteq(p1.const(), p2, tolerance) def sort_key(self): return (len(self), self.terms()) def _cmp(p1, p2, op): if isinstance(p2, p1.ring.dtype): return op(p1.sort_key(), p2.sort_key()) else: return NotImplemented def __lt__(p1, p2): return p1._cmp(p2, lt) def __le__(p1, p2): return p1._cmp(p2, le) def __gt__(p1, p2): return p1._cmp(p2, gt) def __ge__(p1, p2): return p1._cmp(p2, ge) def _drop(self, gen): ring = self.ring i = ring.index(gen) if ring.ngens == 1: return i, ring.domain else: symbols = list(ring.symbols) del symbols[i] return i, ring.clone(symbols=symbols) def drop(self, gen): i, ring = self._drop(gen) if self.ring.ngens == 1: if self.is_ground: return self.coeff(1) else: raise ValueError("can't drop %s" % gen) else: poly = ring.zero for k, v in self.items(): if k[i] == 0: K = list(k) del K[i] poly[tuple(K)] = v else: raise ValueError("can't drop %s" % gen) return poly def _drop_to_ground(self, gen): ring = self.ring i = ring.index(gen) symbols = list(ring.symbols) del symbols[i] return i, ring.clone(symbols=symbols, domain=ring[i]) def drop_to_ground(self, gen): if self.ring.ngens == 1: raise ValueError("can't drop only generator to ground") i, ring = self._drop_to_ground(gen) poly = ring.zero gen = ring.domain.gens[0] for monom, coeff in self.iterterms(): mon = monom[:i] + monom[i+1:] if not mon in poly: poly[mon] = (gen**monom[i]).mul_ground(coeff) else: poly[mon] += (gen**monom[i]).mul_ground(coeff) return poly def to_dense(self): return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain) def to_dict(self): return dict(self) def str(self, printer, precedence, exp_pattern, mul_symbol): if not self: return printer._print(self.ring.domain.zero) prec_mul = precedence["Mul"] prec_atom = precedence["Atom"] ring = self.ring symbols = ring.symbols ngens = ring.ngens zm = ring.zero_monom sexpvs = [] for expv, coeff in self.terms(): negative = ring.domain.is_negative(coeff) sign = " - " if negative else " + " sexpvs.append(sign) if expv == zm: scoeff = printer._print(coeff) if negative and scoeff.startswith("-"): scoeff = scoeff[1:] else: if negative: coeff = -coeff if coeff != self.ring.one: scoeff = printer.parenthesize(coeff, prec_mul, strict=True) else: scoeff = '' sexpv = [] for i in range(ngens): exp = expv[i] if not exp: continue symbol = printer.parenthesize(symbols[i], prec_atom, strict=True) if exp != 1: if exp != int(exp) or exp < 0: sexp = printer.parenthesize(exp, prec_atom, strict=False) else: sexp = exp sexpv.append(exp_pattern % (symbol, sexp)) else: sexpv.append('%s' % symbol) if scoeff: sexpv = [scoeff] + sexpv sexpvs.append(mul_symbol.join(sexpv)) if sexpvs[0] in [" + ", " - "]: head = sexpvs.pop(0) if head == " - ": sexpvs.insert(0, "-") return "".join(sexpvs) @property def is_generator(self): return self in self.ring._gens_set @property def is_ground(self): return not self or (len(self) == 1 and self.ring.zero_monom in self) @property def is_monomial(self): return not self or (len(self) == 1 and self.LC == 1) @property def is_term(self): return len(self) <= 1 @property def is_negative(self): return self.ring.domain.is_negative(self.LC) @property def is_positive(self): return self.ring.domain.is_positive(self.LC) @property def is_nonnegative(self): return self.ring.domain.is_nonnegative(self.LC) @property def is_nonpositive(self): return self.ring.domain.is_nonpositive(self.LC) @property def is_zero(f): return not f @property def is_one(f): return f == f.ring.one @property def is_monic(f): return f.ring.domain.is_one(f.LC) @property def is_primitive(f): return f.ring.domain.is_one(f.content()) @property def is_linear(f): return all(sum(monom) <= 1 for monom in f.itermonoms()) @property def is_quadratic(f): return all(sum(monom) <= 2 for monom in f.itermonoms()) @property def is_squarefree(f): if not f.ring.ngens: return True return f.ring.dmp_sqf_p(f) @property def is_irreducible(f): if not f.ring.ngens: return True return f.ring.dmp_irreducible_p(f) @property def is_cyclotomic(f): if f.ring.is_univariate: return f.ring.dup_cyclotomic_p(f) else: raise MultivariatePolynomialError("cyclotomic polynomial") def __neg__(self): return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ]) def __pos__(self): return self def __add__(p1, p2): """Add two polynomials. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> (x + y)**2 + (x - y)**2 2*x**2 + 2*y**2 """ if not p2: return p1.copy() ring = p1.ring if isinstance(p2, ring.dtype): p = p1.copy() get = p.get zero = ring.domain.zero for k, v in p2.items(): v = get(k, zero) + v if v: p[k] = v else: del p[k] return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__radd__(p1) else: return NotImplemented try: cp2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: p = p1.copy() if not cp2: return p zm = ring.zero_monom if zm not in p1.keys(): p[zm] = cp2 else: if p2 == -p[zm]: del p[zm] else: p[zm] += cp2 return p def __radd__(p1, n): p = p1.copy() if not n: return p ring = p1.ring try: n = ring.domain_new(n) except CoercionFailed: return NotImplemented else: zm = ring.zero_monom if zm not in p1.keys(): p[zm] = n else: if n == -p[zm]: del p[zm] else: p[zm] += n return p def __sub__(p1, p2): """Subtract polynomial p2 from p1. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p1 = x + y**2 >>> p2 = x*y + y**2 >>> p1 - p2 -x*y + x """ if not p2: return p1.copy() ring = p1.ring if isinstance(p2, ring.dtype): p = p1.copy() get = p.get zero = ring.domain.zero for k, v in p2.items(): v = get(k, zero) - v if v: p[k] = v else: del p[k] return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rsub__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: p = p1.copy() zm = ring.zero_monom if zm not in p1.keys(): p[zm] = -p2 else: if p2 == p[zm]: del p[zm] else: p[zm] -= p2 return p def __rsub__(p1, n): """n - p1 with n convertible to the coefficient domain. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y >>> 4 - p -x - y + 4 """ ring = p1.ring try: n = ring.domain_new(n) except CoercionFailed: return NotImplemented else: p = ring.zero for expv in p1: p[expv] = -p1[expv] p += n return p def __mul__(p1, p2): """Multiply two polynomials. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', QQ) >>> p1 = x + y >>> p2 = x - y >>> p1*p2 x**2 - y**2 """ ring = p1.ring p = ring.zero if not p1 or not p2: return p elif isinstance(p2, ring.dtype): get = p.get zero = ring.domain.zero monomial_mul = ring.monomial_mul p2it = list(p2.items()) for exp1, v1 in p1.items(): for exp2, v2 in p2it: exp = monomial_mul(exp1, exp2) p[exp] = get(exp, zero) + v1*v2 p.strip_zero() return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rmul__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: for exp1, v1 in p1.items(): v = v1*p2 if v: p[exp1] = v return p def __rmul__(p1, p2): """p2 * p1 with p2 in the coefficient domain of p1. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y >>> 4 * p 4*x + 4*y """ p = p1.ring.zero if not p2: return p try: p2 = p.ring.domain_new(p2) except CoercionFailed: return NotImplemented else: for exp1, v1 in p1.items(): v = p2*v1 if v: p[exp1] = v return p def __pow__(self, n): """raise polynomial to power `n` Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p**3 x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6 """ ring = self.ring if not n: if self: return ring.one else: raise ValueError("0**0") elif len(self) == 1: monom, coeff = list(self.items())[0] p = ring.zero if coeff == 1: p[ring.monomial_pow(monom, n)] = coeff else: p[ring.monomial_pow(monom, n)] = coeff**n return p # For ring series, we need negative and rational exponent support only # with monomials. n = int(n) if n < 0: raise ValueError("Negative exponent") elif n == 1: return self.copy() elif n == 2: return self.square() elif n == 3: return self*self.square() elif len(self) <= 5: # TODO: use an actual density measure return self._pow_multinomial(n) else: return self._pow_generic(n) def _pow_generic(self, n): p = self.ring.one c = self while True: if n & 1: p = p*c n -= 1 if not n: break c = c.square() n = n // 2 return p def _pow_multinomial(self, n): multinomials = multinomial_coefficients(len(self), n).items() monomial_mulpow = self.ring.monomial_mulpow zero_monom = self.ring.zero_monom terms = self.items() zero = self.ring.domain.zero poly = self.ring.zero for multinomial, multinomial_coeff in multinomials: product_monom = zero_monom product_coeff = multinomial_coeff for exp, (monom, coeff) in zip(multinomial, terms): if exp: product_monom = monomial_mulpow(product_monom, monom, exp) product_coeff *= coeff**exp monom = tuple(product_monom) coeff = product_coeff coeff = poly.get(monom, zero) + coeff if coeff: poly[monom] = coeff elif monom in poly: del poly[monom] return poly def square(self): """square of a polynomial Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p.square() x**2 + 2*x*y**2 + y**4 """ ring = self.ring p = ring.zero get = p.get keys = list(self.keys()) zero = ring.domain.zero monomial_mul = ring.monomial_mul for i in range(len(keys)): k1 = keys[i] pk = self[k1] for j in range(i): k2 = keys[j] exp = monomial_mul(k1, k2) p[exp] = get(exp, zero) + pk*self[k2] p = p.imul_num(2) get = p.get for k, v in self.items(): k2 = monomial_mul(k, k) p[k2] = get(k2, zero) + v**2 p.strip_zero() return p def __divmod__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): return p1.div(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rdivmod__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return (p1.quo_ground(p2), p1.rem_ground(p2)) def __rdivmod__(p1, p2): return NotImplemented def __mod__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): return p1.rem(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rmod__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return p1.rem_ground(p2) def __rmod__(p1, p2): return NotImplemented def __truediv__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): if p2.is_monomial: return p1*(p2**(-1)) else: return p1.quo(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rtruediv__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return p1.quo_ground(p2) def __rtruediv__(p1, p2): return NotImplemented __floordiv__ = __truediv__ __rfloordiv__ = __rtruediv__ # TODO: use // (__floordiv__) for exquo()? def _term_div(self): zm = self.ring.zero_monom domain = self.ring.domain domain_quo = domain.quo monomial_div = self.ring.monomial_div if domain.is_Field: def term_div(a_lm_a_lc, b_lm_b_lc): a_lm, a_lc = a_lm_a_lc b_lm, b_lc = b_lm_b_lc if b_lm == zm: # apparently this is a very common case monom = a_lm else: monom = monomial_div(a_lm, b_lm) if monom is not None: return monom, domain_quo(a_lc, b_lc) else: return None else: def term_div(a_lm_a_lc, b_lm_b_lc): a_lm, a_lc = a_lm_a_lc b_lm, b_lc = b_lm_b_lc if b_lm == zm: # apparently this is a very common case monom = a_lm else: monom = monomial_div(a_lm, b_lm) if not (monom is None or a_lc % b_lc): return monom, domain_quo(a_lc, b_lc) else: return None return term_div def div(self, fv): """Division algorithm, see [CLO] p64. fv array of polynomials return qv, r such that self = sum(fv[i]*qv[i]) + r All polynomials are required not to be Laurent polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> f = x**3 >>> f0 = x - y**2 >>> f1 = x - y >>> qv, r = f.div((f0, f1)) >>> qv[0] x**2 + x*y**2 + y**4 >>> qv[1] 0 >>> r y**6 """ ring = self.ring ret_single = False if isinstance(fv, PolyElement): ret_single = True fv = [fv] if any(not f for f in fv): raise ZeroDivisionError("polynomial division") if not self: if ret_single: return ring.zero, ring.zero else: return [], ring.zero for f in fv: if f.ring != ring: raise ValueError('self and f must have the same ring') s = len(fv) qv = [ring.zero for i in range(s)] p = self.copy() r = ring.zero term_div = self._term_div() expvs = [fx.leading_expv() for fx in fv] while p: i = 0 divoccurred = 0 while i < s and divoccurred == 0: expv = p.leading_expv() term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]])) if term is not None: expv1, c = term qv[i] = qv[i]._iadd_monom((expv1, c)) p = p._iadd_poly_monom(fv[i], (expv1, -c)) divoccurred = 1 else: i += 1 if not divoccurred: expv = p.leading_expv() r = r._iadd_monom((expv, p[expv])) del p[expv] if expv == ring.zero_monom: r += p if ret_single: if not qv: return ring.zero, r else: return qv[0], r else: return qv, r def rem(self, G): f = self if isinstance(G, PolyElement): G = [G] if any(not g for g in G): raise ZeroDivisionError("polynomial division") ring = f.ring domain = ring.domain zero = domain.zero monomial_mul = ring.monomial_mul r = ring.zero term_div = f._term_div() ltf = f.LT f = f.copy() get = f.get while f: for g in G: tq = term_div(ltf, g.LT) if tq is not None: m, c = tq for mg, cg in g.iterterms(): m1 = monomial_mul(mg, m) c1 = get(m1, zero) - c*cg if not c1: del f[m1] else: f[m1] = c1 ltm = f.leading_expv() if ltm is not None: ltf = ltm, f[ltm] break else: ltm, ltc = ltf if ltm in r: r[ltm] += ltc else: r[ltm] = ltc del f[ltm] ltm = f.leading_expv() if ltm is not None: ltf = ltm, f[ltm] return r def quo(f, G): return f.div(G)[0] def exquo(f, G): q, r = f.div(G) if not r: return q else: raise ExactQuotientFailed(f, G) def _iadd_monom(self, mc): """add to self the monomial coeff*x0**i0*x1**i1*... unless self is a generator -- then just return the sum of the two. mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...) Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x**4 + 2*y >>> m = (1, 2) >>> p1 = p._iadd_monom((m, 5)) >>> p1 x**4 + 5*x*y**2 + 2*y >>> p1 is p True >>> p = x >>> p1 = p._iadd_monom((m, 5)) >>> p1 5*x*y**2 + x >>> p1 is p False """ if self in self.ring._gens_set: cpself = self.copy() else: cpself = self expv, coeff = mc c = cpself.get(expv) if c is None: cpself[expv] = coeff else: c += coeff if c: cpself[expv] = c else: del cpself[expv] return cpself def _iadd_poly_monom(self, p2, mc): """add to self the product of (p)*(coeff*x0**i0*x1**i1*...) unless self is a generator -- then just return the sum of the two. mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...) Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring('x, y, z', ZZ) >>> p1 = x**4 + 2*y >>> p2 = y + z >>> m = (1, 2, 3) >>> p1 = p1._iadd_poly_monom(p2, (m, 3)) >>> p1 x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y """ p1 = self if p1 in p1.ring._gens_set: p1 = p1.copy() (m, c) = mc get = p1.get zero = p1.ring.domain.zero monomial_mul = p1.ring.monomial_mul for k, v in p2.items(): ka = monomial_mul(k, m) coeff = get(ka, zero) + v*c if coeff: p1[ka] = coeff else: del p1[ka] return p1 def degree(f, x=None): """ The leading degree in ``x`` or the main variable. Note that the degree of 0 is negative infinity (the SymPy object -oo). """ i = f.ring.index(x) if not f: return -oo elif i < 0: return 0 else: return max([ monom[i] for monom in f.itermonoms() ]) def degrees(f): """ A tuple containing leading degrees in all variables. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ if not f: return (-oo,)*f.ring.ngens else: return tuple(map(max, list(zip(*f.itermonoms())))) def tail_degree(f, x=None): """ The tail degree in ``x`` or the main variable. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ i = f.ring.index(x) if not f: return -oo elif i < 0: return 0 else: return min([ monom[i] for monom in f.itermonoms() ]) def tail_degrees(f): """ A tuple containing tail degrees in all variables. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ if not f: return (-oo,)*f.ring.ngens else: return tuple(map(min, list(zip(*f.itermonoms())))) def leading_expv(self): """Leading monomial tuple according to the monomial ordering. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring('x, y, z', ZZ) >>> p = x**4 + x**3*y + x**2*z**2 + z**7 >>> p.leading_expv() (4, 0, 0) """ if self: return self.ring.leading_expv(self) else: return None def _get_coeff(self, expv): return self.get(expv, self.ring.domain.zero) def coeff(self, element): """ Returns the coefficient that stands next to the given monomial. Parameters ========== element : PolyElement (with ``is_monomial = True``) or 1 Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring("x,y,z", ZZ) >>> f = 3*x**2*y - x*y*z + 7*z**3 + 23 >>> f.coeff(x**2*y) 3 >>> f.coeff(x*y) 0 >>> f.coeff(1) 23 """ if element == 1: return self._get_coeff(self.ring.zero_monom) elif isinstance(element, self.ring.dtype): terms = list(element.iterterms()) if len(terms) == 1: monom, coeff = terms[0] if coeff == self.ring.domain.one: return self._get_coeff(monom) raise ValueError("expected a monomial, got %s" % element) def const(self): """Returns the constant coeffcient. """ return self._get_coeff(self.ring.zero_monom) @property def LC(self): return self._get_coeff(self.leading_expv()) @property def LM(self): expv = self.leading_expv() if expv is None: return self.ring.zero_monom else: return expv def leading_monom(self): """ Leading monomial as a polynomial element. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> (3*x*y + y**2).leading_monom() x*y """ p = self.ring.zero expv = self.leading_expv() if expv: p[expv] = self.ring.domain.one return p @property def LT(self): expv = self.leading_expv() if expv is None: return (self.ring.zero_monom, self.ring.domain.zero) else: return (expv, self._get_coeff(expv)) def leading_term(self): """Leading term as a polynomial element. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> (3*x*y + y**2).leading_term() 3*x*y """ p = self.ring.zero expv = self.leading_expv() if expv is not None: p[expv] = self[expv] return p def _sorted(self, seq, order): if order is None: order = self.ring.order else: order = OrderOpt.preprocess(order) if order is lex: return sorted(seq, key=lambda monom: monom[0], reverse=True) else: return sorted(seq, key=lambda monom: order(monom[0]), reverse=True) def coeffs(self, order=None): """Ordered list of polynomial coefficients. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.coeffs() [2, 1] >>> f.coeffs(grlex) [1, 2] """ return [ coeff for _, coeff in self.terms(order) ] def monoms(self, order=None): """Ordered list of polynomial monomials. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.monoms() [(2, 3), (1, 7)] >>> f.monoms(grlex) [(1, 7), (2, 3)] """ return [ monom for monom, _ in self.terms(order) ] def terms(self, order=None): """Ordered list of polynomial terms. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.terms() [((2, 3), 2), ((1, 7), 1)] >>> f.terms(grlex) [((1, 7), 1), ((2, 3), 2)] """ return self._sorted(list(self.items()), order) def itercoeffs(self): """Iterator over coefficients of a polynomial. """ return iter(self.values()) def itermonoms(self): """Iterator over monomials of a polynomial. """ return iter(self.keys()) def iterterms(self): """Iterator over terms of a polynomial. """ return iter(self.items()) def listcoeffs(self): """Unordered list of polynomial coefficients. """ return list(self.values()) def listmonoms(self): """Unordered list of polynomial monomials. """ return list(self.keys()) def listterms(self): """Unordered list of polynomial terms. """ return list(self.items()) def imul_num(p, c): """multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p1 = p.imul_num(3) >>> p1 3*x + 3*y**2 >>> p1 is p True >>> p = x >>> p1 = p.imul_num(3) >>> p1 3*x >>> p1 is p False """ if p in p.ring._gens_set: return p*c if not c: p.clear() return for exp in p: p[exp] *= c return p def content(f): """Returns GCD of polynomial's coefficients. """ domain = f.ring.domain cont = domain.zero gcd = domain.gcd for coeff in f.itercoeffs(): cont = gcd(cont, coeff) return cont def primitive(f): """Returns content and a primitive polynomial. """ cont = f.content() return cont, f.quo_ground(cont) def monic(f): """Divides all coefficients by the leading coefficient. """ if not f: return f else: return f.quo_ground(f.LC) def mul_ground(f, x): if not x: return f.ring.zero terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ] return f.new(terms) def mul_monom(f, monom): monomial_mul = f.ring.monomial_mul terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ] return f.new(terms) def mul_term(f, term): monom, coeff = term if not f or not coeff: return f.ring.zero elif monom == f.ring.zero_monom: return f.mul_ground(coeff) monomial_mul = f.ring.monomial_mul terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ] return f.new(terms) def quo_ground(f, x): domain = f.ring.domain if not x: raise ZeroDivisionError('polynomial division') if not f or x == domain.one: return f if domain.is_Field: quo = domain.quo terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ] else: terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ] return f.new(terms) def quo_term(f, term): monom, coeff = term if not coeff: raise ZeroDivisionError("polynomial division") elif not f: return f.ring.zero elif monom == f.ring.zero_monom: return f.quo_ground(coeff) term_div = f._term_div() terms = [ term_div(t, term) for t in f.iterterms() ] return f.new([ t for t in terms if t is not None ]) def trunc_ground(f, p): if f.ring.domain.is_ZZ: terms = [] for monom, coeff in f.iterterms(): coeff = coeff % p if coeff > p // 2: coeff = coeff - p terms.append((monom, coeff)) else: terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ] poly = f.new(terms) poly.strip_zero() return poly rem_ground = trunc_ground def extract_ground(self, g): f = self fc = f.content() gc = g.content() gcd = f.ring.domain.gcd(fc, gc) f = f.quo_ground(gcd) g = g.quo_ground(gcd) return gcd, f, g def _norm(f, norm_func): if not f: return f.ring.domain.zero else: ground_abs = f.ring.domain.abs return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ]) def max_norm(f): return f._norm(max) def l1_norm(f): return f._norm(sum) def deflate(f, *G): ring = f.ring polys = [f] + list(G) J = [0]*ring.ngens for p in polys: for monom in p.itermonoms(): for i, m in enumerate(monom): J[i] = igcd(J[i], m) for i, b in enumerate(J): if not b: J[i] = 1 J = tuple(J) if all(b == 1 for b in J): return J, polys H = [] for p in polys: h = ring.zero for I, coeff in p.iterterms(): N = [ i // j for i, j in zip(I, J) ] h[tuple(N)] = coeff H.append(h) return J, H def inflate(f, J): poly = f.ring.zero for I, coeff in f.iterterms(): N = [ i*j for i, j in zip(I, J) ] poly[tuple(N)] = coeff return poly def lcm(self, g): f = self domain = f.ring.domain if not domain.is_Field: fc, f = f.primitive() gc, g = g.primitive() c = domain.lcm(fc, gc) h = (f*g).quo(f.gcd(g)) if not domain.is_Field: return h.mul_ground(c) else: return h.monic() def gcd(f, g): return f.cofactors(g)[0] def cofactors(f, g): if not f and not g: zero = f.ring.zero return zero, zero, zero elif not f: h, cff, cfg = f._gcd_zero(g) return h, cff, cfg elif not g: h, cfg, cff = g._gcd_zero(f) return h, cff, cfg elif len(f) == 1: h, cff, cfg = f._gcd_monom(g) return h, cff, cfg elif len(g) == 1: h, cfg, cff = g._gcd_monom(f) return h, cff, cfg J, (f, g) = f.deflate(g) h, cff, cfg = f._gcd(g) return (h.inflate(J), cff.inflate(J), cfg.inflate(J)) def _gcd_zero(f, g): one, zero = f.ring.one, f.ring.zero if g.is_nonnegative: return g, zero, one else: return -g, zero, -one def _gcd_monom(f, g): ring = f.ring ground_gcd = ring.domain.gcd ground_quo = ring.domain.quo monomial_gcd = ring.monomial_gcd monomial_ldiv = ring.monomial_ldiv mf, cf = list(f.iterterms())[0] _mgcd, _cgcd = mf, cf for mg, cg in g.iterterms(): _mgcd = monomial_gcd(_mgcd, mg) _cgcd = ground_gcd(_cgcd, cg) h = f.new([(_mgcd, _cgcd)]) cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))]) cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()]) return h, cff, cfg def _gcd(f, g): ring = f.ring if ring.domain.is_QQ: return f._gcd_QQ(g) elif ring.domain.is_ZZ: return f._gcd_ZZ(g) else: # TODO: don't use dense representation (port PRS algorithms) return ring.dmp_inner_gcd(f, g) def _gcd_ZZ(f, g): return heugcd(f, g) def _gcd_QQ(self, g): f = self ring = f.ring new_ring = ring.clone(domain=ring.domain.get_ring()) cf, f = f.clear_denoms() cg, g = g.clear_denoms() f = f.set_ring(new_ring) g = g.set_ring(new_ring) h, cff, cfg = f._gcd_ZZ(g) h = h.set_ring(ring) c, h = h.LC, h.monic() cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf)) cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg)) return h, cff, cfg def cancel(self, g): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> (2*x**2 - 2).cancel(x**2 - 2*x + 1) (2*x + 2, x - 1) """ f = self ring = f.ring if not f: return f, ring.one domain = ring.domain if not (domain.is_Field and domain.has_assoc_Ring): _, p, q = f.cofactors(g) else: new_ring = ring.clone(domain=domain.get_ring()) cq, f = f.clear_denoms() cp, g = g.clear_denoms() f = f.set_ring(new_ring) g = g.set_ring(new_ring) _, p, q = f.cofactors(g) _, cp, cq = new_ring.domain.cofactors(cp, cq) p = p.set_ring(ring) q = q.set_ring(ring) p = p.mul_ground(cp) q = q.mul_ground(cq) # Make canonical with respect to sign or quadrant in the case of ZZ_I # or QQ_I. This ensures that the LC of the denominator is canonical by # multiplying top and bottom by a unit of the ring. u = q.canonical_unit() if u == domain.one: p, q = p, q elif u == -domain.one: p, q = -p, -q else: p = p.mul_ground(u) q = q.mul_ground(u) return p, q def canonical_unit(f): domain = f.ring.domain return domain.canonical_unit(f.LC) def diff(f, x): """Computes partial derivative in ``x``. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring("x,y", ZZ) >>> p = x + x**2*y**3 >>> p.diff(x) 2*x*y**3 + 1 """ ring = f.ring i = ring.index(x) m = ring.monomial_basis(i) g = ring.zero for expv, coeff in f.iterterms(): if expv[i]: e = ring.monomial_ldiv(expv, m) g[e] = ring.domain_new(coeff*expv[i]) return g def __call__(f, *values): if 0 < len(values) <= f.ring.ngens: return f.evaluate(list(zip(f.ring.gens, values))) else: raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values))) def evaluate(self, x, a=None): f = self if isinstance(x, list) and a is None: (X, a), x = x[0], x[1:] f = f.evaluate(X, a) if not x: return f else: x = [ (Y.drop(X), a) for (Y, a) in x ] return f.evaluate(x) ring = f.ring i = ring.index(x) a = ring.domain.convert(a) if ring.ngens == 1: result = ring.domain.zero for (n,), coeff in f.iterterms(): result += coeff*a**n return result else: poly = ring.drop(x).zero for monom, coeff in f.iterterms(): n, monom = monom[i], monom[:i] + monom[i+1:] coeff = coeff*a**n if monom in poly: coeff = coeff + poly[monom] if coeff: poly[monom] = coeff else: del poly[monom] else: if coeff: poly[monom] = coeff return poly def subs(self, x, a=None): f = self if isinstance(x, list) and a is None: for X, a in x: f = f.subs(X, a) return f ring = f.ring i = ring.index(x) a = ring.domain.convert(a) if ring.ngens == 1: result = ring.domain.zero for (n,), coeff in f.iterterms(): result += coeff*a**n return ring.ground_new(result) else: poly = ring.zero for monom, coeff in f.iterterms(): n, monom = monom[i], monom[:i] + (0,) + monom[i+1:] coeff = coeff*a**n if monom in poly: coeff = coeff + poly[monom] if coeff: poly[monom] = coeff else: del poly[monom] else: if coeff: poly[monom] = coeff return poly def compose(f, x, a=None): ring = f.ring poly = ring.zero gens_map = dict(list(zip(ring.gens, list(range(ring.ngens))))) if a is not None: replacements = [(x, a)] else: if isinstance(x, list): replacements = list(x) elif isinstance(x, dict): replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]]) else: raise ValueError("expected a generator, value pair a sequence of such pairs") for k, (x, g) in enumerate(replacements): replacements[k] = (gens_map[x], ring.ring_new(g)) for monom, coeff in f.iterterms(): monom = list(monom) subpoly = ring.one for i, g in replacements: n, monom[i] = monom[i], 0 if n: subpoly *= g**n subpoly = subpoly.mul_term((tuple(monom), coeff)) poly += subpoly return poly # TODO: following methods should point to polynomial # representation independent algorithm implementations. def pdiv(f, g): return f.ring.dmp_pdiv(f, g) def prem(f, g): return f.ring.dmp_prem(f, g) def pquo(f, g): return f.ring.dmp_quo(f, g) def pexquo(f, g): return f.ring.dmp_exquo(f, g) def half_gcdex(f, g): return f.ring.dmp_half_gcdex(f, g) def gcdex(f, g): return f.ring.dmp_gcdex(f, g) def subresultants(f, g): return f.ring.dmp_subresultants(f, g) def resultant(f, g): return f.ring.dmp_resultant(f, g) def discriminant(f): return f.ring.dmp_discriminant(f) def decompose(f): if f.ring.is_univariate: return f.ring.dup_decompose(f) else: raise MultivariatePolynomialError("polynomial decomposition") def shift(f, a): if f.ring.is_univariate: return f.ring.dup_shift(f, a) else: raise MultivariatePolynomialError("polynomial shift") def sturm(f): if f.ring.is_univariate: return f.ring.dup_sturm(f) else: raise MultivariatePolynomialError("sturm sequence") def gff_list(f): return f.ring.dmp_gff_list(f) def sqf_norm(f): return f.ring.dmp_sqf_norm(f) def sqf_part(f): return f.ring.dmp_sqf_part(f) def sqf_list(f, all=False): return f.ring.dmp_sqf_list(f, all=all) def factor_list(f): return f.ring.dmp_factor_list(f)
87b6bd9b3e6ff997fb1b7be44bc34671e668ff55cee5788f97788f50839892d0
"""Low-level linear systems solver. """ from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import connected_components from sympy.core.sympify import sympify from sympy.matrices.dense import MutableDenseMatrix from sympy.polys.domains import ZZ, QQ from sympy.polys.domains import EX from sympy.polys.rings import sring from sympy.polys.polyerrors import NotInvertible from sympy.polys.domainmatrix import DomainMatrix class PolyNonlinearError(Exception): """Raised by solve_lin_sys for nonlinear equations""" pass class RawMatrix(MutableDenseMatrix): """ XXX: This class is broken by design. Use DomainMatrix if you want a matrix over the polys domains or Matrix for a matrix with Expr elements. The RawMatrix class will be removed/broken in future in order to reestablish the invariant that the elements of a Matrix should be of type Expr. """ _sympify = staticmethod(lambda x: x) def __init__(self, *args, **kwargs): SymPyDeprecationWarning( feature="RawMatrix class", useinstead="DomainMatrix or Matrix", issue=21405, deprecated_since_version="1.9" ).warn() domain = ZZ for i in range(self.rows): for j in range(self.cols): val = self[i,j] if getattr(val, 'is_Poly', False): K = val.domain[val.gens] val_sympy = val.as_expr() elif hasattr(val, 'parent'): K = val.parent() val_sympy = K.to_sympy(val) elif isinstance(val, int): K = ZZ val_sympy = sympify(val) else: for K in ZZ, QQ: if K.of_type(val): val_sympy = K.to_sympy(val) break else: raise TypeError domain = domain.unify(K) self[i,j] = val_sympy self.ring = domain def eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain): """Get matrix from linear equations in dict format. Explanation =========== Get the matrix representation of a system of linear equations represented as dicts with low-level DomainElement coefficients. This is an *internal* function that is used by solve_lin_sys. Parameters ========== eqs_coeffs: list[dict[Symbol, DomainElement]] The left hand sides of the equations as dicts mapping from symbols to coefficients where the coefficients are instances of DomainElement. eqs_rhs: list[DomainElements] The right hand sides of the equations as instances of DomainElement. gens: list[Symbol] The unknowns in the system of equations. domain: Domain The domain for coefficients of both lhs and rhs. Returns ======= The augmented matrix representation of the system as a DomainMatrix. Examples ======== >>> from sympy import symbols, ZZ >>> from sympy.polys.solvers import eqs_to_matrix >>> x, y = symbols('x, y') >>> eqs_coeff = [{x:ZZ(1), y:ZZ(1)}, {x:ZZ(1), y:ZZ(-1)}] >>> eqs_rhs = [ZZ(0), ZZ(-1)] >>> eqs_to_matrix(eqs_coeff, eqs_rhs, [x, y], ZZ) DomainMatrix([[1, 1, 0], [1, -1, 1]], (2, 3), ZZ) See also ======== solve_lin_sys: Uses :func:`~eqs_to_matrix` internally """ sym2index = {x: n for n, x in enumerate(gens)} nrows = len(eqs_coeffs) ncols = len(gens) + 1 rows = [[domain.zero] * ncols for _ in range(nrows)] for row, eq_coeff, eq_rhs in zip(rows, eqs_coeffs, eqs_rhs): for sym, coeff in eq_coeff.items(): row[sym2index[sym]] = domain.convert(coeff) row[-1] = -domain.convert(eq_rhs) return DomainMatrix(rows, (nrows, ncols), domain) def sympy_eqs_to_ring(eqs, symbols): """Convert a system of equations from Expr to a PolyRing Explanation =========== High-level functions like ``solve`` expect Expr as inputs but can use ``solve_lin_sys`` internally. This function converts equations from ``Expr`` to the low-level poly types used by the ``solve_lin_sys`` function. Parameters ========== eqs: List of Expr A list of equations as Expr instances symbols: List of Symbol A list of the symbols that are the unknowns in the system of equations. Returns ======= Tuple[List[PolyElement], Ring]: The equations as PolyElement instances and the ring of polynomials within which each equation is represented. Examples ======== >>> from sympy import symbols >>> from sympy.polys.solvers import sympy_eqs_to_ring >>> a, x, y = symbols('a, x, y') >>> eqs = [x-y, x+a*y] >>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y]) >>> eqs_ring [x - y, x + a*y] >>> type(eqs_ring[0]) <class 'sympy.polys.rings.PolyElement'> >>> ring ZZ(a)[x,y] With the equations in this form they can be passed to ``solve_lin_sys``: >>> from sympy.polys.solvers import solve_lin_sys >>> solve_lin_sys(eqs_ring, ring) {y: 0, x: 0} """ try: K, eqs_K = sring(eqs, symbols, field=True, extension=True) except NotInvertible: # https://github.com/sympy/sympy/issues/18874 K, eqs_K = sring(eqs, symbols, domain=EX) return eqs_K, K.to_domain() def solve_lin_sys(eqs, ring, _raw=True): """Solve a system of linear equations from a PolynomialRing Explanation =========== Solves a system of linear equations given as PolyElement instances of a PolynomialRing. The basic arithmetic is carried out using instance of DomainElement which is more efficient than :class:`~sympy.core.expr.Expr` for the most common inputs. While this is a public function it is intended primarily for internal use so its interface is not necessarily convenient. Users are suggested to use the :func:`sympy.solvers.solveset.linsolve` function (which uses this function internally) instead. Parameters ========== eqs: list[PolyElement] The linear equations to be solved as elements of a PolynomialRing (assumed equal to zero). ring: PolynomialRing The polynomial ring from which eqs are drawn. The generators of this ring are the unkowns to be solved for and the domain of the ring is the domain of the coefficients of the system of equations. _raw: bool If *_raw* is False, the keys and values in the returned dictionary will be of type Expr (and the unit of the field will be removed from the keys) otherwise the low-level polys types will be returned, e.g. PolyElement: PythonRational. Returns ======= ``None`` if the system has no solution. dict[Symbol, Expr] if _raw=False dict[Symbol, DomainElement] if _raw=True. Examples ======== >>> from sympy import symbols >>> from sympy.polys.solvers import solve_lin_sys, sympy_eqs_to_ring >>> x, y = symbols('x, y') >>> eqs = [x - y, x + y - 2] >>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y]) >>> solve_lin_sys(eqs_ring, ring) {y: 1, x: 1} Passing ``_raw=False`` returns the same result except that the keys are ``Expr`` rather than low-level poly types. >>> solve_lin_sys(eqs_ring, ring, _raw=False) {x: 1, y: 1} See also ======== sympy_eqs_to_ring: prepares the inputs to ``solve_lin_sys``. linsolve: ``linsolve`` uses ``solve_lin_sys`` internally. sympy.solvers.solvers.solve: ``solve`` uses ``solve_lin_sys`` internally. """ as_expr = not _raw assert ring.domain.is_Field eqs_dict = [dict(eq) for eq in eqs] one_monom = ring.one.monoms()[0] zero = ring.domain.zero eqs_rhs = [] eqs_coeffs = [] for eq_dict in eqs_dict: eq_rhs = eq_dict.pop(one_monom, zero) eq_coeffs = {} for monom, coeff in eq_dict.items(): if sum(monom) != 1: msg = "Nonlinear term encountered in solve_lin_sys" raise PolyNonlinearError(msg) eq_coeffs[ring.gens[monom.index(1)]] = coeff if not eq_coeffs: if not eq_rhs: continue else: return None eqs_rhs.append(eq_rhs) eqs_coeffs.append(eq_coeffs) result = _solve_lin_sys(eqs_coeffs, eqs_rhs, ring) if result is not None and as_expr: def to_sympy(x): as_expr = getattr(x, 'as_expr', None) if as_expr: return as_expr() else: return ring.domain.to_sympy(x) tresult = {to_sympy(sym): to_sympy(val) for sym, val in result.items()} # Remove 1.0x result = {} for k, v in tresult.items(): if k.is_Mul: c, s = k.as_coeff_Mul() result[s] = v/c else: result[k] = v return result def _solve_lin_sys(eqs_coeffs, eqs_rhs, ring): """Solve a linear system from dict of PolynomialRing coefficients Explanation =========== This is an **internal** function used by :func:`solve_lin_sys` after the equations have been preprocessed. The role of this function is to split the system into connected components and pass those to :func:`_solve_lin_sys_component`. Examples ======== Setup a system for $x-y=0$ and $x+y=2$ and solve: >>> from sympy import symbols, sring >>> from sympy.polys.solvers import _solve_lin_sys >>> x, y = symbols('x, y') >>> R, (xr, yr) = sring([x, y], [x, y]) >>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}] >>> eqs_rhs = [R.zero, -2*R.one] >>> _solve_lin_sys(eqs, eqs_rhs, R) {y: 1, x: 1} See also ======== solve_lin_sys: This function is used internally by :func:`solve_lin_sys`. """ V = ring.gens E = [] for eq_coeffs in eqs_coeffs: syms = list(eq_coeffs) E.extend(zip(syms[:-1], syms[1:])) G = V, E components = connected_components(G) sym2comp = {} for n, component in enumerate(components): for sym in component: sym2comp[sym] = n subsystems = [([], []) for _ in range(len(components))] for eq_coeff, eq_rhs in zip(eqs_coeffs, eqs_rhs): sym = next(iter(eq_coeff), None) sub_coeff, sub_rhs = subsystems[sym2comp[sym]] sub_coeff.append(eq_coeff) sub_rhs.append(eq_rhs) sol = {} for subsystem in subsystems: subsol = _solve_lin_sys_component(subsystem[0], subsystem[1], ring) if subsol is None: return None sol.update(subsol) return sol def _solve_lin_sys_component(eqs_coeffs, eqs_rhs, ring): """Solve a linear system from dict of PolynomialRing coefficients Explanation =========== This is an **internal** function used by :func:`solve_lin_sys` after the equations have been preprocessed. After :func:`_solve_lin_sys` splits the system into connected components this function is called for each component. The system of equations is solved using Gauss-Jordan elimination with division followed by back-substitution. Examples ======== Setup a system for $x-y=0$ and $x+y=2$ and solve: >>> from sympy import symbols, sring >>> from sympy.polys.solvers import _solve_lin_sys_component >>> x, y = symbols('x, y') >>> R, (xr, yr) = sring([x, y], [x, y]) >>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}] >>> eqs_rhs = [R.zero, -2*R.one] >>> _solve_lin_sys_component(eqs, eqs_rhs, R) {y: 1, x: 1} See also ======== solve_lin_sys: This function is used internally by :func:`solve_lin_sys`. """ # transform from equations to matrix form matrix = eqs_to_matrix(eqs_coeffs, eqs_rhs, ring.gens, ring.domain) # convert to a field for rref if not matrix.domain.is_Field: matrix = matrix.to_field() # solve by row-reduction echelon, pivots = matrix.rref() # construct the returnable form of the solutions keys = ring.gens if pivots and pivots[-1] == len(keys): return None if len(pivots) == len(keys): sol = [] for s in [row[-1] for row in echelon.rep.to_ddm()]: a = s sol.append(a) sols = dict(zip(keys, sol)) else: sols = {} g = ring.gens # Extract ground domain coefficients and convert to the ring: if hasattr(ring, 'ring'): convert = ring.ring.ground_new else: convert = ring.ground_new echelon = echelon.rep.to_ddm() vals_set = {v for row in echelon for v in row} vals_map = {v: convert(v) for v in vals_set} echelon = [[vals_map[eij] for eij in ei] for ei in echelon] for i, p in enumerate(pivots): v = echelon[i][-1] - sum(echelon[i][j]*g[j] for j in range(p+1, len(g)) if echelon[i][j]) sols[keys[p]] = v return sols
56ee05bef05074e13079de3d0b2d4c28a457a4ec92ea1a5f535db3d04e72dd99
"""Computational algebraic field theory. """ from functools import reduce from sympy import ( S, Rational, AlgebraicNumber, GoldenRatio, TribonacciConstant, Add, Mul, sympify, Dummy, expand_mul, I, pi ) from sympy.functions import sqrt, cbrt from sympy.core.exprtools import Factors from sympy.core.function import _mexpand from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.trigonometric import cos, sin, tan from sympy.ntheory import sieve from sympy.ntheory.factor_ import divisors from sympy.utilities.iterables import subsets from sympy.polys.densetools import dup_eval from sympy.polys.domains import ZZ, QQ from sympy.polys.orthopolys import dup_chebyshevt from sympy.polys.polyerrors import ( IsomorphismFailed, NotAlgebraic, GeneratorsError, ) from sympy.polys.polytools import ( Poly, PurePoly, invert, factor_list, groebner, resultant, degree, poly_from_expr, parallel_poly_from_expr, lcm ) from sympy.polys.polyutils import dict_from_expr, expr_from_dict from sympy.polys.ring_series import rs_compose_add from sympy.polys.rings import ring from sympy.polys.rootoftools import CRootOf from sympy.polys.specialpolys import cyclotomic_poly from sympy.printing.lambdarepr import LambdaPrinter from sympy.printing.pycode import PythonCodePrinter, MpmathPrinter from sympy.simplify.radsimp import _split_gcd from sympy.simplify.simplify import _is_sum_surds from sympy.utilities import ( numbered_symbols, lambdify, public, sift ) from mpmath import pslq, mp def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5): """ Return a factor having root ``v`` It is assumed that one of the factors has root ``v``. """ from sympy.polys.polyutils import illegal if isinstance(factors[0], tuple): factors = [f[0] for f in factors] if len(factors) == 1: return factors[0] prec1 = 10 points = {} symbols = dom.symbols if hasattr(dom, 'symbols') else [] while prec1 <= prec: # when dealing with non-Rational numbers we usually evaluate # with `subs` argument but we only need a ballpark evaluation xv = {x:v if not v.is_number else v.n(prec1)} fe = [f.as_expr().xreplace(xv) for f in factors] # assign integers [0, n) to symbols (if any) for n in subsets(range(bound), k=len(symbols), repetition=True): for s, i in zip(symbols, n): points[s] = i # evaluate the expression at these points candidates = [(abs(f.subs(points).n(prec1)), i) for i,f in enumerate(fe)] # if we get invalid numbers (e.g. from division by zero) # we try again if any(i in illegal for i, _ in candidates): continue # find the smallest two -- if they differ significantly # then we assume we have found the factor that becomes # 0 when v is substituted into it can = sorted(candidates) (a, ix), (b, _) = can[:2] if b > a * 10**6: # XXX what to use? return factors[ix] prec1 *= 2 raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v) def _separate_sq(p): """ helper function for ``_minimal_polynomial_sq`` It selects a rational ``g`` such that the polynomial ``p`` consists of a sum of terms whose surds squared have gcd equal to ``g`` and a sum of terms with surds squared prime with ``g``; then it takes the field norm to eliminate ``sqrt(g)`` See simplify.simplify.split_surds and polytools.sqf_norm. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x >>> from sympy.polys.numberfields import _separate_sq >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7) >>> p = _separate_sq(p); p -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8 >>> p = _separate_sq(p); p -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20 >>> p = _separate_sq(p); p -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400 """ from sympy.utilities.iterables import sift def is_sqrt(expr): return expr.is_Pow and expr.exp is S.Half # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)] a = [] for y in p.args: if not y.is_Mul: if is_sqrt(y): a.append((S.One, y**2)) elif y.is_Atom: a.append((y, S.One)) elif y.is_Pow and y.exp.is_integer: a.append((y, S.One)) else: raise NotImplementedError continue T, F = sift(y.args, is_sqrt, binary=True) a.append((Mul(*F), Mul(*T)**2)) a.sort(key=lambda z: z[1]) if a[-1][1] is S.One: # there are no surds return p surds = [z for y, z in a] for i in range(len(surds)): if surds[i] != 1: break g, b1, b2 = _split_gcd(*surds[i:]) a1 = [] a2 = [] for y, z in a: if z in b1: a1.append(y*z**S.Half) else: a2.append(y*z**S.Half) p1 = Add(*a1) p2 = Add(*a2) p = _mexpand(p1**2) - _mexpand(p2**2) return p def _minimal_polynomial_sq(p, n, x): """ Returns the minimal polynomial for the ``nth-root`` of a sum of surds or ``None`` if it fails. Parameters ========== p : sum of surds n : positive integer x : variable of the returned polynomial Examples ======== >>> from sympy.polys.numberfields import _minimal_polynomial_sq >>> from sympy import sqrt >>> from sympy.abc import x >>> q = 1 + sqrt(2) + sqrt(3) >>> _minimal_polynomial_sq(q, 3, x) x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8 """ from sympy.simplify.simplify import _is_sum_surds p = sympify(p) n = sympify(n) if not n.is_Integer or not n > 0 or not _is_sum_surds(p): return None pn = p**Rational(1, n) # eliminate the square roots p -= x while 1: p1 = _separate_sq(p) if p1 is p: p = p1.subs({x:x**n}) break else: p = p1 # _separate_sq eliminates field extensions in a minimal way, so that # if n = 1 then `p = constant*(minimal_polynomial(p))` # if n > 1 it contains the minimal polynomial as a factor. if n == 1: p1 = Poly(p) if p.coeff(x**p1.degree(x)) < 0: p = -p p = p.primitive()[1] return p # by construction `p` has root `pn` # the minimal polynomial is the factor vanishing in x = pn factors = factor_list(p)[1] result = _choose_factor(factors, x, pn) return result def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None): """ return the minimal polynomial for ``op(ex1, ex2)`` Parameters ========== op : operation ``Add`` or ``Mul`` ex1, ex2 : expressions for the algebraic elements x : indeterminate of the polynomials dom: ground domain mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None Examples ======== >>> from sympy import sqrt, Add, Mul, QQ >>> from sympy.polys.numberfields import _minpoly_op_algebraic_element >>> from sympy.abc import x, y >>> p1 = sqrt(sqrt(2) + 1) >>> p2 = sqrt(sqrt(2) - 1) >>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ) x - 1 >>> q1 = sqrt(y) >>> q2 = 1 / y >>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y)) x**2*y**2 - 2*x*y - y**3 + 1 References ========== .. [1] https://en.wikipedia.org/wiki/Resultant .. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638 "Degrees of sums in a separable field extension". """ y = Dummy(str(x)) if mp1 is None: mp1 = _minpoly_compose(ex1, x, dom) if mp2 is None: mp2 = _minpoly_compose(ex2, y, dom) else: mp2 = mp2.subs({x: y}) if op is Add: # mp1a = mp1.subs({x: x - y}) if dom == QQ: R, X = ring('X', QQ) p1 = R(dict_from_expr(mp1)[0]) p2 = R(dict_from_expr(mp2)[0]) else: (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y) r = p1.compose(p2) mp1a = r.as_expr() elif op is Mul: mp1a = _muly(mp1, x, y) else: raise NotImplementedError('option not available') if op is Mul or dom != QQ: r = resultant(mp1a, mp2, gens=[y, x]) else: r = rs_compose_add(p1, p2) r = expr_from_dict(r.as_expr_dict(), x) deg1 = degree(mp1, x) deg2 = degree(mp2, y) if op is Mul and deg1 == 1 or deg2 == 1: # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a; # r = mp2(x - a), so that `r` is irreducible return r r = Poly(r, x, domain=dom) _, factors = r.factor_list() res = _choose_factor(factors, x, op(ex1, ex2), dom) return res.as_expr() def _invertx(p, x): """ Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))`` """ p1 = poly_from_expr(p, x)[0] n = degree(p1) a = [c * x**(n - i) for (i,), c in p1.terms()] return Add(*a) def _muly(p, x, y): """ Returns ``_mexpand(y**deg*p.subs({x:x / y}))`` """ p1 = poly_from_expr(p, x)[0] n = degree(p1) a = [c * x**i * y**(n - i) for (i,), c in p1.terms()] return Add(*a) def _minpoly_pow(ex, pw, x, dom, mp=None): """ Returns ``minpoly(ex**pw, x)`` Parameters ========== ex : algebraic element pw : rational number x : indeterminate of the polynomial dom: ground domain mp : minimal polynomial of ``p`` Examples ======== >>> from sympy import sqrt, QQ, Rational >>> from sympy.polys.numberfields import _minpoly_pow, minpoly >>> from sympy.abc import x, y >>> p = sqrt(1 + sqrt(2)) >>> _minpoly_pow(p, 2, x, QQ) x**2 - 2*x - 1 >>> minpoly(p**2, x) x**2 - 2*x - 1 >>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y)) x**3 - y >>> minpoly(y**Rational(1, 3), x) x**3 - y """ pw = sympify(pw) if not mp: mp = _minpoly_compose(ex, x, dom) if not pw.is_rational: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) if pw < 0: if mp == x: raise ZeroDivisionError('%s is zero' % ex) mp = _invertx(mp, x) if pw == -1: return mp pw = -pw ex = 1/ex y = Dummy(str(x)) mp = mp.subs({x: y}) n, d = pw.as_numer_denom() res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom) _, factors = res.factor_list() res = _choose_factor(factors, x, ex**pw, dom) return res.as_expr() def _minpoly_add(x, dom, *a): """ returns ``minpoly(Add(*a), dom, x)`` """ mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom) p = a[0] + a[1] for px in a[2:]: mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp) p = p + px return mp def _minpoly_mul(x, dom, *a): """ returns ``minpoly(Mul(*a), dom, x)`` """ mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom) p = a[0] * a[1] for px in a[2:]: mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp) p = p * px return mp def _minpoly_sin(ex, x): """ Returns the minimal polynomial of ``sin(ex)`` see http://mathworld.wolfram.com/TrigonometryAngles.html """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: n = c.q q = sympify(n) if q.is_prime: # for a = pi*p/q with q odd prime, using chebyshevt # write sin(q*a) = mp(sin(a))*sin(a); # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1 a = dup_chebyshevt(n, ZZ) return Add(*[x**(n - i - 1)*a[i] for i in range(n)]) if c.p == 1: if q == 9: return 64*x**6 - 96*x**4 + 36*x**2 - 3 if n % 2 == 1: # for a = pi*p/q with q odd, use # sin(q*a) = 0 to see that the minimal polynomial must be # a factor of dup_chebyshevt(n, ZZ) a = dup_chebyshevt(n, ZZ) a = [x**(n - i)*a[i] for i in range(n + 1)] r = Add(*a) _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res expr = ((1 - cos(2*c*pi))/2)**S.Half res = _minpoly_compose(expr, x, QQ) return res raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_cos(ex, x): """ Returns the minimal polynomial of ``cos(ex)`` see http://mathworld.wolfram.com/TrigonometryAngles.html """ from sympy import sqrt c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: if c.p == 1: if c.q == 7: return 8*x**3 - 4*x**2 - 4*x + 1 if c.q == 9: return 8*x**3 - 6*x + 1 elif c.p == 2: q = sympify(c.q) if q.is_prime: s = _minpoly_sin(ex, x) return _mexpand(s.subs({x:sqrt((1 - x)/2)})) # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p n = int(c.q) a = dup_chebyshevt(n, ZZ) a = [x**(n - i)*a[i] for i in range(n + 1)] r = Add(*a) - (-1)**c.p _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_tan(ex, x): """ Returns the minimal polynomial of ``tan(ex)`` see https://github.com/sympy/sympy/issues/21430 """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: c = c * 2 n = int(c.q) a = n if c.p % 2 == 0 else 1 terms = [] for k in range((c.p+1)%2, n+1, 2): terms.append(a*x**k) a = -(a*(n-k-1)*(n-k)) // ((k+1)*(k+2)) r = Add(*terms) _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_exp(ex, x): """ Returns the minimal polynomial of ``exp(ex)`` """ c, a = ex.args[0].as_coeff_Mul() q = sympify(c.q) if a == I*pi: if c.is_rational: if c.p == 1 or c.p == -1: if q == 3: return x**2 - x + 1 if q == 4: return x**4 + 1 if q == 6: return x**4 - x**2 + 1 if q == 8: return x**8 + 1 if q == 9: return x**6 - x**3 + 1 if q == 10: return x**8 - x**6 + x**4 - x**2 + 1 if q.is_prime: s = 0 for i in range(q): s += (-x)**i return s # x**(2*q) = product(factors) factors = [cyclotomic_poly(i, x) for i in divisors(2*q)] mp = _choose_factor(factors, x, ex) return mp else: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_rootof(ex, x): """ Returns the minimal polynomial of a ``CRootOf`` object. """ p = ex.expr p = p.subs({ex.poly.gens[0]:x}) _, factors = factor_list(p, x) result = _choose_factor(factors, x, ex) return result def _minpoly_compose(ex, x, dom): """ Computes the minimal polynomial of an algebraic element using operations on minimal polynomials Examples ======== >>> from sympy import minimal_polynomial, sqrt, Rational >>> from sympy.abc import x, y >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True) x**2 - 2*x - 1 >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True) x**2*y**2 - 2*x*y - y**3 + 1 """ if ex.is_Rational: return ex.q*x - ex.p if ex is I: _, factors = factor_list(x**2 + 1, x, domain=dom) return x**2 + 1 if len(factors) == 1 else x - I if ex is GoldenRatio: _, factors = factor_list(x**2 - x - 1, x, domain=dom) if len(factors) == 1: return x**2 - x - 1 else: return _choose_factor(factors, x, (1 + sqrt(5))/2, dom=dom) if ex is TribonacciConstant: _, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom) if len(factors) == 1: return x**3 - x**2 - x - 1 else: fac = (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 return _choose_factor(factors, x, fac, dom=dom) if hasattr(dom, 'symbols') and ex in dom.symbols: return x - ex if dom.is_QQ and _is_sum_surds(ex): # eliminate the square roots ex -= x while 1: ex1 = _separate_sq(ex) if ex1 is ex: return ex else: ex = ex1 if ex.is_Add: res = _minpoly_add(x, dom, *ex.args) elif ex.is_Mul: f = Factors(ex).factors r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational) if r[True] and dom == QQ: ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]]) r1 = dict(r[True]) dens = [y.q for y in r1.values()] lcmdens = reduce(lcm, dens, 1) neg1 = S.NegativeOne expn1 = r1.pop(neg1, S.Zero) nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()] ex2 = Mul(*nums) mp1 = minimal_polynomial(ex1, x) # use the fact that in SymPy canonicalization products of integers # raised to rational powers are organized in relatively prime # bases, and that in ``base**(n/d)`` a perfect power is # simplified with the root # Powers of -1 have to be treated separately to preserve sign. mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens) ex2 = neg1**expn1 * ex2**Rational(1, lcmdens) res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2) else: res = _minpoly_mul(x, dom, *ex.args) elif ex.is_Pow: res = _minpoly_pow(ex.base, ex.exp, x, dom) elif ex.__class__ is sin: res = _minpoly_sin(ex, x) elif ex.__class__ is cos: res = _minpoly_cos(ex, x) elif ex.__class__ is tan: res = _minpoly_tan(ex, x) elif ex.__class__ is exp: res = _minpoly_exp(ex, x) elif ex.__class__ is CRootOf: res = _minpoly_rootof(ex, x) else: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) return res @public def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None): """ Computes the minimal polynomial of an algebraic element. Parameters ========== ex : Expr Element or expression whose minimal polynomial is to be calculated. x : Symbol, optional Independent variable of the minimal polynomial compose : boolean, optional (default=True) Method to use for computing minimal polynomial. If ``compose=True`` (default) then ``_minpoly_compose`` is used, if ``compose=False`` then groebner bases are used. polys : boolean, optional (default=False) If ``True`` returns a ``Poly`` object else an ``Expr`` object. domain : Domain, optional Ground domain Notes ===== By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex`` are computed, then the arithmetic operations on them are performed using the resultant and factorization. If ``compose=False``, a bottom-up algorithm is used with ``groebner``. The default algorithm stalls less frequently. If no ground domain is given, it will be generated automatically from the expression. Examples ======== >>> from sympy import minimal_polynomial, sqrt, solve, QQ >>> from sympy.abc import x, y >>> minimal_polynomial(sqrt(2), x) x**2 - 2 >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) x - sqrt(2) >>> minimal_polynomial(sqrt(2) + sqrt(3), x) x**4 - 10*x**2 + 1 >>> minimal_polynomial(solve(x**3 + x + 3)[0], x) x**3 + x + 3 >>> minimal_polynomial(sqrt(y), x) x**2 - y """ from sympy.polys.polytools import degree from sympy.polys.domains import FractionField from sympy.core.basic import preorder_traversal ex = sympify(ex) if ex.is_number: # not sure if it's always needed but try it for numbers (issue 8354) ex = _mexpand(ex, recursive=True) for expr in preorder_traversal(ex): if expr.is_AlgebraicNumber: compose = False break if x is not None: x, cls = sympify(x), Poly else: x, cls = Dummy('x'), PurePoly if not domain: if ex.free_symbols: domain = FractionField(QQ, list(ex.free_symbols)) else: domain = QQ if hasattr(domain, 'symbols') and x in domain.symbols: raise GeneratorsError("the variable %s is an element of the ground " "domain %s" % (x, domain)) if compose: result = _minpoly_compose(ex, x, domain) result = result.primitive()[1] c = result.coeff(x**degree(result, x)) if c.is_negative: result = expand_mul(-result) return cls(result, x, field=True) if polys else result.collect(x) if not domain.is_QQ: raise NotImplementedError("groebner method only works for QQ") result = _minpoly_groebner(ex, x, cls) return cls(result, x, field=True) if polys else result.collect(x) def _minpoly_groebner(ex, x, cls): """ Computes the minimal polynomial of an algebraic number using Groebner bases Examples ======== >>> from sympy import minimal_polynomial, sqrt, Rational >>> from sympy.abc import x >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False) x**2 - 2*x - 1 """ from sympy.polys.polytools import degree from sympy.core.function import expand_multinomial generator = numbered_symbols('a', cls=Dummy) mapping, symbols = {}, {} def update_mapping(ex, exp, base=None): a = next(generator) symbols[ex] = a if base is not None: mapping[ex] = a**exp + base else: mapping[ex] = exp.as_expr(a) return a def bottom_up_scan(ex): if ex.is_Atom: if ex is S.ImaginaryUnit: if ex not in mapping: return update_mapping(ex, 2, 1) else: return symbols[ex] elif ex.is_Rational: return ex elif ex.is_Add: return Add(*[ bottom_up_scan(g) for g in ex.args ]) elif ex.is_Mul: return Mul(*[ bottom_up_scan(g) for g in ex.args ]) elif ex.is_Pow: if ex.exp.is_Rational: if ex.exp < 0: minpoly_base = _minpoly_groebner(ex.base, x, cls) inverse = invert(x, minpoly_base).as_expr() base_inv = inverse.subs(x, ex.base).expand() if ex.exp == -1: return bottom_up_scan(base_inv) else: ex = base_inv**(-ex.exp) if not ex.exp.is_Integer: base, exp = ( ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q) else: base, exp = ex.base, ex.exp base = bottom_up_scan(base) expr = base**exp if expr not in mapping: return update_mapping(expr, 1/exp, -base) else: return symbols[expr] elif ex.is_AlgebraicNumber: if ex.root not in mapping: return update_mapping(ex.root, ex.minpoly) else: return symbols[ex.root] raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex) def simpler_inverse(ex): """ Returns True if it is more likely that the minimal polynomial algorithm works better with the inverse """ if ex.is_Pow: if (1/ex.exp).is_integer and ex.exp < 0: if ex.base.is_Add: return True if ex.is_Mul: hit = True for p in ex.args: if p.is_Add: return False if p.is_Pow: if p.base.is_Add and p.exp > 0: return False if hit: return True return False inverted = False ex = expand_multinomial(ex) if ex.is_AlgebraicNumber: return ex.minpoly.as_expr(x) elif ex.is_Rational: result = ex.q*x - ex.p else: inverted = simpler_inverse(ex) if inverted: ex = ex**-1 res = None if ex.is_Pow and (1/ex.exp).is_Integer: n = 1/ex.exp res = _minimal_polynomial_sq(ex.base, n, x) elif _is_sum_surds(ex): res = _minimal_polynomial_sq(ex, S.One, x) if res is not None: result = res if res is None: bus = bottom_up_scan(ex) F = [x - bus] + list(mapping.values()) G = groebner(F, list(symbols.values()) + [x], order='lex') _, factors = factor_list(G[-1]) # by construction G[-1] has root `ex` result = _choose_factor(factors, x, ex) if inverted: result = _invertx(result, x) if result.coeff(x**degree(result, x)) < 0: result = expand_mul(-result) return result minpoly = minimal_polynomial def _switch_domain(g, K): # An algebraic relation f(a, b) = 0 over Q can also be written # g(b) = 0 where g is in Q(a)[x] and h(a) = 0 where h is in Q(b)[x]. # This function transforms g into h where Q(b) = K. frep = g.rep.inject() hrep = frep.eject(K, front=True) return g.new(hrep, g.gens[0]) def _linsolve(p): # Compute root of linear polynomial. c, d = p.rep.rep return -d/c @public def primitive_element(extension, x=None, *, ex=False, polys=False): """Construct a common number field for all extensions. """ if not extension: raise ValueError("can't compute primitive element for empty extension") if x is not None: x, cls = sympify(x), Poly else: x, cls = Dummy('x'), PurePoly if not ex: gen, coeffs = extension[0], [1] g = minimal_polynomial(gen, x, polys=True) for ext in extension[1:]: _, factors = factor_list(g, extension=ext) g = _choose_factor(factors, x, gen) s, _, g = g.sqf_norm() gen += s*ext coeffs.append(s) if not polys: return g.as_expr(), coeffs else: return cls(g), coeffs gen, coeffs = extension[0], [1] f = minimal_polynomial(gen, x, polys=True) K = QQ.algebraic_field((f, gen)) # incrementally constructed field reps = [K.unit] # representations of extension elements in K for ext in extension[1:]: p = minimal_polynomial(ext, x, polys=True) L = QQ.algebraic_field((p, ext)) _, factors = factor_list(f, domain=L) f = _choose_factor(factors, x, gen) s, g, f = f.sqf_norm() gen += s*ext coeffs.append(s) K = QQ.algebraic_field((f, gen)) h = _switch_domain(g, K) erep = _linsolve(h.gcd(p)) # ext as element of K ogen = K.unit - s*erep # old gen as element of K reps = [dup_eval(_.rep, ogen, K) for _ in reps] + [erep] H = [_.rep for _ in reps] if not polys: return f.as_expr(), coeffs, H else: return f, coeffs, H def is_isomorphism_possible(a, b): """Returns `True` if there is a chance for isomorphism. """ n = a.minpoly.degree() m = b.minpoly.degree() if m % n != 0: return False if n == m: return True da = a.minpoly.discriminant() db = b.minpoly.discriminant() i, k, half = 1, m//n, db//2 while True: p = sieve[i] P = p**k if P > half: break if ((da % p) % 2) and not (db % P): return False i += 1 return True def field_isomorphism_pslq(a, b): """Construct field isomorphism using PSLQ algorithm. """ if not a.root.is_real or not b.root.is_real: raise NotImplementedError("PSLQ doesn't support complex coefficients") f = a.minpoly g = b.minpoly.replace(f.gen) n, m, prev = 100, b.minpoly.degree(), None for i in range(1, 5): A = a.root.evalf(n) B = b.root.evalf(n) basis = [1, B] + [ B**i for i in range(2, m) ] + [A] dps, mp.dps = mp.dps, n coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000) mp.dps = dps if coeffs is None: break if coeffs != prev: prev = coeffs else: break coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]] while not coeffs[-1]: coeffs.pop() coeffs = list(reversed(coeffs)) h = Poly(coeffs, f.gen, domain='QQ') if f.compose(h).rem(g).is_zero: d, approx = len(coeffs) - 1, 0 for i, coeff in enumerate(coeffs): approx += coeff*B**(d - i) if A*approx < 0: return [ -c for c in coeffs ] else: return coeffs elif f.compose(-h).rem(g).is_zero: return [ -c for c in coeffs ] else: n *= 2 return None def field_isomorphism_factor(a, b): """Construct field isomorphism via factorization. """ _, factors = factor_list(a.minpoly, extension=b) for f, _ in factors: if f.degree() == 1: coeffs = f.rep.TC().to_sympy_list() d, terms = len(coeffs) - 1, [] for i, coeff in enumerate(coeffs): terms.append(coeff*b.root**(d - i)) root = Add(*terms) if (a.root - root).evalf(chop=True) == 0: return coeffs if (a.root + root).evalf(chop=True) == 0: return [-c for c in coeffs] return None @public def field_isomorphism(a, b, *, fast=True): """Construct an isomorphism between two number fields. """ a, b = sympify(a), sympify(b) if not a.is_AlgebraicNumber: a = AlgebraicNumber(a) if not b.is_AlgebraicNumber: b = AlgebraicNumber(b) if a == b: return a.coeffs() n = a.minpoly.degree() m = b.minpoly.degree() if n == 1: return [a.root] if m % n != 0: return None if fast: try: result = field_isomorphism_pslq(a, b) if result is not None: return result except NotImplementedError: pass return field_isomorphism_factor(a, b) @public def to_number_field(extension, theta=None, *, gen=None): """Express `extension` in the field generated by `theta`. """ if hasattr(extension, '__iter__'): extension = list(extension) else: extension = [extension] if len(extension) == 1 and type(extension[0]) is tuple: return AlgebraicNumber(extension[0]) minpoly, coeffs = primitive_element(extension, gen, polys=True) root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ]) if theta is None: return AlgebraicNumber((minpoly, root)) else: theta = sympify(theta) if not theta.is_AlgebraicNumber: theta = AlgebraicNumber(theta, gen=gen) coeffs = field_isomorphism(root, theta) if coeffs is not None: return AlgebraicNumber(theta, coeffs) else: raise IsomorphismFailed( "%s is not in a subfield of %s" % (root, theta.root)) class IntervalPrinter(MpmathPrinter, LambdaPrinter): """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """ def _print_Integer(self, expr): return "mpi('%s')" % super(PythonCodePrinter, self)._print_Integer(expr) def _print_Rational(self, expr): return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr) def _print_Half(self, expr): return "mpi('%s')" % super(PythonCodePrinter, self)._print_Rational(expr) def _print_Pow(self, expr): return super(MpmathPrinter, self)._print_Pow(expr, rational=True) @public def isolate(alg, eps=None, fast=False): """Give a rational isolating interval for an algebraic number. """ alg = sympify(alg) if alg.is_Rational: return (alg, alg) elif not alg.is_real: raise NotImplementedError( "complex algebraic numbers are not supported") func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter()) poly = minpoly(alg, polys=True) intervals = poly.intervals(sqf=True) dps, done = mp.dps, False try: while not done: alg = func() for a, b in intervals: if a <= alg.a and alg.b <= b: done = True break else: mp.dps *= 2 finally: mp.dps = dps if eps is not None: a, b = poly.refine_root(a, b, eps=eps, fast=fast) return (a, b)
922b82b72a440ef7210dc1db162b5cfc361f12dae39e76b5fe01db7cc8d30d58
"""Tools for constructing domains for expressions. """ from sympy.core import sympify from sympy.core.compatibility import ordered from sympy.core.evalf import pure_complex from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, EX from sympy.polys.domains.complexfield import ComplexField from sympy.polys.domains.realfield import RealField from sympy.polys.polyoptions import build_options from sympy.polys.polyutils import parallel_dict_from_basic from sympy.utilities import public def _construct_simple(coeffs, opt): """Handle simple domains, e.g.: ZZ, QQ, RR and algebraic domains. """ rationals = floats = complexes = algebraics = False float_numbers = [] if opt.extension is True: is_algebraic = lambda coeff: coeff.is_number and coeff.is_algebraic else: is_algebraic = lambda coeff: False for coeff in coeffs: if coeff.is_Rational: if not coeff.is_Integer: rationals = True elif coeff.is_Float: if algebraics: # there are both reals and algebraics -> EX return False else: floats = True float_numbers.append(coeff) else: is_complex = pure_complex(coeff) if is_complex: complexes = True x, y = is_complex if x.is_Rational and y.is_Rational: if not (x.is_Integer and y.is_Integer): rationals = True continue else: floats = True if x.is_Float: float_numbers.append(x) if y.is_Float: float_numbers.append(y) elif is_algebraic(coeff): if floats: # there are both algebraics and reals -> EX return False algebraics = True else: # this is a composite domain, e.g. ZZ[X], EX return None # Use the maximum precision of all coefficients for the RR or CC # precision max_prec = max(c._prec for c in float_numbers) if float_numbers else 53 if algebraics: domain, result = _construct_algebraic(coeffs, opt) else: if floats and complexes: domain = ComplexField(prec=max_prec) elif floats: domain = RealField(prec=max_prec) elif rationals or opt.field: domain = QQ_I if complexes else QQ else: domain = ZZ_I if complexes else ZZ result = [domain.from_sympy(coeff) for coeff in coeffs] return domain, result def _construct_algebraic(coeffs, opt): """We know that coefficients are algebraic so construct the extension. """ from sympy.polys.numberfields import primitive_element exts = set() def build_trees(args): trees = [] for a in args: if a.is_Rational: tree = ('Q', QQ.from_sympy(a)) elif a.is_Add: tree = ('+', build_trees(a.args)) elif a.is_Mul: tree = ('*', build_trees(a.args)) else: tree = ('e', a) exts.add(a) trees.append(tree) return trees trees = build_trees(coeffs) exts = list(ordered(exts)) g, span, H = primitive_element(exts, ex=True, polys=True) root = sum([ s*ext for s, ext in zip(span, exts) ]) domain, g = QQ.algebraic_field((g, root)), g.rep.rep exts_dom = [domain.dtype.from_list(h, g, QQ) for h in H] exts_map = dict(zip(exts, exts_dom)) def convert_tree(tree): op, args = tree if op == 'Q': return domain.dtype.from_list([args], g, QQ) elif op == '+': return sum((convert_tree(a) for a in args), domain.zero) elif op == '*': # return prod(convert(a) for a in args) t = convert_tree(args[0]) for a in args[1:]: t *= convert_tree(a) return t elif op == 'e': return exts_map[args] else: raise RuntimeError result = [convert_tree(tree) for tree in trees] return domain, result def _construct_composite(coeffs, opt): """Handle composite domains, e.g.: ZZ[X], QQ[X], ZZ(X), QQ(X). """ numers, denoms = [], [] for coeff in coeffs: numer, denom = coeff.as_numer_denom() numers.append(numer) denoms.append(denom) polys, gens = parallel_dict_from_basic(numers + denoms) # XXX: sorting if not gens: return None if opt.composite is None: if any(gen.is_number and gen.is_algebraic for gen in gens): return None # generators are number-like so lets better use EX all_symbols = set() for gen in gens: symbols = gen.free_symbols if all_symbols & symbols: return None # there could be algebraic relations between generators else: all_symbols |= symbols n = len(gens) k = len(polys)//2 numers = polys[:k] denoms = polys[k:] if opt.field: fractions = True else: fractions, zeros = False, (0,)*n for denom in denoms: if len(denom) > 1 or zeros not in denom: fractions = True break coeffs = set() if not fractions: for numer, denom in zip(numers, denoms): denom = denom[zeros] for monom, coeff in numer.items(): coeff /= denom coeffs.add(coeff) numer[monom] = coeff else: for numer, denom in zip(numers, denoms): coeffs.update(list(numer.values())) coeffs.update(list(denom.values())) rationals = floats = complexes = False float_numbers = [] for coeff in coeffs: if coeff.is_Rational: if not coeff.is_Integer: rationals = True elif coeff.is_Float: floats = True float_numbers.append(coeff) else: is_complex = pure_complex(coeff) if is_complex is not None: complexes = True x, y = is_complex if x.is_Rational and y.is_Rational: if not (x.is_Integer and y.is_Integer): rationals = True else: floats = True if x.is_Float: float_numbers.append(x) if y.is_Float: float_numbers.append(y) max_prec = max(c._prec for c in float_numbers) if float_numbers else 53 if floats and complexes: ground = ComplexField(prec=max_prec) elif floats: ground = RealField(prec=max_prec) elif complexes: if rationals: ground = QQ_I else: ground = ZZ_I elif rationals: ground = QQ else: ground = ZZ result = [] if not fractions: domain = ground.poly_ring(*gens) for numer in numers: for monom, coeff in numer.items(): numer[monom] = ground.from_sympy(coeff) result.append(domain(numer)) else: domain = ground.frac_field(*gens) for numer, denom in zip(numers, denoms): for monom, coeff in numer.items(): numer[monom] = ground.from_sympy(coeff) for monom, coeff in denom.items(): denom[monom] = ground.from_sympy(coeff) result.append(domain((numer, denom))) return domain, result def _construct_expression(coeffs, opt): """The last resort case, i.e. use the expression domain. """ domain, result = EX, [] for coeff in coeffs: result.append(domain.from_sympy(coeff)) return domain, result @public def construct_domain(obj, **args): """Construct a minimal domain for a list of expressions. Explanation =========== Given a list of normal SymPy expressions (of type :py:class:`~.Expr`) ``construct_domain`` will find a minimal :py:class:`~.Domain` that can represent those expressions. The expressions will be converted to elements of the domain and both the domain and the domain elements are returned. Parameters ========== obj: list or dict The expressions to build a domain for. **args: keyword arguments Options that affect the choice of domain. Returns ======= (K, elements): Domain and list of domain elements The domain K that can represent the expressions and the list or dict of domain elements representing the same expressions as elements of K. Examples ======== Given a list of :py:class:`~.Integer` ``construct_domain`` will return the domain :ref:`ZZ` and a list of integers as elements of :ref:`ZZ`. >>> from sympy import construct_domain, S >>> expressions = [S(2), S(3), S(4)] >>> K, elements = construct_domain(expressions) >>> K ZZ >>> elements [2, 3, 4] >>> type(elements[0]) # doctest: +SKIP <class 'int'> >>> type(expressions[0]) <class 'sympy.core.numbers.Integer'> If there are any :py:class:`~.Rational` then :ref:`QQ` is returned instead. >>> construct_domain([S(1)/2, S(3)/4]) (QQ, [1/2, 3/4]) If there are symbols then a polynomial ring :ref:`K[x]` is returned. >>> from sympy import symbols >>> x, y = symbols('x, y') >>> construct_domain([2*x + 1, S(3)/4]) (QQ[x], [2*x + 1, 3/4]) >>> construct_domain([2*x + 1, y]) (ZZ[x,y], [2*x + 1, y]) If any symbols appear with negative powers then a rational function field :ref:`K(x)` will be returned. >>> construct_domain([y/x, x/(1 - y)]) (ZZ(x,y), [y/x, -x/(y - 1)]) Irrational algebraic numbers will result in the :ref:`EX` domain by default. The keyword argument ``extension=True`` leads to the construction of an algebraic number field :ref:`QQ(a)`. >>> from sympy import sqrt >>> construct_domain([sqrt(2)]) (EX, [EX(sqrt(2))]) >>> construct_domain([sqrt(2)], extension=True) # doctest: +SKIP (QQ<sqrt(2)>, [ANP([1, 0], [1, 0, -2], QQ)]) See also ======== Domain Expr """ opt = build_options(args) if hasattr(obj, '__iter__'): if isinstance(obj, dict): if not obj: monoms, coeffs = [], [] else: monoms, coeffs = list(zip(*list(obj.items()))) else: coeffs = obj else: coeffs = [obj] coeffs = list(map(sympify, coeffs)) result = _construct_simple(coeffs, opt) if result is not None: if result is not False: domain, coeffs = result else: domain, coeffs = _construct_expression(coeffs, opt) else: if opt.composite is False: result = None else: result = _construct_composite(coeffs, opt) if result is not None: domain, coeffs = result else: domain, coeffs = _construct_expression(coeffs, opt) if hasattr(obj, '__iter__'): if isinstance(obj, dict): return domain, dict(list(zip(monoms, coeffs))) else: return domain, coeffs else: return domain, coeffs[0]
32f620da98bad582e9105d6a30400e5a6b18b1e72ce2ead0c2495fd9587a3d52
""" This module implements Holonomic Functions and various operations on them. """ from sympy import (Symbol, S, Dummy, Order, rf, I, solve, limit, Float, nsimplify, gamma) from sympy.core.compatibility import ordered from sympy.core.numbers import NaN, Infinity, NegativeInfinity from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import exp_polar, exp from sympy.functions.special.hyper import hyper, meijerg from sympy.integrals import meijerint from sympy.matrices import Matrix from sympy.polys.rings import PolyElement from sympy.polys.fields import FracElement from sympy.polys.domains import QQ, RR from sympy.polys.polyclasses import DMF from sympy.polys.polyroots import roots from sympy.polys.polytools import Poly from sympy.polys.matrices import DomainMatrix from sympy.printing import sstr from sympy.simplify.hyperexpand import hyperexpand from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, SingularityError, NotHolonomicError) def _find_nonzero_solution(r, homosys): ones = lambda shape: DomainMatrix.ones(shape, r.domain) particular, nullspace = r._solve(homosys) nullity = nullspace.shape[0] nullpart = ones((1, nullity)) * nullspace sol = (particular + nullpart).transpose() return sol def DifferentialOperators(base, generator): r""" This function is used to create annihilators using ``Dx``. Explanation =========== Returns an Algebra of Differential Operators also called Weyl Algebra and the operator for differentiation i.e. the ``Dx`` operator. Parameters ========== base: Base polynomial ring for the algebra. The base polynomial ring is the ring of polynomials in :math:`x` that will appear as coefficients in the operators. generator: Generator of the algebra which can be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> from sympy.holonomic.holonomic import DifferentialOperators >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] >>> Dx*x (1) + (x)*Dx """ ring = DifferentialOperatorAlgebra(base, generator) return (ring, ring.derivative_operator) class DifferentialOperatorAlgebra: r""" An Ore Algebra is a set of noncommutative polynomials in the intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. It follows the commutation rule: .. math :: Dxa = \sigma(a)Dx + \delta(a) for :math:`a \subset A`. Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A` is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`. If one takes the sigma as identity map and delta as the standard derivation then it becomes the algebra of Differential Operators also called a Weyl Algebra i.e. an algebra whose elements are Differential Operators. This class represents a Weyl Algebra and serves as the parent ring for Differential Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.holonomic import DifferentialOperators >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] See Also ======== DifferentialOperator """ def __init__(self, base, generator): # the base polynomial ring for the algebra self.base = base # the operator representing differentiation i.e. `Dx` self.derivative_operator = DifferentialOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = Symbol('Dx', commutative=False) else: if isinstance(generator, str): self.gen_symbol = Symbol(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Differential Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False class DifferentialOperator: """ Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to. Explanation =========== Takes a list of polynomials for each power of ``Dx`` and the parent ring which must be an instance of DifferentialOperatorAlgebra. A Differential Operator can be created easily using the operator ``Dx``. See examples below. Examples ======== >>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> DifferentialOperator([0, 1, x**2], R) (1)*Dx + (x**2)*Dx**2 >>> (x*Dx*x + 1 - Dx**2)**2 (2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): """ Parameters ========== list_of_poly: List of polynomials belonging to the base ring of the algebra. parent: Parent algebra of the operator. """ # the parent ring for this operator # must be an DifferentialOperatorAlgebra object self.parent = parent base = self.parent.base self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] # sequence of polynomials in x for each power of Dx # the list should not have trailing zeroes # represents the operator # convert the expressions into ring elements using from_sympy for i, j in enumerate(list_of_poly): if not isinstance(j, base.dtype): list_of_poly[i] = base.from_sympy(sympify(j)) else: list_of_poly[i] = base.from_sympy(base.to_sympy(j)) self.listofpoly = list_of_poly # highest power of `Dx` self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two DifferentialOperator and returns another DifferentialOperator instance using the commutation rule Dx*a = a*Dx + a' """ listofself = self.listofpoly if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiplies a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Dx^i * b def _mul_Dxi_b(b): sol1 = [self.parent.base.zero] sol2 = [] if isinstance(b, list): for i in b: sol1.append(i) sol2.append(i.diff()) else: sol1.append(self.parent.base.from_sympy(b)) sol2.append(self.parent.base.from_sympy(b).diff()) return _add_lists(sol1, sol2) for i in range(1, len(listofself)): # find Dx^i * b in ith iteration listofother = _mul_Dxi_b(listofother) # solution = solution + listofself[i] * (Dx^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return DifferentialOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(sympify(other)) sol = [] for j in self.listofpoly: sol.append(other * j) return DifferentialOperator(sol, self.parent) def __add__(self, other): if isinstance(other, DifferentialOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return DifferentialOperator(sol, self.parent) else: list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(sympify(other))] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return DifferentialOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __neg__(self): return -1 * self def __truediv__(self, other): return self * (S.One / other) def __pow__(self, n): if n == 1: return self if n == 0: return DifferentialOperator([self.parent.base.one], self.parent) # if self is `Dx` if self.listofpoly == self.parent.derivative_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return DifferentialOperator(sol, self.parent) # the general case else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) continue print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, DifferentialOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False def is_singular(self, x0): """ Checks if the differential equation is singular at x0. """ base = self.parent.base return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) class HolonomicFunction: r""" A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, initial conditions can also be provided along with the annihilator. Explanation =========== Holonomic functions have closure properties and thus forms a ring. Given two Holonomic Functions f and g, their sum, product, integral and derivative is also a Holonomic Function. For ordinary points initial condition should be a vector of values of the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. For regular singular points initial conditions can also be provided in this format: :math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` where s0, s1, ... are the roots of indicial equation and vectors :math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial terms of the associated power series. See Examples below. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x >>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) >>> p + q # annihilator of e^x + sin(x) HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) >>> p * q # annihilator of e^x * sin(x) HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) An example of initial conditions for regular singular points, the indicial equation has only one root `1/2`. >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() sqrt(x) To plot a Holonomic Function, one can use `.evalf()` for numerical computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. >>> import sympy.holonomic # doctest: +SKIP >>> from sympy import var, sin # doctest: +SKIP >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> import numpy as np # doctest: +SKIP >>> var("x") # doctest: +SKIP >>> r = np.linspace(1, 5, 100) # doctest: +SKIP >>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP >>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP >>> plt.show() # doctest: +SKIP """ _op_priority = 20 def __init__(self, annihilator, x, x0=0, y0=None): """ Parameters ========== annihilator: Annihilator of the Holonomic Function, represented by a `DifferentialOperator` object. x: Variable of the function. x0: The point at which initial conditions are stored. Generally an integer. y0: The initial condition. The proper format for the initial condition is described in class docstring. To make the function unique, length of the vector `y0` should be equal to or greater than the order of differential equation. """ # initial condition self.y0 = y0 # the point for initial conditions, default is zero. self.x0 = x0 # differential operator L such that L.f = 0 self.annihilator = annihilator self.x = x def __str__(self): if self._have_init_cond(): str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ sstr(self.x), sstr(self.x0), sstr(self.y0)) else: str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ sstr(self.x)) return str_sol __repr__ = __str__ def unify(self, other): """ Unifies the base polynomial ring of a given two Holonomic Functions. """ R1 = self.annihilator.parent.base R2 = other.annihilator.parent.base dom1 = R1.dom dom2 = R2.dom if R1 == R2: return (self, other) R = (dom1.unify(dom2)).old_poly_ring(self.x) newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] sol1 = DifferentialOperator(sol1, newparent) sol2 = DifferentialOperator(sol2, newparent) sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) return (sol1, sol2) def is_singularics(self): """ Returns True if the function have singular initial condition in the dictionary format. Returns False if the function have ordinary initial condition in the list format. Returns None for all other cases. """ if isinstance(self.y0, dict): return True elif isinstance(self.y0, list): return False def _have_init_cond(self): """ Checks if the function have initial condition. """ return bool(self.y0) def _singularics_to_ord(self): """ Converts a singular initial condition to ordinary if possible. """ a = list(self.y0)[0] b = self.y0[a] if len(self.y0) == 1 and a == int(a) and a > 0: y0 = [] a = int(a) for i in range(a): y0.append(S.Zero) y0 += [j * factorial(a + i) for i, j in enumerate(b)] return HolonomicFunction(self.annihilator, self.x, self.x0, y0) def __add__(self, other): # if the ground domains are different if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a + b deg1 = self.annihilator.order deg2 = other.annihilator.order dim = max(deg1, deg2) R = self.annihilator.parent.base K = R.get_field() rowsself = [self.annihilator] rowsother = [other.annihilator] gen = self.annihilator.parent.derivative_operator # constructing annihilators up to order dim for i in range(dim - deg1): diff1 = (gen * rowsself[-1]) rowsself.append(diff1) for i in range(dim - deg2): diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother # constructing the matrix of the ansatz r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(K.zero) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) # solving the linear system using gauss jordan solver r = DomainMatrix(r, (len(row), dim+1), K).transpose() homosys = DomainMatrix.zeros((dim+1, 1), K) sol = _find_nonzero_solution(r, homosys) # if a solution is not obtained then increasing the order by 1 in each # iteration while sol.is_zero_matrix: dim += 1 diff1 = (gen * rowsself[-1]) rowsself.append(diff1) diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(K.zero) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) # solving the linear system using gauss jordan solver r = DomainMatrix(r, (len(row), dim+1), K).transpose() homosys = DomainMatrix.zeros((dim+1, 1), K) sol = _find_nonzero_solution(r, homosys) # taking only the coefficients needed to multiply with `self` # can be also be done the other way by taking R.H.S and multiplying with # `other` sol = sol.flat()[:dim + 1 - deg1] sol1 = _normalize(sol, self.annihilator.parent) # annihilator of the solution sol = sol1 * (self.annihilator) sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol, self.x) # both the functions have ordinary initial conditions if self.is_singularics() == False and other.is_singularics() == False: # directly add the corresponding value if self.x0 == other.x0: # try to extended the initial conditions # using the annihilator y1 = _extend_y0(self, sol.order) y2 = _extend_y0(other, sol.order) y0 = [a + b for a, b in zip(y1, y2)] return HolonomicFunction(sol, self.x, self.x0, y0) else: # change the intiial conditions to a same point selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self + other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) + other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self + other.change_ics(self.x0) else: return self.change_ics(other.x0) + other if self.x0 != other.x0: return HolonomicFunction(sol, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: # convert the ordinary initial condition to singular. _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S.Zero: _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S.Zero: _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 # computing singular initial condition for the result # taking union of the series terms of both functions y0 = {} for i in y1: # add corresponding initial terms if the power # on `x` is same if i in y2: y0[i] = [a + b for a, b in zip(y1[i], y2[i])] else: y0[i] = y1[i] for i in y2: if not i in y1: y0[i] = y2[i] return HolonomicFunction(sol, self.x, self.x0, y0) def integrate(self, limits, initcond=False): """ Integrates the given holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) >>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) """ # to get the annihilator, just multiply by Dx from right D = self.annihilator.parent.derivative_operator # if the function have initial conditions of the series format if self.is_singularics() == True: r = self._singularics_to_ord() if r: return r.integrate(limits, initcond=initcond) # computing singular initial condition for the function # produced after integration. y0 = {} for i in self.y0: c = self.y0[i] c2 = [] for j in range(len(c)): if c[j] == 0: c2.append(S.Zero) # if power on `x` is -1, the integration becomes log(x) # TODO: Implement this case elif i + j + 1 == 0: raise NotImplementedError("logarithmic terms in the series are not supported") else: c2.append(c[j] / S(i + j + 1)) y0[i + 1] = c2 if hasattr(limits, "__iter__"): raise NotImplementedError("Definite integration for singular initial conditions") return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) # if no initial conditions are available for the function if not self._have_init_cond(): if initcond: return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero]) return HolonomicFunction(self.annihilator * D, self.x) # definite integral # initial conditions for the answer will be stored at point `a`, # where `a` is the lower limit of the integrand if hasattr(limits, "__iter__"): if len(limits) == 3 and limits[0] == self.x: x0 = self.x0 a = limits[1] b = limits[2] definite = True else: definite = False y0 = [S.Zero] y0 += self.y0 indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) if not definite: return indefinite_integral # use evalf to get the values at `a` if x0 != a: try: indefinite_expr = indefinite_integral.to_expr() except (NotHyperSeriesError, NotPowerSeriesError): indefinite_expr = None if indefinite_expr: lower = indefinite_expr.subs(self.x, a) if isinstance(lower, NaN): lower = indefinite_expr.limit(self.x, a) else: lower = indefinite_integral.evalf(a) if b == self.x: y0[0] = y0[0] - lower return HolonomicFunction(self.annihilator * D, self.x, x0, y0) elif S(b).is_Number: if indefinite_expr: upper = indefinite_expr.subs(self.x, b) if isinstance(upper, NaN): upper = indefinite_expr.limit(self.x, b) else: upper = indefinite_integral.evalf(b) return upper - lower # if the upper limit is `x`, the answer will be a function if b == self.x: return HolonomicFunction(self.annihilator * D, self.x, a, y0) # if the upper limits is a Number, a numerical value will be returned elif S(b).is_Number: try: s = HolonomicFunction(self.annihilator * D, self.x, a,\ y0).to_expr() indefinite = s.subs(self.x, b) if not isinstance(indefinite, NaN): return indefinite else: return s.limit(self.x, b) except (NotHyperSeriesError, NotPowerSeriesError): return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) return HolonomicFunction(self.annihilator * D, self.x) def diff(self, *args, **kwargs): r""" Differentiation of the given Holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() cos(x) >>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() 2*exp(2*x) See Also ======== .integrate() """ kwargs.setdefault('evaluate', True) if args: if args[0] != self.x: return S.Zero elif len(args) == 2: sol = self for i in range(args[1]): sol = sol.diff(args[0]) return sol ann = self.annihilator # if the function is constant. if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: return S.Zero # if the coefficient of y in the differential equation is zero. # a shifting is done to compute the answer in this case. elif ann.listofpoly[0] == ann.parent.base.zero: sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) if self._have_init_cond(): # if ordinary initial condition if self.is_singularics() == False: return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) # TODO: support for singular initial condition return HolonomicFunction(sol, self.x) else: return HolonomicFunction(sol, self.x) # the general algorithm R = ann.parent.base K = R.get_field() seq_dmf = [K.new(i.rep) for i in ann.listofpoly] # -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0 rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] rhs.insert(0, K.zero) # differentiate both lhs and rhs sol = _derivate_diff_eq(rhs) # add the term y' in lhs to rhs sol = _add_lists(sol, [K.zero, K.one]) sol = _normalize(sol[1:], self.annihilator.parent, negative=False) if not self._have_init_cond() or self.is_singularics() == True: return HolonomicFunction(sol, self.x) y0 = _extend_y0(self, sol.order + 1)[1:] return HolonomicFunction(sol, self.x, self.x0, y0) def __eq__(self, other): if self.annihilator == other.annihilator: if self.x == other.x: if self._have_init_cond() and other._have_init_cond(): if self.x0 == other.x0 and self.y0 == other.y0: return True else: return False else: return True else: return False else: return False def __mul__(self, other): ann_self = self.annihilator if not isinstance(other, HolonomicFunction): other = sympify(other) if other.has(self.x): raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") if not self._have_init_cond(): return self else: y0 = _extend_y0(self, ann_self.order) y1 = [] for j in y0: y1.append((Poly.new(j, self.x) * other).rep) return HolonomicFunction(ann_self, self.x, self.x0, y1) if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a * b ann_other = other.annihilator list_self = [] list_other = [] a = ann_self.order b = ann_other.order R = ann_self.parent.base K = R.get_field() for j in ann_self.listofpoly: list_self.append(K.new(j.rep)) for j in ann_other.listofpoly: list_other.append(K.new(j.rep)) # will be used to reduce the degree self_red = [-list_self[i] / list_self[a] for i in range(a)] other_red = [-list_other[i] / list_other[b] for i in range(b)] # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g) coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)] coeff_mul[0][0] = K.one # making the ansatz lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose() homo_sys = DomainMatrix.zeros((a*b, 1), K) sol = _find_nonzero_solution(lin_sys, homo_sys) # until a non trivial solution is found while sol.is_zero_matrix: # updating the coefficients Dx^i(f).Dx^j(g) for next degree for i in range(a - 1, -1, -1): for j in range(b - 1, -1, -1): coeff_mul[i][j + 1] += coeff_mul[i][j] coeff_mul[i + 1][j] += coeff_mul[i][j] if isinstance(coeff_mul[i][j], K.dtype): coeff_mul[i][j] = DMFdiff(coeff_mul[i][j]) else: coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) # reduce the terms to lower power using annihilators of f, g for i in range(a + 1): if not coeff_mul[i][b].is_zero: for j in range(b): coeff_mul[i][j] += other_red[j] * \ coeff_mul[i][b] coeff_mul[i][b] = K.zero # not d2 + 1, as that is already covered in previous loop for j in range(b): if not coeff_mul[a][j] == 0: for i in range(a): coeff_mul[i][j] += self_red[i] * \ coeff_mul[a][j] coeff_mul[a][j] = K.zero lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose() sol = _find_nonzero_solution(lin_sys, homo_sys) sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol_ann, self.x) if self.is_singularics() == False and other.is_singularics() == False: # if both the conditions are at same point if self.x0 == other.x0: # try to find more initial conditions y0_self = _extend_y0(self, sol_ann.order) y0_other = _extend_y0(other, sol_ann.order) # h(x0) = f(x0) * g(x0) y0 = [y0_self[0] * y0_other[0]] # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg) for i in range(1, min(len(y0_self), len(y0_other))): coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] for j in range(i + 1): for k in range(i + 1): if j + k == i: coeff[j][k] = binomial(i, j) sol = 0 for j in range(i + 1): for k in range(i + 1): sol += coeff[j][k]* y0_self[j] * y0_other[k] y0.append(sol) return HolonomicFunction(sol_ann, self.x, self.x0, y0) # if the points are different, consider one else: selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self * other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) * other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self * other.change_ics(self.x0) else: return self.change_ics(other.x0) * other if self.x0 != other.x0: return HolonomicFunction(sol_ann, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S.Zero: _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S.Zero: _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 y0 = {} # multiply every possible pair of the series terms for i in y1: for j in y2: k = min(len(y1[i]), len(y2[j])) c = [] for a in range(k): s = S.Zero for b in range(a + 1): s += y1[i][b] * y2[j][a - b] c.append(s) if not i + j in y0: y0[i + j] = c else: y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] return HolonomicFunction(sol_ann, self.x, self.x0, y0) __rmul__ = __mul__ def __sub__(self, other): return self + other * -1 def __rsub__(self, other): return self * -1 + other def __neg__(self): return -1 * self def __truediv__(self, other): return self * (S.One / other) def __pow__(self, n): if self.annihilator.order <= 1: ann = self.annihilator parent = ann.parent if self.y0 is None: y0 = None else: y0 = [list(self.y0)[0] ** n] p0 = ann.listofpoly[0] p1 = ann.listofpoly[1] p0 = (Poly.new(p0, self.x) * n).rep sol = [parent.base.to_sympy(i) for i in [p0, p1]] dd = DifferentialOperator(sol, parent) return HolonomicFunction(dd, self.x, self.x0, y0) if n < 0: raise NotHolonomicError("Negative Power on a Holonomic Function") if n == 0: Dx = self.annihilator.parent.derivative_operator return HolonomicFunction(Dx, self.x, S.Zero, [S.One]) if n == 1: return self else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def degree(self): """ Returns the highest power of `x` in the annihilator. """ sol = [i.degree() for i in self.annihilator.listofpoly] return max(sol) def composition(self, expr, *args, **kwargs): """ Returns function after composition of a holonomic function with an algebraic function. The method can't compute initial conditions for the result by itself, so they can be also be provided. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) >>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) See Also ======== from_hyper() """ R = self.annihilator.parent a = self.annihilator.order diff = expr.diff(self.x) listofpoly = self.annihilator.listofpoly for i, j in enumerate(listofpoly): if isinstance(j, self.annihilator.parent.base.dtype): listofpoly[i] = self.annihilator.parent.base.to_sympy(j) r = listofpoly[a].subs({self.x:expr}) subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a)) coeffs[0] = S.One system = [coeffs] homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose() sol = S.Zero while True: coeffs_next = [p.diff(self.x) for p in coeffs] for i in range(a - 1): coeffs_next[i + 1] += (coeffs[i] * diff) for i in range(a): coeffs_next[i] += (coeffs[-1] * subs[i] * diff) coeffs = coeffs_next # check for linear relations system.append(coeffs) sol, taus = (Matrix(system).transpose() ).gauss_jordan_solve(homogeneous) if sol.is_zero_matrix is not True: break tau = list(taus)[0] sol = sol.subs(tau, 1) sol = _normalize(sol[0:], R, negative=False) # if initial conditions are given for the resulting function if args: return HolonomicFunction(sol, self.x, args[0], args[1]) return HolonomicFunction(sol, self.x) def to_sequence(self, lb=True): r""" Finds recurrence relation for the coefficients in the series expansion of the function about :math:`x_0`, where :math:`x_0` is the point at which the initial condition is stored. Explanation =========== If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the smallest ``n`` for which the recurrence holds true. If the point :math:`x_0` is regular singular, a list of solutions in the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. Each tuple in this vector represents a recurrence relation :math:`R` associated with a root of the indicial equation ``p``. Conditions of a different format can also be provided in this case, see the docstring of HolonomicFunction class. If it's not possible to numerically compute a initial condition, it is returned as a symbol :math:`C_j`, denoting the coefficient of :math:`(x - x_0)^j` in the power series about :math:`x_0`. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() [(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] >>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() [(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() [(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] See Also ======== HolonomicFunction.series() References ========== .. [1] https://hal.inria.fr/inria-00070025/document .. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf """ if self.x0 != 0: return self.shift_x(self.x0).to_sequence() # check whether a power series exists if the point is singular if self.annihilator.is_singular(self.x0): return self._frobenius(lb=lb) dict1 = {} n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') # substituting each term of the form `x^k Dx^j` in the # annihilator, according to the formula below: # x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo)) # for explanation see [2]. for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k) in dict1: dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) else: dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = self.degree() # the recurrence relation holds for all values of # n greater than smallest_n, i.e. n >= smallest_n smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] # an appropriate shift of the recurrence for j in range(lower, upper + 1): if j in keylist: temp = S.Zero for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S.Zero) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n y0 = _extend_y0(self, order) u0 = [] # u(n) = y^n(0)/factorial(n) for i, j in enumerate(y0): u0.append(j / factorial(i)) # if sufficient conditions can't be computed then # try to use the series method i.e. # equate the coefficients of x^k in the equation formed by # substituting the series in differential equation, to zero. if len(u0) < order: for i in range(degree): eq = S.Zero for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S.Zero elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] def _frobenius(self, lb=True): # compute the roots of indicial equation indicialroots = self._indicial() reals = [] compl = [] for i in ordered(indicialroots.keys()): if i.is_real: reals.extend([i] * indicialroots[i]) else: a, b = i.as_real_imag() compl.extend([(i, a, b)] * indicialroots[i]) # sort the roots for a fixed ordering of solution compl.sort(key=lambda x : x[1]) compl.sort(key=lambda x : x[2]) reals.sort() # grouping the roots, roots differ by an integer are put in the same group. grp = [] for i in reals: intdiff = False if len(grp) == 0: grp.append([i]) continue for j in grp: if int(j[0] - i) == j[0] - i: j.append(i) intdiff = True break if not intdiff: grp.append([i]) # True if none of the roots differ by an integer i.e. # each element in group have only one member independent = True if all(len(i) == 1 for i in grp) else False allpos = all(i >= 0 for i in reals) allint = all(int(i) == i for i in reals) # if initial conditions are provided # then use them. if self.is_singularics() == True: rootstoconsider = [] for i in ordered(self.y0.keys()): for j in ordered(indicialroots.keys()): if j == i: rootstoconsider.append(i) elif allpos and allint: rootstoconsider = [min(reals)] elif independent: rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] elif not allint: rootstoconsider = [] for i in reals: if not int(i) == i: rootstoconsider.append(i) elif not allpos: if not self._have_init_cond() or S(self.y0[0]).is_finite == False: rootstoconsider = [min(reals)] else: posroots = [] for i in reals: if i >= 0: posroots.append(i) rootstoconsider = [min(posroots)] n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') finalsol = [] char = ord('C') for p in rootstoconsider: dict1 = {} for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k - i) in dict1: dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) else: dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = max([i[1] for i in dict1]) degree2 = min([i[1] for i in dict1]) smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] for j in range(lower, upper + 1): if j in keylist: temp = S.Zero for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S.Zero) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n u0 = [] if self.is_singularics() == True: u0 = self.y0[p] elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: y0 = _extend_y0(self, order + int(p)) # u(n) = y^n(0)/factorial(n) if len(y0) > int(p): for i in range(int(p), len(y0)): u0.append(y0[i] / factorial(i)) if len(u0) < order: for i in range(degree2, degree): eq = S.Zero for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S.Zero elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: letter = chr(char) + '_%s' %(i + j[0]) dummys[i + j[0]] = Symbol(letter) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) continue else: finalsol.append((HolonomicSequence(sol, u0), p)) continue for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) else: finalsol.append((HolonomicSequence(sol, u0), p)) char += 1 return finalsol def series(self, n=6, coefficient=False, order=True, _recur=None): r""" Finds the power series expansion of given holonomic function about :math:`x_0`. Explanation =========== A list of series might be returned if :math:`x_0` is a regular point with multiple roots of the indicial equation. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) See Also ======== HolonomicFunction.to_sequence() """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = [] for i in recurrence: sol.append(self.series(_recur=i)) return sol n = n - int(constantpower) l = len(recurrence.u0) - 1 k = recurrence.recurrence.order x = self.x x0 = self.x0 seq_dmp = recurrence.recurrence.listofpoly R = recurrence.recurrence.parent.base K = R.get_field() seq = [] for i, j in enumerate(seq_dmp): seq.append(K.new(j.rep)) sub = [-seq[i] / seq[k] for i in range(k)] sol = [i for i in recurrence.u0] if l + 1 >= n: pass else: # use the initial conditions to find the next term for i in range(l + 1 - k, n - k): coeff = S.Zero for j in range(k): if i + j >= 0: coeff += DMFsubs(sub[j], i) * sol[i + j] sol.append(coeff) if coefficient: return sol ser = S.Zero for i, j in enumerate(sol): ser += x**(i + constantpower) * j if order: ser += Order(x**(n + int(constantpower)), x) if x0 != 0: return ser.subs(x, x - x0) return ser def _indicial(self): """ Computes roots of the Indicial equation. """ if self.x0 != 0: return self.shift_x(self.x0)._indicial() list_coeff = self.annihilator.listofpoly R = self.annihilator.parent.base x = self.x s = R.zero y = R.one def _pole_degree(poly): root_all = roots(R.to_sympy(poly), x, filter='Z') if 0 in root_all.keys(): return root_all[0] else: return 0 degree = [j.degree() for j in list_coeff] degree = max(degree) inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) deg = lambda q: inf if q.is_zero else _pole_degree(q) b = deg(list_coeff[0]) for j in range(1, len(list_coeff)): b = min(b, deg(list_coeff[j]) - j) for i, j in enumerate(list_coeff): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 if - i - b <= 0 and degree - i - b >= 0: s = s + listofdmp[degree - i - b] * y y *= x - i return roots(R.to_sympy(s), x) def evalf(self, points, method='RK4', h=0.05, derivatives=False): r""" Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration. Explanation =========== The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical values will be computed at each point in this order :math:`x_1 --> x_2 --> x_3 ... --> x_n`. Returns values of the function at :math:`x_1, x_2, ... x_n` in a list. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') A straight line on the real axis from (0 to 1) >>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] Runge-Kutta 4th order on e^x from 0.1 to 1. Exact solution at 1 is 2.71828182845905 >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) [1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, 1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, 2.45960141378007, 2.71827974413517] Euler's method for the same >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') [1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601] One can also observe that the value obtained using Runge-Kutta 4th order is much more accurate than Euler's method. """ from sympy.holonomic.numerical import _evalf lp = False # if a point `b` is given instead of a mesh if not hasattr(points, "__iter__"): lp = True b = S(points) if self.x0 == b: return _evalf(self, [b], method=method, derivatives=derivatives)[-1] if not b.is_Number: raise NotImplementedError a = self.x0 if a > b: h = -h n = int((b - a) / h) points = [a + h] for i in range(n - 1): points.append(points[-1] + h) for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): if i == self.x0 or i in points: raise SingularityError(self, i) if lp: return _evalf(self, points, method=method, derivatives=derivatives)[-1] return _evalf(self, points, method=method, derivatives=derivatives) def change_x(self, z): """ Changes only the variable of Holonomic Function, for internal purposes. For composition use HolonomicFunction.composition() """ dom = self.annihilator.parent.base.dom R = dom.old_poly_ring(z) parent, _ = DifferentialOperators(R, 'Dx') sol = [] for j in self.annihilator.listofpoly: sol.append(R(j.rep)) sol = DifferentialOperator(sol, parent) return HolonomicFunction(sol, z, self.x0, self.y0) def shift_x(self, a): """ Substitute `x + a` for `x`. """ x = self.x listaftershift = self.annihilator.listofpoly base = self.annihilator.parent.base sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] sol = DifferentialOperator(sol, self.annihilator.parent) x0 = self.x0 - a if not self._have_init_cond(): return HolonomicFunction(sol, x) return HolonomicFunction(sol, x, x0, self.y0) def to_hyper(self, as_list=False, _recur=None): r""" Returns a hypergeometric function (or linear combination of them) representing the given holonomic function. Explanation =========== Returns an answer of the form: `a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...` This is very useful as one can now use ``hyperexpand`` to find the symbolic expressions/functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> # sin(x) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() x*hyper((), (3/2,), -x**2/4) >>> # exp(x) >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() hyper((), (), x) See Also ======== from_hyper, from_meijerg """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: smallest_n = recurrence[1] recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: smallest_n = recurrence[2] constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: smallest_n = recurrence[0][1] recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: smallest_n = recurrence[0][2] constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) for i in recurrence[1:]: sol += self.to_hyper(as_list=as_list, _recur=i) return sol u0 = recurrence.u0 r = recurrence.recurrence x = self.x x0 = self.x0 # order of the recurrence relation m = r.order # when no recurrence exists, and the power series have finite terms if m == 0: nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') sol = S.Zero for j, i in enumerate(nonzeroterms): if i < 0 or int(i) != i: continue i = int(i) if i < len(u0): if isinstance(u0[i], (PolyElement, FracElement)): u0[i] = u0[i].as_expr() sol += u0[i] * x**i else: sol += Symbol('C_%s' %j) * x**i if isinstance(sol, (PolyElement, FracElement)): sol = sol.as_expr() * x**constantpower else: sol = sol * x**constantpower if as_list: if x0 != 0: return [(sol.subs(x, x - x0), )] return [(sol, )] if x0 != 0: return sol.subs(x, x - x0) return sol if smallest_n + m > len(u0): raise NotImplementedError("Can't compute sufficient Initial Conditions") # check if the recurrence represents a hypergeometric series is_hyper = True for i in range(1, len(r.listofpoly)-1): if r.listofpoly[i] != r.parent.base.zero: is_hyper = False break if not is_hyper: raise NotHyperSeriesError(self, self.x0) a = r.listofpoly[0] b = r.listofpoly[-1] # the constant multiple of argument of hypergeometric function if isinstance(a.rep[0], (PolyElement, FracElement)): c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree())) else: c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree())) sol = 0 arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) # iterate through the initial conditions to find # the hypergeometric representation of the given # function. # The answer will be a linear combination # of different hypergeometric series which satisfies # the recurrence. if as_list: listofsol = [] for i in range(smallest_n + m): # if the recurrence relation doesn't hold for `n = i`, # then a Hypergeometric representation doesn't exist. # add the algebraic term a * x**i to the solution, # where a is u0[i] if i < smallest_n: if as_list: listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) else: sol += S(u0[i]) * x**i continue # if the coefficient u0[i] is zero, then the # independent hypergeomtric series starting with # x**i is not a part of the answer. if S(u0[i]) == 0: continue ap = [] bq = [] # substitute m * n + i for n for k in ordered(arg1.keys()): ap.extend([nsimplify((i - k) / m)] * arg1[k]) for k in ordered(arg2.keys()): bq.extend([nsimplify((i - k) / m)] * arg2[k]) # convention of (k + 1) in the denominator if 1 in bq: bq.remove(1) else: ap.append(1) if as_list: listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) else: sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i if as_list: return listofsol sol = sol * x**constantpower if x0 != 0: return sol.subs(x, x - x0) return sol def to_expr(self): """ Converts a Holonomic Function back to elementary functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() besselj(1, x) >>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() x*log(x + 1) + log(x + 1) + 1 """ return hyperexpand(self.to_hyper()).simplify() def change_ics(self, b, lenics=None): """ Changes the point `x0` to ``b`` for initial conditions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import symbols, sin, exp >>> x = symbols('x') >>> expr_to_holonomic(sin(x)).change_ics(1) HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) >>> expr_to_holonomic(exp(x)).change_ics(2) HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) """ symbolic = True if lenics is None and len(self.y0) > self.annihilator.order: lenics = len(self.y0) dom = self.annihilator.parent.base.domain try: sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) except (NotPowerSeriesError, NotHyperSeriesError): symbolic = False if symbolic and sol.x0 == b: return sol y0 = self.evalf(b, derivatives=True) return HolonomicFunction(self.annihilator, self.x, b, y0) def to_meijerg(self): """ Returns a linear combination of Meijer G-functions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import sin, cos, hyperexpand, log, symbols >>> x = symbols('x') >>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) sin(x) + cos(x) >>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() log(x) See Also ======== to_hyper() """ # convert to hypergeometric first rep = self.to_hyper(as_list=True) sol = S.Zero for i in rep: if len(i) == 1: sol += i[0] elif len(i) == 2: sol += i[0] * _hyper_to_meijerg(i[1]) return sol def from_hyper(func, x0=0, evalf=False): r""" Converts a hypergeometric function to holonomic. ``func`` is the Hypergeometric Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_hyper >>> from sympy import symbols, hyper, S >>> x = symbols('x') >>> from_hyper(hyper([], [S(3)/2], x**2/4)) HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) """ a = func.ap b = func.bq z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # generalized hypergeometric differential equation r1 = 1 for i in range(len(a)): r1 = r1 * (x * Dx + a[i]) r2 = Dx for i in range(len(b)): r2 = r2 * (x * Dx + b[i] - 1) sol = r1 - r2 simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) # return None if it is Infinite or NaN if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # if the function is known symbolically if not isinstance(simp, hyper): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: # if values don't exist at 0, then try to find initial # conditions at 1. If it doesn't exist at 1 too then # try 2 and so on. x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, hyper): x0 = 1 # use evalf if the function can't be simplified y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): """ Converts a Meijer G-function to Holonomic. ``func`` is the G-Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_meijerg >>> from sympy import symbols, meijerg, S >>> x = symbols('x') >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) """ a = func.ap b = func.bq n = len(func.an) m = len(func.bm) p = len(a) z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') # compute the differential equation satisfied by the # Meijer G-function. mnp = (-1)**(m + n - p) r1 = x * mnp for i in range(len(a)): r1 *= x * Dx + 1 - a[i] r2 = 1 for i in range(len(b)): r2 *= x * Dx - b[i] sol = r1 - r2 if not initcond: return HolonomicFunction(sol, x).composition(z) simp = hyperexpand(func) if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # computing initial conditions if not isinstance(simp, meijerg): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, meijerg): x0 = 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) x_1 = Dummy('x_1') _lookup_table = None domain_for_table = None from sympy.integrals.meijerint import _mytype def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): """ Converts a function or an expression to a holonomic function. Parameters ========== func: The expression to be converted. x: variable for the function. x0: point at which initial condition must be computed. y0: One can optionally provide initial condition if the method isn't able to do it automatically. lenics: Number of terms in the initial condition. By default it is equal to the order of the annihilator. domain: Ground domain for the polynomials in ``x`` appearing as coefficients in the annihilator. initcond: Set it false if you don't want the initial conditions to be computed. Examples ======== >>> from sympy.holonomic.holonomic import expr_to_holonomic >>> from sympy import sin, exp, symbols >>> x = symbols('x') >>> expr_to_holonomic(sin(x)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) >>> expr_to_holonomic(exp(x)) HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) See Also ======== sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table """ func = sympify(func) syms = func.free_symbols if not x: if len(syms) == 1: x= syms.pop() else: raise ValueError("Specify the variable for the function") elif x in syms: syms.remove(x) extra_syms = list(syms) if domain is None: if func.has(Float): domain = RR else: domain = QQ if len(extra_syms) != 0: domain = domain[extra_syms].get_field() # try to convert if the function is polynomial or rational solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) if solpoly: return solpoly # create the lookup table global _lookup_table, domain_for_table if not _lookup_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) elif domain != domain_for_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) # use the table directly to convert to Holonomic if func.is_Function: f = func.subs(x, x_1) t = _mytype(f, x_1) if t in _lookup_table: l = _lookup_table[t] sol = l[0][1].change_x(x) else: sol = _convert_meijerint(func, x, initcond=False, domain=domain) if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) if y0 or not initcond: sol = sol.composition(func.args[0]) if y0: sol.y0 = y0 sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return sol.composition(func.args[0], x0, _y0) # iterate through the expression recursively args = func.args f = func.func from sympy.core import Add, Mul, Pow sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) if f is Add: for i in range(1, len(args)): sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Mul: for i in range(1, len(args)): sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Pow: sol = sol**args[1] sol.x0 = x0 if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: return sol if sol.y0: return sol if not lenics: lenics = sol.annihilator.order if sol.annihilator.is_singular(x0): r = sol._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S.One: r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol.annihilator, x, x0, y0) _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) ## Some helper functions ## def _normalize(list_of, parent, negative=True): """ Normalize a given annihilator """ num = [] denom = [] base = parent.base K = base.get_field() lcm_denom = base.from_sympy(S.One) list_of_coeff = [] # convert polynomials to the elements of associated # fraction field for i, j in enumerate(list_of): if isinstance(j, base.dtype): list_of_coeff.append(K.new(j.rep)) elif not isinstance(j, K.dtype): list_of_coeff.append(K.from_sympy(sympify(j))) else: list_of_coeff.append(j) # corresponding numerators of the sequence of polynomials num.append(list_of_coeff[i].numer()) # corresponding denominators denom.append(list_of_coeff[i].denom()) # lcm of denominators in the coefficients for i in denom: lcm_denom = i.lcm(lcm_denom) if negative: lcm_denom = -lcm_denom lcm_denom = K.new(lcm_denom.rep) # multiply the coefficients with lcm for i, j in enumerate(list_of_coeff): list_of_coeff[i] = j * lcm_denom gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep) # gcd of numerators in the coefficients for i in num: gcd_numer = i.gcd(gcd_numer) gcd_numer = K.new(gcd_numer.rep) # divide all the coefficients by the gcd for i, j in enumerate(list_of_coeff): frac_ans = j / gcd_numer list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep) return DifferentialOperator(list_of_coeff, parent) def _derivate_diff_eq(listofpoly): """ Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 where a0, a1,... are polynomials or rational functions. The function returns b0, b1, b2... such that the differential equation b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the former equation. """ sol = [] a = len(listofpoly) - 1 sol.append(DMFdiff(listofpoly[0])) for i, j in enumerate(listofpoly[1:]): sol.append(DMFdiff(j) + listofpoly[i]) sol.append(listofpoly[a]) return sol def _hyper_to_meijerg(func): """ Converts a `hyper` to meijerg. """ ap = func.ap bq = func.bq ispoly = any(i <= 0 and int(i) == i for i in ap) if ispoly: return hyperexpand(func) z = func.args[2] # parameters of the `meijerg` function. an = (1 - i for i in ap) anp = () bm = (S.Zero, ) bmq = (1 - i for i in bq) k = S.One for i in bq: k = k * gamma(i) for i in ap: k = k / gamma(i) return k * meijerg(an, anp, bm, bmq, -z) def _add_lists(list1, list2): """Takes polynomial sequences of two annihilators a and b and returns the list of polynomials of sum of a and b. """ if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol def _extend_y0(Holonomic, n): """ Tries to find more initial conditions by substituting the initial value point in the differential equation. """ if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: return Holonomic.y0 annihilator = Holonomic.annihilator a = annihilator.order listofpoly = [] y0 = Holonomic.y0 R = annihilator.parent.base K = R.get_field() for i, j in enumerate(annihilator.listofpoly): if isinstance(j, annihilator.parent.base.dtype): listofpoly.append(K.new(j.rep)) if len(y0) < a or n <= len(y0): return y0 else: list_red = [-listofpoly[i] / listofpoly[a] for i in range(a)] if len(y0) > a: y1 = [y0[i] for i in range(a)] else: y1 = [i for i in y0] for i in range(n - a): sol = 0 for a, b in zip(y1, list_red): r = DMFsubs(b, Holonomic.x0) if not getattr(r, 'is_finite', True): return y0 if isinstance(r, (PolyElement, FracElement)): r = r.as_expr() sol += a * r y1.append(sol) list_red = _derivate_diff_eq(list_red) return y0 + y1[len(y0):] def DMFdiff(frac): # differentiate a DMF object represented as p/q if not isinstance(frac, DMF): return frac.diff() K = frac.ring p = K.numer(frac) q = K.denom(frac) sol_num = - p * q.diff() + q * p.diff() sol_denom = q**2 return K((sol_num.rep, sol_denom.rep)) def DMFsubs(frac, x0, mpm=False): # substitute the point x0 in DMF object of the form p/q if not isinstance(frac, DMF): return frac p = frac.num q = frac.den sol_p = S.Zero sol_q = S.Zero if mpm: from mpmath import mp for i, j in enumerate(reversed(p)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_p += j * x0**i for i, j in enumerate(reversed(q)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_q += j * x0**i if isinstance(sol_p, (PolyElement, FracElement)): sol_p = sol_p.as_expr() if isinstance(sol_q, (PolyElement, FracElement)): sol_q = sol_q.as_expr() return sol_p / sol_q def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): """ Converts polynomials, rationals and algebraic functions to holonomic. """ ispoly = func.is_polynomial() if not ispoly: israt = func.is_rational_function() else: israt = True if not (ispoly or israt): basepoly, ratexp = func.as_base_exp() if basepoly.is_polynomial() and ratexp.is_Number: if isinstance(ratexp, Float): ratexp = nsimplify(ratexp) m, n = ratexp.p, ratexp.q is_alg = True else: is_alg = False else: is_alg = True if not (ispoly or israt or is_alg): return None R = domain.old_poly_ring(x) _, Dx = DifferentialOperators(R, 'Dx') # if the function is constant if not func.has(x): return HolonomicFunction(Dx, x, 0, [func]) if ispoly: # differential equation satisfied by polynomial sol = func * Dx - func.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular: rep = R.from_sympy(func).rep for i, j in enumerate(reversed(rep)): if j == 0: continue else: coeff = list(reversed(rep))[i:] indicial = i break for i, j in enumerate(coeff): if isinstance(j, (PolyElement, FracElement)): coeff[i] = j.as_expr() y0 = {indicial: S(coeff)} elif israt: p, q = func.as_numer_denom() # differential equation satisfied by rational sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) elif is_alg: sol = n * (x / m) * Dx - 1 sol = HolonomicFunction(sol, x).composition(basepoly).annihilator is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular and \ (lenics is None or lenics <= 1): rep = R.from_sympy(basepoly).rep for i, j in enumerate(reversed(rep)): if j == 0: continue if isinstance(j, (PolyElement, FracElement)): j = j.as_expr() coeff = S(j)**ratexp indicial = S(i) * ratexp break if isinstance(coeff, (PolyElement, FracElement)): coeff = coeff.as_expr() y0 = {indicial: S([coeff])} if y0 or not initcond: return HolonomicFunction(sol, x, x0, y0) if not lenics: lenics = sol.order if sol.is_singular(x0): r = HolonomicFunction(sol, x, x0)._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S.One: r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol, x, x0, y0) y0 = _find_conditions(func, x, x0, lenics) while not y0: x0 += 1 y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol, x, x0, y0) def _convert_meijerint(func, x, initcond=True, domain=QQ): args = meijerint._rewrite1(func, x) if args: fac, po, g, _ = args else: return None # lists for sum of meijerg functions fac_list = [fac * i[0] for i in g] t = po.as_base_exp() s = t[1] if t[0] == x else S.Zero po_list = [s + i[1] for i in g] G_list = [i[2] for i in g] # finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z) def _shift(func, s): z = func.args[-1] if z.has(I): z = z.subs(exp_polar, exp) d = z.collect(x, evaluate=False) b = list(d)[0] a = d[b] t = b.as_base_exp() b = t[1] if t[0] == x else S.Zero r = s / b an = (i + r for i in func.args[0][0]) ap = (i + r for i in func.args[0][1]) bm = (i + r for i in func.args[1][0]) bq = (i + r for i in func.args[1][1]) return a**-r, meijerg((an, ap), (bm, bq), z) coeff, m = _shift(G_list[0], po_list[0]) sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) # add all the meijerg functions after converting to holonomic for i in range(1, len(G_list)): coeff, m = _shift(G_list[i], po_list[i]) sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) return sol def _create_table(table, domain=QQ): """ Creates the look-up table. For a similar implementation see meijerint._create_lookup_table. """ def add(formula, annihilator, arg, x0=0, y0=[]): """ Adds a formula in the dictionary """ table.setdefault(_mytype(formula, x_1), []).append((formula, HolonomicFunction(annihilator, arg, x0, y0))) R = domain.old_poly_ring(x_1) _, Dx = DifferentialOperators(R, 'Dx') from sympy import (sin, cos, exp, log, erf, sqrt, pi, sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi) # add some basic functions add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) add(exp(x_1), Dx - 1, x_1, 0, 1) add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) def _find_conditions(func, x, x0, order): y0 = [] for i in range(order): val = func.subs(x, x0) if isinstance(val, NaN): val = limit(func, x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) func = func.diff(x) return y0
8173996d6542f955d72f7f80c53b9937fca1292602ddd8f33a282ac3c2f5db8d
"""Transform a string with Python-like source code into SymPy expression. """ from tokenize import (generate_tokens, untokenize, TokenError, NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE) from keyword import iskeyword import ast import unicodedata from io import StringIO from sympy.assumptions.ask import AssumptionKeys from sympy.core.compatibility import iterable from sympy.core.basic import Basic from sympy.core import Symbol from sympy.core.function import arity, Function from sympy.utilities.misc import filldedent, func_name def _token_splittable(token): """ Predicate for whether a token name can be split into multiple tokens. A token is splittable if it does not contain an underscore character and it is not the name of a Greek letter. This is used to implicitly convert expressions like 'xyz' into 'x*y*z'. """ if '_' in token: return False else: try: return not unicodedata.lookup('GREEK SMALL LETTER ' + token) except KeyError: pass if len(token) > 1: return True return False def _token_callable(token, local_dict, global_dict, nextToken=None): """ Predicate for whether a token name represents a callable function. Essentially wraps ``callable``, but looks up the token name in the locals and globals. """ func = local_dict.get(token[1]) if not func: func = global_dict.get(token[1]) return callable(func) and not isinstance(func, Symbol) def _add_factorial_tokens(name, result): if result == [] or result[-1][1] == '(': raise TokenError() beginning = [(NAME, name), (OP, '(')] end = [(OP, ')')] diff = 0 length = len(result) for index, token in enumerate(result[::-1]): toknum, tokval = token i = length - index - 1 if tokval == ')': diff += 1 elif tokval == '(': diff -= 1 if diff == 0: if i - 1 >= 0 and result[i - 1][0] == NAME: return result[:i - 1] + beginning + result[i - 1:] + end else: return result[:i] + beginning + result[i:] + end return result class AppliedFunction: """ A group of tokens representing a function and its arguments. `exponent` is for handling the shorthand sin^2, ln^2, etc. """ def __init__(self, function, args, exponent=None): if exponent is None: exponent = [] self.function = function self.args = args self.exponent = exponent self.items = ['function', 'args', 'exponent'] def expand(self): """Return a list of tokens representing the function""" result = [] result.append(self.function) result.extend(self.args) return result def __getitem__(self, index): return getattr(self, self.items[index]) def __repr__(self): return "AppliedFunction(%s, %s, %s)" % (self.function, self.args, self.exponent) class ParenthesisGroup(list): """List of tokens representing an expression in parentheses.""" pass def _flatten(result): result2 = [] for tok in result: if isinstance(tok, AppliedFunction): result2.extend(tok.expand()) else: result2.append(tok) return result2 def _group_parentheses(recursor): def _inner(tokens, local_dict, global_dict): """Group tokens between parentheses with ParenthesisGroup. Also processes those tokens recursively. """ result = [] stacks = [] stacklevel = 0 for token in tokens: if token[0] == OP: if token[1] == '(': stacks.append(ParenthesisGroup([])) stacklevel += 1 elif token[1] == ')': stacks[-1].append(token) stack = stacks.pop() if len(stacks) > 0: # We don't recurse here since the upper-level stack # would reprocess these tokens stacks[-1].extend(stack) else: # Recurse here to handle nested parentheses # Strip off the outer parentheses to avoid an infinite loop inner = stack[1:-1] inner = recursor(inner, local_dict, global_dict) parenGroup = [stack[0]] + inner + [stack[-1]] result.append(ParenthesisGroup(parenGroup)) stacklevel -= 1 continue if stacklevel: stacks[-1].append(token) else: result.append(token) if stacklevel: raise TokenError("Mismatched parentheses") return result return _inner def _apply_functions(tokens, local_dict, global_dict): """Convert a NAME token + ParenthesisGroup into an AppliedFunction. Note that ParenthesisGroups, if not applied to any function, are converted back into lists of tokens. """ result = [] symbol = None for tok in tokens: if tok[0] == NAME: symbol = tok result.append(tok) elif isinstance(tok, ParenthesisGroup): if symbol and _token_callable(symbol, local_dict, global_dict): result[-1] = AppliedFunction(symbol, tok) symbol = None else: result.extend(tok) else: symbol = None result.append(tok) return result def _implicit_multiplication(tokens, local_dict, global_dict): """Implicitly adds '*' tokens. Cases: - Two AppliedFunctions next to each other ("sin(x)cos(x)") - AppliedFunction next to an open parenthesis ("sin x (cos x + 1)") - A close parenthesis next to an AppliedFunction ("(x+2)sin x")\ - A close parenthesis next to an open parenthesis ("(x+2)(x+3)") - AppliedFunction next to an implicitly applied function ("sin(x)cos x") """ result = [] skip = False for tok, nextTok in zip(tokens, tokens[1:]): result.append(tok) if skip: skip = False continue if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME: # Dotted name. Do not do implicit multiplication skip = True continue if (isinstance(tok, AppliedFunction) and isinstance(nextTok, AppliedFunction)): result.append((OP, '*')) elif (isinstance(tok, AppliedFunction) and nextTok[0] == OP and nextTok[1] == '('): # Applied function followed by an open parenthesis if tok.function[1] == "Function": result[-1].function = (result[-1].function[0], 'Symbol') result.append((OP, '*')) elif (tok[0] == OP and tok[1] == ')' and isinstance(nextTok, AppliedFunction)): # Close parenthesis followed by an applied function result.append((OP, '*')) elif (tok[0] == OP and tok[1] == ')' and nextTok[0] == NAME): # Close parenthesis followed by an implicitly applied function result.append((OP, '*')) elif (tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '('): # Close parenthesis followed by an open parenthesis result.append((OP, '*')) elif (isinstance(tok, AppliedFunction) and nextTok[0] == NAME): # Applied function followed by implicitly applied function result.append((OP, '*')) elif (tok[0] == NAME and not _token_callable(tok, local_dict, global_dict) and nextTok[0] == OP and nextTok[1] == '('): # Constant followed by parenthesis result.append((OP, '*')) elif (tok[0] == NAME and not _token_callable(tok, local_dict, global_dict) and nextTok[0] == NAME and not _token_callable(nextTok, local_dict, global_dict)): # Constant followed by constant result.append((OP, '*')) elif (tok[0] == NAME and not _token_callable(tok, local_dict, global_dict) and (isinstance(nextTok, AppliedFunction) or nextTok[0] == NAME)): # Constant followed by (implicitly applied) function result.append((OP, '*')) if tokens: result.append(tokens[-1]) return result def _implicit_application(tokens, local_dict, global_dict): """Adds parentheses as needed after functions.""" result = [] appendParen = 0 # number of closing parentheses to add skip = 0 # number of tokens to delay before adding a ')' (to # capture **, ^, etc.) exponentSkip = False # skipping tokens before inserting parentheses to # work with function exponentiation for tok, nextTok in zip(tokens, tokens[1:]): result.append(tok) if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]): if _token_callable(tok, local_dict, global_dict, nextTok): result.append((OP, '(')) appendParen += 1 # name followed by exponent - function exponentiation elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'): if _token_callable(tok, local_dict, global_dict): exponentSkip = True elif exponentSkip: # if the last token added was an applied function (i.e. the # power of the function exponent) OR a multiplication (as # implicit multiplication would have added an extraneous # multiplication) if (isinstance(tok, AppliedFunction) or (tok[0] == OP and tok[1] == '*')): # don't add anything if the next token is a multiplication # or if there's already a parenthesis (if parenthesis, still # stop skipping tokens) if not (nextTok[0] == OP and nextTok[1] == '*'): if not(nextTok[0] == OP and nextTok[1] == '('): result.append((OP, '(')) appendParen += 1 exponentSkip = False elif appendParen: if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'): skip = 1 continue if skip: skip -= 1 continue result.append((OP, ')')) appendParen -= 1 if tokens: result.append(tokens[-1]) if appendParen: result.extend([(OP, ')')] * appendParen) return result def function_exponentiation(tokens, local_dict, global_dict): """Allows functions to be exponentiated, e.g. ``cos**2(x)``. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, function_exponentiation) >>> transformations = standard_transformations + (function_exponentiation,) >>> parse_expr('sin**4(x)', transformations=transformations) sin(x)**4 """ result = [] exponent = [] consuming_exponent = False level = 0 for tok, nextTok in zip(tokens, tokens[1:]): if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**': if _token_callable(tok, local_dict, global_dict): consuming_exponent = True elif consuming_exponent: if tok[0] == NAME and tok[1] == 'Function': tok = (NAME, 'Symbol') exponent.append(tok) # only want to stop after hitting ) if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(': consuming_exponent = False # if implicit multiplication was used, we may have )*( instead if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(': consuming_exponent = False del exponent[-1] continue elif exponent and not consuming_exponent: if tok[0] == OP: if tok[1] == '(': level += 1 elif tok[1] == ')': level -= 1 if level == 0: result.append(tok) result.extend(exponent) exponent = [] continue result.append(tok) if tokens: result.append(tokens[-1]) if exponent: result.extend(exponent) return result def split_symbols_custom(predicate): """Creates a transformation that splits symbol names. ``predicate`` should return True if the symbol name is to be split. For instance, to retain the default behavior but avoid splitting certain symbol names, a predicate like this would work: >>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable, ... standard_transformations, implicit_multiplication, ... split_symbols_custom) >>> def can_split(symbol): ... if symbol not in ('list', 'of', 'unsplittable', 'names'): ... return _token_splittable(symbol) ... return False ... >>> transformation = split_symbols_custom(can_split) >>> parse_expr('unsplittable', transformations=standard_transformations + ... (transformation, implicit_multiplication)) unsplittable """ def _split_symbols(tokens, local_dict, global_dict): result = [] split = False split_previous=False for tok in tokens: if split_previous: # throw out closing parenthesis of Symbol that was split split_previous=False continue split_previous=False if tok[0] == NAME and tok[1] in ['Symbol', 'Function']: split = True elif split and tok[0] == NAME: symbol = tok[1][1:-1] if predicate(symbol): tok_type = result[-2][1] # Symbol or Function del result[-2:] # Get rid of the call to Symbol i = 0 while i < len(symbol): char = symbol[i] if char in local_dict or char in global_dict: result.extend([(NAME, "%s" % char)]) elif char.isdigit(): char = [char] for i in range(i + 1, len(symbol)): if not symbol[i].isdigit(): i -= 1 break char.append(symbol[i]) char = ''.join(char) result.extend([(NAME, 'Number'), (OP, '('), (NAME, "'%s'" % char), (OP, ')')]) else: use = tok_type if i == len(symbol) else 'Symbol' result.extend([(NAME, use), (OP, '('), (NAME, "'%s'" % char), (OP, ')')]) i += 1 # Set split_previous=True so will skip # the closing parenthesis of the original Symbol split = False split_previous = True continue else: split = False result.append(tok) return result return _split_symbols #: Splits symbol names for implicit multiplication. #: #: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not #: split Greek character names, so ``theta`` will *not* become #: ``t*h*e*t*a``. Generally this should be used with #: ``implicit_multiplication``. split_symbols = split_symbols_custom(_token_splittable) def implicit_multiplication(result, local_dict, global_dict): """Makes the multiplication operator optional in most cases. Use this before :func:`implicit_application`, otherwise expressions like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_multiplication) >>> transformations = standard_transformations + (implicit_multiplication,) >>> parse_expr('3 x y', transformations=transformations) 3*x*y """ # These are interdependent steps, so we don't expose them separately for step in (_group_parentheses(implicit_multiplication), _apply_functions, _implicit_multiplication): result = step(result, local_dict, global_dict) result = _flatten(result) return result def implicit_application(result, local_dict, global_dict): """Makes parentheses optional in some cases for function calls. Use this after :func:`implicit_multiplication`, otherwise expressions like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_application) >>> transformations = standard_transformations + (implicit_application,) >>> parse_expr('cot z + csc z', transformations=transformations) cot(z) + csc(z) """ for step in (_group_parentheses(implicit_application), _apply_functions, _implicit_application,): result = step(result, local_dict, global_dict) result = _flatten(result) return result def implicit_multiplication_application(result, local_dict, global_dict): """Allows a slightly relaxed syntax. - Parentheses for single-argument method calls are optional. - Multiplication is implicit. - Symbol names can be split (i.e. spaces are not needed between symbols). - Functions can be exponentiated. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_multiplication_application) >>> parse_expr("10sin**2 x**2 + 3xyz + tan theta", ... transformations=(standard_transformations + ... (implicit_multiplication_application,))) 3*x*y*z + 10*sin(x**2)**2 + tan(theta) """ for step in (split_symbols, implicit_multiplication, implicit_application, function_exponentiation): result = step(result, local_dict, global_dict) return result def auto_symbol(tokens, local_dict, global_dict): """Inserts calls to ``Symbol``/``Function`` for undefined variables.""" result = [] prevTok = (None, None) tokens.append((None, None)) # so zip traverses all tokens for tok, nextTok in zip(tokens, tokens[1:]): tokNum, tokVal = tok nextTokNum, nextTokVal = nextTok if tokNum == NAME: name = tokVal if (name in ['True', 'False', 'None'] or iskeyword(name) # Don't convert attribute access or (prevTok[0] == OP and prevTok[1] == '.') # Don't convert keyword arguments or (prevTok[0] == OP and prevTok[1] in ('(', ',') and nextTokNum == OP and nextTokVal == '=') # the name has already been defined or name in local_dict and local_dict[name] is not None): result.append((NAME, name)) continue elif name in local_dict: local_dict.setdefault(None, set()).add(name) if nextTokVal == '(': local_dict[name] = Function(name) else: local_dict[name] = Symbol(name) result.append((NAME, name)) continue elif name in global_dict: obj = global_dict[name] if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj): result.append((NAME, name)) continue result.extend([ (NAME, 'Symbol' if nextTokVal != '(' else 'Function'), (OP, '('), (NAME, repr(str(name))), (OP, ')'), ]) else: result.append((tokNum, tokVal)) prevTok = (tokNum, tokVal) return result def lambda_notation(tokens, local_dict, global_dict): """Substitutes "lambda" with its Sympy equivalent Lambda(). However, the conversion doesn't take place if only "lambda" is passed because that is a syntax error. """ result = [] flag = False toknum, tokval = tokens[0] tokLen = len(tokens) if toknum == NAME and tokval == 'lambda': if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE: # In Python 3.6.7+, inputs without a newline get NEWLINE added to # the tokens result.extend(tokens) elif tokLen > 2: result.extend([ (NAME, 'Lambda'), (OP, '('), (OP, '('), (OP, ')'), (OP, ')'), ]) for tokNum, tokVal in tokens[1:]: if tokNum == OP and tokVal == ':': tokVal = ',' flag = True if not flag and tokNum == OP and tokVal in ['*', '**']: raise TokenError("Starred arguments in lambda not supported") if flag: result.insert(-1, (tokNum, tokVal)) else: result.insert(-2, (tokNum, tokVal)) else: result.extend(tokens) return result def factorial_notation(tokens, local_dict, global_dict): """Allows standard notation for factorial.""" result = [] nfactorial = 0 for toknum, tokval in tokens: if toknum == ERRORTOKEN: op = tokval if op == '!': nfactorial += 1 else: nfactorial = 0 result.append((OP, op)) else: if nfactorial == 1: result = _add_factorial_tokens('factorial', result) elif nfactorial == 2: result = _add_factorial_tokens('factorial2', result) elif nfactorial > 2: raise TokenError nfactorial = 0 result.append((toknum, tokval)) return result def convert_xor(tokens, local_dict, global_dict): """Treats XOR, ``^``, as exponentiation, ``**``.""" result = [] for toknum, tokval in tokens: if toknum == OP: if tokval == '^': result.append((OP, '**')) else: result.append((toknum, tokval)) else: result.append((toknum, tokval)) return result def repeated_decimals(tokens, local_dict, global_dict): """ Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90) Run this before auto_number. """ result = [] def is_digit(s): return all(i in '0123456789_' for i in s) # num will running match any DECIMAL [ INTEGER ] num = [] for toknum, tokval in tokens: if toknum == NUMBER: if (not num and '.' in tokval and 'e' not in tokval.lower() and 'j' not in tokval.lower()): num.append((toknum, tokval)) elif is_digit(tokval)and len(num) == 2: num.append((toknum, tokval)) elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]): # Python 2 tokenizes 00123 as '00', '123' # Python 3 tokenizes 01289 as '012', '89' num.append((toknum, tokval)) else: num = [] elif toknum == OP: if tokval == '[' and len(num) == 1: num.append((OP, tokval)) elif tokval == ']' and len(num) >= 3: num.append((OP, tokval)) elif tokval == '.' and not num: # handle .[1] num.append((NUMBER, '0.')) else: num = [] else: num = [] result.append((toknum, tokval)) if num and num[-1][1] == ']': # pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post, # and d/e = repetend result = result[:-len(num)] pre, post = num[0][1].split('.') repetend = num[2][1] if len(num) == 5: repetend += num[3][1] pre = pre.replace('_', '') post = post.replace('_', '') repetend = repetend.replace('_', '') zeros = '0'*len(post) post, repetends = [w.lstrip('0') for w in [post, repetend]] # or else interpreted as octal a = pre or '0' b, c = post or '0', '1' + zeros d, e = repetends, ('9'*len(repetend)) + zeros seq = [ (OP, '('), (NAME, 'Integer'), (OP, '('), (NUMBER, a), (OP, ')'), (OP, '+'), (NAME, 'Rational'), (OP, '('), (NUMBER, b), (OP, ','), (NUMBER, c), (OP, ')'), (OP, '+'), (NAME, 'Rational'), (OP, '('), (NUMBER, d), (OP, ','), (NUMBER, e), (OP, ')'), (OP, ')'), ] result.extend(seq) num = [] return result def auto_number(tokens, local_dict, global_dict): """ Converts numeric literals to use SymPy equivalents. Complex numbers use ``I``, integer literals use ``Integer``, and float literals use ``Float``. """ result = [] for toknum, tokval in tokens: if toknum == NUMBER: number = tokval postfix = [] if number.endswith('j') or number.endswith('J'): number = number[:-1] postfix = [(OP, '*'), (NAME, 'I')] if '.' in number or (('e' in number or 'E' in number) and not (number.startswith('0x') or number.startswith('0X'))): seq = [(NAME, 'Float'), (OP, '('), (NUMBER, repr(str(number))), (OP, ')')] else: seq = [(NAME, 'Integer'), (OP, '('), ( NUMBER, number), (OP, ')')] result.extend(seq + postfix) else: result.append((toknum, tokval)) return result def rationalize(tokens, local_dict, global_dict): """Converts floats into ``Rational``. Run AFTER ``auto_number``.""" result = [] passed_float = False for toknum, tokval in tokens: if toknum == NAME: if tokval == 'Float': passed_float = True tokval = 'Rational' result.append((toknum, tokval)) elif passed_float == True and toknum == NUMBER: passed_float = False result.append((STRING, tokval)) else: result.append((toknum, tokval)) return result def _transform_equals_sign(tokens, local_dict, global_dict): """Transforms the equals sign ``=`` to instances of Eq. This is a helper function for `convert_equals_signs`. Works with expressions containing one equals sign and no nesting. Expressions like `(1=2)=False` won't work with this and should be used with `convert_equals_signs`. Examples: 1=2 to Eq(1,2) 1*2=x to Eq(1*2, x) This does not deal with function arguments yet. """ result = [] if (OP, "=") in tokens: result.append((NAME, "Eq")) result.append((OP, "(")) for index, token in enumerate(tokens): if token == (OP, "="): result.append((OP, ",")) continue result.append(token) result.append((OP, ")")) else: result = tokens return result def convert_equals_signs(result, local_dict, global_dict): """ Transforms all the equals signs ``=`` to instances of Eq. Parses the equals signs in the expression and replaces them with appropriate Eq instances.Also works with nested equals signs. Does not yet play well with function arguments. For example, the expression `(x=y)` is ambiguous and can be interpreted as x being an argument to a function and `convert_equals_signs` won't work for this. See also ======== convert_equality_operators Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, convert_equals_signs) >>> parse_expr("1*2=x", transformations=( ... standard_transformations + (convert_equals_signs,))) Eq(2, x) >>> parse_expr("(1*2=x)=False", transformations=( ... standard_transformations + (convert_equals_signs,))) Eq(Eq(2, x), False) """ for step in (_group_parentheses(convert_equals_signs), _apply_functions, _transform_equals_sign): result = step(result, local_dict, global_dict) result = _flatten(result) return result #: Standard transformations for :func:`parse_expr`. #: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy #: datatypes and allows the use of standard factorial notation (e.g. ``x!``). standard_transformations = (lambda_notation, auto_symbol, repeated_decimals, auto_number, factorial_notation) def stringify_expr(s, local_dict, global_dict, transformations): """ Converts the string ``s`` to Python code, in ``local_dict`` Generally, ``parse_expr`` should be used. """ tokens = [] input_code = StringIO(s.strip()) for toknum, tokval, _, _, _ in generate_tokens(input_code.readline): tokens.append((toknum, tokval)) for transform in transformations: tokens = transform(tokens, local_dict, global_dict) return untokenize(tokens) def eval_expr(code, local_dict, global_dict): """ Evaluate Python code generated by ``stringify_expr``. Generally, ``parse_expr`` should be used. """ expr = eval( code, global_dict, local_dict) # take local objects in preference return expr def parse_expr(s, local_dict=None, transformations=standard_transformations, global_dict=None, evaluate=True): """Converts the string ``s`` to a SymPy expression, in ``local_dict`` Parameters ========== s : str The string to parse. local_dict : dict, optional A dictionary of local variables to use when parsing. global_dict : dict, optional A dictionary of global variables. By default, this is initialized with ``from sympy import *``; provide this parameter to override this behavior (for instance, to parse ``"Q & S"``). transformations : tuple, optional A tuple of transformation functions used to modify the tokens of the parsed expression before evaluation. The default transformations convert numeric literals into their SymPy equivalents, convert undefined variables into SymPy symbols, and allow the use of standard mathematical factorial notation (e.g. ``x!``). evaluate : bool, optional When False, the order of the arguments will remain as they were in the string and automatic simplification that would normally occur is suppressed. (see examples) Examples ======== >>> from sympy.parsing.sympy_parser import parse_expr >>> parse_expr("1/2") 1/2 >>> type(_) <class 'sympy.core.numbers.Half'> >>> from sympy.parsing.sympy_parser import standard_transformations,\\ ... implicit_multiplication_application >>> transformations = (standard_transformations + ... (implicit_multiplication_application,)) >>> parse_expr("2x", transformations=transformations) 2*x When evaluate=False, some automatic simplifications will not occur: >>> parse_expr("2**3"), parse_expr("2**3", evaluate=False) (8, 2**3) In addition the order of the arguments will not be made canonical. This feature allows one to tell exactly how the expression was entered: >>> a = parse_expr('1 + x', evaluate=False) >>> b = parse_expr('x + 1', evaluate=0) >>> a == b False >>> a.args (1, x) >>> b.args (x, 1) See Also ======== stringify_expr, eval_expr, standard_transformations, implicit_multiplication_application """ if local_dict is None: local_dict = {} elif not isinstance(local_dict, dict): raise TypeError('expecting local_dict to be a dict') if global_dict is None: global_dict = {} exec('from sympy import *', global_dict) elif not isinstance(global_dict, dict): raise TypeError('expecting global_dict to be a dict') transformations = transformations or () if transformations: if not iterable(transformations): raise TypeError( '`transformations` should be a list of functions.') for _ in transformations: if not callable(_): raise TypeError(filldedent(''' expected a function in `transformations`, not %s''' % func_name(_))) if arity(_) != 3: raise TypeError(filldedent(''' a transformation should be function that takes 3 arguments''')) code = stringify_expr(s, local_dict, global_dict, transformations) if not evaluate: code = compile(evaluateFalse(code), '<string>', 'eval') try: rv = eval_expr(code, local_dict, global_dict) # restore neutral definitions for names for i in local_dict.pop(None, ()): local_dict[i] = None return rv except Exception as e: # restore neutral definitions for names for i in local_dict.pop(None, ()): local_dict[i] = None raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}") def evaluateFalse(s): """ Replaces operators with the SymPy equivalent and sets evaluate=False. """ node = ast.parse(s) node = EvaluateFalseTransformer().visit(node) # node is a Module, we want an Expression node = ast.Expression(node.body[0].value) return ast.fix_missing_locations(node) class EvaluateFalseTransformer(ast.NodeTransformer): operators = { ast.Add: 'Add', ast.Mult: 'Mul', ast.Pow: 'Pow', ast.Sub: 'Add', ast.Div: 'Mul', ast.BitOr: 'Or', ast.BitAnd: 'And', ast.BitXor: 'Not', } def flatten(self, args, func): result = [] for arg in args: if isinstance(arg, ast.Call): arg_func = arg.func if isinstance(arg_func, ast.Call): arg_func = arg_func.func if arg_func.id == func: result.extend(self.flatten(arg.args, func)) else: result.append(arg) else: result.append(arg) return result def visit_BinOp(self, node): if node.op.__class__ in self.operators: sympy_class = self.operators[node.op.__class__] right = self.visit(node.right) left = self.visit(node.left) rev = False if isinstance(node.op, ast.Sub): right = ast.Call( func=ast.Name(id='Mul', ctx=ast.Load()), args=[ast.UnaryOp(op=ast.USub(), operand=ast.Num(1)), right], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) elif isinstance(node.op, ast.Div): if isinstance(node.left, ast.UnaryOp): left, right = right, left rev = True left = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) else: right = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) if rev: # undo reversal left, right = right, left new_node = ast.Call( func=ast.Name(id=sympy_class, ctx=ast.Load()), args=[left, right], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) if sympy_class in ('Add', 'Mul'): # Denest Add or Mul as appropriate new_node.args = self.flatten(new_node.args, sympy_class) return new_node return node
7bf392f0456769ee11a43f4411dac55b65a9b3f55a902672fc750ea276a02e9c
r"""Module that defines indexed objects The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a matrix element ``M[i, j]`` as in the following diagram:: 1) The Indexed class represents the entire indexed object. | ___|___ ' ' M[i, j] / \__\______ | | | | | 2) The Idx class represents indices; each Idx can | optionally contain information about its range. | 3) IndexedBase represents the 'stem' of an indexed object, here `M`. The stem used by itself is usually taken to represent the entire array. There can be any number of indices on an Indexed object. No transformation properties are implemented in these Base objects, but implicit contraction of repeated indices is supported. Note that the support for complicated (i.e. non-atomic) integer expressions as indices is limited. (This should be improved in future releases.) Examples ======== To express the above matrix element example you would write: >>> from sympy import symbols, IndexedBase, Idx >>> M = IndexedBase('M') >>> i, j = symbols('i j', cls=Idx) >>> M[i, j] M[i, j] Repeated indices in a product implies a summation, so to express a matrix-vector product in terms of Indexed objects: >>> x = IndexedBase('x') >>> M[i, j]*x[j] M[i, j]*x[j] If the indexed objects will be converted to component based arrays, e.g. with the code printers or the autowrap framework, you also need to provide (symbolic or numerical) dimensions. This can be done by passing an optional shape parameter to IndexedBase upon construction: >>> dim1, dim2 = symbols('dim1 dim2', integer=True) >>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2)) >>> A.shape (dim1, 2*dim1, dim2) >>> A[i, j, 3].shape (dim1, 2*dim1, dim2) If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices: >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> M[i, j].shape (m, n) >>> M[i, j].ranges [(0, m - 1), (0, n - 1)] The above can be compared with the following: >>> A[i, 2, j].shape (dim1, 2*dim1, dim2) >>> A[i, 2, j].ranges [(0, m - 1), None, (0, n - 1)] To analyze the structure of indexed expressions, you can use the methods get_indices() and get_contraction_structure(): >>> from sympy.tensor import get_indices, get_contraction_structure >>> get_indices(A[i, j, j]) ({i}, {}) >>> get_contraction_structure(A[i, j, j]) {(j,): {A[i, j, j]}} See the appropriate docstrings for a detailed explanation of the output. """ # TODO: (some ideas for improvement) # # o test and guarantee numpy compatibility # - implement full support for broadcasting # - strided arrays # # o more functions to analyze indexed expressions # - identify standard constructs, e.g matrix-vector product in a subexpression # # o functions to generate component based arrays (numpy and sympy.Matrix) # - generate a single array directly from Indexed # - convert simple sub-expressions # # o sophisticated indexing (possibly in subclasses to preserve simplicity) # - Idx with range smaller than dimension of Indexed # - Idx with stepsize != 1 # - Idx with step determined by function call from collections.abc import Iterable from sympy import Number from sympy.core.assumptions import StdFactKB from sympy.core import Expr, Tuple, sympify, S from sympy.core.symbol import _filter_assumptions, Symbol from sympy.core.compatibility import (is_sequence, NotIterable) from sympy.core.logic import fuzzy_bool, fuzzy_not from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.multipledispatch import dispatch class IndexException(Exception): pass class Indexed(Expr): """Represents a mathematical object with indices. >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j) A[i, j] It is recommended that ``Indexed`` objects be created by indexing ``IndexedBase``: ``IndexedBase('A')[i, j]`` instead of ``Indexed(IndexedBase('A'), i, j)``. >>> A = IndexedBase('A') >>> a_ij = A[i, j] # Prefer this, >>> b_ij = Indexed(A, i, j) # over this. >>> a_ij == b_ij True """ is_commutative = True is_Indexed = True is_symbol = True is_Atom = True def __new__(cls, base, *args, **kw_args): from sympy.utilities.misc import filldedent from sympy.tensor.array.ndim_array import NDimArray from sympy.matrices.matrices import MatrixBase if not args: raise IndexException("Indexed needs at least one index.") if isinstance(base, (str, Symbol)): base = IndexedBase(base) elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase): raise TypeError(filldedent(""" The base can only be replaced with a string, Symbol, IndexedBase or an object with a method for getting items (i.e. an object with a `__getitem__` method). """)) args = list(map(sympify, args)) if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]): if len(args) == 1: return base[args[0]] else: return base[args] obj = Expr.__new__(cls, base, *args, **kw_args) try: IndexedBase._set_assumptions(obj, base.assumptions0) except AttributeError: IndexedBase._set_assumptions(obj, {}) return obj def _hashable_content(self): return super()._hashable_content() + tuple(sorted(self.assumptions0.items())) @property def name(self): return str(self) @property def _diff_wrt(self): """Allow derivatives with respect to an ``Indexed`` object.""" return True def _eval_derivative(self, wrt): from sympy.tensor.array.ndim_array import NDimArray if isinstance(wrt, Indexed) and wrt.base == self.base: if len(self.indices) != len(wrt.indices): msg = "Different # of indices: d({!s})/d({!s})".format(self, wrt) raise IndexException(msg) result = S.One for index1, index2 in zip(self.indices, wrt.indices): result *= KroneckerDelta(index1, index2) return result elif isinstance(self.base, NDimArray): from sympy.tensor.array import derive_by_array return Indexed(derive_by_array(self.base, wrt), *self.args[1:]) else: if Tuple(self.indices).has(wrt): return S.NaN return S.Zero @property def assumptions0(self): return {k: v for k, v in self._assumptions.items() if v is not None} @property def base(self): """Returns the ``IndexedBase`` of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).base A >>> B = IndexedBase('B') >>> B == B[i, j].base True """ return self.args[0] @property def indices(self): """ Returns the indices of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).indices (i, j) """ return self.args[1:] @property def rank(self): """ Returns the rank of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j, k, l, m = symbols('i:m', cls=Idx) >>> Indexed('A', i, j).rank 2 >>> q = Indexed('A', i, j, k, l, m) >>> q.rank 5 >>> q.rank == len(q.indices) True """ return len(self.args) - 1 @property def shape(self): """Returns a list with dimensions of each index. Dimensions is a property of the array, not of the indices. Still, if the ``IndexedBase`` does not define a shape attribute, it is assumed that the ranges of the indices correspond to the shape of the array. >>> from sympy import IndexedBase, Idx, symbols >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', m) >>> A = IndexedBase('A', shape=(n, n)) >>> B = IndexedBase('B') >>> A[i, j].shape (n, n) >>> B[i, j].shape (m, m) """ from sympy.utilities.misc import filldedent if self.base.shape: return self.base.shape sizes = [] for i in self.indices: upper = getattr(i, 'upper', None) lower = getattr(i, 'lower', None) if None in (upper, lower): raise IndexException(filldedent(""" Range is not defined for all indices in: %s""" % self)) try: size = upper - lower + 1 except TypeError: raise IndexException(filldedent(""" Shape cannot be inferred from Idx with undefined range: %s""" % self)) sizes.append(size) return Tuple(*sizes) @property def ranges(self): """Returns a list of tuples with lower and upper range of each index. If an index does not define the data members upper and lower, the corresponding slot in the list contains ``None`` instead of a tuple. Examples ======== >>> from sympy import Indexed,Idx, symbols >>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges [(0, 1), (0, 3), (0, 7)] >>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges [(0, 2), (0, 2), (0, 2)] >>> x, y, z = symbols('x y z', integer=True) >>> Indexed('A', x, y, z).ranges [None, None, None] """ ranges = [] for i in self.indices: sentinel = object() upper = getattr(i, 'upper', sentinel) lower = getattr(i, 'lower', sentinel) if sentinel not in (upper, lower): ranges.append(Tuple(lower, upper)) else: ranges.append(None) return ranges def _sympystr(self, p): indices = list(map(p.doprint, self.indices)) return "%s[%s]" % (p.doprint(self.base), ", ".join(indices)) @property def free_symbols(self): base_free_symbols = self.base.free_symbols indices_free_symbols = { fs for i in self.indices for fs in i.free_symbols} if base_free_symbols: return {self} | base_free_symbols | indices_free_symbols else: return indices_free_symbols @property def expr_free_symbols(self): from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return {self} class IndexedBase(Expr, NotIterable): """Represent the base or stem of an indexed object The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed class. The __getitem__ method of IndexedBase returns an instance of Indexed. Alone, without indices, the IndexedBase class can be used as a notation for e.g. matrix equations, resembling what you could do with the Symbol class. But, the IndexedBase class adds functionality that is not available for Symbol instances: - An IndexedBase object can optionally store shape information. This can be used in to check array conformance and conditions for numpy broadcasting. (TODO) - An IndexedBase object implements syntactic sugar that allows easy symbolic representation of array operations, using implicit summation of repeated indices. - The IndexedBase object symbolizes a mathematical structure equivalent to arrays, and is recognized as such for code generation and automatic compilation and wrapping. >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> A = IndexedBase('A'); A A >>> type(A) <class 'sympy.tensor.indexed.IndexedBase'> When an IndexedBase object receives indices, it returns an array with named axes, represented by an Indexed object: >>> i, j = symbols('i j', integer=True) >>> A[i, j, 2] A[i, j, 2] >>> type(A[i, j, 2]) <class 'sympy.tensor.indexed.Indexed'> The IndexedBase constructor takes an optional shape argument. If given, it overrides any shape information in the indices. (But not the index ranges!) >>> m, n, o, p = symbols('m n o p', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> A[i, j].shape (m, n) >>> B = IndexedBase('B', shape=(o, p)) >>> B[i, j].shape (o, p) Assumptions can be specified with keyword arguments the same way as for Symbol: >>> A_real = IndexedBase('A', real=True) >>> A_real.is_real True >>> A != A_real True Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase: >>> I = symbols('I', integer=True) >>> C_inherit = IndexedBase(I) >>> C_explicit = IndexedBase('I', integer=True) >>> C_inherit == C_explicit True """ is_commutative = True is_symbol = True is_Atom = True @staticmethod def _set_assumptions(obj, assumptions): """Set assumptions on obj, making sure to apply consistent values.""" tmp_asm_copy = assumptions.copy() is_commutative = fuzzy_bool(assumptions.get('commutative', True)) assumptions['commutative'] = is_commutative obj._assumptions = StdFactKB(assumptions) obj._assumptions._generator = tmp_asm_copy # Issue #8873 def __new__(cls, label, shape=None, *, offset=S.Zero, strides=None, **kw_args): from sympy import MatrixBase, NDimArray assumptions, kw_args = _filter_assumptions(kw_args) if isinstance(label, str): label = Symbol(label, **assumptions) elif isinstance(label, Symbol): assumptions = label._merge(assumptions) elif isinstance(label, (MatrixBase, NDimArray)): return label elif isinstance(label, Iterable): return _sympify(label) else: label = _sympify(label) if is_sequence(shape): shape = Tuple(*shape) elif shape is not None: shape = Tuple(shape) if shape is not None: obj = Expr.__new__(cls, label, shape) else: obj = Expr.__new__(cls, label) obj._shape = shape obj._offset = offset obj._strides = strides obj._name = str(label) IndexedBase._set_assumptions(obj, assumptions) return obj @property def name(self): return self._name def _hashable_content(self): return super()._hashable_content() + tuple(sorted(self.assumptions0.items())) @property def assumptions0(self): return {k: v for k, v in self._assumptions.items() if v is not None} def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. if self.shape and len(self.shape) != len(indices): raise IndexException("Rank mismatch.") return Indexed(self, *indices, **kw_args) else: if self.shape and len(self.shape) != 1: raise IndexException("Rank mismatch.") return Indexed(self, indices, **kw_args) @property def shape(self): """Returns the shape of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase, Idx >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).shape (x, y) Note: If the shape of the ``IndexedBase`` is specified, it will override any shape information given by the indices. >>> A = IndexedBase('A', shape=(x, y)) >>> B = IndexedBase('B') >>> i = Idx('i', 2) >>> j = Idx('j', 1) >>> A[i, j].shape (x, y) >>> B[i, j].shape (2, 1) """ return self._shape @property def strides(self): """Returns the strided scheme for the ``IndexedBase`` object. Normally this is a tuple denoting the number of steps to take in the respective dimension when traversing an array. For code generation purposes strides='C' and strides='F' can also be used. strides='C' would mean that code printer would unroll in row-major order and 'F' means unroll in column major order. """ return self._strides @property def offset(self): """Returns the offset for the ``IndexedBase`` object. This is the value added to the resulting index when the 2D Indexed object is unrolled to a 1D form. Used in code generation. Examples ========== >>> from sympy.printing import ccode >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> l, m, n, o = symbols('l m n o', integer=True) >>> A = IndexedBase('A', strides=(l, m, n), offset=o) >>> i, j, k = map(Idx, 'ijk') >>> ccode(A[i, j, k]) 'A[l*i + m*j + n*k + o]' """ return self._offset @property def label(self): """Returns the label of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).label A """ return self.args[0] def _sympystr(self, p): return p.doprint(self.label) class Idx(Expr): """Represents an integer index as an ``Integer`` or integer expression. There are a number of ways to create an ``Idx`` object. The constructor takes two arguments: ``label`` An integer or a symbol that labels the index. ``range`` Optionally you can specify a range as either * ``Symbol`` or integer: This is interpreted as a dimension. Lower and upper bounds are set to ``0`` and ``range - 1``, respectively. * ``tuple``: The two elements are interpreted as the lower and upper bounds of the range, respectively. Note: bounds of the range are assumed to be either integer or infinite (oo and -oo are allowed to specify an unbounded range). If ``n`` is given as a bound, then ``n.is_integer`` must not return false. For convenience, if the label is given as a string it is automatically converted to an integer symbol. (Note: this conversion is not done for range or dimension arguments.) Examples ======== >>> from sympy import Idx, symbols, oo >>> n, i, L, U = symbols('n i L U', integer=True) If a string is given for the label an integer ``Symbol`` is created and the bounds are both ``None``: >>> idx = Idx('qwerty'); idx qwerty >>> idx.lower, idx.upper (None, None) Both upper and lower bounds can be specified: >>> idx = Idx(i, (L, U)); idx i >>> idx.lower, idx.upper (L, U) When only a single bound is given it is interpreted as the dimension and the lower bound defaults to 0: >>> idx = Idx(i, n); idx.lower, idx.upper (0, n - 1) >>> idx = Idx(i, 4); idx.lower, idx.upper (0, 3) >>> idx = Idx(i, oo); idx.lower, idx.upper (0, oo) """ is_integer = True is_finite = True is_real = True is_symbol = True is_Atom = True _diff_wrt = True def __new__(cls, label, range=None, **kw_args): from sympy.utilities.misc import filldedent if isinstance(label, str): label = Symbol(label, integer=True) label, range = list(map(sympify, (label, range))) if label.is_Number: if not label.is_integer: raise TypeError("Index is not an integer number.") return label if not label.is_integer: raise TypeError("Idx object requires an integer label.") elif is_sequence(range): if len(range) != 2: raise ValueError(filldedent(""" Idx range tuple must have length 2, but got %s""" % len(range))) for bound in range: if (bound.is_integer is False and bound is not S.Infinity and bound is not S.NegativeInfinity): raise TypeError("Idx object requires integer bounds.") args = label, Tuple(*range) elif isinstance(range, Expr): if range is not S.Infinity and fuzzy_not(range.is_integer): raise TypeError("Idx object requires an integer dimension.") args = label, Tuple(0, range - 1) elif range: raise TypeError(filldedent(""" The range must be an ordered iterable or integer SymPy expression.""")) else: args = label, obj = Expr.__new__(cls, *args, **kw_args) obj._assumptions["finite"] = True obj._assumptions["real"] = True return obj @property def label(self): """Returns the label (Integer or integer expression) of the Idx object. Examples ======== >>> from sympy import Idx, Symbol >>> x = Symbol('x', integer=True) >>> Idx(x).label x >>> j = Symbol('j', integer=True) >>> Idx(j).label j >>> Idx(j + 1).label j + 1 """ return self.args[0] @property def lower(self): """Returns the lower bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).lower 0 >>> Idx('j', 5).lower 0 >>> Idx('j').lower is None True """ try: return self.args[1][0] except IndexError: return @property def upper(self): """Returns the upper bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).upper 1 >>> Idx('j', 5).upper 4 >>> Idx('j').upper is None True """ try: return self.args[1][1] except IndexError: return def _sympystr(self, p): return p.doprint(self.label) @property def name(self): return self.label.name if self.label.is_Symbol else str(self.label) @property def free_symbols(self): return {self} @dispatch(Idx, Idx) def _eval_is_ge(lhs, rhs): # noqa:F811 other_upper = rhs if rhs.upper is None else rhs.upper other_lower = rhs if rhs.lower is None else rhs.lower if lhs.lower is not None and (lhs.lower >= other_upper) == True: return True if lhs.upper is not None and (lhs.upper < other_lower) == True: return False return None @dispatch(Idx, Number) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 other_upper = rhs other_lower = rhs if lhs.lower is not None and (lhs.lower >= other_upper) == True: return True if lhs.upper is not None and (lhs.upper < other_lower) == True: return False return None @dispatch(Number, Idx) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 other_upper = lhs other_lower = lhs if rhs.upper is not None and (rhs.upper <= other_lower) == True: return True if rhs.lower is not None and (rhs.lower > other_upper) == True: return False return None
a973cafcb8bfdb1b18efa83404b61cea4a42886180a00bc3cc3911b9b2d6eb90
""" Boolean algebra module for SymPy """ from collections import defaultdict from itertools import chain, combinations, product from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.compatibility import ordered, as_int from sympy.core.decorators import sympify_method_args, sympify_return from sympy.core.function import Application, Derivative from sympy.core.numbers import Number from sympy.core.operations import LatticeOp from sympy.core.singleton import Singleton, S from sympy.core.sympify import converter, _sympify, sympify from sympy.core.kind import BooleanKind from sympy.utilities.iterables import sift, ibin from sympy.utilities.misc import filldedent def as_Boolean(e): """Like bool, return the Boolean value of an expression, e, which can be any instance of Boolean or bool. Examples ======== >>> from sympy import true, false, nan >>> from sympy.logic.boolalg import as_Boolean >>> from sympy.abc import x >>> as_Boolean(0) is false True >>> as_Boolean(1) is true True >>> as_Boolean(x) x >>> as_Boolean(2) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `2`. >>> as_Boolean(nan) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `nan`. """ from sympy.core.symbol import Symbol if e == True: return S.true if e == False: return S.false if isinstance(e, Symbol): z = e.is_zero if z is None: return e return S.false if z else S.true if isinstance(e, Boolean): return e raise TypeError('expecting bool or Boolean, not `%s`.' % e) @sympify_method_args class Boolean(Basic): """A boolean object is an object for which logic operations make sense.""" __slots__ = () kind = BooleanKind @sympify_return([('other', 'Boolean')], NotImplemented) def __and__(self, other): return And(self, other) __rand__ = __and__ @sympify_return([('other', 'Boolean')], NotImplemented) def __or__(self, other): return Or(self, other) __ror__ = __or__ def __invert__(self): """Overloading for ~""" return Not(self) @sympify_return([('other', 'Boolean')], NotImplemented) def __rshift__(self, other): return Implies(self, other) @sympify_return([('other', 'Boolean')], NotImplemented) def __lshift__(self, other): return Implies(other, self) __rrshift__ = __lshift__ __rlshift__ = __rshift__ @sympify_return([('other', 'Boolean')], NotImplemented) def __xor__(self, other): return Xor(self, other) __rxor__ = __xor__ def equals(self, other): """ Returns True if the given formulas have the same truth table. For two formulas to be equal they must have the same literals. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import And, Or, Not >>> (A >> B).equals(~B >> ~A) True >>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C))) False >>> Not(And(A, Not(A))).equals(Or(B, Not(B))) False """ from sympy.logic.inference import satisfiable from sympy.core.relational import Relational if self.has(Relational) or other.has(Relational): raise NotImplementedError('handling of relationals') return self.atoms() == other.atoms() and \ not satisfiable(Not(Equivalent(self, other))) def to_nnf(self, simplify=True): # override where necessary return self def as_set(self): """ Rewrites Boolean expression in terms of real sets. Examples ======== >>> from sympy import Symbol, Eq, Or, And >>> x = Symbol('x', real=True) >>> Eq(x, 0).as_set() FiniteSet(0) >>> (x > 0).as_set() Interval.open(0, oo) >>> And(-2 < x, x < 2).as_set() Interval.open(-2, 2) >>> Or(x < -2, 2 < x).as_set() Union(Interval.open(-oo, -2), Interval.open(2, oo)) """ from sympy.calculus.util import periodicity from sympy.core.relational import Relational free = self.free_symbols if len(free) == 1: x = free.pop() reps = {} for r in self.atoms(Relational): if periodicity(r, x) not in (0, None): s = r._eval_as_set() if s in (S.EmptySet, S.UniversalSet, S.Reals): reps[r] = s.as_relational(x) continue raise NotImplementedError(filldedent(''' as_set is not implemented for relationals with periodic solutions ''')) return self.subs(reps)._eval_as_set() else: raise NotImplementedError("Sorry, as_set has not yet been" " implemented for multivariate" " expressions") @property def binary_symbols(self): from sympy.core.relational import Eq, Ne return set().union(*[i.binary_symbols for i in self.args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) def _eval_refine(self, assumptions): from sympy.assumptions import ask ret = ask(self, assumptions) if ret is True: return true elif ret is False: return false return None class BooleanAtom(Boolean): """ Base class of BooleanTrue and BooleanFalse. """ is_Boolean = True is_Atom = True _op_priority = 11 # higher than Expr def simplify(self, *a, **kw): return self def expand(self, *a, **kw): return self @property def canonical(self): return self def _noop(self, other=None): raise TypeError('BooleanAtom not allowed in this context.') __add__ = _noop __radd__ = _noop __sub__ = _noop __rsub__ = _noop __mul__ = _noop __rmul__ = _noop __pow__ = _noop __rpow__ = _noop __truediv__ = _noop __rtruediv__ = _noop __mod__ = _noop __rmod__ = _noop _eval_power = _noop # /// drop when Py2 is no longer supported def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __gt__ = __lt__ __ge__ = __lt__ # \\\ class BooleanTrue(BooleanAtom, metaclass=Singleton): """ SymPy version of True, a singleton that can be accessed via S.true. This is the SymPy version of True, for use in the logic module. The primary advantage of using true instead of True is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Notes ===== There is liable to be some confusion as to when ``True`` should be used and when ``S.true`` should be used in various contexts throughout SymPy. An important thing to remember is that ``sympify(True)`` returns ``S.true``. This means that for the most part, you can just use ``True`` and it will automatically be converted to ``S.true`` when necessary, similar to how you can generally use 1 instead of ``S.One``. The rule of thumb is: "If the boolean in question can be replaced by an arbitrary symbolic ``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``. Otherwise, use ``True``" In other words, use ``S.true`` only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the ``.args`` of any expression, then it must necessarily be ``S.true`` instead of ``True``, as elements of ``.args`` must be ``Basic``. On the other hand, ``==`` is not a symbolic operation in SymPy, since it always returns ``True`` or ``False``, and does so in terms of structural equality rather than mathematical, so it should return ``True``. The assumptions system should use ``True`` and ``False``. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in doubt, use ``True``. "``S.true == True is True``." While "``S.true is True``" is ``False``, "``S.true == True``" is ``True``, so if there is any doubt over whether a function or expression will return ``S.true`` or ``True``, just use ``==`` instead of ``is`` to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use ``if x`` instead of ``if x is True``. To quote PEP 8: Don't compare boolean values to ``True`` or ``False`` using ``==``. * Yes: ``if greeting:`` * No: ``if greeting == True:`` * Worse: ``if greeting is True:`` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(True) True >>> _ is True, _ is true (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) See Also ======== sympy.logic.boolalg.BooleanFalse """ def __bool__(self): return True def __hash__(self): return hash(True) @property def negated(self): return S.false def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet """ return S.UniversalSet class BooleanFalse(BooleanAtom, metaclass=Singleton): """ SymPy version of False, a singleton that can be accessed via S.false. This is the SymPy version of False, for use in the logic module. The primary advantage of using false instead of False is that shorthand boolean operations like ~ and >> will work as expected on this class, whereas with False they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Notes ====== See the notes section in :py:class:`sympy.logic.boolalg.BooleanTrue` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(False) False >>> _ is False, _ is false (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for false but a bitwise result for False >>> ~false, ~False (True, -1) >>> false >> false, False >> False (True, 0) See Also ======== sympy.logic.boolalg.BooleanTrue """ def __bool__(self): return False def __hash__(self): return hash(False) @property def negated(self): return S.true def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet """ return S.EmptySet true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for And, Or, Not, etc. """ is_Boolean = True def _eval_simplify(self, **kwargs): rv = self.func(*[a.simplify(**kwargs) for a in self.args]) return simplify_logic(rv) def simplify(self, **kwargs): from sympy.simplify.simplify import simplify return simplify(self, **kwargs) def __lt__(self, other): from sympy.utilities.misc import filldedent raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __ge__ = __lt__ __gt__ = __lt__ @classmethod def binary_check_and_simplify(self, *args): from sympy.core.relational import Relational, Eq, Ne args = [as_Boolean(i) for i in args] bin = set().union(*[i.binary_symbols for i in args]) rel = set().union(*[i.atoms(Relational) for i in args]) reps = {} for x in bin: for r in rel: if x in bin and x in r.free_symbols: if isinstance(r, (Eq, Ne)): if not ( S.true in r.args or S.false in r.args): reps[r] = S.false else: raise TypeError(filldedent(''' Incompatible use of binary symbol `%s` as a real variable in `%s` ''' % (x, r))) return [i.subs(reps) for i in args] def to_nnf(self, simplify=True): return self._to_nnf(*self.args, simplify=simplify) def to_anf(self, deep=True): return self._to_anf(*self.args, deep=deep) @classmethod def _to_nnf(cls, *args, **kwargs): simplify = kwargs.get('simplify', True) argset = set() for arg in args: if not is_literal(arg): arg = arg.to_nnf(simplify) if simplify: if isinstance(arg, cls): arg = arg.args else: arg = (arg,) for a in arg: if Not(a) in argset: return cls.zero argset.add(a) else: argset.add(arg) return cls(*argset) @classmethod def _to_anf(cls, *args, **kwargs): deep = kwargs.get('deep', True) argset = set() for arg in args: if deep: if not is_literal(arg) or isinstance(arg, Not): arg = arg.to_anf(deep=deep) argset.add(arg) else: argset.add(arg) return cls(*argset, remove_true=False) # the diff method below is copied from Expr class def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) def _eval_derivative(self, x): from sympy.core.relational import Eq from sympy.functions.elementary.piecewise import Piecewise if x in self.binary_symbols: return Piecewise( (0, Eq(self.subs(x, 0), self.subs(x, 1))), (1, True)) elif x in self.free_symbols: # not implemented, see https://www.encyclopediaofmath.org/ # index.php/Boolean_differential_calculus pass else: return S.Zero def _apply_patternbased_simplification(self, rv, patterns, measure, dominatingvalue, replacementvalue=None): """ Replace patterns of Relational Parameters ========== rv : Expr Boolean expression patterns : tuple Tuple of tuples, with (pattern to simplify, simplified pattern) measure : function Simplification measure dominatingvalue : boolean or None The dominating value for the function of consideration. For example, for And S.false is dominating. As soon as one expression is S.false in And, the whole expression is S.false. replacementvalue : boolean or None, optional The resulting value for the whole expression if one argument evaluates to dominatingvalue. For example, for Nand S.false is dominating, but in this case the resulting value is S.true. Default is None. If replacementvalue is None and dominatingvalue is not None, replacementvalue = dominatingvalue """ from sympy.core.relational import Relational, _canonical if replacementvalue is None and dominatingvalue is not None: replacementvalue = dominatingvalue # Use replacement patterns for Relationals changed = True Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if len(Rel) <= 1: return rv Rel, nonRealRel = sift(Rel, lambda i: all(s.is_real is not False for s in i.free_symbols), binary=True) Rel = [i.canonical for i in Rel] while changed and len(Rel) >= 2: changed = False # Sort based on ordered Rel = list(ordered(Rel)) # Create a list of possible replacements results = [] # Try all combinations for ((i, pi), (j, pj)) in combinations(enumerate(Rel), 2): for k, (pattern, simp) in enumerate(patterns): res = [] # use SymPy matching oldexpr = rv.func(pi, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing first relational # This and the rest should not be required with a better # canonical oldexpr = rv.func(pi.reversed, pj) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing second relational oldexpr = rv.func(pi, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) # Try reversing both relationals oldexpr = rv.func(pi.reversed, pj.reversed) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) if res: for tmpres, oldexpr in res: # we have a matching, compute replacement np = simp.subs(tmpres) if np == dominatingvalue: # if dominatingvalue, the whole expression # will be replacementvalue return replacementvalue # add replacement if not isinstance(np, ITE): # We only want to use ITE replacements if # they simplify to a relational costsaving = measure(oldexpr) - measure(np) if costsaving > 0: results.append((costsaving, (i, j, np))) if results: # Sort results based on complexity results = list(reversed(sorted(results, key=lambda pair: pair[0]))) # Replace the one providing most simplification cost, replacement = results[0] i, j, newrel = replacement # Remove the old relationals del Rel[j] del Rel[i] if dominatingvalue is None or newrel != ~dominatingvalue: # Insert the new one (no need to insert a value that will # not affect the result) Rel.append(newrel) # We did change something so try again changed = True rv = rv.func(*([_canonical(i) for i in ordered(Rel)] + nonRel + nonRealRel)) return rv class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, giving False immediately if any of them are False, and True if they are all True. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y x & y Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): args = BooleanFunction.binary_check_and_simplify(*args) args = LatticeOp._new_args_filter(args, And) newargs = [] rel = set() for x in ordered(args): if x.is_Relational: c = x.canonical if c in rel: continue elif c.negated.canonical in rel: return [S.false] else: rel.add(c) newargs.append(x) return newargs def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == False: return S.false elif i != True: args.append(i) if bad is not None: # let it raise bad.subs(old, new) return self.func(*args) def _eval_simplify(self, **kwargs): from sympy.core.relational import Equality, Relational from sympy.solvers.solveset import linear_coeffs # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, And): return rv # simplify args that are equalities involving # symbols so x == 0 & x == y -> x==0 & y == 0 Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if not Rel: return rv eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True) if not eqs: return rv measure, ratio = kwargs['measure'], kwargs['ratio'] reps = {} sifted = {} if eqs: # group by length of free symbols sifted = sift(ordered([ (i.free_symbols, i) for i in eqs]), lambda x: len(x[0])) eqs = [] while 1 in sifted: for free, e in sifted.pop(1): x = free.pop() if e.lhs != x or x in e.rhs.free_symbols: try: m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) enew = e.func(x, -b/m) if measure(enew) <= ratio*measure(e): e = enew else: eqs.append(e) continue except ValueError: pass if x in reps: eqs.append(e.func(e.rhs, reps[x])) else: reps[x] = e.rhs eqs.append(e) resifted = defaultdict(list) for k in sifted: for f, e in sifted[k]: e = e.subs(reps) f = e.free_symbols resifted[len(f)].append((f, e)) sifted = resifted for k in sifted: eqs.extend([e for f, e in sifted[k]]) other = [ei.subs(reps) for ei in other] rv = rv.func(*([i.canonical for i in (eqs + other)] + nonRel)) patterns = simplify_patterns_and() return self._apply_patternbased_simplification(rv, patterns, measure, False) def _eval_as_set(self): from sympy.sets.sets import Intersection return Intersection(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nor(self, *args, **kwargs): return Nor(*[Not(arg) for arg in self.args]) def to_anf(self, deep=True): if deep: result = And._to_anf(*self.args, deep=deep) return distribute_xor_over_and(result) return self class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, giving True immediately if any of them are True, and False if they are all False. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y x | y Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in args: if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.true] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == True: return S.true elif i != False: args.append(i) if bad is not None: # let it raise bad.subs(old, new) return self.func(*args) def _eval_as_set(self): from sympy.sets.sets import Union return Union(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nand(self, *args, **kwargs): return Nand(*[Not(arg) for arg in self.args]) def _eval_simplify(self, **kwargs): # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, Or): return rv patterns = simplify_patterns_or() return self._apply_patternbased_simplification(rv, patterns, kwargs['measure'], S.true) def to_anf(self, deep=True): args = range(1, len(self.args) + 1) args = (combinations(self.args, j) for j in args) args = chain.from_iterable(args) # powerset args = (And(*arg) for arg in args) args = map(lambda x: to_anf(x, deep=deep) if deep else x, args) return Xor(*list(args), remove_true=False) class Not(BooleanFunction): """ Logical Not function (negation) Returns True if the statement is False Returns False if the statement is True Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x, A, B >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) ~x >>> ~x ~x >>> Not(And(Or(A, B), Or(~A, ~B))) ~((A | B) & (~A | ~B)) Notes ===== - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): if isinstance(arg, Number) or arg in (True, False): return false if arg else true if arg.is_Not: return arg.args[0] # Simplify Relational objects. if arg.is_Relational: return arg.negated def _eval_as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x') >>> Not(x > 0).as_set() Interval(-oo, 0) """ return self.args[0].as_set().complement(S.Reals) def to_nnf(self, simplify=True): if is_literal(self): return self expr = self.args[0] func, args = expr.func, expr.args if func == And: return Or._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Or: return And._to_nnf(*[~arg for arg in args], simplify=simplify) if func == Implies: a, b = args return And._to_nnf(a, ~b, simplify=simplify) if func == Equivalent: return And._to_nnf(Or(*args), Or(*[~arg for arg in args]), simplify=simplify) if func == Xor: result = [] for i in range(1, len(args)+1, 2): for neg in combinations(args, i): clause = [~s if s in neg else s for s in args] result.append(Or(*clause)) return And._to_nnf(*result, simplify=simplify) if func == ITE: a, b, c = args return And._to_nnf(Or(a, ~c), Or(~a, ~b), simplify=simplify) raise ValueError("Illegal operator %s in expression" % func) def to_anf(self, deep=True): return Xor._to_anf(true, self.args[0], deep=deep) class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y x ^ y Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, remove_true=True, **kwargs): argset = set() obj = super().__new__(cls, *args, **kwargs) for arg in obj._args: if isinstance(arg, Number) or arg in (True, False): if arg: arg = true else: continue if isinstance(arg, Xor): for a in arg.args: argset.remove(a) if a in argset else argset.add(a) elif arg in argset: argset.remove(arg) else: argset.add(arg) rel = [(r, r.canonical, r.negated.canonical) for r in argset if r.is_Relational] odd = False # is number of complimentary pairs odd? start 0 -> False remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: odd = ~odd break elif cj == c: break else: continue remove.append((r, rj)) if odd: argset.remove(true) if true in argset else argset.add(true) for a, b in remove: argset.remove(a) argset.remove(b) if len(argset) == 0: return false elif len(argset) == 1: return argset.pop() elif True in argset and remove_true: argset.remove(True) return Not(Xor(*argset)) else: obj._args = tuple(ordered(argset)) obj._argset = frozenset(argset) return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for i in range(0, len(self.args)+1, 2): for neg in combinations(self.args, i): clause = [~s if s in neg else s for s in self.args] args.append(Or(*clause)) return And._to_nnf(*args, simplify=simplify) def _eval_rewrite_as_Or(self, *args, **kwargs): a = self.args return Or(*[_convert_to_varsSOP(x, self.args) for x in _get_odd_parity_terms(len(a))]) def _eval_rewrite_as_And(self, *args, **kwargs): a = self.args return And(*[_convert_to_varsPOS(x, self.args) for x in _get_even_parity_terms(len(a))]) def _eval_simplify(self, **kwargs): # as standard simplify uses simplify_logic which writes things as # And and Or, we only simplify the partial expressions before using # patterns rv = self.func(*[a.simplify(**kwargs) for a in self.args]) if not isinstance(rv, Xor): # This shouldn't really happen here return rv patterns = simplify_patterns_xor() return self._apply_patternbased_simplification(rv, patterns, kwargs['measure'], None) class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) ~(x & y) """ @classmethod def eval(cls, *args): return Not(And(*args)) class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) ~(x | y) """ @classmethod def eval(cls, *args): return Not(Or(*args)) class Xnor(BooleanFunction): """ Logical XNOR function. Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xnor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xnor(True, False) False >>> Xnor(True, True) True >>> Xnor(True, False, True, True, False) False >>> Xnor(True, False, True, False) True """ @classmethod def eval(cls, *args): return Not(Xor(*args)) class Implies(BooleanFunction): """ Logical implication. A implies B is equivalent to !A v B Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(True if x else False) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A == True or A == False or B == True or B == False: return Or(Not(A), B) elif A == B: return S.true elif A.is_Relational and B.is_Relational: if A.canonical == B.canonical: return S.true if A.negated.canonical == B.canonical: return B else: return Basic.__new__(cls, *args) def to_nnf(self, simplify=True): a, b = self.args return Or._to_nnf(~a, b, simplify=simplify) def to_anf(self, deep=True): a, b = self.args return Xor._to_anf(true, a, And(a, b), deep=deep) class Equivalent(BooleanFunction): """ Equivalence relation. Equivalent(A, B) is True iff A and B are both True or both False Returns True if all of the arguments are logically equivalent. Returns False otherwise. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): from sympy.core.relational import Relational args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(True if x else False) rel = [] for r in argset: if isinstance(r, Relational): rel.append((r, r.canonical, r.negated.canonical)) remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: return false elif cj == c: remove.append((r, rj)) break for a, b in remove: argset.remove(a) argset.remove(b) argset.add(True) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return And(*[~arg for arg in argset]) _args = frozenset(argset) obj = super().__new__(cls, _args) obj._argset = _args return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for a, b in zip(self.args, self.args[1:]): args.append(Or(~a, b)) args.append(Or(~self.args[-1], self.args[0])) return And._to_nnf(*args, simplify=simplify) def to_anf(self, deep=True): a = And(*self.args) b = And(*[to_anf(Not(arg), deep=False) for arg in self.args]) b = distribute_xor_over_and(b) return Xor._to_anf(a, b, deep=deep) class ITE(BooleanFunction): """ If then else clause. ITE(A, B, C) evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans. Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) ITE(x, y, z) >>> ITE(True, x, y) x >>> ITE(False, x, y) y >>> ITE(x, y, y) y Trying to use non-Boolean args will generate a TypeError: >>> ITE(True, [], ()) Traceback (most recent call last): ... TypeError: expecting bool, Boolean or ITE, not `[]` """ def __new__(cls, *args, **kwargs): from sympy.core.relational import Eq, Ne if len(args) != 3: raise ValueError('expecting exactly 3 args') a, b, c = args # check use of binary symbols if isinstance(a, (Eq, Ne)): # in this context, we can evaluate the Eq/Ne # if one arg is a binary symbol and the other # is true/false b, c = map(as_Boolean, (b, c)) bin = set().union(*[i.binary_symbols for i in (b, c)]) if len(set(a.args) - bin) == 1: # one arg is a binary_symbols _a = a if a.lhs is S.true: a = a.rhs elif a.rhs is S.true: a = a.lhs elif a.lhs is S.false: a = ~a.rhs elif a.rhs is S.false: a = ~a.lhs else: # binary can only equal True or False a = S.false if isinstance(_a, Ne): a = ~a else: a, b, c = BooleanFunction.binary_check_and_simplify( a, b, c) rv = None if kwargs.get('evaluate', True): rv = cls.eval(a, b, c) if rv is None: rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False) return rv @classmethod def eval(cls, *args): from sympy.core.relational import Eq, Ne # do the args give a singular result? a, b, c = args if isinstance(a, (Ne, Eq)): _a = a if S.true in a.args: a = a.lhs if a.rhs is S.true else a.rhs elif S.false in a.args: a = ~a.lhs if a.rhs is S.false else ~a.rhs else: _a = None if _a is not None and isinstance(_a, Ne): a = ~a if a is S.true: return b if a is S.false: return c if b == c: return b else: # or maybe the results allow the answer to be expressed # in terms of the condition if b is S.true and c is S.false: return a if b is S.false and c is S.true: return Not(a) if [a, b, c] != args: return cls(a, b, c, evaluate=False) def to_nnf(self, simplify=True): a, b, c = self.args return And._to_nnf(Or(~a, b), Or(a, c), simplify=simplify) def _eval_as_set(self): return self.to_nnf().as_set() def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions import Piecewise return Piecewise((args[1], args[0]), (args[2], True)) class Exclusive(BooleanFunction): """ True if only one or no argument is true. ``Exclusive(A, B, C)`` is equivalent to ``~(A & B) & ~(A & C) & ~(B & C)``. Examples ======== >>> from sympy.logic.boolalg import Exclusive >>> Exclusive(False, False, False) True >>> Exclusive(False, True, False) True >>> Exclusive(False, True, True) False """ @classmethod def eval(cls, *args): and_args = [] for a, b in combinations(args, 2): and_args.append(Not(And(a, b))) return And(*and_args) # end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in the expr s. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset({A, B}) >>> conjuncts(A | B) frozenset({A | B}) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in the sentence s. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset({A, B}) >>> disjuncts(A & B) frozenset({A & B}) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) (A | ~B) & (A | ~C) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence s consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) (B & C) | (C & ~A) """ return _distribute((expr, Or, And)) def distribute_xor_over_and(expr): """ Given a sentence s consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not >>> from sympy.abc import A, B, C >>> distribute_xor_over_and(And(Xor(Not(A), B), C)) (B & C) ^ (C & ~A) """ return _distribute((expr, Xor, And)) def _distribute(info): """ Distributes info[1] over info[2] with respect to info[0]. """ if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args])), remove_true=False) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args])), remove_true=False) else: return info[0] def to_anf(expr, deep=True): r""" Converts expr to Algebraic Normal Form (ANF). ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF. A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it can be: - purely true, - purely false, - conjunction of variables, - exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. If ``deep`` is ``False``, arguments of the boolean expression are considered variables, i.e. only the top-level expression is converted to ANF. Examples ======== >>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent >>> from sympy.logic.boolalg import to_anf >>> from sympy.abc import A, B, C >>> to_anf(Not(A)) A ^ True >>> to_anf(And(Or(A, B), Not(C))) A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C) >>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False) True ^ ~A ^ (~A & (Equivalent(B, C))) """ expr = sympify(expr) if is_anf(expr): return expr return expr.to_anf(deep=deep) def to_nnf(expr, simplify=True): """ Converts expr to Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplify is True, the result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C, D >>> from sympy.logic.boolalg import Not, Equivalent, to_nnf >>> to_nnf(Not((~A & ~B) | (C & D))) (A | B) & (~C | ~D) >>> to_nnf(Equivalent(A >> B, B >> A)) (A | ~B | (A & ~B)) & (B | ~A | (B & ~A)) """ if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence s to conjunctive normal form: ((A | ~B | ...) & (B | C | ...) & ...). If simplify is True, the expr is evaluated to its simplest CNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to True (default is False). Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) (D | ~A) & (D | ~B) >>> to_cnf((A | B) & (A | ~A), True) A | B """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'cnf', True, force=force) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) res = distribute_and_over_or(expr) return res def to_dnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence s to disjunctive normal form: ((A & ~B & ...) | (B & C & ...) | ...). If simplify is True, the expr is evaluated to its simplest DNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to True (default is False). Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) (A & B) | (B & C) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) A | C """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'dnf', True, force=force) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_anf(expr): r""" Checks if expr is in Algebraic Normal Form (ANF). A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it is purely true, purely false, conjunction of variables or exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. Examples ======== >>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf >>> from sympy.abc import A, B, C >>> is_anf(true) True >>> is_anf(A) True >>> is_anf(And(A, B, C)) True >>> is_anf(Xor(A, Not(B))) False """ expr = sympify(expr) if is_literal(expr) and not isinstance(expr, Not): return True if isinstance(expr, And): for arg in expr.args: if not arg.is_Symbol: return False return True elif isinstance(expr, Xor): for arg in expr.args: if isinstance(arg, And): for a in arg.args: if not a.is_Symbol: return False elif is_literal(arg): if isinstance(arg, Not): return False else: return False return True else: return False def is_nnf(expr, simplified=True): """ Checks if expr is in Negation Normal Form. A logical expression is in Negation Normal Form (NNF) if it contains only And, Or and Not, and Not is applied only to literals. If simplified is True, checks if result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import Not, is_nnf >>> is_nnf(A & B | ~C) True >>> is_nnf((A | ~A) & (B | C)) False >>> is_nnf((A | ~A) & (B | C), False) True >>> is_nnf(Not(A & B) | C) False >>> is_nnf((A >> B) & (B >> A)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) vals = function1.make_args(expr) if isinstance(expr, function1) else [expr] for lit in vals: if isinstance(lit, function2): vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit] for l in vals2: if is_literal(l) is False: return False elif is_literal(lit) is False: return False return True def eliminate_implications(expr): """ Change >>, <<, and Equivalent into &, |, and ~. That is, return an expression that is equivalent to s, but has only &, |, and ~ as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) B | ~A >>> eliminate_implications(Equivalent(A, B)) (A | ~B) & (B | ~A) >>> eliminate_implications(Equivalent(A, B, C)) (A | ~C) & (B | ~A) & (C | ~B) """ return to_nnf(expr, simplify=False) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> from sympy import Or, Q >>> from sympy.abc import A, B >>> from sympy.logic.boolalg import is_literal >>> is_literal(A) True >>> is_literal(~A) True >>> is_literal(Q.zero(A)) True >>> is_literal(A + B) True >>> is_literal(Or(A, B)) False """ from sympy.assumptions import AppliedPredicate if isinstance(expr, Not): return is_literal(expr.args[0]) elif expr in (True, False) or isinstance(expr, AppliedPredicate) or expr.is_Atom: return True elif not isinstance(expr, BooleanFunction) and all( (isinstance(expr, AppliedPredicate) or a.is_Atom) for a in expr.args): return True return False def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if isinstance(arg, Not): return -symbols[arg.args[0]] else: return symbols[arg] return [{append_symbol(arg, symbols) for arg in Or.make_args(c)} for c in clauses] def term_to_integer(term): """ Return an integer corresponding to the base-2 digits given by ``term``. Parameters ========== term : a string or list of ones and zeros Examples ======== >>> from sympy.logic.boolalg import term_to_integer >>> term_to_integer([1, 0, 0]) 4 >>> term_to_integer('100') 4 """ return int(''.join(list(map(str, list(term)))), 2) def integer_to_term(k, n_bits=None): """ Return a list of the base-2 digits in the integer, ``k``. Parameters ========== k : int n_bits : int If ``n_bits`` is given and the number of digits in the binary representation of ``k`` is smaller than ``n_bits`` then left-pad the list with 0s. Examples ======== >>> from sympy.logic.boolalg import integer_to_term >>> integer_to_term(4) [1, 0, 0] >>> integer_to_term(4, 6) [0, 0, 0, 1, 0, 0] """ s = '{0:0{1}b}'.format(abs(as_int(k)), as_int(abs(n_bits or 0))) return list(map(int, s)) def truth_table(expr, variables, input=True): """ Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values. Parameters ========== expr : string or boolean expression variables : list of variables input : boolean (default True) indicates whether to return the input combinations. Examples ======== >>> from sympy.logic.boolalg import truth_table >>> from sympy.abc import x,y >>> table = truth_table(x >> y, [x, y]) >>> for t in table: ... print('{0} -> {1}'.format(*t)) [0, 0] -> True [0, 1] -> True [1, 0] -> False [1, 1] -> True >>> table = truth_table(x | y, [x, y]) >>> list(table) [([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)] If input is false, truth_table returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output. >>> from sympy.logic.boolalg import integer_to_term >>> vars = [y, x] >>> values = truth_table(x >> y, vars, input=False) >>> values = list(values) >>> values [True, False, True, True] >>> for i, value in enumerate(values): ... print('{0} -> {1}'.format(list(zip( ... vars, integer_to_term(i, len(vars)))), value)) [(y, 0), (x, 0)] -> True [(y, 0), (x, 1)] -> False [(y, 1), (x, 0)] -> True [(y, 1), (x, 1)] -> True """ variables = [sympify(v) for v in variables] expr = sympify(expr) if not isinstance(expr, BooleanFunction) and not is_literal(expr): return table = product([0, 1], repeat=len(variables)) for term in table: term = list(term) value = expr.xreplace(dict(zip(variables, term))) if input: yield term, value else: yield value def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns -1. """ # Early termination seems to be faster than list comprehension, # at least for large examples. index = -1 for x, i in enumerate(minterm1): # zip(minterm1, minterm2) is slower if i != minterm2[x]: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for SOP). """ temp = [variables[n] if val == 1 else Not(variables[n]) for n, val in enumerate(minterm) if val != 3] return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for POS). """ temp = [variables[n] if val == 0 else Not(variables[n]) for n, val in enumerate(maxterm) if val != 3] return Or(*temp) def _convert_to_varsANF(term, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for ANF). Parameters ========== term : list of 1's and 0's (complementation patter) variables : list of variables """ temp = [variables[n] for n, t in enumerate(term) if t == 1] if not temp: return true return And(*temp) def _get_odd_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an odd number of ones. """ return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 1] def _get_even_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an even number of ones. """ return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 0] def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ if not terms: return [] simplified_terms = [] todo = list(range(len(terms))) # Count number of ones as _check_pair can only potentially match if there # is at most a difference of a single one def ones_count(term): return sum([1 for t in term if t == 1]) termdict = defaultdict(list) for n, term in enumerate(terms): ones = ones_count(term) termdict[ones].append(n) variables = len(terms[0]) for k in range(variables): for i in termdict[k]: for j in termdict[k+1]: index = _check_pair(terms[i], terms[j]) if index != -1: # Mark terms handled todo[i] = todo[j] = None # Copy old term newterm = terms[i][:] # Set differing position to don't care newterm[index] = 3 # Add if not already there if newterm not in simplified_terms: simplified_terms.append(newterm) if simplified_terms: # Further simplifications only among the new terms simplified_terms = _simplified_pairs(simplified_terms) # Add remaining, non-simplified, terms simplified_terms.extend( [terms[i] for i in [_ for _ in todo if _ is not None]]) return simplified_terms def _compare_term(minterm, term): """ Return True if a binary term is satisfied by the given term. Used for recognizing prime implicants. """ for m, t in zip(minterm, term): if t != 3 and m != t: return False return True def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ if not terms: return [] nterms = len(terms) nl1 = len(l1) # Create dominating matrix dommatrix = [[0]*nl1 for n in range(nterms)] for primei, prime in enumerate(l1): for termi, term in enumerate(terms): if _compare_term(term, prime): dommatrix[termi][primei] = 1 # Non-dominated prime implicants, dominated to be removed ndprimeimplicants = set(range(nl1)) # Non-dominated terms, dominated to be removed ndterms = set(range(nterms)) # Keep track if anything changed anythingchanged = True # Then, go again while anythingchanged: anythingchanged = False # Make copy for iteration oldndterms = ndterms.copy() # Filter matrix to only get non-dominated items filteredrows = [[dommatrix[rowi][i] for i in list(ndprimeimplicants)] for rowi in oldndterms] for n, rowi in enumerate(oldndterms): # Still non-dominated? if rowi in ndterms: row = filteredrows[n] for n2, row2i in enumerate(oldndterms): # Still non-dominated? if n != n2 and row2i in ndterms: if all(a >= b for (a, b) in zip(filteredrows[n2], row)): # row2 dominating row, remove row2 ndterms.remove(row2i) anythingchanged = True # Make copy for iteration oldndprimeimplicants = ndprimeimplicants.copy() # Filter matrix to only get non-dominated items filteredcols = [[dommatrix[i][coli] for i in list(ndterms)] for coli in oldndprimeimplicants] for n, coli in enumerate(oldndprimeimplicants): # Still non-dominated? if coli in ndprimeimplicants: col = filteredcols[n] for n2, col2i in enumerate(oldndprimeimplicants): # Still non-dominated? if coli != col2i and col2i in ndprimeimplicants: if all(a >= b for (a, b) in zip(col, filteredcols[n2])): # col dominating col2, remove col2 ndprimeimplicants.remove(col2i) anythingchanged = True return [l1[i] for i in ndprimeimplicants] def _input_to_binlist(inputlist, variables): binlist = [] bits = len(variables) for val in inputlist: if isinstance(val, int): binlist.append(ibin(val, bits)) elif isinstance(val, dict): nonspecvars = list(variables) for key in val.keys(): nonspecvars.remove(key) for t in product([0, 1], repeat=len(nonspecvars)): d = dict(zip(nonspecvars, t)) d.update(val) binlist.append([d[v] for v in variables]) elif isinstance(val, (list, tuple)): if len(val) != bits: raise ValueError("Each term must contain {} bits as there are" "\n{} variables (or be an integer)." "".format(bits, bits)) binlist.append(list(val)) else: raise TypeError("A term list can only contain lists," " ints or dicts.") return binlist def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (~w & ~x) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (~w & ~x) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> SOPform([w, x, y, z], minterms) (x & ~w) | (y & z & ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (w & y & z) | (~w & ~y) | (x & z & ~w) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) new = _simplified_pairs(minterms + dontcares) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> POSform([w, x, y, z], minterms) (x | y) & (x | z) & (~w | ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> POSform([w, x, y, z], minterms, dontcares) (w | x) & (y | ~w) & (z | ~y) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ variables = [sympify(v) for v in variables] if minterms == []: return false minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product([0, 1], repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) new = _simplified_pairs(maxterms + dontcares) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def ANFform(variables, truthvalues): """ The ANFform function converts the list of truth values to Algebraic Normal Form (ANF). The variables must be given as the first argument. Return True, False, logical And funciton (i.e., the "Zhegalkin monomial") or logical Xor function (i.e., the "Zhegalkin polynomial"). When True and False are represented by 1 and 0, respectively, then And is multiplication and Xor is addition. Formally a "Zhegalkin monomial" is the product (logical And) of a finite set of distinct variables, including the empty set whose product is denoted 1 (True). A "Zhegalkin polynomial" is the sum (logical Xor) of a set of Zhegalkin monomials, with the empty set denoted by 0 (False). Parameters ========== variables : list of variables truthvalues : list of 1's and 0's (result column of truth table) Examples ======== >>> from sympy.logic.boolalg import ANFform >>> from sympy.abc import x, y >>> ANFform([x], [1, 0]) x ^ True >>> ANFform([x, y], [0, 1, 1, 1]) x ^ y ^ (x & y) References ========== .. [2] https://en.wikipedia.org/wiki/Zhegalkin_polynomial """ n_vars = len(variables) n_values = len(truthvalues) if n_values != 2 ** n_vars: raise ValueError("The number of truth values must be equal to 2^%d, " "got %d" % (n_vars, n_values)) variables = [sympify(v) for v in variables] coeffs = anf_coeffs(truthvalues) terms = [] for i, t in enumerate(product([0, 1], repeat=n_vars)): if coeffs[i] == 1: terms.append(t) return Xor(*[_convert_to_varsANF(x, variables) for x in terms], remove_true=False) def anf_coeffs(truthvalues): """ Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF (i.e., the "Zhegalkin polynomial"). There are 2^n possible Zhegalkin monomials in n variables, since each monomial is fully specified by the presence or absence of each variable. We can enumerate all the monomials. For example, boolean function with four variables (a, b, c, d) can contain up to 2^4 = 16 monomials. The 13-th monomial is the product a & b & d, because 13 in binary is 1, 1, 0, 1. A given monomial's presence or absence in a polynomial corresponds to that monomial's coefficient being 1 or 0 respectively. Examples ======== >>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor >>> from sympy.abc import a, b, c >>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1] >>> coeffs = anf_coeffs(truthvalues) >>> coeffs [0, 1, 1, 0, 0, 0, 1, 0] >>> polynomial = Xor(*[ ... bool_monomial(k, [a, b, c]) ... for k, coeff in enumerate(coeffs) if coeff == 1 ... ]) >>> polynomial b ^ c ^ (a & b) """ s = '{:b}'.format(len(truthvalues)) n = len(s) - 1 if len(truthvalues) != 2**n: raise ValueError("The number of truth values must be a power of two, " "got %d" % len(truthvalues)) coeffs = [[v] for v in truthvalues] for i in range(n): tmp = [] for j in range(2 ** (n-i-1)): tmp.append(coeffs[2*j] + list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1]))) coeffs = tmp return coeffs[0] def bool_minterm(k, variables): """ Return the k-th minterm. Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to the direct form and 0 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation patter) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_minterm >>> from sympy.abc import x, y, z >>> bool_minterm([1, 0, 1], [x, y, z]) x & z & ~y >>> bool_minterm(6, [x, y, z]) x & y & ~z References ========== .. [3] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsSOP(k, variables) def bool_maxterm(k, variables): """ Return the k-th maxterm. Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm convention assigns the value 0 to the direct form and 1 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation pattern) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_maxterm >>> from sympy.abc import x, y, z >>> bool_maxterm([1, 0, 1], [x, y, z]) y | ~x | ~z >>> bool_maxterm(6, [x, y, z]) z | ~x | ~y References ========== .. [4] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsPOS(k, variables) def bool_monomial(k, variables): """ Return the k-th monomial. Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value 1 to the presence of variable and 0 to the absence of variable. Each boolean function can be uniquely represented by a Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin Polynomial of the boolean function with n variables can contain up to 2^n monomials. We can enumarate all the monomials. Each monomial is fully specified by the presence or absence of each variable. For example, boolean function with four variables (a, b, c, d) can contain up to 2^4 = 16 monomials. The 13-th monomial is the product a & b & d, because 13 in binary is 1, 1, 0, 1. Parameters ========== k : int or list of 1's and 0's variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_monomial >>> from sympy.abc import x, y, z >>> bool_monomial([1, 0, 1], [x, y, z]) x & z >>> bool_monomial(6, [x, y, z]) x & y """ if isinstance(k, int): k = integer_to_term(k, len(variables)) variables = list(map(sympify, variables)) return _convert_to_varsANF(k, variables) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(_find_predicates(i) for i in expr.args)) def simplify_logic(expr, form=None, deep=True, force=False): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : string or boolean expression form : string ('cnf' or 'dnf') or None (default). If 'cnf' or 'dnf', the simplest expression in the corresponding normal form is returned; if None, the answer is returned according to the form with fewest args (in CNF by default). deep : boolean (default True) Indicates whether to recursively simplify any non-boolean functions contained within the input. force : boolean (default False) As the simplifications require exponential time in the number of variables, there is by default a limit on expressions with 8 variables. When the expression has more than 8 variables only symbolical simplification (controlled by ``deep``) is made. By setting force to ``True``, this limit is removed. Be aware that this can lead to very long simplification times. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = (~x & ~y & ~z) | ( ~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> S(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form not in (None, 'cnf', 'dnf'): raise ValueError("form can be cnf or dnf only") expr = sympify(expr) # check for quick exit: right form and all args are # literal and do not involve Not isc = is_cnf(expr) isd = is_dnf(expr) form_ok = ( isc and form == 'cnf' or isd and form == 'dnf') if form_ok and all(is_literal(a) for a in expr.args): return expr if deep: variables = _find_predicates(expr) from sympy.simplify.simplify import simplify s = [simplify(v) for v in variables] expr = expr.xreplace(dict(zip(variables, s))) if not isinstance(expr, BooleanFunction): return expr # get variables in case not deep or after doing # deep simplification since they may have changed variables = _find_predicates(expr) if not force and len(variables) > 8: return expr # group into constants and variable values c, v = sift(variables, lambda x: x in (True, False), binary=True) variables = c + v truthtable = [] # standardize constants to be 1 or 0 in keeping with truthtable c = [1 if i == True else 0 for i in c] for t in product([0, 1], repeat=len(v)): if expr.xreplace(dict(zip(v, t))) == True: truthtable.append(c + list(t)) big = len(truthtable) >= (2 ** (len(variables) - 1)) if form == 'dnf' or form is None and big: return SOPform(variables, truthtable) return POSform(variables, truthtable) def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol; # of times it appeared as a Not(symbol); # of times it appeared as a Symbol in an And or Or; # of times it appeared as a Not(Symbol) in an And or Or; a sorted tuple of tuples, (i, j, k), where i is the number of arguments in an And or Or with which it appeared as a Symbol, and j is the number of arguments that were Not(Symbol); k is the number of times that (i, j) was seen. ] Examples ======== >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not, Xor, to_cnf, symbols >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (0, 0, 1, 0, ((2, 1, 1),)): [a, b], (0, 0, 1, 2, ((2, 0, 1),)): [y]} >>> dict(finger(x & ~y)) {(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]} In the following, the (5, 2, 6) means that there were 6 Or functions in which a symbol appeared as itself amongst 5 arguments in which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)`` is counted once for a0, a1 and a2. >>> dict(finger(to_cnf(Xor(*symbols('a:5'))))) {(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]} The equation must not have more than one level of nesting: >>> dict(finger(And(Or(x, y), y))) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]} >>> dict(finger(And(Or(x, And(a, x)), y))) Traceback (most recent call last): ... NotImplementedError: unexpected level of nesting So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args), sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1][o] += 1 elif ai.is_Not: d[ai.args[0]][3] += 1 else: raise NotImplementedError('unexpected level of nesting') inv = defaultdict(list) for k, v in ordered(iter(d.items())): v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()])) inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of bool1, and the mapping of variables that makes the two expressions bool1 and bool2 represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, And(x, y) is logically equivalent to And(a, b) for the mapping {x: a, y:b} or {x: b, y:a}. If no such mapping exists, return False. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) ((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, And(x, Not(y), Or(w, Not(z))). Basic.match is not robust enough (see issue 4835) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None # maybe simplification makes them the same? if len(function1.args) != len(function2.args): return None # maybe simplification makes them the same? if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m def simplify_patterns_and(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') # With a better canonical fewer results are required _matchers_and = ((And(Eq(a, b), Ge(a, b)), Eq(a, b)), (And(Eq(a, b), Gt(a, b)), S.false), (And(Eq(a, b), Le(a, b)), Eq(a, b)), (And(Eq(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Gt(a, b)), Gt(a, b)), (And(Ge(a, b), Le(a, b)), Eq(a, b)), (And(Ge(a, b), Lt(a, b)), S.false), (And(Ge(a, b), Ne(a, b)), Gt(a, b)), (And(Gt(a, b), Le(a, b)), S.false), (And(Gt(a, b), Lt(a, b)), S.false), (And(Gt(a, b), Ne(a, b)), Gt(a, b)), (And(Le(a, b), Lt(a, b)), Lt(a, b)), (And(Le(a, b), Ne(a, b)), Lt(a, b)), (And(Lt(a, b), Ne(a, b)), Lt(a, b)), # Min/max (And(Ge(a, b), Ge(a, c)), Ge(a, Max(b, c))), (And(Ge(a, b), Gt(a, c)), ITE(b > c, Ge(a, b), Gt(a, c))), (And(Gt(a, b), Gt(a, c)), Gt(a, Max(b, c))), (And(Le(a, b), Le(a, c)), Le(a, Min(b, c))), (And(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))), (And(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))), # Sign (And(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))), ) return _matchers_and def simplify_patterns_or(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_or = ((Or(Eq(a, b), Ge(a, b)), Ge(a, b)), (Or(Eq(a, b), Gt(a, b)), Ge(a, b)), (Or(Eq(a, b), Le(a, b)), Le(a, b)), (Or(Eq(a, b), Lt(a, b)), Le(a, b)), (Or(Ge(a, b), Gt(a, b)), Ge(a, b)), (Or(Ge(a, b), Le(a, b)), S.true), (Or(Ge(a, b), Lt(a, b)), S.true), (Or(Ge(a, b), Ne(a, b)), S.true), (Or(Gt(a, b), Le(a, b)), S.true), (Or(Gt(a, b), Lt(a, b)), Ne(a, b)), (Or(Gt(a, b), Ne(a, b)), Ne(a, b)), (Or(Le(a, b), Lt(a, b)), Le(a, b)), (Or(Le(a, b), Ne(a, b)), S.true), (Or(Lt(a, b), Ne(a, b)), Ne(a, b)), # Min/max (Or(Ge(a, b), Ge(a, c)), Ge(a, Min(b, c))), (Or(Ge(a, b), Gt(a, c)), ITE(b > c, Gt(a, c), Ge(a, b))), (Or(Gt(a, b), Gt(a, c)), Gt(a, Min(b, c))), (Or(Le(a, b), Le(a, c)), Le(a, Max(b, c))), (Or(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))), (Or(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))), ) return _matchers_or def simplify_patterns_xor(): from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') _matchers_xor = ((Xor(Eq(a, b), Ge(a, b)), Gt(a, b)), (Xor(Eq(a, b), Gt(a, b)), Ge(a, b)), (Xor(Eq(a, b), Le(a, b)), Lt(a, b)), (Xor(Eq(a, b), Lt(a, b)), Le(a, b)), (Xor(Ge(a, b), Gt(a, b)), Eq(a, b)), (Xor(Ge(a, b), Le(a, b)), Ne(a, b)), (Xor(Ge(a, b), Lt(a, b)), S.true), (Xor(Ge(a, b), Ne(a, b)), Le(a, b)), (Xor(Gt(a, b), Le(a, b)), S.true), (Xor(Gt(a, b), Lt(a, b)), Ne(a, b)), (Xor(Gt(a, b), Ne(a, b)), Lt(a, b)), (Xor(Le(a, b), Lt(a, b)), Eq(a, b)), (Xor(Le(a, b), Ne(a, b)), Ge(a, b)), (Xor(Lt(a, b), Ne(a, b)), Gt(a, b)), # Min/max (Xor(Ge(a, b), Ge(a, c)), And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))), (Xor(Ge(a, b), Gt(a, c)), ITE(b > c, And(Gt(a, c), Lt(a, b)), And(Ge(a, b), Le(a, c)))), (Xor(Gt(a, b), Gt(a, c)), And(Gt(a, Min(b, c)), Le(a, Max(b, c)))), (Xor(Le(a, b), Le(a, c)), And(Le(a, Max(b, c)), Gt(a, Min(b, c)))), (Xor(Le(a, b), Lt(a, c)), ITE(b < c, And(Lt(a, c), Gt(a, b)), And(Le(a, b), Ge(a, c)))), (Xor(Lt(a, b), Lt(a, c)), And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))), ) return _matchers_xor
83d46e5124511f4700a3584b6ddf4f4a6fcb6f781b0b28d6cf8da7061b89c954
"""Inference in propositional logic""" from sympy.logic.boolalg import And, Not, conjuncts, to_cnf from sympy.core.compatibility import ordered from sympy.core.sympify import sympify from sympy.external.importtools import import_module def literal_symbol(literal): """ The symbol in this literal (without the negation). Examples ======== >>> from sympy.abc import A >>> from sympy.logic.inference import literal_symbol >>> literal_symbol(A) A >>> literal_symbol(~A) A """ if literal is True or literal is False: return literal try: if literal.is_Symbol: return literal if literal.is_Not: return literal_symbol(literal.args[0]) else: raise ValueError except (AttributeError, ValueError): raise ValueError("Argument must be a boolean literal.") def satisfiable(expr, algorithm=None, all_models=False, minimal=False): """ Check satisfiability of a propositional sentence. Returns a model when it succeeds. Returns {true: true} for trivially true expressions. On setting all_models to True, if given expr is satisfiable then returns a generator of models. However, if expr is unsatisfiable then returns a generator containing the single element False. Examples ======== >>> from sympy.abc import A, B >>> from sympy.logic.inference import satisfiable >>> satisfiable(A & ~B) {A: True, B: False} >>> satisfiable(A & ~A) False >>> satisfiable(True) {True: True} >>> next(satisfiable(A & ~A, all_models=True)) False >>> models = satisfiable((A >> B) & B, all_models=True) >>> next(models) {A: False, B: True} >>> next(models) {A: True, B: True} >>> def use_models(models): ... for model in models: ... if model: ... # Do something with the model. ... print(model) ... else: ... # Given expr is unsatisfiable. ... print("UNSAT") >>> use_models(satisfiable(A >> ~A, all_models=True)) {A: False} >>> use_models(satisfiable(A ^ A, all_models=True)) UNSAT """ if algorithm is None or algorithm == "pycosat": pycosat = import_module('pycosat') if pycosat is not None: algorithm = "pycosat" else: if algorithm == "pycosat": raise ImportError("pycosat module is not present") # Silently fall back to dpll2 if pycosat # is not installed algorithm = "dpll2" if algorithm=="minisat22": pysat = import_module('pysat') if pysat is None: algorithm = "dpll2" if algorithm == "dpll": from sympy.logic.algorithms.dpll import dpll_satisfiable return dpll_satisfiable(expr) elif algorithm == "dpll2": from sympy.logic.algorithms.dpll2 import dpll_satisfiable return dpll_satisfiable(expr, all_models) elif algorithm == "pycosat": from sympy.logic.algorithms.pycosat_wrapper import pycosat_satisfiable return pycosat_satisfiable(expr, all_models) elif algorithm == "minisat22": from sympy.logic.algorithms.minisat22_wrapper import minisat22_satisfiable return minisat22_satisfiable(expr, all_models, minimal) raise NotImplementedError def valid(expr): """ Check validity of a propositional sentence. A valid propositional sentence is True under every assignment. Examples ======== >>> from sympy.abc import A, B >>> from sympy.logic.inference import valid >>> valid(A | ~A) True >>> valid(A | B) False References ========== .. [1] https://en.wikipedia.org/wiki/Validity """ return not satisfiable(Not(expr)) def pl_true(expr, model={}, deep=False): """ Returns whether the given assignment is a model or not. If the assignment does not specify the value for every proposition, this may return None to indicate 'not obvious'. Parameters ========== model : dict, optional, default: {} Mapping of symbols to boolean values to indicate assignment. deep: boolean, optional, default: False Gives the value of the expression under partial assignments correctly. May still return None to indicate 'not obvious'. Examples ======== >>> from sympy.abc import A, B >>> from sympy.logic.inference import pl_true >>> pl_true( A & B, {A: True, B: True}) True >>> pl_true(A & B, {A: False}) False >>> pl_true(A & B, {A: True}) >>> pl_true(A & B, {A: True}, deep=True) >>> pl_true(A >> (B >> A)) >>> pl_true(A >> (B >> A), deep=True) True >>> pl_true(A & ~A) >>> pl_true(A & ~A, deep=True) False >>> pl_true(A & B & (~A | ~B), {A: True}) >>> pl_true(A & B & (~A | ~B), {A: True}, deep=True) False """ from sympy.core.symbol import Symbol from sympy.logic.boolalg import BooleanFunction boolean = (True, False) def _validate(expr): if isinstance(expr, Symbol) or expr in boolean: return True if not isinstance(expr, BooleanFunction): return False return all(_validate(arg) for arg in expr.args) if expr in boolean: return expr expr = sympify(expr) if not _validate(expr): raise ValueError("%s is not a valid boolean expression" % expr) model = {k: v for k, v in model.items() if v in boolean} result = expr.subs(model) if result in boolean: return bool(result) if deep: model = {k: True for k in result.atoms()} if pl_true(result, model): if valid(result): return True else: if not satisfiable(result): return False return None def entails(expr, formula_set={}): """ Check whether the given expr_set entail an expr. If formula_set is empty then it returns the validity of expr. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.inference import entails >>> entails(A, [A >> B, B >> C]) False >>> entails(C, [A >> B, B >> C, A]) True >>> entails(A >> B) False >>> entails(A >> (B >> A)) True References ========== .. [1] https://en.wikipedia.org/wiki/Logical_consequence """ formula_set = list(formula_set) formula_set.append(Not(expr)) return not satisfiable(And(*formula_set)) class KB: """Base class for all knowledge bases""" def __init__(self, sentence=None): self.clauses_ = set() if sentence: self.tell(sentence) def tell(self, sentence): raise NotImplementedError def ask(self, query): raise NotImplementedError def retract(self, sentence): raise NotImplementedError @property def clauses(self): return list(ordered(self.clauses_)) class PropKB(KB): """A KB for Propositional Logic. Inefficient, with no indexing.""" def tell(self, sentence): """Add the sentence's clauses to the KB Examples ======== >>> from sympy.logic.inference import PropKB >>> from sympy.abc import x, y >>> l = PropKB() >>> l.clauses [] >>> l.tell(x | y) >>> l.clauses [x | y] >>> l.tell(y) >>> l.clauses [y, x | y] """ for c in conjuncts(to_cnf(sentence)): self.clauses_.add(c) def ask(self, query): """Checks if the query is true given the set of clauses. Examples ======== >>> from sympy.logic.inference import PropKB >>> from sympy.abc import x, y >>> l = PropKB() >>> l.tell(x & ~y) >>> l.ask(x) True >>> l.ask(y) False """ return entails(query, self.clauses_) def retract(self, sentence): """Remove the sentence's clauses from the KB Examples ======== >>> from sympy.logic.inference import PropKB >>> from sympy.abc import x, y >>> l = PropKB() >>> l.clauses [] >>> l.tell(x | y) >>> l.clauses [x | y] >>> l.retract(x | y) >>> l.clauses [] """ for c in conjuncts(to_cnf(sentence)): self.clauses_.discard(c)
35c6ac13f651c646ebb18e33d1668fa4219591e6ede241f47ef7e7a0ccc451f4
'''Functions returning normal forms of matrices''' from sympy.polys.polytools import Poly from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.normalforms import ( smith_normal_form as _snf, invariant_factors as _invf, ) def _to_domain(m, domain=None): """Convert Matrix to DomainMatrix""" # XXX: deprecated support for RawMatrix: ring = getattr(m, "ring", None) m = m.applyfunc(lambda e: e.as_expr() if isinstance(e, Poly) else e) dM = DomainMatrix.from_Matrix(m) domain = domain or ring if domain is not None: dM = dM.convert_to(domain) return dM def smith_normal_form(m, domain=None): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy import Matrix, ZZ >>> from sympy.matrices.normalforms import smith_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> print(smith_normal_form(m, domain=ZZ)) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' dM = _to_domain(m, domain) return _snf(dM).to_Matrix() def invariant_factors(m, domain=None): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' dM = _to_domain(m, domain) factors = _invf(dM) factors = tuple(dM.domain.to_sympy(f) for f in factors) # XXX: deprecated. if hasattr(m, "ring"): if m.ring.is_PolynomialRing: K = m.ring to_poly = lambda f: Poly(f, K.symbols, domain=K.domain) factors = tuple(to_poly(f) for f in factors) return factors
ec600a0bc2ca96d32c351689f30004a065680a58237c7e90442449a39139cd39
from types import FunctionType from sympy.core.numbers import Float, Integer from sympy.core.singleton import S from sympy.core.symbol import uniquely_named_symbol from sympy.core.mul import Mul from sympy.polys import PurePoly, cancel from sympy.simplify.simplify import (simplify as _simplify, dotprodsimp as _dotprodsimp) from sympy import sympify from sympy.functions.combinatorial.numbers import nC from sympy.polys.matrices.domainmatrix import DomainMatrix from .common import NonSquareMatrixError from .utilities import ( _get_intermediate_simp, _get_intermediate_simp_bool, _iszero, _is_zero_after_expand_mul) def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify): """ Find the lowest index of an item in ``col`` that is suitable for a pivot. If ``col`` consists only of Floats, the pivot with the largest norm is returned. Otherwise, the first element where ``iszerofunc`` returns False is used. If ``iszerofunc`` doesn't return false, items are simplified and retested until a suitable pivot is found. Returns a 4-tuple (pivot_offset, pivot_val, assumed_nonzero, newly_determined) where pivot_offset is the index of the pivot, pivot_val is the (possibly simplified) value of the pivot, assumed_nonzero is True if an assumption that the pivot was non-zero was made without being proved, and newly_determined are elements that were simplified during the process of pivot finding.""" newly_determined = [] col = list(col) # a column that contains a mix of floats and integers # but at least one float is considered a numerical # column, and so we do partial pivoting if all(isinstance(x, (Float, Integer)) for x in col) and any( isinstance(x, Float) for x in col): col_abs = [abs(x) for x in col] max_value = max(col_abs) if iszerofunc(max_value): # just because iszerofunc returned True, doesn't # mean the value is numerically zero. Make sure # to replace all entries with numerical zeros if max_value != 0: newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0] return (None, None, False, newly_determined) index = col_abs.index(max_value) return (index, col[index], False, newly_determined) # PASS 1 (iszerofunc directly) possible_zeros = [] for i, x in enumerate(col): is_zero = iszerofunc(x) # is someone wrote a custom iszerofunc, it may return # BooleanFalse or BooleanTrue instead of True or False, # so use == for comparison instead of `is` if is_zero == False: # we found something that is definitely not zero return (i, x, False, newly_determined) possible_zeros.append(is_zero) # by this point, we've found no certain non-zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 2 (iszerofunc after simplify) # we haven't found any for-sure non-zeros, so # go through the elements iszerofunc couldn't # make a determination about and opportunistically # simplify to see if we find something for i, x in enumerate(col): if possible_zeros[i] is not None: continue simped = simpfunc(x) is_zero = iszerofunc(simped) if is_zero == True or is_zero == False: newly_determined.append((i, simped)) if is_zero == False: return (i, simped, False, newly_determined) possible_zeros[i] = is_zero # after simplifying, some things that were recognized # as zeros might be zeros if all(possible_zeros): # if everything is definitely zero, we have # no pivot return (None, None, False, newly_determined) # PASS 3 (.equals(0)) # some expressions fail to simplify to zero, but # ``.equals(0)`` evaluates to True. As a last-ditch # attempt, apply ``.equals`` to these expressions for i, x in enumerate(col): if possible_zeros[i] is not None: continue if x.equals(S.Zero): # ``.iszero`` may return False with # an implicit assumption (e.g., ``x.equals(0)`` # when ``x`` is a symbol), so only treat it # as proved when ``.equals(0)`` returns True possible_zeros[i] = True newly_determined.append((i, S.Zero)) if all(possible_zeros): return (None, None, False, newly_determined) # at this point there is nothing that could definitely # be a pivot. To maintain compatibility with existing # behavior, we'll assume that an illdetermined thing is # non-zero. We should probably raise a warning in this case i = possible_zeros.index(None) return (i, col[i], True, newly_determined) def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None): """ Helper that computes the pivot value and location from a sequence of contiguous matrix column elements. As a side effect of the pivot search, this function may simplify some of the elements of the input column. A list of these simplified entries and their indices are also returned. This function mimics the behavior of _find_reasonable_pivot(), but does less work trying to determine if an indeterminate candidate pivot simplifies to zero. This more naive approach can be much faster, with the trade-off that it may erroneously return a pivot that is zero. ``col`` is a sequence of contiguous column entries to be searched for a suitable pivot. ``iszerofunc`` is a callable that returns a Boolean that indicates if its input is zero, or None if no such determination can be made. ``simpfunc`` is a callable that simplifies its input. It must return its input if it does not simplify its input. Passing in ``simpfunc=None`` indicates that the pivot search should not attempt to simplify any candidate pivots. Returns a 4-tuple: (pivot_offset, pivot_val, assumed_nonzero, newly_determined) ``pivot_offset`` is the sequence index of the pivot. ``pivot_val`` is the value of the pivot. pivot_val and col[pivot_index] are equivalent, but will be different when col[pivot_index] was simplified during the pivot search. ``assumed_nonzero`` is a boolean indicating if the pivot cannot be guaranteed to be zero. If assumed_nonzero is true, then the pivot may or may not be non-zero. If assumed_nonzero is false, then the pivot is non-zero. ``newly_determined`` is a list of index-value pairs of pivot candidates that were simplified during the pivot search. """ # indeterminates holds the index-value pairs of each pivot candidate # that is neither zero or non-zero, as determined by iszerofunc(). # If iszerofunc() indicates that a candidate pivot is guaranteed # non-zero, or that every candidate pivot is zero then the contents # of indeterminates are unused. # Otherwise, the only viable candidate pivots are symbolic. # In this case, indeterminates will have at least one entry, # and all but the first entry are ignored when simpfunc is None. indeterminates = [] for i, col_val in enumerate(col): col_val_is_zero = iszerofunc(col_val) if col_val_is_zero == False: # This pivot candidate is non-zero. return i, col_val, False, [] elif col_val_is_zero is None: # The candidate pivot's comparison with zero # is indeterminate. indeterminates.append((i, col_val)) if len(indeterminates) == 0: # All candidate pivots are guaranteed to be zero, i.e. there is # no pivot. return None, None, False, [] if simpfunc is None: # Caller did not pass in a simplification function that might # determine if an indeterminate pivot candidate is guaranteed # to be nonzero, so assume the first indeterminate candidate # is non-zero. return indeterminates[0][0], indeterminates[0][1], True, [] # newly_determined holds index-value pairs of candidate pivots # that were simplified during the search for a non-zero pivot. newly_determined = [] for i, col_val in indeterminates: tmp_col_val = simpfunc(col_val) if id(col_val) != id(tmp_col_val): # simpfunc() simplified this candidate pivot. newly_determined.append((i, tmp_col_val)) if iszerofunc(tmp_col_val) == False: # Candidate pivot simplified to a guaranteed non-zero value. return i, tmp_col_val, False, newly_determined return indeterminates[0][0], indeterminates[0][1], True, newly_determined # This functions is a candidate for caching if it gets implemented for matrices. def _berkowitz_toeplitz_matrix(M): """Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm corresponding to ``M`` and A is the first principal submatrix. """ # the 0 x 0 case is trivial if M.rows == 0 and M.cols == 0: return M._new(1,1, [M.one]) # # Partition M = [ a_11 R ] # [ C A ] # a, R = M[0,0], M[0, 1:] C, A = M[1:, 0], M[1:,1:] # # The Toeplitz matrix looks like # # [ 1 ] # [ -a 1 ] # [ -RC -a 1 ] # [ -RAC -RC -a 1 ] # [ -RA**2C -RAC -RC -a 1 ] # etc. # Compute the diagonal entries. # Because multiplying matrix times vector is so much # more efficient than matrix times matrix, recursively # compute -R * A**n * C. diags = [C] for i in range(M.rows - 2): diags.append(A.multiply(diags[i], dotprodsimp=None)) diags = [(-R).multiply(d, dotprodsimp=None)[0, 0] for d in diags] diags = [M.one, -a] + diags def entry(i,j): if j > i: return M.zero return diags[i - j] toeplitz = M._new(M.cols + 1, M.rows, entry) return (A, toeplitz) # This functions is a candidate for caching if it gets implemented for matrices. def _berkowitz_vector(M): """ Run the Berkowitz algorithm and return a vector whose entries are the coefficients of the characteristic polynomial of ``M``. Given N x N matrix, efficiently compute coefficients of characteristic polynomials of ``M`` without division in the ground domain. This method is particularly useful for computing determinant, principal minors and characteristic polynomial when ``M`` has complicated coefficients e.g. polynomials. Semi-direct usage of this algorithm is also important in computing efficiently sub-resultant PRS. Assuming that M is a square matrix of dimension N x N and I is N x N identity matrix, then the Berkowitz vector is an N x 1 vector whose entries are coefficients of the polynomial charpoly(M) = det(t*I - M) As a consequence, all polynomials generated by Berkowitz algorithm are monic. For more information on the implemented algorithm refer to: [1] S.J. Berkowitz, On computing the determinant in small parallel time using a small number of processors, ACM, Information Processing Letters 18, 1984, pp. 147-150 [2] M. Keber, Division-Free computation of sub-resultants using Bezout matrices, Tech. Report MPI-I-2006-1-006, Saarbrucken, 2006 """ # handle the trivial cases if M.rows == 0 and M.cols == 0: return M._new(1, 1, [M.one]) elif M.rows == 1 and M.cols == 1: return M._new(2, 1, [M.one, -M[0,0]]) submat, toeplitz = _berkowitz_toeplitz_matrix(M) return toeplitz.multiply(_berkowitz_vector(submat), dotprodsimp=None) def _adjugate(M, method="berkowitz"): """Returns the adjugate, or classical adjoint, of a matrix. That is, the transpose of the matrix of cofactors. https://en.wikipedia.org/wiki/Adjugate Parameters ========== method : string, optional Method to use to find the cofactors, can be "bareiss", "berkowitz" or "lu". Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> M.adjugate() Matrix([ [ 4, -2], [-3, 1]]) See Also ======== cofactor_matrix sympy.matrices.common.MatrixCommon.transpose """ return M.cofactor_matrix(method=method).transpose() # This functions is a candidate for caching if it gets implemented for matrices. def _charpoly(M, x='lambda', simplify=_simplify): """Computes characteristic polynomial det(x*I - M) where I is the identity matrix. A PurePoly is returned, so using different variables for ``x`` does not affect the comparison or the polynomials: Parameters ========== x : string, optional Name for the "lambda" variable, defaults to "lambda". simplify : function, optional Simplification function to use on the characteristic polynomial calculated. Defaults to ``simplify``. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[1, 3], [2, 0]]) >>> M.charpoly() PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ') >>> M.charpoly(x) == M.charpoly(y) True >>> M.charpoly(x) == M.charpoly(y) True Specifying ``x`` is optional; a symbol named ``lambda`` is used by default (which looks good when pretty-printed in unicode): >>> M.charpoly().as_expr() lambda**2 - lambda - 6 And if ``x`` clashes with an existing symbol, underscores will be prepended to the name to make it unique: >>> M = Matrix([[1, 2], [x, 0]]) >>> M.charpoly(x).as_expr() _x**2 - _x - 2*x Whether you pass a symbol or not, the generator can be obtained with the gen attribute since it may not be the same as the symbol that was passed: >>> M.charpoly(x).gen _x >>> M.charpoly(x).gen == x False Notes ===== The Samuelson-Berkowitz algorithm is used to compute the characteristic polynomial efficiently and without any division operations. Thus the characteristic polynomial over any commutative ring without zero divisors can be computed. If the determinant det(x*I - M) can be found out easily as in the case of an upper or a lower triangular matrix, then instead of Samuelson-Berkowitz algorithm, eigenvalues are computed and the characteristic polynomial with their help. See Also ======== det """ if not M.is_square: raise NonSquareMatrixError() if M.is_lower or M.is_upper: diagonal_elements = M.diagonal() x = uniquely_named_symbol(x, diagonal_elements, modify=lambda s: '_' + s) m = 1 for i in diagonal_elements: m = m * (x - simplify(i)) return PurePoly(m, x) berk_vector = _berkowitz_vector(M) x = uniquely_named_symbol(x, berk_vector, modify=lambda s: '_' + s) return PurePoly([simplify(a) for a in berk_vector], x) def _cofactor(M, i, j, method="berkowitz"): """Calculate the cofactor of an element. Parameters ========== method : string, optional Method to use to find the cofactors, can be "bareiss", "berkowitz" or "lu". Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> M.cofactor(0, 1) -3 See Also ======== cofactor_matrix minor minor_submatrix """ if not M.is_square or M.rows < 1: raise NonSquareMatrixError() return (-1)**((i + j) % 2) * M.minor(i, j, method) def _cofactor_matrix(M, method="berkowitz"): """Return a matrix containing the cofactor of each element. Parameters ========== method : string, optional Method to use to find the cofactors, can be "bareiss", "berkowitz" or "lu". Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> M.cofactor_matrix() Matrix([ [ 4, -3], [-2, 1]]) See Also ======== cofactor minor minor_submatrix """ if not M.is_square or M.rows < 1: raise NonSquareMatrixError() return M._new(M.rows, M.cols, lambda i, j: M.cofactor(i, j, method)) def _per(M): """Returns the permanent of a matrix. Unlike determinant, permanent is defined for both square and non-square matrices. For an m x n matrix, with m less than or equal to n, it is given as the sum over the permutations s of size less than or equal to m on [1, 2, . . . n] of the product from i = 1 to m of M[i, s[i]]. Taking the transpose will not affect the value of the permanent. In the case of a square matrix, this is the same as the permutation definition of the determinant, but it does not take the sign of the permutation into account. Computing the permanent with this definition is quite inefficient, so here the Ryser formula is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> M.per() 450 >>> M = Matrix([1, 5, 7]) >>> M.per() 13 References ========== .. [1] Prof. Frank Ben's notes: https://math.berkeley.edu/~bernd/ban275.pdf .. [2] Wikipedia article on Permanent: https://en.wikipedia.org/wiki/Permanent_(mathematics) .. [3] https://reference.wolfram.com/language/ref/Permanent.html .. [4] Permanent of a rectangular matrix : https://arxiv.org/pdf/0904.3251.pdf """ import itertools m, n = M.shape if m > n: M = M.T m, n = n, m s = list(range(n)) subsets = [] for i in range(1, m + 1): subsets += list(map(list, itertools.combinations(s, i))) perm = 0 for subset in subsets: prod = 1 sub_len = len(subset) for i in range(m): prod *= sum([M[i, j] for j in subset]) perm += prod * (-1)**sub_len * nC(n - sub_len, m - sub_len) perm *= (-1)**m perm = sympify(perm) return perm.simplify() def _det_DOM(M): DOM = DomainMatrix.from_Matrix(M, field=True, extension=True) K = DOM.domain return K.to_sympy(DOM.det()) # This functions is a candidate for caching if it gets implemented for matrices. def _det(M, method="bareiss", iszerofunc=None): """Computes the determinant of a matrix if ``M`` is a concrete matrix object otherwise return an expressions ``Determinant(M)`` if ``M`` is a ``MatrixSymbol`` or other expression. Parameters ========== method : string, optional Specifies the algorithm used for computing the matrix determinant. If the matrix is at most 3x3, a hard-coded formula is used and the specified method is ignored. Otherwise, it defaults to ``'bareiss'``. Also, if the matrix is an upper or a lower triangular matrix, determinant is computed by simple multiplication of diagonal elements, and the specified method is ignored. If it is set to ``'domain-ge'``, then Gaussian elimination method will be used via using DomainMatrix. If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will be used. If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used. Otherwise, if it is set to ``'lu'``, LU decomposition will be used. .. note:: For backward compatibility, legacy keys like "bareis" and "det_lu" can still be used to indicate the corresponding methods. And the keys are also case-insensitive for now. However, it is suggested to use the precise keys for specifying the method. iszerofunc : FunctionType or None, optional If it is set to ``None``, it will be defaulted to ``_iszero`` if the method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if the method is set to ``'lu'``. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it tested as non-zero, and also ``None`` if it is undecidable. Returns ======= det : Basic Result of determinant. Raises ====== ValueError If unrecognized keys are given for ``method`` or ``iszerofunc``. NonSquareMatrixError If attempted to calculate determinant from a non-square matrix. Examples ======== >>> from sympy import Matrix, eye, det >>> I3 = eye(3) >>> det(I3) 1 >>> M = Matrix([[1, 2], [3, 4]]) >>> det(M) -2 >>> det(M) == M.det() True >>> M.det(method="domain-ge") -2 """ # sanitize `method` method = method.lower() if method == "bareis": method = "bareiss" elif method == "det_lu": method = "lu" if method not in ("bareiss", "berkowitz", "lu", "domain-ge"): raise ValueError("Determinant method '%s' unrecognized" % method) if iszerofunc is None: if method == "bareiss": iszerofunc = _is_zero_after_expand_mul elif method == "lu": iszerofunc = _iszero elif not isinstance(iszerofunc, FunctionType): raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc) n = M.rows if n == M.cols: # square check is done in individual method functions if n == 0: return M.one elif n == 1: return M[0, 0] elif n == 2: m = M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0] return _get_intermediate_simp(_dotprodsimp)(m) elif n == 3: m = (M[0, 0] * M[1, 1] * M[2, 2] + M[0, 1] * M[1, 2] * M[2, 0] + M[0, 2] * M[1, 0] * M[2, 1] - M[0, 2] * M[1, 1] * M[2, 0] - M[0, 0] * M[1, 2] * M[2, 1] - M[0, 1] * M[1, 0] * M[2, 2]) return _get_intermediate_simp(_dotprodsimp)(m) dets = [] for b in M.strongly_connected_components(): if method == "domain-ge": # uses DomainMatrix to evalute determinant det = _det_DOM(M[b, b]) elif method == "bareiss": det = M[b, b]._eval_det_bareiss(iszerofunc=iszerofunc) elif method == "berkowitz": det = M[b, b]._eval_det_berkowitz() elif method == "lu": det = M[b, b]._eval_det_lu(iszerofunc=iszerofunc) dets.append(det) return Mul(*dets) # This functions is a candidate for caching if it gets implemented for matrices. def _det_bareiss(M, iszerofunc=_is_zero_after_expand_mul): """Compute matrix determinant using Bareiss' fraction-free algorithm which is an extension of the well known Gaussian elimination method. This approach is best suited for dense symbolic matrices and will result in a determinant with minimal number of fractions. It means that less term rewriting is needed on resulting formulae. Parameters ========== iszerofunc : function, optional The function to use to determine zeros when doing an LU decomposition. Defaults to ``lambda x: x.is_zero``. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. """ # Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's # thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf def bareiss(mat, cumm=1): if mat.rows == 0: return mat.one elif mat.rows == 1: return mat[0, 0] # find a pivot and extract the remaining matrix # With the default iszerofunc, _find_reasonable_pivot slows down # the computation by the factor of 2.5 in one test. # Relevant issues: #10279 and #13877. pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc) if pivot_pos is None: return mat.zero # if we have a valid pivot, we'll do a "row swap", so keep the # sign of the det sign = (-1) ** (pivot_pos % 2) # we want every row but the pivot row and every column rows = list(i for i in range(mat.rows) if i != pivot_pos) cols = list(range(mat.cols)) tmp_mat = mat.extract(rows, cols) def entry(i, j): ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm if _get_intermediate_simp_bool(True): return _dotprodsimp(ret) elif not ret.is_Atom: return cancel(ret) return ret return sign*bareiss(M._new(mat.rows - 1, mat.cols - 1, entry), pivot_val) if not M.is_square: raise NonSquareMatrixError() if M.rows == 0: return M.one # sympy/matrices/tests/test_matrices.py contains a test that # suggests that the determinant of a 0 x 0 matrix is one, by # convention. return bareiss(M) def _det_berkowitz(M): """ Use the Berkowitz algorithm to compute the determinant.""" if not M.is_square: raise NonSquareMatrixError() if M.rows == 0: return M.one # sympy/matrices/tests/test_matrices.py contains a test that # suggests that the determinant of a 0 x 0 matrix is one, by # convention. berk_vector = _berkowitz_vector(M) return (-1)**(len(berk_vector) - 1) * berk_vector[-1] # This functions is a candidate for caching if it gets implemented for matrices. def _det_LU(M, iszerofunc=_iszero, simpfunc=None): """ Computes the determinant of a matrix from its LU decomposition. This function uses the LU decomposition computed by LUDecomposition_Simple(). The keyword arguments iszerofunc and simpfunc are passed to LUDecomposition_Simple(). iszerofunc is a callable that returns a boolean indicating if its input is zero, or None if it cannot make the determination. simpfunc is a callable that simplifies its input. The default is simpfunc=None, which indicate that the pivot search algorithm should not attempt to simplify any candidate pivots. If simpfunc fails to simplify its input, then it must return its input instead of a copy. Parameters ========== iszerofunc : function, optional The function to use to determine zeros when doing an LU decomposition. Defaults to ``lambda x: x.is_zero``. simpfunc : function, optional The simplification function to use when looking for zeros for pivots. """ if not M.is_square: raise NonSquareMatrixError() if M.rows == 0: return M.one # sympy/matrices/tests/test_matrices.py contains a test that # suggests that the determinant of a 0 x 0 matrix is one, by # convention. lu, row_swaps = M.LUdecomposition_Simple(iszerofunc=iszerofunc, simpfunc=simpfunc) # P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U). # Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1. # P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P). # LUdecomposition_Simple() returns a list of row exchange index pairs, rather # than a permutation matrix, but det(P) = (-1)**len(row_swaps). # Avoid forming the potentially time consuming product of U's diagonal entries # if the product is zero. # Bottom right entry of U is 0 => det(A) = 0. # It may be impossible to determine if this entry of U is zero when it is symbolic. if iszerofunc(lu[lu.rows-1, lu.rows-1]): return M.zero # Compute det(P) det = -M.one if len(row_swaps)%2 else M.one # Compute det(U) by calculating the product of U's diagonal entries. # The upper triangular portion of lu is the upper triangular portion of the # U factor in the LU decomposition. for k in range(lu.rows): det *= lu[k, k] # return det(P)*det(U) return det def _minor(M, i, j, method="berkowitz"): """Return the (i,j) minor of ``M``. That is, return the determinant of the matrix obtained by deleting the `i`th row and `j`th column from ``M``. Parameters ========== i, j : int The row and column to exclude to obtain the submatrix. method : string, optional Method to use to find the determinant of the submatrix, can be "bareiss", "berkowitz" or "lu". Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> M.minor(1, 1) -12 See Also ======== minor_submatrix cofactor det """ if not M.is_square: raise NonSquareMatrixError() return M.minor_submatrix(i, j).det(method=method) def _minor_submatrix(M, i, j): """Return the submatrix obtained by removing the `i`th row and `j`th column from ``M`` (works with Pythonic negative indices). Parameters ========== i, j : int The row and column to exclude to obtain the submatrix. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> M.minor_submatrix(1, 1) Matrix([ [1, 3], [7, 9]]) See Also ======== minor cofactor """ if i < 0: i += M.rows if j < 0: j += M.cols if not 0 <= i < M.rows or not 0 <= j < M.cols: raise ValueError("`i` and `j` must satisfy 0 <= i < ``M.rows`` " "(%d)" % M.rows + "and 0 <= j < ``M.cols`` (%d)." % M.cols) rows = [a for a in range(M.rows) if a != i] cols = [a for a in range(M.cols) if a != j] return M.extract(rows, cols)
875daf7a4354407f67d91e93abc96144ba69f8f038214680cbe8ce333ec2b343
from sympy.utilities.iterables import \ flatten, connected_components, strongly_connected_components from .common import NonSquareMatrixError def _connected_components(M): """Returns the list of connected vertices of the graph when a square matrix is viewed as a weighted graph. Examples ======== >>> from sympy import Matrix >>> A = Matrix([ ... [66, 0, 0, 68, 0, 0, 0, 0, 67], ... [0, 55, 0, 0, 0, 0, 54, 53, 0], ... [0, 0, 0, 0, 1, 2, 0, 0, 0], ... [86, 0, 0, 88, 0, 0, 0, 0, 87], ... [0, 0, 10, 0, 11, 12, 0, 0, 0], ... [0, 0, 20, 0, 21, 22, 0, 0, 0], ... [0, 45, 0, 0, 0, 0, 44, 43, 0], ... [0, 35, 0, 0, 0, 0, 34, 33, 0], ... [76, 0, 0, 78, 0, 0, 0, 0, 77]]) >>> A.connected_components() [[0, 3, 8], [1, 6, 7], [2, 4, 5]] Notes ===== Even if any symbolic elements of the matrix can be indeterminate to be zero mathematically, this only takes the account of the structural aspect of the matrix, so they will considered to be nonzero. """ if not M.is_square: raise NonSquareMatrixError V = range(M.rows) E = sorted(M.todok().keys()) return connected_components((V, E)) def _strongly_connected_components(M): """Returns the list of strongly connected vertices of the graph when a square matrix is viewed as a weighted graph. Examples ======== >>> from sympy import Matrix >>> A = Matrix([ ... [44, 0, 0, 0, 43, 0, 45, 0, 0], ... [0, 66, 62, 61, 0, 68, 0, 60, 67], ... [0, 0, 22, 21, 0, 0, 0, 20, 0], ... [0, 0, 12, 11, 0, 0, 0, 10, 0], ... [34, 0, 0, 0, 33, 0, 35, 0, 0], ... [0, 86, 82, 81, 0, 88, 0, 80, 87], ... [54, 0, 0, 0, 53, 0, 55, 0, 0], ... [0, 0, 2, 1, 0, 0, 0, 0, 0], ... [0, 76, 72, 71, 0, 78, 0, 70, 77]]) >>> A.strongly_connected_components() [[0, 4, 6], [2, 3, 7], [1, 5, 8]] """ if not M.is_square: raise NonSquareMatrixError V = range(M.rows) E = sorted(M.todok().keys()) return strongly_connected_components((V, E)) def _connected_components_decomposition(M): """Decomposes a square matrix into block diagonal form only using the permutations. Explanation =========== The decomposition is in a form of $A = P^{-1} B P$ where $P$ is a permutation matrix and $B$ is a block diagonal matrix. Returns ======= P, B : PermutationMatrix, BlockDiagMatrix *P* is a permutation matrix for the similarity transform as in the explanation. And *B* is the block diagonal matrix of the result of the permutation. If you would like to get the diagonal blocks from the BlockDiagMatrix, see :meth:`~sympy.matrices.expressions.blockmatrix.BlockDiagMatrix.get_diag_blocks`. Examples ======== >>> from sympy import Matrix, pprint >>> A = Matrix([ ... [66, 0, 0, 68, 0, 0, 0, 0, 67], ... [0, 55, 0, 0, 0, 0, 54, 53, 0], ... [0, 0, 0, 0, 1, 2, 0, 0, 0], ... [86, 0, 0, 88, 0, 0, 0, 0, 87], ... [0, 0, 10, 0, 11, 12, 0, 0, 0], ... [0, 0, 20, 0, 21, 22, 0, 0, 0], ... [0, 45, 0, 0, 0, 0, 44, 43, 0], ... [0, 35, 0, 0, 0, 0, 34, 33, 0], ... [76, 0, 0, 78, 0, 0, 0, 0, 77]]) >>> P, B = A.connected_components_decomposition() >>> pprint(P) PermutationMatrix((1 3)(2 8 5 7 4 6)) >>> pprint(B) [[66 68 67] ] [[ ] ] [[86 88 87] 0 0 ] [[ ] ] [[76 78 77] ] [ ] [ [55 54 53] ] [ [ ] ] [ 0 [45 44 43] 0 ] [ [ ] ] [ [35 34 33] ] [ ] [ [0 1 2 ]] [ [ ]] [ 0 0 [10 11 12]] [ [ ]] [ [20 21 22]] >>> P = P.as_explicit() >>> B = B.as_explicit() >>> P.T*B*P == A True Notes ===== This problem corresponds to the finding of the connected components of a graph, when a matrix is viewed as a weighted graph. """ from sympy.combinatorics.permutations import Permutation from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions.permutation import PermutationMatrix iblocks = M.connected_components() p = Permutation(flatten(iblocks)) P = PermutationMatrix(p) blocks = [] for b in iblocks: blocks.append(M[b, b]) B = BlockDiagMatrix(*blocks) return P, B def _strongly_connected_components_decomposition(M, lower=True): """Decomposes a square matrix into block triangular form only using the permutations. Explanation =========== The decomposition is in a form of $A = P^{-1} B P$ where $P$ is a permutation matrix and $B$ is a block diagonal matrix. Parameters ========== lower : bool Makes $B$ lower block triangular when ``True``. Otherwise, makes $B$ upper block triangular. Returns ======= P, B : PermutationMatrix, BlockMatrix *P* is a permutation matrix for the similarity transform as in the explanation. And *B* is the block triangular matrix of the result of the permutation. Examples ======== >>> from sympy import Matrix, pprint >>> A = Matrix([ ... [44, 0, 0, 0, 43, 0, 45, 0, 0], ... [0, 66, 62, 61, 0, 68, 0, 60, 67], ... [0, 0, 22, 21, 0, 0, 0, 20, 0], ... [0, 0, 12, 11, 0, 0, 0, 10, 0], ... [34, 0, 0, 0, 33, 0, 35, 0, 0], ... [0, 86, 82, 81, 0, 88, 0, 80, 87], ... [54, 0, 0, 0, 53, 0, 55, 0, 0], ... [0, 0, 2, 1, 0, 0, 0, 0, 0], ... [0, 76, 72, 71, 0, 78, 0, 70, 77]]) A lower block triangular decomposition: >>> P, B = A.strongly_connected_components_decomposition() >>> pprint(P) PermutationMatrix((8)(1 4 3 2 6)(5 7)) >>> pprint(B) [[44 43 45] [0 0 0] [0 0 0] ] [[ ] [ ] [ ] ] [[34 33 35] [0 0 0] [0 0 0] ] [[ ] [ ] [ ] ] [[54 53 55] [0 0 0] [0 0 0] ] [ ] [ [0 0 0] [22 21 20] [0 0 0] ] [ [ ] [ ] [ ] ] [ [0 0 0] [12 11 10] [0 0 0] ] [ [ ] [ ] [ ] ] [ [0 0 0] [2 1 0 ] [0 0 0] ] [ ] [ [0 0 0] [62 61 60] [66 68 67]] [ [ ] [ ] [ ]] [ [0 0 0] [82 81 80] [86 88 87]] [ [ ] [ ] [ ]] [ [0 0 0] [72 71 70] [76 78 77]] >>> P = P.as_explicit() >>> B = B.as_explicit() >>> P.T * B * P == A True An upper block triangular decomposition: >>> P, B = A.strongly_connected_components_decomposition(lower=False) >>> pprint(P) PermutationMatrix((0 1 5 7 4 3 2 8 6)) >>> pprint(B) [[66 68 67] [62 61 60] [0 0 0] ] [[ ] [ ] [ ] ] [[86 88 87] [82 81 80] [0 0 0] ] [[ ] [ ] [ ] ] [[76 78 77] [72 71 70] [0 0 0] ] [ ] [ [0 0 0] [22 21 20] [0 0 0] ] [ [ ] [ ] [ ] ] [ [0 0 0] [12 11 10] [0 0 0] ] [ [ ] [ ] [ ] ] [ [0 0 0] [2 1 0 ] [0 0 0] ] [ ] [ [0 0 0] [0 0 0] [44 43 45]] [ [ ] [ ] [ ]] [ [0 0 0] [0 0 0] [34 33 35]] [ [ ] [ ] [ ]] [ [0 0 0] [0 0 0] [54 53 55]] >>> P = P.as_explicit() >>> B = B.as_explicit() >>> P.T * B * P == A True """ from sympy.combinatorics.permutations import Permutation from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions.permutation import PermutationMatrix iblocks = M.strongly_connected_components() if not lower: iblocks = list(reversed(iblocks)) p = Permutation(flatten(iblocks)) P = PermutationMatrix(p) rows = [] for a in iblocks: cols = [] for b in iblocks: cols.append(M[a, b]) rows.append(cols) B = BlockMatrix(rows) return P, B
6cb6d186ab390f174471678beb189f6f2aa2d189a79a80a2fc63bcc7eaf08014
""" Basic methods common to all matrices to be used when creating more advanced matrices (e.g., matrices over rings, etc.). """ from collections import defaultdict from collections.abc import Iterable from inspect import isfunction from functools import reduce from sympy.core.logic import FuzzyBool from sympy.assumptions.refine import refine from sympy.core import SympifyError, Add from sympy.core.basic import Atom from sympy.core.compatibility import as_int, is_sequence from sympy.core.decorators import call_highest_priority from sympy.core.kind import Kind, NumberKind from sympy.core.logic import fuzzy_and from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions import Abs from sympy.polys.polytools import Poly from sympy.simplify import simplify as _simplify from sympy.simplify.simplify import dotprodsimp as _dotprodsimp from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent from sympy.tensor.array import NDimArray from .utilities import _get_intermediate_simp_bool class MatrixError(Exception): pass class ShapeError(ValueError, MatrixError): """Wrong matrix shape""" pass class NonSquareMatrixError(ShapeError): pass class NonInvertibleMatrixError(ValueError, MatrixError): """The matrix in not invertible (division by multidimensional zero error).""" pass class NonPositiveDefiniteMatrixError(ValueError, MatrixError): """The matrix is not a positive-definite matrix.""" pass class MatrixRequired: """All subclasses of matrix objects must implement the required matrix properties listed here.""" rows = None # type: int cols = None # type: int _simplify = None @classmethod def _new(cls, *args, **kwargs): """`_new` must, at minimum, be callable as `_new(rows, cols, mat) where mat is a flat list of the elements of the matrix.""" raise NotImplementedError("Subclasses must implement this.") def __eq__(self, other): raise NotImplementedError("Subclasses must implement this.") def __getitem__(self, key): """Implementations of __getitem__ should accept ints, in which case the matrix is indexed as a flat list, tuples (i,j) in which case the (i,j) entry is returned, slices, or mixed tuples (a,b) where a and b are any combintion of slices and integers.""" raise NotImplementedError("Subclasses must implement this.") def __len__(self): """The total number of entries in the matrix.""" raise NotImplementedError("Subclasses must implement this.") @property def shape(self): raise NotImplementedError("Subclasses must implement this.") class MatrixShaping(MatrixRequired): """Provides basic matrix shaping and extracting of submatrices""" def _eval_col_del(self, col): def entry(i, j): return self[i, j] if j < col else self[i, j + 1] return self._new(self.rows, self.cols - 1, entry) def _eval_col_insert(self, pos, other): def entry(i, j): if j < pos: return self[i, j] elif pos <= j < pos + other.cols: return other[i, j - pos] return self[i, j - other.cols] return self._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_col_join(self, other): rows = self.rows def entry(i, j): if i < rows: return self[i, j] return other[i - rows, j] return classof(self, other)._new(self.rows + other.rows, self.cols, lambda i, j: entry(i, j)) def _eval_extract(self, rowsList, colsList): mat = list(self) cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices)) def _eval_get_diag_blocks(self): sub_blocks = [] def recurse_sub_blocks(M): i = 1 while i <= M.shape[0]: if i == 1: to_the_right = M[0, i:] to_the_bottom = M[i:, 0] else: to_the_right = M[:i, i:] to_the_bottom = M[i:, :i] if any(to_the_right) or any(to_the_bottom): i += 1 continue else: sub_blocks.append(M[:i, :i]) if M.shape == M[:i, :i].shape: return else: recurse_sub_blocks(M[i:, i:]) return recurse_sub_blocks(self) return sub_blocks def _eval_row_del(self, row): def entry(i, j): return self[i, j] if i < row else self[i + 1, j] return self._new(self.rows - 1, self.cols, entry) def _eval_row_insert(self, pos, other): entries = list(self) insert_pos = pos * self.cols entries[insert_pos:insert_pos] = list(other) return self._new(self.rows + other.rows, self.cols, entries) def _eval_row_join(self, other): cols = self.cols def entry(i, j): if j < cols: return self[i, j] return other[i, j - cols] return classof(self, other)._new(self.rows, self.cols + other.cols, lambda i, j: entry(i, j)) def _eval_tolist(self): return [list(self[i,:]) for i in range(self.rows)] def _eval_todok(self): dok = {} rows, cols = self.shape for i in range(rows): for j in range(cols): val = self[i, j] if val != self.zero: dok[i, j] = val return dok def _eval_vec(self): rows = self.rows def entry(n, _): # we want to read off the columns first j = n // rows i = n - j * rows return self[i, j] return self._new(len(self), 1, entry) def _eval_vech(self, diagonal): c = self.cols v = [] if diagonal: for j in range(c): for i in range(j, c): v.append(self[i, j]) else: for j in range(c): for i in range(j + 1, c): v.append(self[i, j]) return self._new(len(v), 1, v) def col_del(self, col): """Delete the specified column.""" if col < 0: col += self.cols if not 0 <= col < self.cols: raise IndexError("Column {} is out of range.".format(col)) return self._eval_col_del(col) def col_insert(self, pos, other): """Insert one or more columns at the given column position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.col_insert(1, V) Matrix([ [0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]]) See Also ======== col row_insert """ # Allows you to build a matrix even if it is null matrix if not self: return type(self)(other) pos = as_int(pos) if pos < 0: pos = self.cols + pos if pos < 0: pos = 0 elif pos > self.cols: pos = self.cols if self.rows != other.rows: raise ShapeError( "`self` and `other` must have the same number of rows.") return self._eval_col_insert(pos, other) def col_join(self, other): """Concatenates two matrices along self's last and other's first row. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.col_join(V) Matrix([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [1, 1, 1]]) See Also ======== col row_join """ # A null matrix can always be stacked (see #10770) if self.rows == 0 and self.cols != other.cols: return self._new(0, other.cols, []).col_join(other) if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_col_join(other) def col(self, j): """Elementary column selector. Examples ======== >>> from sympy import eye >>> eye(2).col(0) Matrix([ [1], [0]]) See Also ======== row sympy.matrices.dense.MutableDenseMatrix.col_op sympy.matrices.dense.MutableDenseMatrix.col_swap col_del col_join col_insert """ return self[:, j] def extract(self, rowsList, colsList): """Return a submatrix by specifying a list of rows and columns. Negative indices can be given. All indices must be in the range -n <= i < n where n is the number of rows or columns. Examples ======== >>> from sympy import Matrix >>> m = Matrix(4, 3, range(12)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) >>> m.extract([0, 1, 3], [0, 1]) Matrix([ [0, 1], [3, 4], [9, 10]]) Rows or columns can be repeated: >>> m.extract([0, 0, 1], [-1]) Matrix([ [2], [2], [5]]) Every other row can be taken by using range to provide the indices: >>> m.extract(range(0, m.rows, 2), [-1]) Matrix([ [2], [8]]) RowsList or colsList can also be a list of booleans, in which case the rows or columns corresponding to the True values will be selected: >>> m.extract([0, 1, 2, 3], [True, False, True]) Matrix([ [0, 2], [3, 5], [6, 8], [9, 11]]) """ if not is_sequence(rowsList) or not is_sequence(colsList): raise TypeError("rowsList and colsList must be iterable") # ensure rowsList and colsList are lists of integers if rowsList and all(isinstance(i, bool) for i in rowsList): rowsList = [index for index, item in enumerate(rowsList) if item] if colsList and all(isinstance(i, bool) for i in colsList): colsList = [index for index, item in enumerate(colsList) if item] # ensure everything is in range rowsList = [a2idx(k, self.rows) for k in rowsList] colsList = [a2idx(k, self.cols) for k in colsList] return self._eval_extract(rowsList, colsList) def get_diag_blocks(self): """Obtains the square sub-matrices on the main diagonal of a square matrix. Useful for inverting symbolic matrices or solving systems of linear equations which may be decoupled by having a block diagonal structure. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) >>> a1, a2, a3 = A.get_diag_blocks() >>> a1 Matrix([ [1, 3], [y, z**2]]) >>> a2 Matrix([[x]]) >>> a3 Matrix([[0]]) """ return self._eval_get_diag_blocks() @classmethod def hstack(cls, *args): """Return a matrix formed by joining args horizontally (i.e. by repeated application of row_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.hstack(eye(2), 2*eye(2)) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.row_join, args) def reshape(self, rows, cols): """Reshape the matrix. Total number of elements must remain the same. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 3, lambda i, j: 1) >>> m Matrix([ [1, 1, 1], [1, 1, 1]]) >>> m.reshape(1, 6) Matrix([[1, 1, 1, 1, 1, 1]]) >>> m.reshape(3, 2) Matrix([ [1, 1], [1, 1], [1, 1]]) """ if self.rows * self.cols != rows * cols: raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) return self._new(rows, cols, lambda i, j: self[i * cols + j]) def row_del(self, row): """Delete the specified row.""" if row < 0: row += self.rows if not 0 <= row < self.rows: raise IndexError("Row {} is out of range.".format(row)) return self._eval_row_del(row) def row_insert(self, pos, other): """Insert one or more rows at the given row position. Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(1, 3) >>> M.row_insert(1, V) Matrix([ [0, 0, 0], [1, 1, 1], [0, 0, 0], [0, 0, 0]]) See Also ======== row col_insert """ # Allows you to build a matrix even if it is null matrix if not self: return self._new(other) pos = as_int(pos) if pos < 0: pos = self.rows + pos if pos < 0: pos = 0 elif pos > self.rows: pos = self.rows if self.cols != other.cols: raise ShapeError( "`self` and `other` must have the same number of columns.") return self._eval_row_insert(pos, other) def row_join(self, other): """Concatenates two matrices along self's last and rhs's first column Examples ======== >>> from sympy import zeros, ones >>> M = zeros(3) >>> V = ones(3, 1) >>> M.row_join(V) Matrix([ [0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1]]) See Also ======== row col_join """ # A null matrix can always be stacked (see #10770) if self.cols == 0 and self.rows != other.rows: return self._new(other.rows, 0, []).row_join(other) if self.rows != other.rows: raise ShapeError( "`self` and `rhs` must have the same number of rows.") return self._eval_row_join(other) def diagonal(self, k=0): """Returns the kth diagonal of self. The main diagonal corresponds to `k=0`; diagonals above and below correspond to `k > 0` and `k < 0`, respectively. The values of `self[i, j]` for which `j - i = k`, are returned in order of increasing `i + j`, starting with `i + j = |k|`. Examples ======== >>> from sympy import Matrix >>> m = Matrix(3, 3, lambda i, j: j - i); m Matrix([ [ 0, 1, 2], [-1, 0, 1], [-2, -1, 0]]) >>> _.diagonal() Matrix([[0, 0, 0]]) >>> m.diagonal(1) Matrix([[1, 1]]) >>> m.diagonal(-2) Matrix([[-2]]) Even though the diagonal is returned as a Matrix, the element retrieval can be done with a single index: >>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1] 2 See Also ======== diag - to create a diagonal matrix """ rv = [] k = as_int(k) r = 0 if k > 0 else -k c = 0 if r else k while True: if r == self.rows or c == self.cols: break rv.append(self[r, c]) r += 1 c += 1 if not rv: raise ValueError(filldedent(''' The %s diagonal is out of range [%s, %s]''' % ( k, 1 - self.rows, self.cols - 1))) return self._new(1, len(rv), rv) def row(self, i): """Elementary row selector. Examples ======== >>> from sympy import eye >>> eye(2).row(0) Matrix([[1, 0]]) See Also ======== col sympy.matrices.dense.MutableDenseMatrix.row_op sympy.matrices.dense.MutableDenseMatrix.row_swap row_del row_join row_insert """ return self[i, :] @property def shape(self): """The shape (dimensions) of the matrix as the 2-tuple (rows, cols). Examples ======== >>> from sympy.matrices import zeros >>> M = zeros(2, 3) >>> M.shape (2, 3) >>> M.rows 2 >>> M.cols 3 """ return (self.rows, self.cols) def todok(self): """Return the matrix as dictionary of keys. Examples ======== >>> from sympy import Matrix >>> M = Matrix.eye(3) >>> M.todok() {(0, 0): 1, (1, 1): 1, (2, 2): 1} """ return self._eval_todok() def tolist(self): """Return the Matrix as a nested Python list. Examples ======== >>> from sympy import Matrix, ones >>> m = Matrix(3, 3, range(9)) >>> m Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> m.tolist() [[0, 1, 2], [3, 4, 5], [6, 7, 8]] >>> ones(3, 0).tolist() [[], [], []] When there are no rows then it will not be possible to tell how many columns were in the original matrix: >>> ones(0, 3).tolist() [] """ if not self.rows: return [] if not self.cols: return [[] for i in range(self.rows)] return self._eval_tolist() def todod(M): """Returns matrix as dict of dicts containing non-zero elements of the Matrix Examples ======== >>> from sympy import Matrix >>> A = Matrix([[0, 1],[0, 3]]) >>> A Matrix([ [0, 1], [0, 3]]) >>> A.todod() {0: {1: 1}, 1: {1: 3}} """ rowsdict = {} Mlol = M.tolist() for i, Mi in enumerate(Mlol): row = {j: Mij for j, Mij in enumerate(Mi) if Mij} if row: rowsdict[i] = row return rowsdict def vec(self): """Return the Matrix converted into a one column matrix by stacking columns Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 3], [2, 4]]) >>> m Matrix([ [1, 3], [2, 4]]) >>> m.vec() Matrix([ [1], [2], [3], [4]]) See Also ======== vech """ return self._eval_vec() def vech(self, diagonal=True, check_symmetry=True): """Reshapes the matrix into a column vector by stacking the elements in the lower triangle. Parameters ========== diagonal : bool, optional If ``True``, it includes the diagonal elements. check_symmetry : bool, optional If ``True``, it checks whether the matrix is symmetric. Examples ======== >>> from sympy import Matrix >>> m=Matrix([[1, 2], [2, 3]]) >>> m Matrix([ [1, 2], [2, 3]]) >>> m.vech() Matrix([ [1], [2], [3]]) >>> m.vech(diagonal=False) Matrix([[2]]) Notes ===== This should work for symmetric matrices and ``vech`` can represent symmetric matrices in vector form with less size than ``vec``. See Also ======== vec """ if not self.is_square: raise NonSquareMatrixError if check_symmetry and not self.is_symmetric(): raise ValueError("The matrix is not symmetric.") return self._eval_vech(diagonal) @classmethod def vstack(cls, *args): """Return a matrix formed by joining args vertically (i.e. by repeated application of col_join). Examples ======== >>> from sympy.matrices import Matrix, eye >>> Matrix.vstack(eye(2), 2*eye(2)) Matrix([ [1, 0], [0, 1], [2, 0], [0, 2]]) """ if len(args) == 0: return cls._new() kls = type(args[0]) return reduce(kls.col_join, args) class MatrixSpecial(MatrixRequired): """Construction of special matrices""" @classmethod def _eval_diag(cls, rows, cols, diag_dict): """diag_dict is a defaultdict containing all the entries of the diagonal matrix.""" def entry(i, j): return diag_dict[(i, j)] return cls._new(rows, cols, entry) @classmethod def _eval_eye(cls, rows, cols): vals = [cls.zero]*(rows*cols) vals[::cols+1] = [cls.one]*min(rows, cols) return cls._new(rows, cols, vals, copy=False) @classmethod def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'): if band == 'lower': def entry(i, j): if i == j: return eigenvalue elif j + 1 == i: return cls.one return cls.zero else: def entry(i, j): if i == j: return eigenvalue elif i + 1 == j: return cls.one return cls.zero return cls._new(rows, cols, entry) @classmethod def _eval_ones(cls, rows, cols): def entry(i, j): return cls.one return cls._new(rows, cols, entry) @classmethod def _eval_zeros(cls, rows, cols): return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False) @classmethod def _eval_wilkinson(cls, n): def entry(i, j): return cls.one if i + 1 == j else cls.zero D = cls._new(2*n + 1, 2*n + 1, entry) wminus = cls.diag([i for i in range(-n, n + 1)], unpack=True) + D + D.T wplus = abs(cls.diag([i for i in range(-n, n + 1)], unpack=True)) + D + D.T return wminus, wplus @classmethod def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs): """Returns a matrix with the specified diagonal. If matrices are passed, a block-diagonal matrix is created (i.e. the "direct sum" of the matrices). kwargs ====== rows : rows of the resulting matrix; computed if not given. cols : columns of the resulting matrix; computed if not given. cls : class for the resulting matrix unpack : bool which, when True (default), unpacks a single sequence rather than interpreting it as a Matrix. strict : bool which, when False (default), allows Matrices to have variable-length rows. Examples ======== >>> from sympy.matrices import Matrix >>> Matrix.diag(1, 2, 3) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) The current default is to unpack a single sequence. If this is not desired, set `unpack=False` and it will be interpreted as a matrix. >>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) True When more than one element is passed, each is interpreted as something to put on the diagonal. Lists are converted to matrices. Filling of the diagonal always continues from the bottom right hand corner of the previous item: this will create a block-diagonal matrix whether the matrices are square or not. >>> col = [1, 2, 3] >>> row = [[4, 5]] >>> Matrix.diag(col, row) Matrix([ [1, 0, 0], [2, 0, 0], [3, 0, 0], [0, 4, 5]]) When `unpack` is False, elements within a list need not all be of the same length. Setting `strict` to True would raise a ValueError for the following: >>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False) Matrix([ [1, 2, 3], [4, 5, 0], [6, 0, 0]]) The type of the returned matrix can be set with the ``cls`` keyword. >>> from sympy.matrices import ImmutableMatrix >>> from sympy.utilities.misc import func_name >>> func_name(Matrix.diag(1, cls=ImmutableMatrix)) 'ImmutableDenseMatrix' A zero dimension matrix can be used to position the start of the filling at the start of an arbitrary row or column: >>> from sympy import ones >>> r2 = ones(0, 2) >>> Matrix.diag(r2, 1, 2) Matrix([ [0, 0, 1, 0], [0, 0, 0, 2]]) See Also ======== eye diagonal - to extract a diagonal .dense.diag .expressions.blockmatrix.BlockMatrix .sparsetools.banded - to create multi-diagonal matrices """ from sympy.matrices.matrices import MatrixBase from sympy.matrices.dense import Matrix from sympy.matrices.sparse import SparseMatrix klass = kwargs.get('cls', kls) if unpack and len(args) == 1 and is_sequence(args[0]) and \ not isinstance(args[0], MatrixBase): args = args[0] # fill a default dict with the diagonal entries diag_entries = defaultdict(int) rmax = cmax = 0 # keep track of the biggest index seen for m in args: if isinstance(m, list): if strict: # if malformed, Matrix will raise an error _ = Matrix(m) r, c = _.shape m = _.tolist() else: r, c, smat = SparseMatrix._handle_creation_inputs(m) for (i, j), _ in smat.items(): diag_entries[(i + rmax, j + cmax)] = _ m = [] # to skip process below elif hasattr(m, 'shape'): # a Matrix # convert to list of lists r, c = m.shape m = m.tolist() else: # in this case, we're a single value diag_entries[(rmax, cmax)] = m rmax += 1 cmax += 1 continue # process list of lists for i in range(len(m)): for j, _ in enumerate(m[i]): diag_entries[(i + rmax, j + cmax)] = _ rmax += r cmax += c if rows is None: rows, cols = cols, rows if rows is None: rows, cols = rmax, cmax else: cols = rows if cols is None else cols if rows < rmax or cols < cmax: raise ValueError(filldedent(''' The constructed matrix is {} x {} but a size of {} x {} was specified.'''.format(rmax, cmax, rows, cols))) return klass._eval_diag(rows, cols, diag_entries) @classmethod def eye(kls, rows, cols=None, **kwargs): """Returns an identity matrix. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_eye(rows, cols) @classmethod def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs): """Returns a Jordan block Parameters ========== size : Integer, optional Specifies the shape of the Jordan block matrix. eigenvalue : Number or Symbol Specifies the value for the main diagonal of the matrix. .. note:: The keyword ``eigenval`` is also specified as an alias of this keyword, but it is not recommended to use. We may deprecate the alias in later release. band : 'upper' or 'lower', optional Specifies the position of the off-diagonal to put `1` s on. cls : Matrix, optional Specifies the matrix class of the output form. If it is not specified, the class type where the method is being executed on will be returned. rows, cols : Integer, optional Specifies the shape of the Jordan block matrix. See Notes section for the details of how these key works. .. note:: This feature will be deprecated in the future. Returns ======= Matrix A Jordan block matrix. Raises ====== ValueError If insufficient arguments are given for matrix size specification, or no eigenvalue is given. Examples ======== Creating a default Jordan block: >>> from sympy import Matrix >>> from sympy.abc import x >>> Matrix.jordan_block(4, x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Creating an alternative Jordan block matrix where `1` is on lower off-diagonal: >>> Matrix.jordan_block(4, x, band='lower') Matrix([ [x, 0, 0, 0], [1, x, 0, 0], [0, 1, x, 0], [0, 0, 1, x]]) Creating a Jordan block with keyword arguments >>> Matrix.jordan_block(size=4, eigenvalue=x) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) Notes ===== .. note:: This feature will be deprecated in the future. The keyword arguments ``size``, ``rows``, ``cols`` relates to the Jordan block size specifications. If you want to create a square Jordan block, specify either one of the three arguments. If you want to create a rectangular Jordan block, specify ``rows`` and ``cols`` individually. +--------------------------------+---------------------+ | Arguments Given | Matrix Shape | +----------+----------+----------+----------+----------+ | size | rows | cols | rows | cols | +==========+==========+==========+==========+==========+ | size | Any | size | size | +----------+----------+----------+----------+----------+ | | None | ValueError | | +----------+----------+----------+----------+ | None | rows | None | rows | rows | | +----------+----------+----------+----------+ | | None | cols | cols | cols | + +----------+----------+----------+----------+ | | rows | cols | rows | cols | +----------+----------+----------+----------+----------+ References ========== .. [1] https://en.wikipedia.org/wiki/Jordan_matrix """ if 'rows' in kwargs or 'cols' in kwargs: SymPyDeprecationWarning( feature="Keyword arguments 'rows' or 'cols'", issue=16102, useinstead="a more generic banded matrix constructor", deprecated_since_version="1.4" ).warn() klass = kwargs.pop('cls', kls) rows = kwargs.pop('rows', None) cols = kwargs.pop('cols', None) eigenval = kwargs.get('eigenval', None) if eigenvalue is None and eigenval is None: raise ValueError("Must supply an eigenvalue") elif eigenvalue != eigenval and None not in (eigenval, eigenvalue): raise ValueError( "Inconsistent values are given: 'eigenval'={}, " "'eigenvalue'={}".format(eigenval, eigenvalue)) else: if eigenval is not None: eigenvalue = eigenval if (size, rows, cols) == (None, None, None): raise ValueError("Must supply a matrix size") if size is not None: rows, cols = size, size elif rows is not None and cols is None: cols = rows elif cols is not None and rows is None: rows = cols rows, cols = as_int(rows), as_int(cols) return klass._eval_jordan_block(rows, cols, eigenvalue, band) @classmethod def ones(kls, rows, cols=None, **kwargs): """Returns a matrix of ones. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_ones(rows, cols) @classmethod def zeros(kls, rows, cols=None, **kwargs): """Returns a matrix of zeros. Args ==== rows : rows of the matrix cols : cols of the matrix (if None, cols=rows) kwargs ====== cls : class of the returned matrix """ if cols is None: cols = rows if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) klass = kwargs.get('cls', kls) rows, cols = as_int(rows), as_int(cols) return klass._eval_zeros(rows, cols) @classmethod def companion(kls, poly): """Returns a companion matrix of a polynomial. Examples ======== >>> from sympy import Matrix, Poly, Symbol, symbols >>> x = Symbol('x') >>> c0, c1, c2, c3, c4 = symbols('c0:5') >>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x) >>> Matrix.companion(p) Matrix([ [0, 0, 0, 0, -c0], [1, 0, 0, 0, -c1], [0, 1, 0, 0, -c2], [0, 0, 1, 0, -c3], [0, 0, 0, 1, -c4]]) """ poly = kls._sympify(poly) if not isinstance(poly, Poly): raise ValueError("{} must be a Poly instance.".format(poly)) if not poly.is_monic: raise ValueError("{} must be a monic polynomial.".format(poly)) if not poly.is_univariate: raise ValueError( "{} must be a univariate polynomial.".format(poly)) size = poly.degree() if not size >= 1: raise ValueError( "{} must have degree not less than 1.".format(poly)) coeffs = poly.all_coeffs() def entry(i, j): if j == size - 1: return -coeffs[-1 - i] elif i == j + 1: return kls.one return kls.zero return kls._new(size, size, entry) @classmethod def wilkinson(kls, n, **kwargs): """Returns two square Wilkinson Matrix of size 2*n + 1 $W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n) Examples ======== >>> from sympy.matrices import Matrix >>> wminus, wplus = Matrix.wilkinson(3) >>> wminus Matrix([ [-3, 1, 0, 0, 0, 0, 0], [ 1, -2, 1, 0, 0, 0, 0], [ 0, 1, -1, 1, 0, 0, 0], [ 0, 0, 1, 0, 1, 0, 0], [ 0, 0, 0, 1, 1, 1, 0], [ 0, 0, 0, 0, 1, 2, 1], [ 0, 0, 0, 0, 0, 1, 3]]) >>> wplus Matrix([ [3, 1, 0, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 1, 3]]) References ========== .. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/ .. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp. """ klass = kwargs.get('cls', kls) n = as_int(n) return klass._eval_wilkinson(n) class MatrixProperties(MatrixRequired): """Provides basic properties of a matrix.""" def _eval_atoms(self, *types): result = set() for i in self: result.update(i.atoms(*types)) return result def _eval_free_symbols(self): return set().union(*(i.free_symbols for i in self if i)) def _eval_has(self, *patterns): return any(a.has(*patterns) for a in self) def _eval_is_anti_symmetric(self, simpfunc): if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)): return False return True def _eval_is_diagonal(self): for i in range(self.rows): for j in range(self.cols): if i != j and self[i, j]: return False return True # _eval_is_hermitian is called by some general sympy # routines and has a different *args signature. Make # sure the names don't clash by adding `_matrix_` in name. def _eval_is_matrix_hermitian(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate())) return mat.is_zero_matrix def _eval_is_Identity(self) -> FuzzyBool: def dirac(i, j): if i == j: return 1 return 0 return all(self[i, j] == dirac(i, j) for i in range(self.rows) for j in range(self.cols)) def _eval_is_lower_hessenberg(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 2, self.cols)) def _eval_is_lower(self): return all(self[i, j].is_zero for i in range(self.rows) for j in range(i + 1, self.cols)) def _eval_is_symbolic(self): return self.has(Symbol) def _eval_is_symmetric(self, simpfunc): mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i])) return mat.is_zero_matrix def _eval_is_zero_matrix(self): if any(i.is_zero == False for i in self): return False if any(i.is_zero is None for i in self): return None return True def _eval_is_upper_hessenberg(self): return all(self[i, j].is_zero for i in range(2, self.rows) for j in range(min(self.cols, (i - 1)))) def _eval_values(self): return [i for i in self if not i.is_zero] def _has_positive_diagonals(self): diagonal_entries = (self[i, i] for i in range(self.rows)) return fuzzy_and(x.is_positive for x in diagonal_entries) def _has_nonnegative_diagonals(self): diagonal_entries = (self[i, i] for i in range(self.rows)) return fuzzy_and(x.is_nonnegative for x in diagonal_entries) def atoms(self, *types): """Returns the atoms that form the current object. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import Matrix >>> Matrix([[x]]) Matrix([[x]]) >>> _.atoms() {x} >>> Matrix([[x, y], [y, x]]) Matrix([ [x, y], [y, x]]) >>> _.atoms() {x, y} """ types = tuple(t if isinstance(t, type) else type(t) for t in types) if not types: types = (Atom,) return self._eval_atoms(*types) @property def free_symbols(self): """Returns the free symbols within the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix([[x], [1]]).free_symbols {x} """ return self._eval_free_symbols() def has(self, *patterns): """Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import Matrix, SparseMatrix, Float >>> from sympy.abc import x, y >>> A = Matrix(((1, x), (0.2, 3))) >>> B = SparseMatrix(((1, x), (0.2, 3))) >>> A.has(x) True >>> A.has(y) False >>> A.has(Float) True >>> B.has(x) True >>> B.has(y) False >>> B.has(Float) True """ return self._eval_has(*patterns) def is_anti_symmetric(self, simplify=True): """Check if matrix M is an antisymmetric matrix, that is, M is a square matrix with all M[i, j] == -M[j, i]. When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is simplified before testing to see if it is zero. By default, the SymPy simplify function is used. To use a custom function set simplify to a function that accepts a single argument which returns a simplified expression. To skip simplification, set simplify to False but note that although this will be faster, it may induce false negatives. Examples ======== >>> from sympy import Matrix, symbols >>> m = Matrix(2, 2, [0, 1, -1, 0]) >>> m Matrix([ [ 0, 1], [-1, 0]]) >>> m.is_anti_symmetric() True >>> x, y = symbols('x y') >>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) >>> m Matrix([ [ 0, 0, x], [-y, 0, 0]]) >>> m.is_anti_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, ... -(x + 1)**2 , 0, x*y, ... -y, -x*y, 0]) Simplification of matrix elements is done by default so even though two elements which should be equal and opposite wouldn't pass an equality test, the matrix is still reported as anti-symmetric: >>> m[0, 1] == -m[1, 0] False >>> m.is_anti_symmetric() True If 'simplify=False' is used for the case when a Matrix is already simplified, this will speed things up. Here, we see that without simplification the matrix does not appear anti-symmetric: >>> m.is_anti_symmetric(simplify=False) False But if the matrix were already expanded, then it would appear anti-symmetric and simplification in the is_anti_symmetric routine is not needed: >>> m = m.expand() >>> m.is_anti_symmetric(simplify=False) True """ # accept custom simplification simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_anti_symmetric(simpfunc) def is_diagonal(self): """Check if matrix is diagonal, that is matrix in which the entries outside the main diagonal are all zero. Examples ======== >>> from sympy import Matrix, diag >>> m = Matrix(2, 2, [1, 0, 0, 2]) >>> m Matrix([ [1, 0], [0, 2]]) >>> m.is_diagonal() True >>> m = Matrix(2, 2, [1, 1, 0, 2]) >>> m Matrix([ [1, 1], [0, 2]]) >>> m.is_diagonal() False >>> m = diag(1, 2, 3) >>> m Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> m.is_diagonal() True See Also ======== is_lower is_upper sympy.matrices.matrices.MatrixEigen.is_diagonalizable diagonalize """ return self._eval_is_diagonal() @property def is_weakly_diagonally_dominant(self): r"""Tests if the matrix is row weakly diagonally dominant. Explanation =========== A $n, n$ matrix $A$ is row weakly diagonally dominant if .. math:: \left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1} \left|A_{i, j}\right| \quad {\text{for all }} i \in \{ 0, ..., n-1 \} Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) >>> A.is_weakly_diagonally_dominant True >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) >>> A.is_weakly_diagonally_dominant False >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) >>> A.is_weakly_diagonally_dominant True Notes ===== If you want to test whether a matrix is column diagonally dominant, you can apply the test after transposing the matrix. """ if not self.is_square: return False rows, cols = self.shape def test_row(i): summation = self.zero for j in range(cols): if i != j: summation += Abs(self[i, j]) return (Abs(self[i, i]) - summation).is_nonnegative return fuzzy_and(test_row(i) for i in range(rows)) @property def is_strongly_diagonally_dominant(self): r"""Tests if the matrix is row strongly diagonally dominant. Explanation =========== A $n, n$ matrix $A$ is row strongly diagonally dominant if .. math:: \left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1} \left|A_{i, j}\right| \quad {\text{for all }} i \in \{ 0, ..., n-1 \} Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) >>> A.is_strongly_diagonally_dominant False >>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) >>> A.is_strongly_diagonally_dominant False >>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) >>> A.is_strongly_diagonally_dominant True Notes ===== If you want to test whether a matrix is column diagonally dominant, you can apply the test after transposing the matrix. """ if not self.is_square: return False rows, cols = self.shape def test_row(i): summation = self.zero for j in range(cols): if i != j: summation += Abs(self[i, j]) return (Abs(self[i, i]) - summation).is_positive return fuzzy_and(test_row(i) for i in range(rows)) @property def is_hermitian(self): """Checks if the matrix is Hermitian. In a Hermitian matrix element i,j is the complex conjugate of element j,i. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy import I >>> from sympy.abc import x >>> a = Matrix([[1, I], [-I, 1]]) >>> a Matrix([ [ 1, I], [-I, 1]]) >>> a.is_hermitian True >>> a[0, 0] = 2*I >>> a.is_hermitian False >>> a[0, 0] = x >>> a.is_hermitian >>> a[0, 1] = a[1, 0]*I >>> a.is_hermitian False """ if not self.is_square: return False return self._eval_is_matrix_hermitian(_simplify) @property def is_Identity(self) -> FuzzyBool: if not self.is_square: return False return self._eval_is_Identity() @property def is_lower_hessenberg(self): r"""Checks if the matrix is in the lower-Hessenberg form. The lower hessenberg matrix has zero entries above the first superdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a Matrix([ [1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) >>> a.is_lower_hessenberg True See Also ======== is_upper_hessenberg is_lower """ return self._eval_is_lower_hessenberg() @property def is_lower(self): """Check if matrix is a lower triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_lower True >>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5]) >>> m Matrix([ [0, 0, 0], [2, 0, 0], [1, 4, 0], [6, 6, 5]]) >>> m.is_lower True >>> from sympy.abc import x, y >>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) >>> m Matrix([ [x**2 + y, x + y**2], [ 0, x + y]]) >>> m.is_lower False See Also ======== is_upper is_diagonal is_lower_hessenberg """ return self._eval_is_lower() @property def is_square(self): """Checks if a matrix is square. A matrix is square if the number of rows equals the number of columns. The empty matrix is square by definition, since the number of rows and the number of columns are both zero. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[1, 2, 3], [4, 5, 6]]) >>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> c = Matrix([]) >>> a.is_square False >>> b.is_square True >>> c.is_square True """ return self.rows == self.cols def is_symbolic(self): """Checks if any elements contain Symbols. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.is_symbolic() True """ return self._eval_is_symbolic() def is_symmetric(self, simplify=True): """Check if matrix is symmetric matrix, that is square matrix and is equal to its transpose. By default, simplifications occur before testing symmetry. They can be skipped using 'simplify=False'; while speeding things a bit, this may however induce false negatives. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [0, 1, 1, 2]) >>> m Matrix([ [0, 1], [1, 2]]) >>> m.is_symmetric() True >>> m = Matrix(2, 2, [0, 1, 2, 0]) >>> m Matrix([ [0, 1], [2, 0]]) >>> m.is_symmetric() False >>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) >>> m Matrix([ [0, 0, 0], [0, 0, 0]]) >>> m.is_symmetric() False >>> from sympy.abc import x, y >>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3]) >>> m Matrix([ [ 1, x**2 + 2*x + 1, y], [(x + 1)**2, 2, 0], [ y, 0, 3]]) >>> m.is_symmetric() True If the matrix is already simplified, you may speed-up is_symmetric() test by using 'simplify=False'. >>> bool(m.is_symmetric(simplify=False)) False >>> m1 = m.expand() >>> m1.is_symmetric(simplify=False) True """ simpfunc = simplify if not isfunction(simplify): simpfunc = _simplify if simplify else lambda x: x if not self.is_square: return False return self._eval_is_symmetric(simpfunc) @property def is_upper_hessenberg(self): """Checks if the matrix is the upper-Hessenberg form. The upper hessenberg matrix has zero entries below the first subdiagonal. Examples ======== >>> from sympy.matrices import Matrix >>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a Matrix([ [1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) >>> a.is_upper_hessenberg True See Also ======== is_lower_hessenberg is_upper """ return self._eval_is_upper_hessenberg() @property def is_upper(self): """Check if matrix is an upper triangular matrix. True can be returned even if the matrix is not square. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, [1, 0, 0, 1]) >>> m Matrix([ [1, 0], [0, 1]]) >>> m.is_upper True >>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0]) >>> m Matrix([ [5, 1, 9], [0, 4, 6], [0, 0, 5], [0, 0, 0]]) >>> m.is_upper True >>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) >>> m Matrix([ [4, 2, 5], [6, 1, 1]]) >>> m.is_upper False See Also ======== is_lower is_diagonal is_upper_hessenberg """ return all(self[i, j].is_zero for i in range(1, self.rows) for j in range(min(i, self.cols))) @property def is_zero_matrix(self): """Checks if a matrix is a zero matrix. A matrix is zero if every element is zero. A matrix need not be square to be considered zero. The empty matrix is zero by the principle of vacuous truth. For a matrix that may or may not be zero (e.g. contains a symbol), this will be None Examples ======== >>> from sympy import Matrix, zeros >>> from sympy.abc import x >>> a = Matrix([[0, 0], [0, 0]]) >>> b = zeros(3, 4) >>> c = Matrix([[0, 1], [0, 0]]) >>> d = Matrix([]) >>> e = Matrix([[x, 0], [0, 0]]) >>> a.is_zero_matrix True >>> b.is_zero_matrix True >>> c.is_zero_matrix False >>> d.is_zero_matrix True >>> e.is_zero_matrix """ return self._eval_is_zero_matrix() def values(self): """Return non-zero values of self.""" return self._eval_values() class MatrixOperations(MatrixRequired): """Provides basic matrix shape and elementwise operations. Should not be instantiated directly.""" def _eval_adjoint(self): return self.transpose().conjugate() def _eval_applyfunc(self, f): out = self._new(self.rows, self.cols, [f(x) for x in self]) return out def _eval_as_real_imag(self): # type: ignore from sympy.functions.elementary.complexes import re, im return (self.applyfunc(re), self.applyfunc(im)) def _eval_conjugate(self): return self.applyfunc(lambda x: x.conjugate()) def _eval_permute_cols(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[i, mapping[j]] return self._new(self.rows, self.cols, entry) def _eval_permute_rows(self, perm): # apply the permutation to a list mapping = list(perm) def entry(i, j): return self[mapping[i], j] return self._new(self.rows, self.cols, entry) def _eval_trace(self): return sum(self[i, i] for i in range(self.rows)) def _eval_transpose(self): return self._new(self.cols, self.rows, lambda i, j: self[j, i]) def adjoint(self): """Conjugate transpose or Hermitian conjugation.""" return self._eval_adjoint() def applyfunc(self, f): """Apply a function to each element of the matrix. Examples ======== >>> from sympy import Matrix >>> m = Matrix(2, 2, lambda i, j: i*2+j) >>> m Matrix([ [0, 1], [2, 3]]) >>> m.applyfunc(lambda i: 2*i) Matrix([ [0, 2], [4, 6]]) """ if not callable(f): raise TypeError("`f` must be callable.") return self._eval_applyfunc(f) def as_real_imag(self, deep=True, **hints): """Returns a tuple containing the (real, imaginary) part of matrix.""" # XXX: Ignoring deep and hints... return self._eval_as_real_imag() def conjugate(self): """Return the by-element conjugation. Examples ======== >>> from sympy.matrices import SparseMatrix >>> from sympy import I >>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) >>> a Matrix([ [1, 2 + I], [3, 4], [I, -I]]) >>> a.C Matrix([ [ 1, 2 - I], [ 3, 4], [-I, I]]) See Also ======== transpose: Matrix transposition H: Hermite conjugation sympy.matrices.matrices.MatrixBase.D: Dirac conjugation """ return self._eval_conjugate() def doit(self, **kwargs): return self.applyfunc(lambda x: x.doit()) def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): """Apply evalf() to each element of self.""" options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict, 'quad':quad, 'verbose':verbose} return self.applyfunc(lambda i: i.evalf(n, **options)) def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """Apply core.function.expand to each entry of the matrix. Examples ======== >>> from sympy.abc import x >>> from sympy.matrices import Matrix >>> Matrix(1, 1, [x*(x+1)]) Matrix([[x*(x + 1)]]) >>> _.expand() Matrix([[x**2 + x]]) """ return self.applyfunc(lambda x: x.expand( deep, modulus, power_base, power_exp, mul, log, multinomial, basic, **hints)) @property def H(self): """Return Hermite conjugate. Examples ======== >>> from sympy import Matrix, I >>> m = Matrix((0, 1 + I, 2, 3)) >>> m Matrix([ [ 0], [1 + I], [ 2], [ 3]]) >>> m.H Matrix([[0, 1 - I, 2, 3]]) See Also ======== conjugate: By-element conjugation sympy.matrices.matrices.MatrixBase.D: Dirac conjugation """ return self.T.C def permute(self, perm, orientation='rows', direction='forward'): r"""Permute the rows or columns of a matrix by the given list of swaps. Parameters ========== perm : Permutation, list, or list of lists A representation for the permutation. If it is ``Permutation``, it is used directly with some resizing with respect to the matrix size. If it is specified as list of lists, (e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed from applying the product of cycles. The direction how the cyclic product is applied is described in below. If it is specified as a list, the list should represent an array form of a permutation. (e.g., ``[1, 2, 0]``) which would would form the swapping function `0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`. orientation : 'rows', 'cols' A flag to control whether to permute the rows or the columns direction : 'forward', 'backward' A flag to control whether to apply the permutations from the start of the list first, or from the back of the list first. For example, if the permutation specification is ``[[0, 1], [0, 2]]``, If the flag is set to ``'forward'``, the cycle would be formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`. If the flag is set to ``'backward'``, the cycle would be formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`. If the argument ``perm`` is not in a form of list of lists, this flag takes no effect. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') Matrix([ [0, 0, 1], [1, 0, 0], [0, 1, 0]]) >>> from sympy.matrices import eye >>> M = eye(3) >>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') Matrix([ [0, 1, 0], [0, 0, 1], [1, 0, 0]]) Notes ===== If a bijective function `\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the permutation. If the matrix `A` is the matrix to permute, represented as a horizontal or a vertical stack of vectors: .. math:: A = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} = \begin{bmatrix} \alpha_0 & \alpha_1 & \cdots & \alpha_{n-1} \end{bmatrix} If the matrix `B` is the result, the permutation of matrix rows is defined as: .. math:: B := \begin{bmatrix} a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)} \end{bmatrix} And the permutation of matrix columns is defined as: .. math:: B := \begin{bmatrix} \alpha_{\sigma(0)} & \alpha_{\sigma(1)} & \cdots & \alpha_{\sigma(n-1)} \end{bmatrix} """ from sympy.combinatorics import Permutation # allow british variants and `columns` if direction == 'forwards': direction = 'forward' if direction == 'backwards': direction = 'backward' if orientation == 'columns': orientation = 'cols' if direction not in ('forward', 'backward'): raise TypeError("direction='{}' is an invalid kwarg. " "Try 'forward' or 'backward'".format(direction)) if orientation not in ('rows', 'cols'): raise TypeError("orientation='{}' is an invalid kwarg. " "Try 'rows' or 'cols'".format(orientation)) if not isinstance(perm, (Permutation, Iterable)): raise ValueError( "{} must be a list, a list of lists, " "or a SymPy permutation object.".format(perm)) # ensure all swaps are in range max_index = self.rows if orientation == 'rows' else self.cols if not all(0 <= t <= max_index for t in flatten(list(perm))): raise IndexError("`swap` indices out of range.") if perm and not isinstance(perm, Permutation) and \ isinstance(perm[0], Iterable): if direction == 'forward': perm = list(reversed(perm)) perm = Permutation(perm, size=max_index+1) else: perm = Permutation(perm, size=max_index+1) if orientation == 'rows': return self._eval_permute_rows(perm) if orientation == 'cols': return self._eval_permute_cols(perm) def permute_cols(self, swaps, direction='forward'): """Alias for ``self.permute(swaps, orientation='cols', direction=direction)`` See Also ======== permute """ return self.permute(swaps, orientation='cols', direction=direction) def permute_rows(self, swaps, direction='forward'): """Alias for ``self.permute(swaps, orientation='rows', direction=direction)`` See Also ======== permute """ return self.permute(swaps, orientation='rows', direction=direction) def refine(self, assumptions=True): """Apply refine to each element of the matrix. Examples ======== >>> from sympy import Symbol, Matrix, Abs, sqrt, Q >>> x = Symbol('x') >>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) Matrix([ [ Abs(x)**2, sqrt(x**2)], [sqrt(x**2), Abs(x)**2]]) >>> _.refine(Q.real(x)) Matrix([ [ x**2, Abs(x)], [Abs(x), x**2]]) """ return self.applyfunc(lambda x: refine(x, assumptions)) def replace(self, F, G, map=False, simultaneous=True, exact=None): """Replaces Function F in Matrix entries with Function G. Examples ======== >>> from sympy import symbols, Function, Matrix >>> F, G = symbols('F, G', cls=Function) >>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M Matrix([ [F(0), F(1)], [F(1), F(2)]]) >>> N = M.replace(F,G) >>> N Matrix([ [G(0), G(1)], [G(1), G(2)]]) """ return self.applyfunc( lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact)) def rot90(self, k=1): """Rotates Matrix by 90 degrees Parameters ========== k : int Specifies how many times the matrix is rotated by 90 degrees (clockwise when positive, counter-clockwise when negative). Examples ======== >>> from sympy import Matrix, symbols >>> A = Matrix(2, 2, symbols('a:d')) >>> A Matrix([ [a, b], [c, d]]) Rotating the matrix clockwise one time: >>> A.rot90(1) Matrix([ [c, a], [d, b]]) Rotating the matrix anticlockwise two times: >>> A.rot90(-2) Matrix([ [d, c], [b, a]]) """ mod = k%4 if mod == 0: return self if mod == 1: return self[::-1, ::].T if mod == 2: return self[::-1, ::-1] if mod == 3: return self[::, ::-1].T def simplify(self, **kwargs): """Apply simplify to each element of the matrix. Examples ======== >>> from sympy.abc import x, y >>> from sympy import sin, cos >>> from sympy.matrices import SparseMatrix >>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) Matrix([[x*sin(y)**2 + x*cos(y)**2]]) >>> _.simplify() Matrix([[x]]) """ return self.applyfunc(lambda x: x.simplify(**kwargs)) def subs(self, *args, **kwargs): # should mirror core.basic.subs """Return a new matrix with subs applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.subs(x, y) Matrix([[y]]) >>> Matrix(_).subs(y, x) Matrix([[x]]) """ if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]): args = (list(args[0]),) return self.applyfunc(lambda x: x.subs(*args, **kwargs)) def trace(self): """ Returns the trace of a square matrix i.e. the sum of the diagonal elements. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.trace() 5 """ if self.rows != self.cols: raise NonSquareMatrixError() return self._eval_trace() def transpose(self): """ Returns the transpose of the matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.transpose() Matrix([ [1, 3], [2, 4]]) >>> from sympy import Matrix, I >>> m=Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m.transpose() Matrix([ [ 1, 3], [2 + I, 4]]) >>> m.T == m.transpose() True See Also ======== conjugate: By-element conjugation """ return self._eval_transpose() @property def T(self): '''Matrix transposition''' return self.transpose() @property def C(self): '''By-element conjugation''' return self.conjugate() def n(self, *args, **kwargs): """Apply evalf() to each element of self.""" return self.evalf(*args, **kwargs) def xreplace(self, rule): # should mirror core.basic.xreplace """Return a new matrix with xreplace applied to each entry. Examples ======== >>> from sympy.abc import x, y >>> from sympy.matrices import SparseMatrix, Matrix >>> SparseMatrix(1, 1, [x]) Matrix([[x]]) >>> _.xreplace({x: y}) Matrix([[y]]) >>> Matrix(_).xreplace({y: x}) Matrix([[x]]) """ return self.applyfunc(lambda x: x.xreplace(rule)) def _eval_simplify(self, **kwargs): # XXX: We can't use self.simplify here as mutable subclasses will # override simplify and have it return None return MatrixOperations.simplify(self, **kwargs) def _eval_trigsimp(self, **opts): from sympy.simplify import trigsimp return self.applyfunc(lambda x: trigsimp(x, **opts)) def upper_triangular(self, k=0): """returns the elements on and above the kth diagonal of a matrix. If k is not specified then simply returns upper-triangular portion of a matrix Examples ======== >>> from sympy import ones >>> A = ones(4) >>> A.upper_triangular() Matrix([ [1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) >>> A.upper_triangular(2) Matrix([ [0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]]) >>> A.upper_triangular(-1) Matrix([ [1, 1, 1, 1], [1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1]]) """ def entry(i, j): return self[i, j] if i + k <= j else self.zero return self._new(self.rows, self.cols, entry) def lower_triangular(self, k=0): """returns the elements on and below the kth diagonal of a matrix. If k is not specified then simply returns lower-triangular portion of a matrix Examples ======== >>> from sympy import ones >>> A = ones(4) >>> A.lower_triangular() Matrix([ [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1]]) >>> A.lower_triangular(-2) Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]]) >>> A.lower_triangular(1) Matrix([ [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 1, 1]]) """ def entry(i, j): return self[i, j] if i + k >= j else self.zero return self._new(self.rows, self.cols, entry) class MatrixArithmetic(MatrixRequired): """Provides basic matrix arithmetic operations. Should not be instantiated directly.""" _op_priority = 10.01 def _eval_Abs(self): return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) def _eval_add(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i, j] + other[i, j]) def _eval_matrix_mul(self, other): def entry(i, j): vec = [self[i,k]*other[k,j] for k in range(self.cols)] try: return Add(*vec) except (TypeError, SympifyError): # Some matrices don't work with `sum` or `Add` # They don't work with `sum` because `sum` tries to add `0` # Fall back to a safe way to multiply if the `Add` fails. return reduce(lambda a, b: a + b, vec) return self._new(self.rows, other.cols, entry) def _eval_matrix_mul_elementwise(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) def _eval_matrix_rmul(self, other): def entry(i, j): return sum(other[i,k]*self[k,j] for k in range(other.cols)) return self._new(other.rows, self.cols, entry) def _eval_pow_by_recursion(self, num): if num == 1: return self if num % 2 == 1: a, b = self, self._eval_pow_by_recursion(num - 1) else: a = b = self._eval_pow_by_recursion(num // 2) return a.multiply(b) def _eval_pow_by_cayley(self, exp): from sympy.discrete.recurrences import linrec_coeffs row = self.shape[0] p = self.charpoly() coeffs = (-p).all_coeffs()[1:] coeffs = linrec_coeffs(coeffs, exp) new_mat = self.eye(row) ans = self.zeros(row) for i in range(row): ans += coeffs[i]*new_mat new_mat *= self return ans def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None): if prevsimp is None: prevsimp = [True]*len(self) if num == 1: return self if num % 2 == 1: a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1, prevsimp=prevsimp) else: a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2, prevsimp=prevsimp) m = a.multiply(b, dotprodsimp=False) lenm = len(m) elems = [None]*lenm for i in range(lenm): if prevsimp[i]: elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True) else: elems[i] = m[i] return m._new(m.rows, m.cols, elems) def _eval_scalar_mul(self, other): return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) def _eval_scalar_rmul(self, other): return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) def _eval_Mod(self, other): from sympy import Mod return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) # python arithmetic functions def __abs__(self): """Returns a new matrix with entry-wise absolute values.""" return self._eval_Abs() @call_highest_priority('__radd__') def __add__(self, other): """Return self + other, raising ShapeError if shapes don't match.""" if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented return NotImplemented other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. if hasattr(other, 'shape'): if self.shape != other.shape: raise ShapeError("Matrix size mismatch: %s + %s" % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): # call the highest-priority class's _eval_add a, b = self, other if a.__class__ != classof(a, b): b, a = a, b return a._eval_add(b) # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_add(self, other) raise TypeError('cannot add %s and %s' % (type(self), type(other))) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return self * (self.one / other) @call_highest_priority('__rmatmul__') def __matmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__mul__(other) def __mod__(self, other): return self.applyfunc(lambda x: x % other) @call_highest_priority('__rmul__') def __mul__(self, other): """Return self*other where other is either a scalar or a matrix of compatible dimensions. Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[1, 2, 3], [4, 5, 6]]) >>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) True >>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> A*B Matrix([ [30, 36, 42], [66, 81, 96]]) >>> B*A Traceback (most recent call last): ... ShapeError: Matrices size mismatch. >>> See Also ======== matrix_multiply_elementwise """ return self.multiply(other) def multiply(self, other, dotprodsimp=None): """Same as __mul__() but with optional simplification. Parameters ========== dotprodsimp : bool, optional Specifies whether intermediate term algebraic simplification is used during matrix multiplications to control expression blowup and thus speed up calculation. Default is off. """ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. Double check other is not explicitly not a Matrix. if (hasattr(other, 'shape') and len(other.shape) == 2 and (getattr(other, 'is_Matrix', True) or getattr(other, 'is_MatrixLike', True))): if self.shape[1] != other.shape[0]: raise ShapeError("Matrix size mismatch: %s * %s." % ( self.shape, other.shape)) # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): m = self._eval_matrix_mul(other) if isimpbool: return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) return m # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_mul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_mul(other) except TypeError: pass return NotImplemented def multiply_elementwise(self, other): """Return the Hadamard product (elementwise product) of A and B Examples ======== >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> A.multiply_elementwise(B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== sympy.matrices.matrices.MatrixBase.cross sympy.matrices.matrices.MatrixBase.dot multiply """ if self.shape != other.shape: raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) return self._eval_matrix_mul_elementwise(other) def __neg__(self): return self._eval_scalar_mul(-1) @call_highest_priority('__rpow__') def __pow__(self, exp): """Return self**exp a scalar or symbol.""" return self.pow(exp) def pow(self, exp, method=None): r"""Return self**exp a scalar or symbol. Parameters ========== method : multiply, mulsimp, jordan, cayley If multiply then it returns exponentiation using recursion. If jordan then Jordan form exponentiation will be used. If cayley then the exponentiation is done using Cayley-Hamilton theorem. If mulsimp then the exponentiation is done using recursion with dotprodsimp. This specifies whether intermediate term algebraic simplification is used during naive matrix power to control expression blowup and thus speed up calculation. If None, then it heuristically decides which method to use. """ if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']: raise TypeError('No such method') if self.rows != self.cols: raise NonSquareMatrixError() a = self jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None) exp = sympify(exp) if exp.is_zero: return a._new(a.rows, a.cols, lambda i, j: int(i == j)) if exp == 1: return a diagonal = getattr(a, 'is_diagonal', None) if diagonal is not None and diagonal(): return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0) if exp.is_Number and exp % 1 == 0: if a.rows == 1: return a._new([[a[0]**exp]]) if exp < 0: exp = -exp a = a.inv() # When certain conditions are met, # Jordan block algorithm is faster than # computation by recursion. if method == 'jordan': try: return jordan_pow(exp) except MatrixError: if method == 'jordan': raise elif method == 'cayley': if not exp.is_Number or exp % 1 != 0: raise ValueError("cayley method is only valid for integer powers") return a._eval_pow_by_cayley(exp) elif method == "mulsimp": if not exp.is_Number or exp % 1 != 0: raise ValueError("mulsimp method is only valid for integer powers") return a._eval_pow_by_recursion_dotprodsimp(exp) elif method == "multiply": if not exp.is_Number or exp % 1 != 0: raise ValueError("multiply method is only valid for integer powers") return a._eval_pow_by_recursion(exp) elif method is None and exp.is_Number and exp % 1 == 0: # Decide heuristically which method to apply if a.rows == 2 and exp > 100000: return jordan_pow(exp) elif _get_intermediate_simp_bool(True, None): return a._eval_pow_by_recursion_dotprodsimp(exp) elif exp > 10000: return a._eval_pow_by_cayley(exp) else: return a._eval_pow_by_recursion(exp) if jordan_pow: try: return jordan_pow(exp) except NonInvertibleMatrixError: # Raised by jordan_pow on zero determinant matrix unless exp is # definitely known to be a non-negative integer. # Here we raise if n is definitely not a non-negative integer # but otherwise we can leave this as an unevaluated MatPow. if exp.is_integer is False or exp.is_nonnegative is False: raise from sympy.matrices.expressions import MatPow return MatPow(a, exp) @call_highest_priority('__add__') def __radd__(self, other): return self + other @call_highest_priority('__matmul__') def __rmatmul__(self, other): other = _matrixify(other) if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): return NotImplemented return self.__rmul__(other) @call_highest_priority('__mul__') def __rmul__(self, other): return self.rmultiply(other) def rmultiply(self, other, dotprodsimp=None): """Same as __rmul__() but with optional simplification. Parameters ========== dotprodsimp : bool, optional Specifies whether intermediate term algebraic simplification is used during matrix multiplications to control expression blowup and thus speed up calculation. Default is off. """ isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) other = _matrixify(other) # matrix-like objects can have shapes. This is # our first sanity check. Double check other is not explicitly not a Matrix. if (hasattr(other, 'shape') and len(other.shape) == 2 and (getattr(other, 'is_Matrix', True) or getattr(other, 'is_MatrixLike', True))): if self.shape[0] != other.shape[1]: raise ShapeError("Matrix size mismatch.") # honest sympy matrices defer to their class's routine if getattr(other, 'is_Matrix', False): m = self._eval_matrix_rmul(other) if isimpbool: return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) return m # Matrix-like objects can be passed to CommonMatrix routines directly. if getattr(other, 'is_MatrixLike', False): return MatrixArithmetic._eval_matrix_rmul(self, other) # if 'other' is not iterable then scalar multiplication. if not isinstance(other, Iterable): try: return self._eval_scalar_rmul(other) except TypeError: pass return NotImplemented @call_highest_priority('__sub__') def __rsub__(self, a): return (-self) + a @call_highest_priority('__rsub__') def __sub__(self, a): return self + (-a) class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties, MatrixSpecial, MatrixShaping): """All common matrix operations including basic arithmetic, shaping, and special matrices like `zeros`, and `eye`.""" _diff_wrt = True # type: bool class _MinimalMatrix: """Class providing the minimum functionality for a matrix-like object and implementing every method required for a `MatrixRequired`. This class does not have everything needed to become a full-fledged SymPy object, but it will satisfy the requirements of anything inheriting from `MatrixRequired`. If you wish to make a specialized matrix type, make sure to implement these methods and properties with the exception of `__init__` and `__repr__` which are included for convenience.""" is_MatrixLike = True _sympify = staticmethod(sympify) _class_priority = 3 zero = S.Zero one = S.One is_Matrix = True is_MatrixExpr = False @classmethod def _new(cls, *args, **kwargs): return cls(*args, **kwargs) def __init__(self, rows, cols=None, mat=None, copy=False): if isfunction(mat): # if we passed in a function, use that to populate the indices mat = list(mat(i, j) for i in range(rows) for j in range(cols)) if cols is None and mat is None: mat = rows rows, cols = getattr(mat, 'shape', (rows, cols)) try: # if we passed in a list of lists, flatten it and set the size if cols is None and mat is None: mat = rows cols = len(mat[0]) rows = len(mat) mat = [x for l in mat for x in l] except (IndexError, TypeError): pass self.mat = tuple(self._sympify(x) for x in mat) self.rows, self.cols = rows, cols if self.rows is None or self.cols is None: raise NotImplementedError("Cannot initialize matrix with given parameters") def __getitem__(self, key): def _normalize_slices(row_slice, col_slice): """Ensure that row_slice and col_slice don't have `None` in their arguments. Any integers are converted to slices of length 1""" if not isinstance(row_slice, slice): row_slice = slice(row_slice, row_slice + 1, None) row_slice = slice(*row_slice.indices(self.rows)) if not isinstance(col_slice, slice): col_slice = slice(col_slice, col_slice + 1, None) col_slice = slice(*col_slice.indices(self.cols)) return (row_slice, col_slice) def _coord_to_index(i, j): """Return the index in _mat corresponding to the (i,j) position in the matrix. """ return i * self.cols + j if isinstance(key, tuple): i, j = key if isinstance(i, slice) or isinstance(j, slice): # if the coordinates are not slices, make them so # and expand the slices so they don't contain `None` i, j = _normalize_slices(i, j) rowsList, colsList = list(range(self.rows))[i], \ list(range(self.cols))[j] indices = (i * self.cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(self.mat[i] for i in indices)) # if the key is a tuple of ints, change # it to an array index key = _coord_to_index(i, j) return self.mat[key] def __eq__(self, other): try: classof(self, other) except TypeError: return False return ( self.shape == other.shape and list(self) == list(other)) def __len__(self): return self.rows*self.cols def __repr__(self): return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols, self.mat) @property def shape(self): return (self.rows, self.cols) class _CastableMatrix: # this is needed here ONLY FOR TESTS. def as_mutable(self): return self def as_immutable(self): return self class _MatrixWrapper: """Wrapper class providing the minimum functionality for a matrix-like object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix math operations should work on matrix-like objects. This one is intended for matrix-like objects which use the same indexing format as SymPy with respect to returning matrix elements instead of rows for non-tuple indexes. """ is_Matrix = False # needs to be here because of __getattr__ is_MatrixLike = True def __init__(self, mat, shape): self.mat = mat self.shape = shape self.rows, self.cols = shape def __getitem__(self, key): if isinstance(key, tuple): return sympify(self.mat.__getitem__(key)) return sympify(self.mat.__getitem__((key // self.rows, key % self.cols))) def __iter__(self): # supports numpy.matrix and numpy.array mat = self.mat cols = self.cols return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols)) class MatrixKind(Kind): """ Kind for all matrices in SymPy. Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``, but any expression representing the matrix can have this. Parameters ========== element_kind : Kind Kind of the element. Default is :obj:NumberKind `<sympy.core.kind.NumberKind>`, which means that the matrix contains only numbers. Examples ======== Any instance of matrix class has ``MatrixKind``. >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2,2) >>> A.kind MatrixKind(NumberKind) Although expression representing a matrix may be not instance of matrix class, it will have ``MatrixKind`` as well. >>> from sympy import Integral >>> from sympy.matrices.expressions import MatrixExpr >>> from sympy.abc import x >>> intM = Integral(A, x) >>> isinstance(intM, MatrixExpr) False >>> intM.kind MatrixKind(NumberKind) Use ``isinstance()`` to check for ``MatrixKind` without specifying the element kind. Use ``is`` with specifying the element kind. >>> from sympy import Matrix >>> from sympy.matrices import MatrixKind >>> from sympy.core.kind import NumberKind >>> M = Matrix([1, 2]) >>> isinstance(M.kind, MatrixKind) True >>> M.kind is MatrixKind(NumberKind) True See Also ======== shape : Function to return the shape of objects with ``MatrixKind``. """ def __new__(cls, element_kind=NumberKind): obj = super().__new__(cls, element_kind) obj.element_kind = element_kind return obj def __repr__(self): return "MatrixKind(%s)" % self.element_kind def _matrixify(mat): """If `mat` is a Matrix or is matrix-like, return a Matrix or MatrixWrapper object. Otherwise `mat` is passed through without modification.""" if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False): return mat if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)): return mat shape = None if hasattr(mat, 'shape'): # numpy, scipy.sparse if len(mat.shape) == 2: shape = mat.shape elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath shape = (mat.rows, mat.cols) if shape: return _MatrixWrapper(mat, shape) return mat def a2idx(j, n=None): """Return integer after making positive and validating against n.""" if type(j) is not int: jindex = getattr(j, '__index__', None) if jindex is not None: j = jindex() else: raise IndexError("Invalid index a[%r]" % (j,)) if n is not None: if j < 0: j += n if not (j >= 0 and j < n): raise IndexError("Index out of range: a[%s]" % (j,)) return int(j) def classof(A, B): """ Get the type of the result when combining matrices of different types. Currently the strategy is that immutability is contagious. Examples ======== >>> from sympy import Matrix, ImmutableMatrix >>> from sympy.matrices.common import classof >>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix >>> IM = ImmutableMatrix([[1, 2], [3, 4]]) >>> classof(M, IM) <class 'sympy.matrices.immutable.ImmutableDenseMatrix'> """ priority_A = getattr(A, '_class_priority', None) priority_B = getattr(B, '_class_priority', None) if None not in (priority_A, priority_B): if A._class_priority > B._class_priority: return A.__class__ else: return B.__class__ try: import numpy except ImportError: pass else: if isinstance(A, numpy.ndarray): return B.__class__ if isinstance(B, numpy.ndarray): return A.__class__ raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
8dae22adca89490c8ccf4c6e841f6c0e0941590c4c8ac4f37f9f218bbf83e4c8
import random from functools import reduce from sympy.core import SympifyError, Add from sympy.core.basic import Basic from sympy.core.compatibility import is_sequence from sympy.core.expr import Expr from sympy.core.symbol import Symbol from sympy.core.sympify import sympify, _sympify from sympy.functions.elementary.trigonometric import cos, sin from sympy.matrices.common import \ a2idx, classof, ShapeError from sympy.matrices.matrices import MatrixBase from sympy.simplify.simplify import simplify as _simplify from sympy.utilities.decorator import doctest_depends_on from sympy.utilities.misc import filldedent from sympy.utilities.exceptions import SymPyDeprecationWarning from .decompositions import _cholesky, _LDLdecomposition from .solvers import _lower_triangular_solve, _upper_triangular_solve def _iszero(x): """Returns True if x is zero.""" return x.is_zero def _compare_sequence(a, b): """Compares the elements of a list/tuple `a` and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])` is True, whereas `(1,2) == [1, 2]` is False""" if type(a) is type(b): # if they are the same type, compare directly return a == b # there is no overhead for calling `tuple` on a # tuple return tuple(a) == tuple(b) class DenseMatrix(MatrixBase): is_MatrixExpr = False # type: bool _op_priority = 10.01 _class_priority = 4 def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False if isinstance(other, Matrix): return _compare_sequence(self._mat, other._mat) elif isinstance(other, MatrixBase): return _compare_sequence(self._mat, Matrix(other)._mat) def __getitem__(self, key): """Return portion of self defined by key. If the key involves a slice then a list will be returned (if key is a single slice) or a matrix (if key was a tuple involving a slice). Examples ======== >>> from sympy import Matrix, I >>> m = Matrix([ ... [1, 2 + I], ... [3, 4 ]]) If the key is a tuple that doesn't involve a slice then that element is returned: >>> m[1, 0] 3 When a tuple key involves a slice, a matrix is returned. Here, the first column is selected (all rows, column 0): >>> m[:, 0] Matrix([ [1], [3]]) If the slice is not a tuple then it selects from the underlying list of elements that are arranged in row order and a list is returned if a slice is involved: >>> m[0] 1 >>> m[::2] [1, 3] """ if isinstance(key, tuple): i, j = key try: i, j = self.key2ij(key) return self._mat[i*self.cols + j] except (TypeError, IndexError): if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number): if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\ ((i < 0) is True) or ((i >= self.shape[0]) is True): raise ValueError("index out of boundary") from sympy.matrices.expressions.matexpr import MatrixElement return MatrixElement(self, i, j) if isinstance(i, slice): i = range(self.rows)[i] elif is_sequence(i): pass else: i = [i] if isinstance(j, slice): j = range(self.cols)[j] elif is_sequence(j): pass else: j = [j] return self.extract(i, j) else: # row-wise decomposition of matrix if isinstance(key, slice): return self._mat[key] return self._mat[a2idx(key)] def __setitem__(self, key, value): raise NotImplementedError() def _eval_add(self, other): # we assume both arguments are dense matrices since # sparse matrices have a higher priority mat = [a + b for a,b in zip(self._mat, other._mat)] return classof(self, other)._new(self.rows, self.cols, mat, copy=False) def _eval_extract(self, rowsList, colsList): mat = self._mat cols = self.cols indices = (i * cols + j for i in rowsList for j in colsList) return self._new(len(rowsList), len(colsList), list(mat[i] for i in indices), copy=False) def _eval_matrix_mul(self, other): other_len = other.rows*other.cols new_len = self.rows*other.cols new_mat = [self.zero]*new_len # if we multiply an n x 0 with a 0 x m, the # expected behavior is to produce an n x m matrix of zeros if self.cols != 0 and other.rows != 0: self_cols = self.cols mat = self._mat other_mat = other._mat for i in range(new_len): row, col = i // other.cols, i % other.cols row_indices = range(self_cols*row, self_cols*(row+1)) col_indices = range(col, other_len, other.cols) vec = [mat[a]*other_mat[b] for a, b in zip(row_indices, col_indices)] try: new_mat[i] = Add(*vec) except (TypeError, SympifyError): # Some matrices don't work with `sum` or `Add` # They don't work with `sum` because `sum` tries to add `0` # Fall back to a safe way to multiply if the `Add` fails. new_mat[i] = reduce(lambda a, b: a + b, vec) return classof(self, other)._new(self.rows, other.cols, new_mat, copy=False) def _eval_matrix_mul_elementwise(self, other): mat = [a*b for a,b in zip(self._mat, other._mat)] return classof(self, other)._new(self.rows, self.cols, mat, copy=False) def _eval_inverse(self, **kwargs): return self.inv(method=kwargs.get('method', 'GE'), iszerofunc=kwargs.get('iszerofunc', _iszero), try_block_diag=kwargs.get('try_block_diag', False)) def _eval_scalar_mul(self, other): mat = [other*a for a in self._mat] return self._new(self.rows, self.cols, mat, copy=False) def _eval_scalar_rmul(self, other): mat = [a*other for a in self._mat] return self._new(self.rows, self.cols, mat, copy=False) def _eval_tolist(self): mat = list(self._mat) cols = self.cols return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)] def _eval_todok(self): cols = self.cols return {divmod(ij, cols): e for ij, e in enumerate(self._mat) if e} def as_immutable(self): """Returns an Immutable version of this Matrix """ from .immutable import ImmutableDenseMatrix as cls if self.rows and self.cols: return cls._new(self.tolist()) return cls._new(self.rows, self.cols, []) def as_mutable(self): """Returns a mutable version of this matrix Examples ======== >>> from sympy import ImmutableMatrix >>> X = ImmutableMatrix([[1, 2], [3, 4]]) >>> Y = X.as_mutable() >>> Y[1, 1] = 5 # Can set values in Y >>> Y Matrix([ [1, 2], [3, 5]]) """ return Matrix(self) def equals(self, other, failing_expression=False): """Applies ``equals`` to corresponding elements of the matrices, trying to prove that the elements are equivalent, returning True if they are, False if any pair is not, and None (or the first failing expression if failing_expression is True) if it cannot be decided if the expressions are equivalent or not. This is, in general, an expensive operation. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x >>> A = Matrix([x*(x - 1), 0]) >>> B = Matrix([x**2 - x, 0]) >>> A == B False >>> A.simplify() == B.simplify() True >>> A.equals(B) True >>> A.equals(2) False See Also ======== sympy.core.expr.Expr.equals """ self_shape = getattr(self, 'shape', None) other_shape = getattr(other, 'shape', None) if None in (self_shape, other_shape): return False if self_shape != other_shape: return False rv = True for i in range(self.rows): for j in range(self.cols): ans = self[i, j].equals(other[i, j], failing_expression) if ans is False: return False elif ans is not True and rv is True: rv = ans return rv def cholesky(self, hermitian=True): return _cholesky(self, hermitian=hermitian) def LDLdecomposition(self, hermitian=True): return _LDLdecomposition(self, hermitian=hermitian) def lower_triangular_solve(self, rhs): return _lower_triangular_solve(self, rhs) def upper_triangular_solve(self, rhs): return _upper_triangular_solve(self, rhs) cholesky.__doc__ = _cholesky.__doc__ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__ def _force_mutable(x): """Return a matrix as a Matrix, otherwise return x.""" if getattr(x, 'is_Matrix', False): return x.as_mutable() elif isinstance(x, Basic): return x elif hasattr(x, '__array__'): a = x.__array__() if len(a.shape) == 0: return sympify(a) return Matrix(x) return x class MutableDenseMatrix(DenseMatrix, MatrixBase): __hash__ = None # type: ignore def __new__(cls, *args, **kwargs): return cls._new(*args, **kwargs) @classmethod def _new(cls, *args, copy=True, **kwargs): if copy is False: # The input was rows, cols, [list]. # It should be used directly without creating a copy. if len(args) != 3: raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]") rows, cols, flat_list = args else: rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs) flat_list = list(flat_list) # create a shallow copy types = set(map(type, flat_list)) if not all(issubclass(typ, Expr) for typ in types): SymPyDeprecationWarning( feature="non-Expr objects in a Matrix", useinstead="list of lists, TableForm or some other data structure", issue=21497, deprecated_since_version="1.9" ).warn() self = object.__new__(cls) self.rows = rows self.cols = cols self._mat = flat_list return self def __setitem__(self, key, value): """ Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ rv = self._setitem(key, value) if rv is not None: i, j, value = rv self._mat[i*self.cols + j] = value def as_mutable(self): return self.copy() def _eval_col_del(self, col): for j in range(self.rows-1, -1, -1): del self._mat[col + j*self.cols] self.cols -= 1 def _eval_row_del(self, row): del self._mat[row*self.cols: (row+1)*self.cols] self.rows -= 1 def col_op(self, j, f): """In-place operation on col j using two-arg functor whose args are interpreted as (self[i, j], i). Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M Matrix([ [1, 2, 0], [0, 1, 0], [0, 0, 1]]) See Also ======== col row_op """ self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))] def col_swap(self, i, j): """Swap the two given columns of the matrix in-place. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[1, 0], [1, 0]]) >>> M Matrix([ [1, 0], [1, 0]]) >>> M.col_swap(0, 1) >>> M Matrix([ [0, 1], [0, 1]]) See Also ======== col row_swap """ for k in range(0, self.rows): self[k, i], self[k, j] = self[k, j], self[k, i] def copyin_list(self, key, value): """Copy in elements from a list. Parameters ========== key : slice The section of this matrix to replace. value : iterable The iterable to copy values from. Examples ======== >>> from sympy.matrices import eye >>> I = eye(3) >>> I[:2, 0] = [1, 2] # col >>> I Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) >>> I[1, :2] = [[3, 4]] >>> I Matrix([ [1, 0, 0], [3, 4, 0], [0, 0, 1]]) See Also ======== copyin_matrix """ if not is_sequence(value): raise TypeError("`value` must be an ordered iterable, not %s." % type(value)) return self.copyin_matrix(key, Matrix(value)) def copyin_matrix(self, key, value): """Copy in values from a matrix into the given bounds. Parameters ========== key : slice The section of this matrix to replace. value : Matrix The matrix to copy values from. Examples ======== >>> from sympy.matrices import Matrix, eye >>> M = Matrix([[0, 1], [2, 3], [4, 5]]) >>> I = eye(3) >>> I[:3, :2] = M >>> I Matrix([ [0, 1, 0], [2, 3, 0], [4, 5, 1]]) >>> I[0, 1] = M >>> I Matrix([ [0, 0, 1], [2, 2, 3], [4, 4, 5]]) See Also ======== copyin_list """ rlo, rhi, clo, chi = self.key2bounds(key) shape = value.shape dr, dc = rhi - rlo, chi - clo if shape != (dr, dc): raise ShapeError(filldedent("The Matrix `value` doesn't have the " "same dimensions " "as the in sub-Matrix given by `key`.")) for i in range(value.rows): for j in range(value.cols): self[i + rlo, j + clo] = value[i, j] def fill(self, value): """Fill the matrix with the scalar value. See Also ======== zeros ones """ self._mat = [value]*len(self) def row_op(self, i, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], j)``. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) See Also ======== row zip_row_op col_op """ i0 = i*self.cols ri = self._mat[i0: i0 + self.cols] self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))] def row_swap(self, i, j): """Swap the two given rows of the matrix in-place. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[0, 1], [1, 0]]) >>> M Matrix([ [0, 1], [1, 0]]) >>> M.row_swap(0, 1) >>> M Matrix([ [1, 0], [0, 1]]) See Also ======== row col_swap """ for k in range(0, self.cols): self[i, k], self[j, k] = self[j, k], self[i, k] def simplify(self, **kwargs): """Applies simplify to the elements of a matrix in place. This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure)) See Also ======== sympy.simplify.simplify.simplify """ for i in range(len(self._mat)): self._mat[i] = _simplify(self._mat[i], **kwargs) def zip_row_op(self, i, k, f): """In-place operation on row ``i`` using two-arg functor whose args are interpreted as ``(self[i, j], self[k, j])``. Examples ======== >>> from sympy.matrices import eye >>> M = eye(3) >>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M Matrix([ [1, 0, 0], [2, 1, 0], [0, 0, 1]]) See Also ======== row row_op col_op """ i0 = i*self.cols k0 = k*self.cols ri = self._mat[i0: i0 + self.cols] rk = self._mat[k0: k0 + self.cols] self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)] is_zero = False MutableMatrix = Matrix = MutableDenseMatrix ########### # Numpy Utility Functions: # list2numpy, matrix2numpy, symmarray, rot_axis[123] ########### def list2numpy(l, dtype=object): # pragma: no cover """Converts python list of SymPy expressions to a NumPy array. See Also ======== matrix2numpy """ from numpy import empty a = empty(len(l), dtype) for i, s in enumerate(l): a[i] = s return a def matrix2numpy(m, dtype=object): # pragma: no cover """Converts SymPy's matrix to a NumPy array. See Also ======== list2numpy """ from numpy import empty a = empty(m.shape, dtype) for i in range(m.rows): for j in range(m.cols): a[i, j] = m[i, j] return a def rot_axis3(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis3 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis3(theta) Matrix([ [ 1/2, sqrt(3)/2, 0], [-sqrt(3)/2, 1/2, 0], [ 0, 0, 1]]) If we rotate by pi/2 (90 degrees): >>> rot_axis3(pi/2) Matrix([ [ 0, 1, 0], [-1, 0, 0], [ 0, 0, 1]]) See Also ======== rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis """ ct = cos(theta) st = sin(theta) lil = ((ct, st, 0), (-st, ct, 0), (0, 0, 1)) return Matrix(lil) def rot_axis2(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis2 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis2(theta) Matrix([ [ 1/2, 0, -sqrt(3)/2], [ 0, 1, 0], [sqrt(3)/2, 0, 1/2]]) If we rotate by pi/2 (90 degrees): >>> rot_axis2(pi/2) Matrix([ [0, 0, -1], [0, 1, 0], [1, 0, 0]]) See Also ======== rot_axis1: Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """ ct = cos(theta) st = sin(theta) lil = ((ct, 0, -st), (0, 1, 0), (st, 0, ct)) return Matrix(lil) def rot_axis1(theta): """Returns a rotation matrix for a rotation of theta (in radians) about the 1-axis. Examples ======== >>> from sympy import pi >>> from sympy.matrices import rot_axis1 A rotation of pi/3 (60 degrees): >>> theta = pi/3 >>> rot_axis1(theta) Matrix([ [1, 0, 0], [0, 1/2, sqrt(3)/2], [0, -sqrt(3)/2, 1/2]]) If we rotate by pi/2 (90 degrees): >>> rot_axis1(pi/2) Matrix([ [1, 0, 0], [0, 0, 1], [0, -1, 0]]) See Also ======== rot_axis2: Returns a rotation matrix for a rotation of theta (in radians) about the 2-axis rot_axis3: Returns a rotation matrix for a rotation of theta (in radians) about the 3-axis """ ct = cos(theta) st = sin(theta) lil = ((1, 0, 0), (0, ct, st), (0, -st, ct)) return Matrix(lil) @doctest_depends_on(modules=('numpy',)) def symarray(prefix, shape, **kwargs): # pragma: no cover r"""Create a numpy ndarray of symbols (as an object array). The created symbols are named ``prefix_i1_i2_``... You should thus provide a non-empty prefix if you want your symbols to be unique for different output arrays, as SymPy symbols with identical names are the same object. Parameters ---------- prefix : string A prefix prepended to the name of every symbol. shape : int or tuple Shape of the created array. If an int, the array is one-dimensional; for more than one dimension the shape must be a tuple. \*\*kwargs : dict keyword arguments passed on to Symbol Examples ======== These doctests require numpy. >>> from sympy import symarray >>> symarray('', 3) [_0 _1 _2] If you want multiple symarrays to contain distinct symbols, you *must* provide unique prefixes: >>> a = symarray('', 3) >>> b = symarray('', 3) >>> a[0] == b[0] True >>> a = symarray('a', 3) >>> b = symarray('b', 3) >>> a[0] == b[0] False Creating symarrays with a prefix: >>> symarray('a', 3) [a_0 a_1 a_2] For more than one dimension, the shape must be given as a tuple: >>> symarray('a', (2, 3)) [[a_0_0 a_0_1 a_0_2] [a_1_0 a_1_1 a_1_2]] >>> symarray('a', (2, 3, 2)) [[[a_0_0_0 a_0_0_1] [a_0_1_0 a_0_1_1] [a_0_2_0 a_0_2_1]] <BLANKLINE> [[a_1_0_0 a_1_0_1] [a_1_1_0 a_1_1_1] [a_1_2_0 a_1_2_1]]] For setting assumptions of the underlying Symbols: >>> [s.is_real for s in symarray('a', 2, real=True)] [True, True] """ from numpy import empty, ndindex arr = empty(shape, dtype=object) for index in ndindex(shape): arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))), **kwargs) return arr ############### # Functions ############### def casoratian(seqs, n, zero=True): """Given linear difference operator L of order 'k' and homogeneous equation Ly = 0 we want to compute kernel of L, which is a set of 'k' sequences: a(n), b(n), ... z(n). Solutions of L are linearly independent iff their Casoratian, denoted as C(a, b, ..., z), do not vanish for n = 0. Casoratian is defined by k x k determinant:: + a(n) b(n) . . . z(n) + | a(n+1) b(n+1) . . . z(n+1) | | . . . . | | . . . . | | . . . . | + a(n+k-1) b(n+k-1) . . . z(n+k-1) + It proves very useful in rsolve_hyper() where it is applied to a generating set of a recurrence to factor out linearly dependent solutions and return a basis: >>> from sympy import Symbol, casoratian, factorial >>> n = Symbol('n', integer=True) Exponential and factorial are linearly independent: >>> casoratian([2**n, factorial(n)], n) != 0 True """ seqs = list(map(sympify, seqs)) if not zero: f = lambda i, j: seqs[j].subs(n, n + i) else: f = lambda i, j: seqs[j].subs(n, i) k = len(seqs) return Matrix(k, k, f).det() def eye(*args, **kwargs): """Create square identity matrix n x n See Also ======== diag zeros ones """ return Matrix.eye(*args, **kwargs) def diag(*values, strict=True, unpack=False, **kwargs): """Returns a matrix with the provided values placed on the diagonal. If non-square matrices are included, they will produce a block-diagonal matrix. Examples ======== This version of diag is a thin wrapper to Matrix.diag that differs in that it treats all lists like matrices -- even when a single list is given. If this is not desired, either put a `*` before the list or set `unpack=True`. >>> from sympy import diag >>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3]) Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> diag([1, 2, 3]) # a column vector Matrix([ [1], [2], [3]]) See Also ======== .common.MatrixCommon.eye .common.MatrixCommon.diagonal - to extract a diagonal .common.MatrixCommon.diag .expressions.blockmatrix.BlockMatrix """ return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs) def GramSchmidt(vlist, orthonormal=False): """Apply the Gram-Schmidt process to a set of vectors. Parameters ========== vlist : List of Matrix Vectors to be orthogonalized for. orthonormal : Bool, optional If true, return an orthonormal basis. Returns ======= vlist : List of Matrix Orthogonalized vectors Notes ===== This routine is mostly duplicate from ``Matrix.orthogonalize``, except for some difference that this always raises error when linearly dependent vectors are found, and the keyword ``normalize`` has been named as ``orthonormal`` in this function. See Also ======== .matrices.MatrixSubspaces.orthogonalize References ========== .. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process """ return MutableDenseMatrix.orthogonalize( *vlist, normalize=orthonormal, rankcheck=True ) def hessian(f, varlist, constraints=[]): """Compute Hessian matrix for a function f wrt parameters in varlist which may be given as a sequence or a row/column vector. A list of constraints may optionally be given. Examples ======== >>> from sympy import Function, hessian, pprint >>> from sympy.abc import x, y >>> f = Function('f')(x, y) >>> g1 = Function('g')(x, y) >>> g2 = x**2 + 3*y >>> pprint(hessian(f, (x, y), [g1, g2])) [ d d ] [ 0 0 --(g(x, y)) --(g(x, y)) ] [ dx dy ] [ ] [ 0 0 2*x 3 ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))] [dx 2 dy dx ] [ dx ] [ ] [ 2 2 ] [d d d ] [--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ] [dy dy dx 2 ] [ dy ] References ========== https://en.wikipedia.org/wiki/Hessian_matrix See Also ======== sympy.matrices.matrices.MatrixCalculus.jacobian wronskian """ # f is the expression representing a function f, return regular matrix if isinstance(varlist, MatrixBase): if 1 not in varlist.shape: raise ShapeError("`varlist` must be a column or row vector.") if varlist.cols == 1: varlist = varlist.T varlist = varlist.tolist()[0] if is_sequence(varlist): n = len(varlist) if not n: raise ShapeError("`len(varlist)` must not be zero.") else: raise ValueError("Improper variable list in hessian function") if not getattr(f, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) m = len(constraints) N = m + n out = zeros(N) for k, g in enumerate(constraints): if not getattr(g, 'diff'): # check differentiability raise ValueError("Function `f` (%s) is not differentiable" % f) for i in range(n): out[k, i + m] = g.diff(varlist[i]) for i in range(n): for j in range(i, n): out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j]) for i in range(N): for j in range(i + 1, N): out[j, i] = out[i, j] return out def jordan_cell(eigenval, n): """ Create a Jordan block: Examples ======== >>> from sympy.matrices import jordan_cell >>> from sympy.abc import x >>> jordan_cell(x, 4) Matrix([ [x, 1, 0, 0], [0, x, 1, 0], [0, 0, x, 1], [0, 0, 0, x]]) """ return Matrix.jordan_block(size=n, eigenvalue=eigenval) def matrix_multiply_elementwise(A, B): """Return the Hadamard product (elementwise product) of A and B >>> from sympy.matrices import matrix_multiply_elementwise >>> from sympy.matrices import Matrix >>> A = Matrix([[0, 1, 2], [3, 4, 5]]) >>> B = Matrix([[1, 10, 100], [100, 10, 1]]) >>> matrix_multiply_elementwise(A, B) Matrix([ [ 0, 10, 200], [300, 40, 5]]) See Also ======== sympy.matrices.common.MatrixCommon.__mul__ """ return A.multiply_elementwise(B) def ones(*args, **kwargs): """Returns a matrix of ones with ``rows`` rows and ``cols`` columns; if ``cols`` is omitted a square matrix will be returned. See Also ======== zeros eye diag """ if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c') return Matrix.ones(*args, **kwargs) def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False, percent=100, prng=None): """Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted the matrix will be square. If ``symmetric`` is True the matrix must be square. If ``percent`` is less than 100 then only approximately the given percentage of elements will be non-zero. The pseudo-random number generator used to generate matrix is chosen in the following way. * If ``prng`` is supplied, it will be used as random number generator. It should be an instance of ``random.Random``, or at least have ``randint`` and ``shuffle`` methods with same signatures. * if ``prng`` is not supplied but ``seed`` is supplied, then new ``random.Random`` with given ``seed`` will be created; * otherwise, a new ``random.Random`` with default seed will be used. Examples ======== >>> from sympy.matrices import randMatrix >>> randMatrix(3) # doctest:+SKIP [25, 45, 27] [44, 54, 9] [23, 96, 46] >>> randMatrix(3, 2) # doctest:+SKIP [87, 29] [23, 37] [90, 26] >>> randMatrix(3, 3, 0, 2) # doctest:+SKIP [0, 2, 0] [2, 0, 1] [0, 0, 1] >>> randMatrix(3, symmetric=True) # doctest:+SKIP [85, 26, 29] [26, 71, 43] [29, 43, 57] >>> A = randMatrix(3, seed=1) >>> B = randMatrix(3, seed=2) >>> A == B False >>> A == randMatrix(3, seed=1) True >>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP [77, 70, 0], [70, 0, 0], [ 0, 0, 88] """ # Note that ``Random()`` is equivalent to ``Random(None)`` prng = prng or random.Random(seed) if c is None: c = r if symmetric and r != c: raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c)) ij = range(r * c) if percent != 100: ij = prng.sample(ij, int(len(ij)*percent // 100)) m = zeros(r, c) if not symmetric: for ijk in ij: i, j = divmod(ijk, c) m[i, j] = prng.randint(min, max) else: for ijk in ij: i, j = divmod(ijk, c) if i <= j: m[i, j] = m[j, i] = prng.randint(min, max) return m def wronskian(functions, var, method='bareiss'): """ Compute Wronskian for [] of functions :: | f1 f2 ... fn | | f1' f2' ... fn' | | . . . . | W(f1, ..., fn) = | . . . . | | . . . . | | (n) (n) (n) | | D (f1) D (f2) ... D (fn) | see: https://en.wikipedia.org/wiki/Wronskian See Also ======== sympy.matrices.matrices.MatrixCalculus.jacobian hessian """ for index in range(0, len(functions)): functions[index] = sympify(functions[index]) n = len(functions) if n == 0: return 1 W = Matrix(n, n, lambda i, j: functions[i].diff(var, j)) return W.det(method) def zeros(*args, **kwargs): """Returns a matrix of zeros with ``rows`` rows and ``cols`` columns; if ``cols`` is omitted a square matrix will be returned. See Also ======== ones eye diag """ if 'c' in kwargs: kwargs['cols'] = kwargs.pop('c') return Matrix.zeros(*args, **kwargs)
17922017e6fe2e79a6c61bb37d948c85f2a7174f291bd6bfa96dbfe9dd0bbd23
import mpmath as mp from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.compatibility import ( Callable, NotIterable, as_int, is_sequence) from sympy.core.decorators import deprecated from sympy.core.expr import Expr from sympy.core.kind import _NumberKind, NumberKind, UndefinedKind from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol from sympy.core.sympify import sympify from sympy.core.sympify import _sympify from sympy.functions import exp, factorial, log from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.polys import cancel from sympy.printing import sstr from sympy.printing.defaults import Printable from sympy.simplify import simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import flatten from sympy.utilities.misc import filldedent from .common import ( MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError, ShapeError, MatrixKind) from .utilities import _iszero, _is_zero_after_expand_mul from .determinant import ( _find_reasonable_pivot, _find_reasonable_pivot_naive, _adjugate, _charpoly, _cofactor, _cofactor_matrix, _per, _det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix) from .reductions import _is_echelon, _echelon_form, _rank, _rref from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize from .eigen import ( _eigenvals, _eigenvects, _bidiagonalize, _bidiagonal_decomposition, _is_diagonalizable, _diagonalize, _is_positive_definite, _is_positive_semidefinite, _is_negative_definite, _is_negative_semidefinite, _is_indefinite, _jordan_form, _left_eigenvects, _singular_values) from .decompositions import ( _rank_decomposition, _cholesky, _LDLdecomposition, _LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF, _singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition) from .graph import ( _connected_components, _connected_components_decomposition, _strongly_connected_components, _strongly_connected_components_decomposition) from .solvers import ( _diagonal_solve, _lower_triangular_solve, _upper_triangular_solve, _cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve, _pinv_solve, _solve, _solve_least_squares) from .inverse import ( _pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR, _inv, _inv_block) class DeferredVector(Symbol, NotIterable): """A vector whose components are deferred (e.g. for use with lambdify) Examples ======== >>> from sympy import DeferredVector, lambdify >>> X = DeferredVector( 'X' ) >>> X X >>> expr = (X[0] + 2, X[2] + 3) >>> func = lambdify( X, expr) >>> func( [1, 2, 3] ) (3, 6) """ def __getitem__(self, i): if i == -0: i = 0 if i < 0: raise IndexError('DeferredVector index out of range') component_name = '%s[%d]' % (self.name, i) return Symbol(component_name) def __str__(self): return sstr(self) def __repr__(self): return "DeferredVector('%s')" % self.name class MatrixDeterminant(MatrixCommon): """Provides basic matrix determinant operations. Should not be instantiated directly. See ``determinant.py`` for their implementations.""" def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): return _det_bareiss(self, iszerofunc=iszerofunc) def _eval_det_berkowitz(self): return _det_berkowitz(self) def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc) def _eval_determinant(self): # for expressions.determinant.Determinant return _det(self) def adjugate(self, method="berkowitz"): return _adjugate(self, method=method) def charpoly(self, x='lambda', simplify=_simplify): return _charpoly(self, x=x, simplify=simplify) def cofactor(self, i, j, method="berkowitz"): return _cofactor(self, i, j, method=method) def cofactor_matrix(self, method="berkowitz"): return _cofactor_matrix(self, method=method) def det(self, method="bareiss", iszerofunc=None): return _det(self, method=method, iszerofunc=iszerofunc) def per(self): return _per(self) def minor(self, i, j, method="berkowitz"): return _minor(self, i, j, method=method) def minor_submatrix(self, i, j): return _minor_submatrix(self, i, j) _find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__ _find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__ _eval_det_bareiss.__doc__ = _det_bareiss.__doc__ _eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__ _eval_det_lu.__doc__ = _det_LU.__doc__ _eval_determinant.__doc__ = _det.__doc__ adjugate.__doc__ = _adjugate.__doc__ charpoly.__doc__ = _charpoly.__doc__ cofactor.__doc__ = _cofactor.__doc__ cofactor_matrix.__doc__ = _cofactor_matrix.__doc__ det.__doc__ = _det.__doc__ per.__doc__ = _per.__doc__ minor.__doc__ = _minor.__doc__ minor_submatrix.__doc__ = _minor_submatrix.__doc__ class MatrixReductions(MatrixDeterminant): """Provides basic matrix row/column operations. Should not be instantiated directly. See ``reductions.py`` for some of their implementations.""" def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify, with_pivots=with_pivots) @property def is_echelon(self): return _is_echelon(self) def rank(self, iszerofunc=_iszero, simplify=False): return _rank(self, iszerofunc=iszerofunc, simplify=simplify) def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): return _rref(self, iszerofunc=iszerofunc, simplify=simplify, pivots=pivots, normalize_last=normalize_last) echelon_form.__doc__ = _echelon_form.__doc__ is_echelon.__doc__ = _is_echelon.__doc__ rank.__doc__ = _rank.__doc__ rref.__doc__ = _rref.__doc__ def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): """Validate the arguments for a row/column operation. ``error_str`` can be one of "row" or "col" depending on the arguments being parsed.""" if op not in ["n->kn", "n<->m", "n->n+km"]: raise ValueError("Unknown {} operation '{}'. Valid col operations " "are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) # define self_col according to error_str self_cols = self.cols if error_str == 'col' else self.rows # normalize and validate the arguments if op == "n->kn": col = col if col is not None else col1 if col is None or k is None: raise ValueError("For a {0} operation 'n->kn' you must provide the " "kwargs `{0}` and `k`".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) elif op == "n<->m": # we need two cols to swap. It doesn't matter # how they were specified, so gather them together and # remove `None` cols = {col, k, col1, col2}.difference([None]) if len(cols) > 2: # maybe the user left `k` by mistake? cols = {col, col1, col2}.difference([None]) if len(cols) != 2: raise ValueError("For a {0} operation 'n<->m' you must provide the " "kwargs `{0}1` and `{0}2`".format(error_str)) col1, col2 = cols if not 0 <= col1 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) elif op == "n->n+km": col = col1 if col is None else col col2 = col1 if col2 is None else col2 if col is None or col2 is None or k is None: raise ValueError("For a {0} operation 'n->n+km' you must provide the " "kwargs `{0}`, `k`, and `{0}2`".format(error_str)) if col == col2: raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " "be different.".format(error_str)) if not 0 <= col < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col)) if not 0 <= col2 < self_cols: raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2)) else: raise ValueError('invalid operation %s' % repr(op)) return op, col, k, col1, col2 def _eval_col_op_multiply_col_by_const(self, col, k): def entry(i, j): if j == col: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_swap(self, col1, col2): def entry(i, j): if j == col1: return self[i, col2] elif j == col2: return self[i, col1] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): def entry(i, j): if j == col: return self[i, j] + k * self[i, col2] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_swap(self, row1, row2): def entry(i, j): if i == row1: return self[row2, j] elif i == row2: return self[row1, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_multiply_row_by_const(self, row, k): def entry(i, j): if i == row: return k * self[i, j] return self[i, j] return self._new(self.rows, self.cols, entry) def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): def entry(i, j): if i == row: return self[i, j] + k * self[row2, j] return self[i, j] return self._new(self.rows, self.cols, entry) def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): """Performs the elementary column operation `op`. `op` may be one of * "n->kn" (column n goes to k*n) * "n<->m" (swap column n and column m) * "n->n+km" (column n goes to column n + k*column m) Parameters ========== op : string; the elementary row operation col : the column to apply the column operation k : the multiple to apply in the column operation col1 : one column of a column swap col2 : second column of a column swap or column "m" in the column operation "n->n+km" """ op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_col_op_multiply_col_by_const(col, k) if op == "n<->m": return self._eval_col_op_swap(col1, col2) if op == "n->n+km": return self._eval_col_op_add_multiple_to_other_col(col, k, col2) def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): """Performs the elementary row operation `op`. `op` may be one of * "n->kn" (row n goes to k*n) * "n<->m" (swap row n and row m) * "n->n+km" (row n goes to row n + k*row m) Parameters ========== op : string; the elementary row operation row : the row to apply the row operation k : the multiple to apply in the row operation row1 : one row of a row swap row2 : second row of a row swap or row "m" in the row operation "n->n+km" """ op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") # now that we've validated, we're all good to dispatch if op == "n->kn": return self._eval_row_op_multiply_row_by_const(row, k) if op == "n<->m": return self._eval_row_op_swap(row1, row2) if op == "n->n+km": return self._eval_row_op_add_multiple_to_other_row(row, k, row2) class MatrixSubspaces(MatrixReductions): """Provides methods relating to the fundamental subspaces of a matrix. Should not be instantiated directly. See ``subspaces.py`` for their implementations.""" def columnspace(self, simplify=False): return _columnspace(self, simplify=simplify) def nullspace(self, simplify=False, iszerofunc=_iszero): return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc) def rowspace(self, simplify=False): return _rowspace(self, simplify=simplify) # This is a classmethod but is converted to such later in order to allow # assignment of __doc__ since that does not work for already wrapped # classmethods in Python 3.6. def orthogonalize(cls, *vecs, **kwargs): return _orthogonalize(cls, *vecs, **kwargs) columnspace.__doc__ = _columnspace.__doc__ nullspace.__doc__ = _nullspace.__doc__ rowspace.__doc__ = _rowspace.__doc__ orthogonalize.__doc__ = _orthogonalize.__doc__ orthogonalize = classmethod(orthogonalize) # type:ignore class MatrixEigen(MatrixSubspaces): """Provides basic matrix eigenvalue/vector operations. Should not be instantiated directly. See ``eigen.py`` for their implementations.""" def eigenvals(self, error_when_incomplete=True, **flags): return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags) def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): return _eigenvects(self, error_when_incomplete=error_when_incomplete, iszerofunc=iszerofunc, **flags) def is_diagonalizable(self, reals_only=False, **kwargs): return _is_diagonalizable(self, reals_only=reals_only, **kwargs) def diagonalize(self, reals_only=False, sort=False, normalize=False): return _diagonalize(self, reals_only=reals_only, sort=sort, normalize=normalize) def bidiagonalize(self, upper=True): return _bidiagonalize(self, upper=upper) def bidiagonal_decomposition(self, upper=True): return _bidiagonal_decomposition(self, upper=upper) @property def is_positive_definite(self): return _is_positive_definite(self) @property def is_positive_semidefinite(self): return _is_positive_semidefinite(self) @property def is_negative_definite(self): return _is_negative_definite(self) @property def is_negative_semidefinite(self): return _is_negative_semidefinite(self) @property def is_indefinite(self): return _is_indefinite(self) def jordan_form(self, calc_transform=True, **kwargs): return _jordan_form(self, calc_transform=calc_transform, **kwargs) def left_eigenvects(self, **flags): return _left_eigenvects(self, **flags) def singular_values(self): return _singular_values(self) eigenvals.__doc__ = _eigenvals.__doc__ eigenvects.__doc__ = _eigenvects.__doc__ is_diagonalizable.__doc__ = _is_diagonalizable.__doc__ diagonalize.__doc__ = _diagonalize.__doc__ is_positive_definite.__doc__ = _is_positive_definite.__doc__ is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__ is_negative_definite.__doc__ = _is_negative_definite.__doc__ is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__ is_indefinite.__doc__ = _is_indefinite.__doc__ jordan_form.__doc__ = _jordan_form.__doc__ left_eigenvects.__doc__ = _left_eigenvects.__doc__ singular_values.__doc__ = _singular_values.__doc__ bidiagonalize.__doc__ = _bidiagonalize.__doc__ bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__ class MatrixCalculus(MatrixCommon): """Provides calculus-related matrix operations.""" def diff(self, *args, **kwargs): """Calculate the derivative of each element in the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.diff(x) Matrix([ [1, 0], [0, 0]]) See Also ======== integrate limit """ # XXX this should be handled here rather than in Derivative from sympy.tensor.array.array_derivatives import ArrayDerivative kwargs.setdefault('evaluate', True) deriv = ArrayDerivative(self, *args, evaluate=True) if not isinstance(self, Basic): return deriv.as_mutable() else: return deriv def _eval_derivative(self, arg): return self.applyfunc(lambda x: x.diff(arg)) def integrate(self, *args, **kwargs): """Integrate each element of the matrix. ``args`` will be passed to the ``integrate`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.integrate((x, )) Matrix([ [x**2/2, x*y], [ x, 0]]) >>> M.integrate((x, 0, 2)) Matrix([ [2, 2*y], [2, 0]]) See Also ======== limit diff """ return self.applyfunc(lambda x: x.integrate(*args, **kwargs)) def jacobian(self, X): """Calculates the Jacobian matrix (derivative of a vector-valued function). Parameters ========== ``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). X : set of x_i's in order, it can be a list or a Matrix Both ``self`` and X can be a row or a column matrix in any order (i.e., jacobian() should always work). Examples ======== >>> from sympy import sin, cos, Matrix >>> from sympy.abc import rho, phi >>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) >>> Y = Matrix([rho, phi]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0]]) >>> X = Matrix([rho*cos(phi), rho*sin(phi)]) >>> X.jacobian(Y) Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)]]) See Also ======== hessian wronskian """ if not isinstance(X, MatrixBase): X = self._new(X) # Both X and ``self`` can be a row or a column matrix, so we need to make # sure all valid combinations work, but everything else fails: if self.shape[0] == 1: m = self.shape[1] elif self.shape[1] == 1: m = self.shape[0] else: raise TypeError("``self`` must be a row or a column matrix") if X.shape[0] == 1: n = X.shape[1] elif X.shape[1] == 1: n = X.shape[0] else: raise TypeError("X must be a row or a column matrix") # m is the number of functions and n is the number of variables # computing the Jacobian is now easy: return self._new(m, n, lambda j, i: self[j].diff(X[i])) def limit(self, *args): """Calculate the limit of each element in the matrix. ``args`` will be passed to the ``limit`` function. Examples ======== >>> from sympy.matrices import Matrix >>> from sympy.abc import x, y >>> M = Matrix([[x, y], [1, 0]]) >>> M.limit(x, 2) Matrix([ [2, y], [1, 0]]) See Also ======== integrate diff """ return self.applyfunc(lambda x: x.limit(*args)) # https://github.com/sympy/sympy/pull/12854 class MatrixDeprecated(MatrixCommon): """A class to house deprecated matrix methods.""" def _legacy_array_dot(self, b): """Compatibility function for deprecated behavior of ``matrix.dot(vector)`` """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if mat.cols == b.rows: if b.cols != 1: mat = mat.T b = b.T prod = flatten((mat * b).tolist()) return prod if mat.cols == b.cols: return mat.dot(b.T) elif mat.rows == b.rows: return mat.T.dot(b) else: raise ShapeError("Dimensions incorrect for dot product: %s, %s" % ( self.shape, b.shape)) def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify): return self.charpoly(x=x) def berkowitz_det(self): """Computes determinant using Berkowitz method. See Also ======== det berkowitz """ return self.det(method='berkowitz') def berkowitz_eigenvals(self, **flags): """Computes eigenvalues of a Matrix using Berkowitz method. See Also ======== berkowitz """ return self.eigenvals(**flags) def berkowitz_minors(self): """Computes principal minors using Berkowitz method. See Also ======== berkowitz """ sign, minors = self.one, [] for poly in self.berkowitz(): minors.append(sign * poly[-1]) sign = -sign return tuple(minors) def berkowitz(self): from sympy.matrices import zeros berk = ((1,),) if not self: return berk if not self.is_square: raise NonSquareMatrixError() A, N = self, self.rows transforms = [0] * (N - 1) for n in range(N, 1, -1): T, k = zeros(n + 1, n), n - 1 R, C = -A[k, :k], A[:k, k] A, a = A[:k, :k], -A[k, k] items = [C] for i in range(0, n - 2): items.append(A * items[i]) for i, B in enumerate(items): items[i] = (R * B)[0, 0] items = [self.one, a] + items for i in range(n): T[i:, i] = items[:n - i + 1] transforms[k - 1] = T polys = [self._new([self.one, -A[0, 0]])] for i, T in enumerate(transforms): polys.append(T * polys[i]) return berk + tuple(map(tuple, polys)) def cofactorMatrix(self, method="berkowitz"): return self.cofactor_matrix(method=method) def det_bareis(self): return _det_bareiss(self) def det_LU_decomposition(self): """Compute matrix determinant using LU decomposition Note that this method fails if the LU decomposition itself fails. In particular, if the matrix has no inverse this method will fail. TODO: Implement algorithm for sparse matrices (SFF), http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. See Also ======== det det_bareiss berkowitz_det """ return self.det(method='lu') def jordan_cell(self, eigenval, n): return self.jordan_block(size=n, eigenvalue=eigenval) def jordan_cells(self, calc_transformation=True): P, J = self.jordan_form() return P, J.get_diag_blocks() def minorEntry(self, i, j, method="berkowitz"): return self.minor(i, j, method=method) def minorMatrix(self, i, j): return self.minor_submatrix(i, j) def permuteBkwd(self, perm): """Permute the rows of the matrix with the given permutation in reverse.""" return self.permute_rows(perm, direction='backward') def permuteFwd(self, perm): """Permute the rows of the matrix with the given permutation.""" return self.permute_rows(perm, direction='forward') @Mul._kind_dispatcher.register(_NumberKind, MatrixKind) def num_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. Do not need to dispatch in reversed order because KindDispatcher searches for this automatically. """ # Deal with Mul._kind_dispatcher's commutativity elemk = Mul._kind_dispatcher(NumberKind, k2.element_kind) return MatrixKind(elemk) @Mul._kind_dispatcher.register(MatrixKind, MatrixKind) def mat_mat_mul(k1, k2): """ Return MatrixKind. The element kind is selected by recursive dispatching. """ elemk = Mul._kind_dispatcher(k1.element_kind, k2.element_kind) return MatrixKind(elemk) class MatrixBase(MatrixDeprecated, MatrixCalculus, MatrixEigen, MatrixCommon, Printable): """Base class for matrix objects.""" # Added just for numpy compatibility __array_priority__ = 11 is_Matrix = True _class_priority = 3 _sympify = staticmethod(sympify) zero = S.Zero one = S.One @property def kind(self): elem_kinds = set(e.kind for e in self._mat) if len(elem_kinds) == 1: elemkind, = elem_kinds else: elemkind = UndefinedKind return MatrixKind(elemkind) def __array__(self, dtype=object): from .dense import matrix2numpy return matrix2numpy(self, dtype=dtype) def __len__(self): """Return the number of elements of ``self``. Implemented mainly so bool(Matrix()) == False. """ return self.rows * self.cols def _matrix_pow_by_jordan_blocks(self, num): from sympy.matrices import diag, MutableMatrix from sympy import binomial def jordan_cell_power(jc, n): N = jc.shape[0] l = jc[0,0] if l.is_zero: if N == 1 and n.is_nonnegative: jc[0,0] = l**n elif not (n.is_integer and n.is_nonnegative): raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer") else: for i in range(N): jc[0,i] = KroneckerDelta(i, n) else: for i in range(N): bn = binomial(n, i) if isinstance(bn, binomial): bn = bn._eval_expand_func() jc[0,i] = l**(n-i)*bn for i in range(N): for j in range(1, N-i): jc[j,i+j] = jc [j-1,i+j-1] P, J = self.jordan_form() jordan_cells = J.get_diag_blocks() # Make sure jordan_cells matrices are mutable: jordan_cells = [MutableMatrix(j) for j in jordan_cells] for j in jordan_cells: jordan_cell_power(j, num) return self._new(P.multiply(diag(*jordan_cells)) .multiply(P.inv())) def __str__(self): if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) return "Matrix(%s)" % str(self.tolist()) def _format_str(self, printer=None): if not printer: from sympy.printing.str import StrPrinter printer = StrPrinter() # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return 'Matrix(%s, %s, [])' % (self.rows, self.cols) if self.rows == 1: return "Matrix([%s])" % self.table(printer, rowsep=',\n') return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') @classmethod def irregular(cls, ntop, *matrices, **kwargs): """Return a matrix filled by the given matrices which are listed in order of appearance from left to right, top to bottom as they first appear in the matrix. They must fill the matrix completely. Examples ======== >>> from sympy import ones, Matrix >>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) """ from sympy.core.compatibility import as_int ntop = as_int(ntop) # make sure we are working with explicit matrices b = [i.as_explicit() if hasattr(i, 'as_explicit') else i for i in matrices] q = list(range(len(b))) dat = [i.rows for i in b] active = [q.pop(0) for _ in range(ntop)] cols = sum([b[i].cols for i in active]) rows = [] while any(dat): r = [] for a, j in enumerate(active): r.extend(b[j][-dat[j], :]) dat[j] -= 1 if dat[j] == 0 and q: active[a] = q.pop(0) if len(r) != cols: raise ValueError(filldedent(''' Matrices provided do not appear to fill the space completely.''')) rows.append(r) return cls._new(rows) @classmethod def _handle_ndarray(cls, arg): # NumPy array or matrix or some other object that implements # __array__. So let's first use this method to get a # numpy.array() and then make a python list out of it. arr = arg.__array__() if len(arr.shape) == 2: rows, cols = arr.shape[0], arr.shape[1] flat_list = [cls._sympify(i) for i in arr.ravel()] return rows, cols, flat_list elif len(arr.shape) == 1: flat_list = [cls._sympify(i) for i in arr] return arr.shape[0], 1, flat_list else: raise NotImplementedError( "SymPy supports just 1D and 2D matrices") @classmethod def _handle_creation_inputs(cls, *args, **kwargs): """Return the number of rows, cols and flat matrix elements. Examples ======== >>> from sympy import Matrix, I Matrix can be constructed as follows: * from a nested list of iterables >>> Matrix( ((1, 2+I), (3, 4)) ) Matrix([ [1, 2 + I], [3, 4]]) * from un-nested iterable (interpreted as a column) >>> Matrix( [1, 2] ) Matrix([ [1], [2]]) * from un-nested iterable with dimensions >>> Matrix(1, 2, [1, 2] ) Matrix([[1, 2]]) * from no arguments (a 0 x 0 matrix) >>> Matrix() Matrix(0, 0, []) * from a rule >>> Matrix(2, 2, lambda i, j: i/(j + 1) ) Matrix([ [0, 0], [1, 1/2]]) See Also ======== irregular - filling a matrix with irregular blocks """ from sympy.matrices.sparse import SparseMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.utilities.iterables import reshape flat_list = None if len(args) == 1: # Matrix(SparseMatrix(...)) if isinstance(args[0], SparseMatrix): return args[0].rows, args[0].cols, flatten(args[0].tolist()) # Matrix(Matrix(...)) elif isinstance(args[0], MatrixBase): return args[0].rows, args[0].cols, args[0]._mat # Matrix(MatrixSymbol('X', 2, 2)) elif isinstance(args[0], Basic) and args[0].is_Matrix: return args[0].rows, args[0].cols, args[0].as_explicit()._mat elif isinstance(args[0], mp.matrix): M = args[0] flat_list = [cls._sympify(x) for x in M] return M.rows, M.cols, flat_list # Matrix(numpy.ones((2, 2))) elif hasattr(args[0], "__array__"): return cls._handle_ndarray(args[0]) # Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]]) elif is_sequence(args[0]) \ and not isinstance(args[0], DeferredVector): dat = list(args[0]) ismat = lambda i: isinstance(i, MatrixBase) and ( evaluate or isinstance(i, BlockMatrix) or isinstance(i, MatrixSymbol)) raw = lambda i: is_sequence(i) and not ismat(i) evaluate = kwargs.get('evaluate', True) if evaluate: def do(x): # make Block and Symbol explicit if isinstance(x, (list, tuple)): return type(x)([do(i) for i in x]) if isinstance(x, BlockMatrix) or \ isinstance(x, MatrixSymbol) and \ all(_.is_Integer for _ in x.shape): return x.as_explicit() return cls._sympify(x) dat = do(dat) if dat == [] or dat == [[]]: rows = cols = 0 flat_list = [] elif not any(raw(i) or ismat(i) for i in dat): # a column as a list of values flat_list = [cls._sympify(i) for i in dat] rows = len(flat_list) cols = 1 if rows else 0 elif evaluate and all(ismat(i) for i in dat): # a column as a list of matrices ncol = {i.cols for i in dat if any(i.shape)} if ncol: if len(ncol) != 1: raise ValueError('mismatched dimensions') flat_list = [_ for i in dat for r in i.tolist() for _ in r] cols = ncol.pop() rows = len(flat_list)//cols else: rows = cols = 0 flat_list = [] elif evaluate and any(ismat(i) for i in dat): ncol = set() flat_list = [] for i in dat: if ismat(i): flat_list.extend( [k for j in i.tolist() for k in j]) if any(i.shape): ncol.add(i.cols) elif raw(i): if i: ncol.add(len(i)) flat_list.extend(i) else: ncol.add(1) flat_list.append(i) if len(ncol) > 1: raise ValueError('mismatched dimensions') cols = ncol.pop() rows = len(flat_list)//cols else: # list of lists; each sublist is a logical row # which might consist of many rows if the values in # the row are matrices flat_list = [] ncol = set() rows = cols = 0 for row in dat: if not is_sequence(row) and \ not getattr(row, 'is_Matrix', False): raise ValueError('expecting list of lists') if hasattr(row, '__array__'): if 0 in row.shape: continue elif not row: continue if evaluate and all(ismat(i) for i in row): r, c, flatT = cls._handle_creation_inputs( [i.T for i in row]) T = reshape(flatT, [c]) flat = \ [T[i][j] for j in range(c) for i in range(r)] r, c = c, r else: r = 1 if getattr(row, 'is_Matrix', False): c = 1 flat = [row] else: c = len(row) flat = [cls._sympify(i) for i in row] ncol.add(c) if len(ncol) > 1: raise ValueError('mismatched dimensions') flat_list.extend(flat) rows += r cols = ncol.pop() if ncol else 0 elif len(args) == 3: rows = as_int(args[0]) cols = as_int(args[1]) if rows < 0 or cols < 0: raise ValueError("Cannot create a {} x {} matrix. " "Both dimensions must be positive".format(rows, cols)) # Matrix(2, 2, lambda i, j: i+j) if len(args) == 3 and isinstance(args[2], Callable): op = args[2] flat_list = [] for i in range(rows): flat_list.extend( [cls._sympify(op(cls._sympify(i), cls._sympify(j))) for j in range(cols)]) # Matrix(2, 2, [1, 2, 3, 4]) elif len(args) == 3 and is_sequence(args[2]): flat_list = args[2] if len(flat_list) != rows * cols: raise ValueError( 'List length should be equal to rows*columns') flat_list = [cls._sympify(i) for i in flat_list] # Matrix() elif len(args) == 0: # Empty Matrix rows = cols = 0 flat_list = [] if flat_list is None: raise TypeError(filldedent(''' Data type not understood; expecting list of lists or lists of values.''')) return rows, cols, flat_list def _setitem(self, key, value): """Helper to set value at location given by key. Examples ======== >>> from sympy import Matrix, I, zeros, ones >>> m = Matrix(((1, 2+I), (3, 4))) >>> m Matrix([ [1, 2 + I], [3, 4]]) >>> m[1, 0] = 9 >>> m Matrix([ [1, 2 + I], [9, 4]]) >>> m[1, 0] = [[0, 1]] To replace row r you assign to position r*m where m is the number of columns: >>> M = zeros(4) >>> m = M.cols >>> M[3*m] = ones(1, m)*2; M Matrix([ [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [2, 2, 2, 2]]) And to replace column c you can assign to position c: >>> M[2] = ones(m, 1)*4; M Matrix([ [0, 0, 4, 0], [0, 0, 4, 0], [0, 0, 4, 0], [2, 2, 4, 2]]) """ from .dense import Matrix is_slice = isinstance(key, slice) i, j = key = self.key2ij(key) is_mat = isinstance(value, MatrixBase) if type(i) is slice or type(j) is slice: if is_mat: self.copyin_matrix(key, value) return if not isinstance(value, Expr) and is_sequence(value): self.copyin_list(key, value) return raise ValueError('unexpected value: %s' % value) else: if (not is_mat and not isinstance(value, Basic) and is_sequence(value)): value = Matrix(value) is_mat = True if is_mat: if is_slice: key = (slice(*divmod(i, self.cols)), slice(*divmod(j, self.cols))) else: key = (slice(i, i + value.rows), slice(j, j + value.cols)) self.copyin_matrix(key, value) else: return i, j, self._sympify(value) return def add(self, b): """Return self + b """ return self + b def condition_number(self): """Returns the condition number of a matrix. This is the maximum singular value divided by the minimum singular value Examples ======== >>> from sympy import Matrix, S >>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) >>> A.condition_number() 100 See Also ======== singular_values """ if not self: return self.zero singularvalues = self.singular_values() return Max(*singularvalues) / Min(*singularvalues) def copy(self): """ Returns the copy of a matrix. Examples ======== >>> from sympy import Matrix >>> A = Matrix(2, 2, [1, 2, 3, 4]) >>> A.copy() Matrix([ [1, 2], [3, 4]]) """ return self._new(self.rows, self.cols, self._mat) def cross(self, b): r""" Return the cross product of ``self`` and ``b`` relaxing the condition of compatible dimensions: if each has 3 elements, a matrix of the same type and shape as ``self`` will be returned. If ``b`` has the same shape as ``self`` then common identities for the cross product (like `a \times b = - b \times a`) will hold. Parameters ========== b : 3x1 or 1x3 Matrix See Also ======== dot multiply multiply_elementwise """ from sympy.matrices.expressions.matexpr import MatrixExpr if not isinstance(b, MatrixBase) and not isinstance(b, MatrixExpr): raise TypeError( "{} must be a Matrix, not {}.".format(b, type(b))) if not (self.rows * self.cols == b.rows * b.cols == 3): raise ShapeError("Dimensions incorrect for cross product: %s x %s" % ((self.rows, self.cols), (b.rows, b.cols))) else: return self._new(self.rows, self.cols, ( (self[1] * b[2] - self[2] * b[1]), (self[2] * b[0] - self[0] * b[2]), (self[0] * b[1] - self[1] * b[0]))) @property def D(self): """Return Dirac conjugate (if ``self.rows == 4``). Examples ======== >>> from sympy import Matrix, I, eye >>> m = Matrix((0, 1 + I, 2, 3)) >>> m.D Matrix([[0, 1 - I, -2, -3]]) >>> m = (eye(4) + I*eye(4)) >>> m[0, 3] = 2 >>> m.D Matrix([ [1 - I, 0, 0, 0], [ 0, 1 - I, 0, 0], [ 0, 0, -1 + I, 0], [ 2, 0, 0, -1 + I]]) If the matrix does not have 4 rows an AttributeError will be raised because this property is only defined for matrices with 4 rows. >>> Matrix(eye(2)).D Traceback (most recent call last): ... AttributeError: Matrix has no attribute D. See Also ======== sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation sympy.matrices.common.MatrixCommon.H: Hermite conjugation """ from sympy.physics.matrices import mgamma if self.rows != 4: # In Python 3.2, properties can only return an AttributeError # so we can't raise a ShapeError -- see commit which added the # first line of this inline comment. Also, there is no need # for a message since MatrixBase will raise the AttributeError raise AttributeError return self.H * mgamma(0) def dot(self, b, hermitian=None, conjugate_convention=None): """Return the dot or inner product of two vectors of equal length. Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. A scalar is returned. By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) to compute the hermitian inner product. Possible kwargs are ``hermitian`` and ``conjugate_convention``. If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, the conjugate of the first vector (``self``) is used. If ``"right"`` or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> v = Matrix([1, 1, 1]) >>> M.row(0).dot(v) 6 >>> M.col(0).dot(v) 12 >>> v = [3, 2, 1] >>> M.row(0).dot(v) 10 >>> from sympy import I >>> q = Matrix([1*I, 1*I, 1*I]) >>> q.dot(q, hermitian=False) -3 >>> q.dot(q, hermitian=True) 3 >>> q1 = Matrix([1, 1, 1*I]) >>> q.dot(q1, hermitian=True, conjugate_convention="maths") 1 - 2*I >>> q.dot(q1, hermitian=True, conjugate_convention="physics") 1 + 2*I See Also ======== cross multiply multiply_elementwise """ from .dense import Matrix if not isinstance(b, MatrixBase): if is_sequence(b): if len(b) != self.cols and len(b) != self.rows: raise ShapeError( "Dimensions incorrect for dot product: %s, %s" % ( self.shape, len(b))) return self.dot(Matrix(b)) else: raise TypeError( "`b` must be an ordered iterable or Matrix, not %s." % type(b)) mat = self if (1 not in mat.shape) or (1 not in b.shape) : SymPyDeprecationWarning( feature="Dot product of non row/column vectors", issue=13815, deprecated_since_version="1.2", useinstead="* to take matrix products").warn() return mat._legacy_array_dot(b) if len(mat) != len(b): raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) n = len(mat) if mat.shape != (1, n): mat = mat.reshape(1, n) if b.shape != (n, 1): b = b.reshape(n, 1) # Now ``mat`` is a row vector and ``b`` is a column vector. # If it so happens that only conjugate_convention is passed # then automatically set hermitian to True. If only hermitian # is true but no conjugate_convention is not passed then # automatically set it to ``"maths"`` if conjugate_convention is not None and hermitian is None: hermitian = True if hermitian and conjugate_convention is None: conjugate_convention = "maths" if hermitian == True: if conjugate_convention in ("maths", "left", "math"): mat = mat.conjugate() elif conjugate_convention in ("physics", "right"): b = b.conjugate() else: raise ValueError("Unknown conjugate_convention was entered." " conjugate_convention must be one of the" " following: math, maths, left, physics or right.") return (mat * b)[0] def dual(self): """Returns the dual of a matrix, which is: ``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` Since the levicivita method is anti_symmetric for any pairwise exchange of indices, the dual of a symmetric matrix is the zero matrix. Strictly speaking the dual defined here assumes that the 'matrix' `M` is a contravariant anti_symmetric second rank tensor, so that the dual is a covariant second rank tensor. """ from sympy import LeviCivita from sympy.matrices import zeros M, n = self[:, :], self.rows work = zeros(n) if self.is_symmetric(): return work for i in range(1, n): for j in range(1, n): acum = 0 for k in range(1, n): acum += LeviCivita(i, j, 0, k) * M[0, k] work[i, j] = acum work[j, i] = -acum for l in range(1, n): acum = 0 for a in range(1, n): for b in range(1, n): acum += LeviCivita(0, l, a, b) * M[a, b] acum /= 2 work[0, l] = -acum work[l, 0] = acum return work def _eval_matrix_exp_jblock(self): """A helper function to compute an exponential of a Jordan block matrix Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_exp_jblock() Matrix([[exp(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_exp_jblock() Matrix([ [exp(lamda), exp(lamda), exp(lamda)/2], [ 0, exp(lamda), exp(lamda)], [ 0, 0, exp(lamda)]]) References ========== .. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition """ size = self.rows l = self[0, 0] exp_l = exp(l) bands = {i: exp_l / factorial(i) for i in range(size)} from .sparsetools import banded return self.__class__(banded(size, bands)) def analytic_func(self, f, x): """ Computes f(A) where A is a Square Matrix and f is an analytic function. Examples ======== >>> from sympy import Symbol, Matrix, S, log >>> x = Symbol('x') >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> f = log(x) >>> m.analytic_func(f, x) Matrix([ [ 0, log(2)], [log(2), 0]]) Parameters ========== f : Expr Analytic Function x : Symbol parameter of f """ from sympy import diff f, x = _sympify(f), _sympify(x) if not self.is_square: raise NonSquareMatrixError if not x.is_symbol: raise ValueError("{} must be a symbol.".format(x)) if x not in f.free_symbols: raise ValueError( "{} must be a parameter of {}.".format(x, f)) if x in self.free_symbols: raise ValueError( "{} must not be a parameter of {}.".format(x, self)) eigen = self.eigenvals() max_mul = max(eigen.values()) derivative = {} dd = f for i in range(max_mul - 1): dd = diff(dd, x) derivative[i + 1] = dd n = self.shape[0] r = self.zeros(n) f_val = self.zeros(n, 1) row = 0 for i in eigen: mul = eigen[i] f_val[row] = f.subs(x, i) if f_val[row].is_number and not f_val[row].is_complex: raise ValueError( "Cannot evaluate the function because the " "function {} is not analytic at the given " "eigenvalue {}".format(f, f_val[row])) val = 1 for a in range(n): r[row, a] = val val *= i if mul > 1: coe = [1 for ii in range(n)] deri = 1 while mul > 1: row = row + 1 mul -= 1 d_i = derivative[deri].subs(x, i) if d_i.is_number and not d_i.is_complex: raise ValueError( "Cannot evaluate the function because the " "derivative {} is not analytic at the given " "eigenvalue {}".format(derivative[deri], d_i)) f_val[row] = d_i for a in range(n): if a - deri + 1 <= 0: r[row, a] = 0 coe[a] = 0 continue coe[a] = coe[a]*(a - deri + 1) r[row, a] = coe[a]*pow(i, a - deri) deri += 1 row += 1 c = r.solve(f_val) ans = self.zeros(n) pre = self.eye(n) for i in range(n): ans = ans + c[i]*pre pre *= self return ans def exp(self): """Return the exponential of a square matrix Examples ======== >>> from sympy import Symbol, Matrix >>> t = Symbol('t') >>> m = Matrix([[0, 1], [-1, 0]]) * t >>> m.exp() Matrix([ [ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2], [I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Exponentiation is valid only for square matrices") try: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") blocks = [cell._eval_matrix_exp_jblock() for cell in cells] from sympy.matrices import diag from sympy import re eJ = diag(*blocks) # n = self.rows ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None) if all(value.is_real for value in self.values()): return type(self)(re(ret)) else: return type(self)(ret) def _eval_matrix_log_jblock(self): """Helper function to compute logarithm of a jordan block. Examples ======== >>> from sympy import Symbol, Matrix >>> l = Symbol('lamda') A trivial example of 1*1 Jordan block: >>> m = Matrix.jordan_block(1, l) >>> m._eval_matrix_log_jblock() Matrix([[log(lamda)]]) An example of 3*3 Jordan block: >>> m = Matrix.jordan_block(3, l) >>> m._eval_matrix_log_jblock() Matrix([ [log(lamda), 1/lamda, -1/(2*lamda**2)], [ 0, log(lamda), 1/lamda], [ 0, 0, log(lamda)]]) """ size = self.rows l = self[0, 0] if l.is_zero: raise MatrixError( 'Could not take logarithm or reciprocal for the given ' 'eigenvalue {}'.format(l)) bands = {0: log(l)} for i in range(1, size): bands[i] = -((-l) ** -i) / i from .sparsetools import banded return self.__class__(banded(size, bands)) def log(self, simplify=cancel): """Return the logarithm of a square matrix Parameters ========== simplify : function, bool The function to simplify the result with. Default is ``cancel``, which is effective to reduce the expression growing for taking reciprocals and inverses for symbolic matrices. Examples ======== >>> from sympy import S, Matrix Examples for positive-definite matrices: >>> m = Matrix([[1, 1], [0, 1]]) >>> m.log() Matrix([ [0, 1], [0, 0]]) >>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) >>> m.log() Matrix([ [ 0, log(2)], [log(2), 0]]) Examples for non positive-definite matrices: >>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]]) >>> m.log() Matrix([ [ I*pi/2, log(2) - I*pi/2], [log(2) - I*pi/2, I*pi/2]]) >>> m = Matrix( ... [[0, 0, 0, 1], ... [0, 0, 1, 0], ... [0, 1, 0, 0], ... [1, 0, 0, 0]]) >>> m.log() Matrix([ [ I*pi/2, 0, 0, -I*pi/2], [ 0, I*pi/2, -I*pi/2, 0], [ 0, -I*pi/2, I*pi/2, 0], [-I*pi/2, 0, 0, I*pi/2]]) """ if not self.is_square: raise NonSquareMatrixError( "Logarithm is valid only for square matrices") try: if simplify: P, J = simplify(self).jordan_form() else: P, J = self.jordan_form() cells = J.get_diag_blocks() except MatrixError: raise NotImplementedError( "Logarithm is implemented only for matrices for which " "the Jordan normal form can be computed") blocks = [ cell._eval_matrix_log_jblock() for cell in cells] from sympy.matrices import diag eJ = diag(*blocks) if simplify: ret = simplify(P * eJ * simplify(P.inv())) ret = self.__class__(ret) else: ret = P * eJ * P.inv() return ret def is_nilpotent(self): """Checks if a matrix is nilpotent. A matrix B is nilpotent if for some integer k, B**k is a zero matrix. Examples ======== >>> from sympy import Matrix >>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() True >>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) >>> a.is_nilpotent() False """ if not self: return True if not self.is_square: raise NonSquareMatrixError( "Nilpotency is valid only for square matrices") x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s) p = self.charpoly(x) if p.args[0] == x ** self.rows: return True return False def key2bounds(self, keys): """Converts a key with potentially mixed types of keys (integer and slice) into a tuple of ranges and raises an error if any index is out of ``self``'s range. See Also ======== key2ij """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py islice, jslice = [isinstance(k, slice) for k in keys] if islice: if not self.rows: rlo = rhi = 0 else: rlo, rhi = keys[0].indices(self.rows)[:2] else: rlo = a2idx_(keys[0], self.rows) rhi = rlo + 1 if jslice: if not self.cols: clo = chi = 0 else: clo, chi = keys[1].indices(self.cols)[:2] else: clo = a2idx_(keys[1], self.cols) chi = clo + 1 return rlo, rhi, clo, chi def key2ij(self, key): """Converts key into canonical form, converting integers or indexable items into valid integers for ``self``'s range or returning slices unchanged. See Also ======== key2bounds """ from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py if is_sequence(key): if not len(key) == 2: raise TypeError('key must be a sequence of length 2') return [a2idx_(i, n) if not isinstance(i, slice) else i for i, n in zip(key, self.shape)] elif isinstance(key, slice): return key.indices(len(self))[:2] else: return divmod(a2idx_(key, len(self)), self.cols) def normalized(self, iszerofunc=_iszero): """Return the normalized version of ``self``. Parameters ========== iszerofunc : Function, optional A function to determine whether ``self`` is a zero vector. The default ``_iszero`` tests to see if each element is exactly zero. Returns ======= Matrix Normalized vector form of ``self``. It has the same length as a unit vector. However, a zero vector will be returned for a vector with norm 0. Raises ====== ShapeError If the matrix is not in a vector form. See Also ======== norm """ if self.rows != 1 and self.cols != 1: raise ShapeError("A Matrix must be a vector to normalize.") norm = self.norm() if iszerofunc(norm): out = self.zeros(self.rows, self.cols) else: out = self.applyfunc(lambda i: i / norm) return out def norm(self, ord=None): """Return the Norm of a Matrix or Vector. In the simplest case this is the geometric size of the vector Other norms can be specified by the ord parameter ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm - does not exist inf maximum row sum max(abs(x)) -inf -- min(abs(x)) 1 maximum column sum as below -1 -- as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other - does not exist sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== Examples ======== >>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo >>> x = Symbol('x', real=True) >>> v = Matrix([cos(x), sin(x)]) >>> trigsimp( v.norm() ) 1 >>> v.norm(10) (sin(x)**10 + cos(x)**10)**(1/10) >>> A = Matrix([[1, 1], [1, 1]]) >>> A.norm(1) # maximum sum of absolute values of A is 2 2 >>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) 2 >>> A.norm(-2) # Inverse spectral norm (smallest singular value) 0 >>> A.norm() # Frobenius Norm 2 >>> A.norm(oo) # Infinity Norm 2 >>> Matrix([1, -2]).norm(oo) 2 >>> Matrix([-1, 2]).norm(-oo) 1 See Also ======== normalized """ # Row or Column Vector Norms vals = list(self.values()) or [0] if self.rows == 1 or self.cols == 1: if ord == 2 or ord is None: # Common case sqrt(<x, x>) return sqrt(Add(*(abs(i) ** 2 for i in vals))) elif ord == 1: # sum(abs(x)) return Add(*(abs(i) for i in vals)) elif ord is S.Infinity: # max(abs(x)) return Max(*[abs(i) for i in vals]) elif ord is S.NegativeInfinity: # min(abs(x)) return Min(*[abs(i) for i in vals]) # Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord) # Note that while useful this is not mathematically a norm try: return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord) except (NotImplementedError, TypeError): raise ValueError("Expected order to be Number, Symbol, oo") # Matrix Norms else: if ord == 1: # Maximum column sum m = self.applyfunc(abs) return Max(*[sum(m.col(i)) for i in range(m.cols)]) elif ord == 2: # Spectral Norm # Maximum singular value return Max(*self.singular_values()) elif ord == -2: # Minimum singular value return Min(*self.singular_values()) elif ord is S.Infinity: # Infinity Norm - Maximum row sum m = self.applyfunc(abs) return Max(*[sum(m.row(i)) for i in range(m.rows)]) elif (ord is None or isinstance(ord, str) and ord.lower() in ['f', 'fro', 'frobenius', 'vector']): # Reshape as vector and send back to norm function return self.vec().norm(ord=2) else: raise NotImplementedError("Matrix Norms under development") def print_nonzero(self, symb="X"): """Shows location of non-zero entries for fast shape lookup. Examples ======== >>> from sympy.matrices import Matrix, eye >>> m = Matrix(2, 3, lambda i, j: i*3+j) >>> m Matrix([ [0, 1, 2], [3, 4, 5]]) >>> m.print_nonzero() [ XX] [XXX] >>> m = eye(4) >>> m.print_nonzero("x") [x ] [ x ] [ x ] [ x] """ s = [] for i in range(self.rows): line = [] for j in range(self.cols): if self[i, j] == 0: line.append(" ") else: line.append(str(symb)) s.append("[%s]" % ''.join(line)) print('\n'.join(s)) def project(self, v): """Return the projection of ``self`` onto the line containing ``v``. Examples ======== >>> from sympy import Matrix, S, sqrt >>> V = Matrix([sqrt(3)/2, S.Half]) >>> x = Matrix([[1, 0]]) >>> V.project(x) Matrix([[sqrt(3)/2, 0]]) >>> V.project(-x) Matrix([[sqrt(3)/2, 0]]) """ return v * (self.dot(v) / v.dot(v)) def table(self, printer, rowstart='[', rowend=']', rowsep='\n', colsep=', ', align='right'): r""" String form of Matrix as a table. ``printer`` is the printer to use for on the elements (generally something like StrPrinter()) ``rowstart`` is the string used to start each row (by default '['). ``rowend`` is the string used to end each row (by default ']'). ``rowsep`` is the string used to separate rows (by default a newline). ``colsep`` is the string used to separate columns (by default ', '). ``align`` defines how the elements are aligned. Must be one of 'left', 'right', or 'center'. You can also use '<', '>', and '^' to mean the same thing, respectively. This is used by the string printer for Matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.printing.str import StrPrinter >>> M = Matrix([[1, 2], [-33, 4]]) >>> printer = StrPrinter() >>> M.table(printer) '[ 1, 2]\n[-33, 4]' >>> print(M.table(printer)) [ 1, 2] [-33, 4] >>> print(M.table(printer, rowsep=',\n')) [ 1, 2], [-33, 4] >>> print('[%s]' % M.table(printer, rowsep=',\n')) [[ 1, 2], [-33, 4]] >>> print(M.table(printer, colsep=' ')) [ 1 2] [-33 4] >>> print(M.table(printer, align='center')) [ 1 , 2] [-33, 4] >>> print(M.table(printer, rowstart='{', rowend='}')) { 1, 2} {-33, 4} """ # Handle zero dimensions: if self.rows == 0 or self.cols == 0: return '[]' # Build table of string representations of the elements res = [] # Track per-column max lengths for pretty alignment maxlen = [0] * self.cols for i in range(self.rows): res.append([]) for j in range(self.cols): s = printer._print(self[i, j]) res[-1].append(s) maxlen[j] = max(len(s), maxlen[j]) # Patch strings together align = { 'left': 'ljust', 'right': 'rjust', 'center': 'center', '<': 'ljust', '>': 'rjust', '^': 'center', }[align] for i, row in enumerate(res): for j, elem in enumerate(row): row[j] = getattr(elem, align)(maxlen[j]) res[i] = rowstart + colsep.join(row) + rowend return rowsep.join(res) def rank_decomposition(self, iszerofunc=_iszero, simplify=False): return _rank_decomposition(self, iszerofunc=iszerofunc, simplify=simplify) def cholesky(self, hermitian=True): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def LDLdecomposition(self, hermitian=True): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, rankcheck=False): return _LUdecomposition_Simple(self, iszerofunc=iszerofunc, simpfunc=simpfunc, rankcheck=rankcheck) def LUdecompositionFF(self): return _LUdecompositionFF(self) def singular_value_decomposition(self): return _singular_value_decomposition(self) def QRdecomposition(self): return _QRdecomposition(self) def upper_hessenberg_decomposition(self): return _upper_hessenberg_decomposition(self) def diagonal_solve(self, rhs): return _diagonal_solve(self, rhs) def lower_triangular_solve(self, rhs): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def upper_triangular_solve(self, rhs): raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') def cholesky_solve(self, rhs): return _cholesky_solve(self, rhs) def LDLsolve(self, rhs): return _LDLsolve(self, rhs) def LUsolve(self, rhs, iszerofunc=_iszero): return _LUsolve(self, rhs, iszerofunc=iszerofunc) def QRsolve(self, b): return _QRsolve(self, b) def gauss_jordan_solve(self, B, freevar=False): return _gauss_jordan_solve(self, B, freevar=freevar) def pinv_solve(self, B, arbitrary_matrix=None): return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix) def solve(self, rhs, method='GJ'): return _solve(self, rhs, method=method) def solve_least_squares(self, rhs, method='CH'): return _solve_least_squares(self, rhs, method=method) def pinv(self, method='RD'): return _pinv(self, method=method) def inv_mod(self, m): return _inv_mod(self, m) def inverse_ADJ(self, iszerofunc=_iszero): return _inv_ADJ(self, iszerofunc=iszerofunc) def inverse_BLOCK(self, iszerofunc=_iszero): return _inv_block(self, iszerofunc=iszerofunc) def inverse_GE(self, iszerofunc=_iszero): return _inv_GE(self, iszerofunc=iszerofunc) def inverse_LU(self, iszerofunc=_iszero): return _inv_LU(self, iszerofunc=iszerofunc) def inverse_CH(self, iszerofunc=_iszero): return _inv_CH(self, iszerofunc=iszerofunc) def inverse_LDL(self, iszerofunc=_iszero): return _inv_LDL(self, iszerofunc=iszerofunc) def inverse_QR(self, iszerofunc=_iszero): return _inv_QR(self, iszerofunc=iszerofunc) def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False): return _inv(self, method=method, iszerofunc=iszerofunc, try_block_diag=try_block_diag) def connected_components(self): return _connected_components(self) def connected_components_decomposition(self): return _connected_components_decomposition(self) def strongly_connected_components(self): return _strongly_connected_components(self) def strongly_connected_components_decomposition(self, lower=True): return _strongly_connected_components_decomposition(self, lower=lower) rank_decomposition.__doc__ = _rank_decomposition.__doc__ cholesky.__doc__ = _cholesky.__doc__ LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ LUdecomposition.__doc__ = _LUdecomposition.__doc__ LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__ LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__ singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__ QRdecomposition.__doc__ = _QRdecomposition.__doc__ upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__ diagonal_solve.__doc__ = _diagonal_solve.__doc__ lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__ cholesky_solve.__doc__ = _cholesky_solve.__doc__ LDLsolve.__doc__ = _LDLsolve.__doc__ LUsolve.__doc__ = _LUsolve.__doc__ QRsolve.__doc__ = _QRsolve.__doc__ gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__ pinv_solve.__doc__ = _pinv_solve.__doc__ solve.__doc__ = _solve.__doc__ solve_least_squares.__doc__ = _solve_least_squares.__doc__ pinv.__doc__ = _pinv.__doc__ inv_mod.__doc__ = _inv_mod.__doc__ inverse_ADJ.__doc__ = _inv_ADJ.__doc__ inverse_GE.__doc__ = _inv_GE.__doc__ inverse_LU.__doc__ = _inv_LU.__doc__ inverse_CH.__doc__ = _inv_CH.__doc__ inverse_LDL.__doc__ = _inv_LDL.__doc__ inverse_QR.__doc__ = _inv_QR.__doc__ inverse_BLOCK.__doc__ = _inv_block.__doc__ inv.__doc__ = _inv.__doc__ connected_components.__doc__ = _connected_components.__doc__ connected_components_decomposition.__doc__ = \ _connected_components_decomposition.__doc__ strongly_connected_components.__doc__ = \ _strongly_connected_components.__doc__ strongly_connected_components_decomposition.__doc__ = \ _strongly_connected_components_decomposition.__doc__ @deprecated( issue=15109, useinstead="from sympy.matrices.common import classof", deprecated_since_version="1.3") def classof(A, B): from sympy.matrices.common import classof as classof_ return classof_(A, B) @deprecated( issue=15109, deprecated_since_version="1.3", useinstead="from sympy.matrices.common import a2idx") def a2idx(j, n=None): from sympy.matrices.common import a2idx as a2idx_ return a2idx_(j, n)
2a01943790d252a2edde0990b52dc71bc043072cae5e0580424ba7f4987ace6e
from types import FunctionType from collections import Counter from mpmath import mp, workprec from mpmath.libmp.libmpf import prec_to_dps from sympy.core.compatibility import default_sort_key from sympy.core.evalf import DEFAULT_MAXPREC, PrecisionExhausted from sympy.core.logic import fuzzy_and, fuzzy_or from sympy.core.numbers import Float from sympy.core.sympify import _sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys import roots, CRootOf, EX from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.eigen import dom_eigenvects, dom_eigenvects_to_sympy from sympy.simplify import nsimplify, simplify as _simplify from sympy.utilities.exceptions import SymPyDeprecationWarning from .common import MatrixError, NonSquareMatrixError from .determinant import _find_reasonable_pivot from .utilities import _iszero def _eigenvals_eigenvects_mpmath(M): norm2 = lambda v: mp.sqrt(sum(i**2 for i in v)) v1 = None prec = max([x._prec for x in M.atoms(Float)]) eps = 2**-prec while prec < DEFAULT_MAXPREC: with workprec(prec): A = mp.matrix(M.evalf(n=prec_to_dps(prec))) E, ER = mp.eig(A) v2 = norm2([i for e in E for i in (mp.re(e), mp.im(e))]) if v1 is not None and mp.fabs(v1 - v2) < eps: return E, ER v1 = v2 prec *= 2 # we get here because the next step would have taken us # past MAXPREC or because we never took a step; in case # of the latter, we refuse to send back a solution since # it would not have been verified; we also resist taking # a small step to arrive exactly at MAXPREC since then # the two calculations might be artificially close. raise PrecisionExhausted def _eigenvals_mpmath(M, multiple=False): """Compute eigenvalues using mpmath""" E, _ = _eigenvals_eigenvects_mpmath(M) result = [_sympify(x) for x in E] if multiple: return result return dict(Counter(result)) def _eigenvects_mpmath(M): E, ER = _eigenvals_eigenvects_mpmath(M) result = [] for i in range(M.rows): eigenval = _sympify(E[i]) eigenvect = _sympify(ER[:, i]) result.append((eigenval, 1, [eigenvect])) return result # This function is a candidate for caching if it gets implemented for matrices. def _eigenvals( M, error_when_incomplete=True, *, simplify=False, multiple=False, rational=False, **flags): r"""Compute eigenvalues of the matrix. Parameters ========== error_when_incomplete : bool, optional If it is set to ``True``, it will raise an error if not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. simplify : bool or function, optional If it is set to ``True``, it attempts to return the most simplified form of expressions returned by applying default simplification method in every routine. If it is set to ``False``, it will skip simplification in this particular routine to save computation resources. If a function is passed to, it will attempt to apply the particular function as simplification method. rational : bool, optional If it is set to ``True``, every floating point numbers would be replaced with rationals before computation. It can solve some issues of ``roots`` routine not working well with floats. multiple : bool, optional If it is set to ``True``, the result will be in the form of a list. If it is set to ``False``, the result will be in the form of a dictionary. Returns ======= eigs : list or dict Eigenvalues of a matrix. The return format would be specified by the key ``multiple``. Raises ====== MatrixError If not enough roots had got computed. NonSquareMatrixError If attempted to compute eigenvalues from a non-square matrix. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1]) >>> M.eigenvals() {-1: 1, 0: 1, 2: 1} See Also ======== MatrixDeterminant.charpoly eigenvects Notes ===== Eigenvalues of a matrix $A$ can be computed by solving a matrix equation $\det(A - \lambda I) = 0$ It's not always possible to return radical solutions for eigenvalues for matrices larger than $4, 4$ shape due to Abel-Ruffini theorem. If there is no radical solution is found for the eigenvalue, it may return eigenvalues in the form of :class:`sympy.polys.rootoftools.ComplexRootOf`. """ if not M: if multiple: return [] return {} if not M.is_square: raise NonSquareMatrixError("{} must be a square matrix.".format(M)) if all(x.is_number for x in M) and M.has(Float): return _eigenvals_mpmath(M, multiple=multiple) if rational: M = M.applyfunc( lambda x: nsimplify(x, rational=True) if x.has(Float) else x) if multiple: return _eigenvals_list( M, error_when_incomplete=error_when_incomplete, simplify=simplify, **flags) return _eigenvals_dict( M, error_when_incomplete=error_when_incomplete, simplify=simplify, **flags) eigenvals_error_message = \ "It is not always possible to express the eigenvalues of a matrix " + \ "of size 5x5 or higher in radicals. " + \ "We have CRootOf, but domains other than the rationals are not " + \ "currently supported. " + \ "If there are no symbols in the matrix, " + \ "it should still be possible to compute numeric approximations " + \ "of the eigenvalues using " + \ "M.evalf().eigenvals() or M.charpoly().nroots()." def _eigenvals_list( M, error_when_incomplete=True, simplify=False, **flags): iblocks = M.strongly_connected_components() all_eigs = [] for b in iblocks: block = M[b, b] if isinstance(simplify, FunctionType): charpoly = block.charpoly(simplify=simplify) else: charpoly = block.charpoly() eigs = roots(charpoly, multiple=True, **flags) if len(eigs) != block.rows: degree = int(charpoly.degree()) f = charpoly.as_expr() x = charpoly.gen try: eigs = [CRootOf(f, x, idx) for idx in range(degree)] except NotImplementedError: if error_when_incomplete: raise MatrixError(eigenvals_error_message) else: eigs = [] all_eigs += eigs if not simplify: return all_eigs if not isinstance(simplify, FunctionType): simplify = _simplify return [simplify(value) for value in all_eigs] def _eigenvals_dict( M, error_when_incomplete=True, simplify=False, **flags): iblocks = M.strongly_connected_components() all_eigs = {} for b in iblocks: block = M[b, b] if isinstance(simplify, FunctionType): charpoly = block.charpoly(simplify=simplify) else: charpoly = block.charpoly() eigs = roots(charpoly, multiple=False, **flags) if sum(eigs.values()) != block.rows: degree = int(charpoly.degree()) f = charpoly.as_expr() x = charpoly.gen try: eigs = {CRootOf(f, x, idx): 1 for idx in range(degree)} except NotImplementedError: if error_when_incomplete: raise MatrixError(eigenvals_error_message) else: eigs = {} for k, v in eigs.items(): if k in all_eigs: all_eigs[k] += v else: all_eigs[k] = v if not simplify: return all_eigs if not isinstance(simplify, FunctionType): simplify = _simplify return {simplify(key): value for key, value in all_eigs.items()} def _eigenspace(M, eigenval, iszerofunc=_iszero, simplify=False): """Get a basis for the eigenspace for a particular eigenvalue""" m = M - M.eye(M.rows) * eigenval ret = m.nullspace(iszerofunc=iszerofunc) # The nullspace for a real eigenvalue should be non-trivial. # If we didn't find an eigenvector, try once more a little harder if len(ret) == 0 and simplify: ret = m.nullspace(iszerofunc=iszerofunc, simplify=True) if len(ret) == 0: raise NotImplementedError( "Can't evaluate eigenvector for eigenvalue {}".format(eigenval)) return ret def _eigenvects_DOM(M, **kwargs): DOM = DomainMatrix.from_Matrix(M, field=True, extension=True) DOM = DOM.to_dense() if DOM.domain != EX: rational, algebraic = dom_eigenvects(DOM) eigenvects = dom_eigenvects_to_sympy( rational, algebraic, M.__class__, **kwargs) eigenvects = sorted(eigenvects, key=lambda x: default_sort_key(x[0])) return eigenvects return None def _eigenvects_sympy(M, iszerofunc, simplify=True, **flags): eigenvals = M.eigenvals(rational=False, **flags) # Make sure that we have all roots in radical form for x in eigenvals: if x.has(CRootOf): raise MatrixError( "Eigenvector computation is not implemented if the matrix have " "eigenvalues in CRootOf form") eigenvals = sorted(eigenvals.items(), key=default_sort_key) ret = [] for val, mult in eigenvals: vects = _eigenspace(M, val, iszerofunc=iszerofunc, simplify=simplify) ret.append((val, mult, vects)) return ret # This functions is a candidate for caching if it gets implemented for matrices. def _eigenvects(M, error_when_incomplete=True, iszerofunc=_iszero, *, chop=False, **flags): """Compute eigenvectors of the matrix. Parameters ========== error_when_incomplete : bool, optional Raise an error when not all eigenvalues are computed. This is caused by ``roots`` not returning a full list of eigenvalues. iszerofunc : function, optional Specifies a zero testing function to be used in ``rref``. Default value is ``_iszero``, which uses SymPy's naive and fast default assumption handler. It can also accept any user-specified zero testing function, if it is formatted as a function which accepts a single symbolic argument and returns ``True`` if it is tested as zero and ``False`` if it is tested as non-zero, and ``None`` if it is undecidable. simplify : bool or function, optional If ``True``, ``as_content_primitive()`` will be used to tidy up normalization artifacts. It will also be used by the ``nullspace`` routine. chop : bool or positive number, optional If the matrix contains any Floats, they will be changed to Rationals for computation purposes, but the answers will be returned after being evaluated with evalf. The ``chop`` flag is passed to ``evalf``. When ``chop=True`` a default precision will be used; a number will be interpreted as the desired level of precision. Returns ======= ret : [(eigenval, multiplicity, eigenspace), ...] A ragged list containing tuples of data obtained by ``eigenvals`` and ``nullspace``. ``eigenspace`` is a list containing the ``eigenvector`` for each eigenvalue. ``eigenvector`` is a vector in the form of a ``Matrix``. e.g. a vector of length 3 is returned as ``Matrix([a_1, a_2, a_3])``. Raises ====== NotImplementedError If failed to compute nullspace. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [0, 1, 1, 1, 0, 0, 1, 1, 1]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] See Also ======== eigenvals MatrixSubspaces.nullspace """ simplify = flags.get('simplify', True) primitive = flags.get('simplify', False) flags.pop('simplify', None) # remove this if it's there flags.pop('multiple', None) # remove this if it's there if not isinstance(simplify, FunctionType): simpfunc = _simplify if simplify else lambda x: x has_floats = M.has(Float) if has_floats: if all(x.is_number for x in M): return _eigenvects_mpmath(M) M = M.applyfunc(lambda x: nsimplify(x, rational=True)) ret = _eigenvects_DOM(M) if ret is None: ret = _eigenvects_sympy(M, iszerofunc, simplify=simplify, **flags) if primitive: # if the primitive flag is set, get rid of any common # integer denominators def denom_clean(l): from sympy import gcd return [(v / gcd(list(v))).applyfunc(simpfunc) for v in l] ret = [(val, mult, denom_clean(es)) for val, mult, es in ret] if has_floats: # if we had floats to start with, turn the eigenvectors to floats ret = [(val.evalf(chop=chop), mult, [v.evalf(chop=chop) for v in es]) for val, mult, es in ret] return ret def _is_diagonalizable_with_eigen(M, reals_only=False): """See _is_diagonalizable. This function returns the bool along with the eigenvectors to avoid calculating them again in functions like ``diagonalize``.""" if not M.is_square: return False, [] eigenvecs = M.eigenvects(simplify=True) for val, mult, basis in eigenvecs: if reals_only and not val.is_real: # if we have a complex eigenvalue return False, eigenvecs if mult != len(basis): # if the geometric multiplicity doesn't equal the algebraic return False, eigenvecs return True, eigenvecs def _is_diagonalizable(M, reals_only=False, **kwargs): """Returns ``True`` if a matrix is diagonalizable. Parameters ========== reals_only : bool, optional If ``True``, it tests whether the matrix can be diagonalized to contain only real numbers on the diagonal. If ``False``, it tests whether the matrix can be diagonalized at all, even with numbers that may not be real. Examples ======== Example of a diagonalizable matrix: >>> from sympy import Matrix >>> M = Matrix([[1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> M.is_diagonalizable() True Example of a non-diagonalizable matrix: >>> M = Matrix([[0, 1], [0, 0]]) >>> M.is_diagonalizable() False Example of a matrix that is diagonalized in terms of non-real entries: >>> M = Matrix([[0, 1], [-1, 0]]) >>> M.is_diagonalizable(reals_only=False) True >>> M.is_diagonalizable(reals_only=True) False See Also ======== is_diagonal diagonalize """ if 'clear_cache' in kwargs: SymPyDeprecationWarning( feature='clear_cache', deprecated_since_version=1.4, issue=15887 ).warn() if 'clear_subproducts' in kwargs: SymPyDeprecationWarning( feature='clear_subproducts', deprecated_since_version=1.4, issue=15887 ).warn() if not M.is_square: return False if all(e.is_real for e in M) and M.is_symmetric(): return True if all(e.is_complex for e in M) and M.is_hermitian: return True return _is_diagonalizable_with_eigen(M, reals_only=reals_only)[0] #G&VL, Matrix Computations, Algo 5.4.2 def _householder_vector(x): if not x.cols == 1: raise ValueError("Input must be a column matrix") v = x.copy() v_plus = x.copy() v_minus = x.copy() q = x[0, 0] / abs(x[0, 0]) norm_x = x.norm() v_plus[0, 0] = x[0, 0] + q * norm_x v_minus[0, 0] = x[0, 0] - q * norm_x if x[1:, 0].norm() == 0: bet = 0 v[0, 0] = 1 else: if v_plus.norm() <= v_minus.norm(): v = v_plus else: v = v_minus v = v / v[0] bet = 2 / (v.norm() ** 2) return v, bet def _bidiagonal_decmp_hholder(M): m = M.rows n = M.cols A = M.as_mutable() U, V = A.eye(m), A.eye(n) for i in range(min(m, n)): v, bet = _householder_vector(A[i:, i]) hh_mat = A.eye(m - i) - bet * v * v.H A[i:, i:] = hh_mat * A[i:, i:] temp = A.eye(m) temp[i:, i:] = hh_mat U = U * temp if i + 1 <= n - 2: v, bet = _householder_vector(A[i, i+1:].T) hh_mat = A.eye(n - i - 1) - bet * v * v.H A[i:, i+1:] = A[i:, i+1:] * hh_mat temp = A.eye(n) temp[i+1:, i+1:] = hh_mat V = temp * V return U, A, V def _eval_bidiag_hholder(M): m = M.rows n = M.cols A = M.as_mutable() for i in range(min(m, n)): v, bet = _householder_vector(A[i:, i]) hh_mat = A.eye(m-i) - bet * v * v.H A[i:, i:] = hh_mat * A[i:, i:] if i + 1 <= n - 2: v, bet = _householder_vector(A[i, i+1:].T) hh_mat = A.eye(n - i - 1) - bet * v * v.H A[i:, i+1:] = A[i:, i+1:] * hh_mat return A def _bidiagonal_decomposition(M, upper=True): """ Returns (U,B,V.H) $A = UBV^{H}$ where A is the input matrix, and B is its Bidiagonalized form Note: Bidiagonal Computation can hang for symbolic matrices. Parameters ========== upper : bool. Whether to do upper bidiagnalization or lower. True for upper and False for lower. References ========== 1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition 2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization """ if type(upper) is not bool: raise ValueError("upper must be a boolean") if not upper: X = _bidiagonal_decmp_hholder(M.H) return X[2].H, X[1].H, X[0].H return _bidiagonal_decmp_hholder(M) def _bidiagonalize(M, upper=True): """ Returns $B$, the Bidiagonalized form of the input matrix. Note: Bidiagonal Computation can hang for symbolic matrices. Parameters ========== upper : bool. Whether to do upper bidiagnalization or lower. True for upper and False for lower. References ========== 1. Algorith 5.4.2, Matrix computations by Golub and Van Loan, 4th edition 2. Complex Matrix Bidiagonalization : https://github.com/vslobody/Householder-Bidiagonalization """ if type(upper) is not bool: raise ValueError("upper must be a boolean") if not upper: return _eval_bidiag_hholder(M.H).H return _eval_bidiag_hholder(M) def _diagonalize(M, reals_only=False, sort=False, normalize=False): """ Return (P, D), where D is diagonal and D = P^-1 * M * P where M is current matrix. Parameters ========== reals_only : bool. Whether to throw an error if complex numbers are need to diagonalize. (Default: False) sort : bool. Sort the eigenvalues along the diagonal. (Default: False) normalize : bool. If True, normalize the columns of P. (Default: False) Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) >>> M Matrix([ [1, 2, 0], [0, 3, 0], [2, -4, 2]]) >>> (P, D) = M.diagonalize() >>> D Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) >>> P Matrix([ [-1, 0, -1], [ 0, 0, -1], [ 2, 1, 2]]) >>> P.inv() * M * P Matrix([ [1, 0, 0], [0, 2, 0], [0, 0, 3]]) See Also ======== is_diagonal is_diagonalizable """ if not M.is_square: raise NonSquareMatrixError() is_diagonalizable, eigenvecs = _is_diagonalizable_with_eigen(M, reals_only=reals_only) if not is_diagonalizable: raise MatrixError("Matrix is not diagonalizable") if sort: eigenvecs = sorted(eigenvecs, key=default_sort_key) p_cols, diag = [], [] for val, mult, basis in eigenvecs: diag += [val] * mult p_cols += basis if normalize: p_cols = [v / v.norm() for v in p_cols] return M.hstack(*p_cols), M.diag(*diag) def _fuzzy_positive_definite(M): positive_diagonals = M._has_positive_diagonals() if positive_diagonals is False: return False if positive_diagonals and M.is_strongly_diagonally_dominant: return True return None def _fuzzy_positive_semidefinite(M): nonnegative_diagonals = M._has_nonnegative_diagonals() if nonnegative_diagonals is False: return False if nonnegative_diagonals and M.is_weakly_diagonally_dominant: return True return None def _is_positive_definite(M): if not M.is_hermitian: if not M.is_square: return False M = M + M.H fuzzy = _fuzzy_positive_definite(M) if fuzzy is not None: return fuzzy return _is_positive_definite_GE(M) def _is_positive_semidefinite(M): if not M.is_hermitian: if not M.is_square: return False M = M + M.H fuzzy = _fuzzy_positive_semidefinite(M) if fuzzy is not None: return fuzzy return _is_positive_semidefinite_cholesky(M) def _is_negative_definite(M): return _is_positive_definite(-M) def _is_negative_semidefinite(M): return _is_positive_semidefinite(-M) def _is_indefinite(M): if M.is_hermitian: eigen = M.eigenvals() args1 = [x.is_positive for x in eigen.keys()] any_positive = fuzzy_or(args1) args2 = [x.is_negative for x in eigen.keys()] any_negative = fuzzy_or(args2) return fuzzy_and([any_positive, any_negative]) elif M.is_square: return (M + M.H).is_indefinite return False def _is_positive_definite_GE(M): """A division-free gaussian elimination method for testing positive-definiteness.""" M = M.as_mutable() size = M.rows for i in range(size): is_positive = M[i, i].is_positive if is_positive is not True: return is_positive for j in range(i+1, size): M[j, i+1:] = M[i, i] * M[j, i+1:] - M[j, i] * M[i, i+1:] return True def _is_positive_semidefinite_cholesky(M): """Uses Cholesky factorization with complete pivoting References ========== .. [1] http://eprints.ma.man.ac.uk/1199/1/covered/MIMS_ep2008_116.pdf .. [2] https://www.value-at-risk.net/cholesky-factorization/ """ M = M.as_mutable() for k in range(M.rows): diags = [M[i, i] for i in range(k, M.rows)] pivot, pivot_val, nonzero, _ = _find_reasonable_pivot(diags) if nonzero: return None if pivot is None: for i in range(k+1, M.rows): for j in range(k, M.cols): iszero = M[i, j].is_zero if iszero is None: return None elif iszero is False: return False return True if M[k, k].is_negative or pivot_val.is_negative: return False if pivot > 0: M.col_swap(k, k+pivot) M.row_swap(k, k+pivot) M[k, k] = sqrt(M[k, k]) M[k, k+1:] /= M[k, k] M[k+1:, k+1:] -= M[k, k+1:].H * M[k, k+1:] return M[-1, -1].is_nonnegative _doc_positive_definite = \ r"""Finds out the definiteness of a matrix. Explanation =========== A square real matrix $A$ is: - A positive definite matrix if $x^T A x > 0$ for all non-zero real vectors $x$. - A positive semidefinite matrix if $x^T A x \geq 0$ for all non-zero real vectors $x$. - A negative definite matrix if $x^T A x < 0$ for all non-zero real vectors $x$. - A negative semidefinite matrix if $x^T A x \leq 0$ for all non-zero real vectors $x$. - An indefinite matrix if there exists non-zero real vectors $x, y$ with $x^T A x > 0 > y^T A y$. A square complex matrix $A$ is: - A positive definite matrix if $\text{re}(x^H A x) > 0$ for all non-zero complex vectors $x$. - A positive semidefinite matrix if $\text{re}(x^H A x) \geq 0$ for all non-zero complex vectors $x$. - A negative definite matrix if $\text{re}(x^H A x) < 0$ for all non-zero complex vectors $x$. - A negative semidefinite matrix if $\text{re}(x^H A x) \leq 0$ for all non-zero complex vectors $x$. - An indefinite matrix if there exists non-zero complex vectors $x, y$ with $\text{re}(x^H A x) > 0 > \text{re}(y^H A y)$. A matrix need not be symmetric or hermitian to be positive definite. - A real non-symmetric matrix is positive definite if and only if $\frac{A + A^T}{2}$ is positive definite. - A complex non-hermitian matrix is positive definite if and only if $\frac{A + A^H}{2}$ is positive definite. And this extension can apply for all the definitions above. However, for complex cases, you can restrict the definition of $\text{re}(x^H A x) > 0$ to $x^H A x > 0$ and require the matrix to be hermitian. But we do not present this restriction for computation because you can check ``M.is_hermitian`` independently with this and use the same procedure. Examples ======== An example of symmetric positive definite matrix: .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import Matrix, symbols >>> from sympy.plotting import plot3d >>> a, b = symbols('a b') >>> x = Matrix([a, b]) >>> A = Matrix([[1, 0], [0, 1]]) >>> A.is_positive_definite True >>> A.is_positive_semidefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of symmetric positive semidefinite matrix: .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[1, -1], [-1, 1]]) >>> A.is_positive_definite False >>> A.is_positive_semidefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of symmetric negative definite matrix: .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[-1, 0], [0, -1]]) >>> A.is_negative_definite True >>> A.is_negative_semidefinite True >>> A.is_indefinite False >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of symmetric indefinite matrix: .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[1, 2], [2, -1]]) >>> A.is_indefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) An example of non-symmetric positive definite matrix. .. plot:: :context: close-figs :format: doctest :include-source: True >>> A = Matrix([[1, 2], [-2, 1]]) >>> A.is_positive_definite True >>> A.is_positive_semidefinite True >>> p = plot3d((x.T*A*x)[0, 0], (a, -1, 1), (b, -1, 1)) Notes ===== Although some people trivialize the definition of positive definite matrices only for symmetric or hermitian matrices, this restriction is not correct because it does not classify all instances of positive definite matrices from the definition $x^T A x > 0$ or $\text{re}(x^H A x) > 0$. For instance, ``Matrix([[1, 2], [-2, 1]])`` presented in the example above is an example of real positive definite matrix that is not symmetric. However, since the following formula holds true; .. math:: \text{re}(x^H A x) > 0 \iff \text{re}(x^H \frac{A + A^H}{2} x) > 0 We can classify all positive definite matrices that may or may not be symmetric or hermitian by transforming the matrix to $\frac{A + A^T}{2}$ or $\frac{A + A^H}{2}$ (which is guaranteed to be always real symmetric or complex hermitian) and we can defer most of the studies to symmetric or hermitian positive definite matrices. But it is a different problem for the existance of Cholesky decomposition. Because even though a non symmetric or a non hermitian matrix can be positive definite, Cholesky or LDL decomposition does not exist because the decompositions require the matrix to be symmetric or hermitian. References ========== .. [1] https://en.wikipedia.org/wiki/Definiteness_of_a_matrix#Eigenvalues .. [2] http://mathworld.wolfram.com/PositiveDefiniteMatrix.html .. [3] Johnson, C. R. "Positive Definite Matrices." Amer. Math. Monthly 77, 259-264 1970. """ _is_positive_definite.__doc__ = _doc_positive_definite _is_positive_semidefinite.__doc__ = _doc_positive_definite _is_negative_definite.__doc__ = _doc_positive_definite _is_negative_semidefinite.__doc__ = _doc_positive_definite _is_indefinite.__doc__ = _doc_positive_definite def _jordan_form(M, calc_transform=True, *, chop=False): """Return $(P, J)$ where $J$ is a Jordan block matrix and $P$ is a matrix such that $M = P J P^{-1}$ Parameters ========== calc_transform : bool If ``False``, then only $J$ is returned. chop : bool All matrices are converted to exact types when computing eigenvalues and eigenvectors. As a result, there may be approximation errors. If ``chop==True``, these errors will be truncated. Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[ 6, 5, -2, -3], [-3, -1, 3, 3], [ 2, 1, -2, -3], [-1, 1, 5, 5]]) >>> P, J = M.jordan_form() >>> J Matrix([ [2, 1, 0, 0], [0, 2, 0, 0], [0, 0, 2, 1], [0, 0, 0, 2]]) See Also ======== jordan_block """ if not M.is_square: raise NonSquareMatrixError("Only square matrices have Jordan forms") mat = M has_floats = M.has(Float) if has_floats: try: max_prec = max(term._prec for term in M._mat if isinstance(term, Float)) except ValueError: # if no term in the matrix is explicitly a Float calling max() # will throw a error so setting max_prec to default value of 53 max_prec = 53 # setting minimum max_dps to 15 to prevent loss of precision in # matrix containing non evaluated expressions max_dps = max(prec_to_dps(max_prec), 15) def restore_floats(*args): """If ``has_floats`` is `True`, cast all ``args`` as matrices of floats.""" if has_floats: args = [m.evalf(n=max_dps, chop=chop) for m in args] if len(args) == 1: return args[0] return args # cache calculations for some speedup mat_cache = {} def eig_mat(val, pow): """Cache computations of ``(M - val*I)**pow`` for quick retrieval""" if (val, pow) in mat_cache: return mat_cache[(val, pow)] if (val, pow - 1) in mat_cache: mat_cache[(val, pow)] = mat_cache[(val, pow - 1)].multiply( mat_cache[(val, 1)], dotprodsimp=None) else: mat_cache[(val, pow)] = (mat - val*M.eye(M.rows)).pow(pow) return mat_cache[(val, pow)] # helper functions def nullity_chain(val, algebraic_multiplicity): """Calculate the sequence [0, nullity(E), nullity(E**2), ...] until it is constant where ``E = M - val*I``""" # mat.rank() is faster than computing the null space, # so use the rank-nullity theorem cols = M.cols ret = [0] nullity = cols - eig_mat(val, 1).rank() i = 2 while nullity != ret[-1]: ret.append(nullity) if nullity == algebraic_multiplicity: break nullity = cols - eig_mat(val, i).rank() i += 1 # Due to issues like #7146 and #15872, SymPy sometimes # gives the wrong rank. In this case, raise an error # instead of returning an incorrect matrix if nullity < ret[-1] or nullity > algebraic_multiplicity: raise MatrixError( "SymPy had encountered an inconsistent " "result while computing Jordan block: " "{}".format(M)) return ret def blocks_from_nullity_chain(d): """Return a list of the size of each Jordan block. If d_n is the nullity of E**n, then the number of Jordan blocks of size n is 2*d_n - d_(n-1) - d_(n+1)""" # d[0] is always the number of columns, so skip past it mid = [2*d[n] - d[n - 1] - d[n + 1] for n in range(1, len(d) - 1)] # d is assumed to plateau with "d[ len(d) ] == d[-1]", so # 2*d_n - d_(n-1) - d_(n+1) == d_n - d_(n-1) end = [d[-1] - d[-2]] if len(d) > 1 else [d[0]] return mid + end def pick_vec(small_basis, big_basis): """Picks a vector from big_basis that isn't in the subspace spanned by small_basis""" if len(small_basis) == 0: return big_basis[0] for v in big_basis: _, pivots = M.hstack(*(small_basis + [v])).echelon_form( with_pivots=True) if pivots[-1] == len(small_basis): return v # roots doesn't like Floats, so replace them with Rationals if has_floats: mat = mat.applyfunc(lambda x: nsimplify(x, rational=True)) # first calculate the jordan block structure eigs = mat.eigenvals() # Make sure that we have all roots in radical form for x in eigs: if x.has(CRootOf): raise MatrixError( "Jordan normal form is not implemented if the matrix have " "eigenvalues in CRootOf form") # most matrices have distinct eigenvalues # and so are diagonalizable. In this case, don't # do extra work! if len(eigs.keys()) == mat.cols: blocks = list(sorted(eigs.keys(), key=default_sort_key)) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) jordan_basis = [eig_mat(eig, 1).nullspace()[0] for eig in blocks] basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) block_structure = [] for eig in sorted(eigs.keys(), key=default_sort_key): algebraic_multiplicity = eigs[eig] chain = nullity_chain(eig, algebraic_multiplicity) block_sizes = blocks_from_nullity_chain(chain) # if block_sizes = = [a, b, c, ...], then the number of # Jordan blocks of size 1 is a, of size 2 is b, etc. # create an array that has (eig, block_size) with one # entry for each block size_nums = [(i+1, num) for i, num in enumerate(block_sizes)] # we expect larger Jordan blocks to come earlier size_nums.reverse() block_structure.extend( (eig, size) for size, num in size_nums for _ in range(num)) jordan_form_size = sum(size for eig, size in block_structure) if jordan_form_size != M.rows: raise MatrixError( "SymPy had encountered an inconsistent result while " "computing Jordan block. : {}".format(M)) blocks = (mat.jordan_block(size=size, eigenvalue=eig) for eig, size in block_structure) jordan_mat = mat.diag(*blocks) if not calc_transform: return restore_floats(jordan_mat) # For each generalized eigenspace, calculate a basis. # We start by looking for a vector in null( (A - eig*I)**n ) # which isn't in null( (A - eig*I)**(n-1) ) where n is # the size of the Jordan block # # Ideally we'd just loop through block_structure and # compute each generalized eigenspace. However, this # causes a lot of unneeded computation. Instead, we # go through the eigenvalues separately, since we know # their generalized eigenspaces must have bases that # are linearly independent. jordan_basis = [] for eig in sorted(eigs.keys(), key=default_sort_key): eig_basis = [] for block_eig, size in block_structure: if block_eig != eig: continue null_big = (eig_mat(eig, size)).nullspace() null_small = (eig_mat(eig, size - 1)).nullspace() # we want to pick something that is in the big basis # and not the small, but also something that is independent # of any other generalized eigenvectors from a different # generalized eigenspace sharing the same eigenvalue. vec = pick_vec(null_small + eig_basis, null_big) new_vecs = [eig_mat(eig, i).multiply(vec, dotprodsimp=None) for i in range(size)] eig_basis.extend(new_vecs) jordan_basis.extend(reversed(new_vecs)) basis_mat = mat.hstack(*jordan_basis) return restore_floats(basis_mat, jordan_mat) def _left_eigenvects(M, **flags): """Returns left eigenvectors and eigenvalues. This function returns the list of triples (eigenval, multiplicity, basis) for the left eigenvectors. Options are the same as for eigenvects(), i.e. the ``**flags`` arguments gets passed directly to eigenvects(). Examples ======== >>> from sympy.matrices import Matrix >>> M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) >>> M.eigenvects() [(-1, 1, [Matrix([ [-1], [ 1], [ 0]])]), (0, 1, [Matrix([ [ 0], [-1], [ 1]])]), (2, 1, [Matrix([ [2/3], [1/3], [ 1]])])] >>> M.left_eigenvects() [(-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])])] """ eigs = M.transpose().eigenvects(**flags) return [(val, mult, [l.transpose() for l in basis]) for val, mult, basis in eigs] def _singular_values(M): """Compute the singular values of a Matrix Examples ======== >>> from sympy import Matrix, Symbol >>> x = Symbol('x', real=True) >>> M = Matrix([[0, 1, 0], [0, x, 0], [-1, 0, 0]]) >>> M.singular_values() [sqrt(x**2 + 1), 1, 0] See Also ======== condition_number """ if M.rows >= M.cols: valmultpairs = M.H.multiply(M).eigenvals() else: valmultpairs = M.multiply(M.H).eigenvals() # Expands result from eigenvals into a simple list vals = [] for k, v in valmultpairs.items(): vals += [sqrt(k)] * v # dangerous! same k in several spots! # Pad with zeros if singular values are computed in reverse way, # to give consistent format. if len(vals) < M.cols: vals += [M.zero] * (M.cols - len(vals)) # sort them in descending order vals.sort(reverse=True, key=default_sort_key) return vals
416fbfccc2d2c67e03e2855a24f5b8584dd47cf76d61249e0b46c15829e85c4d
from sympy import (symbols, pi, oo, S, exp, sqrt, besselk, Indexed, Sum, simplify, Rational, factorial, gamma, Piecewise, Eq, Product, Interval, IndexedBase, RisingFactorial, polar_lift, ProductSet, Range) from sympy.core.numbers import comp from sympy.integrals.integrals import integrate from sympy.matrices import Matrix, MatrixSymbol from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution, JointDistributionHandmade, MultivariateT, NormalGamma, GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta, GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens, Multinomial, NegativeMultinomial, MultivariateNormal, MultivariateLaplace) from sympy.testing.pytest import raises, XFAIL, ignore_warnings, skip from sympy.external import import_module x, y, z, a, b = symbols('x y z a b') def test_Normal(): m = Normal('A', [1, 2], [[1, 0], [0, 1]]) A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]]) assert m == A assert density(m)(1, 2) == 1/(2*pi) assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals) raises (ValueError, lambda:m[2]) raises (ValueError,\ lambda: Normal('M',[1, 2], [[0, 0], [0, 1]])) n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]])) assert density(m)(x, y) == density(p)(x, y) assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi) raises(ValueError, lambda: marginal_distribution(m)) assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1 N = Normal('N', [1, 2], [[x, 0], [0, y]]) assert density(N)(0, 0) == exp(-((4*x + y)/(2*x*y)))/(2*pi*sqrt(x*y)) raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]])) # symbolic n = symbols('n', natural=True) mu = MatrixSymbol('mu', n, 1) sigma = MatrixSymbol('sigma', n, n) X = Normal('X', mu, sigma) assert density(X) == MultivariateNormalDistribution(mu, sigma) raises (NotImplementedError, lambda: median(m)) # Below tests should work after issue #17267 is resolved # assert E(X) == mu # assert variance(X) == sigma def test_MultivariateTDist(): t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert(density(t1))(1, 1) == 1/(8*pi) assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert integrate(density(t1)(x, y), (x, -oo, oo), \ (y, -oo, oo)).evalf() == 1 raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1)) t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1) assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y)) def test_multivariate_laplace(): raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]])) L = Laplace('L', [1, 0], [[1, 0], [0, 1]]) L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]]) assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]]) assert density(L1)(0, 1) == \ exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y)) assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert L.pspace.distribution == L2.pspace.distribution def test_NormalGamma(): ng = NormalGamma('G', 1, 2, 3, 4) assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi) assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo)) raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1)) assert marginal_distribution(ng, 0)(1) == \ 3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4))) assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128 assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128 def test_GeneralizedMultivariateLogGammaDistribution(): h = S.Half omega = Matrix([[1, h, h, h], [h, 1, h, h], [h, h, 1, h], [h, h, h, 1]]) v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True) delta = symbols('d', positive=True) G = GMVLGO('G', omega, v, l, mu) Gd = GMVLG('Gd', delta, v, l, mu) dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 " "+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/" "(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))") assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*" "exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - " "exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64") assert str(density(G)(y_1, y_2, y_3, y_4)) == den marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])" "/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp(" "-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*(-4 + 2**(2/3)*5**(1/3" "))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(24**n*gamma(n + 1)" "*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]" ", -oo, oo))/5308416") assert str(marginal_distribution(G, G[0])(y_1)) == marg omega_f1 = Matrix([[1, h, h]]) omega_f2 = Matrix([[1, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) omega_f3 = Matrix([[6, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) v_f = symbols("v_f", positive=False, real=True) l_f = [1, 2, v_f, 4] m_f = [v_f, 2, 3, 4] omega_f4 = Matrix([[1, h, h, h, h], [h, 1, h, h, h], [h, h, 1, h, h], [h, h, h, 1, h], [h, h, h, h, 1]]) l_f1 = [1, 2, 3, 4, 5] omega_f5 = Matrix([[1]]) mu_f5 = l_f5 = [1] raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f)) raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5)) raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu)) def test_MultivariateBeta(): a1, a2 = symbols('a1, a2', positive=True) a1_f, a2_f = symbols('a1, a2', positive=False, real=True) mb = MultivariateBeta('B', [a1, a2]) mb_c = MultivariateBeta('C', a1, a2) assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\ (gamma(a1)*gamma(a2)) assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\ (a2*gamma(a1)*gamma(a2)) raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2])) raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f])) raises(ValueError, lambda: MultivariateBeta('b3', [0, 0])) raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f])) assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1)) def test_MultivariateEwens(): n, theta, i = symbols('n theta i', positive=True) # tests for integer dimensions theta_f = symbols('t_f', negative=True) a = symbols('a_1:4', positive = True, integer = True) ed = MultivariateEwens('E', 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])* theta**a[0]*theta**a[1]*theta**a[2]/ (theta*(theta + 1)*(theta + 2)* factorial(a[0])*factorial(a[1])* factorial(a[2])), Eq(a[0] + 2*a[1] + 3*a[2], 3)), (0, True)) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])* theta**a[1]/((theta + 1)* (theta + 2)*factorial(a[1])), Eq(2*a[1] + 1, 3)), (0, True)) raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1), Range(0, 2, 1), Range(0, 2, 1)) # tests for symbolic dimensions eds = MultivariateEwens('E', n, theta) a = IndexedBase('a') j, k = symbols('j, k') den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/ factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n), Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True)) assert density(eds)(a).dummy_eq(den) def test_Multinomial(): n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f, n_f = symbols('p1_f, n_f', negative=True) M = Multinomial('M', n, [p1, p2, p3, p4]) C = Multinomial('C', 3, p1, p2, p3) f = factorial assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4* f(n)/(f(x1)*f(x2)*f(x3)*f(x4)), Eq(n, x1 + x2 + x3 + x4)), (0, True)) assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\ 3*p1*p2**2 +\ 6*p1*p2*p3 +\ 3*p1*p3**2 raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4])) raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1)) def test_NegativeMultinomial(): k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f = symbols('p1_f', negative=True) N = NegativeMultinomial('N', 4, [p1, p2, p3, p4]) C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3) g = gamma f = factorial assert simplify(density(N)(x1, x2, x3, x4) - p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 + x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01) raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4)) assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1)) def test_JointPSpace_marginal_distribution(): T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert marginal_distribution(T, T[1])(x) == sqrt(2)*(x**2 + 2)/( 8*polar_lift(x**2/2 + 1)**Rational(5, 2)) assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1 t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3) assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01) def test_JointRV(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) assert density(X)(1, 2) == exp(-2)/(2*pi) assert isinstance(X.pspace.distribution, JointDistributionHandmade) assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi)) def test_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert simplify(E(m[1])) == y @XFAIL def test_joint_vector_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert E(m) == (x, y) def test_sample_numpy(): distribs_numpy = [ MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]), MultivariateBeta("B", [0.4, 5, 15, 50, 203]), Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15]) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert tuple(sam) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: next(sample(N_c, library='numpy'))) def test_sample_scipy(): distribs_scipy = [ MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4]) ] size = 3 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): for X in distribs_scipy: samps = next(sample(X, size=size)) samps2 = next(sample(X, size=(2, 2))) for sam in samps: assert tuple(sam) in X.pspace.distribution.set for i in range(2): for j in range(2): assert tuple(samps2[i][j]) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: next(sample(N_c))) def test_sample_pymc3(): distribs_pymc3 = [ MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4]) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert tuple(sam.flatten()) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: next(sample(N_c, library='pymc3'))) def test_sample_seed(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = list(sample(X, numsamples=10, library=lib, seed=0)) s1 = list(sample(X, numsamples=10, library=lib, seed=0)) s2 = list(sample(X, numsamples=10, library=lib, seed=1)) assert s0 == s1 assert s1 != s2 except NotImplementedError: continue
fd7ce47533e3dcc9609ebe4134046fb4ecbe03fed8cbe6771274e2b0815467a2
from sympy import Mul, S, Pow, Symbol, summation, Dict, factorial as fac from sympy.core.evalf import bitcount from sympy.core.numbers import Integer, Rational from sympy.ntheory import (totient, factorint, primefactors, divisors, nextprime, primerange, pollard_rho, perfect_power, multiplicity, multiplicity_in_factorial, trailing, divisor_count, primorial, pollard_pm1, divisor_sigma, factorrat, reduced_totient) from sympy.ntheory.factor_ import (smoothness, smoothness_p, proper_divisors, antidivisors, antidivisor_count, core, udivisors, udivisor_sigma, udivisor_count, proper_divisor_count, primenu, primeomega, small_trailing, mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, dra, drm) from sympy.testing.pytest import raises from sympy.utilities.iterables import capture def fac_multiplicity(n, p): """Return the power of the prime number p in the factorization of n!""" if p > n: return 0 if p > n//2: return 1 q, m = n, 0 while q >= p: q //= p m += q return m def multiproduct(seq=(), start=1): """ Return the product of a sequence of factors with multiplicities, times the value of the parameter ``start``. The input may be a sequence of (factor, exponent) pairs or a dict of such pairs. >>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4 279936 """ if not seq: return start if isinstance(seq, dict): seq = iter(seq.items()) units = start multi = [] for base, exp in seq: if not exp: continue elif exp == 1: units *= base else: if exp % 2: units *= base multi.append((base, exp//2)) return units * multiproduct(multi)**2 def test_trailing_bitcount(): assert trailing(0) == 0 assert trailing(1) == 0 assert trailing(-1) == 0 assert trailing(2) == 1 assert trailing(7) == 0 assert trailing(-7) == 0 for i in range(100): assert trailing(1 << i) == i assert trailing((1 << i) * 31337) == i assert trailing(1 << 1000001) == 1000001 assert trailing((1 << 273956)*7**37) == 273956 # issue 12709 big = small_trailing[-1]*2 assert trailing(-big) == trailing(big) assert bitcount(-big) == bitcount(big) def test_multiplicity(): for b in range(2, 20): for i in range(100): assert multiplicity(b, b**i) == i assert multiplicity(b, (b**i) * 23) == i assert multiplicity(b, (b**i) * 1000249) == i # Should be fast assert multiplicity(10, 10**10023) == 10023 # Should exit quickly assert multiplicity(10**10, 10**10) == 1 # Should raise errors for bad input raises(ValueError, lambda: multiplicity(1, 1)) raises(ValueError, lambda: multiplicity(1, 2)) raises(ValueError, lambda: multiplicity(1.3, 2)) raises(ValueError, lambda: multiplicity(2, 0)) raises(ValueError, lambda: multiplicity(1.3, 0)) # handles Rationals assert multiplicity(10, Rational(30, 7)) == 1 assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1 assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2 assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1 assert multiplicity(3, Rational(1, 9)) == -2 def test_multiplicity_in_factorial(): n = fac(1000) for i in (2, 4, 6, 12, 30, 36, 48, 60, 72, 96): assert multiplicity(i, n) == multiplicity_in_factorial(i, 1000) def test_perfect_power(): raises(ValueError, lambda: perfect_power(0)) raises(ValueError, lambda: perfect_power(Rational(25, 4))) assert perfect_power(1) is False assert perfect_power(2) is False assert perfect_power(3) is False assert perfect_power(4) == (2, 2) assert perfect_power(14) is False assert perfect_power(25) == (5, 2) assert perfect_power(22) is False assert perfect_power(22, [2]) is False assert perfect_power(137**(3*5*13)) == (137, 3*5*13) assert perfect_power(137**(3*5*13) + 1) is False assert perfect_power(137**(3*5*13) - 1) is False assert perfect_power(103005006004**7) == (103005006004, 7) assert perfect_power(103005006004**7 + 1) is False assert perfect_power(103005006004**7 - 1) is False assert perfect_power(103005006004**12) == (103005006004, 12) assert perfect_power(103005006004**12 + 1) is False assert perfect_power(103005006004**12 - 1) is False assert perfect_power(2**10007) == (2, 10007) assert perfect_power(2**10007 + 1) is False assert perfect_power(2**10007 - 1) is False assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60) assert perfect_power((9**99 + 1)**60 + 1) is False assert perfect_power((9**99 + 1)**60 - 1) is False assert perfect_power((10**40000)**2, big=False) == (10**40000, 2) assert perfect_power(10**100000) == (10, 100000) assert perfect_power(10**100001) == (10, 100001) assert perfect_power(13**4, [3, 5]) is False assert perfect_power(3**4, [3, 10], factor=0) is False assert perfect_power(3**3*5**3) == (15, 3) assert perfect_power(2**3*5**5) is False assert perfect_power(2*13**4) is False assert perfect_power(2**5*3**3) is False t = 2**24 for d in divisors(24): m = perfect_power(t*3**d) assert m and m[1] == d or d == 1 m = perfect_power(t*3**d, big=False) assert m and m[1] == 2 or d == 1 or d == 3, (d, m) def test_factorint(): assert primefactors(123456) == [2, 3, 643] assert factorint(0) == {0: 1} assert factorint(1) == {} assert factorint(-1) == {-1: 1} assert factorint(-2) == {-1: 1, 2: 1} assert factorint(-16) == {-1: 1, 2: 4} assert factorint(2) == {2: 1} assert factorint(126) == {2: 1, 3: 2, 7: 1} assert factorint(123456) == {2: 6, 3: 1, 643: 1} assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1} assert factorint(64015937) == {7993: 1, 8009: 1} assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1} #issue 19683 assert factorint(10**38 - 1) == {3: 2, 11: 1, 909090909090909091: 1, 1111111111111111111: 1} #issue 17676 assert factorint(28300421052393658575) == {3: 1, 5: 2, 11: 2, 43: 1, 2063: 2, 4127: 1, 4129: 1} assert factorint(2063**2 * 4127**1 * 4129**1) == {2063: 2, 4127: 1, 4129: 1} assert factorint(2347**2 * 7039**1 * 7043**1) == {2347: 2, 7039: 1, 7043: 1} assert factorint(0, multiple=True) == [0] assert factorint(1, multiple=True) == [] assert factorint(-1, multiple=True) == [-1] assert factorint(-2, multiple=True) == [-1, 2] assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2] assert factorint(2, multiple=True) == [2] assert factorint(24, multiple=True) == [2, 2, 2, 3] assert factorint(126, multiple=True) == [2, 3, 3, 7] assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643] assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337] assert factorint(64015937, multiple=True) == [7993, 8009] assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721] assert factorint(fac(1, evaluate=False)) == {} assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1} assert factorint(fac(15, evaluate=False)) == \ {2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1} assert factorint(fac(20, evaluate=False)) == \ {2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1} assert factorint(fac(23, evaluate=False)) == \ {2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1} assert multiproduct(factorint(fac(200))) == fac(200) assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200) for b, e in factorint(fac(150)).items(): assert e == fac_multiplicity(150, b) for b, e in factorint(fac(150, evaluate=False)).items(): assert e == fac_multiplicity(150, b) assert factorint(103005006059**7) == {103005006059: 7} assert factorint(31337**191) == {31337: 191} assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \ {2: 1000, 3: 500, 257: 127, 383: 60} assert len(factorint(fac(10000))) == 1229 assert len(factorint(fac(10000, evaluate=False))) == 1229 assert factorint(12932983746293756928584532764589230) == \ {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1} assert factorint(727719592270351) == {727719592270351: 1} assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1) for n in range(60000): assert multiproduct(factorint(n)) == n assert pollard_rho(2**64 + 1, seed=1) == 274177 assert pollard_rho(19, seed=1) is None assert factorint(3, limit=2) == {3: 1} assert factorint(12345) == {3: 1, 5: 1, 823: 1} assert factorint( 12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit assert factorint(1, limit=1) == {} assert factorint(0, 3) == {0: 1} assert factorint(12, limit=1) == {12: 1} assert factorint(30, limit=2) == {2: 1, 15: 1} assert factorint(16, limit=2) == {2: 4} assert factorint(124, limit=3) == {2: 2, 31: 1} assert factorint(4*31**2, limit=3) == {2: 2, 31: 2} p1 = nextprime(2**32) p2 = nextprime(2**16) p3 = nextprime(p2) assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1} assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1} assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1} assert factorint(primorial(17) + 1, use_pm1=0) == \ {int(19026377261): 1, 3467: 1, 277: 1, 105229: 1} # when prime b is closer than approx sqrt(8*p) to prime p then they are # "close" and have a trivial factorization a = nextprime(2**2**8) # 78 digits b = nextprime(a + 2**2**4) assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1)) raises(ValueError, lambda: pollard_rho(4)) raises(ValueError, lambda: pollard_pm1(3)) raises(ValueError, lambda: pollard_pm1(10, B=2)) # verbose coverage n = nextprime(2**16)*nextprime(2**17)*nextprime(1901) assert 'with primes' in capture(lambda: factorint(n, verbose=1)) capture(lambda: factorint(nextprime(2**16)*1012, verbose=1)) n = nextprime(2**17) capture(lambda: factorint(n**3, verbose=1)) # perfect power termination capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg # exceed 1st n = nextprime(2**17) n *= nextprime(n) assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1)) n *= nextprime(n) assert len(factorint(n)) == 3 assert len(factorint(n, limit=p1)) == 3 n *= nextprime(2*n) # exceed 2nd assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1)) assert capture( lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2 # non-prime pm1 result n = nextprime(8069) n *= nextprime(2*n)*nextprime(2*n, 2) capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result # factor fermat composite p1 = nextprime(2**17) p2 = nextprime(2*p1) assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6} # Test for non integer input raises(ValueError, lambda: factorint(4.5)) # test dict/Dict input sans = '2**10*3**3' n = {4: 2, 12: 3} assert str(factorint(n)) == sans assert str(factorint(Dict(n))) == sans def test_divisors_and_divisor_count(): assert divisors(-1) == [1] assert divisors(0) == [] assert divisors(1) == [1] assert divisors(2) == [1, 2] assert divisors(3) == [1, 3] assert divisors(17) == [1, 17] assert divisors(10) == [1, 2, 5, 10] assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100] assert divisors(101) == [1, 101] assert divisor_count(0) == 0 assert divisor_count(-1) == 1 assert divisor_count(1) == 1 assert divisor_count(6) == 4 assert divisor_count(12) == 6 assert divisor_count(180, 3) == divisor_count(180//3) assert divisor_count(2*3*5, 7) == 0 def test_proper_divisors_and_proper_divisor_count(): assert proper_divisors(-1) == [] assert proper_divisors(0) == [] assert proper_divisors(1) == [] assert proper_divisors(2) == [1] assert proper_divisors(3) == [1] assert proper_divisors(17) == [1] assert proper_divisors(10) == [1, 2, 5] assert proper_divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50] assert proper_divisors(1000000007) == [1] assert proper_divisor_count(0) == 0 assert proper_divisor_count(-1) == 0 assert proper_divisor_count(1) == 0 assert proper_divisor_count(36) == 8 assert proper_divisor_count(2*3*5) == 7 def test_udivisors_and_udivisor_count(): assert udivisors(-1) == [1] assert udivisors(0) == [] assert udivisors(1) == [1] assert udivisors(2) == [1, 2] assert udivisors(3) == [1, 3] assert udivisors(17) == [1, 17] assert udivisors(10) == [1, 2, 5, 10] assert udivisors(100) == [1, 4, 25, 100] assert udivisors(101) == [1, 101] assert udivisors(1000) == [1, 8, 125, 1000] assert udivisor_count(0) == 0 assert udivisor_count(-1) == 1 assert udivisor_count(1) == 1 assert udivisor_count(6) == 4 assert udivisor_count(12) == 4 assert udivisor_count(180) == 8 assert udivisor_count(2*3*5*7) == 16 def test_issue_6981(): S = set(divisors(4)).union(set(divisors(Integer(2)))) assert S == {1,2,4} def test_totient(): assert [totient(k) for k in range(1, 12)] == \ [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10] assert totient(5005) == 2880 assert totient(5006) == 2502 assert totient(5009) == 5008 assert totient(2**100) == 2**99 raises(ValueError, lambda: totient(30.1)) raises(ValueError, lambda: totient(20.001)) m = Symbol("m", integer=True) assert totient(m) assert totient(m).subs(m, 3**10) == 3**10 - 3**9 assert summation(totient(m), (m, 1, 11)) == 42 n = Symbol("n", integer=True, positive=True) assert totient(n).is_integer x=Symbol("x", integer=False) raises(ValueError, lambda: totient(x)) y=Symbol("y", positive=False) raises(ValueError, lambda: totient(y)) z=Symbol("z", positive=True, integer=True) raises(ValueError, lambda: totient(2**(-z))) def test_reduced_totient(): assert [reduced_totient(k) for k in range(1, 16)] == \ [1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4] assert reduced_totient(5005) == 60 assert reduced_totient(5006) == 2502 assert reduced_totient(5009) == 5008 assert reduced_totient(2**100) == 2**98 m = Symbol("m", integer=True) assert reduced_totient(m) assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9 assert summation(reduced_totient(m), (m, 1, 16)) == 68 n = Symbol("n", integer=True, positive=True) assert reduced_totient(n).is_integer def test_divisor_sigma(): assert [divisor_sigma(k) for k in range(1, 12)] == \ [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12] assert [divisor_sigma(k, 2) for k in range(1, 12)] == \ [1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122] assert divisor_sigma(23450) == 50592 assert divisor_sigma(23450, 0) == 24 assert divisor_sigma(23450, 1) == 50592 assert divisor_sigma(23450, 2) == 730747500 assert divisor_sigma(23450, 3) == 14666785333344 a = Symbol("a", prime=True) b = Symbol("b", prime=True) j = Symbol("j", integer=True, positive=True) k = Symbol("k", integer=True, positive=True) assert divisor_sigma(a**j*b**k) == (a**(j + 1) - 1)*(b**(k + 1) - 1)/((a - 1)*(b - 1)) assert divisor_sigma(a**j*b**k, 2) == (a**(2*j + 2) - 1)*(b**(2*k + 2) - 1)/((a**2 - 1)*(b**2 - 1)) assert divisor_sigma(a**j*b**k, 0) == (j + 1)*(k + 1) m = Symbol("m", integer=True) k = Symbol("k", integer=True) assert divisor_sigma(m) assert divisor_sigma(m, k) assert divisor_sigma(m).subs(m, 3**10) == 88573 assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597 assert summation(divisor_sigma(m), (m, 1, 11)) == 99 def test_udivisor_sigma(): assert [udivisor_sigma(k) for k in range(1, 12)] == \ [1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12] assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \ [1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332] assert udivisor_sigma(23450) == 42432 assert udivisor_sigma(23450, 0) == 16 assert udivisor_sigma(23450, 1) == 42432 assert udivisor_sigma(23450, 2) == 702685000 assert udivisor_sigma(23450, 4) == 321426961814978248 m = Symbol("m", integer=True) k = Symbol("k", integer=True) assert udivisor_sigma(m) assert udivisor_sigma(m, k) assert udivisor_sigma(m).subs(m, 4**9) == 262145 assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737 assert summation(udivisor_sigma(m), (m, 2, 15)) == 169 def test_issue_4356(): assert factorint(1030903) == {53: 2, 367: 1} def test_divisors(): assert divisors(28) == [1, 2, 4, 7, 14, 28] assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105] assert divisors(0) == [] def test_divisor_count(): assert divisor_count(0) == 0 assert divisor_count(6) == 4 def test_proper_divisors(): assert proper_divisors(-1) == [] assert proper_divisors(28) == [1, 2, 4, 7, 14] assert [x for x in proper_divisors(3*5*7, True)] == [1, 3, 5, 15, 7, 21, 35] def test_proper_divisor_count(): assert proper_divisor_count(6) == 3 assert proper_divisor_count(108) == 11 def test_antidivisors(): assert antidivisors(-1) == [] assert antidivisors(-3) == [2] assert antidivisors(14) == [3, 4, 9] assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158] assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230] assert antidivisors(393216) == [262144] assert sorted(x for x in antidivisors(3*5*7, 1)) == \ [2, 6, 10, 11, 14, 19, 30, 42, 70] assert antidivisors(1) == [] def test_antidivisor_count(): assert antidivisor_count(0) == 0 assert antidivisor_count(-1) == 0 assert antidivisor_count(-4) == 1 assert antidivisor_count(20) == 3 assert antidivisor_count(25) == 5 assert antidivisor_count(38) == 7 assert antidivisor_count(180) == 6 assert antidivisor_count(2*3*5) == 3 def test_smoothness_and_smoothness_p(): assert smoothness(1) == (1, 1) assert smoothness(2**4*3**2) == (3, 16) assert smoothness_p(10431, m=1) == \ (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) assert smoothness_p(10431) == \ (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) assert smoothness_p(10431, power=1) == \ (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) assert smoothness_p(21477639576571, visual=1) == \ 'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \ 'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931' def test_visual_factorint(): assert factorint(1, visual=1) == 1 forty2 = factorint(42, visual=True) assert type(forty2) == Mul assert str(forty2) == '2**1*3**1*7**1' assert factorint(1, visual=True) is S.One no = dict(evaluate=False) assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no), Pow(3, 2, **no), Pow(7, 2, **no), **no) assert -1 in factorint(-42, visual=True).args def test_factorrat(): assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1' assert str(factorrat(Rational(1, 1), visual=True)) == '1' assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)' assert str(factorrat(Rational(25, 14), visual=True)) == '5**2/(2*7)' assert str(factorrat(S(-25)/14/9, visual=True)) == '-1*5**2/(2*3**2*7)' assert factorrat(S(12)/1, multiple=True) == [2, 2, 3] assert factorrat(Rational(1, 1), multiple=True) == [] assert factorrat(S(25)/14, multiple=True) == [Rational(1, 7), S.Half, 5, 5] assert factorrat(Rational(25, 14), multiple=True) == [Rational(1, 7), S.Half, 5, 5] assert factorrat(Rational(12, 1), multiple=True) == [2, 2, 3] assert factorrat(S(-25)/14/9, multiple=True) == \ [-1, Rational(1, 7), Rational(1, 3), Rational(1, 3), S.Half, 5, 5] def test_visual_io(): sm = smoothness_p fi = factorint # with smoothness_p n = 124 d = fi(n) m = fi(d, visual=True) t = sm(n) s = sm(t) for th in [d, s, t, n, m]: assert sm(th, visual=True) == s assert sm(th, visual=1) == s for th in [d, s, t, n, m]: assert sm(th, visual=False) == t assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t] assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t] # with factorint for th in [d, m, n]: assert fi(th, visual=True) == m assert fi(th, visual=1) == m for th in [d, m, n]: assert fi(th, visual=False) == d assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d] assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d] # test reevaluation no = dict(evaluate=False) assert sm({4: 2}, visual=False) == sm(16) assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == sm(2**10) assert fi({4: 2}, visual=False) == fi(16) assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == fi(2**10) def test_core(): assert core(35**13, 10) == 42875 assert core(210**2) == 1 assert core(7776, 3) == 36 assert core(10**27, 22) == 10**5 assert core(537824) == 14 assert core(1, 6) == 1 def test_primenu(): assert primenu(2) == 1 assert primenu(2 * 3) == 2 assert primenu(2 * 3 * 5) == 3 assert primenu(3 * 25) == primenu(3) + primenu(25) assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1] assert primenu(fac(50)) == 15 assert primenu(2 ** 9941 - 1) == 1 n = Symbol('n', integer=True) assert primenu(n) assert primenu(n).subs(n, 2 ** 31 - 1) == 1 assert summation(primenu(n), (n, 2, 30)) == 43 def test_primeomega(): assert primeomega(2) == 1 assert primeomega(2 * 2) == 2 assert primeomega(2 * 2 * 3) == 3 assert primeomega(3 * 25) == primeomega(3) + primeomega(25) assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1] assert primeomega(fac(50)) == 108 assert primeomega(2 ** 9941 - 1) == 1 n = Symbol('n', integer=True) assert primeomega(n) assert primeomega(n).subs(n, 2 ** 31 - 1) == 1 assert summation(primeomega(n), (n, 2, 30)) == 59 def test_mersenne_prime_exponent(): assert mersenne_prime_exponent(1) == 2 assert mersenne_prime_exponent(4) == 7 assert mersenne_prime_exponent(10) == 89 assert mersenne_prime_exponent(25) == 21701 raises(ValueError, lambda: mersenne_prime_exponent(52)) raises(ValueError, lambda: mersenne_prime_exponent(0)) def test_is_perfect(): assert is_perfect(6) is True assert is_perfect(15) is False assert is_perfect(28) is True assert is_perfect(400) is False assert is_perfect(496) is True assert is_perfect(8128) is True assert is_perfect(10000) is False def test_is_mersenne_prime(): assert is_mersenne_prime(10) is False assert is_mersenne_prime(127) is True assert is_mersenne_prime(511) is False assert is_mersenne_prime(131071) is True assert is_mersenne_prime(2147483647) is True def test_is_abundant(): assert is_abundant(10) is False assert is_abundant(12) is True assert is_abundant(18) is True assert is_abundant(21) is False assert is_abundant(945) is True def test_is_deficient(): assert is_deficient(10) is True assert is_deficient(22) is True assert is_deficient(56) is False assert is_deficient(20) is False assert is_deficient(36) is False def test_is_amicable(): assert is_amicable(173, 129) is False assert is_amicable(220, 284) is True assert is_amicable(8756, 8756) is False def test_dra(): assert dra(19, 12) == 8 assert dra(2718, 10) == 9 assert dra(0, 22) == 0 assert dra(23456789, 10) == 8 raises(ValueError, lambda: dra(24, -2)) raises(ValueError, lambda: dra(24.2, 5)) def test_drm(): assert drm(19, 12) == 7 assert drm(2718, 10) == 2 assert drm(0, 15) == 0 assert drm(234161, 10) == 6 raises(ValueError, lambda: drm(24, -2)) raises(ValueError, lambda: drm(11.6, 9))
0753e65d8247e834e865cde983d6a07f3ce98d4fe2865ddcaa0d3e5d80950bfb
from sympy import ( Abs, And, binomial, Catalan, combsimp, cos, Derivative, E, Eq, exp, EulerGamma, factorial, Function, harmonic, I, Integral, KroneckerDelta, log, nan, oo, pi, Piecewise, Product, product, Rational, S, simplify, Identity, sin, sqrt, Sum, summation, Symbol, symbols, sympify, zeta, gamma, Indexed, Idx, IndexedBase, prod, Dummy, lowergamma, Range, floor, rf, MatrixSymbol, tanh, sinh) from sympy.abc import a, b, c, d, k, m, x, y, z from sympy.concrete.summations import ( telescopic, _dummy_with_inherited_properties_concrete, eval_sum_residue) from sympy.concrete.expr_with_intlimits import ReorderError from sympy.core.facts import InconsistentAssumptions from sympy.testing.pytest import XFAIL, raises, slow from sympy.matrices import \ Matrix, SparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix from sympy.core.mod import Mod n = Symbol('n', integer=True) def test_karr_convention(): # Test the Karr summation convention that we want to hold. # See his paper "Summation in Finite Terms" for a detailed # reasoning why we really want exactly this definition. # The convention is described on page 309 and essentially # in section 1.4, definition 3: # # \sum_{m <= i < n} f(i) 'has the obvious meaning' for m < n # \sum_{m <= i < n} f(i) = 0 for m = n # \sum_{m <= i < n} f(i) = - \sum_{n <= i < m} f(i) for m > n # # It is important to note that he defines all sums with # the upper limit being *exclusive*. # In contrast, sympy and the usual mathematical notation has: # # sum_{i = a}^b f(i) = f(a) + f(a+1) + ... + f(b-1) + f(b) # # with the upper limit *inclusive*. So translating between # the two we find that: # # \sum_{m <= i < n} f(i) = \sum_{i = m}^{n-1} f(i) # # where we intentionally used two different ways to typeset the # sum and its limits. i = Symbol("i", integer=True) k = Symbol("k", integer=True) j = Symbol("j", integer=True) # A simple example with a concrete summand and symbolic limits. # The normal sum: m = k and n = k + j and therefore m < n: m = k n = k + j a = m b = n - 1 S1 = Sum(i**2, (i, a, b)).doit() # The reversed sum: m = k + j and n = k and therefore m > n: m = k + j n = k a = m b = n - 1 S2 = Sum(i**2, (i, a, b)).doit() assert simplify(S1 + S2) == 0 # Test the empty sum: m = k and n = k and therefore m = n: m = k n = k a = m b = n - 1 Sz = Sum(i**2, (i, a, b)).doit() assert Sz == 0 # Another example this time with an unspecified summand and # numeric limits. (We can not do both tests in the same example.) f = Function("f") # The normal sum with m < n: m = 2 n = 11 a = m b = n - 1 S1 = Sum(f(i), (i, a, b)).doit() # The reversed sum with m > n: m = 11 n = 2 a = m b = n - 1 S2 = Sum(f(i), (i, a, b)).doit() assert simplify(S1 + S2) == 0 # Test the empty sum with m = n: m = 5 n = 5 a = m b = n - 1 Sz = Sum(f(i), (i, a, b)).doit() assert Sz == 0 e = Piecewise((exp(-i), Mod(i, 2) > 0), (0, True)) s = Sum(e, (i, 0, 11)) assert s.n(3) == s.doit().n(3) def test_karr_proposition_2a(): # Test Karr, page 309, proposition 2, part a i = Symbol("i", integer=True) u = Symbol("u", integer=True) v = Symbol("v", integer=True) def test_the_sum(m, n): # g g = i**3 + 2*i**2 - 3*i # f = Delta g f = simplify(g.subs(i, i+1) - g) # The sum a = m b = n - 1 S = Sum(f, (i, a, b)).doit() # Test if Sum_{m <= i < n} f(i) = g(n) - g(m) assert simplify(S - (g.subs(i, n) - g.subs(i, m))) == 0 # m < n test_the_sum(u, u+v) # m = n test_the_sum(u, u ) # m > n test_the_sum(u+v, u ) def test_karr_proposition_2b(): # Test Karr, page 309, proposition 2, part b i = Symbol("i", integer=True) u = Symbol("u", integer=True) v = Symbol("v", integer=True) w = Symbol("w", integer=True) def test_the_sum(l, n, m): # Summand s = i**3 # First sum a = l b = n - 1 S1 = Sum(s, (i, a, b)).doit() # Second sum a = l b = m - 1 S2 = Sum(s, (i, a, b)).doit() # Third sum a = m b = n - 1 S3 = Sum(s, (i, a, b)).doit() # Test if S1 = S2 + S3 as required assert S1 - (S2 + S3) == 0 # l < m < n test_the_sum(u, u+v, u+v+w) # l < m = n test_the_sum(u, u+v, u+v ) # l < m > n test_the_sum(u, u+v+w, v ) # l = m < n test_the_sum(u, u, u+v ) # l = m = n test_the_sum(u, u, u ) # l = m > n test_the_sum(u+v, u+v, u ) # l > m < n test_the_sum(u+v, u, u+w ) # l > m = n test_the_sum(u+v, u, u ) # l > m > n test_the_sum(u+v+w, u+v, u ) def test_arithmetic_sums(): assert summation(1, (n, a, b)) == b - a + 1 assert Sum(S.NaN, (n, a, b)) is S.NaN assert Sum(x, (n, a, a)).doit() == x assert Sum(x, (x, a, a)).doit() == a assert Sum(x, (n, 1, a)).doit() == a*x assert Sum(x, (x, Range(1, 11))).doit() == 55 assert Sum(x, (x, Range(1, 11, 2))).doit() == 25 assert Sum(x, (x, Range(1, 10, 2))) == Sum(x, (x, Range(9, 0, -2))) lo, hi = 1, 2 s1 = Sum(n, (n, lo, hi)) s2 = Sum(n, (n, hi, lo)) assert s1 != s2 assert s1.doit() == 3 and s2.doit() == 0 lo, hi = x, x + 1 s1 = Sum(n, (n, lo, hi)) s2 = Sum(n, (n, hi, lo)) assert s1 != s2 assert s1.doit() == 2*x + 1 and s2.doit() == 0 assert Sum(Integral(x, (x, 1, y)) + x, (x, 1, 2)).doit() == \ y**2 + 2 assert summation(1, (n, 1, 10)) == 10 assert summation(2*n, (n, 0, 10**10)) == 100000000010000000000 assert summation(4*n*m, (n, a, 1), (m, 1, d)).expand() == \ 2*d + 2*d**2 + a*d + a*d**2 - d*a**2 - a**2*d**2 assert summation(cos(n), (n, -2, 1)) == cos(-2) + cos(-1) + cos(0) + cos(1) assert summation(cos(n), (n, x, x + 2)) == cos(x) + cos(x + 1) + cos(x + 2) assert isinstance(summation(cos(n), (n, x, x + S.Half)), Sum) assert summation(k, (k, 0, oo)) is oo assert summation(k, (k, Range(1, 11))) == 55 def test_polynomial_sums(): assert summation(n**2, (n, 3, 8)) == 199 assert summation(n, (n, a, b)) == \ ((a + b)*(b - a + 1)/2).expand() assert summation(n**2, (n, 1, b)) == \ ((2*b**3 + 3*b**2 + b)/6).expand() assert summation(n**3, (n, 1, b)) == \ ((b**4 + 2*b**3 + b**2)/4).expand() assert summation(n**6, (n, 1, b)) == \ ((6*b**7 + 21*b**6 + 21*b**5 - 7*b**3 + b)/42).expand() def test_geometric_sums(): assert summation(pi**n, (n, 0, b)) == (1 - pi**(b + 1)) / (1 - pi) assert summation(2 * 3**n, (n, 0, b)) == 3**(b + 1) - 1 assert summation(S.Half**n, (n, 1, oo)) == 1 assert summation(2**n, (n, 0, b)) == 2**(b + 1) - 1 assert summation(2**n, (n, 1, oo)) is oo assert summation(2**(-n), (n, 1, oo)) == 1 assert summation(3**(-n), (n, 4, oo)) == Rational(1, 54) assert summation(2**(-4*n + 3), (n, 1, oo)) == Rational(8, 15) assert summation(2**(n + 1), (n, 1, b)).expand() == 4*(2**b - 1) # issue 6664: assert summation(x**n, (n, 0, oo)) == \ Piecewise((1/(-x + 1), Abs(x) < 1), (Sum(x**n, (n, 0, oo)), True)) assert summation(-2**n, (n, 0, oo)) is -oo assert summation(I**n, (n, 0, oo)) == Sum(I**n, (n, 0, oo)) # issue 6802: assert summation((-1)**(2*x + 2), (x, 0, n)) == n + 1 assert summation((-2)**(2*x + 2), (x, 0, n)) == 4*4**(n + 1)/S(3) - Rational(4, 3) assert summation((-1)**x, (x, 0, n)) == -(-1)**(n + 1)/S(2) + S.Half assert summation(y**x, (x, a, b)) == \ Piecewise((-a + b + 1, Eq(y, 1)), ((y**a - y**(b + 1))/(-y + 1), True)) assert summation((-2)**(y*x + 2), (x, 0, n)) == \ 4*Piecewise((n + 1, Eq((-2)**y, 1)), ((-(-2)**(y*(n + 1)) + 1)/(-(-2)**y + 1), True)) # issue 8251: assert summation((1/(n + 1)**2)*n**2, (n, 0, oo)) is oo #issue 9908: assert Sum(1/(n**3 - 1), (n, -oo, -2)).doit() == summation(1/(n**3 - 1), (n, -oo, -2)) #issue 11642: result = Sum(0.5**n, (n, 1, oo)).doit() assert result == 1 assert result.is_Float result = Sum(0.25**n, (n, 1, oo)).doit() assert result == 1/3. assert result.is_Float result = Sum(0.99999**n, (n, 1, oo)).doit() assert result == 99999 assert result.is_Float result = Sum(S.Half**n, (n, 1, oo)).doit() assert result == 1 assert not result.is_Float result = Sum(Rational(3, 5)**n, (n, 1, oo)).doit() assert result == Rational(3, 2) assert not result.is_Float assert Sum(1.0**n, (n, 1, oo)).doit() is oo assert Sum(2.43**n, (n, 1, oo)).doit() is oo # Issue 13979 i, k, q = symbols('i k q', integer=True) result = summation( exp(-2*I*pi*k*i/n) * exp(2*I*pi*q*i/n) / n, (i, 0, n - 1) ) assert result.simplify() == Piecewise( (1, Eq(exp(-2*I*pi*(k - q)/n), 1)), (0, True) ) def test_harmonic_sums(): assert summation(1/k, (k, 0, n)) == Sum(1/k, (k, 0, n)) assert summation(1/k, (k, 1, n)) == harmonic(n) assert summation(n/k, (k, 1, n)) == n*harmonic(n) assert summation(1/k, (k, 5, n)) == harmonic(n) - harmonic(4) def test_composite_sums(): f = S.Half*(7 - 6*n + Rational(1, 7)*n**3) s = summation(f, (n, a, b)) assert not isinstance(s, Sum) A = 0 for i in range(-3, 5): A += f.subs(n, i) B = s.subs(a, -3).subs(b, 4) assert A == B def test_hypergeometric_sums(): assert summation( binomial(2*k, k)/4**k, (k, 0, n)) == (1 + 2*n)*binomial(2*n, n)/4**n assert summation(binomial(2*k, k)/5**k, (k, -oo, oo)) == sqrt(5) def test_other_sums(): f = m**2 + m*exp(m) g = 3*exp(Rational(3, 2))/2 + exp(S.Half)/2 - exp(Rational(-1, 2))/2 - 3*exp(Rational(-3, 2))/2 + 5 assert summation(f, (m, Rational(-3, 2), Rational(3, 2))) == g assert summation(f, (m, -1.5, 1.5)).evalf().epsilon_eq(g.evalf(), 1e-10) fac = factorial def NS(e, n=15, **options): return str(sympify(e).evalf(n, **options)) def test_evalf_fast_series(): # Euler transformed series for sqrt(1+x) assert NS(Sum( fac(2*n + 1)/fac(n)**2/2**(3*n + 1), (n, 0, oo)), 100) == NS(sqrt(2), 100) # Some series for exp(1) estr = NS(E, 100) assert NS(Sum(1/fac(n), (n, 0, oo)), 100) == estr assert NS(1/Sum((1 - 2*n)/fac(2*n), (n, 0, oo)), 100) == estr assert NS(Sum((2*n + 1)/fac(2*n), (n, 0, oo)), 100) == estr assert NS(Sum((4*n + 3)/2**(2*n + 1)/fac(2*n + 1), (n, 0, oo))**2, 100) == estr pistr = NS(pi, 100) # Ramanujan series for pi assert NS(9801/sqrt(8)/Sum(fac( 4*n)*(1103 + 26390*n)/fac(n)**4/396**(4*n), (n, 0, oo)), 100) == pistr assert NS(1/Sum( binomial(2*n, n)**3 * (42*n + 5)/2**(12*n + 4), (n, 0, oo)), 100) == pistr # Machin's formula for pi assert NS(16*Sum((-1)**n/(2*n + 1)/5**(2*n + 1), (n, 0, oo)) - 4*Sum((-1)**n/(2*n + 1)/239**(2*n + 1), (n, 0, oo)), 100) == pistr # Apery's constant astr = NS(zeta(3), 100) P = 126392*n**5 + 412708*n**4 + 531578*n**3 + 336367*n**2 + 104000* \ n + 12463 assert NS(Sum((-1)**n * P / 24 * (fac(2*n + 1)*fac(2*n)*fac( n))**3 / fac(3*n + 2) / fac(4*n + 3)**3, (n, 0, oo)), 100) == astr assert NS(Sum((-1)**n * (205*n**2 + 250*n + 77)/64 * fac(n)**10 / fac(2*n + 1)**5, (n, 0, oo)), 100) == astr def test_evalf_fast_series_issue_4021(): # Catalan's constant assert NS(Sum((-1)**(n - 1)*2**(8*n)*(40*n**2 - 24*n + 3)*fac(2*n)**3* fac(n)**2/n**3/(2*n - 1)/fac(4*n)**2, (n, 1, oo))/64, 100) == \ NS(Catalan, 100) astr = NS(zeta(3), 100) assert NS(5*Sum( (-1)**(n - 1)*fac(n)**2 / n**3 / fac(2*n), (n, 1, oo))/2, 100) == astr assert NS(Sum((-1)**(n - 1)*(56*n**2 - 32*n + 5) / (2*n - 1)**2 * fac(n - 1) **3 / fac(3*n), (n, 1, oo))/4, 100) == astr def test_evalf_slow_series(): assert NS(Sum((-1)**n / n, (n, 1, oo)), 15) == NS(-log(2), 15) assert NS(Sum((-1)**n / n, (n, 1, oo)), 50) == NS(-log(2), 50) assert NS(Sum(1/n**2, (n, 1, oo)), 15) == NS(pi**2/6, 15) assert NS(Sum(1/n**2, (n, 1, oo)), 100) == NS(pi**2/6, 100) assert NS(Sum(1/n**2, (n, 1, oo)), 500) == NS(pi**2/6, 500) assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 15) == NS(pi**3/32, 15) assert NS(Sum((-1)**n / (2*n + 1)**3, (n, 0, oo)), 50) == NS(pi**3/32, 50) def test_euler_maclaurin(): # Exact polynomial sums with E-M def check_exact(f, a, b, m, n): A = Sum(f, (k, a, b)) s, e = A.euler_maclaurin(m, n) assert (e == 0) and (s.expand() == A.doit()) check_exact(k**4, a, b, 0, 2) check_exact(k**4 + 2*k, a, b, 1, 2) check_exact(k**4 + k**2, a, b, 1, 5) check_exact(k**5, 2, 6, 1, 2) check_exact(k**5, 2, 6, 1, 3) assert Sum(x-1, (x, 0, 2)).euler_maclaurin(m=30, n=30, eps=2**-15) == (0, 0) # Not exact assert Sum(k**6, (k, a, b)).euler_maclaurin(0, 2)[1] != 0 # Numerical test for mi, ni in [(2, 4), (2, 20), (10, 20), (18, 20)]: A = Sum(1/k**3, (k, 1, oo)) s, e = A.euler_maclaurin(mi, ni) assert abs((s - zeta(3)).evalf()) < e.evalf() raises(ValueError, lambda: Sum(1, (x, 0, 1), (k, 0, 1)).euler_maclaurin()) @slow def test_evalf_euler_maclaurin(): assert NS(Sum(1/k**k, (k, 1, oo)), 15) == '1.29128599706266' assert NS(Sum(1/k**k, (k, 1, oo)), 50) == '1.2912859970626635404072825905956005414986193682745' assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 15) == NS(EulerGamma, 15) assert NS(Sum(1/k - log(1 + 1/k), (k, 1, oo)), 50) == NS(EulerGamma, 50) assert NS(Sum(log(k)/k**2, (k, 1, oo)), 15) == '0.937548254315844' assert NS(Sum(log(k)/k**2, (k, 1, oo)), 50) == '0.93754825431584375370257409456786497789786028861483' assert NS(Sum(1/k, (k, 1000000, 2000000)), 15) == '0.693147930560008' assert NS(Sum(1/k, (k, 1000000, 2000000)), 50) == '0.69314793056000780941723211364567656807940638436025' def test_evalf_symbolic(): f, g = symbols('f g', cls=Function) # issue 6328 expr = Sum(f(x), (x, 1, 3)) + Sum(g(x), (x, 1, 3)) assert expr.evalf() == expr def test_evalf_issue_3273(): assert Sum(0, (k, 1, oo)).evalf() == 0 def test_simple_products(): assert Product(S.NaN, (x, 1, 3)) is S.NaN assert product(S.NaN, (x, 1, 3)) is S.NaN assert Product(x, (n, a, a)).doit() == x assert Product(x, (x, a, a)).doit() == a assert Product(x, (y, 1, a)).doit() == x**a lo, hi = 1, 2 s1 = Product(n, (n, lo, hi)) s2 = Product(n, (n, hi, lo)) assert s1 != s2 # This IS correct according to Karr product convention assert s1.doit() == 2 assert s2.doit() == 1 lo, hi = x, x + 1 s1 = Product(n, (n, lo, hi)) s2 = Product(n, (n, hi, lo)) s3 = 1 / Product(n, (n, hi + 1, lo - 1)) assert s1 != s2 # This IS correct according to Karr product convention assert s1.doit() == x*(x + 1) assert s2.doit() == 1 assert s3.doit() == x*(x + 1) assert Product(Integral(2*x, (x, 1, y)) + 2*x, (x, 1, 2)).doit() == \ (y**2 + 1)*(y**2 + 3) assert product(2, (n, a, b)) == 2**(b - a + 1) assert product(n, (n, 1, b)) == factorial(b) assert product(n**3, (n, 1, b)) == factorial(b)**3 assert product(3**(2 + n), (n, a, b)) \ == 3**(2*(1 - a + b) + b/2 + (b**2)/2 + a/2 - (a**2)/2) assert product(cos(n), (n, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(n), (n, x, x + 2)) == cos(x)*cos(x + 1)*cos(x + 2) assert isinstance(product(cos(n), (n, x, x + S.Half)), Product) # If Product managed to evaluate this one, it most likely got it wrong! assert isinstance(Product(n**n, (n, 1, b)), Product) def test_rational_products(): assert combsimp(product(1 + 1/n, (n, a, b))) == (1 + b)/a assert combsimp(product(n + 1, (n, a, b))) == gamma(2 + b)/gamma(1 + a) assert combsimp(product((n + 1)/(n - 1), (n, a, b))) == b*(1 + b)/(a*(a - 1)) assert combsimp(product(n/(n + 1)/(n + 2), (n, a, b))) == \ a*gamma(a + 2)/(b + 1)/gamma(b + 3) assert combsimp(product(n*(n + 1)/(n - 1)/(n - 2), (n, a, b))) == \ b**2*(b - 1)*(1 + b)/(a - 1)**2/(a*(a - 2)) def test_wallis_product(): # Wallis product, given in two different forms to ensure that Product # can factor simple rational expressions A = Product(4*n**2 / (4*n**2 - 1), (n, 1, b)) B = Product((2*n)*(2*n)/(2*n - 1)/(2*n + 1), (n, 1, b)) R = pi*gamma(b + 1)**2/(2*gamma(b + S.Half)*gamma(b + Rational(3, 2))) assert simplify(A.doit()) == R assert simplify(B.doit()) == R # This one should eventually also be doable (Euler's product formula for sin) # assert Product(1+x/n**2, (n, 1, b)) == ... def test_telescopic_sums(): #checks also input 2 of comment 1 issue 4127 assert Sum(1/k - 1/(k + 1), (k, 1, n)).doit() == 1 - 1/(1 + n) f = Function("f") assert Sum( f(k) - f(k + 2), (k, m, n)).doit() == -f(1 + n) - f(2 + n) + f(m) + f(1 + m) assert Sum(cos(k) - cos(k + 3), (k, 1, n)).doit() == -cos(1 + n) - \ cos(2 + n) - cos(3 + n) + cos(1) + cos(2) + cos(3) # dummy variable shouldn't matter assert telescopic(1/m, -m/(1 + m), (m, n - 1, n)) == \ telescopic(1/k, -k/(1 + k), (k, n - 1, n)) assert Sum(1/x/(x - 1), (x, a, b)).doit() == -((a - b - 1)/(b*(a - 1))) def test_sum_reconstruct(): s = Sum(n**2, (n, -1, 1)) assert s == Sum(*s.args) raises(ValueError, lambda: Sum(x, x)) raises(ValueError, lambda: Sum(x, (x, 1))) def test_limit_subs(): for F in (Sum, Product, Integral): assert F(a*exp(a), (a, -2, 2)) == F(a*exp(a), (a, -b, b)).subs(b, 2) assert F(a, (a, F(b, (b, 1, 2)), 4)).subs(F(b, (b, 1, 2)), c) == \ F(a, (a, c, 4)) assert F(x, (x, 1, x + y)).subs(x, 1) == F(x, (x, 1, y + 1)) def test_function_subs(): f = Function("f") S = Sum(x*f(y),(x,0,oo),(y,0,oo)) assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo)) assert S.subs(f(x),x) == S raises(ValueError, lambda: S.subs(f(y),x+y) ) S = Sum(x*log(y),(x,0,oo),(y,0,oo)) assert S.subs(log(y),y) == S S = Sum(x*f(y),(x,0,oo),(y,0,oo)) assert S.subs(f(y),y) == Sum(x*y,(x,0,oo),(y,0,oo)) def test_equality(): # if this fails remove special handling below raises(ValueError, lambda: Sum(x, x)) r = symbols('x', real=True) for F in (Sum, Product, Integral): try: assert F(x, x) != F(y, y) assert F(x, (x, 1, 2)) != F(x, x) assert F(x, (x, x)) != F(x, x) # or else they print the same assert F(1, x) != F(1, y) except ValueError: pass assert F(a, (x, 1, 2)) != F(a, (x, 1, 3)) # diff limit assert F(a, (x, 1, x)) != F(a, (y, 1, y)) assert F(a, (x, 1, 2)) != F(b, (x, 1, 2)) # diff expression assert F(x, (x, 1, 2)) != F(r, (r, 1, 2)) # diff assumptions assert F(1, (x, 1, x)) != F(1, (y, 1, x)) # only dummy is diff assert F(1, (x, 1, x)).dummy_eq(F(1, (y, 1, x))) # issue 5265 assert Sum(x, (x, 1, x)).subs(x, a) == Sum(x, (x, 1, a)) def test_Sum_doit(): f = Function('f') assert Sum(n*Integral(a**2), (n, 0, 2)).doit() == a**3 assert Sum(n*Integral(a**2), (n, 0, 2)).doit(deep=False) == \ 3*Integral(a**2) assert summation(n*Integral(a**2), (n, 0, 2)) == 3*Integral(a**2) # test nested sum evaluation s = Sum( Sum( Sum(2,(z,1,n+1)), (y,x+1,n)), (x,1,n)) assert 0 == (s.doit() - n*(n+1)*(n-1)).factor() # Integer assumes finite assert Sum(KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((1, And(-oo <= y, y < oo)), (0, True)) assert Sum(KroneckerDelta(m, n), (m, -oo, oo)).doit() == 1 assert Sum(m*KroneckerDelta(x, y), (x, -oo, oo)).doit() == Piecewise((m, And(-oo <= y, y < oo)), (0, True)) assert Sum(x*KroneckerDelta(m, n), (m, -oo, oo)).doit() == x assert Sum(Sum(KroneckerDelta(m, n), (m, 1, 3)), (n, 1, 3)).doit() == 3 assert Sum(Sum(KroneckerDelta(k, m), (m, 1, 3)), (n, 1, 3)).doit() == \ 3 * Piecewise((1, And(1 <= k, k <= 3)), (0, True)) assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, 3)).doit() == \ f(1) + f(2) + f(3) assert Sum(f(n) * Sum(KroneckerDelta(m, n), (m, 0, oo)), (n, 1, oo)).doit() == \ Sum(f(n), (n, 1, oo)) # issue 2597 nmax = symbols('N', integer=True, positive=True) pw = Piecewise((1, And(1 <= n, n <= nmax)), (0, True)) assert Sum(pw, (n, 1, nmax)).doit() == Sum(Piecewise((1, nmax >= n), (0, True)), (n, 1, nmax)) q, s = symbols('q, s') assert summation(1/n**(2*s), (n, 1, oo)) == Piecewise((zeta(2*s), 2*s > 1), (Sum(n**(-2*s), (n, 1, oo)), True)) assert summation(1/(n+1)**s, (n, 0, oo)) == Piecewise((zeta(s), s > 1), (Sum((n + 1)**(-s), (n, 0, oo)), True)) assert summation(1/(n+q)**s, (n, 0, oo)) == Piecewise( (zeta(s, q), And(q > 0, s > 1)), (Sum((n + q)**(-s), (n, 0, oo)), True)) assert summation(1/(n+q)**s, (n, q, oo)) == Piecewise( (zeta(s, 2*q), And(2*q > 0, s > 1)), (Sum((n + q)**(-s), (n, q, oo)), True)) assert summation(1/n**2, (n, 1, oo)) == zeta(2) assert summation(1/n**s, (n, 0, oo)) == Sum(n**(-s), (n, 0, oo)) def test_Product_doit(): assert Product(n*Integral(a**2), (n, 1, 3)).doit() == 2 * a**9 / 9 assert Product(n*Integral(a**2), (n, 1, 3)).doit(deep=False) == \ 6*Integral(a**2)**3 assert product(n*Integral(a**2), (n, 1, 3)) == 6*Integral(a**2)**3 def test_Sum_interface(): assert isinstance(Sum(0, (n, 0, 2)), Sum) assert Sum(nan, (n, 0, 2)) is nan assert Sum(nan, (n, 0, oo)) is nan assert Sum(0, (n, 0, 2)).doit() == 0 assert isinstance(Sum(0, (n, 0, oo)), Sum) assert Sum(0, (n, 0, oo)).doit() == 0 raises(ValueError, lambda: Sum(1)) raises(ValueError, lambda: summation(1)) def test_diff(): assert Sum(x, (x, 1, 2)).diff(x) == 0 assert Sum(x*y, (x, 1, 2)).diff(x) == 0 assert Sum(x*y, (y, 1, 2)).diff(x) == Sum(y, (y, 1, 2)) e = Sum(x*y, (x, 1, a)) assert e.diff(a) == Derivative(e, a) assert Sum(x*y, (x, 1, 3), (a, 2, 5)).diff(y).doit() == \ Sum(x*y, (x, 1, 3), (a, 2, 5)).doit().diff(y) == 24 assert Sum(x, (x, 1, 2)).diff(y) == 0 def test_hypersum(): from sympy import sin assert simplify(summation(x**n/fac(n), (n, 1, oo))) == -1 + exp(x) assert summation((-1)**n * x**(2*n) / fac(2*n), (n, 0, oo)) == cos(x) assert simplify(summation((-1)**n*x**(2*n + 1) / factorial(2*n + 1), (n, 3, oo))) == -x + sin(x) + x**3/6 - x**5/120 assert summation(1/(n + 2)**3, (n, 1, oo)) == Rational(-9, 8) + zeta(3) assert summation(1/n**4, (n, 1, oo)) == pi**4/90 s = summation(x**n*n, (n, -oo, 0)) assert s.is_Piecewise assert s.args[0].args[0] == -1/(x*(1 - 1/x)**2) assert s.args[0].args[1] == (abs(1/x) < 1) m = Symbol('n', integer=True, positive=True) assert summation(binomial(m, k), (k, 0, m)) == 2**m def test_issue_4170(): assert summation(1/factorial(k), (k, 0, oo)) == E def test_is_commutative(): from sympy.physics.secondquant import NO, F, Fd m = Symbol('m', commutative=False) for f in (Sum, Product, Integral): assert f(z, (z, 1, 1)).is_commutative is True assert f(z*y, (z, 1, 6)).is_commutative is True assert f(m*x, (x, 1, 2)).is_commutative is False assert f(NO(Fd(x)*F(y))*z, (z, 1, 2)).is_commutative is False def test_is_zero(): for func in [Sum, Product]: assert func(0, (x, 1, 1)).is_zero is True assert func(x, (x, 1, 1)).is_zero is None assert Sum(0, (x, 1, 0)).is_zero is True assert Product(0, (x, 1, 0)).is_zero is False def test_is_number(): # is number should not rely on evaluation or assumptions, # it should be equivalent to `not foo.free_symbols` assert Sum(1, (x, 1, 1)).is_number is True assert Sum(1, (x, 1, x)).is_number is False assert Sum(0, (x, y, z)).is_number is False assert Sum(x, (y, 1, 2)).is_number is False assert Sum(x, (y, 1, 1)).is_number is False assert Sum(x, (x, 1, 2)).is_number is True assert Sum(x*y, (x, 1, 2), (y, 1, 3)).is_number is True assert Product(2, (x, 1, 1)).is_number is True assert Product(2, (x, 1, y)).is_number is False assert Product(0, (x, y, z)).is_number is False assert Product(1, (x, y, z)).is_number is False assert Product(x, (y, 1, x)).is_number is False assert Product(x, (y, 1, 2)).is_number is False assert Product(x, (y, 1, 1)).is_number is False assert Product(x, (x, 1, 2)).is_number is True def test_free_symbols(): for func in [Sum, Product]: assert func(1, (x, 1, 2)).free_symbols == set() assert func(0, (x, 1, y)).free_symbols == {y} assert func(2, (x, 1, y)).free_symbols == {y} assert func(x, (x, 1, 2)).free_symbols == set() assert func(x, (x, 1, y)).free_symbols == {y} assert func(x, (y, 1, y)).free_symbols == {x, y} assert func(x, (y, 1, 2)).free_symbols == {x} assert func(x, (y, 1, 1)).free_symbols == {x} assert func(x, (y, 1, z)).free_symbols == {x, z} assert func(x, (x, 1, y), (y, 1, 2)).free_symbols == set() assert func(x, (x, 1, y), (y, 1, z)).free_symbols == {z} assert func(x, (x, 1, y), (y, 1, y)).free_symbols == {y} assert func(x, (y, 1, y), (y, 1, z)).free_symbols == {x, z} assert Sum(1, (x, 1, y)).free_symbols == {y} # free_symbols answers whether the object *as written* has free symbols, # not whether the evaluated expression has free symbols assert Product(1, (x, 1, y)).free_symbols == {y} def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) p = Sum(A*B**n, (n, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() p = Sum(B**n*A, (n, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_noncommutativity_honoured(): A, B = symbols("A B", commutative=False) M = symbols('M', integer=True, positive=True) p = Sum(A*B**n, (n, 1, M)) assert p.doit() == A*Piecewise((M, Eq(B, 1)), ((B - B**(M + 1))*(1 - B)**(-1), True)) p = Sum(B**n*A, (n, 1, M)) assert p.doit() == Piecewise((M, Eq(B, 1)), ((B - B**(M + 1))*(1 - B)**(-1), True))*A p = Sum(B**n*A*B**n, (n, 1, M)) assert p.doit() == p def test_issue_4171(): assert summation(factorial(2*k + 1)/factorial(2*k), (k, 0, oo)) is oo assert summation(2*k + 1, (k, 0, oo)) is oo def test_issue_6273(): assert Sum(x, (x, 1, n)).n(2, subs={n: 1}) == 1 def test_issue_6274(): assert Sum(x, (x, 1, 0)).doit() == 0 assert NS(Sum(x, (x, 1, 0))) == '0' assert Sum(n, (n, 10, 5)).doit() == -30 assert NS(Sum(n, (n, 10, 5))) == '-30.0000000000000' def test_simplify_sum(): y, t, v = symbols('y, t, v') _simplify = lambda e: simplify(e, doit=False) assert _simplify(Sum(x*y, (x, n, m), (y, a, k)) + \ Sum(y, (x, n, m), (y, a, k))) == Sum(y * (x + 1), (x, n, m), (y, a, k)) assert _simplify(Sum(x, (x, n, m)) + Sum(x, (x, m + 1, a))) == \ Sum(x, (x, n, a)) assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x, (x, n, k))) == \ Sum(x, (x, n, a)) assert _simplify(Sum(x, (x, k + 1, a)) + Sum(x + 1, (x, n, k))) == \ Sum(x, (x, n, a)) + Sum(1, (x, n, k)) assert _simplify(Sum(x, (x, 0, 3)) * 3 + 3 * Sum(x, (x, 4, 6)) + \ 4 * Sum(z, (z, 0, 1))) == 4*Sum(z, (z, 0, 1)) + 3*Sum(x, (x, 0, 6)) assert _simplify(3*Sum(x**2, (x, a, b)) + Sum(x, (x, a, b))) == \ Sum(x*(3*x + 1), (x, a, b)) assert _simplify(Sum(x**3, (x, n, k)) * 3 + 3 * Sum(x, (x, n, k)) + \ 4 * y * Sum(z, (z, n, k))) + 1 == \ 4*y*Sum(z, (z, n, k)) + 3*Sum(x**3 + x, (x, n, k)) + 1 assert _simplify(Sum(x, (x, a, b)) + 1 + Sum(x, (x, b + 1, c))) == \ 1 + Sum(x, (x, a, c)) assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + \ Sum(x, (t, b+1, c))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b)) assert _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + \ Sum(y, (t, a, b))) == x * Sum(1, (t, a, c)) + y * Sum(1, (t, a, b)) assert _simplify(Sum(x, (t, a, b)) + 2 * Sum(x, (t, b+1, c))) == \ _simplify(Sum(x, (t, a, b)) + Sum(x, (t, b+1, c)) + Sum(x, (t, b+1, c))) assert _simplify(Sum(x, (x, a, b))*Sum(x**2, (x, a, b))) == \ Sum(x, (x, a, b)) * Sum(x**2, (x, a, b)) assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b))) \ == (x + y + z) * Sum(1, (t, a, b)) # issue 8596 assert _simplify(Sum(x, (t, a, b)) + Sum(y, (t, a, b)) + Sum(z, (t, a, b)) + \ Sum(v, (t, a, b))) == (x + y + z + v) * Sum(1, (t, a, b)) # issue 8596 assert _simplify(Sum(x * y, (x, a, b)) / (3 * y)) == \ (Sum(x, (x, a, b)) / 3) assert _simplify(Sum(Function('f')(x) * y * z, (x, a, b)) / (y * z)) \ == Sum(Function('f')(x), (x, a, b)) assert _simplify(Sum(c * x, (x, a, b)) - c * Sum(x, (x, a, b))) == 0 assert _simplify(c * (Sum(x, (x, a, b)) + y)) == c * (y + Sum(x, (x, a, b))) assert _simplify(c * (Sum(x, (x, a, b)) + y * Sum(x, (x, a, b)))) == \ c * (y + 1) * Sum(x, (x, a, b)) assert _simplify(Sum(Sum(c * x, (x, a, b)), (y, a, b))) == \ c * Sum(x, (x, a, b), (y, a, b)) assert _simplify(Sum((3 + y) * Sum(c * x, (x, a, b)), (y, a, b))) == \ c * Sum((3 + y), (y, a, b)) * Sum(x, (x, a, b)) assert _simplify(Sum((3 + t) * Sum(c * t, (x, a, b)), (y, a, b))) == \ c*t*(t + 3)*Sum(1, (x, a, b))*Sum(1, (y, a, b)) assert _simplify(Sum(Sum(d * t, (x, a, b - 1)) + \ Sum(d * t, (x, b, c)), (t, a, b))) == \ d * Sum(1, (x, a, c)) * Sum(t, (t, a, b)) def test_change_index(): b, v, w = symbols('b, v, w', integer = True) assert Sum(x, (x, a, b)).change_index(x, x + 1, y) == \ Sum(y - 1, (y, a + 1, b + 1)) assert Sum(x**2, (x, a, b)).change_index( x, x - 1) == \ Sum((x+1)**2, (x, a - 1, b - 1)) assert Sum(x**2, (x, a, b)).change_index( x, -x, y) == \ Sum((-y)**2, (y, -b, -a)) assert Sum(x, (x, a, b)).change_index( x, -x - 1) == \ Sum(-x - 1, (x, -b - 1, -a - 1)) assert Sum(x*y, (x, a, b), (y, c, d)).change_index( x, x - 1, z) == \ Sum((z + 1)*y, (z, a - 1, b - 1), (y, c, d)) assert Sum(x, (x, a, b)).change_index( x, x + v) == \ Sum(-v + x, (x, a + v, b + v)) assert Sum(x, (x, a, b)).change_index( x, -x - v) == \ Sum(-v - x, (x, -b - v, -a - v)) assert Sum(x, (x, a, b)).change_index(x, w*x, v) == \ Sum(v/w, (v, b*w, a*w)) raises(ValueError, lambda: Sum(x, (x, a, b)).change_index(x, 2*x)) def test_reorder(): b, y, c, d, z = symbols('b, y, c, d, z', integer = True) assert Sum(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \ Sum(x*y, (y, c, d), (x, a, b)) assert Sum(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \ Sum(x, (x, c, d), (x, a, b)) assert Sum(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\ (2, 0), (0, 1)) == Sum(x*y + z, (z, m, n), (y, c, d), (x, a, b)) assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (0, 1), (1, 2), (0, 2)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Sum(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (x, y), (y, z), (x, z)) == Sum(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Sum(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \ Sum(x*y, (y, c, d), (x, a, b)) assert Sum(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \ Sum(x*y, (y, c, d), (x, a, b)) def test_reverse_order(): assert Sum(x, (x, 0, 3)).reverse_order(0) == Sum(-x, (x, 4, -1)) assert Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \ Sum(x*y, (x, 6, 0), (y, 7, -1)) assert Sum(x, (x, 1, 2)).reverse_order(0) == Sum(-x, (x, 3, 0)) assert Sum(x, (x, 1, 3)).reverse_order(0) == Sum(-x, (x, 4, 0)) assert Sum(x, (x, 1, a)).reverse_order(0) == Sum(-x, (x, a + 1, 0)) assert Sum(x, (x, a, 5)).reverse_order(0) == Sum(-x, (x, 6, a - 1)) assert Sum(x, (x, a + 1, a + 5)).reverse_order(0) == \ Sum(-x, (x, a + 6, a)) assert Sum(x, (x, a + 1, a + 2)).reverse_order(0) == \ Sum(-x, (x, a + 3, a)) assert Sum(x, (x, a + 1, a + 1)).reverse_order(0) == \ Sum(-x, (x, a + 2, a)) assert Sum(x, (x, a, b)).reverse_order(0) == Sum(-x, (x, b + 1, a - 1)) assert Sum(x, (x, a, b)).reverse_order(x) == Sum(-x, (x, b + 1, a - 1)) assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) assert Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \ Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) def test_issue_7097(): assert sum(x**n/n for n in range(1, 401)) == summation(x**n/n, (n, 1, 400)) def test_factor_expand_subs(): # test factoring assert Sum(4 * x, (x, 1, y)).factor() == 4 * Sum(x, (x, 1, y)) assert Sum(x * a, (x, 1, y)).factor() == a * Sum(x, (x, 1, y)) assert Sum(4 * x * a, (x, 1, y)).factor() == 4 * a * Sum(x, (x, 1, y)) assert Sum(4 * x * y, (x, 1, y)).factor() == 4 * y * Sum(x, (x, 1, y)) # test expand assert Sum(x+1,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(1,(x,1,y)) assert Sum(x+a*x**2,(x,1,y)).expand() == Sum(x,(x,1,y)) + Sum(a*x**2,(x,1,y)) assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand() \ == Sum(x*x**n, (n, -1, oo)) + Sum(n*x*x**n, (n, -1, oo)) assert Sum(x**(n + 1)*(n + 1), (n, -1, oo)).expand(power_exp=False) \ == Sum(n*x**(n+1), (n, -1, oo)) + Sum(x**(n+1), (n, -1, oo)) assert Sum(a*n+a*n**2,(n,0,4)).expand() \ == Sum(a*n,(n,0,4)) + Sum(a*n**2,(n,0,4)) assert Sum(x**a*x**n,(x,0,3)) \ == Sum(x**(a+n),(x,0,3)).expand(power_exp=True) assert Sum(x**(a+n),(x,0,3)) \ == Sum(x**(a+n),(x,0,3)).expand(power_exp=False) # test subs assert Sum(1/(1+a*x**2),(x,0,3)).subs([(a,3)]) == Sum(1/(1+3*x**2),(x,0,3)) assert Sum(x*y,(x,0,y),(y,0,x)).subs([(x,3)]) == Sum(x*y,(x,0,y),(y,0,3)) assert Sum(x,(x,1,10)).subs([(x,y-2)]) == Sum(x,(x,1,10)) assert Sum(1/x,(x,1,10)).subs([(x,(3+n)**3)]) == Sum(1/x,(x,1,10)) assert Sum(1/x,(x,1,10)).subs([(x,3*x-2)]) == Sum(1/x,(x,1,10)) def test_distribution_over_equality(): f = Function('f') assert Product(Eq(x*2, f(x)), (x, 1, 3)).doit() == Eq(48, f(1)*f(2)*f(3)) assert Sum(Eq(f(x), x**2), (x, 0, y)) == \ Eq(Sum(f(x), (x, 0, y)), Sum(x**2, (x, 0, y))) def test_issue_2787(): n, k = symbols('n k', positive=True, integer=True) p = symbols('p', positive=True) binomial_dist = binomial(n, k)*p**k*(1 - p)**(n - k) s = Sum(binomial_dist*k, (k, 0, n)) res = s.doit().simplify() assert res == Piecewise( (n*p, p/Abs(p - 1) <= 1), ((-p + 1)**n*Sum(k*p**k*(-p + 1)**(-k)*binomial(n, k), (k, 0, n)), True)) # Issue #17165: make sure that another simplify does not change/increase # the result assert res == res.simplify() def test_issue_4668(): assert summation(1/n, (n, 2, oo)) is oo def test_matrix_sum(): A = Matrix([[0, 1], [n, 0]]) result = Sum(A, (n, 0, 3)).doit() assert result == Matrix([[0, 4], [6, 0]]) assert result.__class__ == ImmutableDenseMatrix A = SparseMatrix([[0, 1], [n, 0]]) result = Sum(A, (n, 0, 3)).doit() assert result.__class__ == ImmutableSparseMatrix def test_failing_matrix_sum(): n = Symbol('n') # TODO Implement matrix geometric series summation. A = Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 0]]) assert Sum(A ** n, (n, 1, 4)).doit() == \ Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) # issue sympy/sympy#16989 assert summation(A**n, (n, 1, 1)) == A def test_indexed_idx_sum(): i = symbols('i', cls=Idx) r = Indexed('r', i) assert Sum(r, (i, 0, 3)).doit() == sum([r.xreplace({i: j}) for j in range(4)]) assert Product(r, (i, 0, 3)).doit() == prod([r.xreplace({i: j}) for j in range(4)]) j = symbols('j', integer=True) assert Sum(r, (i, j, j+2)).doit() == sum([r.xreplace({i: j+k}) for k in range(3)]) assert Product(r, (i, j, j+2)).doit() == prod([r.xreplace({i: j+k}) for k in range(3)]) k = Idx('k', range=(1, 3)) A = IndexedBase('A') assert Sum(A[k], k).doit() == sum([A[Idx(j, (1, 3))] for j in range(1, 4)]) assert Product(A[k], k).doit() == prod([A[Idx(j, (1, 3))] for j in range(1, 4)]) raises(ValueError, lambda: Sum(A[k], (k, 1, 4))) raises(ValueError, lambda: Sum(A[k], (k, 0, 3))) raises(ValueError, lambda: Sum(A[k], (k, 2, oo))) raises(ValueError, lambda: Product(A[k], (k, 1, 4))) raises(ValueError, lambda: Product(A[k], (k, 0, 3))) raises(ValueError, lambda: Product(A[k], (k, 2, oo))) def test_is_convergent(): # divergence tests -- assert Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() is S.false assert Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() is S.false assert Sum(3**(-2*n - 1)*n**n, (n, 1, oo)).is_convergent() is S.false assert Sum((-1)**n*n, (n, 3, oo)).is_convergent() is S.false assert Sum((-1)**n, (n, 1, oo)).is_convergent() is S.false assert Sum(log(1/n), (n, 2, oo)).is_convergent() is S.false # Raabe's test -- assert Sum(Product((3*m),(m,1,n))/Product((3*m+4),(m,1,n)),(n,1,oo)).is_convergent() is S.true # root test -- assert Sum((-12)**n/n, (n, 1, oo)).is_convergent() is S.false # integral test -- # p-series test -- assert Sum(1/(n**2 + 1), (n, 1, oo)).is_convergent() is S.true assert Sum(1/n**Rational(6, 5), (n, 1, oo)).is_convergent() is S.true assert Sum(2/(n*sqrt(n - 1)), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(sqrt(n)*sqrt(n)), (n, 2, oo)).is_convergent() is S.false assert Sum(factorial(n) / factorial(n+2), (n, 1, oo)).is_convergent() is S.true assert Sum(rf(5,n)/rf(7,n),(n,1,oo)).is_convergent() is S.true assert Sum((rf(1, n)*rf(2, n))/(rf(3, n)*factorial(n)),(n,1,oo)).is_convergent() is S.false # comparison test -- assert Sum(1/(n + log(n)), (n, 1, oo)).is_convergent() is S.false assert Sum(1/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(n*log(n)), (n, 2, oo)).is_convergent() is S.false assert Sum(2/(n*log(n)*log(log(n))**2), (n, 5, oo)).is_convergent() is S.true assert Sum(2/(n*log(n)**2), (n, 2, oo)).is_convergent() is S.true assert Sum((n - 1)/(n**2*log(n)**3), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(n*log(n)*log(log(n))), (n, 5, oo)).is_convergent() is S.false assert Sum((n - 1)/(n*log(n)**3), (n, 3, oo)).is_convergent() is S.false assert Sum(2/(n**2*log(n)), (n, 2, oo)).is_convergent() is S.true assert Sum(1/(n*sqrt(log(n))*log(log(n))), (n, 100, oo)).is_convergent() is S.false assert Sum(log(log(n))/(n*log(n)**2), (n, 100, oo)).is_convergent() is S.true assert Sum(log(n)/n**2, (n, 5, oo)).is_convergent() is S.true # alternating series tests -- assert Sum((-1)**(n - 1)/(n**2 - 1), (n, 3, oo)).is_convergent() is S.true # with -negativeInfinite Limits assert Sum(1/(n**2 + 1), (n, -oo, 1)).is_convergent() is S.true assert Sum(1/(n - 1), (n, -oo, -1)).is_convergent() is S.false assert Sum(1/(n**2 - 1), (n, -oo, -5)).is_convergent() is S.true assert Sum(1/(n**2 - 1), (n, -oo, 2)).is_convergent() is S.true assert Sum(1/(n**2 - 1), (n, -oo, oo)).is_convergent() is S.true # piecewise functions f = Piecewise((n**(-2), n <= 1), (n**2, n > 1)) assert Sum(f, (n, 1, oo)).is_convergent() is S.false assert Sum(f, (n, -oo, oo)).is_convergent() is S.false assert Sum(f, (n, 1, 100)).is_convergent() is S.true #assert Sum(f, (n, -oo, 1)).is_convergent() is S.true # integral test assert Sum(log(n)/n**3, (n, 1, oo)).is_convergent() is S.true assert Sum(-log(n)/n**3, (n, 1, oo)).is_convergent() is S.true # the following function has maxima located at (x, y) = # (1.2, 0.43), (3.0, -0.25) and (6.8, 0.050) eq = (x - 2)*(x**2 - 6*x + 4)*exp(-x) assert Sum(eq, (x, 1, oo)).is_convergent() is S.true assert Sum(eq, (x, 1, 2)).is_convergent() is S.true assert Sum(1/(x**3), (x, 1, oo)).is_convergent() is S.true assert Sum(1/(x**S.Half), (x, 1, oo)).is_convergent() is S.false # issue 19545 assert Sum(1/n - 3/(3*n +2), (n, 1, oo)).is_convergent() is S.true # issue 19836 assert Sum(4/(n + 2) - 5/(n + 1) + 1/n,(n, 7, oo)).is_convergent() is S.true def test_is_absolutely_convergent(): assert Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() is S.false assert Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() is S.true @XFAIL def test_convergent_failing(): # dirichlet tests assert Sum(sin(n)/n, (n, 1, oo)).is_convergent() is S.true assert Sum(sin(2*n)/n, (n, 1, oo)).is_convergent() is S.true def test_issue_6966(): i, k, m = symbols('i k m', integer=True) z_i, q_i = symbols('z_i q_i') a_k = Sum(-q_i*z_i/k,(i,1,m)) b_k = a_k.diff(z_i) assert isinstance(b_k, Sum) assert b_k == Sum(-q_i/k,(i,1,m)) def test_issue_10156(): cx = Sum(2*y**2*x, (x, 1,3)) e = 2*y*Sum(2*cx*x**2, (x, 1, 9)) assert e.factor() == \ 8*y**3*Sum(x, (x, 1, 3))*Sum(x**2, (x, 1, 9)) def test_issue_10973(): assert Sum((-n + (n**3 + 1)**(S(1)/3))/log(n), (n, 1, oo)).is_convergent() is S.true def test_issue_14129(): assert Sum( k*x**k, (k, 0, n-1)).doit() == \ Piecewise((n**2/2 - n/2, Eq(x, 1)), ((n*x*x**n - n*x**n - x*x**n + x)/(x - 1)**2, True)) assert Sum( x**k, (k, 0, n-1)).doit() == \ Piecewise((n, Eq(x, 1)), ((-x**n + 1)/(-x + 1), True)) assert Sum( k*(x/y+x)**k, (k, 0, n-1)).doit() == \ Piecewise((n*(n - 1)/2, Eq(x, y/(y + 1))), (x*(y + 1)*(n*x*y*(x + x/y)**n/(x + x/y) + n*x*(x + x/y)**n/(x + x/y) - n*y*(x + x/y)**n/(x + x/y) - x*y*(x + x/y)**n/(x + x/y) - x*(x + x/y)**n/(x + x/y) + y)/(x*y + x - y)**2, True)) def test_issue_14112(): assert Sum((-1)**n/sqrt(n), (n, 1, oo)).is_absolutely_convergent() is S.false assert Sum((-1)**(2*n)/n, (n, 1, oo)).is_convergent() is S.false assert Sum((-2)**n + (-3)**n, (n, 1, oo)).is_convergent() is S.false def test_sin_times_absolutely_convergent(): assert Sum(sin(n) / n**3, (n, 1, oo)).is_convergent() is S.true assert Sum(sin(n) * log(n) / n**3, (n, 1, oo)).is_convergent() is S.true def test_issue_14111(): assert Sum(1/log(log(n)), (n, 22, oo)).is_convergent() is S.false def test_issue_14484(): raises(NotImplementedError, lambda: Sum(sin(n)/log(log(n)), (n, 22, oo)).is_convergent()) def test_issue_14640(): i, n = symbols("i n", integer=True) a, b, c = symbols("a b c") assert Sum(a**-i/(a - b), (i, 0, n)).doit() == Sum( 1/(a*a**i - a**i*b), (i, 0, n)).doit() == Piecewise( (n + 1, Eq(1/a, 1)), ((-a**(-n - 1) + 1)/(1 - 1/a), True))/(a - b) assert Sum((b*a**i - c*a**i)**-2, (i, 0, n)).doit() == Piecewise( (n + 1, Eq(a**(-2), 1)), ((-a**(-2*n - 2) + 1)/(1 - 1/a**2), True))/(b - c)**2 s = Sum(i*(a**(n - i) - b**(n - i))/(a - b), (i, 0, n)).doit() assert not s.has(Sum) assert s.subs({a: 2, b: 3, n: 5}) == 122 def test_issue_15943(): s = Sum(binomial(n, k)*factorial(n - k), (k, 0, n)).doit().rewrite(gamma) assert s == -E*(n + 1)*gamma(n + 1)*lowergamma(n + 1, 1)/gamma(n + 2 ) + E*gamma(n + 1) assert s.simplify() == E*(factorial(n) - lowergamma(n + 1, 1)) def test_Sum_dummy_eq(): assert not Sum(x, (x, a, b)).dummy_eq(1) assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b), (a, 1, 2))) assert not Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, c))) assert Sum(x, (x, a, b)).dummy_eq(Sum(x, (x, a, b))) d = Dummy() assert Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c)), c) assert not Sum(x, (x, a, d)).dummy_eq(Sum(x, (x, a, c))) assert Sum(x, (x, a, c)).dummy_eq(Sum(y, (y, a, c))) assert Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c)), c) assert not Sum(x, (x, a, d)).dummy_eq(Sum(y, (y, a, c))) def test_issue_15852(): assert summation(x**y*y, (y, -oo, oo)).doit() == Sum(x**y*y, (y, -oo, oo)) def test_exceptions(): S = Sum(x, (x, a, b)) raises(ValueError, lambda: S.change_index(x, x**2, y)) S = Sum(x, (x, a, b), (x, 1, 4)) raises(ValueError, lambda: S.index(x)) S = Sum(x, (x, a, b), (y, 1, 4)) raises(ValueError, lambda: S.reorder([x])) S = Sum(x, (x, y, b), (y, 1, 4)) raises(ReorderError, lambda: S.reorder_limit(0, 1)) S = Sum(x*y, (x, a, b), (y, 1, 4)) raises(NotImplementedError, lambda: S.is_convergent()) def test_sumproducts_assumptions(): M = Symbol('M', integer=True, positive=True) m = Symbol('m', integer=True) for func in [Sum, Product]: assert func(m, (m, -M, M)).is_positive is None assert func(m, (m, -M, M)).is_nonpositive is None assert func(m, (m, -M, M)).is_negative is None assert func(m, (m, -M, M)).is_nonnegative is None assert func(m, (m, -M, M)).is_finite is True m = Symbol('m', integer=True, nonnegative=True) for func in [Sum, Product]: assert func(m, (m, 0, M)).is_positive is None assert func(m, (m, 0, M)).is_nonpositive is None assert func(m, (m, 0, M)).is_negative is False assert func(m, (m, 0, M)).is_nonnegative is True assert func(m, (m, 0, M)).is_finite is True m = Symbol('m', integer=True, positive=True) for func in [Sum, Product]: assert func(m, (m, 1, M)).is_positive is True assert func(m, (m, 1, M)).is_nonpositive is False assert func(m, (m, 1, M)).is_negative is False assert func(m, (m, 1, M)).is_nonnegative is True assert func(m, (m, 1, M)).is_finite is True m = Symbol('m', integer=True, negative=True) assert Sum(m, (m, -M, -1)).is_positive is False assert Sum(m, (m, -M, -1)).is_nonpositive is True assert Sum(m, (m, -M, -1)).is_negative is True assert Sum(m, (m, -M, -1)).is_nonnegative is False assert Sum(m, (m, -M, -1)).is_finite is True assert Product(m, (m, -M, -1)).is_positive is None assert Product(m, (m, -M, -1)).is_nonpositive is None assert Product(m, (m, -M, -1)).is_negative is None assert Product(m, (m, -M, -1)).is_nonnegative is None assert Product(m, (m, -M, -1)).is_finite is True m = Symbol('m', integer=True, nonpositive=True) assert Sum(m, (m, -M, 0)).is_positive is False assert Sum(m, (m, -M, 0)).is_nonpositive is True assert Sum(m, (m, -M, 0)).is_negative is None assert Sum(m, (m, -M, 0)).is_nonnegative is None assert Sum(m, (m, -M, 0)).is_finite is True assert Product(m, (m, -M, 0)).is_positive is None assert Product(m, (m, -M, 0)).is_nonpositive is None assert Product(m, (m, -M, 0)).is_negative is None assert Product(m, (m, -M, 0)).is_nonnegative is None assert Product(m, (m, -M, 0)).is_finite is True m = Symbol('m', integer=True) assert Sum(2, (m, 0, oo)).is_positive is None assert Sum(2, (m, 0, oo)).is_nonpositive is None assert Sum(2, (m, 0, oo)).is_negative is None assert Sum(2, (m, 0, oo)).is_nonnegative is None assert Sum(2, (m, 0, oo)).is_finite is None assert Product(2, (m, 0, oo)).is_positive is None assert Product(2, (m, 0, oo)).is_nonpositive is None assert Product(2, (m, 0, oo)).is_negative is False assert Product(2, (m, 0, oo)).is_nonnegative is None assert Product(2, (m, 0, oo)).is_finite is None assert Product(0, (x, M, M-1)).is_positive is True assert Product(0, (x, M, M-1)).is_finite is True def test_expand_with_assumptions(): M = Symbol('M', integer=True, positive=True) x = Symbol('x', positive=True) m = Symbol('m', nonnegative=True) assert log(Product(x**m, (m, 0, M))).expand() == Sum(m*log(x), (m, 0, M)) assert log(Product(exp(x**m), (m, 0, M))).expand() == Sum(x**m, (m, 0, M)) assert log(Product(x**m, (m, 0, M))).rewrite(Sum).expand() == Sum(m*log(x), (m, 0, M)) assert log(Product(exp(x**m), (m, 0, M))).rewrite(Sum).expand() == Sum(x**m, (m, 0, M)) n = Symbol('n', nonnegative=True) i, j = symbols('i,j', positive=True, integer=True) x, y = symbols('x,y', positive=True) assert log(Product(x**i*y**j, (i, 1, n), (j, 1, m))).expand() \ == Sum(i*log(x) + j*log(y), (i, 1, n), (j, 1, m)) def test_has_finite_limits(): x = Symbol('x') assert Sum(1, (x, 1, 9)).has_finite_limits is True assert Sum(1, (x, 1, oo)).has_finite_limits is False M = Symbol('M') assert Sum(1, (x, 1, M)).has_finite_limits is None M = Symbol('M', positive=True) assert Sum(1, (x, 1, M)).has_finite_limits is True x = Symbol('x', positive=True) M = Symbol('M') assert Sum(1, (x, 1, M)).has_finite_limits is True assert Sum(1, (x, 1, M), (y, -oo, oo)).has_finite_limits is False def test_has_reversed_limits(): assert Sum(1, (x, 1, 1)).has_reversed_limits is False assert Sum(1, (x, 1, 9)).has_reversed_limits is False assert Sum(1, (x, 1, -9)).has_reversed_limits is True assert Sum(1, (x, 1, 0)).has_reversed_limits is True assert Sum(1, (x, 1, oo)).has_reversed_limits is False M = Symbol('M') assert Sum(1, (x, 1, M)).has_reversed_limits is None M = Symbol('M', positive=True, integer=True) assert Sum(1, (x, 1, M)).has_reversed_limits is False assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is False M = Symbol('M', negative=True) assert Sum(1, (x, 1, M)).has_reversed_limits is True assert Sum(1, (x, 1, M), (y, -oo, oo)).has_reversed_limits is True assert Sum(1, (x, oo, oo)).has_reversed_limits is None def test_has_empty_sequence(): assert Sum(1, (x, 1, 1)).has_empty_sequence is False assert Sum(1, (x, 1, 9)).has_empty_sequence is False assert Sum(1, (x, 1, -9)).has_empty_sequence is False assert Sum(1, (x, 1, 0)).has_empty_sequence is True assert Sum(1, (x, y, y - 1)).has_empty_sequence is True assert Sum(1, (x, 3, 2), (y, -oo, oo)).has_empty_sequence is True assert Sum(1, (y, -oo, oo), (x, 3, 2)).has_empty_sequence is True assert Sum(1, (x, oo, oo)).has_empty_sequence is False def test_empty_sequence(): assert Product(x*y, (x, -oo, oo), (y, 1, 0)).doit() == 1 assert Product(x*y, (y, 1, 0), (x, -oo, oo)).doit() == 1 assert Sum(x, (x, -oo, oo), (y, 1, 0)).doit() == 0 assert Sum(x, (y, 1, 0), (x, -oo, oo)).doit() == 0 def test_issue_8016(): k = Symbol('k', integer=True) n, m = symbols('n, m', integer=True, positive=True) s = Sum(binomial(m, k)*binomial(m, n - k)*(-1)**k, (k, 0, n)) assert s.doit().simplify() == \ cos(pi*n/2)*gamma(m + 1)/gamma(n/2 + 1)/gamma(m - n/2 + 1) def test_issue_14313(): assert Sum(S.Half**floor(n/2), (n, 1, oo)).is_convergent() def test_issue_14563(): # The assertion was failing due to no assumptions methods in Sums and Product assert 1 % Sum(1, (x, 0, 1)) == 1 def test_issue_16735(): assert Sum(5**n/gamma(n+1), (n, 1, oo)).is_convergent() is S.true def test_issue_14871(): assert Sum((Rational(1, 10))**n*rf(0, n)/factorial(n), (n, 0, oo)).rewrite(factorial).doit() == 1 def test_issue_17165(): n = symbols("n", integer=True) x = symbols('x') s = (x*Sum(x**n, (n, -1, oo))) ssimp = s.doit().simplify() assert ssimp == Piecewise((-1/(x - 1), Abs(x) < 1), (x*Sum(x**n, (n, -1, oo)), True)) assert ssimp == ssimp.simplify() def test_issue_19379(): assert Sum(factorial(n)/factorial(n + 2), (n, 1, oo)).is_convergent() is S.true def test_issue_20777(): assert Sum(exp(x*sin(n/m)), (n, 1, m)).doit() == Sum(exp(x*sin(n/m)), (n, 1, m)) def test__dummy_with_inherited_properties_concrete(): x = Symbol('x') from sympy import Tuple d = _dummy_with_inherited_properties_concrete(Tuple(x, 0, 5)) assert d.is_real assert d.is_integer assert d.is_nonnegative assert d.is_extended_nonnegative d = _dummy_with_inherited_properties_concrete(Tuple(x, 1, 9)) assert d.is_real assert d.is_integer assert d.is_positive assert d.is_odd is None d = _dummy_with_inherited_properties_concrete(Tuple(x, -5, 5)) assert d.is_real assert d.is_integer assert d.is_positive is None assert d.is_extended_nonnegative is None assert d.is_odd is None d = _dummy_with_inherited_properties_concrete(Tuple(x, -1.5, 1.5)) assert d.is_real assert d.is_integer is None assert d.is_positive is None assert d.is_extended_nonnegative is None N = Symbol('N', integer=True, positive=True) d = _dummy_with_inherited_properties_concrete(Tuple(x, 2, N)) assert d.is_real assert d.is_positive assert d.is_integer # Return None if no assumptions are added N = Symbol('N', integer=True, positive=True) d = _dummy_with_inherited_properties_concrete(Tuple(N, 2, 4)) assert d is None x = Symbol('x', negative=True) raises(InconsistentAssumptions, lambda: _dummy_with_inherited_properties_concrete(Tuple(x, 1, 5))) def test_matrixsymbol_summation_numerical_limits(): A = MatrixSymbol('A', 3, 3) n = Symbol('n', integer=True) assert Sum(A**n, (n, 0, 2)).doit() == Identity(3) + A + A**2 assert Sum(A, (n, 0, 2)).doit() == 3*A assert Sum(n*A, (n, 0, 2)).doit() == 3*A B = Matrix([[0, n, 0], [-1, 0, 0], [0, 0, 2]]) ans = Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) + 4*A assert Sum(A+B, (n, 0, 3)).doit() == ans ans = A*Matrix([[0, 6, 0], [-4, 0, 0], [0, 0, 8]]) assert Sum(A*B, (n, 0, 3)).doit() == ans ans = (A**2*Matrix([[-2, 0, 0], [0,-2, 0], [0, 0, 4]]) + A**3*Matrix([[0, -9, 0], [3, 0, 0], [0, 0, 8]]) + A*Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 2]])) assert Sum(A**n*B**n, (n, 1, 3)).doit() == ans @XFAIL def test_matrixsymbol_summation_symbolic_limits(): N = Symbol('N', integer=True, positive=True) A = MatrixSymbol('A', 3, 3) n = Symbol('n', integer=True) assert Sum(A, (n, 0, N)).doit() == (N+1)*A assert Sum(n*A, (n, 0, N)).doit() == (N**2/2+N/2)*A def test_summation_by_residues(): x = Symbol('x') # Examples from Nakhle H. Asmar, Loukas Grafakos, # Complex Analysis with Applications assert eval_sum_residue(1 / (x**2 + 1), (x, -oo, oo)) == pi/tanh(pi) assert eval_sum_residue(1 / x**6, (x, S(1), oo)) == pi**6/945 assert eval_sum_residue(1 / (x**2 + 9), (x, -oo, oo)) == pi/(3*tanh(3*pi)) assert eval_sum_residue(1 / (x**2 + 1)**2, (x, -oo, oo)) == \ -pi*(-pi/(2*tanh(pi)**2) - 1/(2*tanh(pi)) + pi/2) assert eval_sum_residue(x**2 / (x**2 + 1)**2, (x, -oo, oo)) == \ -pi*(-pi/2 - 1/(2*tanh(pi)) + pi/(2*tanh(pi)**2)) assert eval_sum_residue(1 / (4*x**2 - 1), (x, -oo, oo)) == 0 assert eval_sum_residue(x**2 / (x**2 - S(1)/4)**2, (x, -oo, oo)) == pi**2/2 assert eval_sum_residue(1 / (4*x**2 - 1)**2, (x, -oo, oo)) == pi**2/8 assert eval_sum_residue(1 / ((x - S(1)/2)**2 + 1), (x, -oo, oo)) == pi*tanh(pi) assert eval_sum_residue(1 / x**2, (x, S(1), oo)) == pi**2/6 assert eval_sum_residue(1 / x**4, (x, S(1), oo)) == pi**4/90 assert eval_sum_residue(1 / x**2 / (x**2 + 4), (x, S(1), oo)) == \ -pi*(-pi/12 - 1/(16*pi) + 1/(8*tanh(2*pi)))/2 # Some examples made from 1 / (x**2 + 1) assert eval_sum_residue(1 / (x**2 + 1), (x, S(0), oo)) == \ S(1)/2 + pi/(2*tanh(pi)) assert eval_sum_residue(1 / (x**2 + 1), (x, S(1), oo)) == \ -S(1)/2 + pi/(2*tanh(pi)) assert eval_sum_residue(1 / (x**2 + 1), (x, S(-1), oo)) == \ 1 + pi/(2*tanh(pi)) assert eval_sum_residue((-1)**x / (x**2 + 1), (x, -oo, oo)) == \ pi/sinh(pi) assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(0), oo)) == \ pi/(2*sinh(pi)) + S(1)/2 assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(1), oo)) == \ -S(1)/2 + pi/(2*sinh(pi)) assert eval_sum_residue((-1)**x / (x**2 + 1), (x, S(-1), oo)) == \ pi/(2*sinh(pi)) # Some examples made from shifting of 1 / (x**2 + 1) assert eval_sum_residue(1 / (x**2 + 2*x + 2), (x, S(-1), oo)) == S(1)/2 + pi/(2*tanh(pi)) assert eval_sum_residue(1 / (x**2 + 4*x + 5), (x, S(-2), oo)) == S(1)/2 + pi/(2*tanh(pi)) assert eval_sum_residue(1 / (x**2 - 2*x + 2), (x, S(1), oo)) == S(1)/2 + pi/(2*tanh(pi)) assert eval_sum_residue(1 / (x**2 - 4*x + 5), (x, S(2), oo)) == S(1)/2 + pi/(2*tanh(pi)) assert eval_sum_residue((-1)**x * -1 / (x**2 + 2*x + 2), (x, S(-1), oo)) == S(1)/2 + pi/(2*sinh(pi)) assert eval_sum_residue((-1)**x * -1 / (x**2 -2*x + 2), (x, S(1), oo)) == S(1)/2 + pi/(2*sinh(pi)) # Some examples made from 1 / x**2 assert eval_sum_residue(1 / x**2, (x, S(2), oo)) == -1 + pi**2/6 assert eval_sum_residue(1 / x**2, (x, S(3), oo)) == -S(5)/4 + pi**2/6 assert eval_sum_residue((-1)**x / x**2, (x, S(1), oo)) == -pi**2/12 assert eval_sum_residue((-1)**x / x**2, (x, S(2), oo)) == 1 - pi**2/12 def test_summation_by_residues_failing(): x = Symbol('x') # Failing because of the bug in residue computation assert eval_sum_residue(x**2 / (x**4 + 1), (x, S(1), oo)) assert eval_sum_residue(1 / ((x - 1)*(x - 2) + 1), (x, -oo, oo)) != 0
a2ef11f019ef1703e327fc3a85dc7f467327f1712dc2031f0ef0d320a81f1c44
from sympy import sin, cos, exp, E, series, oo, S, Derivative, O, Integral, \ Function, PoleError, log, sqrt, N, Symbol, Subs, pi, symbols, atan, LambertW, Rational from sympy.abc import x, y, n, k from sympy.testing.pytest import raises from sympy.series.gruntz import calculate_series def test_sin(): e1 = sin(x).series(x, 0) e2 = series(sin(x), x, 0) assert e1 == e2 def test_cos(): e1 = cos(x).series(x, 0) e2 = series(cos(x), x, 0) assert e1 == e2 def test_exp(): e1 = exp(x).series(x, 0) e2 = series(exp(x), x, 0) assert e1 == e2 def test_exp2(): e1 = exp(cos(x)).series(x, 0) e2 = series(exp(cos(x)), x, 0) assert e1 == e2 def test_issue_5223(): assert series(1, x) == 1 assert next(S.Zero.lseries(x)) == 0 assert cos(x).series() == cos(x).series(x) raises(ValueError, lambda: cos(x + y).series()) raises(ValueError, lambda: x.series(dir="")) assert (cos(x).series(x, 1) - cos(x + 1).series(x).subs(x, x - 1)).removeO() == 0 e = cos(x).series(x, 1, n=None) assert [next(e) for i in range(2)] == [cos(1), -((x - 1)*sin(1))] e = cos(x).series(x, 1, n=None, dir='-') assert [next(e) for i in range(2)] == [cos(1), (1 - x)*sin(1)] # the following test is exact so no need for x -> x - 1 replacement assert abs(x).series(x, 1, dir='-') == x assert exp(x).series(x, 1, dir='-', n=3).removeO() == \ E - E*(-x + 1) + E*(-x + 1)**2/2 D = Derivative assert D(x**2 + x**3*y**2, x, 2, y, 1).series(x).doit() == 12*x*y assert next(D(cos(x), x).lseries()) == D(1, x) assert D( exp(x), x).series(n=3) == D(1, x) + D(x, x) + D(x**2/2, x) + D(x**3/6, x) + O(x**3) assert Integral(x, (x, 1, 3), (y, 1, x)).series(x) == -4 + 4*x assert (1 + x + O(x**2)).getn() == 2 assert (1 + x).getn() is None raises(PoleError, lambda: ((1/sin(x))**oo).series()) logx = Symbol('logx') assert ((sin(x))**y).nseries(x, n=1, logx=logx) == \ exp(y*logx) + O(x*exp(y*logx), x) assert sin(1/x).series(x, oo, n=5) == 1/x - 1/(6*x**3) + O(x**(-5), (x, oo)) assert abs(x).series(x, oo, n=5, dir='+') == x assert abs(x).series(x, -oo, n=5, dir='-') == -x assert abs(-x).series(x, oo, n=5, dir='+') == x assert abs(-x).series(x, -oo, n=5, dir='-') == -x assert exp(x*log(x)).series(n=3) == \ 1 + x*log(x) + x**2*log(x)**2/2 + O(x**3*log(x)**3) # XXX is this right? If not, fix "ngot > n" handling in expr. p = Symbol('p', positive=True) assert exp(sqrt(p)**3*log(p)).series(n=3) == \ 1 + p**S('3/2')*log(p) + O(p**3*log(p)**3) assert exp(sin(x)*log(x)).series(n=2) == 1 + x*log(x) + O(x**2*log(x)**2) def test_issue_11313(): assert Integral(cos(x), x).series(x) == sin(x).series(x) assert Derivative(sin(x), x).series(x, n=3).doit() == cos(x).series(x, n=3) assert Derivative(x**3, x).as_leading_term(x) == 3*x**2 assert Derivative(x**3, y).as_leading_term(x) == 0 assert Derivative(sin(x), x).as_leading_term(x) == 1 assert Derivative(cos(x), x).as_leading_term(x) == -x # This result is equivalent to zero, zero is not return because # `Expr.series` doesn't currently detect an `x` in its `free_symbol`s. assert Derivative(1, x).as_leading_term(x) == Derivative(1, x) assert Derivative(exp(x), x).series(x).doit() == exp(x).series(x) assert 1 + Integral(exp(x), x).series(x) == exp(x).series(x) assert Derivative(log(x), x).series(x).doit() == (1/x).series(x) assert Integral(log(x), x).series(x) == Integral(log(x), x).doit().series(x).removeO() def test_series_of_Subs(): from sympy.abc import x, y, z subs1 = Subs(sin(x), x, y) subs2 = Subs(sin(x) * cos(z), x, y) subs3 = Subs(sin(x * z), (x, z), (y, x)) assert subs1.series(x) == subs1 subs1_series = (Subs(x, x, y) + Subs(-x**3/6, x, y) + Subs(x**5/120, x, y) + O(y**6)) assert subs1.series() == subs1_series assert subs1.series(y) == subs1_series assert subs1.series(z) == subs1 assert subs2.series(z) == (Subs(z**4*sin(x)/24, x, y) + Subs(-z**2*sin(x)/2, x, y) + Subs(sin(x), x, y) + O(z**6)) assert subs3.series(x).doit() == subs3.doit().series(x) assert subs3.series(z).doit() == sin(x*y) raises(ValueError, lambda: Subs(x + 2*y, y, z).series()) assert Subs(x + y, y, z).series(x).doit() == x + z def test_issue_3978(): f = Function('f') assert f(x).series(x, 0, 3, dir='-') == \ f(0) + x*Subs(Derivative(f(x), x), x, 0) + \ x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3) assert f(x).series(x, 0, 3) == \ f(0) + x*Subs(Derivative(f(x), x), x, 0) + \ x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3) assert f(x**2).series(x, 0, 3) == \ f(0) + x**2*Subs(Derivative(f(x), x), x, 0) + O(x**3) assert f(x**2+1).series(x, 0, 3) == \ f(1) + x**2*Subs(Derivative(f(x), x), x, 1) + O(x**3) class TestF(Function): pass assert TestF(x).series(x, 0, 3) == TestF(0) + \ x*Subs(Derivative(TestF(x), x), x, 0) + \ x**2*Subs(Derivative(TestF(x), x, x), x, 0)/2 + O(x**3) from sympy.series.acceleration import richardson, shanks from sympy import Sum, Integer def test_acceleration(): e = (1 + 1/n)**n assert round(richardson(e, n, 10, 20).evalf(), 10) == round(E.evalf(), 10) A = Sum(Integer(-1)**(k + 1) / k, (k, 1, n)) assert round(shanks(A, n, 25).evalf(), 4) == round(log(2).evalf(), 4) assert round(shanks(A, n, 25, 5).evalf(), 10) == round(log(2).evalf(), 10) def test_issue_5852(): assert series(1/cos(x/log(x)), x, 0) == 1 + x**2/(2*log(x)**2) + \ 5*x**4/(24*log(x)**4) + O(x**6) def test_issue_4583(): assert cos(1 + x + x**2).series(x, 0, 5) == cos(1) - x*sin(1) + \ x**2*(-sin(1) - cos(1)/2) + x**3*(-cos(1) + sin(1)/6) + \ x**4*(-11*cos(1)/24 + sin(1)/2) + O(x**5) def test_issue_6318(): eq = (1/x)**Rational(2, 3) assert (eq + 1).as_leading_term(x) == eq def test_x_is_base_detection(): eq = (x**2)**Rational(2, 3) assert eq.series() == x**Rational(4, 3) def test_sin_power(): e = sin(x)**1.2 assert calculate_series(e, x) == x**1.2 def test_issue_7203(): assert series(cos(x), x, pi, 3) == \ -1 + (x - pi)**2/2 + O((x - pi)**3, (x, pi)) def test_exp_product_positive_factors(): a, b = symbols('a, b', positive=True) x = a * b assert series(exp(x), x, n=8) == 1 + a*b + a**2*b**2/2 + \ a**3*b**3/6 + a**4*b**4/24 + a**5*b**5/120 + a**6*b**6/720 + \ a**7*b**7/5040 + O(a**8*b**8, a, b) def test_issue_8805(): assert series(1, n=8) == 1 def test_issue_9549(): y = (x**2 + x + 1) / (x**3 + x**2) assert series(y, x, oo) == x**(-5) - 1/x**4 + x**(-3) + 1/x + O(x**(-6), (x, oo)) def test_issue_10761(): assert series(1/(x**-2 + x**-3), x, 0) == x**3 - x**4 + x**5 + O(x**6) def test_issue_12578(): y = (1 - 1/(x/2 - 1/(2*x))**4)**(S(1)/8) assert y.series(x, 0, n=17) == 1 - 2*x**4 - 8*x**6 - 34*x**8 - 152*x**10 - 714*x**12 - \ 3472*x**14 - 17318*x**16 + O(x**17) def test_issue_12791(): beta = symbols('beta', real=True, positive=True) theta, varphi = symbols('theta varphi', real=True) expr = (-beta**2*varphi*sin(theta) + beta**2*cos(theta) + \ beta*varphi*sin(theta) - beta*cos(theta) - beta + 1)/(beta*cos(theta) - 1)**2 sol = 0.5/(0.5*cos(theta) - 1.0)**2 - 0.25*cos(theta)/(0.5*cos(theta)\ - 1.0)**2 + (beta - 0.5)*(-0.25*varphi*sin(2*theta) - 1.5*cos(theta)\ + 0.25*cos(2*theta) + 1.25)/(0.5*cos(theta) - 1.0)**3\ + 0.25*varphi*sin(theta)/(0.5*cos(theta) - 1.0)**2 + O((beta - 0.5)**2, (beta, 0.5)) assert expr.series(beta, 0.5, 2).trigsimp() == sol def test_issue_14885(): assert series(x**Rational(-3, 2)*exp(x), x, 0) == (x**Rational(-3, 2) + 1/sqrt(x) + sqrt(x)/2 + x**Rational(3, 2)/6 + x**Rational(5, 2)/24 + x**Rational(7, 2)/120 + x**Rational(9, 2)/720 + x**Rational(11, 2)/5040 + O(x**6)) def test_issue_15539(): assert series(atan(x), x, -oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2 + O(x**(-6), (x, -oo))) assert series(atan(x), x, oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2 + O(x**(-6), (x, oo))) def test_issue_7259(): assert series(LambertW(x), x) == x - x**2 + 3*x**3/2 - 8*x**4/3 + 125*x**5/24 + O(x**6) assert series(LambertW(x**2), x, n=8) == x**2 - x**4 + 3*x**6/2 + O(x**8) assert series(LambertW(sin(x)), x, n=4) == x - x**2 + 4*x**3/3 + O(x**4) def test_issue_11884(): assert cos(x).series(x, 1, n=1) == cos(1) + O(x - 1, (x, 1)) def test_issue_18008(): y = x*(1 + x*(1 - x))/((1 + x*(1 - x)) - (1 - x)*(1 - x)) assert y.series(x, oo, n=4) == -9/(32*x**3) - 3/(16*x**2) - 1/(8*x) + S(1)/4 + x/2 + \ O(x**(-4), (x, oo)) def test_issue_18842(): f = log(x/(1 - x)) assert f.series(x, 0.491, n=1).removeO().nsimplify() == \ -S(180019443780011)/5000000000000000 def test_issue_19534(): dt = symbols('dt', real=True) expr = 16*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0)/45 + \ 49*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \ 0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \ 0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) + 0.051640768506639183825*dt + \ dt*(1/2 - sqrt(21)/14) + 1.0)/180 + 49*dt*(-0.23637909581542530626*dt*(2.0*dt + 1.0) - \ 0.74817562366625959291*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.88085458023927036857*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) + \ 2.1165151389911680013*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \ 0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \ 0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) - \ 1.1854881643947648988*dt + dt*(sqrt(21)/14 + 1/2) + 1.0)/180 + \ dt*(0.66666666666666666667*dt*(2.0*dt + 1.0) + \ 6.0173399699313066769*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \ 4.1117044797036320069*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) - \ 7.0189140975801991157*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \ 0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \ 0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) + \ 0.94010945196161777522*dt*(-0.23637909581542530626*dt*(2.0*dt + 1.0) - \ 0.74817562366625959291*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.88085458023927036857*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) + \ 2.1165151389911680013*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \ 0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \ 0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \ 0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \ 0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) - \ 0.35816132904077632692*dt + 1.0) + 5.5065024887242400038*dt + 1.0)/20 + dt/20 + 1 assert N(expr.series(dt, 0, 8), 20) == -0.00092592592592592596126*dt**7 + 0.0027777777777777783175*dt**6 + \ 0.016666666666666656027*dt**5 + 0.083333333333333300952*dt**4 + 0.33333333333333337034*dt**3 + \ 1.0*dt**2 + 1.0*dt + 1.0 def test_issue_11407(): a, b, c, x = symbols('a b c x') assert series(sqrt(a + b + c*x), x, 0, 1) == sqrt(a + b) + O(x) assert series(sqrt(a + b + c + c*x), x, 0, 1) == sqrt(a + b + c) + O(x) def test_issue_14037(): assert (sin(x**50)/x**51).series(x, n=0) == 1/x + O(1, x) def test_issue_20551(): expr = (exp(x)/x).series(x, n=None) terms = [ next(expr) for i in range(3) ] assert terms == [1/x, 1, x/2] def test_issue_20697(): p_0, p_1, p_2, p_3, b_0, b_1, b_2 = symbols('p_0 p_1 p_2 p_3 b_0 b_1 b_2') Q = (p_0 + (p_1 + (p_2 + p_3/y)/y)/y)/(1 + ((p_3/(b_0*y) + (b_0*p_2\ - b_1*p_3)/b_0**2)/y + (b_0**2*p_1 - b_0*b_1*p_2 - p_3*(b_0*b_2\ - b_1**2))/b_0**3)/y) assert Q.series(y, n=3) == b_2*y**2 + b_1*y + b_0 + O(y**3) def test_issue_21245(): fi = (1 + sqrt(5))/2 assert (1/(1 - x - x**2)).series(x, 1/fi, 1) == \ (36/(-36*sqrt(5) - 80) + 16*sqrt(5)/(-36*sqrt(5) - 80))/(x - 1/(S.Half\ + sqrt(5)/2)) - 1220*sqrt(5)/(-6100*sqrt(5) - 13640) - 2728\ /(-6100*sqrt(5) - 13640) + O(x - 2/(1 + sqrt(5)), (x, 2/(1 + sqrt(5))))
52f4bc2629b6acfe3aaaba29b984752ac99df3232f0d00e982781cc08c83d9a2
from sympy import limit, Symbol, oo, sqrt, Rational, log, exp, cos, sin, tan, \ pi, asin, together, root, S # Numbers listed with the tests refer to problem numbers in the book # "Anti-demidovich, problemas resueltos, Ed. URSS" x = Symbol("x") def test_leadterm(): assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0) def root3(x): return root(x, 3) def root4(x): return root(x, 4) def test_Limits_simple_0(): assert limit((2**(x + 1) + 3**(x + 1))/(2**x + 3**x), x, oo) == 3 # 175 def test_Limits_simple_1(): assert limit((x + 1)*(x + 2)*(x + 3)/x**3, x, oo) == 1 # 172 assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 # 179 assert limit((2*x - 3)*(3*x + 5)*(4*x - 6)/(3*x**3 + x - 1), x, oo) == 8 # Primjer 1 assert limit(x/root3(x**3 + 10), x, oo) == 1 # Primjer 2 assert limit((x + 1)**2/(x**2 + 1), x, oo) == 1 # 181 def test_Limits_simple_2(): assert limit(1000*x/(x**2 - 1), x, oo) == 0 # 182 assert limit((x**2 - 5*x + 1)/(3*x + 7), x, oo) is oo # 183 assert limit((2*x**2 - x + 3)/(x**3 - 8*x + 5), x, oo) == 0 # 184 assert limit((2*x**2 - 3*x - 4)/sqrt(x**4 + 1), x, oo) == 2 # 186 assert limit((2*x + 3)/(x + root3(x)), x, oo) == 2 # 187 assert limit(x**2/(10 + x*sqrt(x)), x, oo) is oo # 188 assert limit(root3(x**2 + 1)/(x + 1), x, oo) == 0 # 189 assert limit(sqrt(x)/sqrt(x + sqrt(x + sqrt(x))), x, oo) == 1 # 190 def test_Limits_simple_3a(): a = Symbol('a') #issue 3513 assert together(limit((x**2 - (a + 1)*x + a)/(x**3 - a**3), x, a)) == \ (a - 1)/(3*a**2) # 196 def test_Limits_simple_3b(): h = Symbol("h") assert limit(((x + h)**3 - x**3)/h, h, 0) == 3*x**2 # 197 assert limit((1/(1 - x) - 3/(1 - x**3)), x, 1) == -1 # 198 assert limit((sqrt(1 + x) - 1)/(root3(1 + x) - 1), x, 0) == Rational(3)/2 # Primer 4 assert limit((sqrt(x) - 1)/(x - 1), x, 1) == Rational(1)/2 # 199 assert limit((sqrt(x) - 8)/(root3(x) - 4), x, 64) == 3 # 200 assert limit((root3(x) - 1)/(root4(x) - 1), x, 1) == Rational(4)/3 # 201 assert limit( (root3(x**2) - 2*root3(x) + 1)/(x - 1)**2, x, 1) == Rational(1)/9 # 202 def test_Limits_simple_4a(): a = Symbol('a') assert limit((sqrt(x) - sqrt(a))/(x - a), x, a) == 1/(2*sqrt(a)) # Primer 5 assert limit((sqrt(x) - 1)/(root3(x) - 1), x, 1) == Rational(3, 2) # 205 assert limit((sqrt(1 + x) - sqrt(1 - x))/x, x, 0) == 1 # 207 assert limit(sqrt(x**2 - 5*x + 6) - x, x, oo) == Rational(-5, 2) # 213 def test_limits_simple_4aa(): assert limit(x*(sqrt(x**2 + 1) - x), x, oo) == Rational(1)/2 # 214 def test_Limits_simple_4b(): #issue 3511 assert limit(x - root3(x**3 - 1), x, oo) == 0 # 215 def test_Limits_simple_4c(): assert limit(log(1 + exp(x))/x, x, -oo) == 0 # 267a assert limit(log(1 + exp(x))/x, x, oo) == 1 # 267b def test_bounded(): assert limit(sin(x)/x, x, oo) == 0 # 216b assert limit(x*sin(1/x), x, 0) == 0 # 227a def test_f1a(): #issue 3508: assert limit((sin(2*x)/x)**(1 + x), x, 0) == 2 # Primer 7 def test_f1a2(): #issue 3509: assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2) # Primer 9 def test_f1b(): m = Symbol("m") n = Symbol("n") h = Symbol("h") a = Symbol("a") assert limit(sin(x)/x, x, 2) == sin(2)/2 # 216a assert limit(sin(3*x)/x, x, 0) == 3 # 217 assert limit(sin(5*x)/sin(2*x), x, 0) == Rational(5, 2) # 218 assert limit(sin(pi*x)/sin(3*pi*x), x, 0) == Rational(1, 3) # 219 assert limit(x*sin(pi/x), x, oo) == pi # 220 assert limit((1 - cos(x))/x**2, x, 0) == S.Half # 221 assert limit(x*sin(1/x), x, oo) == 1 # 227b assert limit((cos(m*x) - cos(n*x))/x**2, x, 0) == -m**2/2 + n**2/2 # 232 assert limit((tan(x) - sin(x))/x**3, x, 0) == S.Half # 233 assert limit((x - sin(2*x))/(x + sin(3*x)), x, 0) == -Rational(1, 4) # 237 assert limit((1 - sqrt(cos(x)))/x**2, x, 0) == Rational(1, 4) # 239 assert limit((sqrt(1 + sin(x)) - sqrt(1 - sin(x)))/x, x, 0) == 1 # 240 assert limit((1 + h/x)**x, x, oo) == exp(h) # Primer 9 assert limit((sin(x) - sin(a))/(x - a), x, a) == cos(a) # 222, *176 assert limit((cos(x) - cos(a))/(x - a), x, a) == -sin(a) # 223 assert limit((sin(x + h) - sin(x))/h, h, 0) == cos(x) # 225 def test_f2a(): assert limit(((x + 1)/(2*x + 1))**(x**2), x, oo) == 0 # Primer 8 def test_f2(): assert limit((sqrt( cos(x)) - root3(cos(x)))/(sin(x)**2), x, 0) == -Rational(1, 12) # *184 def test_f3(): a = Symbol('a') #issue 3504 assert limit(asin(a*x)/x, x, 0) == a
eaa8e64c4c424095d50ab5653c47622c086b020372a1dbcfe2cafa41f4ac815c
from itertools import product as cartes from sympy import ( limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling, atan, Abs, gamma, Symbol, S, pi, Integral, Rational, I, E, tan, cot, integrate, Sum, sign, Function, subfactorial, symbols, binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels, acos, erf, erfc, erfi, LambertW, factorial, digamma, uppergamma, Ei, EulerGamma, asin, atanh, acot, acoth, asec, acsc, cbrt, besselk) from sympy.calculus.util import AccumBounds from sympy.core.add import Add from sympy.core.mul import Mul from sympy.series.limits import heuristics from sympy.series.order import Order from sympy.testing.pytest import XFAIL, raises from sympy.abc import x, y, z, k n = Symbol('n', integer=True, positive=True) def test_basic1(): assert limit(x, x, oo) is oo assert limit(x, x, -oo) is -oo assert limit(-x, x, oo) is -oo assert limit(x**2, x, -oo) is oo assert limit(-x**2, x, oo) is -oo assert limit(x*log(x), x, 0, dir="+") == 0 assert limit(1/x, x, oo) == 0 assert limit(exp(x), x, oo) is oo assert limit(-exp(x), x, oo) is -oo assert limit(exp(x)/x, x, oo) is oo assert limit(1/x - exp(-x), x, oo) == 0 assert limit(x + 1/x, x, oo) is oo assert limit(x - x**2, x, oo) is -oo assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1 assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0) assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-') assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((x + y + 1)**oo, x, 0, dir='-') assert limit(y/x/log(x), x, 0) == -oo*sign(y) assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo assert limit(gamma(1/x + 3), x, oo) == 2 assert limit(S.NaN, x, -oo) is S.NaN assert limit(Order(2)*x, x, S.NaN) is S.NaN assert limit(1/(x - 1), x, 1, dir="+") is oo assert limit(1/(x - 1), x, 1, dir="-") is -oo assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo assert limit(1/(5 - x)**3, x, 5, dir="-") is oo assert limit(1/sin(x), x, pi, dir="+") is -oo assert limit(1/sin(x), x, pi, dir="-") is oo assert limit(1/cos(x), x, pi/2, dir="+") is -oo assert limit(1/cos(x), x, pi/2, dir="-") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo # test bi-directional limits assert limit(sin(x)/x, x, 0, dir="+-") == 1 assert limit(x**2, x, 0, dir="+-") == 0 assert limit(1/x**2, x, 0, dir="+-") is oo # test failing bi-directional limits assert limit(1/x, x, 0, dir="+-") is zoo # approaching 0 # from dir="+" assert limit(1 + 1/x, x, 0) is oo # from dir='-' # Add assert limit(1 + 1/x, x, 0, dir='-') is -oo # Pow assert limit(x**(-2), x, 0, dir='-') is oo assert limit(x**(-3), x, 0, dir='-') is -oo assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I assert limit(x**2, x, 0, dir='-') == 0 assert limit(sqrt(x), x, 0, dir='-') == 0 assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi)) assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0) def test_basic2(): assert limit(x**x, x, 0, dir="+") == 1 assert limit((exp(x) - 1)/x, x, 0) == 1 assert limit(1 + 1/x, x, oo) == 1 assert limit(-exp(1/x), x, oo) == -1 assert limit(x + exp(-x), x, oo) is oo assert limit(x + exp(-x**2), x, oo) is oo assert limit(x + exp(-exp(x)), x, oo) is oo assert limit(13 + 1/x - exp(-x), x, oo) == 13 def test_basic3(): assert limit(1/x, x, 0, dir="+") is oo assert limit(1/x, x, 0, dir="-") is -oo def test_basic4(): assert limit(2*x + y*x, x, 0) == 0 assert limit(2*x + y*x, x, 1) == 2 + y assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8 assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0 assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9 def test_basic5(): class my(Function): @classmethod def eval(cls, arg): if arg is S.Infinity: return S.NaN assert limit(my(x), x, oo) == Limit(my(x), x, oo) def test_issue_3885(): assert limit(x*y + x*z, z, 2) == x*y + 2*x def test_Limit(): assert Limit(sin(x)/x, x, 0) != 1 assert Limit(sin(x)/x, x, 0).doit() == 1 assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-')) def test_floor(): assert limit(floor(x), x, -2, "+") == -2 assert limit(floor(x), x, -2, "-") == -3 assert limit(floor(x), x, -1, "+") == -1 assert limit(floor(x), x, -1, "-") == -2 assert limit(floor(x), x, 0, "+") == 0 assert limit(floor(x), x, 0, "-") == -1 assert limit(floor(x), x, 1, "+") == 1 assert limit(floor(x), x, 1, "-") == 0 assert limit(floor(x), x, 2, "+") == 2 assert limit(floor(x), x, 2, "-") == 1 assert limit(floor(x), x, 248, "+") == 248 assert limit(floor(x), x, 248, "-") == 247 # https://github.com/sympy/sympy/issues/14478 assert limit(x*floor(3/x)/2, x, 0, '+') == Rational(3, 2) assert limit(floor(x + 1/2) - floor(x), x, oo) == AccumBounds(-0.5, 1.5) def test_floor_requires_robust_assumptions(): assert limit(floor(sin(x)), x, 0, "+") == 0 assert limit(floor(sin(x)), x, 0, "-") == -1 assert limit(floor(cos(x)), x, 0, "+") == 0 assert limit(floor(cos(x)), x, 0, "-") == 0 assert limit(floor(5 + sin(x)), x, 0, "+") == 5 assert limit(floor(5 + sin(x)), x, 0, "-") == 4 assert limit(floor(5 + cos(x)), x, 0, "+") == 5 assert limit(floor(5 + cos(x)), x, 0, "-") == 5 def test_ceiling(): assert limit(ceiling(x), x, -2, "+") == -1 assert limit(ceiling(x), x, -2, "-") == -2 assert limit(ceiling(x), x, -1, "+") == 0 assert limit(ceiling(x), x, -1, "-") == -1 assert limit(ceiling(x), x, 0, "+") == 1 assert limit(ceiling(x), x, 0, "-") == 0 assert limit(ceiling(x), x, 1, "+") == 2 assert limit(ceiling(x), x, 1, "-") == 1 assert limit(ceiling(x), x, 2, "+") == 3 assert limit(ceiling(x), x, 2, "-") == 2 assert limit(ceiling(x), x, 248, "+") == 249 assert limit(ceiling(x), x, 248, "-") == 248 # https://github.com/sympy/sympy/issues/14478 assert limit(x*ceiling(3/x)/2, x, 0, '+') == Rational(3, 2) assert limit(ceiling(x + 1/2) - ceiling(x), x, oo) == AccumBounds(-0.5, 1.5) def test_ceiling_requires_robust_assumptions(): assert limit(ceiling(sin(x)), x, 0, "+") == 1 assert limit(ceiling(sin(x)), x, 0, "-") == 0 assert limit(ceiling(cos(x)), x, 0, "+") == 1 assert limit(ceiling(cos(x)), x, 0, "-") == 1 assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6 assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5 assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6 assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6 def test_atan(): x = Symbol("x", real=True) assert limit(atan(x)*sin(1/x), x, 0) == 0 assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2 def test_abs(): assert limit(abs(x), x, 0) == 0 assert limit(abs(sin(x)), x, 0) == 0 assert limit(abs(cos(x)), x, 0) == 1 assert limit(abs(sin(x + 1)), x, 0) == sin(1) def test_heuristic(): x = Symbol("x", real=True) assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1) assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2) def test_issue_3871(): z = Symbol("z", positive=True) f = -1/z*exp(-z*x) assert limit(f, x, oo) == 0 assert f.limit(x, oo) == 0 def test_exponential(): n = Symbol('n') x = Symbol('x', real=True) assert limit((1 + x/n)**n, n, oo) == exp(x) assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2) assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2) assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2) assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1 assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3')) def test_exponential2(): n = Symbol('n') assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x) def test_doit(): f = Integral(2 * x, x) l = Limit(f, x, oo) assert l.doit() is oo def test_series_AccumBounds(): assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2) assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3) # not the exact bound assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2) # test for issue #9934 t1 = Mul(S.Half, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1))) assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1 t2 = Mul(S.Half, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1)) assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2 assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo) # wolfram gives (0, 1) assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo) # wolfram says 0 @XFAIL def test_doit2(): f = Integral(2 * x, x) l = Limit(f, x, oo) # limit() breaks on the contained Integral. assert l.doit(deep=False) == l def test_issue_2929(): assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0 def test_issue_3792(): assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half) assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1)) assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1) def test_issue_4090(): assert limit(1/(x + 3), x, 2) == Rational(1, 5) assert limit(1/(x + pi), x, 2) == S.One/(2 + pi) assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7 assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi) def test_issue_4547(): assert limit(cot(x), x, 0, dir='+') is oo assert limit(cot(x), x, pi/2, dir='+') == 0 def test_issue_5164(): assert limit(x**0.5, x, oo) == oo**0.5 is oo assert limit(x**0.5, x, 16) == S(16)**0.5 assert limit(x**0.5, x, 0) == 0 assert limit(x**(-0.5), x, oo) == 0 assert limit(x**(-0.5), x, 4) == S(4)**(-0.5) def test_issue_5383(): func = (1.0 * 1 + 1.0 * x)**(1.0 * 1 / x) assert limit(func, x, 0) == E.n() def test_issue_14793(): expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \ log(factorial(x)) + S(1)/(12*x))*x**3 assert limit(expr, x, oo) == S(1)/360 def test_issue_5183(): # using list(...) so py.test can recalculate values tests = list(cartes([x, -x], [-1, 1], [2, 3, S.Half, Rational(2, 3)], ['-', '+'])) results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo, 0, 0, 0, 0, 0, 0, 0, 0, oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), 0, 0, 0, 0, 0, 0, 0, 0) assert len(tests) == len(results) for i, (args, res) in enumerate(zip(tests, results)): y, s, e, d = args eq = y**(s*e) try: assert limit(eq, x, 0, dir=d) == res except AssertionError: if 0: # change to 1 if you want to see the failing tests print() print(i, res, eq, d, limit(eq, x, 0, dir=d)) else: assert None def test_issue_5184(): assert limit(sin(x)/x, x, oo) == 0 assert limit(atan(x), x, oo) == pi/2 assert limit(gamma(x), x, oo) is oo assert limit(cos(x)/x, x, oo) == 0 assert limit(gamma(x), x, S.Half) == sqrt(pi) r = Symbol('r', real=True) assert limit(r*sin(1/r), r, 0) == 0 def test_issue_5229(): assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0 def test_issue_4546(): # using list(...) so py.test can recalculate values tests = list(cartes([cot, tan], [-pi/2, 0, pi/2, pi, pi*Rational(3, 2)], ['-', '+'])) results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0, oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo) assert len(tests) == len(results) for i, (args, res) in enumerate(zip(tests, results)): f, l, d = args eq = f(x) try: assert limit(eq, x, l, dir=d) == res except AssertionError: if 0: # change to 1 if you want to see the failing tests print() print(i, res, eq, l, d, limit(eq, x, l, dir=d)) else: assert None def test_issue_3934(): assert limit((1 + x**log(3))**(1/x), x, 0) == 1 assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5 def test_calculate_series(): # needs gruntz calculate_series to go to n = 32 assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1 # needs gruntz calculate_series to go to n = 128 assert limit(x**101.1/(1 + x**101.1), x, oo) == 1 def test_issue_5955(): assert limit((x**16)/(1 + x**16), x, oo) == 1 assert limit((x**100)/(1 + x**100), x, oo) == 1 assert limit((x**1885)/(1 + x**1885), x, oo) == 1 assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1 def test_newissue(): assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1 def test_extended_real_line(): assert limit(x - oo, x, oo) is -oo assert limit(oo - x, x, -oo) is oo assert limit(x**2/(x - 5) - oo, x, oo) is -oo assert limit(1/(x + sin(x)) - oo, x, 0) is -oo assert limit(oo/x, x, oo) is oo assert limit(x - oo + 1/x, x, oo) is -oo assert limit(x - oo + 1/x, x, 0) is -oo @XFAIL def test_order_oo(): x = Symbol('x', positive=True) assert Order(x)*oo != Order(1, x) assert limit(oo/(x**2 - 4), x, oo) is oo def test_issue_5436(): raises(NotImplementedError, lambda: limit(exp(x*y), x, oo)) raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo)) def test_Limit_dir(): raises(TypeError, lambda: Limit(x, x, 0, dir=0)) raises(ValueError, lambda: Limit(x, x, 0, dir='0')) def test_polynomial(): assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1 assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1 def test_rational(): assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z) assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z) def test_issue_5740(): assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z) def test_issue_6366(): n = Symbol('n', integer=True, positive=True) r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1) assert limit(r, x, 1).cancel() == n/2 def test_factorial(): from sympy import factorial, E f = factorial(x) assert limit(f, x, oo) is oo assert limit(x/f, x, oo) == 0 # see Stirling's approximation: # https://en.wikipedia.org/wiki/Stirling's_approximation assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1 assert limit(f, x, -oo) == factorial(-oo) assert limit(f, x, x**2) == factorial(x**2) assert limit(f, x, -x**2) == factorial(-x**2) def test_issue_6560(): e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) + 35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1))) assert limit(e, y, oo) == 5*x**3/4 + 3*x**2/4 - 3*x/4 - Rational(1, 4) @XFAIL def test_issue_5172(): n = Symbol('n') r = Symbol('r', positive=True) c = Symbol('c') p = Symbol('p', positive=True) m = Symbol('m', negative=True) expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c + (r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n) expr = expr.subs(c, c + 1) raises(NotImplementedError, lambda: limit(expr, n, oo)) assert limit(expr.subs(c, m), n, oo) == 1 assert limit(expr.subs(c, p), n, oo).simplify() == \ (2**(p + 1) + r - 1)/(r + 1)**(p + 1) def test_issue_7088(): a = Symbol('a') assert limit(sqrt(x/(x + a)), x, oo) == 1 def test_branch_cuts(): assert limit(asin(I*x + 2), x, 0) == pi - asin(2) assert limit(asin(I*x + 2), x, 0, '-') == asin(2) assert limit(asin(I*x - 2), x, 0) == -asin(2) assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2) assert limit(acos(I*x + 2), x, 0) == -acos(2) assert limit(acos(I*x + 2), x, 0, '-') == acos(2) assert limit(acos(I*x - 2), x, 0) == acos(-2) assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2) assert limit(atan(x + 2*I), x, 0) == I*atanh(2) assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2) assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2) assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2) assert limit(atan(1/x), x, 0) == pi/2 assert limit(atan(1/x), x, 0, '-') == -pi/2 assert limit(atan(x), x, oo) == pi/2 assert limit(atan(x), x, -oo) == -pi/2 assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2) assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2) assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2) assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2) assert limit(acot(x), x, 0) == pi/2 assert limit(acot(x), x, 0, '-') == -pi/2 assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2) assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2) assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2) assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2) assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2) assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2) assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2) assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2) assert limit(log(I*x - 1), x, 0) == I*pi assert limit(log(I*x - 1), x, 0, '-') == -I*pi assert limit(log(-I*x - 1), x, 0) == -I*pi assert limit(log(-I*x - 1), x, 0, '-') == I*pi assert limit(sqrt(I*x - 1), x, 0) == I assert limit(sqrt(I*x - 1), x, 0, '-') == -I assert limit(sqrt(-I*x - 1), x, 0) == -I assert limit(sqrt(-I*x - 1), x, 0, '-') == I assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3) assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3) assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3) assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3) def test_issue_6364(): a = Symbol('a') e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2) assert limit(e, z, 0) == 2/(2*cos(a)**2 - 1) def test_issue_4099(): a = Symbol('a') assert limit(a/x, x, 0) == oo*sign(a) assert limit(-a/x, x, 0) == -oo*sign(a) assert limit(-a*x, x, oo) == -oo*sign(a) assert limit(a*x, x, oo) == oo*sign(a) def test_issue_4503(): dx = Symbol('dx') assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \ exp(x)/(2*sqrt(exp(x) + 1)) def test_issue_8208(): assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0 def test_issue_8229(): assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0 def test_issue_8433(): d, t = symbols('d t', positive=True) assert limit(erf(1 - t/d), t, oo) == -1 def test_issue_8481(): k = Symbol('k', integer=True, nonnegative=True) lamda = Symbol('lamda', real=True, positive=True) limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0 def test_issue_8730(): assert limit(subfactorial(x), x, oo) is oo def test_issue_9252(): n = Symbol('n', integer=True) c = Symbol('c', positive=True) assert limit((log(n))**(n/log(n)) / (1 + c)**n, n, oo) == 0 # limit should depend on the value of c raises(NotImplementedError, lambda: limit((log(n))**(n/log(n)) / c**n, n, oo)) def test_issue_9449(): assert limit((Abs(x + y) - Abs(x - y))/(2*x), x, 0) == sign(y) def test_issue_9558(): assert limit(sin(x)**15, x, 0, '-') == 0 def test_issue_10801(): # make sure limits work with binomial assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi def test_issue_10976(): s, x = symbols('s x', real=True) assert limit(erf(s*x)/erf(s), s, 0) == x def test_issue_9041(): assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1 def test_issue_9205(): x, y, a = symbols('x, y, a') assert Limit(x, x, a).free_symbols == {a} assert Limit(x, x, a, '-').free_symbols == {a} assert Limit(x + y, x + y, a).free_symbols == {a} assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a} def test_issue_9471(): assert limit(((27**(log(n,3)))/n**3),n,oo) == 1 assert limit(((27**(log(n,3)+1))/n**3),n,oo) == 27 def test_issue_11496(): assert limit(erfc(log(1/x)), x, oo) == 2 def test_issue_11879(): assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1) def test_limit_with_Float(): k = symbols("k") assert limit(1.0 ** k, k, oo) == 1 assert limit(0.3*1.0**k, k, oo) == Float(0.3) def test_issue_10610(): assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3) def test_issue_6599(): assert limit((n + cos(n))/n, n, oo) == 1 def test_issue_12398(): assert limit(Abs(log(x)/x**3), x, oo) == 0 assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3 def test_issue_12555(): assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2 assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo def test_issue_12769(): r, z, x = symbols('r z x', real=True) a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True) fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \ F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \ 2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \ 2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \ 2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1) assert fx.subs(K, F0).factor(deep=True) == limit(fx, K, F0).factor(deep=True) def test_issue_13332(): assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) * (6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36) def test_issue_12564(): assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo assert limit(((x + cos(x))**2).expand(), x, oo) is oo assert limit(((x + sin(x))**2).expand(), x, oo) is oo assert limit(((x + cos(x))**2).expand(), x, -oo) is oo assert limit(((x + sin(x))**2).expand(), x, -oo) is oo def test_issue_14456(): raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit()) raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit()) def test_issue_14411(): assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo def test_issue_13382(): assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2 def test_issue_13403(): assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x ,oo) == 1 def test_issue_13416(): assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x ,oo) == 1 def test_issue_13462(): assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x*(x - 2)*(x - 1)/24 def test_issue_13750(): a = Symbol('a') assert limit(erf(a - x), x, oo) == -1 assert limit(erf(sqrt(x) - x), x, oo) == -1 def test_issue_14514(): assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1 def test_issue_14574(): assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0 def test_issue_10102(): assert limit(fresnels(x), x, oo) == S.Half assert limit(3 + fresnels(x), x, oo) == 3 + S.Half assert limit(5*fresnels(x), x, oo) == Rational(5, 2) assert limit(fresnelc(x), x, oo) == S.Half assert limit(fresnels(x), x, -oo) == Rational(-1, 2) assert limit(4*fresnelc(x), x, -oo) == -2 def test_issue_14377(): raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo)) def test_issue_15146(): e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \ 2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3) assert limit(e, x, oo) == S(1)/3 def test_issue_15202(): e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1) assert limit(e, x, oo) == exp(1) e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x) assert limit(e, x, oo) == 10 def test_issue_15282(): assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000 def test_issue_15984(): assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-').doit() == 0 def test_issue_13571(): assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1 def test_issue_13575(): assert limit(acos(erfi(x)), x, 1).cancel() == acos(-I*erf(I)) def test_issue_17325(): assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1 assert Limit(x**2, x, 0, dir="+-").doit() == 0 assert Limit(1/x**2, x, 0, dir="+-").doit() is oo assert Limit(1/x, x, 0, dir="+-").doit() is zoo def test_issue_10978(): assert LambertW(x).limit(x, 0) == 0 def test_issue_14313_comment(): assert limit(floor(n/2), n, oo) is oo @XFAIL def test_issue_15323(): d = ((1 - 1/x)**x).diff(x) assert limit(d, x, 1, dir='+') == 1 def test_issue_12571(): assert limit(-LambertW(-log(x))/log(x), x, 1) == 1 def test_issue_14590(): assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1) def test_issue_14393(): a, b = symbols('a b') assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a)*y**b/a def test_issue_14556(): assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1) def test_issue_14811(): assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo def test_issue_14874(): assert limit(besselk(0, x), x, oo) == 0 def test_issue_16222(): assert limit(exp(x), x, 1000000000) == exp(1000000000) def test_issue_16714(): assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1)) def test_issue_16722(): z = symbols('z', positive=True) assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) z = symbols('z', positive=True, integer=True) assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) def test_issue_17431(): assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) * (n + 2) * factorial(n) / (n + 1), n, oo) == 0 assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1)) , n, oo) == 0 assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0 def test_issue_17671(): assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma def test_issue_17751(): a, b, c, x = symbols('a b c x', positive=True) assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2) def test_issue_17792(): assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi) def test_issue_18118(): assert limit(sign(sin(x)), x, 0, "-") == -1 assert limit(sign(sin(x)), x, 0, "+") == 1 def test_issue_18306(): assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1 def test_issue_18378(): assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3 def test_issue_18399(): assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo assert limit((-x)**x, x, oo) is zoo def test_issue_18442(): assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') def test_issue_18452(): assert limit(abs(log(x))**x, x, 0) == 1 assert limit(abs(log(x))**x, x, 0, "-") == 1 def test_issue_18482(): assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1) def test_issue_18501(): assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo def test_issue_18508(): assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2) assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2) assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2) def test_issue_18969(): a, b = symbols('a b', positive=True) assert limit(LambertW(a), a, b) == LambertW(b) assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b)) def test_issue_18992(): assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1) def test_issue_18997(): assert limit(Abs(log(x)), x, 0) == oo assert limit(Abs(log(Abs(x))), x, 0) == oo def test_issue_19026(): x = Symbol('x', positive=True) assert limit(Abs(log(x) + 1)/log(x), x, oo) == 1 def test_issue_19067(): x = Symbol('x') assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1 def test_issue_19586(): assert limit(x**(2**x*3**(-x)), x, oo) == 1 def test_issue_13715(): n = Symbol('n') p = Symbol('p', zero=True) assert limit(n + p, n, 0) == 0 def test_issue_15055(): assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1 def test_issue_16708(): m, vi = symbols('m vi', positive=True) B, ti, d = symbols('B ti d') assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi def test_issue_19739(): assert limit((-S(1)/4)**x, x, oo) == 0 def test_issue_19766(): assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2 def test_issue_19770(): m = Symbol('m') # the result is not 0 for non-real m assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-') m = Symbol('m', real=True) # can be improved to give the correct result 0 assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-') m = Symbol('m', nonzero=True) assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1) assert limit(cos(m*x)/x, x, oo) == 0 def test_issue_7535(): assert limit(tan(x)/sin(tan(x)), x, pi/2) == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+') assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') assert limit(sin(tan(x)),x,pi/2) == AccumBounds(-1, 1) assert -oo*(1/sin(-oo)) == AccumBounds(-oo, oo) assert oo*(1/sin(oo)) == AccumBounds(-oo, oo) assert oo*(1/sin(-oo)) == AccumBounds(-oo, oo) assert -oo*(1/sin(oo)) == AccumBounds(-oo, oo) def test_issue_20704(): assert limit(x*(Abs(1/x + y) - Abs(y - 1/x))/2, x, 0) == 0 def test_issue_21038(): assert limit(sin(pi*x)/(3*x - 12), x, 4) == pi/3 def test_issue_21550(): r = (sqrt(5) - 1)/2 assert limit((x - r)/(x**2 + x - 1), x, r) == (-1 + sqrt(5))/(5 - sqrt(5))
baf80339e06baf0b95d6bf5f030476660ac95ce88a16f2c3f4a039901c65378f
from sympy import (residue, Symbol, Function, sin, I, exp, log, pi, S, factorial, sqrt, Rational, tan, cot, tanh) from sympy.testing.pytest import XFAIL, raises from sympy.abc import x, z, a, s def test_basic1(): assert residue(1/x, x, 0) == 1 assert residue(-2/x, x, 0) == -2 assert residue(81/x, x, 0) == 81 assert residue(1/x**2, x, 0) == 0 assert residue(0, x, 0) == 0 assert residue(5, x, 0) == 0 assert residue(x, x, 0) == 0 assert residue(x**2, x, 0) == 0 def test_basic2(): assert residue(1/x, x, 1) == 0 assert residue(-2/x, x, 1) == 0 assert residue(81/x, x, -1) == 0 assert residue(1/x**2, x, 1) == 0 assert residue(0, x, 1) == 0 assert residue(5, x, 1) == 0 assert residue(x, x, 1) == 0 assert residue(x**2, x, 5) == 0 def test_f(): f = Function("f") assert residue(f(x)/x**5, x, 0) == f(x).diff(x, 4).subs(x, 0)/24 def test_functions(): assert residue(1/sin(x), x, 0) == 1 assert residue(2/sin(x), x, 0) == 2 assert residue(1/sin(x)**2, x, 0) == 0 assert residue(1/sin(x)**5, x, 0) == Rational(3, 8) def test_expressions(): assert residue(1/(x + 1), x, 0) == 0 assert residue(1/(x + 1), x, -1) == 1 assert residue(1/(x**2 + 1), x, -1) == 0 assert residue(1/(x**2 + 1), x, I) == -I/2 assert residue(1/(x**2 + 1), x, -I) == I/2 assert residue(1/(x**4 + 1), x, 0) == 0 assert residue(1/(x**4 + 1), x, exp(I*pi/4)).equals(-(Rational(1, 4) + I/4)/sqrt(2)) assert residue(1/(x**2 + a**2)**2, x, a*I) == -I/4/a**3 @XFAIL def test_expressions_failing(): n = Symbol('n', integer=True, positive=True) assert residue(exp(z)/(z - pi*I/4*a)**n, z, I*pi*a) == \ exp(I*pi*a/4)/factorial(n - 1) def test_NotImplemented(): raises(NotImplementedError, lambda: residue(exp(1/z), z, 0)) def test_bug(): assert residue(2**(z)*(s + z)*(1 - s - z)/z**2, z, 0) == \ 1 + s*log(2) - s**2*log(2) - 2*s def test_issue_5654(): assert residue(1/(x**2 + a**2)**2, x, a*I) == -I/(4*a**3) def test_issue_6499(): assert residue(1/(exp(z) - 1), z, 0) == 1 def test_issue_14037(): assert residue(sin(x**50)/x**51, x, 0) == 1 def test_issue_21176(): f = x**2*cot(pi*x)/(x**4 + 1) assert residue(f, x, -sqrt(2)/2 - sqrt(2)*I/2).together() == \ sqrt(2)*(1 - I)/(8*tan(sqrt(2)*pi/2 + sqrt(2)*I*pi/2)) def test_issue_21177(): r = -sqrt(3)*tanh(sqrt(3)*pi/2)/3 a = residue(cot(pi*x)/((x - 1)*(x - 2) + 1), x, S(3)/2 - sqrt(3)*I/2) b = residue(cot(pi*x)/(x**2 - 3*x + 3), x, S(3)/2 - sqrt(3)*I/2) assert a == r assert (b - a).cancel() == 0
0c3e4552fca2aa27fe655d3d8c73021e26bbc53f9f6e9c31031448d8ec688061
from sympy import (Symbol, Rational, ln, exp, log, sqrt, E, O, pi, I, sinh, sin, cosh, cos, tanh, coth, asinh, acosh, atanh, acoth, tan, cot, Integer, PoleError, floor, ceiling, asin, symbols, limit, sign, cbrt, Derivative, S) from sympy.abc import x, y, z from sympy.testing.pytest import raises, XFAIL def test_simple_1(): assert x.nseries(x, n=5) == x assert y.nseries(x, n=5) == y assert (1/(x*y)).nseries(y, n=5) == 1/(x*y) assert Rational(3, 4).nseries(x, n=5) == Rational(3, 4) assert x.nseries() == x def test_mul_0(): assert (x*ln(x)).nseries(x, n=5) == x*ln(x) def test_mul_1(): assert (x*ln(2 + x)).nseries(x, n=5) == x*log(2) + x**2/2 - x**3/8 + \ x**4/24 + O(x**5) assert (x*ln(1 + x)).nseries( x, n=5) == x**2 - x**3/2 + x**4/3 + O(x**5) def test_pow_0(): assert (x**2).nseries(x, n=5) == x**2 assert (1/x).nseries(x, n=5) == 1/x assert (1/x**2).nseries(x, n=5) == 1/x**2 assert (x**Rational(2, 3)).nseries(x, n=5) == (x**Rational(2, 3)) assert (sqrt(x)**3).nseries(x, n=5) == (sqrt(x)**3) def test_pow_1(): assert ((1 + x)**2).nseries(x, n=5) == x**2 + 2*x + 1 # https://github.com/sympy/sympy/issues/21075 assert ((sqrt(x) + 1)**2).nseries(x) == 2*sqrt(x) + x + 1 assert ((sqrt(x) + cbrt(x))**2).nseries(x) == 2*x**Rational(5, 6)\ + x**Rational(2, 3) + x def test_geometric_1(): assert (1/(1 - x)).nseries(x, n=5) == 1 + x + x**2 + x**3 + x**4 + O(x**5) assert (x/(1 - x)).nseries(x, n=6) == x + x**2 + x**3 + x**4 + x**5 + O(x**6) assert (x**3/(1 - x)).nseries(x, n=8) == x**3 + x**4 + x**5 + x**6 + \ x**7 + O(x**8) def test_sqrt_1(): assert sqrt(1 + x).nseries(x, n=5) == 1 + x/2 - x**2/8 + x**3/16 - 5*x**4/128 + O(x**5) def test_exp_1(): assert exp(x).nseries(x, n=5) == 1 + x + x**2/2 + x**3/6 + x**4/24 + O(x**5) assert exp(x).nseries(x, n=12) == 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + \ x**6/720 + x**7/5040 + x**8/40320 + x**9/362880 + x**10/3628800 + \ x**11/39916800 + O(x**12) assert exp(1/x).nseries(x, n=5) == exp(1/x) assert exp(1/(1 + x)).nseries(x, n=4) == \ (E*(1 - x - 13*x**3/6 + 3*x**2/2)).expand() + O(x**4) assert exp(2 + x).nseries(x, n=5) == \ (exp(2)*(1 + x + x**2/2 + x**3/6 + x**4/24)).expand() + O(x**5) def test_exp_sqrt_1(): assert exp(1 + sqrt(x)).nseries(x, n=3) == \ (exp(1)*(1 + sqrt(x) + x/2 + sqrt(x)*x/6)).expand() + O(sqrt(x)**3) def test_power_x_x1(): assert (exp(x*ln(x))).nseries(x, n=4) == \ 1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4) def test_power_x_x2(): assert (x**x).nseries(x, n=4) == \ 1 + x*log(x) + x**2*log(x)**2/2 + x**3*log(x)**3/6 + O(x**4*log(x)**4) def test_log_singular1(): assert log(1 + 1/x).nseries(x, n=5) == x - log(x) - x**2/2 + x**3/3 - \ x**4/4 + O(x**5) def test_log_power1(): e = 1 / (1/x + x ** (log(3)/log(2))) assert e.nseries(x, n=5) == -x**(log(3)/log(2) + 2) + x + O(x**5) def test_log_series(): l = Symbol('l') e = 1/(1 - log(x)) assert e.nseries(x, n=5, logx=l) == 1/(1 - l) def test_log2(): e = log(-1/x) assert e.nseries(x, n=5) == -log(x) + log(-1) def test_log3(): l = Symbol('l') e = 1/log(-1/x) assert e.nseries(x, n=4, logx=l) == 1/(-l + log(-1)) def test_series1(): e = sin(x) assert e.nseries(x, 0, 0) != 0 assert e.nseries(x, 0, 0) == O(1, x) assert e.nseries(x, 0, 1) == O(x, x) assert e.nseries(x, 0, 2) == x + O(x**2, x) assert e.nseries(x, 0, 3) == x + O(x**3, x) assert e.nseries(x, 0, 4) == x - x**3/6 + O(x**4, x) e = (exp(x) - 1)/x assert e.nseries(x, 0, 3) == 1 + x/2 + x**2/6 + O(x**3) assert x.nseries(x, 0, 2) == x @XFAIL def test_series1_failing(): assert x.nseries(x, 0, 0) == O(1, x) assert x.nseries(x, 0, 1) == O(x, x) def test_seriesbug1(): assert (1/x).nseries(x, 0, 3) == 1/x assert (x + 1/x).nseries(x, 0, 3) == x + 1/x def test_series2x(): assert ((x + 1)**(-2)).nseries(x, 0, 4) == 1 - 2*x + 3*x**2 - 4*x**3 + O(x**4, x) assert ((x + 1)**(-1)).nseries(x, 0, 4) == 1 - x + x**2 - x**3 + O(x**4, x) assert ((x + 1)**0).nseries(x, 0, 3) == 1 assert ((x + 1)**1).nseries(x, 0, 3) == 1 + x assert ((x + 1)**2).nseries(x, 0, 3) == x**2 + 2*x + 1 assert ((x + 1)**3).nseries(x, 0, 3) == 1 + 3*x + 3*x**2 + O(x**3) assert (1/(1 + x)).nseries(x, 0, 4) == 1 - x + x**2 - x**3 + O(x**4, x) assert (x + 3/(1 + 2*x)).nseries(x, 0, 4) == 3 - 5*x + 12*x**2 - 24*x**3 + O(x**4, x) assert ((1/x + 1)**3).nseries(x, 0, 3) == 1 + 3/x + 3/x**2 + x**(-3) assert (1/(1 + 1/x)).nseries(x, 0, 4) == x - x**2 + x**3 - O(x**4, x) assert (1/(1 + 1/x**2)).nseries(x, 0, 6) == x**2 - x**4 + O(x**6, x) def test_bug2(): # 1/log(0)*log(0) problem w = Symbol("w") e = (w**(-1) + w**( -log(3)*log(2)**(-1)))**(-1)*(3*w**(-log(3)*log(2)**(-1)) + 2*w**(-1)) e = e.expand() assert e.nseries(w, 0, 4).subs(w, 0) == 3 def test_exp(): e = (1 + x)**(1/x) assert e.nseries(x, n=3) == exp(1) - x*exp(1)/2 + 11*exp(1)*x**2/24 + O(x**3) def test_exp2(): w = Symbol("w") e = w**(1 - log(x)/(log(2) + log(x))) logw = Symbol("logw") assert e.nseries( w, 0, 1, logx=logw) == exp(logw*log(2)/(log(x) + log(2))) def test_bug3(): e = (2/x + 3/x**2)/(1/x + 1/x**2) assert e.nseries(x, n=3) == 3 - x + x**2 + O(x**3) def test_generalexponent(): p = 2 e = (2/x + 3/x**p)/(1/x + 1/x**p) assert e.nseries(x, 0, 3) == 3 - x + x**2 + O(x**3) p = S.Half e = (2/x + 3/x**p)/(1/x + 1/x**p) assert e.nseries(x, 0, 2) == 2 - x + sqrt(x) + x**(S(3)/2) + O(x**2) e = 1 + sqrt(x) assert e.nseries(x, 0, 4) == 1 + sqrt(x) # more complicated example def test_genexp_x(): e = 1/(1 + sqrt(x)) assert e.nseries(x, 0, 2) == \ 1 + x - sqrt(x) - sqrt(x)**3 + O(x**2, x) # more complicated example def test_genexp_x2(): p = Rational(3, 2) e = (2/x + 3/x**p)/(1/x + 1/x**p) assert e.nseries(x, 0, 3) == 3 + x + x**2 - sqrt(x) - x**(S(3)/2) - x**(S(5)/2) + O(x**3) def test_seriesbug2(): w = Symbol("w") #simple case (1): e = ((2*w)/w)**(1 + w) assert e.nseries(w, 0, 1) == 2 + O(w, w) assert e.nseries(w, 0, 1).subs(w, 0) == 2 def test_seriesbug2b(): w = Symbol("w") #test sin e = sin(2*w)/w assert e.nseries(w, 0, 3) == 2 - 4*w**2/3 + O(w**3) def test_seriesbug2d(): w = Symbol("w", real=True) e = log(sin(2*w)/w) assert e.series(w, n=5) == log(2) - 2*w**2/3 - 4*w**4/45 + O(w**5) def test_seriesbug2c(): w = Symbol("w", real=True) #more complicated case, but sin(x)~x, so the result is the same as in (1) e = (sin(2*w)/w)**(1 + w) assert e.series(w, 0, 1) == 2 + O(w) assert e.series(w, 0, 3) == 2 + 2*w*log(2) + \ w**2*(Rational(-4, 3) + log(2)**2) + O(w**3) assert e.series(w, 0, 2).subs(w, 0) == 2 def test_expbug4(): x = Symbol("x", real=True) assert (log( sin(2*x)/x)*(1 + x)).series(x, 0, 2) == log(2) + x*log(2) + O(x**2, x) assert exp( log(sin(2*x)/x)*(1 + x)).series(x, 0, 2) == 2 + 2*x*log(2) + O(x**2) assert exp(log(2) + O(x)).nseries(x, 0, 2) == 2 + O(x) assert ((2 + O(x))**(1 + x)).nseries(x, 0, 2) == 2 + O(x) def test_logbug4(): assert log(2 + O(x)).nseries(x, 0, 2) == log(2) + O(x, x) def test_expbug5(): assert exp(log(1 + x)/x).nseries(x, n=3) == exp(1) + -exp(1)*x/2 + 11*exp(1)*x**2/24 + O(x**3) assert exp(O(x)).nseries(x, 0, 2) == 1 + O(x) def test_sinsinbug(): assert sin(sin(x)).nseries(x, 0, 8) == x - x**3/3 + x**5/10 - 8*x**7/315 + O(x**8) def test_issue_3258(): a = x/(exp(x) - 1) assert a.nseries(x, 0, 5) == 1 - x/2 - x**4/720 + x**2/12 + O(x**5) def test_issue_3204(): x = Symbol("x", nonnegative=True) f = sin(x**3)**Rational(1, 3) assert f.nseries(x, 0, 17) == x - x**7/18 - x**13/3240 + O(x**17) def test_issue_3224(): f = sqrt(1 - sqrt(y)) assert f.nseries(y, 0, 2) == 1 - sqrt(y)/2 - y/8 - sqrt(y)**3/16 + O(y**2) def test_issue_3463(): from sympy import symbols w, i = symbols('w,i') r = log(5)/log(3) p = w**(-1 + r) e = 1/x*(-log(w**(1 + r)) + log(w + w**r)) e_ser = -r*log(w)/x + p/x - p**2/(2*x) + O(w) assert e.nseries(w, n=1) == e_ser def test_sin(): assert sin(8*x).nseries(x, n=4) == 8*x - 256*x**3/3 + O(x**4) assert sin(x + y).nseries(x, n=1) == sin(y) + O(x) assert sin(x + y).nseries(x, n=2) == sin(y) + cos(y)*x + O(x**2) assert sin(x + y).nseries(x, n=5) == sin(y) + cos(y)*x - sin(y)*x**2/2 - \ cos(y)*x**3/6 + sin(y)*x**4/24 + O(x**5) def test_issue_3515(): e = sin(8*x)/x assert e.nseries(x, n=6) == 8 - 256*x**2/3 + 4096*x**4/15 + O(x**6) def test_issue_3505(): e = sin(x)**(-4)*(sqrt(cos(x))*sin(x)**2 - cos(x)**Rational(1, 3)*sin(x)**2) assert e.nseries(x, n=9) == Rational(-1, 12) - 7*x**2/288 - \ 43*x**4/10368 - 1123*x**6/2488320 + 377*x**8/29859840 + O(x**9) def test_issue_3501(): a = Symbol("a") e = x**(-2)*(x*sin(a + x) - x*sin(a)) assert e.nseries(x, n=6) == cos(a) - sin(a)*x/2 - cos(a)*x**2/6 + \ sin(a)*x**3/24 + O(x**4) e = x**(-2)*(x*cos(a + x) - x*cos(a)) assert e.nseries(x, n=6) == -sin(a) - cos(a)*x/2 + sin(a)*x**2/6 + \ cos(a)*x**3/24 + O(x**4) def test_issue_3502(): e = sin(5*x)/sin(2*x) assert e.nseries(x, n=2) == Rational(5, 2) + O(x**2) assert e.nseries(x, n=6) == \ Rational(5, 2) - 35*x**2/4 + 329*x**4/48 + O(x**6) def test_issue_3503(): e = sin(2 + x)/(2 + x) assert e.nseries(x, n=2) == sin(2)/2 + x*cos(2)/2 - x*sin(2)/4 + O(x**2) def test_issue_3506(): e = (x + sin(3*x))**(-2)*(x*(x + sin(3*x)) - (x + sin(3*x))*sin(2*x)) assert e.nseries(x, n=7) == \ Rational(-1, 4) + 5*x**2/96 + 91*x**4/768 + 11117*x**6/129024 + O(x**7) def test_issue_3508(): x = Symbol("x", real=True) assert log(sin(x)).series(x, n=5) == log(x) - x**2/6 - x**4/180 + O(x**5) e = -log(x) + x*(-log(x) + log(sin(2*x))) + log(sin(2*x)) assert e.series(x, n=5) == \ log(2) + log(2)*x - 2*x**2/3 - 2*x**3/3 - 4*x**4/45 + O(x**5) def test_issue_3507(): e = x**(-4)*(x**2 - x**2*sqrt(cos(x))) assert e.nseries(x, n=9) == \ Rational(1, 4) + x**2/96 + 19*x**4/5760 + 559*x**6/645120 + 29161*x**8/116121600 + O(x**9) def test_issue_3639(): assert sin(cos(x)).nseries(x, n=5) == \ sin(1) - x**2*cos(1)/2 - x**4*sin(1)/8 + x**4*cos(1)/24 + O(x**5) def test_hyperbolic(): assert sinh(x).nseries(x, n=6) == x + x**3/6 + x**5/120 + O(x**6) assert cosh(x).nseries(x, n=5) == 1 + x**2/2 + x**4/24 + O(x**5) assert tanh(x).nseries(x, n=6) == x - x**3/3 + 2*x**5/15 + O(x**6) assert coth(x).nseries(x, n=6) == \ 1/x - x**3/45 + x/3 + 2*x**5/945 + O(x**6) assert asinh(x).nseries(x, n=6) == x - x**3/6 + 3*x**5/40 + O(x**6) assert acosh(x).nseries(x, n=6) == \ pi*I/2 - I*x - 3*I*x**5/40 - I*x**3/6 + O(x**6) assert atanh(x).nseries(x, n=6) == x + x**3/3 + x**5/5 + O(x**6) assert acoth(x).nseries(x, n=6) == x + x**3/3 + x**5/5 + pi*I/2 + O(x**6) def test_series2(): w = Symbol("w", real=True) x = Symbol("x", real=True) e = w**(-2)*(w*exp(1/x - w) - w*exp(1/x)) assert e.nseries(w, n=4) == -exp(1/x) + w*exp(1/x)/2 - w**2*exp(1/x)/6 + w**3*exp(1/x)/24 + O(w**4) def test_series3(): w = Symbol("w", real=True) e = w**(-6)*(w**3*tan(w) - w**3*sin(w)) assert e.nseries(w, n=8) == Integer(1)/2 + w**2/8 + 13*w**4/240 + 529*w**6/24192 + O(w**8) def test_bug4(): w = Symbol("w") e = x/(w**4 + x**2*w**4 + 2*x*w**4)*w**4 assert e.nseries(w, n=2).removeO().expand() in [x/(1 + 2*x + x**2), 1/(1 + x/2 + 1/x/2)/2, 1/x/(1 + 2/x + x**(-2))] def test_bug5(): w = Symbol("w") l = Symbol('l') e = (-log(w) + log(1 + w*log(x)))**(-2)*w**(-2)*((-log(w) + log(1 + x*w))*(-log(w) + log(1 + w*log(x)))*w - x*(-log(w) + log(1 + w*log(x)))*w) assert e.nseries(w, n=2, logx=l) == x/w/l + 1/w + O(1, w) assert e.nseries(w, n=3, logx=l) == x/w/l + 1/w - x/l + 1/l*log(x) \ + x*log(x)/l**2 + O(w) def test_issue_4115(): assert (sin(x)/(1 - cos(x))).nseries(x, n=1) == 2/x + O(x) assert (sin(x)**2/(1 - cos(x))).nseries(x, n=1) == 2 + O(x) def test_pole(): raises(PoleError, lambda: sin(1/x).series(x, 0, 5)) raises(PoleError, lambda: sin(1 + 1/x).series(x, 0, 5)) raises(PoleError, lambda: (x*sin(1/x)).series(x, 0, 5)) def test_expsinbug(): assert exp(sin(x)).series(x, 0, 0) == O(1, x) assert exp(sin(x)).series(x, 0, 1) == 1 + O(x) assert exp(sin(x)).series(x, 0, 2) == 1 + x + O(x**2) assert exp(sin(x)).series(x, 0, 3) == 1 + x + x**2/2 + O(x**3) assert exp(sin(x)).series(x, 0, 4) == 1 + x + x**2/2 + O(x**4) assert exp(sin(x)).series(x, 0, 5) == 1 + x + x**2/2 - x**4/8 + O(x**5) def test_floor(): x = Symbol('x') assert floor(x).series(x) == 0 assert floor(-x).series(x) == -1 assert floor(sin(x)).series(x) == 0 assert floor(sin(-x)).series(x) == -1 assert floor(x**3).series(x) == 0 assert floor(-x**3).series(x) == -1 assert floor(cos(x)).series(x) == 0 assert floor(cos(-x)).series(x) == 0 assert floor(5 + sin(x)).series(x) == 5 assert floor(5 + sin(-x)).series(x) == 4 assert floor(x).series(x, 2) == 2 assert floor(-x).series(x, 2) == -3 x = Symbol('x', negative=True) assert floor(x + 1.5).series(x) == 1 def test_ceiling(): assert ceiling(x).series(x) == 1 assert ceiling(-x).series(x) == 0 assert ceiling(sin(x)).series(x) == 1 assert ceiling(sin(-x)).series(x) == 0 assert ceiling(1 - cos(x)).series(x) == 1 assert ceiling(1 - cos(-x)).series(x) == 1 assert ceiling(x).series(x, 2) == 3 assert ceiling(-x).series(x, 2) == -2 def test_abs(): a = Symbol('a') assert abs(x).nseries(x, n=4) == x assert abs(-x).nseries(x, n=4) == x assert abs(x + 1).nseries(x, n=4) == x + 1 assert abs(sin(x)).nseries(x, n=4) == x - Rational(1, 6)*x**3 + O(x**4) assert abs(sin(-x)).nseries(x, n=4) == x - Rational(1, 6)*x**3 + O(x**4) assert abs(x - a).nseries(x, 1) == -a*sign(1 - a) + (x - 1)*sign(1 - a) + sign(1 - a) def test_dir(): assert abs(x).series(x, 0, dir="+") == x assert abs(x).series(x, 0, dir="-") == -x assert floor(x + 2).series(x, 0, dir='+') == 2 assert floor(x + 2).series(x, 0, dir='-') == 1 assert floor(x + 2.2).series(x, 0, dir='-') == 2 assert ceiling(x + 2.2).series(x, 0, dir='-') == 3 assert sin(x + y).series(x, 0, dir='-') == sin(x + y).series(x, 0, dir='+') def test_issue_3504(): a = Symbol("a") e = asin(a*x)/x assert e.series(x, 4, n=2).removeO() == \ (x - 4)*(a/(4*sqrt(-16*a**2 + 1)) - asin(4*a)/16) + asin(4*a)/4 def test_issue_4441(): a, b = symbols('a,b') f = 1/(1 + a*x) assert f.series(x, 0, 5) == 1 - a*x + a**2*x**2 - a**3*x**3 + \ a**4*x**4 + O(x**5) f = 1/(1 + (a + b)*x) assert f.series(x, 0, 3) == 1 + x*(-a - b)\ + x**2*(a**2 + 2*a*b + b**2) + O(x**3) def test_issue_4329(): assert tan(x).series(x, pi/2, n=3).removeO() == \ -pi/6 + x/3 - 1/(x - pi/2) assert cot(x).series(x, pi, n=3).removeO() == \ -x/3 + pi/3 + 1/(x - pi) assert limit(tan(x)**tan(2*x), x, pi/4) == exp(-1) def test_issue_5183(): assert abs(x + x**2).series(n=1) == O(x) assert abs(x + x**2).series(n=2) == x + O(x**2) assert ((1 + x)**2).series(x, n=6) == x**2 + 2*x + 1 assert (1 + 1/x).series() == 1 + 1/x assert Derivative(exp(x).series(), x).doit() == \ 1 + x + x**2/2 + x**3/6 + x**4/24 + O(x**5) def test_issue_5654(): a = Symbol('a') assert (1/(x**2+a**2)**2).nseries(x, x0=I*a, n=0) == \ -I/(4*a**3*(-I*a + x)) - 1/(4*a**2*(-I*a + x)**2) + O(1, (x, I*a)) assert (1/(x**2+a**2)**2).nseries(x, x0=I*a, n=1) == 3/(16*a**4) \ -I/(4*a**3*(-I*a + x)) - 1/(4*a**2*(-I*a + x)**2) + O(-I*a + x, (x, I*a)) def test_issue_5925(): sx = sqrt(x + z).series(z, 0, 1) sxy = sqrt(x + y + z).series(z, 0, 1) s1, s2 = sx.subs(x, x + y), sxy assert (s1 - s2).expand().removeO().simplify() == 0 sx = sqrt(x + z).series(z, 0, 1) sxy = sqrt(x + y + z).series(z, 0, 1) assert sxy.subs({x:1, y:2}) == sx.subs(x, 3) def test_exp_2(): assert exp(x**3).nseries(x, 0, 14) == 1 + x**3 + x**6/2 + x**9/6 + x**12/24 + O(x**14)
92e1dce721d3d67c660b9afb971effc85221bdc9f027e51a0010d7544979dadb
from sympy import ( symbols, powsimp, MatrixSymbol, sqrt, pi, Mul, gamma, Function, S, I, exp, simplify, sin, E, log, hyper, Symbol, Dummy, powdenest, root, Rational, oo, signsimp) from sympy.core.symbol import Str from sympy.abc import x, y, z, a, b def test_powsimp(): x, y, z, n = symbols('x,y,z,n') f = Function('f') assert powsimp( 4**x * 2**(-x) * 2**(-x) ) == 1 assert powsimp( (-4)**x * (-2)**(-x) * 2**(-x) ) == 1 assert powsimp( f(4**x * 2**(-x) * 2**(-x)) ) == f(4**x * 2**(-x) * 2**(-x)) assert powsimp( f(4**x * 2**(-x) * 2**(-x)), deep=True ) == f(1) assert exp(x)*exp(y) == exp(x)*exp(y) assert powsimp(exp(x)*exp(y)) == exp(x + y) assert powsimp(exp(x)*exp(y)*2**x*2**y) == (2*E)**(x + y) assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \ exp(x + y)*2**(x + y) assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \ exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y) assert powsimp(sin(exp(x)*exp(y))) == sin(exp(x)*exp(y)) assert powsimp(sin(exp(x)*exp(y)), deep=True) == sin(exp(x + y)) assert powsimp(x**2*x**y) == x**(2 + y) # This should remain factored, because 'exp' with deep=True is supposed # to act like old automatic exponent combining. assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \ (1 + exp(1 + E))*exp(-E) assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \ (1 + exp(1 + E))*exp(-E) assert powsimp((1 + E*exp(E))*exp(-E)) == (1 + exp(1 + E))*exp(-E) assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \ (1 + exp(1 + E))*exp(-E) assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \ (1 + E*exp(E))*exp(-E) x, y = symbols('x,y', nonnegative=True) n = Symbol('n', real=True) assert powsimp(y**n * (y/x)**(-n)) == x**n assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \ == (x*y)**(x*y)**(x*y) assert powsimp(2**(2**(2*x)*x), deep=False) == 2**(2**(2*x)*x) assert powsimp(2**(2**(2*x)*x), deep=True) == 2**(x*4**x) assert powsimp( exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \ exp(-x + exp(-x)*exp(-x*log(x))) assert powsimp( exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \ exp(-x + exp(-x)*exp(-x*log(x))) assert powsimp((x + y)/(3*z), deep=False, combine='exp') == (x + y)/(3*z) assert powsimp((x/3 + y/3)/z, deep=True, combine='exp') == (x/3 + y/3)/z assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \ exp(x)/(1 + exp(x + y)) assert powsimp(x*y**(z**x*z**y), deep=True) == x*y**(z**(x + y)) assert powsimp((z**x*z**y)**x, deep=True) == (z**(x + y))**x assert powsimp(x*(z**x*z**y)**x, deep=True) == x*(z**(x + y))**x p = symbols('p', positive=True) assert powsimp((1/x)**log(2)/x) == (1/x)**(1 + log(2)) assert powsimp((1/p)**log(2)/p) == p**(-1 - log(2)) # coefficient of exponent can only be simplified for positive bases assert powsimp(2**(2*x)) == 4**x assert powsimp((-1)**(2*x)) == (-1)**(2*x) i = symbols('i', integer=True) assert powsimp((-1)**(2*i)) == 1 assert powsimp((-1)**(-x)) != (-1)**x # could be 1/((-1)**x), but is not # force=True overrides assumptions assert powsimp((-1)**(2*x), force=True) == 1 # rational exponents allow combining of negative terms w, n, m = symbols('w n m', negative=True) e = i/a # not a rational exponent if `a` is unknown ex = w**e*n**e*m**e assert powsimp(ex) == m**(i/a)*n**(i/a)*w**(i/a) e = i/3 ex = w**e*n**e*m**e assert powsimp(ex) == (-1)**i*(-m*n*w)**(i/3) e = (3 + i)/i ex = w**e*n**e*m**e assert powsimp(ex) == (-1)**(3*e)*(-m*n*w)**e eq = x**(a*Rational(2, 3)) # eq != (x**a)**(2/3) (try x = -1 and a = 3 to see) assert powsimp(eq).exp == eq.exp == a*Rational(2, 3) # powdenest goes the other direction assert powsimp(2**(2*x)) == 4**x assert powsimp(exp(p/2)) == exp(p/2) # issue 6368 eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)]) assert powsimp(eq) == eq and eq.is_Mul assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2))) # issue 8836 assert str( powsimp(exp(I*pi/3)*root(-1,3)) ) == '(-1)**(2/3)' # issue 9183 assert powsimp(-0.1**x) == -0.1**x # issue 10095 assert powsimp((1/(2*E))**oo) == (exp(-1)/2)**oo # PR 13131 eq = sin(2*x)**2*sin(2.0*x)**2 assert powsimp(eq) == eq # issue 14615 assert powsimp(x**2*y**3*(x*y**2)**Rational(3, 2) ) == x*y*(x*y**2)**Rational(5, 2) def test_powsimp_negated_base(): assert powsimp((-x + y)/sqrt(x - y)) == -sqrt(x - y) assert powsimp((-x + y)*(-z + y)/sqrt(x - y)/sqrt(z - y)) == sqrt(x - y)*sqrt(z - y) p = symbols('p', positive=True) reps = {p: 2, a: S.Half} assert powsimp((-p)**a/p**a).subs(reps) == ((-1)**a).subs(reps) assert powsimp((-p)**a*p**a).subs(reps) == ((-p**2)**a).subs(reps) n = symbols('n', negative=True) reps = {p: -2, a: S.Half} assert powsimp((-n)**a/n**a).subs(reps) == (-1)**(-a).subs(a, S.Half) assert powsimp((-n)**a*n**a).subs(reps) == ((-n**2)**a).subs(reps) # if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a eq = (-x)**a/x**a assert powsimp(eq) == eq def test_powsimp_nc(): x, y, z = symbols('x,y,z') A, B, C = symbols('A B C', commutative=False) assert powsimp(A**x*A**y, combine='all') == A**(x + y) assert powsimp(A**x*A**y, combine='base') == A**x*A**y assert powsimp(A**x*A**y, combine='exp') == A**(x + y) assert powsimp(A**x*B**x, combine='all') == A**x*B**x assert powsimp(A**x*B**x, combine='base') == A**x*B**x assert powsimp(A**x*B**x, combine='exp') == A**x*B**x assert powsimp(B**x*A**x, combine='all') == B**x*A**x assert powsimp(B**x*A**x, combine='base') == B**x*A**x assert powsimp(B**x*A**x, combine='exp') == B**x*A**x assert powsimp(A**x*A**y*A**z, combine='all') == A**(x + y + z) assert powsimp(A**x*A**y*A**z, combine='base') == A**x*A**y*A**z assert powsimp(A**x*A**y*A**z, combine='exp') == A**(x + y + z) assert powsimp(A**x*B**x*C**x, combine='all') == A**x*B**x*C**x assert powsimp(A**x*B**x*C**x, combine='base') == A**x*B**x*C**x assert powsimp(A**x*B**x*C**x, combine='exp') == A**x*B**x*C**x assert powsimp(B**x*A**x*C**x, combine='all') == B**x*A**x*C**x assert powsimp(B**x*A**x*C**x, combine='base') == B**x*A**x*C**x assert powsimp(B**x*A**x*C**x, combine='exp') == B**x*A**x*C**x def test_issue_6440(): assert powsimp(16*2**a*8**b) == 2**(a + 3*b + 4) def test_powdenest(): from sympy import powdenest from sympy.abc import x, y, z, a, b p, q = symbols('p q', positive=True) i, j = symbols('i,j', integer=True) assert powdenest(x) == x assert powdenest(x + 2*(x**(a*Rational(2, 3)))**(3*x)) == (x + 2*(x**(a*Rational(2, 3)))**(3*x)) assert powdenest((exp(a*Rational(2, 3)))**(3*x)) # -X-> (exp(a/3))**(6*x) assert powdenest((x**(a*Rational(2, 3)))**(3*x)) == ((x**(a*Rational(2, 3)))**(3*x)) assert powdenest(exp(3*x*log(2))) == 2**(3*x) assert powdenest(sqrt(p**2)) == p eq = p**(2*i)*q**(4*i) assert powdenest(eq) == (p*q**2)**(2*i) # -X-> (x**x)**i*(x**x)**j == x**(x*(i + j)) assert powdenest((x**x)**(i + j)) assert powdenest(exp(3*y*log(x))) == x**(3*y) assert powdenest(exp(y*(log(a) + log(b)))) == (a*b)**y assert powdenest(exp(3*(log(a) + log(b)))) == a**3*b**3 assert powdenest(((x**(2*i))**(3*y))**x) == ((x**(2*i))**(3*y))**x assert powdenest(((x**(2*i))**(3*y))**x, force=True) == x**(6*i*x*y) assert powdenest(((x**(a*Rational(2, 3)))**(3*y/i))**x) == \ (((x**(a*Rational(2, 3)))**(3*y/i))**x) assert powdenest((x**(2*i)*y**(4*i))**z, force=True) == (x*y**2)**(2*i*z) assert powdenest((p**(2*i)*q**(4*i))**j) == (p*q**2)**(2*i*j) e = ((p**(2*a))**(3*y))**x assert powdenest(e) == e e = ((x**2*y**4)**a)**(x*y) assert powdenest(e) == e e = (((x**2*y**4)**a)**(x*y))**3 assert powdenest(e) == ((x**2*y**4)**a)**(3*x*y) assert powdenest((((x**2*y**4)**a)**(x*y)), force=True) == \ (x*y**2)**(2*a*x*y) assert powdenest((((x**2*y**4)**a)**(x*y))**3, force=True) == \ (x*y**2)**(6*a*x*y) assert powdenest((x**2*y**6)**i) != (x*y**3)**(2*i) x, y = symbols('x,y', positive=True) assert powdenest((x**2*y**6)**i) == (x*y**3)**(2*i) assert powdenest((x**(i*Rational(2, 3))*y**(i/2))**(2*i)) == (x**Rational(4, 3)*y)**(i**2) assert powdenest(sqrt(x**(2*i)*y**(6*i))) == (x*y**3)**i assert powdenest(4**x) == 2**(2*x) assert powdenest((4**x)**y) == 2**(2*x*y) assert powdenest(4**x*y) == 2**(2*x)*y def test_powdenest_polar(): x, y, z = symbols('x y z', polar=True) a, b, c = symbols('a b c') assert powdenest((x*y*z)**a) == x**a*y**a*z**a assert powdenest((x**a*y**b)**c) == x**(a*c)*y**(b*c) assert powdenest(((x**a)**b*y**c)**c) == x**(a*b*c)*y**(c**2) def test_issue_5805(): arg = ((gamma(x)*hyper((), (), x))*pi)**2 assert powdenest(arg) == (pi*gamma(x)*hyper((), (), x))**2 assert arg.is_positive is None def test_issue_9324_powsimp_on_matrix_symbol(): M = MatrixSymbol('M', 10, 10) expr = powsimp(M, deep=True) assert expr == M assert expr.args[0] == Str('M') def test_issue_6367(): z = -5*sqrt(2)/(2*sqrt(2*sqrt(29) + 29)) + sqrt(-sqrt(29)/29 + S.Half) assert Mul(*[powsimp(a) for a in Mul.make_args(z.normal())]) == 0 assert powsimp(z.normal()) == 0 assert simplify(z) == 0 assert powsimp(sqrt(2 + sqrt(3))*sqrt(2 - sqrt(3)) + 1) == 2 assert powsimp(z) != 0 def test_powsimp_polar(): from sympy import polar_lift, exp_polar x, y, z = symbols('x y z') p, q, r = symbols('p q r', polar=True) assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x) assert powsimp(p**x * q**x) == (p*q)**x assert p**x * (1/p)**x == 1 assert (1/p)**x == p**(-x) assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y) assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y) assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \ (p*exp_polar(1))**(x + y) assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \ exp_polar(x + y)*p**(x + y) assert powsimp( exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \ == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y) assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \ sin(exp_polar(x)*exp_polar(y)) assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \ sin(exp_polar(x + y)) def test_issue_5728(): b = x*sqrt(y) a = sqrt(b) c = sqrt(sqrt(x)*y) assert powsimp(a*b) == sqrt(b)**3 assert powsimp(a*b**2*sqrt(y)) == sqrt(y)*a**5 assert powsimp(a*x**2*c**3*y) == c**3*a**5 assert powsimp(a*x*c**3*y**2) == c**7*a assert powsimp(x*c**3*y**2) == c**7 assert powsimp(x*c**3*y) == x*y*c**3 assert powsimp(sqrt(x)*c**3*y) == c**5 assert powsimp(sqrt(x)*a**3*sqrt(y)) == sqrt(x)*sqrt(y)*a**3 assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \ sqrt(x)*sqrt(y)**3*c**3 assert powsimp(a**2*a*x**2*y) == a**7 # symbolic powers work, too b = x**y*y a = b*sqrt(b) assert a.is_Mul is True assert powsimp(a) == sqrt(b)**3 # as does exp a = x*exp(y*Rational(2, 3)) assert powsimp(a*sqrt(a)) == sqrt(a)**3 assert powsimp(a**2*sqrt(a)) == sqrt(a)**5 assert powsimp(a**2*sqrt(sqrt(a))) == sqrt(sqrt(a))**9 def test_issue_from_PR1599(): n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True) assert (powsimp(sqrt(n1)*sqrt(n2)*sqrt(n3)) == -I*sqrt(-n1)*sqrt(-n2)*sqrt(-n3)) assert (powsimp(root(n1, 3)*root(n2, 3)*root(n3, 3)*root(n4, 3)) == -(-1)**Rational(1, 3)* (-n1)**Rational(1, 3)*(-n2)**Rational(1, 3)*(-n3)**Rational(1, 3)*(-n4)**Rational(1, 3)) def test_issue_10195(): a = Symbol('a', integer=True) l = Symbol('l', even=True, nonzero=True) n = Symbol('n', odd=True) e_x = (-1)**(n/2 - S.Half) - (-1)**(n*Rational(3, 2) - S.Half) assert powsimp((-1)**(l/2)) == I**l assert powsimp((-1)**(n/2)) == I**n assert powsimp((-1)**(n*Rational(3, 2))) == -I**n assert powsimp(e_x) == (-1)**(n/2 - S.Half) + (-1)**(n*Rational(3, 2) + S.Half) assert powsimp((-1)**(a*Rational(3, 2))) == (-I)**a def test_issue_15709(): assert powsimp(3**x*Rational(2, 3)) == 2*3**(x-1) assert powsimp(2*3**x/3) == 2*3**(x-1) def test_issue_11981(): x, y = symbols('x y', commutative=False) assert powsimp((x*y)**2 * (y*x)**2) == (x*y)**2 * (y*x)**2 def test_issue_17524(): a = symbols("a", real=True) e = (-1 - a**2)*sqrt(1 + a**2) assert signsimp(powsimp(e)) == signsimp(e) == -(a**2 + 1)**(S(3)/2) def test_issue_19627(): # if you use force the user must verify assert powdenest(sqrt(sin(x)**2), force=True) == sin(x) assert powdenest((x**(S.Half/y))**(2*y), force=True) == x from sympy import expand_power_base e = 1 - a expr = (exp(z/e)*x**(b/e)*y**((1 - b)/e))**e assert powdenest(expand_power_base(expr, force=True), force=True ) == x**b*y**(1 - b)*exp(z)
56c191ab6ae88eb58131dfeac9a64ea9db335b127965ae3c61761f6958c9bd4a
from functools import reduce import itertools from operator import add from sympy import ( Add, Mul, Pow, Symbol, exp, sqrt, symbols, sympify, cse, Matrix, S, cos, sin, Eq, Function, Tuple, CRootOf, IndexedBase, Idx, Piecewise, O, signsimp ) from sympy.core.function import count_ops from sympy.simplify.cse_opts import sub_pre, sub_post from sympy.functions.special.hyper import meijerg from sympy.simplify import cse_main, cse_opts from sympy.utilities.iterables import subsets from sympy.testing.pytest import XFAIL, raises from sympy.matrices import (MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix) from sympy.matrices.expressions import MatrixSymbol w, x, y, z = symbols('w,x,y,z') x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = symbols('x:13') def test_numbered_symbols(): ns = cse_main.numbered_symbols(prefix='y') assert list(itertools.islice( ns, 0, 10)) == [Symbol('y%s' % i) for i in range(0, 10)] ns = cse_main.numbered_symbols(prefix='y') assert list(itertools.islice( ns, 10, 20)) == [Symbol('y%s' % i) for i in range(10, 20)] ns = cse_main.numbered_symbols() assert list(itertools.islice( ns, 0, 10)) == [Symbol('x%s' % i) for i in range(0, 10)] # Dummy "optimization" functions for testing. def opt1(expr): return expr + y def opt2(expr): return expr*z def test_preprocess_for_cse(): assert cse_main.preprocess_for_cse(x, [(opt1, None)]) == x + y assert cse_main.preprocess_for_cse(x, [(None, opt1)]) == x assert cse_main.preprocess_for_cse(x, [(None, None)]) == x assert cse_main.preprocess_for_cse(x, [(opt1, opt2)]) == x + y assert cse_main.preprocess_for_cse( x, [(opt1, None), (opt2, None)]) == (x + y)*z def test_postprocess_for_cse(): assert cse_main.postprocess_for_cse(x, [(opt1, None)]) == x assert cse_main.postprocess_for_cse(x, [(None, opt1)]) == x + y assert cse_main.postprocess_for_cse(x, [(None, None)]) == x assert cse_main.postprocess_for_cse(x, [(opt1, opt2)]) == x*z # Note the reverse order of application. assert cse_main.postprocess_for_cse( x, [(None, opt1), (None, opt2)]) == x*z + y def test_cse_single(): # Simple substitution. e = Add(Pow(x + y, 2), sqrt(x + y)) substs, reduced = cse([e]) assert substs == [(x0, x + y)] assert reduced == [sqrt(x0) + x0**2] subst42, (red42,) = cse([42]) # issue_15082 assert len(subst42) == 0 and red42 == 42 subst_half, (red_half,) = cse([0.5]) assert len(subst_half) == 0 and red_half == 0.5 def test_cse_single2(): # Simple substitution, test for being able to pass the expression directly e = Add(Pow(x + y, 2), sqrt(x + y)) substs, reduced = cse(e) assert substs == [(x0, x + y)] assert reduced == [sqrt(x0) + x0**2] substs, reduced = cse(Matrix([[1]])) assert isinstance(reduced[0], Matrix) subst42, (red42,) = cse(42) # issue 15082 assert len(subst42) == 0 and red42 == 42 subst_half, (red_half,) = cse(0.5) # issue 15082 assert len(subst_half) == 0 and red_half == 0.5 def test_cse_not_possible(): # No substitution possible. e = Add(x, y) substs, reduced = cse([e]) assert substs == [] assert reduced == [x + y] # issue 6329 eq = (meijerg((1, 2), (y, 4), (5,), [], x) + meijerg((1, 3), (y, 4), (5,), [], x)) assert cse(eq) == ([], [eq]) def test_nested_substitution(): # Substitution within a substitution. e = Add(Pow(w*x + y, 2), sqrt(w*x + y)) substs, reduced = cse([e]) assert substs == [(x0, w*x + y)] assert reduced == [sqrt(x0) + x0**2] def test_subtraction_opt(): # Make sure subtraction is optimized. e = (x - y)*(z - y) + exp((x - y)*(z - y)) substs, reduced = cse( [e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) assert substs == [(x0, (x - y)*(y - z))] assert reduced == [-x0 + exp(-x0)] e = -(x - y)*(z - y) + exp(-(x - y)*(z - y)) substs, reduced = cse( [e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) assert substs == [(x0, (x - y)*(y - z))] assert reduced == [x0 + exp(x0)] # issue 4077 n = -1 + 1/x e = n/x/(-n)**2 - 1/n/x assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \ ([], [0]) def test_multiple_expressions(): e1 = (x + y)*z e2 = (x + y)*w substs, reduced = cse([e1, e2]) assert substs == [(x0, x + y)] assert reduced == [x0*z, x0*w] l = [w*x*y + z, w*y] substs, reduced = cse(l) rsubsts, _ = cse(reversed(l)) assert substs == rsubsts assert reduced == [z + x*x0, x0] l = [w*x*y, w*x*y + z, w*y] substs, reduced = cse(l) rsubsts, _ = cse(reversed(l)) assert substs == rsubsts assert reduced == [x1, x1 + z, x0] l = [(x - z)*(y - z), x - z, y - z] substs, reduced = cse(l) rsubsts, _ = cse(reversed(l)) assert substs == [(x0, -z), (x1, x + x0), (x2, x0 + y)] assert rsubsts == [(x0, -z), (x1, x0 + y), (x2, x + x0)] assert reduced == [x1*x2, x1, x2] l = [w*y + w + x + y + z, w*x*y] assert cse(l) == ([(x0, w*y)], [w + x + x0 + y + z, x*x0]) assert cse([x + y, x + y + z]) == ([(x0, x + y)], [x0, z + x0]) assert cse([x + y, x + z]) == ([], [x + y, x + z]) assert cse([x*y, z + x*y, x*y*z + 3]) == \ ([(x0, x*y)], [x0, z + x0, 3 + x0*z]) @XFAIL # CSE of non-commutative Mul terms is disabled def test_non_commutative_cse(): A, B, C = symbols('A B C', commutative=False) l = [A*B*C, A*C] assert cse(l) == ([], l) l = [A*B*C, A*B] assert cse(l) == ([(x0, A*B)], [x0*C, x0]) # Test if CSE of non-commutative Mul terms is disabled def test_bypass_non_commutatives(): A, B, C = symbols('A B C', commutative=False) l = [A*B*C, A*C] assert cse(l) == ([], l) l = [A*B*C, A*B] assert cse(l) == ([], l) l = [B*C, A*B*C] assert cse(l) == ([], l) @XFAIL # CSE fails when replacing non-commutative sub-expressions def test_non_commutative_order(): A, B, C = symbols('A B C', commutative=False) x0 = symbols('x0', commutative=False) l = [B+C, A*(B+C)] assert cse(l) == ([(x0, B+C)], [x0, A*x0]) @XFAIL # Worked in gh-11232, but was reverted due to performance considerations def test_issue_10228(): assert cse([x*y**2 + x*y]) == ([(x0, x*y)], [x0*y + x0]) assert cse([x + y, 2*x + y]) == ([(x0, x + y)], [x0, x + x0]) assert cse((w + 2*x + y + z, w + x + 1)) == ( [(x0, w + x)], [x0 + x + y + z, x0 + 1]) assert cse(((w + x + y + z)*(w - x))/(w + x)) == ( [(x0, w + x)], [(x0 + y + z)*(w - x)/x0]) a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m') exprs = (d*g**2*j*m, 4*a*f*g*m, a*b*c*f**2) assert cse(exprs) == ( [(x0, g*m), (x1, a*f)], [d*g*j*x0, 4*x0*x1, b*c*f*x1] ) @XFAIL def test_powers(): assert cse(x*y**2 + x*y) == ([(x0, x*y)], [x0*y + x0]) def test_issue_4498(): assert cse(w/(x - y) + z/(y - x), optimizations='basic') == \ ([], [(w - z)/(x - y)]) def test_issue_4020(): assert cse(x**5 + x**4 + x**3 + x**2, optimizations='basic') \ == ([(x0, x**2)], [x0*(x**3 + x + x0 + 1)]) def test_issue_4203(): assert cse(sin(x**x)/x**x) == ([(x0, x**x)], [sin(x0)/x0]) def test_issue_6263(): e = Eq(x*(-x + 1) + x*(x - 1), 0) assert cse(e, optimizations='basic') == ([], [True]) def test_dont_cse_tuples(): from sympy import Subs f = Function("f") g = Function("g") name_val, (expr,) = cse( Subs(f(x, y), (x, y), (0, 1)) + Subs(g(x, y), (x, y), (0, 1))) assert name_val == [] assert expr == (Subs(f(x, y), (x, y), (0, 1)) + Subs(g(x, y), (x, y), (0, 1))) name_val, (expr,) = cse( Subs(f(x, y), (x, y), (0, x + y)) + Subs(g(x, y), (x, y), (0, x + y))) assert name_val == [(x0, x + y)] assert expr == Subs(f(x, y), (x, y), (0, x0)) + \ Subs(g(x, y), (x, y), (0, x0)) def test_pow_invpow(): assert cse(1/x**2 + x**2) == \ ([(x0, x**2)], [x0 + 1/x0]) assert cse(x**2 + (1 + 1/x**2)/x**2) == \ ([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)]) assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \ ([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1]) assert cse(cos(1/x**2) + sin(1/x**2)) == \ ([(x0, x**(-2))], [sin(x0) + cos(x0)]) assert cse(cos(x**2) + sin(x**2)) == \ ([(x0, x**2)], [sin(x0) + cos(x0)]) assert cse(y/(2 + x**2) + z/x**2/y) == \ ([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)]) assert cse(exp(x**2) + x**2*cos(1/x**2)) == \ ([(x0, x**2)], [x0*cos(1/x0) + exp(x0)]) assert cse((1 + 1/x**2)/x**2) == \ ([(x0, x**(-2))], [x0*(x0 + 1)]) assert cse(x**(2*y) + x**(-2*y)) == \ ([(x0, x**(2*y))], [x0 + 1/x0]) def test_postprocess(): eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1)) assert cse([eq, Eq(x, z + 1), z - 2, (z + 1)*(x + 1)], postprocess=cse_main.cse_separate) == \ [[(x0, y + 1), (x2, z + 1), (x, x2), (x1, x + 1)], [x1 + exp(x1/x0) + cos(x0), z - 2, x1*x2]] def test_issue_4499(): # previously, this gave 16 constants from sympy.abc import a, b B = Function('B') G = Function('G') t = Tuple(* (a, a + S.Half, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a - b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b, sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1, sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1), (sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S.Half, z/2, -b + 1, -2*a + b, -2*a)) c = cse(t) ans = ( [(x0, 2*a), (x1, -b), (x2, x0 + x1), (x3, x2 + 1), (x4, sqrt(z)), (x5, B(b - 1, x4)), (x6, -x0), (x7, (x4/2)**(x6 + 1)*G(b)*G(x3)), (x8, x7*B(x2, x4)), (x9, B(b, x4)), (x10, x7*B(x3, x4))], [(a, a + S.Half, x0, b, x3, x5*x8, x4*x8*x9, x10*x4*x5, x10*x9, 1, 0, S.Half, z/2, x1 + 1, b + x6, x6)]) assert ans == c def test_issue_6169(): r = CRootOf(x**6 - 4*x**5 - 2, 1) assert cse(r) == ([], [r]) # and a check that the right thing is done with the new # mechanism assert sub_post(sub_pre((-x - y)*z - x - y)) == -z*(x + y) - x - y def test_cse_Indexed(): len_y = 5 y = IndexedBase('y', shape=(len_y,)) x = IndexedBase('x', shape=(len_y,)) i = Idx('i', len_y-1) expr1 = (y[i+1]-y[i])/(x[i+1]-x[i]) expr2 = 1/(x[i+1]-x[i]) replacements, reduced_exprs = cse([expr1, expr2]) assert len(replacements) > 0 def test_cse_MatrixSymbol(): # MatrixSymbols have non-Basic args, so make sure that works A = MatrixSymbol("A", 3, 3) assert cse(A) == ([], [A]) n = symbols('n', integer=True) B = MatrixSymbol("B", n, n) assert cse(B) == ([], [B]) def test_cse_MatrixExpr(): from sympy import MatrixSymbol A = MatrixSymbol('A', 3, 3) y = MatrixSymbol('y', 3, 1) expr1 = (A.T*A).I * A * y expr2 = (A.T*A) * A * y replacements, reduced_exprs = cse([expr1, expr2]) assert len(replacements) > 0 replacements, reduced_exprs = cse([expr1 + expr2, expr1]) assert replacements replacements, reduced_exprs = cse([A**2, A + A**2]) assert replacements def test_Piecewise(): f = Piecewise((-z + x*y, Eq(y, 0)), (-z - x*y, True)) ans = cse(f) actual_ans = ([(x0, -z), (x1, x*y)], [Piecewise((x0 + x1, Eq(y, 0)), (x0 - x1, True))]) assert ans == actual_ans def test_ignore_order_terms(): eq = exp(x).series(x,0,3) + sin(y+x**3) - 1 assert cse(eq) == ([], [sin(x**3 + y) + x + x**2/2 + O(x**3)]) def test_name_conflict(): z1 = x0 + y z2 = x2 + x3 l = [cos(z1) + z1, cos(z2) + z2, x0 + x2] substs, reduced = cse(l) assert [e.subs(reversed(substs)) for e in reduced] == l def test_name_conflict_cust_symbols(): z1 = x0 + y z2 = x2 + x3 l = [cos(z1) + z1, cos(z2) + z2, x0 + x2] substs, reduced = cse(l, symbols("x:10")) assert [e.subs(reversed(substs)) for e in reduced] == l def test_symbols_exhausted_error(): l = cos(x+y)+x+y+cos(w+y)+sin(w+y) sym = [x, y, z] with raises(ValueError): cse(l, symbols=sym) def test_issue_7840(): # daveknippers' example C393 = sympify( \ 'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \ C391 > 2.35), (C392, True)), True))' ) C391 = sympify( \ 'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))' ) C393 = C393.subs('C391',C391) # simple substitution sub = {} sub['C390'] = 0.703451854 sub['C392'] = 1.01417794 ss_answer = C393.subs(sub) # cse substitutions,new_eqn = cse(C393) for pair in substitutions: sub[pair[0].name] = pair[1].subs(sub) cse_answer = new_eqn[0].subs(sub) # both methods should be the same assert ss_answer == cse_answer # GitRay's example expr = sympify( "Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \ (Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \ Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \ Symbol('AUTO'))), (Symbol('OFF'), true)), true))" ) substitutions, new_eqn = cse(expr) # this Piecewise should be exactly the same assert new_eqn[0] == expr # there should not be any replacements assert len(substitutions) < 1 def test_issue_8891(): for cls in (MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix): m = cls(2, 2, [x + y, 0, 0, 0]) res = cse([x + y, m]) ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])]) assert res == ans assert isinstance(res[1][-1], cls) def test_issue_11230(): # a specific test that always failed a, b, f, k, l, i = symbols('a b f k l i') p = [a*b*f*k*l, a*i*k**2*l, f*i*k**2*l] R, C = cse(p) assert not any(i.is_Mul for a in C for i in a.args) # random tests for the issue from random import choice from sympy.core.function import expand_mul s = symbols('a:m') # 35 Mul tests, none of which should ever fail ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)] for p in subsets(ex, 3): p = list(p) R, C = cse(p) assert not any(i.is_Mul for a in C for i in a.args) for ri in reversed(R): for i in range(len(C)): C[i] = C[i].subs(*ri) assert p == C # 35 Add tests, none of which should ever fail ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)] for p in subsets(ex, 3): p = list(p) R, C = cse(p) assert not any(i.is_Add for a in C for i in a.args) for ri in reversed(R): for i in range(len(C)): C[i] = C[i].subs(*ri) # use expand_mul to handle cases like this: # p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g] # x0 = 2*(b + e) is identified giving a rebuilt p that # is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]` assert p == [expand_mul(i) for i in C] @XFAIL def test_issue_11577(): def check(eq): r, c = cse(eq) assert eq.count_ops() >= \ len(r) + sum([i[1].count_ops() for i in r]) + \ count_ops(c) eq = x**5*y**2 + x**5*y + x**5 assert cse(eq) == ( [(x0, x**4), (x1, x*y)], [x**5 + x0*x1*y + x0*x1]) # ([(x0, x**5*y)], [x0*y + x0 + x**5]) or # ([(x0, x**5)], [x0*y**2 + x0*y + x0]) check(eq) eq = x**2/(y + 1)**2 + x/(y + 1) assert cse(eq) == ( [(x0, y + 1)], [x**2/x0**2 + x/x0]) # ([(x0, x/(y + 1))], [x0**2 + x0]) check(eq) def test_hollow_rejection(): eq = [x + 3, x + 4] assert cse(eq) == ([], eq) def test_cse_ignore(): exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))] subst1, red1 = cse(exprs) assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y" subst2, red2 = cse(exprs, ignore=(y,)) # y is not allowed in substitutions assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored" assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression" def test_cse_ignore_issue_15002(): l = [ w*exp(x)*exp(-z), exp(y)*exp(x)*exp(-z) ] substs, reduced = cse(l, ignore=(x,)) rl = [e.subs(reversed(substs)) for e in reduced] assert rl == l def test_cse__performance(): nexprs, nterms = 3, 20 x = symbols('x:%d' % nterms) exprs = [ reduce(add, [x[j]*(-1)**(i+j) for j in range(nterms)]) for i in range(nexprs) ] assert (exprs[0] + exprs[1]).simplify() == 0 subst, red = cse(exprs) assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE" for i, e in enumerate(red): assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0 def test_issue_12070(): exprs = [x + y, 2 + x + y, x + y + z, 3 + x + y + z] subst, red = cse(exprs) assert 6 >= (len(subst) + sum([v.count_ops() for k, v in subst]) + count_ops(red)) def test_issue_13000(): eq = x/(-4*x**2 + y**2) cse_eq = cse(eq)[1][0] assert cse_eq == eq def test_issue_18203(): eq = CRootOf(x**5 + 11*x - 2, 0) + CRootOf(x**5 + 11*x - 2, 1) assert cse(eq) == ([], [eq]) def test_unevaluated_mul(): eq = Mul(x + y, x + y, evaluate=False) assert cse(eq) == ([(x0, x + y)], [x0**2]) def test_issue_18991(): A = MatrixSymbol('A', 2, 2) assert signsimp(-A * A - A) == -A * A - A def test_unevaluated_Mul(): m = [Mul(1, 2, evaluate=False)] assert cse(m) == ([], m)
576220ec4b22ccf4ef081d27a0aceabb4c479cd8c7dff124f2a0cfcd75dc2854
from sympy.core import Lambda, Symbol, symbols from sympy.diffgeom.rn import R2, R2_p, R2_r, R3_r, R3_c, R3_s, R2_origin from sympy.diffgeom import (CoordSystem, Commutator, Differential, TensorProduct, WedgeProduct, BaseCovarDerivativeOp, CovarDerivativeOp, LieDerivative, covariant_order, contravariant_order, twoform_to_matrix, metric_to_Christoffel_1st, metric_to_Christoffel_2nd, metric_to_Riemann_components, metric_to_Ricci_components, intcurve_diffequ, intcurve_series) from sympy.simplify import trigsimp, simplify from sympy.functions import sqrt, atan2, sin from sympy.matrices import Matrix from sympy.testing.pytest import raises, nocache_fail from sympy.testing.pytest import warns_deprecated_sympy TP = TensorProduct def test_coordsys_transform(): # test inverse transforms p, q, r, s = symbols('p q r s') rel = {('first', 'second'): [(p, q), (q, -p)]} R2_pq = CoordSystem('first', R2_origin, [p, q], rel) R2_rs = CoordSystem('second', R2_origin, [r, s], rel) r, s = R2_rs.symbols assert R2_rs.transform(R2_pq) == Matrix([[-s], [r]]) # inverse transform impossible case a, b = symbols('a b', positive=True) rel = {('first', 'second'): [(a,), (-a,)]} R2_a = CoordSystem('first', R2_origin, [a], rel) R2_b = CoordSystem('second', R2_origin, [b], rel) # This transformation is uninvertible because there is no positive a, b satisfying a = -b with raises(NotImplementedError): R2_b.transform(R2_a) # inverse transform ambiguous case c, d = symbols('c d') rel = {('first', 'second'): [(c,), (c**2,)]} R2_c = CoordSystem('first', R2_origin, [c], rel) R2_d = CoordSystem('second', R2_origin, [d], rel) # The transform method should throw if it finds multiple inverses for a coordinate transformation. with raises(ValueError): R2_d.transform(R2_c) # test indirect transformation a, b, c, d, e, f = symbols('a, b, c, d, e, f') rel = {('C1', 'C2'): [(a, b), (2*a, 3*b)], ('C2', 'C3'): [(c, d), (3*c, 2*d)]} C1 = CoordSystem('C1', R2_origin, (a, b), rel) C2 = CoordSystem('C2', R2_origin, (c, d), rel) C3 = CoordSystem('C3', R2_origin, (e, f), rel) a, b = C1.symbols c, d = C2.symbols e, f = C3.symbols assert C2.transform(C1) == Matrix([c/2, d/3]) assert C1.transform(C3) == Matrix([6*a, 6*b]) assert C3.transform(C1) == Matrix([e/6, f/6]) assert C3.transform(C2) == Matrix([e/3, f/2]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') rel = {('C1', 'C2'): [(a, b), (2*a, 3*b + 1)], ('C3', 'C2'): [(e, f), (-e - 2, 2*f)]} C1 = CoordSystem('C1', R2_origin, (a, b), rel) C2 = CoordSystem('C2', R2_origin, (c, d), rel) C3 = CoordSystem('C3', R2_origin, (e, f), rel) a, b = C1.symbols c, d = C2.symbols e, f = C3.symbols assert C2.transform(C1) == Matrix([c/2, (d - 1)/3]) assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2]) assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3]) assert C3.transform(C2) == Matrix([-e - 2, 2*f]) # old signature uses Lambda a, b, c, d, e, f = symbols('a, b, c, d, e, f') rel = {('C1', 'C2'): Lambda((a, b), (2*a, 3*b + 1)), ('C3', 'C2'): Lambda((e, f), (-e - 2, 2*f))} C1 = CoordSystem('C1', R2_origin, (a, b), rel) C2 = CoordSystem('C2', R2_origin, (c, d), rel) C3 = CoordSystem('C3', R2_origin, (e, f), rel) a, b = C1.symbols c, d = C2.symbols e, f = C3.symbols assert C2.transform(C1) == Matrix([c/2, (d - 1)/3]) assert C1.transform(C3) == Matrix([-2*a - 2, (3*b + 1)/2]) assert C3.transform(C1) == Matrix([-e/2 - 1, (2*f - 1)/3]) assert C3.transform(C2) == Matrix([-e - 2, 2*f]) def test_R2(): x0, y0, r0, theta0 = symbols('x0, y0, r0, theta0', real=True) point_r = R2_r.point([x0, y0]) point_p = R2_p.point([r0, theta0]) # r**2 = x**2 + y**2 assert (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_r) == 0 assert trigsimp( (R2.r**2 - R2.x**2 - R2.y**2).rcall(point_p) ) == 0 assert trigsimp(R2.e_r(R2.x**2 + R2.y**2).rcall(point_p).doit()) == 2*r0 # polar->rect->polar == Id a, b = symbols('a b', positive=True) m = Matrix([[a], [b]]) #TODO assert m == R2_r.transform(R2_p, R2_p.transform(R2_r, [a, b])).applyfunc(simplify) assert m == R2_p.transform(R2_r, R2_r.transform(R2_p, m)).applyfunc(simplify) # deprecated method with warns_deprecated_sympy(): assert m == R2_p.coord_tuple_transform_to( R2_r, R2_r.coord_tuple_transform_to(R2_p, m)).applyfunc(simplify) def test_R3(): a, b, c = symbols('a b c', positive=True) m = Matrix([[a], [b], [c]]) assert m == R3_c.transform(R3_r, R3_r.transform(R3_c, m)).applyfunc(simplify) #TODO assert m == R3_r.transform(R3_c, R3_c.transform(R3_r, m)).applyfunc(simplify) assert m == R3_s.transform( R3_r, R3_r.transform(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_r.transform(R3_s, R3_s.transform(R3_r, m)).applyfunc(simplify) assert m == R3_s.transform( R3_c, R3_c.transform(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_c.transform(R3_s, R3_s.transform(R3_c, m)).applyfunc(simplify) with warns_deprecated_sympy(): assert m == R3_c.coord_tuple_transform_to( R3_r, R3_r.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) #TODO assert m == R3_r.coord_tuple_transform_to(R3_c, R3_c.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) assert m == R3_s.coord_tuple_transform_to( R3_r, R3_r.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_r.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_r, m)).applyfunc(simplify) assert m == R3_s.coord_tuple_transform_to( R3_c, R3_c.coord_tuple_transform_to(R3_s, m)).applyfunc(simplify) #TODO assert m == R3_c.coord_tuple_transform_to(R3_s, R3_s.coord_tuple_transform_to(R3_c, m)).applyfunc(simplify) def test_point(): x, y = symbols('x, y') p = R2_r.point([x, y]) assert p.free_symbols == {x, y} assert p.coords(R2_r) == p.coords() == Matrix([x, y]) assert p.coords(R2_p) == Matrix([sqrt(x**2 + y**2), atan2(y, x)]) def test_commutator(): assert Commutator(R2.e_x, R2.e_y) == 0 assert Commutator(R2.x*R2.e_x, R2.x*R2.e_x) == 0 assert Commutator(R2.x*R2.e_x, R2.x*R2.e_y) == R2.x*R2.e_y c = Commutator(R2.e_x, R2.e_r) assert c(R2.x) == R2.y*(R2.x**2 + R2.y**2)**(-1)*sin(R2.theta) def test_differential(): xdy = R2.x*R2.dy dxdy = Differential(xdy) assert xdy.rcall(None) == xdy assert dxdy(R2.e_x, R2.e_y) == 1 assert dxdy(R2.e_x, R2.x*R2.e_y) == R2.x assert Differential(dxdy) == 0 def test_products(): assert TensorProduct( R2.dx, R2.dy)(R2.e_x, R2.e_y) == R2.dx(R2.e_x)*R2.dy(R2.e_y) == 1 assert TensorProduct(R2.dx, R2.dy)(None, R2.e_y) == R2.dx assert TensorProduct(R2.dx, R2.dy)(R2.e_x, None) == R2.dy assert TensorProduct(R2.dx, R2.dy)(R2.e_x) == R2.dy assert TensorProduct(R2.x, R2.dx) == R2.x*R2.dx assert TensorProduct( R2.e_x, R2.e_y)(R2.x, R2.y) == R2.e_x(R2.x) * R2.e_y(R2.y) == 1 assert TensorProduct(R2.e_x, R2.e_y)(None, R2.y) == R2.e_x assert TensorProduct(R2.e_x, R2.e_y)(R2.x, None) == R2.e_y assert TensorProduct(R2.e_x, R2.e_y)(R2.x) == R2.e_y assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x assert TensorProduct( R2.dx, R2.e_y)(R2.e_x, R2.y) == R2.dx(R2.e_x) * R2.e_y(R2.y) == 1 assert TensorProduct(R2.dx, R2.e_y)(None, R2.y) == R2.dx assert TensorProduct(R2.dx, R2.e_y)(R2.e_x, None) == R2.e_y assert TensorProduct(R2.dx, R2.e_y)(R2.e_x) == R2.e_y assert TensorProduct(R2.x, R2.e_x) == R2.x * R2.e_x assert TensorProduct( R2.e_x, R2.dy)(R2.x, R2.e_y) == R2.e_x(R2.x) * R2.dy(R2.e_y) == 1 assert TensorProduct(R2.e_x, R2.dy)(None, R2.e_y) == R2.e_x assert TensorProduct(R2.e_x, R2.dy)(R2.x, None) == R2.dy assert TensorProduct(R2.e_x, R2.dy)(R2.x) == R2.dy assert TensorProduct(R2.e_y,R2.e_x)(R2.x**2 + R2.y**2,R2.x**2 + R2.y**2) == 4*R2.x*R2.y assert WedgeProduct(R2.dx, R2.dy)(R2.e_x, R2.e_y) == 1 assert WedgeProduct(R2.e_x, R2.e_y)(R2.x, R2.y) == 1 def test_lie_derivative(): assert LieDerivative(R2.e_x, R2.y) == R2.e_x(R2.y) == 0 assert LieDerivative(R2.e_x, R2.x) == R2.e_x(R2.x) == 1 assert LieDerivative(R2.e_x, R2.e_x) == Commutator(R2.e_x, R2.e_x) == 0 assert LieDerivative(R2.e_x, R2.e_r) == Commutator(R2.e_x, R2.e_r) assert LieDerivative(R2.e_x + R2.e_y, R2.x) == 1 assert LieDerivative( R2.e_x, TensorProduct(R2.dx, R2.dy))(R2.e_x, R2.e_y) == 0 @nocache_fail def test_covar_deriv(): ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy)) cvd = BaseCovarDerivativeOp(R2_r, 0, ch) assert cvd(R2.x) == 1 # This line fails if the cache is disabled: assert cvd(R2.x*R2.e_x) == R2.e_x cvd = CovarDerivativeOp(R2.x*R2.e_x, ch) assert cvd(R2.x) == R2.x assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x def test_intcurve_diffequ(): t = symbols('t') start_point = R2_r.point([1, 0]) vector_field = -R2.y*R2.e_x + R2.x*R2.e_y equations, init_cond = intcurve_diffequ(vector_field, t, start_point) assert str(equations) == '[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p) assert str( equations) == '[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]' assert str(init_cond) == '[f_0(0) - 1, f_1(0)]' def test_helpers_and_coordinate_dependent(): one_form = R2.dr + R2.dx two_form = Differential(R2.x*R2.dr + R2.r*R2.dx) three_form = Differential( R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr)) metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy) metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr) misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr misform_b = R2.dr**4 misform_c = R2.dx*R2.dy twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy) twoform_not_TP = WedgeProduct(R2.dx, R2.dy) one_vector = R2.e_x + R2.e_y two_vector = TensorProduct(R2.e_x, R2.e_y) three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x) two_wp = WedgeProduct(R2.e_x,R2.e_y) assert covariant_order(one_form) == 1 assert covariant_order(two_form) == 2 assert covariant_order(three_form) == 3 assert covariant_order(two_form + metric) == 2 assert covariant_order(two_form + metric_ambig) == 2 assert covariant_order(two_form + twoform_not_sym) == 2 assert covariant_order(two_form + twoform_not_TP) == 2 assert contravariant_order(one_vector) == 1 assert contravariant_order(two_vector) == 2 assert contravariant_order(three_vector) == 3 assert contravariant_order(two_vector + two_wp) == 2 raises(ValueError, lambda: covariant_order(misform_a)) raises(ValueError, lambda: covariant_order(misform_b)) raises(ValueError, lambda: covariant_order(misform_c)) assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]]) assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]]) assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]]) raises(ValueError, lambda: twoform_to_matrix(one_form)) raises(ValueError, lambda: twoform_to_matrix(three_form)) raises(ValueError, lambda: twoform_to_matrix(metric_ambig)) raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym)) raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym)) raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym)) raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym)) def test_correct_arguments(): raises(ValueError, lambda: R2.e_x(R2.e_x)) raises(ValueError, lambda: R2.e_x(R2.dx)) raises(ValueError, lambda: Commutator(R2.e_x, R2.x)) raises(ValueError, lambda: Commutator(R2.dx, R2.e_x)) raises(ValueError, lambda: Differential(Differential(R2.e_x))) raises(ValueError, lambda: R2.dx(R2.x)) raises(ValueError, lambda: LieDerivative(R2.dx, R2.dx)) raises(ValueError, lambda: LieDerivative(R2.x, R2.dx)) raises(ValueError, lambda: CovarDerivativeOp(R2.dx, [])) raises(ValueError, lambda: CovarDerivativeOp(R2.x, [])) a = Symbol('a') raises(ValueError, lambda: intcurve_series(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_series(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.dx, a, R2_r.point([1, 2]))) raises(ValueError, lambda: intcurve_diffequ(R2.x, a, R2_r.point([1, 2]))) raises(ValueError, lambda: contravariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: covariant_order(R2.e_x + R2.dx)) raises(ValueError, lambda: contravariant_order(R2.e_x*R2.e_y)) raises(ValueError, lambda: covariant_order(R2.dx*R2.dy)) def test_simplify(): x, y = R2_r.coord_functions() dx, dy = R2_r.base_oneforms() ex, ey = R2_r.base_vectors() assert simplify(x) == x assert simplify(x*y) == x*y assert simplify(dx*dy) == dx*dy assert simplify(ex*ey) == ex*ey assert ((1-x)*dx)/(1-x)**2 == dx/(1-x)
30c7441a74de5ac48a916bb11e68302d468bcca037916c37fd0a5b569d805f5d
from sympy import Mul, Basic, Q, Expr, And, symbols, Or from sympy.assumptions.sathandlers import (ClassFactRegistry, allargs, anyarg, exactlyonearg,) x, y, z = symbols('x y z') def test_class_handler_registry(): my_handler_registry = ClassFactRegistry() # The predicate doesn't matter here, so just pass @my_handler_registry.register(Mul) def fact1(expr): pass @my_handler_registry.multiregister(Expr) def fact2(expr): pass assert my_handler_registry[Basic] == (frozenset(), frozenset()) assert my_handler_registry[Expr] == (frozenset(), frozenset({fact2})) assert my_handler_registry[Mul] == (frozenset({fact1}), frozenset({fact2})) def test_allargs(): assert allargs(x, Q.zero(x), x*y) == And(Q.zero(x), Q.zero(y)) assert allargs(x, Q.positive(x) | Q.negative(x), x*y) == And(Q.positive(x) | Q.negative(x), Q.positive(y) | Q.negative(y)) def test_anyarg(): assert anyarg(x, Q.zero(x), x*y) == Or(Q.zero(x), Q.zero(y)) assert anyarg(x, Q.positive(x) & Q.negative(x), x*y) == \ Or(Q.positive(x) & Q.negative(x), Q.positive(y) & Q.negative(y)) def test_exactlyonearg(): assert exactlyonearg(x, Q.zero(x), x*y) == \ Or(Q.zero(x) & ~Q.zero(y), Q.zero(y) & ~Q.zero(x)) assert exactlyonearg(x, Q.zero(x), x*y*z) == \ Or(Q.zero(x) & ~Q.zero(y) & ~Q.zero(z), Q.zero(y) & ~Q.zero(x) & ~Q.zero(z), Q.zero(z) & ~Q.zero(x) & ~Q.zero(y)) assert exactlyonearg(x, Q.positive(x) | Q.negative(x), x*y) == \ Or((Q.positive(x) | Q.negative(x)) & ~(Q.positive(y) | Q.negative(y)), (Q.positive(y) | Q.negative(y)) & ~(Q.positive(x) | Q.negative(x)))
b2e4caf19eaf8693b2d316a3a8a27a205929117c80939fd02e29fed79963059d
from sympy.abc import t, w, x, y, z, n, k, m, p, i from sympy.assumptions import (ask, AssumptionsContext, Q, register_handler, remove_handler) from sympy.assumptions.assume import assuming, global_assumptions, Predicate from sympy.assumptions.cnf import CNF, Literal from sympy.assumptions.facts import (single_fact_lookup, get_known_facts, generate_known_facts_dict, get_known_facts_keys) from sympy.assumptions.handlers import AskHandler from sympy.assumptions.ask_generated import (get_all_known_facts, get_known_facts_dict) from sympy.core.add import Add from sympy.core.numbers import (I, Integer, Rational, oo, zoo, pi) from sympy.core.singleton import S from sympy.core.power import Pow from sympy.core.symbol import symbols, Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (Abs, im, re, sign) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import ( acos, acot, asin, atan, cos, cot, sin, tan) from sympy.logic.boolalg import Equivalent, Implies, Xor, And, to_cnf from sympy.matrices import Matrix, SparseMatrix from sympy.testing.pytest import XFAIL, slow, raises, warns_deprecated_sympy, _both_exp_pow import math def test_int_1(): z = 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_11(): z = 11 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is True assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_int_12(): z = 12 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is True assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_float_1(): z = 1.0 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 7.2123 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is None assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is None assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False # test for issue #12168 assert ask(Q.rational(math.pi)) is None def test_zero_0(): z = Integer(0) assert ask(Q.nonzero(z)) is False assert ask(Q.zero(z)) is True assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is True assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is True def test_negativeone(): z = Integer(-1) assert ask(Q.nonzero(z)) is True assert ask(Q.zero(z)) is False assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is True assert ask(Q.rational(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is True assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is True assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_infinity(): assert ask(Q.commutative(oo)) is True assert ask(Q.integer(oo)) is False assert ask(Q.rational(oo)) is False assert ask(Q.algebraic(oo)) is False assert ask(Q.real(oo)) is False assert ask(Q.extended_real(oo)) is True assert ask(Q.complex(oo)) is False assert ask(Q.irrational(oo)) is False assert ask(Q.imaginary(oo)) is False assert ask(Q.positive(oo)) is False assert ask(Q.extended_positive(oo)) is True assert ask(Q.negative(oo)) is False assert ask(Q.even(oo)) is False assert ask(Q.odd(oo)) is False assert ask(Q.finite(oo)) is False assert ask(Q.infinite(oo)) is True assert ask(Q.prime(oo)) is False assert ask(Q.composite(oo)) is False assert ask(Q.hermitian(oo)) is False assert ask(Q.antihermitian(oo)) is False assert ask(Q.positive_infinite(oo)) is True assert ask(Q.negative_infinite(oo)) is False def test_neg_infinity(): mm = S.NegativeInfinity assert ask(Q.commutative(mm)) is True assert ask(Q.integer(mm)) is False assert ask(Q.rational(mm)) is False assert ask(Q.algebraic(mm)) is False assert ask(Q.real(mm)) is False assert ask(Q.extended_real(mm)) is True assert ask(Q.complex(mm)) is False assert ask(Q.irrational(mm)) is False assert ask(Q.imaginary(mm)) is False assert ask(Q.positive(mm)) is False assert ask(Q.negative(mm)) is False assert ask(Q.extended_negative(mm)) is True assert ask(Q.even(mm)) is False assert ask(Q.odd(mm)) is False assert ask(Q.finite(mm)) is False assert ask(Q.infinite(oo)) is True assert ask(Q.prime(mm)) is False assert ask(Q.composite(mm)) is False assert ask(Q.hermitian(mm)) is False assert ask(Q.antihermitian(mm)) is False assert ask(Q.positive_infinite(-oo)) is False assert ask(Q.negative_infinite(-oo)) is True def test_complex_infinity(): assert ask(Q.commutative(zoo)) is True assert ask(Q.integer(zoo)) is False assert ask(Q.rational(zoo)) is False assert ask(Q.algebraic(zoo)) is False assert ask(Q.real(zoo)) is False assert ask(Q.extended_real(zoo)) is False assert ask(Q.complex(zoo)) is False assert ask(Q.irrational(zoo)) is False assert ask(Q.imaginary(zoo)) is False assert ask(Q.positive(zoo)) is False assert ask(Q.negative(zoo)) is False assert ask(Q.zero(zoo)) is False assert ask(Q.nonzero(zoo)) is False assert ask(Q.even(zoo)) is False assert ask(Q.odd(zoo)) is False assert ask(Q.finite(zoo)) is False assert ask(Q.infinite(zoo)) is True assert ask(Q.prime(zoo)) is False assert ask(Q.composite(zoo)) is False assert ask(Q.hermitian(zoo)) is False assert ask(Q.antihermitian(zoo)) is False assert ask(Q.positive_infinite(zoo)) is False assert ask(Q.negative_infinite(zoo)) is False def test_nan(): nan = S.NaN assert ask(Q.commutative(nan)) is True assert ask(Q.integer(nan)) is None assert ask(Q.rational(nan)) is None assert ask(Q.algebraic(nan)) is None assert ask(Q.real(nan)) is None assert ask(Q.extended_real(nan)) is None assert ask(Q.complex(nan)) is None assert ask(Q.irrational(nan)) is None assert ask(Q.imaginary(nan)) is None assert ask(Q.positive(nan)) is None assert ask(Q.nonzero(nan)) is None assert ask(Q.zero(nan)) is None assert ask(Q.even(nan)) is None assert ask(Q.odd(nan)) is None assert ask(Q.finite(nan)) is None assert ask(Q.infinite(nan)) is None assert ask(Q.prime(nan)) is None assert ask(Q.composite(nan)) is None assert ask(Q.hermitian(nan)) is None assert ask(Q.antihermitian(nan)) is None def test_Rational_number(): r = Rational(3, 4) assert ask(Q.commutative(r)) is True assert ask(Q.integer(r)) is False assert ask(Q.rational(r)) is True assert ask(Q.real(r)) is True assert ask(Q.complex(r)) is True assert ask(Q.irrational(r)) is False assert ask(Q.imaginary(r)) is False assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False assert ask(Q.even(r)) is False assert ask(Q.odd(r)) is False assert ask(Q.finite(r)) is True assert ask(Q.prime(r)) is False assert ask(Q.composite(r)) is False assert ask(Q.hermitian(r)) is True assert ask(Q.antihermitian(r)) is False r = Rational(1, 4) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(5, 4) assert ask(Q.negative(r)) is False assert ask(Q.positive(r)) is True r = Rational(5, 3) assert ask(Q.positive(r)) is True assert ask(Q.negative(r)) is False r = Rational(-3, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-1, 4) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True r = Rational(-5, 4) assert ask(Q.negative(r)) is True assert ask(Q.positive(r)) is False r = Rational(-5, 3) assert ask(Q.positive(r)) is False assert ask(Q.negative(r)) is True def test_sqrt_2(): z = sqrt(2) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_pi(): z = S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi + 1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = 2*S.Pi assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = S.Pi ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False z = (1 + S.Pi) ** 2 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_E(): z = S.Exp1 assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is False assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_GoldenRatio(): z = S.GoldenRatio assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_TribonacciConstant(): z = S.TribonacciConstant assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is True assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is True assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is True assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is True assert ask(Q.antihermitian(z)) is False def test_I(): z = I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is True assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is True z = 1 + I assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I*(1 + I) assert ask(Q.commutative(z)) is True assert ask(Q.integer(z)) is False assert ask(Q.rational(z)) is False assert ask(Q.algebraic(z)) is True assert ask(Q.real(z)) is False assert ask(Q.complex(z)) is True assert ask(Q.irrational(z)) is False assert ask(Q.imaginary(z)) is False assert ask(Q.positive(z)) is False assert ask(Q.negative(z)) is False assert ask(Q.even(z)) is False assert ask(Q.odd(z)) is False assert ask(Q.finite(z)) is True assert ask(Q.prime(z)) is False assert ask(Q.composite(z)) is False assert ask(Q.hermitian(z)) is False assert ask(Q.antihermitian(z)) is False z = I**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (3*I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (-1)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (1+I)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(I+3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (I)**(I+2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(2) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True z = (I)**(3) assert ask(Q.imaginary(z)) is True assert ask(Q.real(z)) is False z = (3)**(I) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is False z = (I)**(0) assert ask(Q.imaginary(z)) is False assert ask(Q.real(z)) is True def test_bounded(): x, y, z = symbols('x,y,z') assert ask(Q.finite(x)) is None assert ask(Q.finite(x), Q.finite(x)) is True assert ask(Q.finite(x), Q.finite(y)) is None assert ask(Q.finite(x), Q.complex(x)) is True assert ask(Q.finite(x), Q.extended_real(x)) is None assert ask(Q.finite(x + 1)) is None assert ask(Q.finite(x + 1), Q.finite(x)) is True a = x + y x, y = a.args # B + B assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask(Q.finite(a), Q.positive(x) & Q.finite(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.positive(x) & Q.finite(y) & ~Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.positive(y)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.positive(x) & ~Q.positive(y)) is True # B + U assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive_infinite(y)) is False assert ask(Q.finite(a), Q.positive(x) & Q.positive_infinite(y)) is False assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y) & ~Q.positive(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.positive_infinite(y)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.positive(x) & ~Q.finite(y) & ~Q.positive(y)) is False # B + ? assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.positive(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.extended_positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.extended_positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.positive(y)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.positive(x) & Q.extended_positive(y)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.positive(x) & ~Q.positive(y)) is None # U + U assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.positive_infinite(y)) is False assert ask(Q.finite(a), Q.positive_infinite(x) & ~Q.finite(y) & ~Q.extended_positive(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.extended_positive(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.extended_positive(x) & ~Q.extended_positive(y)) is False # U + ? assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), Q.extended_positive(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.extended_positive(x) & Q.positive_infinite(y)) is False assert ask(Q.finite(a), Q.extended_positive(x) & ~Q.finite(y) & ~Q.extended_positive(y)) is None assert ask(Q.finite(a), ~Q.extended_positive(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), ~Q.extended_positive(x) & ~Q.finite(y) & ~Q.extended_positive(y)) is False # ? + ? assert ask(Q.finite(a)) is None assert ask(Q.finite(a), Q.extended_positive(x)) is None assert ask(Q.finite(a), Q.extended_positive(y)) is None assert ask(Q.finite(a), Q.extended_positive(x) & Q.extended_positive(y)) is None assert ask(Q.finite(a), Q.extended_positive(x) & ~Q.extended_positive(y)) is None assert ask(Q.finite(a), ~Q.extended_positive(x) & Q.extended_positive(y)) is None assert ask(Q.finite(a), ~Q.extended_positive(x) & ~Q.extended_positive(y)) is None x, y, z = symbols('x,y,z') a = x + y + z x, y, z = a.args assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.negative(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.positive(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & Q.positive(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive(y) & Q.positive(z)) is True assert ask(Q.finite(a), Q.negative(x) & Q.positive(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.positive(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.positive(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.positive(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.extended_positive(y) & Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative_infinite(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.negative_infinite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative_infinite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative_infinite(y) & Q.extended_negative(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.negative_infinite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.negative_infinite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative(x) & ~Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive_infinite(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.positive_infinite(y) & Q.negative_infinite(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.positive_infinite(y) & Q.extended_positive(z)) is False assert ask(Q.finite(a), Q.negative(x) & Q.extended_negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), Q.negative(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x)) is None assert ask(Q.finite(a), Q.negative(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.positive(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative_infinite(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.negative_infinite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative_infinite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative_infinite(y) & Q.extended_negative(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.negative_infinite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.negative_infinite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive_infinite(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.positive_infinite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.positive_infinite(y) & Q.extended_positive(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.extended_negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.finite(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive(y) & Q.positive(z)) is True assert ask(Q.finite(a), Q.positive(x) & Q.positive(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.positive(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.positive(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.positive(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.negative_infinite(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.negative_infinite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.negative_infinite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.negative_infinite(y) & Q.extended_negative(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.negative_infinite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.negative_infinite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.positive(x) & ~Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive_infinite(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.positive_infinite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.positive_infinite(y) & Q.extended_positive(z)) is False assert ask(Q.finite(a), Q.positive(x) & Q.extended_negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), Q.positive(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive(x)) is None assert ask(Q.finite(a), Q.positive(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.negative_infinite(y) & Q.negative_infinite(z)) is False assert ask(Q.finite(a), Q.negative_infinite(x) & Q.negative_infinite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.negative_infinite(y)& Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.negative_infinite(y) & Q.extended_negative(z)) is False assert ask(Q.finite(a), Q.negative_infinite(x) & Q.negative_infinite(y)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.negative_infinite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & ~Q.finite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & ~Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & ~Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.positive_infinite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.positive_infinite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.positive_infinite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.extended_negative(y) & Q.extended_negative(z)) is False assert ask(Q.finite(a), Q.negative_infinite(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.negative_infinite(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive_infinite(z) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive_infinite(y) & Q.positive_infinite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive_infinite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.positive_infinite(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.extended_negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.positive_infinite(y) & Q.positive_infinite(z)) is False assert ask(Q.finite(a), Q.positive_infinite(x) & Q.positive_infinite(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.positive_infinite(y)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.positive_infinite(y) & Q.extended_positive(z)) is False assert ask(Q.finite(a), Q.positive_infinite(x) & Q.extended_negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive_infinite(x)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.positive_infinite(x) & Q.extended_positive(y) & Q.extended_positive(z)) is False assert ask(Q.finite(a), Q.extended_negative(x) & Q.extended_negative(y) & Q.extended_negative(z)) is None assert ask(Q.finite(a), Q.extended_negative(x) & Q.extended_negative(y)) is None assert ask(Q.finite(a), Q.extended_negative(x) & Q.extended_negative(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.extended_negative(x)) is None assert ask(Q.finite(a), Q.extended_negative(x) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.extended_negative(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a)) is None assert ask(Q.finite(a), Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(a), Q.extended_positive(x) & Q.extended_positive(y) & Q.extended_positive(z)) is None assert ask(Q.finite(2*x)) is None assert ask(Q.finite(2*x), Q.finite(x)) is True x, y, z = symbols('x,y,z') a = x*y x, y = a.args assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is True assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is False assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a)) is None a = x*y*z x, y, z = a.args assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & Q.finite(z)) is True assert ask(Q.finite(a), Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(x)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y) & Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y) & ~Q.finite(z)) is False assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(x) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(x)) is None assert ask(Q.finite(a), Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), Q.finite(y)) is None assert ask(Q.finite(a), ~Q.finite(y) & Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y) & ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(y)) is None assert ask(Q.finite(a), Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z)) is None assert ask(Q.finite(a), ~Q.finite(z) & Q.extended_nonzero(x) & Q.extended_nonzero(y) & Q.extended_nonzero(z)) is None assert ask(Q.finite(a), Q.extended_nonzero(x) & ~Q.finite(y) & Q.extended_nonzero(y) & ~Q.finite(z) & Q.extended_nonzero(z)) is False x, y, z = symbols('x,y,z') assert ask(Q.finite(x**2)) is None assert ask(Q.finite(2**x)) is None assert ask(Q.finite(2**x), Q.finite(x)) is True assert ask(Q.finite(x**x)) is None assert ask(Q.finite(S.Half ** x)) is None assert ask(Q.finite(S.Half ** x), Q.extended_positive(x)) is True assert ask(Q.finite(S.Half ** x), Q.extended_negative(x)) is None assert ask(Q.finite(2**x), Q.extended_negative(x)) is True assert ask(Q.finite(sqrt(x))) is None assert ask(Q.finite(2**x), ~Q.finite(x)) is False assert ask(Q.finite(x**2), ~Q.finite(x)) is False # sign function assert ask(Q.finite(sign(x))) is True assert ask(Q.finite(sign(x)), ~Q.finite(x)) is True # exponential functions assert ask(Q.finite(log(x))) is None assert ask(Q.finite(log(x)), Q.finite(x)) is None assert ask(Q.finite(log(x)), ~Q.zero(x)) is True assert ask(Q.finite(log(x)), Q.infinite(x)) is False assert ask(Q.finite(log(x)), Q.zero(x)) is False assert ask(Q.finite(exp(x))) is None assert ask(Q.finite(exp(x)), Q.finite(x)) is True assert ask(Q.finite(exp(2))) is True # trigonometric functions assert ask(Q.finite(sin(x))) is True assert ask(Q.finite(sin(x)), ~Q.finite(x)) is True assert ask(Q.finite(cos(x))) is True assert ask(Q.finite(cos(x)), ~Q.finite(x)) is True assert ask(Q.finite(2*sin(x))) is True assert ask(Q.finite(sin(x)**2)) is True assert ask(Q.finite(cos(x)**2)) is True assert ask(Q.finite(cos(x) + sin(x))) is True @XFAIL def test_bounded_xfail(): """We need to support relations in ask for this to work""" assert ask(Q.finite(sin(x)**x)) is True assert ask(Q.finite(cos(x)**x)) is True def test_commutative(): """By default objects are Q.commutative that is why it returns True for both key=True and key=False""" assert ask(Q.commutative(x)) is True assert ask(Q.commutative(x), ~Q.commutative(x)) is False assert ask(Q.commutative(x), Q.complex(x)) is True assert ask(Q.commutative(x), Q.imaginary(x)) is True assert ask(Q.commutative(x), Q.real(x)) is True assert ask(Q.commutative(x), Q.positive(x)) is True assert ask(Q.commutative(x), ~Q.commutative(y)) is True assert ask(Q.commutative(2*x)) is True assert ask(Q.commutative(2*x), ~Q.commutative(x)) is False assert ask(Q.commutative(x + 1)) is True assert ask(Q.commutative(x + 1), ~Q.commutative(x)) is False assert ask(Q.commutative(x**2)) is True assert ask(Q.commutative(x**2), ~Q.commutative(x)) is False assert ask(Q.commutative(log(x))) is True @_both_exp_pow def test_complex(): assert ask(Q.complex(x)) is None assert ask(Q.complex(x), Q.complex(x)) is True assert ask(Q.complex(x), Q.complex(y)) is None assert ask(Q.complex(x), ~Q.complex(x)) is False assert ask(Q.complex(x), Q.real(x)) is True assert ask(Q.complex(x), ~Q.real(x)) is None assert ask(Q.complex(x), Q.rational(x)) is True assert ask(Q.complex(x), Q.irrational(x)) is True assert ask(Q.complex(x), Q.positive(x)) is True assert ask(Q.complex(x), Q.imaginary(x)) is True assert ask(Q.complex(x), Q.algebraic(x)) is True # a+b assert ask(Q.complex(x + 1), Q.complex(x)) is True assert ask(Q.complex(x + 1), Q.real(x)) is True assert ask(Q.complex(x + 1), Q.rational(x)) is True assert ask(Q.complex(x + 1), Q.irrational(x)) is True assert ask(Q.complex(x + 1), Q.imaginary(x)) is True assert ask(Q.complex(x + 1), Q.integer(x)) is True assert ask(Q.complex(x + 1), Q.even(x)) is True assert ask(Q.complex(x + 1), Q.odd(x)) is True assert ask(Q.complex(x + y), Q.complex(x) & Q.complex(y)) is True assert ask(Q.complex(x + y), Q.real(x) & Q.imaginary(y)) is True # a*x +b assert ask(Q.complex(2*x + 1), Q.complex(x)) is True assert ask(Q.complex(2*x + 1), Q.real(x)) is True assert ask(Q.complex(2*x + 1), Q.positive(x)) is True assert ask(Q.complex(2*x + 1), Q.rational(x)) is True assert ask(Q.complex(2*x + 1), Q.irrational(x)) is True assert ask(Q.complex(2*x + 1), Q.imaginary(x)) is True assert ask(Q.complex(2*x + 1), Q.integer(x)) is True assert ask(Q.complex(2*x + 1), Q.even(x)) is True assert ask(Q.complex(2*x + 1), Q.odd(x)) is True # x**2 assert ask(Q.complex(x**2), Q.complex(x)) is True assert ask(Q.complex(x**2), Q.real(x)) is True assert ask(Q.complex(x**2), Q.positive(x)) is True assert ask(Q.complex(x**2), Q.rational(x)) is True assert ask(Q.complex(x**2), Q.irrational(x)) is True assert ask(Q.complex(x**2), Q.imaginary(x)) is True assert ask(Q.complex(x**2), Q.integer(x)) is True assert ask(Q.complex(x**2), Q.even(x)) is True assert ask(Q.complex(x**2), Q.odd(x)) is True # 2**x assert ask(Q.complex(2**x), Q.complex(x)) is True assert ask(Q.complex(2**x), Q.real(x)) is True assert ask(Q.complex(2**x), Q.positive(x)) is True assert ask(Q.complex(2**x), Q.rational(x)) is True assert ask(Q.complex(2**x), Q.irrational(x)) is True assert ask(Q.complex(2**x), Q.imaginary(x)) is True assert ask(Q.complex(2**x), Q.integer(x)) is True assert ask(Q.complex(2**x), Q.even(x)) is True assert ask(Q.complex(2**x), Q.odd(x)) is True assert ask(Q.complex(x**y), Q.complex(x) & Q.complex(y)) is True # trigonometric expressions assert ask(Q.complex(sin(x))) is True assert ask(Q.complex(sin(2*x + 1))) is True assert ask(Q.complex(cos(x))) is True assert ask(Q.complex(cos(2*x + 1))) is True # exponential assert ask(Q.complex(exp(x))) is True assert ask(Q.complex(exp(x))) is True # Q.complexes assert ask(Q.complex(Abs(x))) is True assert ask(Q.complex(re(x))) is True assert ask(Q.complex(im(x))) is True def test_even_query(): assert ask(Q.even(x)) is None assert ask(Q.even(x), Q.integer(x)) is None assert ask(Q.even(x), ~Q.integer(x)) is False assert ask(Q.even(x), Q.rational(x)) is None assert ask(Q.even(x), Q.positive(x)) is None assert ask(Q.even(2*x)) is None assert ask(Q.even(2*x), Q.integer(x)) is True assert ask(Q.even(2*x), Q.even(x)) is True assert ask(Q.even(2*x), Q.irrational(x)) is False assert ask(Q.even(2*x), Q.odd(x)) is True assert ask(Q.even(2*x), ~Q.integer(x)) is None assert ask(Q.even(3*x), Q.integer(x)) is None assert ask(Q.even(3*x), Q.even(x)) is True assert ask(Q.even(3*x), Q.odd(x)) is False assert ask(Q.even(x + 1), Q.odd(x)) is True assert ask(Q.even(x + 1), Q.even(x)) is False assert ask(Q.even(x + 2), Q.odd(x)) is False assert ask(Q.even(x + 2), Q.even(x)) is True assert ask(Q.even(7 - x), Q.odd(x)) is True assert ask(Q.even(7 + x), Q.odd(x)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.even(x + y), Q.odd(x) & Q.even(y)) is False assert ask(Q.even(x + y), Q.even(x) & Q.even(y)) is True assert ask(Q.even(2*x + 1), Q.integer(x)) is False assert ask(Q.even(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.even(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.even(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is True assert ask(Q.even(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.even(Abs(x)), Q.even(x)) is True assert ask(Q.even(Abs(x)), ~Q.even(x)) is None assert ask(Q.even(re(x)), Q.even(x)) is True assert ask(Q.even(re(x)), ~Q.even(x)) is None assert ask(Q.even(im(x)), Q.even(x)) is True assert ask(Q.even(im(x)), Q.real(x)) is True assert ask(Q.even((-1)**n), Q.integer(n)) is False assert ask(Q.even(k**2), Q.even(k)) is True assert ask(Q.even(n**2), Q.odd(n)) is False assert ask(Q.even(2**k), Q.even(k)) is None assert ask(Q.even(x**2)) is None assert ask(Q.even(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is False assert ask(Q.even(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.even(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.even(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.even(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.even(k**x), Q.even(k)) is None assert ask(Q.even(n**x), Q.odd(n)) is None assert ask(Q.even(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.even(x*x), Q.integer(x)) is None assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.odd(y)) is True assert ask(Q.even(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True assert ask(Q.even(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is True def test_evenness_in_ternary_integer_product_with_even(): assert ask(Q.even(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_extended_real(): assert ask(Q.extended_real(x), Q.positive_infinite(x)) is True assert ask(Q.extended_real(x), Q.positive(x)) is True assert ask(Q.extended_real(x), Q.zero(x)) is True assert ask(Q.extended_real(x), Q.negative(x)) is True assert ask(Q.extended_real(x), Q.negative_infinite(x)) is True assert ask(Q.extended_real(-x), Q.positive(x)) is True assert ask(Q.extended_real(-x), Q.negative(x)) is True assert ask(Q.extended_real(x + S.Infinity), Q.real(x)) is True assert ask(Q.extended_real(x), Q.infinite(x)) is None @_both_exp_pow def test_rational(): assert ask(Q.rational(x), Q.integer(x)) is True assert ask(Q.rational(x), Q.irrational(x)) is False assert ask(Q.rational(x), Q.real(x)) is None assert ask(Q.rational(x), Q.positive(x)) is None assert ask(Q.rational(x), Q.negative(x)) is None assert ask(Q.rational(x), Q.nonzero(x)) is None assert ask(Q.rational(x), ~Q.algebraic(x)) is False assert ask(Q.rational(2*x), Q.rational(x)) is True assert ask(Q.rational(2*x), Q.integer(x)) is True assert ask(Q.rational(2*x), Q.even(x)) is True assert ask(Q.rational(2*x), Q.odd(x)) is True assert ask(Q.rational(2*x), Q.irrational(x)) is False assert ask(Q.rational(x/2), Q.rational(x)) is True assert ask(Q.rational(x/2), Q.integer(x)) is True assert ask(Q.rational(x/2), Q.even(x)) is True assert ask(Q.rational(x/2), Q.odd(x)) is True assert ask(Q.rational(x/2), Q.irrational(x)) is False assert ask(Q.rational(1/x), Q.rational(x)) is True assert ask(Q.rational(1/x), Q.integer(x)) is True assert ask(Q.rational(1/x), Q.even(x)) is True assert ask(Q.rational(1/x), Q.odd(x)) is True assert ask(Q.rational(1/x), Q.irrational(x)) is False assert ask(Q.rational(2/x), Q.rational(x)) is True assert ask(Q.rational(2/x), Q.integer(x)) is True assert ask(Q.rational(2/x), Q.even(x)) is True assert ask(Q.rational(2/x), Q.odd(x)) is True assert ask(Q.rational(2/x), Q.irrational(x)) is False assert ask(Q.rational(x), ~Q.algebraic(x)) is False # with multiple symbols assert ask(Q.rational(x*y), Q.irrational(x) & Q.irrational(y)) is None assert ask(Q.rational(y/x), Q.rational(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.integer(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.even(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.odd(x) & Q.rational(y)) is True assert ask(Q.rational(y/x), Q.irrational(x) & Q.rational(y)) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.rational(f(7))) is False assert ask(Q.rational(f(7, evaluate=False))) is False assert ask(Q.rational(f(0, evaluate=False))) is True assert ask(Q.rational(f(x)), Q.rational(x)) is None assert ask(Q.rational(f(x)), Q.rational(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.rational(g(7))) is False assert ask(Q.rational(g(7, evaluate=False))) is False assert ask(Q.rational(g(1, evaluate=False))) is True assert ask(Q.rational(g(x)), Q.rational(x)) is None assert ask(Q.rational(g(x)), Q.rational(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.rational(h(7))) is False assert ask(Q.rational(h(7, evaluate=False))) is False assert ask(Q.rational(h(x)), Q.rational(x)) is False def test_hermitian(): assert ask(Q.hermitian(x)) is None assert ask(Q.hermitian(x), Q.antihermitian(x)) is None assert ask(Q.hermitian(x), Q.imaginary(x)) is False assert ask(Q.hermitian(x), Q.prime(x)) is True assert ask(Q.hermitian(x), Q.real(x)) is True assert ask(Q.hermitian(x), Q.zero(x)) is True assert ask(Q.hermitian(x + 1), Q.antihermitian(x)) is None assert ask(Q.hermitian(x + 1), Q.complex(x)) is None assert ask(Q.hermitian(x + 1), Q.hermitian(x)) is True assert ask(Q.hermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.hermitian(x + 1), Q.real(x)) is True assert ask(Q.hermitian(x + I), Q.antihermitian(x)) is None assert ask(Q.hermitian(x + I), Q.complex(x)) is None assert ask(Q.hermitian(x + I), Q.hermitian(x)) is False assert ask(Q.hermitian(x + I), Q.imaginary(x)) is None assert ask(Q.hermitian(x + I), Q.real(x)) is False assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.hermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.antihermitian(x) & Q.real(y)) is None assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.hermitian(y)) is True assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is False assert ask(Q.hermitian(x + y), Q.hermitian(x) & Q.real(y)) is True assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.hermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.hermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.hermitian(x + y), Q.real(x) & Q.real(y)) is True assert ask(Q.hermitian(I*x), Q.antihermitian(x)) is True assert ask(Q.hermitian(I*x), Q.complex(x)) is None assert ask(Q.hermitian(I*x), Q.hermitian(x)) is False assert ask(Q.hermitian(I*x), Q.imaginary(x)) is True assert ask(Q.hermitian(I*x), Q.real(x)) is False assert ask(Q.hermitian(x*y), Q.hermitian(x) & Q.real(y)) is True assert ask( Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is True assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is False assert ask(Q.hermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.hermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x)) is None assert ask(Q.antihermitian(x), Q.real(x)) is False assert ask(Q.antihermitian(x), Q.prime(x)) is False assert ask(Q.antihermitian(x + 1), Q.antihermitian(x)) is False assert ask(Q.antihermitian(x + 1), Q.complex(x)) is None assert ask(Q.antihermitian(x + 1), Q.hermitian(x)) is None assert ask(Q.antihermitian(x + 1), Q.imaginary(x)) is False assert ask(Q.antihermitian(x + 1), Q.real(x)) is None assert ask(Q.antihermitian(x + I), Q.antihermitian(x)) is True assert ask(Q.antihermitian(x + I), Q.complex(x)) is None assert ask(Q.antihermitian(x + I), Q.hermitian(x)) is None assert ask(Q.antihermitian(x + I), Q.imaginary(x)) is True assert ask(Q.antihermitian(x + I), Q.real(x)) is False assert ask(Q.antihermitian(x), Q.zero(x)) is True assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.antihermitian(y) ) is True assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.complex(y)) is None assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.hermitian(y)) is None assert ask( Q.antihermitian(x + y), Q.antihermitian(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.antihermitian(x) & Q.real(y) ) is False assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.hermitian(y) ) is None assert ask( Q.antihermitian(x + y), Q.hermitian(x) & Q.imaginary(y)) is None assert ask(Q.antihermitian(x + y), Q.hermitian(x) & Q.real(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.antihermitian(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.antihermitian(x + y), Q.real(x) & Q.complex(y)) is None assert ask(Q.antihermitian(x + y), Q.real(x) & Q.real(y)) is None assert ask(Q.antihermitian(I*x), Q.real(x)) is True assert ask(Q.antihermitian(I*x), Q.antihermitian(x)) is False assert ask(Q.antihermitian(I*x), Q.complex(x)) is None assert ask(Q.antihermitian(x*y), Q.antihermitian(x) & Q.real(y)) is True assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is None assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.antihermitian(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.antihermitian(x + y + z), Q.imaginary(x) & Q.imaginary(y) & Q.imaginary(z)) is True @_both_exp_pow def test_imaginary(): assert ask(Q.imaginary(x)) is None assert ask(Q.imaginary(x), Q.real(x)) is False assert ask(Q.imaginary(x), Q.prime(x)) is False assert ask(Q.imaginary(x + 1), Q.real(x)) is False assert ask(Q.imaginary(x + 1), Q.imaginary(x)) is False assert ask(Q.imaginary(x + I), Q.real(x)) is False assert ask(Q.imaginary(x + I), Q.imaginary(x)) is True assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.imaginary(y)) is True assert ask(Q.imaginary(x + y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.imaginary(x) & Q.real(y)) is False assert ask(Q.imaginary(x + y), Q.complex(x) & Q.real(y)) is None assert ask( Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.real(z)) is False assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.real(y) & Q.imaginary(z)) is None assert ask(Q.imaginary(x + y + z), Q.real(x) & Q.imaginary(y) & Q.imaginary(z)) is False assert ask(Q.imaginary(I*x), Q.real(x)) is True assert ask(Q.imaginary(I*x), Q.imaginary(x)) is False assert ask(Q.imaginary(I*x), Q.complex(x)) is None assert ask(Q.imaginary(x*y), Q.imaginary(x) & Q.real(y)) is True assert ask(Q.imaginary(x*y), Q.real(x) & Q.real(y)) is False assert ask(Q.imaginary(I**x), Q.negative(x)) is None assert ask(Q.imaginary(I**x), Q.positive(x)) is None assert ask(Q.imaginary(I**x), Q.even(x)) is False assert ask(Q.imaginary(I**x), Q.odd(x)) is True assert ask(Q.imaginary(I**x), Q.imaginary(x)) is False assert ask(Q.imaginary((2*I)**x), Q.imaginary(x)) is False assert ask(Q.imaginary(x**0), Q.imaginary(x)) is False assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(y) & Q.integer(x)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.odd(y)) is True assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.imaginary(x) & Q.even(y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.integer(y)) is False assert ask(Q.imaginary(x**y), Q.positive(x) & Q.real(y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.real(y) & ~Q.rational(y)) is False assert ask(Q.imaginary(x**y), Q.integer(x) & Q.imaginary(y)) is None assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & Q.integer(2*y)) is True assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.negative(x) & Q.rational(y)) is None assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & ~Q.integer(2*y)) is False assert ask(Q.imaginary(x**y), Q.real(x) & Q.rational(y) & Q.integer(2*y)) is None # logarithm assert ask(Q.imaginary(log(I))) is True assert ask(Q.imaginary(log(2*I))) is False assert ask(Q.imaginary(log(I + 1))) is False assert ask(Q.imaginary(log(x)), Q.complex(x)) is None assert ask(Q.imaginary(log(x)), Q.imaginary(x)) is None assert ask(Q.imaginary(log(x)), Q.positive(x)) is False assert ask(Q.imaginary(log(exp(x))), Q.complex(x)) is None assert ask(Q.imaginary(log(exp(x))), Q.imaginary(x)) is None # zoo/I/a+I*b assert ask(Q.imaginary(log(exp(I)))) is True # exponential assert ask(Q.imaginary(exp(x)**x), Q.imaginary(x)) is False eq = Pow(exp(pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.even(x)) is False eq = Pow(exp(pi*I*x/2, evaluate=False), x, evaluate=False) assert ask(Q.imaginary(eq), Q.odd(x)) is True assert ask(Q.imaginary(exp(3*I*pi*x)**x), Q.integer(x)) is False assert ask(Q.imaginary(exp(2*pi*I, evaluate=False))) is False assert ask(Q.imaginary(exp(pi*I/2, evaluate=False))) is True # issue 7886 assert ask(Q.imaginary(Pow(x, Rational(1, 4))), Q.real(x) & Q.negative(x)) is False def test_integer(): assert ask(Q.integer(x)) is None assert ask(Q.integer(x), Q.integer(x)) is True assert ask(Q.integer(x), ~Q.integer(x)) is False assert ask(Q.integer(x), ~Q.real(x)) is False assert ask(Q.integer(x), ~Q.positive(x)) is None assert ask(Q.integer(x), Q.even(x) | Q.odd(x)) is True assert ask(Q.integer(2*x), Q.integer(x)) is True assert ask(Q.integer(2*x), Q.even(x)) is True assert ask(Q.integer(2*x), Q.prime(x)) is True assert ask(Q.integer(2*x), Q.rational(x)) is None assert ask(Q.integer(2*x), Q.real(x)) is None assert ask(Q.integer(sqrt(2)*x), Q.integer(x)) is False assert ask(Q.integer(sqrt(2)*x), Q.irrational(x)) is None assert ask(Q.integer(x/2), Q.odd(x)) is False assert ask(Q.integer(x/2), Q.even(x)) is True assert ask(Q.integer(x/3), Q.odd(x)) is None assert ask(Q.integer(x/3), Q.even(x)) is None def test_negative(): assert ask(Q.negative(x), Q.negative(x)) is True assert ask(Q.negative(x), Q.positive(x)) is False assert ask(Q.negative(x), ~Q.real(x)) is False assert ask(Q.negative(x), Q.prime(x)) is False assert ask(Q.negative(x), ~Q.prime(x)) is None assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(-x), ~Q.positive(x)) is None assert ask(Q.negative(-x), Q.negative(x)) is False assert ask(Q.negative(-x), Q.positive(x)) is True assert ask(Q.negative(x - 1), Q.negative(x)) is True assert ask(Q.negative(x + y)) is None assert ask(Q.negative(x + y), Q.negative(x)) is None assert ask(Q.negative(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.negative(x + y), Q.negative(x) & Q.nonpositive(y)) is True assert ask(Q.negative(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.negative(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.negative(-I + I*(cos(2)**2 + sin(2)**2))) is None assert ask(Q.negative(x**2)) is None assert ask(Q.negative(x**2), Q.real(x)) is False assert ask(Q.negative(x**1.4), Q.real(x)) is None assert ask(Q.negative(x**I), Q.positive(x)) is None assert ask(Q.negative(x*y)) is None assert ask(Q.negative(x*y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.negative(x*y), Q.positive(x) & Q.negative(y)) is True assert ask(Q.negative(x*y), Q.complex(x) & Q.complex(y)) is None assert ask(Q.negative(x**y)) is None assert ask(Q.negative(x**y), Q.negative(x) & Q.even(y)) is False assert ask(Q.negative(x**y), Q.negative(x) & Q.odd(y)) is True assert ask(Q.negative(x**y), Q.positive(x) & Q.integer(y)) is False assert ask(Q.negative(Abs(x))) is False def test_nonzero(): assert ask(Q.nonzero(x)) is None assert ask(Q.nonzero(x), Q.real(x)) is None assert ask(Q.nonzero(x), Q.positive(x)) is True assert ask(Q.nonzero(x), Q.negative(x)) is True assert ask(Q.nonzero(x), Q.negative(x) | Q.positive(x)) is True assert ask(Q.nonzero(x + y)) is None assert ask(Q.nonzero(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.nonzero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.nonzero(x + y), Q.negative(x) & Q.negative(y)) is True assert ask(Q.nonzero(2*x)) is None assert ask(Q.nonzero(2*x), Q.positive(x)) is True assert ask(Q.nonzero(2*x), Q.negative(x)) is True assert ask(Q.nonzero(x*y), Q.nonzero(x)) is None assert ask(Q.nonzero(x*y), Q.nonzero(x) & Q.nonzero(y)) is True assert ask(Q.nonzero(x**y), Q.nonzero(x)) is True assert ask(Q.nonzero(Abs(x))) is None assert ask(Q.nonzero(Abs(x)), Q.nonzero(x)) is True assert ask(Q.nonzero(log(exp(2*I)))) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.nonzero(cos(1)**2 + sin(1)**2 - 1)) is None def test_zero(): assert ask(Q.zero(x)) is None assert ask(Q.zero(x), Q.real(x)) is None assert ask(Q.zero(x), Q.positive(x)) is False assert ask(Q.zero(x), Q.negative(x)) is False assert ask(Q.zero(x), Q.negative(x) | Q.positive(x)) is False assert ask(Q.zero(x), Q.nonnegative(x) & Q.nonpositive(x)) is True assert ask(Q.zero(x + y)) is None assert ask(Q.zero(x + y), Q.positive(x) & Q.positive(y)) is False assert ask(Q.zero(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.zero(x + y), Q.negative(x) & Q.negative(y)) is False assert ask(Q.zero(2*x)) is None assert ask(Q.zero(2*x), Q.positive(x)) is False assert ask(Q.zero(2*x), Q.negative(x)) is False assert ask(Q.zero(x*y), Q.nonzero(x)) is None assert ask(Q.zero(Abs(x))) is None assert ask(Q.zero(Abs(x)), Q.zero(x)) is True assert ask(Q.integer(x), Q.zero(x)) is True assert ask(Q.even(x), Q.zero(x)) is True assert ask(Q.odd(x), Q.zero(x)) is False assert ask(Q.zero(x), Q.even(x)) is None assert ask(Q.zero(x), Q.odd(x)) is False assert ask(Q.zero(x) | Q.zero(y), Q.zero(x*y)) is True def test_odd_query(): assert ask(Q.odd(x)) is None assert ask(Q.odd(x), Q.odd(x)) is True assert ask(Q.odd(x), Q.integer(x)) is None assert ask(Q.odd(x), ~Q.integer(x)) is False assert ask(Q.odd(x), Q.rational(x)) is None assert ask(Q.odd(x), Q.positive(x)) is None assert ask(Q.odd(-x), Q.odd(x)) is True assert ask(Q.odd(2*x)) is None assert ask(Q.odd(2*x), Q.integer(x)) is False assert ask(Q.odd(2*x), Q.odd(x)) is False assert ask(Q.odd(2*x), Q.irrational(x)) is False assert ask(Q.odd(2*x), ~Q.integer(x)) is None assert ask(Q.odd(3*x), Q.integer(x)) is None assert ask(Q.odd(x/3), Q.odd(x)) is None assert ask(Q.odd(x/3), Q.even(x)) is None assert ask(Q.odd(x + 1), Q.even(x)) is True assert ask(Q.odd(x + 2), Q.even(x)) is False assert ask(Q.odd(x + 2), Q.odd(x)) is True assert ask(Q.odd(3 - x), Q.odd(x)) is False assert ask(Q.odd(3 - x), Q.even(x)) is True assert ask(Q.odd(3 + x), Q.odd(x)) is False assert ask(Q.odd(3 + x), Q.even(x)) is True assert ask(Q.odd(x + y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y), Q.odd(x) & Q.even(y)) is True assert ask(Q.odd(x - y), Q.even(x) & Q.odd(y)) is True assert ask(Q.odd(x - y), Q.odd(x) & Q.odd(y)) is False assert ask(Q.odd(x + y + z), Q.odd(x) & Q.odd(y) & Q.even(z)) is False assert ask(Q.odd(x + y + z + t), Q.odd(x) & Q.odd(y) & Q.even(z) & Q.integer(t)) is None assert ask(Q.odd(2*x + 1), Q.integer(x)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.odd(y)) is True assert ask(Q.odd(2*x + y), Q.integer(x) & Q.even(y)) is False assert ask(Q.odd(2*x + y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*y), Q.odd(x) & Q.even(y)) is False assert ask(Q.odd(x*y), Q.odd(x) & Q.odd(y)) is True assert ask(Q.odd(2*x*y), Q.rational(x) & Q.rational(x)) is None assert ask(Q.odd(2*x*y), Q.irrational(x) & Q.irrational(x)) is None assert ask(Q.odd(Abs(x)), Q.odd(x)) is True assert ask(Q.odd((-1)**n), Q.integer(n)) is True assert ask(Q.odd(k**2), Q.even(k)) is False assert ask(Q.odd(n**2), Q.odd(n)) is True assert ask(Q.odd(3**k), Q.even(k)) is None assert ask(Q.odd(k**m), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(n**m), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is True assert ask(Q.odd(k**p), Q.even(k) & Q.integer(p) & Q.positive(p)) is False assert ask(Q.odd(n**p), Q.odd(n) & Q.integer(p) & Q.positive(p)) is True assert ask(Q.odd(m**k), Q.even(k) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**k), Q.even(k) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(m**n), Q.odd(n) & Q.integer(m) & ~Q.negative(m)) is None assert ask(Q.odd(p**n), Q.odd(n) & Q.integer(p) & Q.positive(p)) is None assert ask(Q.odd(k**x), Q.even(k)) is None assert ask(Q.odd(n**x), Q.odd(n)) is None assert ask(Q.odd(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.odd(x*x), Q.integer(x)) is None assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.odd(y)) is False assert ask(Q.odd(x*(x + y)), Q.integer(x) & Q.even(y)) is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False assert ask(Q.odd(y*x*(x + z)), Q.integer(x) & Q.integer(y) & Q.odd(z)) is False def test_oddness_in_ternary_integer_product_with_even(): assert ask(Q.odd(x*y*(y + z)), Q.integer(x) & Q.integer(y) & Q.even(z)) is None def test_prime(): assert ask(Q.prime(x), Q.prime(x)) is True assert ask(Q.prime(x), ~Q.prime(x)) is False assert ask(Q.prime(x), Q.integer(x)) is None assert ask(Q.prime(x), ~Q.integer(x)) is False assert ask(Q.prime(2*x), Q.integer(x)) is None assert ask(Q.prime(x*y)) is None assert ask(Q.prime(x*y), Q.prime(x)) is None assert ask(Q.prime(x*y), Q.integer(x) & Q.integer(y)) is None assert ask(Q.prime(4*x), Q.integer(x)) is False assert ask(Q.prime(4*x)) is None assert ask(Q.prime(x**2), Q.integer(x)) is False assert ask(Q.prime(x**2), Q.prime(x)) is False assert ask(Q.prime(x**y), Q.integer(x) & Q.integer(y)) is False @_both_exp_pow def test_positive(): assert ask(Q.positive(x), Q.positive(x)) is True assert ask(Q.positive(x), Q.negative(x)) is False assert ask(Q.positive(x), Q.nonzero(x)) is None assert ask(Q.positive(-x), Q.positive(x)) is False assert ask(Q.positive(-x), Q.negative(x)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.positive(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.nonnegative(y)) is True assert ask(Q.positive(x + y), Q.positive(x) & Q.negative(y)) is None assert ask(Q.positive(x + y), Q.positive(x) & Q.imaginary(y)) is False assert ask(Q.positive(2*x), Q.positive(x)) is True assumptions = Q.positive(x) & Q.negative(y) & Q.negative(z) & Q.positive(w) assert ask(Q.positive(x*y*z)) is None assert ask(Q.positive(x*y*z), assumptions) is True assert ask(Q.positive(-x*y*z), assumptions) is False assert ask(Q.positive(x**I), Q.positive(x)) is None assert ask(Q.positive(x**2), Q.positive(x)) is True assert ask(Q.positive(x**2), Q.negative(x)) is True assert ask(Q.positive(x**3), Q.negative(x)) is False assert ask(Q.positive(1/(1 + x**2)), Q.real(x)) is True assert ask(Q.positive(2**I)) is False assert ask(Q.positive(2 + I)) is False # although this could be False, it is representative of expressions # that don't evaluate to a zero with precision assert ask(Q.positive(cos(I)**2 + sin(I)**2 - 1)) is None assert ask(Q.positive(-I + I*(cos(2)**2 + sin(2)**2))) is None #exponential assert ask(Q.positive(exp(x)), Q.real(x)) is True assert ask(~Q.negative(exp(x)), Q.real(x)) is True assert ask(Q.positive(x + exp(x)), Q.real(x)) is None assert ask(Q.positive(exp(x)), Q.imaginary(x)) is None assert ask(Q.positive(exp(2*pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.negative(exp(pi*I, evaluate=False)), Q.imaginary(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.even(x)) is True assert ask(Q.positive(exp(x*pi*I)), Q.odd(x)) is False assert ask(Q.positive(exp(x*pi*I)), Q.real(x)) is None # logarithm assert ask(Q.positive(log(x)), Q.imaginary(x)) is False assert ask(Q.positive(log(x)), Q.negative(x)) is False assert ask(Q.positive(log(x)), Q.positive(x)) is None assert ask(Q.positive(log(x + 2)), Q.positive(x)) is True # factorial assert ask(Q.positive(factorial(x)), Q.integer(x) & Q.positive(x)) assert ask(Q.positive(factorial(x)), Q.integer(x)) is None #absolute value assert ask(Q.positive(Abs(x))) is None # Abs(0) = 0 assert ask(Q.positive(Abs(x)), Q.positive(x)) is True def test_nonpositive(): assert ask(Q.nonpositive(-1)) assert ask(Q.nonpositive(0)) assert ask(Q.nonpositive(1)) is False assert ask(~Q.positive(x), Q.nonpositive(x)) assert ask(Q.nonpositive(x), Q.positive(x)) is False assert ask(Q.nonpositive(sqrt(-1))) is False assert ask(Q.nonpositive(x), Q.imaginary(x)) is False def test_nonnegative(): assert ask(Q.nonnegative(-1)) is False assert ask(Q.nonnegative(0)) assert ask(Q.nonnegative(1)) assert ask(~Q.negative(x), Q.nonnegative(x)) assert ask(Q.nonnegative(x), Q.negative(x)) is False assert ask(Q.nonnegative(sqrt(-1))) is False assert ask(Q.nonnegative(x), Q.imaginary(x)) is False def test_real_basic(): assert ask(Q.real(x)) is None assert ask(Q.real(x), Q.real(x)) is True assert ask(Q.real(x), Q.nonzero(x)) is True assert ask(Q.real(x), Q.positive(x)) is True assert ask(Q.real(x), Q.negative(x)) is True assert ask(Q.real(x), Q.integer(x)) is True assert ask(Q.real(x), Q.even(x)) is True assert ask(Q.real(x), Q.prime(x)) is True assert ask(Q.real(x/sqrt(2)), Q.real(x)) is True assert ask(Q.real(x/sqrt(-2)), Q.real(x)) is False assert ask(Q.real(x + 1), Q.real(x)) is True assert ask(Q.real(x + I), Q.real(x)) is False assert ask(Q.real(x + I), Q.complex(x)) is None assert ask(Q.real(2*x), Q.real(x)) is True assert ask(Q.real(I*x), Q.real(x)) is False assert ask(Q.real(I*x), Q.imaginary(x)) is True assert ask(Q.real(I*x), Q.complex(x)) is None def test_real_pow(): assert ask(Q.real(x**2), Q.real(x)) is True assert ask(Q.real(sqrt(x)), Q.negative(x)) is False assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.real(y)) is None assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.imaginary(x) & Q.imaginary(y)) is None # I**I or (2*I)**I assert ask(Q.real(x**y), Q.imaginary(x) & Q.real(y)) is None # I**1 or I**0 assert ask(Q.real(x**y), Q.real(x) & Q.imaginary(y)) is None # could be exp(2*pi*I) or 2**I assert ask(Q.real(x**0), Q.imaginary(x)) is True assert ask(Q.real(x**y), Q.real(x) & Q.integer(y)) is True assert ask(Q.real(x**y), Q.positive(x) & Q.real(y)) is True assert ask(Q.real(x**y), Q.real(x) & Q.rational(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.integer(y)) is None assert ask(Q.real(x**y), Q.imaginary(x) & Q.odd(y)) is False assert ask(Q.real(x**y), Q.imaginary(x) & Q.even(y)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.rational(y/z) & Q.even(z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.rational(y/z) & Q.even(z) & Q.negative(x)) is False assert ask(Q.real(x**(y/z)), Q.real(x) & Q.integer(y/z)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.positive(x)) is True assert ask(Q.real(x**(y/z)), Q.real(x) & Q.real(y/z) & Q.negative(x)) is False assert ask(Q.real((-I)**i), Q.imaginary(i)) is True assert ask(Q.real(I**i), Q.imaginary(i)) is True assert ask(Q.real(i**i), Q.imaginary(i)) is None # i might be 2*I assert ask(Q.real(x**i), Q.imaginary(i)) is None # x could be 0 assert ask(Q.real(x**(I*pi/log(x))), Q.real(x)) is True @_both_exp_pow def test_real_functions(): # trigonometric functions assert ask(Q.real(sin(x))) is None assert ask(Q.real(cos(x))) is None assert ask(Q.real(sin(x)), Q.real(x)) is True assert ask(Q.real(cos(x)), Q.real(x)) is True # exponential function assert ask(Q.real(exp(x))) is None assert ask(Q.real(exp(x)), Q.real(x)) is True assert ask(Q.real(x + exp(x)), Q.real(x)) is True assert ask(Q.real(exp(2*pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I, evaluate=False))) is True assert ask(Q.real(exp(pi*I/2, evaluate=False))) is False # logarithm assert ask(Q.real(log(I))) is False assert ask(Q.real(log(2*I))) is False assert ask(Q.real(log(I + 1))) is False assert ask(Q.real(log(x)), Q.complex(x)) is None assert ask(Q.real(log(x)), Q.imaginary(x)) is False assert ask(Q.real(log(exp(x))), Q.imaginary(x)) is None # exp(2*pi*I) is 1, log(exp(pi*I)) is pi*I (disregarding periodicity) assert ask(Q.real(log(exp(x))), Q.complex(x)) is None eq = Pow(exp(2*pi*I*x, evaluate=False), x, evaluate=False) assert ask(Q.real(eq), Q.integer(x)) is True assert ask(Q.real(exp(x)**x), Q.imaginary(x)) is True assert ask(Q.real(exp(x)**x), Q.complex(x)) is None # Q.complexes assert ask(Q.real(re(x))) is True assert ask(Q.real(im(x))) is True def test_matrix(): # hermitian assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 - I, 3, I], [4, -I, 1]]))) == True assert ask(Q.hermitian(Matrix([[2, 2 + I, 4], [2 + I, 3, I], [4, -I, 1]]))) == False z = symbols('z', complex=True) assert ask(Q.hermitian(Matrix([[2, 2 + I, z], [2 - I, 3, I], [4, -I, 1]]))) == None assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))))) == True assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, I, 0), (-5, 0, 11))))) == False assert ask(Q.hermitian(SparseMatrix(((25, 15, -5), (15, z, 0), (-5, 0, 11))))) == None # antihermitian A = Matrix([[0, -2 - I, 0], [2 - I, 0, -I], [0, -I, 0]]) B = Matrix([[-I, 2 + I, 0], [-2 + I, 0, 2 + I], [0, -2 + I, -I]]) assert ask(Q.antihermitian(A)) is True assert ask(Q.antihermitian(B)) is True assert ask(Q.antihermitian(A**2)) is False C = (B**3) C.simplify() assert ask(Q.antihermitian(C)) is True _A = Matrix([[0, -2 - I, 0], [z, 0, -I], [0, -I, 0]]) assert ask(Q.antihermitian(_A)) is None @_both_exp_pow def test_algebraic(): assert ask(Q.algebraic(x)) is None assert ask(Q.algebraic(I)) is True assert ask(Q.algebraic(2*I)) is True assert ask(Q.algebraic(I/3)) is True assert ask(Q.algebraic(sqrt(7))) is True assert ask(Q.algebraic(2*sqrt(7))) is True assert ask(Q.algebraic(sqrt(7)/3)) is True assert ask(Q.algebraic(I*sqrt(3))) is True assert ask(Q.algebraic(sqrt(1 + I*sqrt(3)))) is True assert ask(Q.algebraic(1 + I*sqrt(3)**Rational(17, 31))) is True assert ask(Q.algebraic(1 + I*sqrt(3)**(17/pi))) is False for f in [exp, sin, tan, asin, atan, cos]: assert ask(Q.algebraic(f(7))) is False assert ask(Q.algebraic(f(7, evaluate=False))) is False assert ask(Q.algebraic(f(0, evaluate=False))) is True assert ask(Q.algebraic(f(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(f(x)), Q.algebraic(x) & Q.nonzero(x)) is False for g in [log, acos]: assert ask(Q.algebraic(g(7))) is False assert ask(Q.algebraic(g(7, evaluate=False))) is False assert ask(Q.algebraic(g(1, evaluate=False))) is True assert ask(Q.algebraic(g(x)), Q.algebraic(x)) is None assert ask(Q.algebraic(g(x)), Q.algebraic(x) & Q.nonzero(x - 1)) is False for h in [cot, acot]: assert ask(Q.algebraic(h(7))) is False assert ask(Q.algebraic(h(7, evaluate=False))) is False assert ask(Q.algebraic(h(x)), Q.algebraic(x)) is False assert ask(Q.algebraic(sqrt(sin(7)))) is False assert ask(Q.algebraic(sqrt(y + I*sqrt(7)))) is None assert ask(Q.algebraic(2.47)) is True assert ask(Q.algebraic(x), Q.transcendental(x)) is False assert ask(Q.transcendental(x), Q.algebraic(x)) is False def test_global(): """Test ask with global assumptions""" assert ask(Q.integer(x)) is None global_assumptions.add(Q.integer(x)) assert ask(Q.integer(x)) is True global_assumptions.clear() assert ask(Q.integer(x)) is None def test_custom_context(): """Test ask with custom assumptions context""" assert ask(Q.integer(x)) is None local_context = AssumptionsContext() local_context.add(Q.integer(x)) assert ask(Q.integer(x), context=local_context) is True assert ask(Q.integer(x)) is None def test_functions_in_assumptions(): assert ask(Q.negative(x), Q.real(x) >> Q.positive(x)) is False assert ask(Q.negative(x), Equivalent(Q.real(x), Q.positive(x))) is False assert ask(Q.negative(x), Xor(Q.real(x), Q.negative(x))) is False def test_composite_ask(): assert ask(Q.negative(x) & Q.integer(x), assumptions=Q.real(x) >> Q.positive(x)) is False def test_composite_proposition(): assert ask(True) is True assert ask(False) is False assert ask(~Q.negative(x), Q.positive(x)) is True assert ask(~Q.real(x), Q.commutative(x)) is None assert ask(Q.negative(x) & Q.integer(x), Q.positive(x)) is False assert ask(Q.negative(x) & Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.positive(x)) is True assert ask(Q.real(x) | Q.integer(x)) is None assert ask(Q.real(x) >> Q.positive(x), Q.negative(x)) is False assert ask(Implies( Q.real(x), Q.positive(x), evaluate=False), Q.negative(x)) is False assert ask(Implies(Q.real(x), Q.positive(x), evaluate=False)) is None assert ask(Equivalent(Q.integer(x), Q.even(x)), Q.even(x)) is True assert ask(Equivalent(Q.integer(x), Q.even(x))) is None assert ask(Equivalent(Q.positive(x), Q.integer(x)), Q.integer(x)) is None assert ask(Q.real(x) | Q.integer(x), Q.real(x) | Q.integer(x)) is True def test_tautology(): assert ask(Q.real(x) | ~Q.real(x)) is True assert ask(Q.real(x) & ~Q.real(x)) is False def test_composite_assumptions(): assert ask(Q.real(x), Q.real(x) & Q.real(y)) is True assert ask(Q.positive(x), Q.positive(x) | Q.positive(y)) is None assert ask(Q.positive(x), Q.real(x) >> Q.positive(y)) is None assert ask(Q.real(x), ~(Q.real(x) >> Q.real(y))) is True def test_key_extensibility(): """test that you can add keys to the ask system at runtime""" # make sure the key is not defined raises(AttributeError, lambda: ask(Q.my_key(x))) # Old handler system class MyAskHandler(AskHandler): @staticmethod def Symbol(expr, assumptions): return True try: with warns_deprecated_sympy(): register_handler('my_key', MyAskHandler) with warns_deprecated_sympy(): assert ask(Q.my_key(x)) is True with warns_deprecated_sympy(): assert ask(Q.my_key(x + 1)) is None finally: with warns_deprecated_sympy(): remove_handler('my_key', MyAskHandler) del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) # New handler system class MyPredicate(Predicate): pass try: Q.my_key = MyPredicate() @Q.my_key.register(Symbol) def _(expr, assumptions): return True assert ask(Q.my_key(x)) is True assert ask(Q.my_key(x+1)) is None finally: del Q.my_key raises(AttributeError, lambda: ask(Q.my_key(x))) def test_type_extensibility(): """test that new types can be added to the ask system at runtime """ from sympy.core import Basic class MyType(Basic): pass @Q.prime.register(MyType) def _(expr, assumptions): return True assert ask(Q.prime(MyType())) is True def test_single_fact_lookup(): known_facts = And(Implies(Q.integer, Q.rational), Implies(Q.rational, Q.real), Implies(Q.real, Q.complex)) known_facts_keys = {Q.integer, Q.rational, Q.real, Q.complex} known_facts_cnf = to_cnf(known_facts) mapping = single_fact_lookup(known_facts_keys, known_facts_cnf) assert mapping[Q.rational] == {Q.real, Q.rational, Q.complex} def test_generate_known_facts_dict(): known_facts = And(Implies(Q.integer(x), Q.rational(x)), Implies(Q.rational(x), Q.real(x)), Implies(Q.real(x), Q.complex(x))) known_facts_keys = {Q.integer(x), Q.rational(x), Q.real(x), Q.complex(x)} assert generate_known_facts_dict(known_facts_keys, known_facts) == \ {Q.complex: ({Q.complex}, set()), Q.integer: ({Q.complex, Q.integer, Q.rational, Q.real}, set()), Q.rational: ({Q.complex, Q.rational, Q.real}, set()), Q.real: ({Q.complex, Q.real}, set())} @slow def test_known_facts_consistent(): """"Test that ask_generated.py is up-to-date""" x = Symbol('x') fact = get_known_facts(x) # test cnf clauses of fact between unary predicates cnf = CNF.to_CNF(fact) clauses = set() for cl in cnf.clauses: clauses.add(frozenset(Literal(lit.arg.function, lit.is_Not) for lit in sorted(cl, key=str))) assert get_all_known_facts() == clauses # test dictionary of fact between unary predicates keys = [pred(x) for pred in get_known_facts_keys()] mapping = generate_known_facts_dict(keys, fact) assert get_known_facts_dict() == mapping def test_Add_queries(): assert ask(Q.prime(12345678901234567890 + (cos(1)**2 + sin(1)**2))) is True assert ask(Q.even(Add(S(2), S(2), evaluate=0))) is True assert ask(Q.prime(Add(S(2), S(2), evaluate=0))) is False assert ask(Q.integer(Add(S(2), S(2), evaluate=0))) is True def test_positive_assuming(): with assuming(Q.positive(x + 1)): assert not ask(Q.positive(x)) def test_issue_5421(): raises(TypeError, lambda: ask(pi/log(x), Q.real)) def test_issue_3906(): raises(TypeError, lambda: ask(Q.positive)) def test_issue_5833(): assert ask(Q.positive(log(x)**2), Q.positive(x)) is None assert ask(~Q.negative(log(x)**2), Q.positive(x)) is True def test_issue_6732(): raises(ValueError, lambda: ask(Q.positive(x), Q.positive(x) & Q.negative(x))) raises(ValueError, lambda: ask(Q.negative(x), Q.positive(x) & Q.negative(x))) def test_issue_7246(): assert ask(Q.positive(atan(p)), Q.positive(p)) is True assert ask(Q.positive(atan(p)), Q.negative(p)) is False assert ask(Q.positive(atan(p)), Q.zero(p)) is False assert ask(Q.positive(atan(x))) is None assert ask(Q.positive(asin(p)), Q.positive(p)) is None assert ask(Q.positive(asin(p)), Q.zero(p)) is None assert ask(Q.positive(asin(Rational(1, 7)))) is True assert ask(Q.positive(asin(x)), Q.positive(x) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(asin(x)), Q.negative(x) & Q.nonnegative(x + 1)) is False assert ask(Q.positive(acos(p)), Q.positive(p)) is None assert ask(Q.positive(acos(Rational(1, 7)))) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x + 1) & Q.nonpositive(x - 1)) is True assert ask(Q.positive(acos(x)), Q.nonnegative(x - 1)) is None assert ask(Q.positive(acot(x)), Q.positive(x)) is True assert ask(Q.positive(acot(x)), Q.real(x)) is True assert ask(Q.positive(acot(x)), Q.imaginary(x)) is False assert ask(Q.positive(acot(x))) is None @XFAIL def test_issue_7246_failing(): #Move this test to test_issue_7246 once #the new assumptions module is improved. assert ask(Q.positive(acos(x)), Q.zero(x)) is True def test_check_old_assumption(): x = symbols('x', real=True) assert ask(Q.real(x)) is True assert ask(Q.imaginary(x)) is False assert ask(Q.complex(x)) is True x = symbols('x', imaginary=True) assert ask(Q.real(x)) is False assert ask(Q.imaginary(x)) is True assert ask(Q.complex(x)) is True x = symbols('x', complex=True) assert ask(Q.real(x)) is None assert ask(Q.complex(x)) is True x = symbols('x', positive=True, finite=True) assert ask(Q.positive(x)) is True assert ask(Q.negative(x)) is False assert ask(Q.real(x)) is True x = symbols('x', commutative=False) assert ask(Q.commutative(x)) is False x = symbols('x', negative=True) assert ask(Q.positive(x)) is False assert ask(Q.negative(x)) is True x = symbols('x', nonnegative=True) assert ask(Q.negative(x)) is False assert ask(Q.positive(x)) is None assert ask(Q.zero(x)) is None x = symbols('x', finite=True) assert ask(Q.finite(x)) is True x = symbols('x', prime=True) assert ask(Q.prime(x)) is True assert ask(Q.composite(x)) is False x = symbols('x', composite=True) assert ask(Q.prime(x)) is False assert ask(Q.composite(x)) is True x = symbols('x', even=True) assert ask(Q.even(x)) is True assert ask(Q.odd(x)) is False x = symbols('x', odd=True) assert ask(Q.even(x)) is False assert ask(Q.odd(x)) is True x = symbols('x', nonzero=True) assert ask(Q.nonzero(x)) is True assert ask(Q.zero(x)) is False x = symbols('x', zero=True) assert ask(Q.zero(x)) is True x = symbols('x', integer=True) assert ask(Q.integer(x)) is True x = symbols('x', rational=True) assert ask(Q.rational(x)) is True assert ask(Q.irrational(x)) is False x = symbols('x', irrational=True) assert ask(Q.irrational(x)) is True assert ask(Q.rational(x)) is False def test_issue_9636(): assert ask(Q.integer(1.0)) is False assert ask(Q.prime(3.0)) is False assert ask(Q.composite(4.0)) is False assert ask(Q.even(2.0)) is False assert ask(Q.odd(3.0)) is False def test_autosimp_used_to_fail(): # See issue #9807 assert ask(Q.imaginary(0**I)) is None assert ask(Q.imaginary(0**(-I))) is None assert ask(Q.real(0**I)) is None assert ask(Q.real(0**(-I))) is None def test_custom_AskHandler(): from sympy.logic.boolalg import conjuncts # Old handler system class MersenneHandler(AskHandler): @staticmethod def Integer(expr, assumptions): from sympy import log if ask(Q.integer(log(expr + 1, 2))): return True @staticmethod def Symbol(expr, assumptions): if expr in conjuncts(assumptions): return True try: with warns_deprecated_sympy(): register_handler('mersenne', MersenneHandler) n = Symbol('n', integer=True) with warns_deprecated_sympy(): assert ask(Q.mersenne(7)) with warns_deprecated_sympy(): assert ask(Q.mersenne(n), Q.mersenne(n)) finally: del Q.mersenne # New handler system class MersennePredicate(Predicate): pass try: Q.mersenne = MersennePredicate() @Q.mersenne.register(Integer) def _(expr, assumptions): from sympy import log if ask(Q.integer(log(expr + 1, 2))): return True @Q.mersenne.register(Symbol) def _(expr, assumptions): if expr in conjuncts(assumptions): return True assert ask(Q.mersenne(7)) assert ask(Q.mersenne(n), Q.mersenne(n)) finally: del Q.mersenne def test_polyadic_predicate(): class SexyPredicate(Predicate): pass try: Q.sexyprime = SexyPredicate() @Q.sexyprime.register(Integer, Integer) def _(int1, int2, assumptions): args = sorted([int1, int2]) if not all(ask(Q.prime(a), assumptions) for a in args): return False return args[1] - args[0] == 6 @Q.sexyprime.register(Integer, Integer, Integer) def _(int1, int2, int3, assumptions): args = sorted([int1, int2, int3]) if not all(ask(Q.prime(a), assumptions) for a in args): return False return args[2] - args[1] == 6 and args[1] - args[0] == 6 assert ask(Q.sexyprime(5, 11)) assert ask(Q.sexyprime(7, 13, 19)) finally: del Q.sexyprime def test_Predicate_handler_is_unique(): # Undefined predicate does not have a handler assert Predicate('mypredicate').handler is None # Handler of defined predicate is unique to the class class MyPredicate(Predicate): pass mp1 = MyPredicate('mp1') mp2 = MyPredicate('mp2') assert mp1.handler is mp2.handler def test_relational(): assert ask(Q.eq(x, 0), Q.zero(x)) assert not ask(Q.eq(x, 0), Q.nonzero(x)) assert not ask(Q.ne(x, 0), Q.zero(x)) assert ask(Q.ne(x, 0), Q.nonzero(x))
21cae2233464fab5ad233f6b8397bf5a72d9da20fc2283e454601304c508faa9
""" This module implements some special functions that commonly appear in combinatorial contexts (e.g. in power series); in particular, sequences of rational numbers such as Bernoulli and Fibonacci numbers. Factorials, binomial coefficients and related functions are located in the separate 'factorials' module. """ from typing import Callable, Dict from sympy.core import S, Symbol, Rational, Integer, Add, Dummy from sympy.core.cache import cacheit from sympy.core.compatibility import as_int, SYMPY_INTS from sympy.core.function import Function, expand_mul from sympy.core.logic import fuzzy_not from sympy.core.numbers import E, pi from sympy.core.relational import LessThan, StrictGreaterThan from sympy.functions.combinatorial.factorials import binomial, factorial from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.trigonometric import sin, cos, cot from sympy.ntheory import isprime from sympy.ntheory.primetest import is_square from sympy.utilities.memoization import recurrence_memo from mpmath import bernfrac, workprec from mpmath.libmp import ifib as _ifib def _product(a, b): p = 1 for k in range(a, b + 1): p *= k return p # Dummy symbol used for computing polynomial sequences _sym = Symbol('x') #----------------------------------------------------------------------------# # # # Carmichael numbers # # # #----------------------------------------------------------------------------# class carmichael(Function): """ Carmichael Numbers: Certain cryptographic algorithms make use of big prime numbers. However, checking whether a big number is prime is not so easy. Randomized prime number checking tests exist that offer a high degree of confidence of accurate determination at low cost, such as the Fermat test. Let 'a' be a random number between 2 and n - 1, where n is the number whose primality we are testing. Then, n is probably prime if it satisfies the modular arithmetic congruence relation : a^(n-1) = 1(mod n). (where mod refers to the modulo operation) If a number passes the Fermat test several times, then it is prime with a high probability. Unfortunately, certain composite numbers (non-primes) still pass the Fermat test with every number smaller than themselves. These numbers are called Carmichael numbers. A Carmichael number will pass a Fermat primality test to every base b relatively prime to the number, even though it is not actually prime. This makes tests based on Fermat's Little Theorem less effective than strong probable prime tests such as the Baillie-PSW primality test and the Miller-Rabin primality test. mr functions given in sympy/sympy/ntheory/primetest.py will produce wrong results for each and every carmichael number. Examples ======== >>> from sympy import carmichael >>> carmichael.find_first_n_carmichaels(5) [561, 1105, 1729, 2465, 2821] >>> carmichael.is_prime(2465) False >>> carmichael.is_prime(1729) False >>> carmichael.find_carmichael_numbers_in_range(0, 562) [561] >>> carmichael.find_carmichael_numbers_in_range(0,1000) [561] >>> carmichael.find_carmichael_numbers_in_range(0,2000) [561, 1105, 1729] References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_number .. [2] https://en.wikipedia.org/wiki/Fermat_primality_test .. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents """ @staticmethod def is_perfect_square(n): return is_square(n) @staticmethod def divides(p, n): return n % p == 0 @staticmethod def is_prime(n): return isprime(n) @staticmethod def is_carmichael(n): if n >= 0: if (n == 1) or (carmichael.is_prime(n)) or (n % 2 == 0): return False divisors = list([1, n]) # get divisors for i in range(3, n // 2 + 1, 2): if n % i == 0: divisors.append(i) for i in divisors: if carmichael.is_perfect_square(i) and i != 1: return False if carmichael.is_prime(i): if not carmichael.divides(i - 1, n - 1): return False return True else: raise ValueError('The provided number must be greater than or equal to 0') @staticmethod def find_carmichael_numbers_in_range(x, y): if 0 <= x <= y: if x % 2 == 0: return list([i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)]) else: return list([i for i in range(x, y, 2) if carmichael.is_carmichael(i)]) else: raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y') @staticmethod def find_first_n_carmichaels(n): i = 1 carmichaels = list() while len(carmichaels) < n: if carmichael.is_carmichael(i): carmichaels.append(i) i += 2 return carmichaels #----------------------------------------------------------------------------# # # # Fibonacci numbers # # # #----------------------------------------------------------------------------# class fibonacci(Function): r""" Fibonacci numbers / Fibonacci polynomials The Fibonacci numbers are the integer sequence defined by the initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence relation `F_n = F_{n-1} + F_{n-2}`. This definition extended to arbitrary real and complex arguments using the formula .. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5} The Fibonacci polynomials are defined by `F_1(x) = 1`, `F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`. For all positive integers `n`, `F_n(1) = F_n`. * ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n` * ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)` Examples ======== >>> from sympy import fibonacci, Symbol >>> [fibonacci(x) for x in range(11)] [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55] >>> fibonacci(5, Symbol('t')) t**4 + 3*t**2 + 1 See Also ======== bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Fibonacci_number .. [2] http://mathworld.wolfram.com/FibonacciNumber.html """ @staticmethod def _fib(n): return _ifib(n) @staticmethod @recurrence_memo([None, S.One, _sym]) def _fibpoly(n, prev): return (prev[-2] + _sym*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: if sym is None: n = int(n) if n < 0: return S.NegativeOne**(n + 1) * fibonacci(-n) else: return Integer(cls._fib(n)) else: if n < 1: raise ValueError("Fibonacci polynomials are defined " "only for positive integer indices.") return cls._fibpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5 def _eval_rewrite_as_GoldenRatio(self,n, **kwargs): return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1) #----------------------------------------------------------------------------# # # # Lucas numbers # # # #----------------------------------------------------------------------------# class lucas(Function): """ Lucas numbers Lucas numbers satisfy a recurrence relation similar to that of the Fibonacci sequence, in which each term is the sum of the preceding two. They are generated by choosing the initial values `L_0 = 2` and `L_1 = 1`. * ``lucas(n)`` gives the `n^{th}` Lucas number Examples ======== >>> from sympy import lucas >>> [lucas(x) for x in range(11)] [2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123] See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Lucas_number .. [2] http://mathworld.wolfram.com/LucasNumber.html """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n.is_Integer: return fibonacci(n + 1) + fibonacci(n - 1) def _eval_rewrite_as_sqrt(self, n, **kwargs): return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n) #----------------------------------------------------------------------------# # # # Tribonacci numbers # # # #----------------------------------------------------------------------------# class tribonacci(Function): r""" Tribonacci numbers / Tribonacci polynomials The Tribonacci numbers are the integer sequence defined by the initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`. The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`, `T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)` for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`. * ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n` * ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)` Examples ======== >>> from sympy import tribonacci, Symbol >>> [tribonacci(x) for x in range(11)] [0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149] >>> tribonacci(5, Symbol('t')) t**8 + 3*t**5 + 3*t**2 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers .. [2] http://mathworld.wolfram.com/TribonacciNumber.html .. [3] https://oeis.org/A000073 """ @staticmethod @recurrence_memo([S.Zero, S.One, S.One]) def _trib(n, prev): return (prev[-3] + prev[-2] + prev[-1]) @staticmethod @recurrence_memo([S.Zero, S.One, _sym**2]) def _tribpoly(n, prev): return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand() @classmethod def eval(cls, n, sym=None): if n is S.Infinity: return S.Infinity if n.is_Integer: n = int(n) if n < 0: raise ValueError("Tribonacci polynomials are defined " "only for non-negative integer indices.") if sym is None: return Integer(cls._trib(n)) else: return cls._tribpoly(n).subs(_sym, sym) def _eval_rewrite_as_sqrt(self, n, **kwargs): w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2 a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3 b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3 c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3 Tn = (a**(n + 1)/((a - b)*(a - c)) + b**(n + 1)/((b - a)*(b - c)) + c**(n + 1)/((c - a)*(c - b))) return Tn def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs): b = cbrt(586 + 102*sqrt(33)) Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4) return floor(Tn + S.Half) #----------------------------------------------------------------------------# # # # Bernoulli numbers # # # #----------------------------------------------------------------------------# class bernoulli(Function): r""" Bernoulli numbers / Bernoulli polynomials The Bernoulli numbers are a sequence of rational numbers defined by `B_0 = 1` and the recursive relation (`n > 0`): .. math :: 0 = \sum_{k=0}^n \binom{n+1}{k} B_k They are also commonly defined by their exponential generating function, which is `\frac{x}{e^x - 1}`. For odd indices > 1, the Bernoulli numbers are zero. The Bernoulli polynomials satisfy the analogous formula: .. math :: B_n(x) = \sum_{k=0}^n \binom{n}{k} B_k x^{n-k} Bernoulli numbers and Bernoulli polynomials are related as `B_n(0) = B_n`. We compute Bernoulli numbers using Ramanujan's formula: .. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}} where: .. math :: A(n) = \begin{cases} \frac{n+3}{3} & n \equiv 0\ \text{or}\ 2 \pmod{6} \\ -\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases} and: .. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k} This formula is similar to the sum given in the definition, but cuts 2/3 of the terms. For Bernoulli polynomials, we use the formula in the definition. * ``bernoulli(n)`` gives the nth Bernoulli number, `B_n` * ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)` Examples ======== >>> from sympy import bernoulli >>> [bernoulli(n) for n in range(11)] [1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66] >>> bernoulli(1000001) 0 See Also ======== bell, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_number .. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial .. [3] http://mathworld.wolfram.com/BernoulliNumber.html .. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html """ # Calculates B_n for positive even n @staticmethod def _calc_bernoulli(n): s = 0 a = int(binomial(n + 3, n - 6)) for j in range(1, n//6 + 1): s += a * bernoulli(n - 6*j) # Avoid computing each binomial coefficient from scratch a *= _product(n - 6 - 6*j + 1, n - 6*j) a //= _product(6*j + 4, 6*j + 9) if n % 6 == 4: s = -Rational(n + 3, 6) - s else: s = Rational(n + 3, 3) - s return s / binomial(n + 3, n) # We implement a specialized memoization scheme to handle each # case modulo 6 separately _cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)} _highest = {0: 0, 2: 2, 4: 4} @classmethod def eval(cls, n, sym=None): if n.is_Number: if n.is_Integer and n.is_nonnegative: if n.is_zero: return S.One elif n is S.One: if sym is None: return Rational(-1, 2) else: return sym - S.Half # Bernoulli numbers elif sym is None: if n.is_odd: return S.Zero n = int(n) # Use mpmath for enormous Bernoulli numbers if n > 500: p, q = bernfrac(n) return Rational(int(p), int(q)) case = n % 6 highest_cached = cls._highest[case] if n <= highest_cached: return cls._cache[n] # To avoid excessive recursion when, say, bernoulli(1000) is # requested, calculate and cache the entire sequence ... B_988, # B_994, B_1000 in increasing order for i in range(highest_cached + 6, n + 6, 6): b = cls._calc_bernoulli(i) cls._cache[i] = b cls._highest[case] = i return b # Bernoulli polynomials else: n, result = int(n), [] for k in range(n + 1): result.append(binomial(n, k)*cls(k)*sym**(n - k)) return Add(*result) else: raise ValueError("Bernoulli numbers are defined only" " for nonnegative integer indices.") if sym is None: if n.is_odd and (n - 1).is_positive: return S.Zero #----------------------------------------------------------------------------# # # # Bell numbers # # # #----------------------------------------------------------------------------# class bell(Function): r""" Bell numbers / Bell polynomials The Bell numbers satisfy `B_0 = 1` and .. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k. They are also given by: .. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}. The Bell polynomials are given by `B_0(x) = 1` and .. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x). The second kind of Bell polynomials (are sometimes called "partial" Bell polynomials or incomplete Bell polynomials) are defined as .. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) = \sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n} \frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!} \left(\frac{x_1}{1!} \right)^{j_1} \left(\frac{x_2}{2!} \right)^{j_2} \dotsb \left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}. * ``bell(n)`` gives the `n^{th}` Bell number, `B_n`. * ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`. * ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind, `B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`. Notes ===== Not to be confused with Bernoulli numbers and Bernoulli polynomials, which use the same notation. Examples ======== >>> from sympy import bell, Symbol, symbols >>> [bell(n) for n in range(11)] [1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975] >>> bell(30) 846749014511809332450147 >>> bell(4, Symbol('t')) t**4 + 6*t**3 + 7*t**2 + t >>> bell(6, 2, symbols('x:6')[1:]) 6*x1*x5 + 15*x2*x4 + 10*x3**2 See Also ======== bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Bell_number .. [2] http://mathworld.wolfram.com/BellNumber.html .. [3] http://mathworld.wolfram.com/BellPolynomial.html """ @staticmethod @recurrence_memo([1, 1]) def _bell(n, prev): s = 1 a = 1 for k in range(1, n): a = a * (n - k) // k s += a * prev[k] return s @staticmethod @recurrence_memo([S.One, _sym]) def _bell_poly(n, prev): s = 1 a = 1 for k in range(2, n + 1): a = a * (n - k + 1) // (k - 1) s += a * prev[k - 1] return expand_mul(_sym * s) @staticmethod def _bell_incomplete_poly(n, k, symbols): r""" The second kind of Bell polynomials (incomplete Bell polynomials). Calculated by recurrence formula: .. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) = \sum_{m=1}^{n-k+1} \x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k}) where `B_{0,0} = 1;` `B_{n,0} = 0; for n \ge 1` `B_{0,k} = 0; for k \ge 1` """ if (n == 0) and (k == 0): return S.One elif (n == 0) or (k == 0): return S.Zero s = S.Zero a = S.One for m in range(1, n - k + 2): s += a * bell._bell_incomplete_poly( n - m, k - 1, symbols) * symbols[m - 1] a = a * (n - m) / m return expand_mul(s) @classmethod def eval(cls, n, k_sym=None, symbols=None): if n is S.Infinity: if k_sym is None: return S.Infinity else: raise ValueError("Bell polynomial is not defined") if n.is_negative or n.is_integer is False: raise ValueError("a non-negative integer expected") if n.is_Integer and n.is_nonnegative: if k_sym is None: return Integer(cls._bell(int(n))) elif symbols is None: return cls._bell_poly(int(n)).subs(_sym, k_sym) else: r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols) return r def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs): from sympy import Sum if (k_sym is not None) or (symbols is not None): return self # Dobinski's formula if not n.is_nonnegative: return self k = Dummy('k', integer=True, nonnegative=True) return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity)) #----------------------------------------------------------------------------# # # # Harmonic numbers # # # #----------------------------------------------------------------------------# class harmonic(Function): r""" Harmonic numbers The nth harmonic number is given by `\operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`. More generally: .. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m} As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`, the Riemann zeta function. * ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n` * ``harmonic(n, m)`` gives the nth generalized harmonic number of order `m`, `\operatorname{H}_{n,m}`, where ``harmonic(n) == harmonic(n, 1)`` Examples ======== >>> from sympy import harmonic, oo >>> [harmonic(n) for n in range(6)] [0, 1, 3/2, 11/6, 25/12, 137/60] >>> [harmonic(n, 2) for n in range(6)] [0, 1, 5/4, 49/36, 205/144, 5269/3600] >>> harmonic(oo, 2) pi**2/6 >>> from sympy import Symbol, Sum >>> n = Symbol("n") >>> harmonic(n).rewrite(Sum) Sum(1/_k, (_k, 1, n)) We can evaluate harmonic numbers for all integral and positive rational arguments: >>> from sympy import S, expand_func, simplify >>> harmonic(8) 761/280 >>> harmonic(11) 83711/27720 >>> H = harmonic(1/S(3)) >>> H harmonic(1/3) >>> He = expand_func(H) >>> He -log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1)) + 3*Sum(1/(3*_k + 1), (_k, 0, 0)) >>> He.doit() -log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3 >>> H = harmonic(25/S(7)) >>> He = simplify(expand_func(H).doit()) >>> He log(sin(2*pi/7)**(2*cos(16*pi/7))/(14*sin(pi/7)**(2*cos(pi/7))*cos(pi/14)**(2*sin(pi/14)))) + pi*tan(pi/14)/2 + 30247/9900 >>> He.n(40) 1.983697455232980674869851942390639915940 >>> harmonic(25/S(7)).n(40) 1.983697455232980674869851942390639915940 We can rewrite harmonic numbers in terms of polygamma functions: >>> from sympy import digamma, polygamma >>> m = Symbol("m") >>> harmonic(n).rewrite(digamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n).rewrite(polygamma) polygamma(0, n + 1) + EulerGamma >>> harmonic(n,3).rewrite(polygamma) polygamma(2, n + 1)/2 - polygamma(2, 1)/2 >>> harmonic(n,m).rewrite(polygamma) (-1)**m*(polygamma(m - 1, 1) - polygamma(m - 1, n + 1))/factorial(m - 1) Integer offsets in the argument can be pulled out: >>> from sympy import expand_func >>> expand_func(harmonic(n+4)) harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1) >>> expand_func(harmonic(n-4)) harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n Some limits can be computed as well: >>> from sympy import limit, oo >>> limit(harmonic(n), n, oo) oo >>> limit(harmonic(n, 2), n, oo) pi**2/6 >>> limit(harmonic(n, 3), n, oo) -polygamma(2, 1)/2 However we can not compute the general relation yet: >>> limit(harmonic(n, m), n, oo) harmonic(oo, m) which equals ``zeta(m)`` for ``m > 1``. See Also ======== bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Harmonic_number .. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/ .. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/ """ # Generate one memoized Harmonic number-generating function for each # order and store it in a dictionary _functions = {} # type: Dict[Integer, Callable[[int], Rational]] @classmethod def eval(cls, n, m=None): from sympy import zeta if m is S.One: return cls(n) if m is None: m = S.One if m.is_zero: return n if n is S.Infinity and m.is_Number: # TODO: Fix for symbolic values of m if m.is_negative: return S.NaN elif LessThan(m, S.One): return S.Infinity elif StrictGreaterThan(m, S.One): return zeta(m) else: return cls if n == 0: return S.Zero if n.is_Integer and n.is_nonnegative and m.is_Integer: if not m in cls._functions: @recurrence_memo([0]) def f(n, prev): return prev[-1] + S.One / n**m cls._functions[m] = f return cls._functions[m](int(n)) def _eval_rewrite_as_polygamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return S.NegativeOne**m/factorial(m - 1) * (polygamma(m - 1, 1) - polygamma(m - 1, n + 1)) def _eval_rewrite_as_digamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs): from sympy.functions.special.gamma_functions import polygamma return self.rewrite(polygamma) def _eval_rewrite_as_Sum(self, n, m=None, **kwargs): from sympy import Sum k = Dummy("k", integer=True) if m is None: m = S.One return Sum(k**(-m), (k, 1, n)) def _eval_expand_func(self, **hints): from sympy import Sum n = self.args[0] m = self.args[1] if len(self.args) == 2 else 1 if m == S.One: if n.is_Add: off = n.args[0] nnew = n - off if off.is_Integer and off.is_positive: result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)] return Add(*result) elif off.is_Integer and off.is_negative: result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)] return Add(*result) if n.is_Rational: # Expansions for harmonic numbers at general rational arguments (u + p/q) # Split n as u + p/q with p < q p, q = n.as_numer_denom() u = p // q p = p - u * q if u.is_nonnegative and p.is_positive and q.is_positive and p < q: k = Dummy("k") t1 = q * Sum(1 / (q * k + p), (k, 0, u)) t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) * log(sin((pi * k) / S(q))), (k, 1, floor((q - 1) / S(2)))) t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q) return t1 + t2 - t3 return self def _eval_rewrite_as_tractable(self, n, m=1, limitvar=None, **kwargs): from sympy import polygamma return self.rewrite(polygamma).rewrite("tractable", deep=True) def _eval_evalf(self, prec): from sympy import polygamma if all(i.is_number for i in self.args): return self.rewrite(polygamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Euler numbers # # # #----------------------------------------------------------------------------# class euler(Function): r""" Euler numbers / Euler polynomials The Euler numbers are given by: .. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j} \frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k} .. math:: E_{2n+1} = 0 Euler numbers and Euler polynomials are related by .. math:: E_n = 2^n E_n\left(\frac{1}{2}\right). We compute symbolic Euler polynomials using [5]_ .. math:: E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k} \left(x - \frac{1}{2}\right)^{n-k}. However, numerical evaluation of the Euler polynomial is computed more efficiently (and more accurately) using the mpmath library. * ``euler(n)`` gives the `n^{th}` Euler number, `E_n`. * ``euler(n, x)`` gives the `n^{th}` Euler polynomial, `E_n(x)`. Examples ======== >>> from sympy import Symbol, S >>> from sympy.functions import euler >>> [euler(n) for n in range(10)] [1, 0, -1, 0, 5, 0, -61, 0, 1385, 0] >>> n = Symbol("n") >>> euler(n + 2*n) euler(3*n) >>> x = Symbol("x") >>> euler(n, x) euler(n, x) >>> euler(0, x) 1 >>> euler(1, x) x - 1/2 >>> euler(2, x) x**2 - x >>> euler(3, x) x**3 - 3*x**2/2 + 1/4 >>> euler(4, x) x**4 - 2*x**3 + x >>> euler(12, S.Half) 2702765/4096 >>> euler(12) 2702765 See Also ======== bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Euler_numbers .. [2] http://mathworld.wolfram.com/EulerNumber.html .. [3] https://en.wikipedia.org/wiki/Alternating_permutation .. [4] http://mathworld.wolfram.com/AlternatingPermutation.html .. [5] http://dlmf.nist.gov/24.2#ii """ @classmethod def eval(cls, m, sym=None): if m.is_Number: if m.is_Integer and m.is_nonnegative: # Euler numbers if sym is None: if m.is_odd: return S.Zero from mpmath import mp m = m._to_mpmath(mp.prec) res = mp.eulernum(m, exact=True) return Integer(res) # Euler polynomial else: from sympy.core.evalf import pure_complex reim = pure_complex(sym, or_real=True) # Evaluate polynomial numerically using mpmath if reim and all(a.is_Float or a.is_Integer for a in reim) \ and any(a.is_Float for a in reim): from mpmath import mp from sympy import Expr m = int(m) # XXX ComplexFloat (#12192) would be nice here, above prec = min([a._prec for a in reim if a.is_Float]) with workprec(prec): res = mp.eulerpoly(m, sym) return Expr._from_mpmath(res, prec) # Construct polynomial symbolically from definition m, result = int(m), [] for k in range(m + 1): result.append(binomial(m, k)*cls(k)/(2**k)*(sym - S.Half)**(m - k)) return Add(*result).expand() else: raise ValueError("Euler numbers are defined only" " for nonnegative integer indices.") if sym is None: if m.is_odd and m.is_positive: return S.Zero def _eval_rewrite_as_Sum(self, n, x=None, **kwargs): from sympy import Sum if x is None and n.is_even: k = Dummy("k", integer=True) j = Dummy("j", integer=True) n = n / 2 Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * ((-1)**j * (k - 2*j)**(2*n + 1)) / (2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1))) return Em if x: k = Dummy("k", integer=True) return Sum(binomial(n, k)*euler(k)/2**k*(x - S.Half)**(n - k), (k, 0, n)) def _eval_evalf(self, prec): m, x = (self.args[0], None) if len(self.args) == 1 else self.args if x is None and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = m._to_mpmath(prec) with workprec(prec): res = mp.eulernum(m) return Expr._from_mpmath(res, prec) if x and x.is_number and m.is_Integer and m.is_nonnegative: from mpmath import mp from sympy import Expr m = int(m) x = x._to_mpmath(prec) with workprec(prec): res = mp.eulerpoly(m, x) return Expr._from_mpmath(res, prec) #----------------------------------------------------------------------------# # # # Catalan numbers # # # #----------------------------------------------------------------------------# class catalan(Function): r""" Catalan numbers The `n^{th}` catalan number is given by: .. math :: C_n = \frac{1}{n+1} \binom{2n}{n} * ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n` Examples ======== >>> from sympy import (Symbol, binomial, gamma, hyper, catalan, ... diff, combsimp, Rational, I) >>> [catalan(i) for i in range(1,10)] [1, 2, 5, 14, 42, 132, 429, 1430, 4862] >>> n = Symbol("n", integer=True) >>> catalan(n) catalan(n) Catalan numbers can be transformed into several other, identical expressions involving other mathematical functions >>> catalan(n).rewrite(binomial) binomial(2*n, n)/(n + 1) >>> catalan(n).rewrite(gamma) 4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2)) >>> catalan(n).rewrite(hyper) hyper((1 - n, -n), (2,), 1) For some non-integer values of n we can get closed form expressions by rewriting in terms of gamma functions: >>> catalan(Rational(1, 2)).rewrite(gamma) 8/(3*pi) We can differentiate the Catalan numbers C(n) interpreted as a continuous real function in n: >>> diff(catalan(n), n) (polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n) As a more advanced example consider the following ratio between consecutive numbers: >>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial)) 2*(2*n + 1)/(n + 2) The Catalan numbers can be generalized to complex numbers: >>> catalan(I).rewrite(gamma) 4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I)) and evaluated with arbitrary precision: >>> catalan(I).evalf(20) 0.39764993382373624267 - 0.020884341620842555705*I See Also ======== bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci sympy.functions.combinatorial.factorials.binomial References ========== .. [1] https://en.wikipedia.org/wiki/Catalan_number .. [2] http://mathworld.wolfram.com/CatalanNumber.html .. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/ .. [4] http://geometer.org/mathcircles/catalan.pdf """ @classmethod def eval(cls, n): from sympy import gamma if (n.is_Integer and n.is_nonnegative) or \ (n.is_noninteger and n.is_negative): return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) if (n.is_integer and n.is_negative): if (n + 1).is_negative: return S.Zero if (n + 1).is_zero: return Rational(-1, 2) def fdiff(self, argindex=1): from sympy import polygamma, log n = self.args[0] return catalan(n)*(polygamma(0, n + S.Half) - polygamma(0, n + 2) + log(4)) def _eval_rewrite_as_binomial(self, n, **kwargs): return binomial(2*n, n)/(n + 1) def _eval_rewrite_as_factorial(self, n, **kwargs): return factorial(2*n) / (factorial(n+1) * factorial(n)) def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs): from sympy import gamma # The gamma function allows to generalize Catalan numbers to complex n return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2)) def _eval_rewrite_as_hyper(self, n, **kwargs): from sympy import hyper return hyper([1 - n, -n], [2], 1) def _eval_rewrite_as_Product(self, n, **kwargs): from sympy import Product if not (n.is_integer and n.is_nonnegative): return self k = Dummy('k', integer=True, positive=True) return Product((n + k) / k, (k, 2, n)) def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_nonnegative: return True def _eval_is_positive(self): if self.args[0].is_nonnegative: return True def _eval_is_composite(self): if self.args[0].is_integer and (self.args[0] - 3).is_positive: return True def _eval_evalf(self, prec): from sympy import gamma if self.args[0].is_number: return self.rewrite(gamma)._eval_evalf(prec) #----------------------------------------------------------------------------# # # # Genocchi numbers # # # #----------------------------------------------------------------------------# class genocchi(Function): r""" Genocchi numbers The Genocchi numbers are a sequence of integers `G_n` that satisfy the relation: .. math:: \frac{2t}{e^t + 1} = \sum_{n=1}^\infty \frac{G_n t^n}{n!} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import genocchi >>> [genocchi(n) for n in range(1, 9)] [1, -1, 0, 1, 0, -3, 0, 17] >>> n = Symbol('n', integer=True, positive=True) >>> genocchi(2*n + 1) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Genocchi_number .. [2] http://mathworld.wolfram.com/GenocchiNumber.html """ @classmethod def eval(cls, n): if n.is_Number: if (not n.is_Integer) or n.is_nonpositive: raise ValueError("Genocchi numbers are defined only for " + "positive integers") return 2 * (1 - S(2) ** n) * bernoulli(n) if n.is_odd and (n - 1).is_positive: return S.Zero if (n - 1).is_zero: return S.One def _eval_rewrite_as_bernoulli(self, n, **kwargs): if n.is_integer and n.is_nonnegative: return (1 - S(2) ** n) * bernoulli(n) * 2 def _eval_is_integer(self): if self.args[0].is_integer and self.args[0].is_positive: return True def _eval_is_negative(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return False return (n / 2).is_odd def _eval_is_positive(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_odd: return fuzzy_not((n - 1).is_positive) return (n / 2).is_even def _eval_is_even(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return False return (n - 1).is_positive def _eval_is_odd(self): n = self.args[0] if n.is_integer and n.is_positive: if n.is_even: return True return fuzzy_not((n - 1).is_positive) def _eval_is_prime(self): n = self.args[0] # only G_6 = -3 and G_8 = 17 are prime, # but SymPy does not consider negatives as prime # so only n=8 is tested return (n - 8).is_zero #----------------------------------------------------------------------------# # # # Partition numbers # # # #----------------------------------------------------------------------------# _npartition = [1, 1] class partition(Function): r""" Partition numbers The Partition numbers are a sequence of integers `p_n` that represent the number of distinct ways of representing `n` as a sum of natural numbers (with order irrelevant). The generating function for `p_n` is given by: .. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1} Examples ======== >>> from sympy import Symbol >>> from sympy.functions import partition >>> [partition(n) for n in range(9)] [1, 1, 2, 3, 5, 7, 11, 15, 22] >>> n = Symbol('n', integer=True, negative=True) >>> partition(n) 0 See Also ======== bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci References ========== .. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29 .. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem """ @staticmethod def _partition(n): L = len(_npartition) if n < L: return _npartition[n] # lengthen cache for _n in range(L, n + 1): v, p, i = 0, 0, 0 while 1: s = 0 p += 3*i + 1 # p = pentagonal number: 1, 5, 12, ... if _n >= p: s += _npartition[_n - p] i += 1 gp = p + i # gp = generalized pentagonal: 2, 7, 15, ... if _n >= gp: s += _npartition[_n - gp] if s == 0: break else: v += s if i%2 == 1 else -s _npartition.append(v) return v @classmethod def eval(cls, n): is_int = n.is_integer if is_int == False: raise ValueError("Partition numbers are defined only for " "integers") elif is_int: if n.is_negative: return S.Zero if n.is_zero or (n - 1).is_zero: return S.One if n.is_Integer: return Integer(cls._partition(n)) def _eval_is_integer(self): if self.args[0].is_integer: return True def _eval_is_negative(self): if self.args[0].is_integer: return False def _eval_is_positive(self): n = self.args[0] if n.is_nonnegative and n.is_integer: return True ####################################################################### ### ### Functions for enumerating partitions, permutations and combinations ### ####################################################################### class _MultisetHistogram(tuple): pass _N = -1 _ITEMS = -2 _M = slice(None, _ITEMS) def _multiset_histogram(n): """Return tuple used in permutation and combination counting. Input is a dictionary giving items with counts as values or a sequence of items (which need not be sorted). The data is stored in a class deriving from tuple so it is easily recognized and so it can be converted easily to a list. """ if isinstance(n, dict): # item: count if not all(isinstance(v, int) and v >= 0 for v in n.values()): raise ValueError tot = sum(n.values()) items = sum(1 for k in n if n[k] > 0) return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot]) else: n = list(n) s = set(n) if len(s) == len(n): n = [1]*len(n) n.extend([len(n), len(n)]) return _MultisetHistogram(n) m = dict(zip(s, range(len(s)))) d = dict(zip(range(len(s)), [0]*len(s))) for i in n: d[m[i]] += 1 return _multiset_histogram(d) def nP(n, k=None, replacement=False): """Return the number of permutations of ``n`` items taken ``k`` at a time. Possible values for ``n``: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all permutations of length 0 through the number of items represented by ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' permutations of 2 would include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nP >>> from sympy.utilities.iterables import multiset_permutations, multiset >>> nP(3, 2) 6 >>> nP('abc', 2) == nP(multiset('abc'), 2) == 6 True >>> nP('aab', 2) 3 >>> nP([1, 2, 2], 2) 3 >>> [nP(3, i) for i in range(4)] [1, 3, 6, 6] >>> nP(3) == sum(_) True When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nP('aabc', replacement=True) 121 >>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 9, 27, 81] >>> sum(_) 121 See Also ======== sympy.utilities.iterables.multiset_permutations References ========== .. [1] https://en.wikipedia.org/wiki/Permutation """ try: n = as_int(n) except ValueError: return Integer(_nP(_multiset_histogram(n), k, replacement)) return Integer(_nP(n, k, replacement)) @cacheit def _nP(n, k=None, replacement=False): from sympy.functions.combinatorial.factorials import factorial from sympy.core.mul import prod if k == 0: return 1 if isinstance(n, SYMPY_INTS): # n different items # assert n >= 0 if k is None: return sum(_nP(n, i, replacement) for i in range(n + 1)) elif replacement: return n**k elif k > n: return 0 elif k == n: return factorial(k) elif k == 1: return n else: # assert k >= 0 return _product(n - k + 1, n) elif isinstance(n, _MultisetHistogram): if k is None: return sum(_nP(n, i, replacement) for i in range(n[_N] + 1)) elif replacement: return n[_ITEMS]**k elif k == n[_N]: return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1]) elif k > n[_N]: return 0 elif k == 1: return n[_ITEMS] else: # assert k >= 0 tot = 0 n = list(n) for i in range(len(n[_M])): if not n[i]: continue n[_N] -= 1 if n[i] == 1: n[i] = 0 n[_ITEMS] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[_ITEMS] += 1 n[i] = 1 else: n[i] -= 1 tot += _nP(_MultisetHistogram(n), k - 1) n[i] += 1 n[_N] += 1 return tot @cacheit def _AOP_product(n): """for n = (m1, m2, .., mk) return the coefficients of the polynomial, prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients of the product of AOPs (all-one polynomials) or order given in n. The resulting coefficient corresponding to x**r is the number of r-length combinations of sum(n) elements with multiplicities given in n. The coefficients are given as a default dictionary (so if a query is made for a key that is not present, 0 will be returned). Examples ======== >>> from sympy.functions.combinatorial.numbers import _AOP_product >>> from sympy.abc import x >>> n = (2, 2, 3) # e.g. aabbccc >>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand() >>> c = _AOP_product(n); dict(c) {0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1} >>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)] True The generating poly used here is the same as that listed in http://tinyurl.com/cep849r, but in a refactored form. """ from collections import defaultdict n = list(n) ord = sum(n) need = (ord + 2)//2 rv = [1]*(n.pop() + 1) rv.extend([0]*(need - len(rv))) rv = rv[:need] while n: ni = n.pop() N = ni + 1 was = rv[:] for i in range(1, min(N, len(rv))): rv[i] += rv[i - 1] for i in range(N, need): rv[i] += rv[i - 1] - was[i - N] rev = list(reversed(rv)) if ord % 2: rv = rv + rev else: rv[-1:] = rev d = defaultdict(int) for i in range(len(rv)): d[i] = rv[i] return d def nC(n, k=None, replacement=False): """Return the number of combinations of ``n`` items taken ``k`` at a time. Possible values for ``n``: integer - set of length ``n`` sequence - converted to a multiset internally multiset - {element: multiplicity} If ``k`` is None then the total of all combinations of length 0 through the number of items represented in ``n`` will be returned. If ``replacement`` is True then a given item can appear more than once in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa', 'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when ``replacement`` is True but the total number of elements is considered since no element can appear more times than the number of elements in ``n``. Examples ======== >>> from sympy.functions.combinatorial.numbers import nC >>> from sympy.utilities.iterables import multiset_combinations >>> nC(3, 2) 3 >>> nC('abc', 2) 3 >>> nC('aab', 2) 2 When ``replacement`` is True, each item can have multiplicity equal to the length represented by ``n``: >>> nC('aabc', replacement=True) 35 >>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)] [1, 3, 6, 10, 15] >>> sum(_) 35 If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k`` then the total of all combinations of length 0 through ``k`` is the product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity of each item is 1 (i.e., k unique items) then there are 2**k combinations. For example, if there are 4 unique items, the total number of combinations is 16: >>> sum(nC(4, i) for i in range(5)) 16 See Also ======== sympy.utilities.iterables.multiset_combinations References ========== .. [1] https://en.wikipedia.org/wiki/Combination .. [2] http://tinyurl.com/cep849r """ from sympy.functions.combinatorial.factorials import binomial from sympy.core.mul import prod if isinstance(n, SYMPY_INTS): if k is None: if not replacement: return 2**n return sum(nC(n, i, replacement) for i in range(n + 1)) if k < 0: raise ValueError("k cannot be negative") if replacement: return binomial(n + k - 1, k) return binomial(n, k) if isinstance(n, _MultisetHistogram): N = n[_N] if k is None: if not replacement: return prod(m + 1 for m in n[_M]) return sum(nC(n, i, replacement) for i in range(N + 1)) elif replacement: return nC(n[_ITEMS], k, replacement) # assert k >= 0 elif k in (1, N - 1): return n[_ITEMS] elif k in (0, N): return 1 return _AOP_product(tuple(n[_M]))[k] else: return nC(_multiset_histogram(n), k, replacement) def _eval_stirling1(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero # some special values if n == k: return S.One elif k == n - 1: return binomial(n, 2) elif k == n - 2: return (3*n - 1)*binomial(n, 3)/4 elif k == n - 3: return binomial(n, 2)*binomial(n, 4) return _stirling1(n, k) @cacheit def _stirling1(n, k): row = [0, 1]+[0]*(k-1) # for n = 1 for i in range(2, n+1): for j in range(min(k,i), 0, -1): row[j] = (i-1) * row[j] + row[j-1] return Integer(row[k]) def _eval_stirling2(n, k): if n == k == 0: return S.One if 0 in (n, k): return S.Zero # some special values if n == k: return S.One elif k == n - 1: return binomial(n, 2) elif k == 1: return S.One elif k == 2: return Integer(2**(n - 1) - 1) return _stirling2(n, k) @cacheit def _stirling2(n, k): row = [0, 1]+[0]*(k-1) # for n = 1 for i in range(2, n+1): for j in range(min(k,i), 0, -1): row[j] = j * row[j] + row[j-1] return Integer(row[k]) def stirling(n, k, d=None, kind=2, signed=False): r"""Return Stirling number $S(n, k)$ of the first or second (default) kind. The sum of all Stirling numbers of the second kind for $k = 1$ through $n$ is ``bell(n)``. The recurrence relationship for these numbers is: .. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0; .. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}} where $j$ is: $n$ for Stirling numbers of the first kind, $-n$ for signed Stirling numbers of the first kind, $k$ for Stirling numbers of the second kind. The first kind of Stirling number counts the number of permutations of ``n`` distinct items that have ``k`` cycles; the second kind counts the ways in which ``n`` distinct items can be partitioned into ``k`` parts. If ``d`` is given, the "reduced Stirling number of the second kind" is returned: $S^{d}(n, k) = S(n - d + 1, k - d + 1)$ with $n \ge k \ge d$. (This counts the ways to partition $n$ consecutive integers into $k$ groups with no pairwise difference less than $d$. See example below.) To obtain the signed Stirling numbers of the first kind, use keyword ``signed=True``. Using this keyword automatically sets ``kind`` to 1. Examples ======== >>> from sympy.functions.combinatorial.numbers import stirling, bell >>> from sympy.combinatorics import Permutation >>> from sympy.utilities.iterables import multiset_partitions, permutations First kind (unsigned by default): >>> [stirling(6, i, kind=1) for i in range(7)] [0, 120, 274, 225, 85, 15, 1] >>> perms = list(permutations(range(4))) >>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)] [0, 6, 11, 6, 1] >>> [stirling(4, i, kind=1) for i in range(5)] [0, 6, 11, 6, 1] First kind (signed): >>> [stirling(4, i, signed=True) for i in range(5)] [0, -6, 11, -6, 1] Second kind: >>> [stirling(10, i) for i in range(12)] [0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0] >>> sum(_) == bell(10) True >>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2) True Reduced second kind: >>> from sympy import subsets, oo >>> def delta(p): ... if len(p) == 1: ... return oo ... return min(abs(i[0] - i[1]) for i in subsets(p, 2)) >>> parts = multiset_partitions(range(5), 3) >>> d = 2 >>> sum(1 for p in parts if all(delta(i) >= d for i in p)) 7 >>> stirling(5, 3, 2) 7 See Also ======== sympy.utilities.iterables.multiset_partitions References ========== .. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind .. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind """ # TODO: make this a class like bell() n = as_int(n) k = as_int(k) if n < 0: raise ValueError('n must be nonnegative') if k > n: return S.Zero if d: # assert k >= d # kind is ignored -- only kind=2 is supported return _eval_stirling2(n - d + 1, k - d + 1) elif signed: # kind is ignored -- only kind=1 is supported return (-1)**(n - k)*_eval_stirling1(n, k) if kind == 1: return _eval_stirling1(n, k) elif kind == 2: return _eval_stirling2(n, k) else: raise ValueError('kind must be 1 or 2, not %s' % k) @cacheit def _nT(n, k): """Return the partitions of ``n`` items into ``k`` parts. This is used by ``nT`` for the case when ``n`` is an integer.""" # really quick exits if k > n or k < 0: return 0 if k == n or k == 1: return 1 if k == 0: return 0 # exits that could be done below but this is quicker if k == 2: return n//2 d = n - k if d <= 3: return d # quick exit if 3*k >= n: # or, equivalently, 2*k >= d # all the information needed in this case # will be in the cache needed to calculate # partition(d), so... # update cache tot = partition._partition(d) # and correct for values not needed if d - k > 0: tot -= sum(_npartition[:d - k]) return tot # regular exit # nT(n, k) = Sum(nT(n - k, m), (m, 1, k)); # calculate needed nT(i, j) values p = [1]*d for i in range(2, k + 1): for m in range(i + 1, d): p[m] += p[m - i] d -= 1 # if p[0] were appended to the end of p then the last # k values of p are the nT(n, j) values for 0 < j < k in reverse # order p[-1] = nT(n, 1), p[-2] = nT(n, 2), etc.... Instead of # putting the 1 from p[0] there, however, it is simply added to # the sum below which is valid for 1 < k <= n//2 return (1 + sum(p[1 - k:])) def nT(n, k=None): """Return the number of ``k``-sized partitions of ``n`` items. Possible values for ``n``: integer - ``n`` identical items sequence - converted to a multiset internally multiset - {element: multiplicity} Note: the convention for ``nT`` is different than that of ``nC`` and ``nP`` in that here an integer indicates ``n`` *identical* items instead of a set of length ``n``; this is in keeping with the ``partitions`` function which treats its integer-``n`` input like a list of ``n`` 1s. One can use ``range(n)`` for ``n`` to indicate ``n`` distinct items. If ``k`` is None then the total number of ways to partition the elements represented in ``n`` will be returned. Examples ======== >>> from sympy.functions.combinatorial.numbers import nT Partitions of the given multiset: >>> [nT('aabbc', i) for i in range(1, 7)] [1, 8, 11, 5, 1, 0] >>> nT('aabbc') == sum(_) True >>> [nT("mississippi", i) for i in range(1, 12)] [1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1] Partitions when all items are identical: >>> [nT(5, i) for i in range(1, 6)] [1, 2, 2, 1, 1] >>> nT('1'*5) == sum(_) True When all items are different: >>> [nT(range(5), i) for i in range(1, 6)] [1, 15, 25, 10, 1] >>> nT(range(5)) == sum(_) True Partitions of an integer expressed as a sum of positive integers: >>> from sympy.functions.combinatorial.numbers import partition >>> partition(4) 5 >>> nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4) 5 >>> nT('1'*4) 5 See Also ======== sympy.utilities.iterables.partitions sympy.utilities.iterables.multiset_partitions sympy.functions.combinatorial.numbers.partition References ========== .. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf """ from sympy.utilities.enumerative import MultisetPartitionTraverser if isinstance(n, SYMPY_INTS): # n identical items if k is None: return partition(n) if isinstance(k, SYMPY_INTS): n = as_int(n) k = as_int(k) return Integer(_nT(n, k)) if not isinstance(n, _MultisetHistogram): try: # if n contains hashable items there is some # quick handling that can be done u = len(set(n)) if u <= 1: return nT(len(n), k) elif u == len(n): n = range(u) raise TypeError except TypeError: n = _multiset_histogram(n) N = n[_N] if k is None and N == 1: return 1 if k in (1, N): return 1 if k == 2 or N == 2 and k is None: m, r = divmod(N, 2) rv = sum(nC(n, i) for i in range(1, m + 1)) if not r: rv -= nC(n, m)//2 if k is None: rv += 1 # for k == 1 return rv if N == n[_ITEMS]: # all distinct if k is None: return bell(N) return stirling(N, k) m = MultisetPartitionTraverser() if k is None: return m.count_partitions(n[_M]) # MultisetPartitionTraverser does not have a range-limited count # method, so need to enumerate and count tot = 0 for discard in m.enum_range(n[_M], k-1, k): tot += 1 return tot #-----------------------------------------------------------------------------# # # # Motzkin numbers # # # #-----------------------------------------------------------------------------# class motzkin(Function): """ The nth Motzkin number is the number of ways of drawing non-intersecting chords between n points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory. Motzkin numbers are the integer sequence defined by the initial terms `M_0 = 1`, `M_1 = 1` and the two-term recurrence relation `M_n = \frac{2*n + 1}{n + 2} * M_{n-1} + \frac{3n - 3}{n + 2} * M_{n-2}`. Examples ======== >>> from sympy import motzkin >>> motzkin.is_motzkin(5) False >>> motzkin.find_motzkin_numbers_in_range(2,300) [2, 4, 9, 21, 51, 127] >>> motzkin.find_motzkin_numbers_in_range(2,900) [2, 4, 9, 21, 51, 127, 323, 835] >>> motzkin.find_first_n_motzkins(10) [1, 1, 2, 4, 9, 21, 51, 127, 323, 835] References ========== .. [1] https://en.wikipedia.org/wiki/Motzkin_number .. [2] https://mathworld.wolfram.com/MotzkinNumber.html """ @staticmethod def is_motzkin(n): try: n = as_int(n) except ValueError: return False if n > 0: if n == 1 or n == 2: return True tn1 = 1 tn = 2 i = 3 while tn < n: a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2) i += 1 tn1 = tn tn = a if tn == n: return True else: return False else: return False @staticmethod def find_motzkin_numbers_in_range(x, y): if 0 <= x <= y: motzkins = list() if x <= 1 <= y: motzkins.append(1) tn1 = 1 tn = 2 i = 3 while tn <= y: if tn >= x: motzkins.append(tn) a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2) i += 1 tn1 = tn tn = int(a) return motzkins else: raise ValueError('The provided range is not valid. This condition should satisfy x <= y') @staticmethod def find_first_n_motzkins(n): try: n = as_int(n) except ValueError: raise ValueError('The provided number must be a positive integer') if n < 0: raise ValueError('The provided number must be a positive integer') motzkins = list() if n >= 0: motzkins.append(1) if n >= 1: motzkins.append(1) tn1 = 1 tn = 2 i = 3 while i <= n: motzkins.append(tn) a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2) i += 1 tn1 = tn tn = int(a) return motzkins @staticmethod @recurrence_memo([S.One, S.One]) def _motzkin(n, prev): return ((2*n + 1)*prev[-1] + (3*n - 3)*prev[-2]) // (n + 2) @classmethod def eval(cls, n): try: n = as_int(n) except ValueError: raise ValueError('The provided number must be a positive integer') if n < 0: raise ValueError('The provided number must be a positive integer') return Integer(cls._motzkin(n - 1))
001c38e53d5db680e6322ed2ec2ccfd4ee88ed343d0d9782cc4d5d8e76046ac2
from typing import Tuple from sympy.core.add import Add from sympy.core.basic import sympify, cacheit from sympy.core.expr import Expr from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool from sympy.core.numbers import igcdex, Rational, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import log, exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, HyperbolicFunction, sinh, tanh) from sympy.functions.elementary.miscellaneous import sqrt, Min, Max from sympy.functions.elementary.piecewise import Piecewise from sympy.sets.sets import FiniteSet from sympy.utilities.iterables import numbered_symbols ############################################################################### ########################## TRIGONOMETRIC FUNCTIONS ############################ ############################################################################### class TrigonometricFunction(Function): """Base class for trigonometric functions. """ unbranched = True _singularities = (S.ComplexInfinity,) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero): return False else: return s.is_rational def _eval_is_algebraic(self): s = self.func(*self.args) if s.func == self.func: if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic: return False pi_coeff = _pi_coeff(self.args[0]) if pi_coeff is not None and pi_coeff.is_rational: return True else: return s.is_algebraic def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _as_real_imag(self, deep=True, **hints): if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.args[0].expand(deep, **hints), S.Zero) else: return (self.args[0], S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (re, im) def _period(self, general_period, symbol=None): f = expand_mul(self.args[0]) if symbol is None: symbol = tuple(f.free_symbols)[0] if not f.has(symbol): return S.Zero if f == symbol: return general_period if symbol in f.free_symbols: if f.is_Mul: g, h = f.as_independent(symbol) if h == symbol: return general_period/abs(g) if f.is_Add: a, h = f.as_independent(symbol) g, h = h.as_independent(symbol, as_Add=False) if h == symbol: return general_period/abs(g) raise NotImplementedError("Use the periodicity function instead.") def _peeloff_pi(arg): """ Split ARG into two parts, a "rest" and a multiple of pi/2. This assumes ARG to be an Add. The multiple of pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel >>> from sympy import pi >>> from sympy.abc import x, y >>> peel(x + pi/2) (x, pi/2) >>> peel(x + 2*pi/3 + pi*y) (x + pi*y + pi/6, pi/2) """ pi_coeff = S.Zero rest_terms = [] for a in Add.make_args(arg): K = a.coeff(S.Pi) if K and K.is_rational: pi_coeff += K else: rest_terms.append(a) if pi_coeff is S.Zero: return arg, S.Zero m1 = (pi_coeff % S.Half)*S.Pi m2 = pi_coeff*S.Pi - m1 final_coeff = m2 / S.Pi if final_coeff.is_integer or ((2*final_coeff).is_integer and final_coeff.is_even is False): return Add(*(rest_terms + [m1])), m2 return arg, S.Zero def _pi_coeff(arg, cycles=1): """ When arg is a Number times pi (e.g. 3*pi/2) then return the Number normalized to be in the range [0, 2], else None. When an even multiple of pi is encountered, if it is multiplying something with known parity then the multiple is returned as 0 otherwise as 2. Examples ======== >>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff >>> from sympy import pi, Dummy >>> from sympy.abc import x >>> coeff(3*x*pi) 3*x >>> coeff(11*pi/7) 11/7 >>> coeff(-11*pi/7) 3/7 >>> coeff(4*pi) 0 >>> coeff(5*pi) 1 >>> coeff(5.0*pi) 1 >>> coeff(5.5*pi) 3/2 >>> coeff(2 + pi) >>> coeff(2*Dummy(integer=True)*pi) 2 >>> coeff(2*Dummy(even=True)*pi) 0 """ arg = sympify(arg) if arg is S.Pi: return S.One elif not arg: return S.Zero elif arg.is_Mul: cx = arg.coeff(S.Pi) if cx: c, x = cx.as_coeff_Mul() # pi is not included as coeff if c.is_Float: # recast exact binary fractions to Rationals f = abs(c) % 1 if f != 0: p = -int(round(log(f, 2).evalf())) m = 2**p cm = c*m i = int(cm) if i == cm: c = Rational(i, m) cx = c*x else: c = Rational(int(c)) cx = c*x if x.is_integer: c2 = c % 2 if c2 == 1: return x elif not c2: if x.is_even is not None: # known parity return S.Zero return S(2) else: return c2*x return cx elif arg.is_zero: return S.Zero class sin(TrigonometricFunction): """ The sine function. Returns the sine of x (measured in radians). Explanation =========== This function will evaluate automatically in the case x/pi is some rational number [4]_. For example, if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6. Examples ======== >>> from sympy import sin, pi >>> from sympy.abc import x >>> sin(x**2).diff(x) 2*x*cos(x**2) >>> sin(1).diff(x) 0 >>> sin(pi) 0 >>> sin(pi/2) 1 >>> sin(pi/6) 1/2 >>> sin(pi/12) -sqrt(2)/4 + sqrt(6)/4 See Also ======== csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sin .. [4] http://mathworld.wolfram.com/TrigonometryAngles.html """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return cos(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.calculus import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/(2*S.Pi)) if min is not S.NegativeInfinity: min = min - d*2*S.Pi if max is not S.Infinity: max = max - d*2*S.Pi if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \ is not S.EmptySet and \ AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2), S.Pi*Rational(7, 2))) is not S.EmptySet: return AccumBounds(-1, 1) elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \ is not S.EmptySet: return AccumBounds(Min(sin(min), sin(max)), 1) elif AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2), S.Pi*Rational(8, 2))) \ is not S.EmptySet: return AccumBounds(-1, Max(sin(min), sin(max))) else: return AccumBounds(Min(sin(min), sin(max)), Max(sin(min), sin(max))) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit*sinh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.NegativeOne**(pi_coeff - S.Half) if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None # https://github.com/sympy/sympy/issues/6048 # transform a sine to a cosine, to avoid redundant code if pi_coeff.is_Rational: x = pi_coeff % 2 if x > 1: return -cls((x % 1)*S.Pi) if 2*x > 1: return cls((1 - x)*S.Pi) narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi result = cos(narg) if not isinstance(result, cos): return result if pi_coeff*S.Pi != arg: return cls(pi_coeff*S.Pi) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: return sin(m)*cos(x) + cos(m)*sin(x) if arg.is_zero: return S.Zero if isinstance(arg, asin): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return x/sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return y/sqrt(x**2 + y**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2) if isinstance(arg, acot): x = arg.args[0] return 1/(sqrt(1 + 1/x**2)*x) if isinstance(arg, acsc): x = arg.args[0] return 1/x if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1/x**2) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p*x**2/(n*(n - 1)) else: return (-1)**(n//2)*x**(n)/factorial(n) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] if logx is not None: arg = arg.subs(log(x), logx) if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): raise PoleError("Cannot expand %s around 0" % (self)) return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) - exp(-arg*I))/(2*I) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*x**-I/2 - I*x**I /2 def _eval_rewrite_as_cos(self, arg, **kwargs): return cos(arg - S.Pi/2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg) return 2*tan_half/(1 + tan_half**2) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg) return 2*cot_half/(1 + cot_half**2) def _eval_rewrite_as_pow(self, arg, **kwargs): return self.rewrite(cos).rewrite(pow) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self.rewrite(cos).rewrite(sqrt) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/csc(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg - S.Pi/2, evaluate=False) def _eval_rewrite_as_sinc(self, arg, **kwargs): return arg*sinc(arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) return (sin(re)*cosh(im), cos(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy import expand_mul from sympy.functions.special.polynomials import chebyshevt, chebyshevu arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return sx*cy + sy*cx elif arg.is_Mul: n, x = arg.as_coeff_Mul(rational=True) if n.is_Integer: # n will be positive because of .eval # canonicalization # See http://mathworld.wolfram.com/Multiple-AngleFormulas.html if n.is_odd: return (-1)**((n - 1)/2)*chebyshevt(n, sin(x)) else: return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n - 1, sin(x)), deep=False) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return sin(arg) def _eval_as_leading_term(self, x, cdir=0): arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = x0/S.Pi if n.is_integer: lt = (arg - n*S.Pi).as_leading_term(x) return ((-1)**n)*lt return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True class cos(TrigonometricFunction): """ The cosine function. Returns the cosine of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cos, pi >>> from sympy.abc import x >>> cos(x**2).diff(x) -2*x*sin(x**2) >>> cos(1).diff(x) 0 >>> cos(pi) -1 >>> cos(pi/2) 0 >>> cos(2*pi/3) -1/2 >>> cos(pi/12) sqrt(2)/4 + sqrt(6)/4 See Also ======== sin, csc, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cos """ def period(self, symbol=None): return self._period(2*pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return -sin(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.functions.special.polynomials import chebyshevt from sympy.calculus.util import AccumBounds from sympy.sets.setexpr import SetExpr if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.One elif arg is S.Infinity or arg is S.NegativeInfinity: # In this case it is better to return AccumBounds(-1, 1) # rather than returning S.NaN, since AccumBounds(-1, 1) # preserves the information that sin(oo) is between # -1 and 1, where S.NaN does not do that. return AccumBounds(-1, 1) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return sin(arg + S.Pi/2) elif isinstance(arg, SetExpr): return arg._eval_func(cls) if arg.is_extended_real and arg.is_finite is False: return AccumBounds(-1, 1) if arg.could_extract_minus_sign(): return cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cosh(i_coeff) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: return (S.NegativeOne)**pi_coeff if (2*pi_coeff).is_integer: # is_even-case handled above as then pi_coeff.is_integer, # so check if known to be not even if pi_coeff.is_even is False: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None # cosine formula ##################### # https://github.com/sympy/sympy/issues/6048 # explicit calculations are performed for # cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120 # Some other exact values like cos(k pi/240) can be # calculated using a partial-fraction decomposition # by calling cos( X ).rewrite(sqrt) cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1)/4, } if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*S.Pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*S.Pi return -cls(narg) # If nested sqrt's are worse than un-evaluation # you can require q to be in (1, 2, 3, 4, 6, 12) # q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return # expressions with 2 or fewer sqrt nestings. table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } if q in table2: a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1] nvala, nvalb = cls(a), cls(b) if None == nvala or None == nvalb: return None return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b) if q > 12: return None if q in cst_table_some: cts = cst_table_some[pi_coeff.q] return chebyshevt(pi_coeff.p, cts).expand() if 0 == q % 2: narg = (pi_coeff*2)*S.Pi nval = cls(narg) if None == nval: return None x = (2*pi_coeff + 1)/2 sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x))) return sign_cos*sqrt( (1 + nval)/2 ) return None if arg.is_Add: x, m = _peeloff_pi(arg) if m: return cos(m)*cos(x) - sin(m)*sin(x) if arg.is_zero: return S.One if isinstance(arg, acos): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1/sqrt(1 + x**2) if isinstance(arg, atan2): y, x = arg.args return x/sqrt(x**2 + y**2) if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x ** 2) if isinstance(arg, acot): x = arg.args[0] return 1/sqrt(1 + 1/x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1/x**2) if isinstance(arg, asec): x = arg.args[0] return 1/x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return -p*x**2/(n*(n - 1)) else: return (-1)**(n//2)*x**(n)/factorial(n) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.args[0] if logx is not None: arg = arg.subs(log(x), logx) if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity): raise PoleError("Cannot expand %s around 0" % (self)) return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) return (exp(arg*I) + exp(-arg*I))/2 def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return x**I/2 + x**-I/2 def _eval_rewrite_as_sin(self, arg, **kwargs): return sin(arg + S.Pi/2, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): tan_half = tan(S.Half*arg)**2 return (1 - tan_half)/(1 + tan_half) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)*cos(arg)/sin(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(S.Half*arg)**2 return (cot_half - 1)/(cot_half + 1) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._eval_rewrite_as_sqrt(arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): from sympy.functions.special.polynomials import chebyshevt def migcdex(x): # recursive calcuation of gcd and linear combination # for a sequence of integers. # Given (x1, x2, x3) # Returns (y1, y1, y3, g) # such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0 # Note, that this is only one such linear combination. if len(x) == 1: return (1, x[0]) if len(x) == 2: return igcdex(x[0], x[-1]) g = migcdex(x[1:]) u, v, h = igcdex(x[0], g[-1]) return tuple([u] + [v*i for i in g[0:-1] ] + [h]) def ipartfrac(r, factors=None): from sympy.ntheory import factorint if isinstance(r, int): return r if not isinstance(r, Rational): raise TypeError("r is not rational") n = r.q if 2 > r.q*r.q: return r.q if None == factors: a = [n//x**y for x, y in factorint(r.q).items()] else: a = [n//x for x in factors] if len(a) == 1: return [ r ] h = migcdex(a) ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ] assert r == sum(ans) return ans pi_coeff = _pi_coeff(arg) if pi_coeff is None: return None if pi_coeff.is_integer: # it was unevaluated return self.func(pi_coeff*S.Pi) if not pi_coeff.is_Rational: return None def _cospi257(): """ Express cos(pi/257) explicitly as a function of radicals Based upon the equations in http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt """ def f1(a, b): return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2 def f2(a, b): return (a - sqrt(a**2 + b))/2 t1, t2 = f1(-1, 256) z1, z3 = f1(t1, 64) z2, z4 = f1(t2, 64) y1, y5 = f1(z1, 4*(5 + t1 + 2*z1)) y6, y2 = f1(z2, 4*(5 + t2 + 2*z2)) y3, y7 = f1(z3, 4*(5 + t1 + 2*z3)) y8, y4 = f1(z4, 4*(5 + t2 + 2*z4)) x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6)) x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7)) x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8)) x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1)) x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2)) x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3)) x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4)) x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5)) v1 = f2(x1, -4*(x1 + x2 + x3 + x6)) v2 = f2(x2, -4*(x2 + x3 + x4 + x7)) v3 = f2(x8, -4*(x8 + x9 + x10 + x13)) v4 = f2(x9, -4*(x9 + x10 + x11 + x14)) v5 = f2(x10, -4*(x10 + x11 + x12 + x15)) v6 = f2(x16, -4*(x16 + x1 + x2 + x5)) u1 = -f2(-v1, -4*(v2 + v3)) u2 = -f2(-v4, -4*(v5 + v6)) w1 = -2*f2(-u1, -4*u2) return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half) cst_table_some = { 3: S.Half, 5: (sqrt(5) + 1)/4, 17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) + sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17)) *sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32), 257: _cospi257() # 65537 is the only other known Fermat prime and the very # large expression is intentionally omitted from SymPy; see # http://www.susqu.edu/brakke/constructions/65537-gon.m.txt } def _fermatCoords(n): # if n can be factored in terms of Fermat primes with # multiplicity of each being 1, return those primes, else # False primes = [] for p_i in cst_table_some: quotient, remainder = divmod(n, p_i) if remainder == 0: n = quotient primes.append(p_i) if n == 1: return tuple(primes) return False if pi_coeff.q in cst_table_some: rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q]) if pi_coeff.q < 257: rv = rv.expand() return rv if not pi_coeff.q % 2: # recursively remove factors of 2 pico2 = pi_coeff*2 nval = cos(pico2*S.Pi).rewrite(sqrt) x = (pico2 + 1)/2 sign_cos = -1 if int(x) % 2 else 1 return sign_cos*sqrt( (1 + nval)/2 ) FC = _fermatCoords(pi_coeff.q) if FC: decomp = ipartfrac(pi_coeff, FC) X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X) return pcls.rewrite(sqrt) else: decomp = ipartfrac(pi_coeff) X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))] pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X) return pcls def _eval_rewrite_as_sec(self, arg, **kwargs): return 1/sec(arg) def _eval_rewrite_as_csc(self, arg, **kwargs): return 1/sec(arg).rewrite(csc) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) return (cos(re)*cosh(im), -sin(re)*sinh(im)) def _eval_expand_trig(self, **hints): from sympy.functions.special.polynomials import chebyshevt arg = self.args[0] x = None if arg.is_Add: # TODO: Do this more efficiently for more than two terms x, y = arg.as_two_terms() sx = sin(x, evaluate=False)._eval_expand_trig() sy = sin(y, evaluate=False)._eval_expand_trig() cx = cos(x, evaluate=False)._eval_expand_trig() cy = cos(y, evaluate=False)._eval_expand_trig() return cx*cy - sx*sy elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer: return chebyshevt(coeff, cos(terms)) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_Rational: return self.rewrite(sqrt) return cos(arg) def _eval_as_leading_term(self, x, cdir=0): arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = (x0 + S.Pi/2)/S.Pi if n.is_integer: lt = (arg - n*S.Pi + S.Pi/2).as_leading_term(x) return ((-1)**n)*lt if not x0.is_finite: return self return self.func(x0) def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_extended_real: return True def _eval_is_complex(self): if self.args[0].is_extended_real \ or self.args[0].is_complex: return True class tan(TrigonometricFunction): """ The tangent function. Returns the tangent of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import tan, pi >>> from sympy.abc import x >>> tan(x**2).diff(x) 2*x*(tan(x**2)**2 + 1) >>> tan(1).diff(x) 0 >>> tan(pi/8).expand() -1 + sqrt(2) See Also ======== sin, csc, cos, sec, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Tan """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.One + self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atan @classmethod def eval(cls, arg): from sympy.calculus.util import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.Infinity or arg is S.NegativeInfinity: return AccumBounds(S.NegativeInfinity, S.Infinity) if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): min, max = arg.min, arg.max d = floor(min/S.Pi) if min is not S.NegativeInfinity: min = min - d*S.Pi if max is not S.Infinity: max = max - d*S.Pi if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(3, 2))): return AccumBounds(S.NegativeInfinity, S.Infinity) else: return AccumBounds(tan(min), tan(max)) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit*tanh(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.Zero if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: q = pi_coeff.q p = pi_coeff.p % q # ensure simplified results are returned for n*pi/5, n*pi/10 table10 = { 1: sqrt(1 - 2*sqrt(5)/5), 2: sqrt(5 - 2*sqrt(5)), 3: sqrt(1 + 2*sqrt(5)/5), 4: sqrt(5 + 2*sqrt(5)) } if q == 5 or q == 10: n = 10*p/q if n > 5: n = 10 - n return -table10[n] else: return table10[n] if not pi_coeff.q % 2: narg = pi_coeff*S.Pi*2 cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return 1/sresult - cresult/sresult table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } if q in table2: nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1]) if None == nvala or None == nvalb: return None return (nvala - nvalb)/(1 + nvala*nvalb) narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if cresult == 0: return S.ComplexInfinity return (sresult/cresult) if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: tanm = tan(m) if tanm is S.ComplexInfinity: return -cot(x) else: # tanm == 0 return tan(x) if arg.is_zero: return S.Zero if isinstance(arg, atan): return arg.args[0] if isinstance(arg, atan2): y, x = arg.args return y/x if isinstance(arg, asin): x = arg.args[0] return x/sqrt(1 - x**2) if isinstance(arg, acos): x = arg.args[0] return sqrt(1 - x**2)/x if isinstance(arg, acot): x = arg.args[0] return 1/x if isinstance(arg, acsc): x = arg.args[0] return 1/(sqrt(1 - 1/x**2)*x) if isinstance(arg, asec): x = arg.args[0] return sqrt(1 - 1/x**2)*x @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a, b = ((n - 1)//2), 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return (-1)**a*b*(b - 1)*B/F*x**n def _eval_nseries(self, x, n, logx, cdir=0): i = self.args[0].limit(x, 0)*2/S.Pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return Function._eval_nseries(self, x, n=n, logx=logx) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return I*(x**-I - x**I)/(x**-I + x**I) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: denom = cos(2*re) + cosh(2*im) return (sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_expand_trig(self, **hints): from sympy import im, re arg = self.args[0] x = None if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) TX = [] for x in arg.args: tx = tan(x, evaluate=False)._eval_expand_trig() TX.append(tx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n + 1): p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, TX))) elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((1 + I*z)**coeff).expand() return (im(P)/re(P)).subs([(z, tan(terms))]) return tan(arg) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(neg_exp - pos_exp)/(neg_exp + pos_exp) def _eval_rewrite_as_sin(self, x, **kwargs): return 2*sin(x)**2/sin(2*x) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x - S.Pi/2, evaluate=False)/cos(x) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/cos(arg) def _eval_rewrite_as_cot(self, arg, **kwargs): return 1/cot(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): sin_in_sec_form = sin(arg).rewrite(sec) cos_in_sec_form = cos(arg).rewrite(sec) return sin_in_sec_form/cos_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): sin_in_csc_form = sin(arg).rewrite(csc) cos_in_csc_form = cos(arg).rewrite(csc) return sin_in_csc_form/cos_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x, cdir=0): arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = 2*x0/S.Pi if n.is_integer: lt = (arg - n*S.Pi/2).as_leading_term(x) return lt if n.is_even else -1/lt return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): # FIXME: currently tan(pi/2) return zoo return self.args[0].is_extended_real def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi - S.Half).is_integer is False: return True class cot(TrigonometricFunction): """ The cotangent function. Returns the cotangent of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import cot, pi >>> from sympy.abc import x >>> cot(x**2).diff(x) 2*x*(-cot(x**2)**2 - 1) >>> cot(1).diff(x) 0 >>> cot(pi/12) sqrt(3) + 2 See Also ======== sin, csc, cos, sec, tan asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Cot """ def period(self, symbol=None): return self._period(pi, symbol) def fdiff(self, argindex=1): if argindex == 1: return S.NegativeOne - self**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acot @classmethod def eval(cls, arg): from sympy.calculus.util import AccumBounds if arg.is_Number: if arg is S.NaN: return S.NaN if arg.is_zero: return S.ComplexInfinity if arg is S.ComplexInfinity: return S.NaN if isinstance(arg, AccumBounds): return -tan(arg + S.Pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit*coth(i_coeff) pi_coeff = _pi_coeff(arg, 2) if pi_coeff is not None: if pi_coeff.is_integer: return S.ComplexInfinity if not pi_coeff.is_Rational: narg = pi_coeff*S.Pi if narg != arg: return cls(narg) return None if pi_coeff.is_Rational: if pi_coeff.q == 5 or pi_coeff.q == 10: return tan(S.Pi/2 - arg) if pi_coeff.q > 2 and not pi_coeff.q % 2: narg = pi_coeff*S.Pi*2 cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): return 1/sresult + cresult/sresult table2 = { 12: (3, 4), 20: (4, 5), 30: (5, 6), 15: (6, 10), 24: (6, 8), 40: (8, 10), 60: (20, 30), 120: (40, 60) } q = pi_coeff.q p = pi_coeff.p % q if q in table2: nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1]) if None == nvala or None == nvalb: return None return (1 + nvala*nvalb)/(nvalb - nvala) narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi # see cos() to specify which expressions should be # expanded automatically in terms of radicals cresult, sresult = cos(narg), cos(narg - S.Pi/2) if not isinstance(cresult, cos) \ and not isinstance(sresult, cos): if sresult == 0: return S.ComplexInfinity return cresult/sresult if narg != arg: return cls(narg) if arg.is_Add: x, m = _peeloff_pi(arg) if m: cotm = cot(m) if cotm is S.ComplexInfinity: return cot(x) else: # cotm == 0 return -tan(x) if arg.is_zero: return S.ComplexInfinity if isinstance(arg, acot): return arg.args[0] if isinstance(arg, atan): x = arg.args[0] return 1/x if isinstance(arg, atan2): y, x = arg.args return x/y if isinstance(arg, asin): x = arg.args[0] return sqrt(1 - x**2)/x if isinstance(arg, acos): x = arg.args[0] return x/sqrt(1 - x**2) if isinstance(arg, acsc): x = arg.args[0] return sqrt(1 - 1/x**2)*x if isinstance(arg, asec): x = arg.args[0] return 1/(sqrt(1 - 1/x**2)*x) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return (-1)**((n + 1)//2)*2**(n + 1)*B/F*x**n def _eval_nseries(self, x, n, logx, cdir=0): i = self.args[0].limit(x, 0)/S.Pi if i and i.is_Integer: return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx) return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): re, im = self._as_real_imag(deep=deep, **hints) if im: denom = cos(2*re) - cosh(2*im) return (-sin(2*re)/denom, sinh(2*im)/denom) else: return (self.func(re), S.Zero) def _eval_rewrite_as_exp(self, arg, **kwargs): I = S.ImaginaryUnit if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction): arg = arg.func(arg.args[0]).rewrite(exp) neg_exp, pos_exp = exp(-arg*I), exp(arg*I) return I*(pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_Pow(self, arg, **kwargs): if isinstance(arg, log): I = S.ImaginaryUnit x = arg.args[0] return -I*(x**-I + x**I)/(x**-I - x**I) def _eval_rewrite_as_sin(self, x, **kwargs): return sin(2*x)/(2*(sin(x)**2)) def _eval_rewrite_as_cos(self, x, **kwargs): return cos(x)/cos(x - S.Pi/2, evaluate=False) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/sin(arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return 1/tan(arg) def _eval_rewrite_as_sec(self, arg, **kwargs): cos_in_sec_form = cos(arg).rewrite(sec) sin_in_sec_form = sin(arg).rewrite(sec) return cos_in_sec_form/sin_in_sec_form def _eval_rewrite_as_csc(self, arg, **kwargs): cos_in_csc_form = cos(arg).rewrite(csc) sin_in_csc_form = sin(arg).rewrite(csc) return cos_in_csc_form/sin_in_csc_form def _eval_rewrite_as_pow(self, arg, **kwargs): y = self.rewrite(cos).rewrite(pow) if y.has(cos): return None return y def _eval_rewrite_as_sqrt(self, arg, **kwargs): y = self.rewrite(cos).rewrite(sqrt) if y.has(cos): return None return y def _eval_as_leading_term(self, x, cdir=0): arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = 2*x0/S.Pi if n.is_integer: lt = (arg - n*S.Pi/2).as_leading_term(x) return 1/lt if n.is_even else -lt return self.func(x0) if x0.is_finite else self def _eval_is_extended_real(self): return self.args[0].is_extended_real def _eval_expand_trig(self, **hints): from sympy import im, re arg = self.args[0] x = None if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) CX = [] for x in arg.args: cx = cot(x, evaluate=False)._eval_expand_trig() CX.append(cx) Yg = numbered_symbols('Y') Y = [ next(Yg) for i in range(n) ] p = [0, 0] for i in range(n, -1, -1): p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2) return (p[0]/p[1]).subs(list(zip(Y, CX))) elif arg.is_Mul: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: I = S.ImaginaryUnit z = Symbol('dummy', real=True) P = ((z + I)**coeff).expand() return (re(P)/im(P)).subs([(z, cot(terms))]) return cot(arg) # XXX sec and csc return 1/cos and 1/sin def _eval_is_finite(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True if arg.is_imaginary: return True def _eval_is_real(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True def _eval_subs(self, old, new): arg = self.args[0] argnew = arg.subs(old, new) if arg != argnew and (argnew/S.Pi).is_integer: return S.ComplexInfinity return cot(argnew) class ReciprocalTrigonometricFunction(TrigonometricFunction): """Base class for reciprocal functions of trigonometric functions. """ _reciprocal_of = None # mandatory, to be defined in subclass _singularities = (S.ComplexInfinity,) # _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x) # TODO refactor into TrigonometricFunction common parts of # trigonometric functions eval() like even/odd, func(x+2*k*pi), etc. # optional, to be defined in subclasses: _is_even = None # type: FuzzyBool _is_odd = None # type: FuzzyBool @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) pi_coeff = _pi_coeff(arg) if (pi_coeff is not None and not (2*pi_coeff).is_integer and pi_coeff.is_Rational): q = pi_coeff.q p = pi_coeff.p % (2*q) if p > q: narg = (pi_coeff - 1)*S.Pi return -cls(narg) if 2*p > q: narg = (1 - pi_coeff)*S.Pi if cls._is_odd: return cls(narg) elif cls._is_even: return -cls(narg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] t = cls._reciprocal_of.eval(arg) if t is None: return t elif any(isinstance(i, cos) for i in (t, -t)): return (1/t).rewrite(sec) elif any(isinstance(i, sin) for i in (t, -t)): return (1/t).rewrite(csc) else: return 1/t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _period(self, symbol): f = expand_mul(self.args[0]) return self._reciprocal_of(f).period(symbol) def fdiff(self, argindex=1): return -self._calculate_reciprocal("fdiff", argindex)/self**2 def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_Pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg) def _eval_rewrite_as_cos(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg) def _eval_rewrite_as_tan(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg) def _eval_rewrite_as_pow(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg) def _eval_rewrite_as_sqrt(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_expand_trig(self, **hints): return self._calculate_reciprocal("_eval_expand_trig", **hints) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0])._eval_is_extended_real() def _eval_as_leading_term(self, x, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite def _eval_nseries(self, x, n, logx, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx) class sec(ReciprocalTrigonometricFunction): """ The secant function. Returns the secant of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import sec >>> from sympy.abc import x >>> sec(x**2).diff(x) 2*x*tan(x**2)*sec(x**2) >>> sec(1).diff(x) 0 See Also ======== sin, csc, cos, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Sec """ _reciprocal_of = cos _is_even = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half_sq = cot(arg/2)**2 return (cot_half_sq + 1)/(cot_half_sq - 1) def _eval_rewrite_as_cos(self, arg, **kwargs): return (1/cos(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return sin(arg)/(cos(arg)*sin(arg)) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/cos(arg).rewrite(sin)) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1/cos(arg).rewrite(tan)) def _eval_rewrite_as_csc(self, arg, **kwargs): return csc(pi/2 - arg, evaluate=False) def fdiff(self, argindex=1): if argindex == 1: return tan(self.args[0])*sec(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_complex and (arg/pi - S.Half).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): # Reference Formula: # http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/ from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) k = n//2 return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k) def _eval_as_leading_term(self, x, cdir=0): arg = self.args[0] x0 = arg.subs(x, 0).cancel() n = (x0 + S.Pi/2)/S.Pi if n.is_integer: lt = (arg - n*S.Pi + S.Pi/2).as_leading_term(x) return ((-1)**n)/lt return self.func(x0) class csc(ReciprocalTrigonometricFunction): """ The cosecant function. Returns the cosecant of x (measured in radians). Explanation =========== See :func:`sin` for notes about automatic evaluation. Examples ======== >>> from sympy import csc >>> from sympy.abc import x >>> csc(x**2).diff(x) -2*x*cot(x**2)*csc(x**2) >>> csc(1).diff(x) 0 See Also ======== sin, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Trigonometric_functions .. [2] http://dlmf.nist.gov/4.14 .. [3] http://functions.wolfram.com/ElementaryFunctions/Csc """ _reciprocal_of = sin _is_odd = True def period(self, symbol=None): return self._period(symbol) def _eval_rewrite_as_sin(self, arg, **kwargs): return (1/sin(arg)) def _eval_rewrite_as_sincos(self, arg, **kwargs): return cos(arg)/(sin(arg)*cos(arg)) def _eval_rewrite_as_cot(self, arg, **kwargs): cot_half = cot(arg/2) return (1 + cot_half**2)/(2*cot_half) def _eval_rewrite_as_cos(self, arg, **kwargs): return 1/sin(arg).rewrite(cos) def _eval_rewrite_as_sec(self, arg, **kwargs): return sec(pi/2 - arg, evaluate=False) def _eval_rewrite_as_tan(self, arg, **kwargs): return (1/sin(arg).rewrite(tan)) def fdiff(self, argindex=1): if argindex == 1: return -cot(self.args[0])*csc(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_is_complex(self): arg = self.args[0] if arg.is_real and (arg/pi).is_integer is False: return True @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) k = n//2 + 1 return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)* bernoulli(2*k)*x**(2*k - 1)/factorial(2*k)) class sinc(Function): r""" Represents an unnormalized sinc function: .. math:: \operatorname{sinc}(x) = \begin{cases} \frac{\sin x}{x} & \qquad x \neq 0 \\ 1 & \qquad x = 0 \end{cases} Examples ======== >>> from sympy import sinc, oo, jn >>> from sympy.abc import x >>> sinc(x) sinc(x) * Automated Evaluation >>> sinc(0) 1 >>> sinc(oo) 0 * Differentiation >>> sinc(x).diff() cos(x)/x - sin(x)/x**2 * Series Expansion >>> sinc(x).series() 1 - x**2/6 + x**4/120 + O(x**6) * As zero'th order spherical Bessel Function >>> sinc(x).rewrite(jn) jn(0, x) See also ======== sin References ========== .. [1] https://en.wikipedia.org/wiki/Sinc_function """ _singularities = (S.ComplexInfinity,) def fdiff(self, argindex=1): x = self.args[0] if argindex == 1: # We would like to return the Piecewise here, but Piecewise.diff # currently can't handle removable singularities, meaning things # like sinc(x).diff(x, 2) give the wrong answer at x = 0. See # https://github.com/sympy/sympy/issues/11402. # # return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true)) return cos(x)/x - sin(x)/x**2 else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): if arg.is_zero: return S.One if arg.is_Number: if arg in [S.Infinity, S.NegativeInfinity]: return S.Zero elif arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.NaN if arg.could_extract_minus_sign(): return cls(-arg) pi_coeff = _pi_coeff(arg) if pi_coeff is not None: if pi_coeff.is_integer: if fuzzy_not(arg.is_zero): return S.Zero elif (2*pi_coeff).is_integer: return S.NegativeOne**(pi_coeff - S.Half)/arg def _eval_nseries(self, x, n, logx, cdir=0): x = self.args[0] return (sin(x)/x)._eval_nseries(x, n, logx) def _eval_rewrite_as_jn(self, arg, **kwargs): from sympy.functions.special.bessel import jn return jn(0, arg) def _eval_rewrite_as_sin(self, arg, **kwargs): return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true)) ############################################################################### ########################### TRIGONOMETRIC INVERSES ############################ ############################################################################### class InverseTrigonometricFunction(Function): """Base class for inverse trigonometric functions.""" _singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: Tuple[Expr, ...] @staticmethod def _asin_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/2: S.Pi/3, sqrt(2)/2: S.Pi/4, 1/sqrt(2): S.Pi/4, sqrt((5 - sqrt(5))/8): S.Pi/5, sqrt(2)*sqrt(5 - sqrt(5))/4: S.Pi/5, sqrt((5 + sqrt(5))/8): S.Pi*Rational(2, 5), sqrt(2)*sqrt(5 + sqrt(5))/4: S.Pi*Rational(2, 5), S.Half: S.Pi/6, sqrt(2 - sqrt(2))/2: S.Pi/8, sqrt(S.Half - sqrt(2)/4): S.Pi/8, sqrt(2 + sqrt(2))/2: S.Pi*Rational(3, 8), sqrt(S.Half + sqrt(2)/4): S.Pi*Rational(3, 8), (sqrt(5) - 1)/4: S.Pi/10, (1 - sqrt(5))/4: -S.Pi/10, (sqrt(5) + 1)/4: S.Pi*Rational(3, 10), sqrt(6)/4 - sqrt(2)/4: S.Pi/12, -sqrt(6)/4 + sqrt(2)/4: -S.Pi/12, (sqrt(3) - 1)/sqrt(8): S.Pi/12, (1 - sqrt(3))/sqrt(8): -S.Pi/12, sqrt(6)/4 + sqrt(2)/4: S.Pi*Rational(5, 12), (1 + sqrt(3))/sqrt(8): S.Pi*Rational(5, 12) } @staticmethod def _atan_table(): # Only keys with could_extract_minus_sign() == False # are actually needed. return { sqrt(3)/3: S.Pi/6, 1/sqrt(3): S.Pi/6, sqrt(3): S.Pi/3, sqrt(2) - 1: S.Pi/8, 1 - sqrt(2): -S.Pi/8, 1 + sqrt(2): S.Pi*Rational(3, 8), sqrt(5 - 2*sqrt(5)): S.Pi/5, sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5), sqrt(1 - 2*sqrt(5)/5): S.Pi/10, sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10), 2 - sqrt(3): S.Pi/12, -2 + sqrt(3): -S.Pi/12, 2 + sqrt(3): S.Pi*Rational(5, 12) } @staticmethod def _acsc_table(): # Keys for which could_extract_minus_sign() # will obviously return True are omitted. return { 2*sqrt(3)/3: S.Pi/3, sqrt(2): S.Pi/4, sqrt(2 + 2*sqrt(5)/5): S.Pi/5, 1/sqrt(Rational(5, 8) - sqrt(5)/8): S.Pi/5, sqrt(2 - 2*sqrt(5)/5): S.Pi*Rational(2, 5), 1/sqrt(Rational(5, 8) + sqrt(5)/8): S.Pi*Rational(2, 5), 2: S.Pi/6, sqrt(4 + 2*sqrt(2)): S.Pi/8, 2/sqrt(2 - sqrt(2)): S.Pi/8, sqrt(4 - 2*sqrt(2)): S.Pi*Rational(3, 8), 2/sqrt(2 + sqrt(2)): S.Pi*Rational(3, 8), 1 + sqrt(5): S.Pi/10, sqrt(5) - 1: S.Pi*Rational(3, 10), -(sqrt(5) - 1): S.Pi*Rational(-3, 10), sqrt(6) + sqrt(2): S.Pi/12, sqrt(6) - sqrt(2): S.Pi*Rational(5, 12), -(sqrt(6) - sqrt(2)): S.Pi*Rational(-5, 12) } class asin(InverseTrigonometricFunction): """ The inverse sine function. Returns the arcsine of x in radians. Explanation =========== ``asin(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). A purely imaginary argument will lead to an asinh expression. Examples ======== >>> from sympy import asin, oo >>> asin(1) pi/2 >>> asin(-1) -pi/2 >>> asin(-oo) oo*I >>> asin(oo) -oo*I See Also ======== sin, csc, cos, sec, tan, cot acsc, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self._eval_is_extended_real() and self.args[0].is_positive def _eval_is_negative(self): return self._eval_is_extended_real() and self.args[0].is_negative @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.NegativeInfinity*S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.Infinity*S.ImaginaryUnit elif arg.is_zero: return S.Zero elif arg is S.One: return S.Pi/2 elif arg is S.NegativeOne: return -S.Pi/2 if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return asin_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit*asinh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, sin): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, cos): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acos(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p*(n - 2)**2/(n*(n - 1))*x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return R/F*x**n/n def _eval_as_leading_term(self, x, cdir=0): from sympy import I, im, log arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0.is_zero: return arg.as_leading_term(x) if x0 is S.ComplexInfinity: return I*log(arg.as_leading_term(x)) if cdir != 0: cdir = arg.dir(x, cdir) if im(cdir) < 0 and x0.is_real and x0 < S.NegativeOne: return -S.Pi - self.func(x0) elif im(cdir) > 0 and x0.is_real and x0 > S.One: return S.Pi - self.func(x0) return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): #asin from sympy import Dummy, im, O arg0 = self.args[0].subs(x, 0) if arg0 is S.One: t = Dummy('t', positive=True) ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else S.Pi/2 + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else -S.Pi/2 + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res if cdir != 0: cdir = self.args[0].dir(x, cdir) if im(cdir) < 0 and arg0.is_real and arg0 < S.NegativeOne: return -S.Pi - res elif im(cdir) > 0 and arg0.is_real and arg0 > S.One: return S.Pi - res return res def _eval_rewrite_as_acos(self, x, **kwargs): return S.Pi/2 - acos(x) def _eval_rewrite_as_atan(self, x, **kwargs): return 2*atan(x/(1 + sqrt(1 - x**2))) def _eval_rewrite_as_log(self, x, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return S.Pi/2 - asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return acsc(1/arg) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sin class acos(InverseTrigonometricFunction): """ The inverse cosine function. Returns the arc cosine of x (measured in radians). Examples ======== ``acos(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). ``acos(zoo)`` evaluates to ``zoo`` (see note in :class:`sympy.functions.elementary.trigonometric.asec`) A purely imaginary argument will be rewritten to asinh. Examples ======== >>> from sympy import acos, oo >>> acos(1) 0 >>> acos(0) pi/2 >>> acos(oo) oo*I See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos """ def fdiff(self, argindex=1): if argindex == 1: return -1/sqrt(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity*S.ImaginaryUnit elif arg is S.NegativeInfinity: return S.NegativeInfinity*S.ImaginaryUnit elif arg.is_zero: return S.Pi/2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_number: asin_table = cls._asin_table() if arg in asin_table: return pi/2 - asin_table[arg] elif -arg in asin_table: return pi/2 + asin_table[-arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return pi/2 - asin(arg) if isinstance(arg, cos): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, sin): # acos(x) + asin(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asin(arg) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi/2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p*(n - 2)**2/(n*(n - 1))*x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R/F*x**n/n def _eval_as_leading_term(self, x, cdir=0): from sympy import I, im, log arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 == 1: return sqrt(2)*sqrt((S.One - arg).as_leading_term(x)) if x0 is S.ComplexInfinity: return I*log(arg.as_leading_term(x)) if cdir != 0: cdir = arg.dir(x, cdir) if im(cdir) < 0 and x0.is_real and x0 < S.NegativeOne: return 2*S.Pi - self.func(x0) elif im(cdir) > 0 and x0.is_real and x0 > S.One: return -self.func(x0) return self.func(x0) def _eval_is_extended_real(self): x = self.args[0] return x.is_extended_real and (1 - abs(x)).is_nonnegative def _eval_is_nonnegative(self): return self._eval_is_extended_real() def _eval_nseries(self, x, n, logx, cdir=0): #acos from sympy import Dummy, im, O arg0 = self.args[0].subs(x, 0) if arg0 is S.One: t = Dummy('t', positive=True) ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.One + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f if not g.is_meromorphic(x, 0): # cannot be expanded return O(1) if n == 0 else S.Pi + O(sqrt(x)) res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res if cdir != 0: cdir = self.args[0].dir(x, cdir) if im(cdir) < 0 and arg0.is_real and arg0 < S.NegativeOne: return 2*S.Pi - res elif im(cdir) > 0 and arg0.is_real and arg0 > S.One: return -res return res def _eval_rewrite_as_log(self, x, **kwargs): return S.Pi/2 + S.ImaginaryUnit*\ log(S.ImaginaryUnit*x + sqrt(1 - x**2)) def _eval_rewrite_as_asin(self, x, **kwargs): return S.Pi/2 - asin(x) def _eval_rewrite_as_atan(self, x, **kwargs): return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cos def _eval_rewrite_as_acot(self, arg, **kwargs): return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return asec(1/arg) def _eval_rewrite_as_acsc(self, arg, **kwargs): return S.Pi/2 - acsc(1/arg) def _eval_conjugate(self): z = self.args[0] r = self.func(self.args[0].conjugate()) if z.is_extended_real is False: return r elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive: return r class atan(InverseTrigonometricFunction): """ The inverse tangent function. Returns the arc tangent of x (measured in radians). Explanation =========== ``atan(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). Examples ======== >>> from sympy import atan, oo >>> atan(0) 0 >>> atan(1) pi/4 >>> atan(oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan """ _singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) def fdiff(self, argindex=1): if argindex == 1: return 1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_extended_positive def _eval_is_nonnegative(self): return self.args[0].is_extended_nonnegative def _eval_is_zero(self): return self.args[0].is_zero def _eval_is_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi/2 elif arg is S.NegativeInfinity: return -S.Pi/2 elif arg.is_zero: return S.Zero elif arg is S.One: return S.Pi/4 elif arg is S.NegativeOne: return -S.Pi/4 if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return AccumBounds(-S.Pi/2, S.Pi/2) if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: return atan_table[arg] i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit*atanh(i_coeff) if arg.is_zero: return S.Zero if isinstance(arg, tan): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang if isinstance(arg, cot): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - acot(arg) if ang > pi/2: # restrict to [-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return (-1)**((n - 1)//2)*x**n/n def _eval_as_leading_term(self, x, cdir=0): from sympy import im, re arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0.is_zero: return arg.as_leading_term(x) if x0 is S.ComplexInfinity: return acot(1/arg)._eval_as_leading_term(x, cdir=cdir) if cdir != 0: cdir = arg.dir(x, cdir) if re(cdir) < 0 and re(x0).is_zero and im(x0) > S.One: return self.func(x0) - S.Pi elif re(cdir) > 0 and re(x0).is_zero and im(x0) < S.NegativeOne: return self.func(x0) + S.Pi return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): #atan from sympy import im, re arg0 = self.args[0].subs(x, 0) res = Function._eval_nseries(self, x, n=n, logx=logx) if cdir != 0: cdir = self.args[0].dir(x, cdir) if arg0 is S.ComplexInfinity: if re(cdir) > 0: return res - S.Pi return res if re(cdir) < 0 and re(arg0).is_zero and im(arg0) > S.One: return res - S.Pi elif re(cdir) > 0 and re(arg0).is_zero and im(arg0) < S.NegativeOne: return res + S.Pi return res def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x) - log(S.One + S.ImaginaryUnit*x)) def _eval_aseries(self, n, args0, x, logx): if args0[0] is S.Infinity: return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] is S.NegativeInfinity: return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx) else: return super()._eval_aseries(n, args0, x, logx) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tan def _eval_rewrite_as_asin(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2))) def _eval_rewrite_as_acos(self, arg, **kwargs): return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2)) def _eval_rewrite_as_acot(self, arg, **kwargs): return acot(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2))) class acot(InverseTrigonometricFunction): r""" The inverse cotangent function. Returns the arc cotangent of x (measured in radians). Explanation =========== ``acot(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``zoo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). A purely imaginary argument will lead to an ``acoth`` expression. ``acot(x)`` has a branch cut along `(-i, i)`, hence it is discontinuous at 0. Its range for real ``x`` is `(-\frac{\pi}{2}, \frac{\pi}{2}]`. Examples ======== >>> from sympy import acot, sqrt >>> acot(0) pi/2 >>> acot(1) pi/4 >>> acot(sqrt(3) - 2) -5*pi/12 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, atan2 References ========== .. [1] http://dlmf.nist.gov/4.23 .. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot """ _singularities = (S.ImaginaryUnit, -S.ImaginaryUnit) def fdiff(self, argindex=1): if argindex == 1: return -1/(1 + self.args[0]**2) else: raise ArgumentIndexError(self, argindex) def _eval_is_rational(self): s = self.func(*self.args) if s.func == self.func: if s.args[0].is_rational: return False else: return s.is_rational def _eval_is_positive(self): return self.args[0].is_nonnegative def _eval_is_negative(self): return self.args[0].is_negative def _eval_is_extended_real(self): return self.args[0].is_extended_real @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.Pi/ 2 elif arg is S.One: return S.Pi/4 elif arg is S.NegativeOne: return -S.Pi/4 if arg is S.ComplexInfinity: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: atan_table = cls._atan_table() if arg in atan_table: ang = pi/2 - atan_table[arg] if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit*acoth(i_coeff) if arg.is_zero: return S.Pi*S.Half if isinstance(arg, cot): ang = arg.args[0] if ang.is_comparable: ang %= pi # restrict to [0,pi) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi; return ang if isinstance(arg, tan): # atan(x) + acot(x) = pi/2 ang = arg.args[0] if ang.is_comparable: ang = pi/2 - atan(arg) if ang > pi/2: # restrict to (-pi/2,pi/2] ang -= pi return ang @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi/2 # FIX THIS elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return (-1)**((n + 1)//2)*x**n/n def _eval_as_leading_term(self, x, cdir=0): from sympy import im, re arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 is S.ComplexInfinity: return (1/arg).as_leading_term(x) if cdir != 0: cdir = arg.dir(x, cdir) if x0.is_zero: if re(cdir) < 0: return self.func(x0) - S.Pi return self.func(x0) if re(cdir) > 0 and re(x0).is_zero and im(x0) > S.Zero and im(x0) < S.One: return self.func(x0) + S.Pi if re(cdir) < 0 and re(x0).is_zero and im(x0) < S.Zero and im(x0) > S.NegativeOne: return self.func(x0) - S.Pi return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): #acot from sympy import im, re arg0 = self.args[0].subs(x, 0) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res if cdir != 0: cdir = self.args[0].dir(x, cdir) if arg0.is_zero: if re(cdir) < 0: return res - S.Pi return res if re(cdir) > 0 and re(arg0).is_zero and im(arg0) > S.Zero and im(arg0) < S.One: return res + S.Pi if re(cdir) < 0 and re(arg0).is_zero and im(arg0) < S.Zero and im(arg0) > S.NegativeOne: return res - S.Pi return res def _eval_aseries(self, n, args0, x, logx): if args0[0] is S.Infinity: return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx) elif args0[0] is S.NegativeInfinity: return (S.Pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx) else: return super(atan, self)._eval_aseries(n, args0, x, logx) def _eval_rewrite_as_log(self, x, **kwargs): return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x) - log(1 + S.ImaginaryUnit/x)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cot def _eval_rewrite_as_asin(self, arg, **kwargs): return (arg*sqrt(1/arg**2)* (S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1)))) def _eval_rewrite_as_acos(self, arg, **kwargs): return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1)) def _eval_rewrite_as_atan(self, arg, **kwargs): return atan(1/arg) def _eval_rewrite_as_asec(self, arg, **kwargs): return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2)) def _eval_rewrite_as_acsc(self, arg, **kwargs): return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2))) class asec(InverseTrigonometricFunction): r""" The inverse secant function. Returns the arc secant of x (measured in radians). Explanation =========== ``asec(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). ``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments, it can be defined [4]_ as .. math:: \operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z} At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For negative branch cut, the limit .. math:: \lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z} simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which ultimately evaluates to ``zoo``. As ``acos(x)`` = ``asec(1/x)``, a similar argument can be given for ``acos(x)``. Examples ======== >>> from sympy import asec, oo >>> asec(1) 0 >>> asec(-1) pi >>> asec(0) zoo >>> asec(-oo) pi/2 See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec .. [4] http://reference.wolfram.com/language/ref/ArcSec.html """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Pi/2 if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return pi/2 - acsc_table[arg] elif -arg in acsc_table: return pi/2 + acsc_table[-arg] if isinstance(arg, sec): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to [0,pi] ang = 2*pi - ang return ang if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - acsc(arg) def fdiff(self, argindex=1): if argindex == 1: return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sec def _eval_as_leading_term(self, x, cdir=0): from sympy import I, im, log arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0 == 1: return sqrt(2)*sqrt((arg - S.One).as_leading_term(x)) if x0.is_zero: return I*log(arg.as_leading_term(x)) if cdir != 0: cdir = arg.dir(x, cdir) if im(cdir) < 0 and x0.is_real and x0 > S.Zero and x0 < S.One: return -self.func(x0) elif im(cdir) > 0 and x0.is_real and x0 < S.Zero and x0 > S.NegativeOne: return 2*S.Pi - self.func(x0) return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): #asec from sympy import Dummy, im, O arg0 = self.args[0].subs(x, 0) if arg0 is S.One: t = Dummy('t', positive=True) ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res if cdir != 0: cdir = self.args[0].dir(x, cdir) if im(cdir) < 0 and arg0.is_real and arg0 > S.Zero and arg0 < S.One: return -res elif im(cdir) > 0 and arg0.is_real and arg0 < S.Zero and arg0 > S.NegativeOne: return 2*S.Pi - res return res def _eval_is_extended_real(self): x = self.args[0] if x.is_extended_real is False: return False return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative)) def _eval_rewrite_as_log(self, arg, **kwargs): return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) def _eval_rewrite_as_asin(self, arg, **kwargs): return S.Pi/2 - asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return acos(1/arg) def _eval_rewrite_as_atan(self, arg, **kwargs): return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1))) def _eval_rewrite_as_acsc(self, arg, **kwargs): return S.Pi/2 - acsc(arg) class acsc(InverseTrigonometricFunction): """ The inverse cosecant function. Returns the arc cosecant of x (measured in radians). Explanation =========== ``acsc(x)`` will evaluate automatically in the cases ``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the result is a rational multiple of pi (see the eval class method). Examples ======== >>> from sympy import acsc, oo >>> acsc(1) pi/2 >>> acsc(-1) -pi/2 >>> acsc(oo) 0 >>> acsc(-oo) == acsc(oo) True >>> acsc(0) zoo See Also ======== sin, csc, cos, sec, tan, cot asin, acos, asec, atan, acot, atan2 References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] http://dlmf.nist.gov/4.23 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc """ @classmethod def eval(cls, arg): if arg.is_zero: return S.ComplexInfinity if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.One: return S.Pi/2 elif arg is S.NegativeOne: return -S.Pi/2 if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return S.Zero if arg.could_extract_minus_sign(): return -cls(-arg) if arg.is_number: acsc_table = cls._acsc_table() if arg in acsc_table: return acsc_table[arg] if isinstance(arg, csc): ang = arg.args[0] if ang.is_comparable: ang %= 2*pi # restrict to [0,2*pi) if ang > pi: # restrict to (-pi,pi] ang = pi - ang # restrict to [-pi/2,pi/2] if ang > pi/2: ang = pi - ang if ang < -pi/2: ang = -pi - ang return ang if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2 ang = arg.args[0] if ang.is_comparable: return pi/2 - asec(arg) def fdiff(self, argindex=1): if argindex == 1: return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2)) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csc def _eval_as_leading_term(self, x, cdir=0): from sympy import I, im, log arg = self.args[0] x0 = arg.subs(x, 0).cancel() if x0.is_zero: return I*log(arg.as_leading_term(x)) if x0 is S.ComplexInfinity: return arg.as_leading_term(x) if cdir != 0: cdir = arg.dir(x, cdir) if im(cdir) < 0 and x0.is_real and x0 > S.Zero and x0 < S.One: return S.Pi - self.func(x0) elif im(cdir) > 0 and x0.is_real and x0 < S.Zero and x0 > S.NegativeOne: return -S.Pi - self.func(x0) return self.func(x0) def _eval_nseries(self, x, n, logx, cdir=0): #acsc from sympy import Dummy, im, O arg0 = self.args[0].subs(x, 0) if arg0 is S.One: t = Dummy('t', positive=True) ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne + self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) if arg0 is S.NegativeOne: t = Dummy('t', positive=True) ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n) arg1 = S.NegativeOne - self.args[0] f = arg1.as_leading_term(x) g = (arg1 - f)/ f res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx) res = (res1.removeO()*sqrt(f)).expand() return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x) res = Function._eval_nseries(self, x, n=n, logx=logx) if arg0 is S.ComplexInfinity: return res if cdir != 0: cdir = self.args[0].dir(x, cdir) if im(cdir) < 0 and arg0.is_real and arg0 > S.Zero and arg0 < S.One: return S.Pi - res elif im(cdir) > 0 and arg0.is_real and arg0 < S.Zero and arg0 > S.NegativeOne: return -S.Pi - res return res def _eval_rewrite_as_log(self, arg, **kwargs): return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2)) def _eval_rewrite_as_asin(self, arg, **kwargs): return asin(1/arg) def _eval_rewrite_as_acos(self, arg, **kwargs): return S.Pi/2 - acos(1/arg) def _eval_rewrite_as_atan(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1))) def _eval_rewrite_as_acot(self, arg, **kwargs): return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1))) def _eval_rewrite_as_asec(self, arg, **kwargs): return S.Pi/2 - asec(arg) class atan2(InverseTrigonometricFunction): r""" The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking two arguments `y` and `x`. Signs of both `y` and `x` are considered to determine the appropriate quadrant of `\operatorname{atan}(y/x)`. The range is `(-\pi, \pi]`. The complete definition reads as follows: .. math:: \operatorname{atan2}(y, x) = \begin{cases} \arctan\left(\frac y x\right) & \qquad x > 0 \\ \arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\ \arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\ +\frac{\pi}{2} & \qquad y > 0 , x = 0 \\ -\frac{\pi}{2} & \qquad y < 0 , x = 0 \\ \text{undefined} & \qquad y = 0, x = 0 \end{cases} Attention: Note the role reversal of both arguments. The `y`-coordinate is the first argument and the `x`-coordinate the second. If either `x` or `y` is complex: .. math:: \operatorname{atan2}(y, x) = -i\log\left(\frac{x + iy}{\sqrt{x**2 + y**2}}\right) Examples ======== Going counter-clock wise around the origin we find the following angles: >>> from sympy import atan2 >>> atan2(0, 1) 0 >>> atan2(1, 1) pi/4 >>> atan2(1, 0) pi/2 >>> atan2(1, -1) 3*pi/4 >>> atan2(0, -1) pi >>> atan2(-1, -1) -3*pi/4 >>> atan2(-1, 0) -pi/2 >>> atan2(-1, 1) -pi/4 which are all correct. Compare this to the results of the ordinary `\operatorname{atan}` function for the point `(x, y) = (-1, 1)` >>> from sympy import atan, S >>> atan(S(1)/-1) -pi/4 >>> atan2(1, -1) 3*pi/4 where only the `\operatorname{atan2}` function reurns what we expect. We can differentiate the function with respect to both arguments: >>> from sympy import diff >>> from sympy.abc import x, y >>> diff(atan2(y, x), x) -y/(x**2 + y**2) >>> diff(atan2(y, x), y) x/(x**2 + y**2) We can express the `\operatorname{atan2}` function in terms of complex logarithms: >>> from sympy import log >>> atan2(y, x).rewrite(log) -I*log((x + I*y)/sqrt(x**2 + y**2)) and in terms of `\operatorname(atan)`: >>> from sympy import atan >>> atan2(y, x).rewrite(atan) Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) but note that this form is undefined on the negative real axis. See Also ======== sin, csc, cos, sec, tan, cot asin, acsc, acos, asec, atan, acot References ========== .. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions .. [2] https://en.wikipedia.org/wiki/Atan2 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2 """ @classmethod def eval(cls, y, x): from sympy import Heaviside, im, re if x is S.NegativeInfinity: if y.is_zero: # Special case y = 0 because we define Heaviside(0) = 1/2 return S.Pi return 2*S.Pi*(Heaviside(re(y))) - S.Pi elif x is S.Infinity: return S.Zero elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number: x = im(x) y = im(y) if x.is_extended_real and y.is_extended_real: if x.is_positive: return atan(y/x) elif x.is_negative: if y.is_negative: return atan(y/x) - S.Pi elif y.is_nonnegative: return atan(y/x) + S.Pi elif x.is_zero: if y.is_positive: return S.Pi/2 elif y.is_negative: return -S.Pi/2 elif y.is_zero: return S.NaN if y.is_zero: if x.is_extended_nonzero: return S.Pi*(S.One - Heaviside(x)) if x.is_number: return Piecewise((S.Pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) if x.is_number and y.is_number: return -S.ImaginaryUnit*log( (x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_log(self, y, x, **kwargs): return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2)) def _eval_rewrite_as_atan(self, y, x, **kwargs): from sympy import re return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (S.NaN, True)) def _eval_rewrite_as_arg(self, y, x, **kwargs): from sympy import arg if x.is_extended_real and y.is_extended_real: return arg(x + y*S.ImaginaryUnit) n = x + S.ImaginaryUnit*y d = x**2 + y**2 return arg(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d))) def _eval_is_extended_real(self): return self.args[0].is_extended_real and self.args[1].is_extended_real def _eval_conjugate(self): return self.func(self.args[0].conjugate(), self.args[1].conjugate()) def fdiff(self, argindex): y, x = self.args if argindex == 1: # Diff wrt y return x/(x**2 + y**2) elif argindex == 2: # Diff wrt x return -y/(x**2 + y**2) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): y, x = self.args if x.is_extended_real and y.is_extended_real: return super()._eval_evalf(prec)
6de6ff6ad3b159cdbd112f2051c36a36ac4e23bddb782bc5a83899b000887a80
from sympy.core import Function, S, sympify from sympy.utilities.iterables import sift from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.compatibility import ordered from sympy.core.operations import LatticeOp, ShortCircuit from sympy.core.function import (Application, Lambda, ArgumentIndexError) from sympy.core.expr import Expr from sympy.core.mod import Mod from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.power import Pow from sympy.core.relational import Eq, Relational from sympy.core.singleton import Singleton from sympy.core.symbol import Dummy from sympy.core.rules import Transform from sympy.core.logic import fuzzy_and, fuzzy_or, _torf from sympy.logic.boolalg import And, Or def _minmax_as_Piecewise(op, *args): # helper for Min/Max rewrite as Piecewise from sympy.functions.elementary.piecewise import Piecewise ec = [] for i, a in enumerate(args): c = [] for j in range(i + 1, len(args)): c.append(Relational(a, args[j], op)) ec.append((a, And(*c))) return Piecewise(*ec) class IdentityFunction(Lambda, metaclass=Singleton): """ The identity function Examples ======== >>> from sympy import Id, Symbol >>> x = Symbol('x') >>> Id(x) x """ _symbol = Dummy('x') @property def signature(self): return Tuple(self._symbol) @property def expr(self): return self._symbol Id = S.IdentityFunction ############################################################################### ############################# ROOT and SQUARE ROOT FUNCTION ################### ############################################################################### def sqrt(arg, evaluate=None): """Returns the principal square root. Parameters ========== evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import sqrt, Symbol, S >>> x = Symbol('x') >>> sqrt(x) sqrt(x) >>> sqrt(x)**2 x Note that sqrt(x**2) does not simplify to x. >>> sqrt(x**2) sqrt(x**2) This is because the two are not equal to each other in general. For example, consider x == -1: >>> from sympy import Eq >>> Eq(sqrt(x**2), x).subs(x, -1) False This is because sqrt computes the principal square root, so the square may put the argument in a different branch. This identity does hold if x is positive: >>> y = Symbol('y', positive=True) >>> sqrt(y**2) y You can force this simplification by using the powdenest() function with the force option set to True: >>> from sympy import powdenest >>> sqrt(x**2) sqrt(x**2) >>> powdenest(sqrt(x**2), force=True) x To get both branches of the square root you can use the rootof function: >>> from sympy import rootof >>> [rootof(x**2-3,i) for i in (0,1)] [-sqrt(3), sqrt(3)] Although ``sqrt`` is printed, there is no ``sqrt`` function so looking for ``sqrt`` in an expression will fail: >>> from sympy.utilities.misc import func_name >>> func_name(sqrt(x)) 'Pow' >>> sqrt(x).has(sqrt) Traceback (most recent call last): ... sympy.core.sympify.SympifyError: SympifyError: <function sqrt at 0x10e8900d0> To find ``sqrt`` look for ``Pow`` with an exponent of ``1/2``: >>> (x + 1/sqrt(x)).find(lambda i: i.is_Pow and abs(i.exp) is S.Half) {1/sqrt(x)} See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== .. [1] https://en.wikipedia.org/wiki/Square_root .. [2] https://en.wikipedia.org/wiki/Principal_value """ # arg = sympify(arg) is handled by Pow return Pow(arg, S.Half, evaluate=evaluate) def cbrt(arg, evaluate=None): """Returns the principal cube root. Parameters ========== evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import cbrt, Symbol >>> x = Symbol('x') >>> cbrt(x) x**(1/3) >>> cbrt(x)**3 x Note that cbrt(x**3) does not simplify to x. >>> cbrt(x**3) (x**3)**(1/3) This is because the two are not equal to each other in general. For example, consider `x == -1`: >>> from sympy import Eq >>> Eq(cbrt(x**3), x).subs(x, -1) False This is because cbrt computes the principal cube root, this identity does hold if `x` is positive: >>> y = Symbol('y', positive=True) >>> cbrt(y**3) y See Also ======== sympy.polys.rootoftools.rootof, root, real_root References ========== * https://en.wikipedia.org/wiki/Cube_root * https://en.wikipedia.org/wiki/Principal_value """ return Pow(arg, Rational(1, 3), evaluate=evaluate) def root(arg, n, k=0, evaluate=None): r"""Returns the *k*-th *n*-th root of ``arg``. Parameters ========== k : int, optional Should be an integer in $\{0, 1, ..., n-1\}$. Defaults to the principal root if $0$. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, Rational >>> from sympy.abc import x, n >>> root(x, 2) sqrt(x) >>> root(x, 3) x**(1/3) >>> root(x, n) x**(1/n) >>> root(x, -Rational(2, 3)) x**(-3/2) To get the k-th n-th root, specify k: >>> root(-2, 3, 2) -(-1)**(2/3)*2**(1/3) To get all n n-th roots you can use the rootof function. The following examples show the roots of unity for n equal 2, 3 and 4: >>> from sympy import rootof >>> [rootof(x**2 - 1, i) for i in range(2)] [-1, 1] >>> [rootof(x**3 - 1,i) for i in range(3)] [1, -1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2] >>> [rootof(x**4 - 1,i) for i in range(4)] [-1, 1, -I, I] SymPy, like other symbolic algebra systems, returns the complex root of negative numbers. This is the principal root and differs from the text-book result that one might be expecting. For example, the cube root of -8 does not come back as -2: >>> root(-8, 3) 2*(-1)**(1/3) The real_root function can be used to either make the principal result real (or simply to return the real root directly): >>> from sympy import real_root >>> real_root(_) -2 >>> real_root(-32, 5) -2 Alternatively, the n//2-th n-th root of a negative number can be computed with root: >>> root(-32, 5, 5//2) -2 See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot sqrt, real_root References ========== * https://en.wikipedia.org/wiki/Square_root * https://en.wikipedia.org/wiki/Real_root * https://en.wikipedia.org/wiki/Root_of_unity * https://en.wikipedia.org/wiki/Principal_value * http://mathworld.wolfram.com/CubeRoot.html """ n = sympify(n) if k: return Mul(Pow(arg, S.One/n, evaluate=evaluate), S.NegativeOne**(2*k/n), evaluate=evaluate) return Pow(arg, 1/n, evaluate=evaluate) def real_root(arg, n=None, evaluate=None): """Return the real *n*'th-root of *arg* if possible. Parameters ========== n : int or None, optional If *n* is ``None``, then all instances of ``(-n)**(1/odd)`` will be changed to ``-n**(1/odd)``. This will only create a real root of a principal root. The presence of other factors may cause the result to not be real. evaluate : bool, optional The parameter determines if the expression should be evaluated. If ``None``, its value is taken from ``global_parameters.evaluate``. Examples ======== >>> from sympy import root, real_root >>> real_root(-8, 3) -2 >>> root(-8, 3) 2*(-1)**(1/3) >>> real_root(_) -2 If one creates a non-principal root and applies real_root, the result will not be real (so use with caution): >>> root(-8, 3, 2) -2*(-1)**(2/3) >>> real_root(_) -2*(-1)**(2/3) See Also ======== sympy.polys.rootoftools.rootof sympy.core.power.integer_nthroot root, sqrt """ from sympy.functions.elementary.complexes import Abs, im, sign from sympy.functions.elementary.piecewise import Piecewise if n is not None: return Piecewise( (root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))), (Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate), And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))), (root(arg, n, evaluate=evaluate), True)) rv = sympify(arg) n1pow = Transform(lambda x: -(-x.base)**x.exp, lambda x: x.is_Pow and x.base.is_negative and x.exp.is_Rational and x.exp.p == 1 and x.exp.q % 2) return rv.xreplace(n1pow) ############################################################################### ############################# MINIMUM and MAXIMUM ############################# ############################################################################### class MinMaxBase(Expr, LatticeOp): def __new__(cls, *args, **assumptions): evaluate = assumptions.pop('evaluate', True) args = (sympify(arg) for arg in args) # first standard filter, for cls.zero and cls.identity # also reshape Max(a, Max(b, c)) to Max(a, b, c) if evaluate: try: args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return cls.zero else: args = frozenset(args) if evaluate: # remove redundant args that are easily identified args = cls._collapse_arguments(args, **assumptions) # find local zeros args = cls._find_localzeros(args, **assumptions) if not args: return cls.identity if len(args) == 1: return list(args).pop() # base creation _args = frozenset(args) obj = Expr.__new__(cls, *ordered(_args), **assumptions) obj._argset = _args return obj @classmethod def _collapse_arguments(cls, args, **assumptions): """Remove redundant args. Examples ======== >>> from sympy import Min, Max >>> from sympy.abc import a, b, c, d, e Any arg in parent that appears in any parent-like function in any of the flat args of parent can be removed from that sub-arg: >>> Min(a, Max(b, Min(a, c, d))) Min(a, Max(b, Min(c, d))) If the arg of parent appears in an opposite-than parent function in any of the flat args of parent that function can be replaced with the arg: >>> Min(a, Max(b, Min(c, d, Max(a, e)))) Min(a, Max(b, Min(a, c, d))) """ from sympy.utilities.iterables import ordered from sympy.simplify.simplify import walk if not args: return args args = list(ordered(args)) if cls == Min: other = Max else: other = Min # find global comparable max of Max and min of Min if a new # value is being introduced in these args at position 0 of # the ordered args if args[0].is_number: sifted = mins, maxs = [], [] for i in args: for v in walk(i, Min, Max): if v.args[0].is_comparable: sifted[isinstance(v, Max)].append(v) small = Min.identity for i in mins: v = i.args[0] if v.is_number and (v < small) == True: small = v big = Max.identity for i in maxs: v = i.args[0] if v.is_number and (v > big) == True: big = v # at the point when this function is called from __new__, # there may be more than one numeric arg present since # local zeros have not been handled yet, so look through # more than the first arg if cls == Min: for i in range(len(args)): if not args[i].is_number: break if (args[i] < small) == True: small = args[i] elif cls == Max: for i in range(len(args)): if not args[i].is_number: break if (args[i] > big) == True: big = args[i] T = None if cls == Min: if small != Min.identity: other = Max T = small elif big != Max.identity: other = Min T = big if T is not None: # remove numerical redundancy for i in range(len(args)): a = args[i] if isinstance(a, other): a0 = a.args[0] if ((a0 > T) if other == Max else (a0 < T)) == True: args[i] = cls.identity # remove redundant symbolic args def do(ai, a): if not isinstance(ai, (Min, Max)): return ai cond = a in ai.args if not cond: return ai.func(*[do(i, a) for i in ai.args], evaluate=False) if isinstance(ai, cls): return ai.func(*[do(i, a) for i in ai.args if i != a], evaluate=False) return a for i, a in enumerate(args): args[i + 1:] = [do(ai, a) for ai in args[i + 1:]] # factor out common elements as for # Min(Max(x, y), Max(x, z)) -> Max(x, Min(y, z)) # and vice versa when swapping Min/Max -- do this only for the # easy case where all functions contain something in common; # trying to find some optimal subset of args to modify takes # too long def factor_minmax(args): is_other = lambda arg: isinstance(arg, other) other_args, remaining_args = sift(args, is_other, binary=True) if not other_args: return args # Min(Max(x, y, z), Max(x, y, u, v)) -> {x,y}, ({z}, {u,v}) arg_sets = [set(arg.args) for arg in other_args] common = set.intersection(*arg_sets) if not common: return args new_other_args = list(common) arg_sets_diff = [arg_set - common for arg_set in arg_sets] # If any set is empty after removing common then all can be # discarded e.g. Min(Max(a, b, c), Max(a, b)) -> Max(a, b) if all(arg_sets_diff): other_args_diff = [other(*s, evaluate=False) for s in arg_sets_diff] new_other_args.append(cls(*other_args_diff, evaluate=False)) other_args_factored = other(*new_other_args, evaluate=False) return remaining_args + [other_args_factored] if len(args) > 1: args = factor_minmax(args) return args @classmethod def _new_args_filter(cls, arg_sequence): """ Generator filtering args. first standard filter, for cls.zero and cls.identity. Also reshape Max(a, Max(b, c)) to Max(a, b, c), and check arguments for comparability """ for arg in arg_sequence: # pre-filter, checking comparability of arguments if not isinstance(arg, Expr) or arg.is_extended_real is False or ( arg.is_number and not arg.is_comparable): raise ValueError("The argument '%s' is not comparable." % arg) if arg == cls.zero: raise ShortCircuit(arg) elif arg == cls.identity: continue elif arg.func == cls: yield from arg.args else: yield arg @classmethod def _find_localzeros(cls, values, **options): """ Sequentially allocate values to localzeros. When a value is identified as being more extreme than another member it replaces that member; if this is never true, then the value is simply appended to the localzeros. """ localzeros = set() for v in values: is_newzero = True localzeros_ = list(localzeros) for z in localzeros_: if id(v) == id(z): is_newzero = False else: con = cls._is_connected(v, z) if con: is_newzero = False if con is True or con == cls: localzeros.remove(z) localzeros.update([v]) if is_newzero: localzeros.update([v]) return localzeros @classmethod def _is_connected(cls, x, y): """ Check if x and y are connected somehow. """ from sympy.core.exprtools import factor_terms def hit(v, t, f): if not v.is_Relational: return t if v else f for i in range(2): if x == y: return True r = hit(x >= y, Max, Min) if r is not None: return r r = hit(y <= x, Max, Min) if r is not None: return r r = hit(x <= y, Min, Max) if r is not None: return r r = hit(y >= x, Min, Max) if r is not None: return r # simplification can be expensive, so be conservative # in what is attempted x = factor_terms(x - y) y = S.Zero return False def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_rewrite_as_Abs(self, *args, **kwargs): from sympy.functions.elementary.complexes import Abs s = (args[0] + self.func(*args[1:]))/2 d = abs(args[0] - self.func(*args[1:]))/2 return (s + d if isinstance(self, Max) else s - d).rewrite(Abs) def evalf(self, n=15, **options): return self.func(*[a.evalf(n, **options) for a in self.args]) def n(self, *args, **kwargs): return self.evalf(*args, **kwargs) _eval_is_algebraic = lambda s: _torf(i.is_algebraic for i in s.args) _eval_is_antihermitian = lambda s: _torf(i.is_antihermitian for i in s.args) _eval_is_commutative = lambda s: _torf(i.is_commutative for i in s.args) _eval_is_complex = lambda s: _torf(i.is_complex for i in s.args) _eval_is_composite = lambda s: _torf(i.is_composite for i in s.args) _eval_is_even = lambda s: _torf(i.is_even for i in s.args) _eval_is_finite = lambda s: _torf(i.is_finite for i in s.args) _eval_is_hermitian = lambda s: _torf(i.is_hermitian for i in s.args) _eval_is_imaginary = lambda s: _torf(i.is_imaginary for i in s.args) _eval_is_infinite = lambda s: _torf(i.is_infinite for i in s.args) _eval_is_integer = lambda s: _torf(i.is_integer for i in s.args) _eval_is_irrational = lambda s: _torf(i.is_irrational for i in s.args) _eval_is_negative = lambda s: _torf(i.is_negative for i in s.args) _eval_is_noninteger = lambda s: _torf(i.is_noninteger for i in s.args) _eval_is_nonnegative = lambda s: _torf(i.is_nonnegative for i in s.args) _eval_is_nonpositive = lambda s: _torf(i.is_nonpositive for i in s.args) _eval_is_nonzero = lambda s: _torf(i.is_nonzero for i in s.args) _eval_is_odd = lambda s: _torf(i.is_odd for i in s.args) _eval_is_polar = lambda s: _torf(i.is_polar for i in s.args) _eval_is_positive = lambda s: _torf(i.is_positive for i in s.args) _eval_is_prime = lambda s: _torf(i.is_prime for i in s.args) _eval_is_rational = lambda s: _torf(i.is_rational for i in s.args) _eval_is_real = lambda s: _torf(i.is_real for i in s.args) _eval_is_extended_real = lambda s: _torf(i.is_extended_real for i in s.args) _eval_is_transcendental = lambda s: _torf(i.is_transcendental for i in s.args) _eval_is_zero = lambda s: _torf(i.is_zero for i in s.args) class Max(MinMaxBase, Application): """ Return, if possible, the maximum value of the list. When number of arguments is equal one, then return this argument. When number of arguments is equal two, then return, if possible, the value from (a, b) that is >= the other. In common case, when the length of list greater than 2, the task is more complicated. Return only the arguments, which are greater than others, if it is possible to determine directional relation. If is not possible to determine such a relation, return a partially evaluated result. Assumptions are used to make the decision too. Also, only comparable arguments are permitted. It is named ``Max`` and not ``max`` to avoid conflicts with the built-in function ``max``. Examples ======== >>> from sympy import Max, Symbol, oo >>> from sympy.abc import x, y, z >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Max(x, -2) Max(-2, x) >>> Max(x, -2).subs(x, 3) 3 >>> Max(p, -2) p >>> Max(x, y) Max(x, y) >>> Max(x, y) == Max(y, x) True >>> Max(x, Max(y, z)) Max(x, y, z) >>> Max(n, 8, p, 7, -oo) Max(8, p) >>> Max (1, x, oo) oo * Algorithm The task can be considered as searching of supremums in the directed complete partial orders [1]_. The source values are sequentially allocated by the isolated subsets in which supremums are searched and result as Max arguments. If the resulted supremum is single, then it is returned. The isolated subsets are the sets of values which are only the comparable with each other in the current set. E.g. natural numbers are comparable with each other, but not comparable with the `x` symbol. Another example: the symbol `x` with negative assumption is comparable with a natural number. Also there are "least" elements, which are comparable with all others, and have a zero property (maximum or minimum for all elements). E.g. `oo`. In case of it the allocation operation is terminated and only this value is returned. Assumption: - if A > B > C then A > C - if A == B then B can be removed References ========== .. [1] https://en.wikipedia.org/wiki/Directed_complete_partial_order .. [2] https://en.wikipedia.org/wiki/Lattice_%28order%29 See Also ======== Min : find minimum values """ zero = S.Infinity identity = S.NegativeInfinity def fdiff( self, argindex ): from sympy import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside(self.args[argindex] - self.args[1 - argindex]) newargs = tuple([self.args[i] for i in range(n) if i != argindex]) return Heaviside(self.args[argindex] - Max(*newargs)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy import Heaviside return Add(*[j*Mul(*[Heaviside(j - i) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('>=', *args) def _eval_is_positive(self): return fuzzy_or(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_or(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_and(a.is_negative for a in self.args) class Min(MinMaxBase, Application): """ Return, if possible, the minimum value of the list. It is named ``Min`` and not ``min`` to avoid conflicts with the built-in function ``min``. Examples ======== >>> from sympy import Min, Symbol, oo >>> from sympy.abc import x, y >>> p = Symbol('p', positive=True) >>> n = Symbol('n', negative=True) >>> Min(x, -2) Min(-2, x) >>> Min(x, -2).subs(x, 3) -2 >>> Min(p, -3) -3 >>> Min(x, y) Min(x, y) >>> Min(n, 8, p, -7, p, oo) Min(-7, n) See Also ======== Max : find maximum values """ zero = S.NegativeInfinity identity = S.Infinity def fdiff( self, argindex ): from sympy import Heaviside n = len(self.args) if 0 < argindex and argindex <= n: argindex -= 1 if n == 2: return Heaviside( self.args[1-argindex] - self.args[argindex] ) newargs = tuple([ self.args[i] for i in range(n) if i != argindex]) return Heaviside( Min(*newargs) - self.args[argindex] ) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): from sympy import Heaviside return Add(*[j*Mul(*[Heaviside(i-j) for i in args if i!=j]) \ for j in args]) def _eval_rewrite_as_Piecewise(self, *args, **kwargs): return _minmax_as_Piecewise('<=', *args) def _eval_is_positive(self): return fuzzy_and(a.is_positive for a in self.args) def _eval_is_nonnegative(self): return fuzzy_and(a.is_nonnegative for a in self.args) def _eval_is_negative(self): return fuzzy_or(a.is_negative for a in self.args)
72953b69c14bca2f776be81a9e95c0ef13be912ee7ff61117e24046ccb7c47a1
from sympy.core import Basic, S, Function, diff, Tuple, Dummy from sympy.core.basic import as_Basic from sympy.core.numbers import Rational, NumberSymbol from sympy.core.relational import (Equality, Unequality, Relational, _canonical) from sympy.functions.elementary.miscellaneous import Max, Min from sympy.logic.boolalg import (And, Boolean, distribute_and_over_or, true, false, Or, ITE, simplify_logic) from sympy.utilities.iterables import uniq, ordered, product, sift from sympy.utilities.misc import filldedent, func_name Undefined = S.NaN # Piecewise() class ExprCondPair(Tuple): """Represents an expression, condition pair.""" def __new__(cls, expr, cond): expr = as_Basic(expr) if cond == True: return Tuple.__new__(cls, expr, true) elif cond == False: return Tuple.__new__(cls, expr, false) elif isinstance(cond, Basic) and cond.has(Piecewise): cond = piecewise_fold(cond) if isinstance(cond, Piecewise): cond = cond.rewrite(ITE) if not isinstance(cond, Boolean): raise TypeError(filldedent(''' Second argument must be a Boolean, not `%s`''' % func_name(cond))) return Tuple.__new__(cls, expr, cond) @property def expr(self): """ Returns the expression of this pair. """ return self.args[0] @property def cond(self): """ Returns the condition of this pair. """ return self.args[1] @property def is_commutative(self): return self.expr.is_commutative def __iter__(self): yield self.expr yield self.cond def _eval_simplify(self, **kwargs): return self.func(*[a.simplify(**kwargs) for a in self.args]) class Piecewise(Function): """ Represents a piecewise function. Usage: Piecewise( (expr,cond), (expr,cond), ... ) - Each argument is a 2-tuple defining an expression and condition - The conds are evaluated in turn returning the first that is True. If any of the evaluated conds are not determined explicitly False, e.g. x < 1, the function is returned in symbolic form. - If the function is evaluated at a place where all conditions are False, nan will be returned. - Pairs where the cond is explicitly False, will be removed. Examples ======== >>> from sympy import Piecewise, log, piecewise_fold >>> from sympy.abc import x, y >>> f = x**2 >>> g = log(x) >>> p = Piecewise((0, x < -1), (f, x <= 1), (g, True)) >>> p.subs(x,1) 1 >>> p.subs(x,5) log(5) Booleans can contain Piecewise elements: >>> cond = (x < y).subs(x, Piecewise((2, x < 0), (3, True))); cond Piecewise((2, x < 0), (3, True)) < y The folded version of this results in a Piecewise whose expressions are Booleans: >>> folded_cond = piecewise_fold(cond); folded_cond Piecewise((2 < y, x < 0), (3 < y, True)) When a Boolean containing Piecewise (like cond) or a Piecewise with Boolean expressions (like folded_cond) is used as a condition, it is converted to an equivalent ITE object: >>> Piecewise((1, folded_cond)) Piecewise((1, ITE(x < 0, y > 2, y > 3))) When a condition is an ITE, it will be converted to a simplified Boolean expression: >>> piecewise_fold(_) Piecewise((1, ((x >= 0) | (y > 2)) & ((y > 3) | (x < 0)))) See Also ======== piecewise_fold, ITE """ nargs = None is_Piecewise = True def __new__(cls, *args, **options): if len(args) == 0: raise TypeError("At least one (expr, cond) pair expected.") # (Try to) sympify args first newargs = [] for ec in args: # ec could be a ExprCondPair or a tuple pair = ExprCondPair(*getattr(ec, 'args', ec)) cond = pair.cond if cond is false: continue newargs.append(pair) if cond is true: break if options.pop('evaluate', True): r = cls.eval(*newargs) else: r = None if r is None: return Basic.__new__(cls, *newargs, **options) else: return r @classmethod def eval(cls, *_args): """Either return a modified version of the args or, if no modifications were made, return None. Modifications that are made here: 1) relationals are made canonical 2) any False conditions are dropped 3) any repeat of a previous condition is ignored 3) any args past one with a true condition are dropped If there are no args left, nan will be returned. If there is a single arg with a True condition, its corresponding expression will be returned. """ from sympy.functions.elementary.complexes import im, re if not _args: return Undefined if len(_args) == 1 and _args[0][-1] == True: return _args[0][0] newargs = [] # the unevaluated conditions current_cond = set() # the conditions up to a given e, c pair # make conditions canonical args = [] for e, c in _args: if (not c.is_Atom and not isinstance(c, Relational) and not c.has(im, re)): free = c.free_symbols if len(free) == 1: funcs = [i for i in c.atoms(Function) if not isinstance(i, Boolean)] if len(funcs) == 1 and len( c.xreplace({list(funcs)[0]: Dummy()} ).free_symbols) == 1: # we can treat function like a symbol free = funcs _c = c x = free.pop() try: c = c.as_set().as_relational(x) except NotImplementedError: pass else: reps = {} for i in c.atoms(Relational): ic = i.canonical if ic.rhs in (S.Infinity, S.NegativeInfinity): if not _c.has(ic.rhs): # don't accept introduction of # new Relationals with +/-oo reps[i] = S.true elif ('=' not in ic.rel_op and c.xreplace({x: i.rhs}) != _c.xreplace({x: i.rhs})): reps[i] = Relational( i.lhs, i.rhs, i.rel_op + '=') c = c.xreplace(reps) args.append((e, _canonical(c))) for expr, cond in args: # Check here if expr is a Piecewise and collapse if one of # the conds in expr matches cond. This allows the collapsing # of Piecewise((Piecewise((x,x<0)),x<0)) to Piecewise((x,x<0)). # This is important when using piecewise_fold to simplify # multiple Piecewise instances having the same conds. # Eventually, this code should be able to collapse Piecewise's # having different intervals, but this will probably require # using the new assumptions. if isinstance(expr, Piecewise): unmatching = [] for i, (e, c) in enumerate(expr.args): if c in current_cond: # this would already have triggered continue if c == cond: if c != True: # nothing past this condition will ever # trigger and only those args before this # that didn't match a previous condition # could possibly trigger if unmatching: expr = Piecewise(*( unmatching + [(e, c)])) else: expr = e break else: unmatching.append((e, c)) # check for condition repeats got = False # -- if an And contains a condition that was # already encountered, then the And will be # False: if the previous condition was False # then the And will be False and if the previous # condition is True then then we wouldn't get to # this point. In either case, we can skip this condition. for i in ([cond] + (list(cond.args) if isinstance(cond, And) else [])): if i in current_cond: got = True break if got: continue # -- if not(c) is already in current_cond then c is # a redundant condition in an And. This does not # apply to Or, however: (e1, c), (e2, Or(~c, d)) # is not (e1, c), (e2, d) because if c and d are # both False this would give no results when the # true answer should be (e2, True) if isinstance(cond, And): nonredundant = [] for c in cond.args: if (isinstance(c, Relational) and c.negated.canonical in current_cond): continue nonredundant.append(c) cond = cond.func(*nonredundant) elif isinstance(cond, Relational): if cond.negated.canonical in current_cond: cond = S.true current_cond.add(cond) # collect successive e,c pairs when exprs or cond match if newargs: if newargs[-1].expr == expr: orcond = Or(cond, newargs[-1].cond) if isinstance(orcond, (And, Or)): orcond = distribute_and_over_or(orcond) newargs[-1] = ExprCondPair(expr, orcond) continue elif newargs[-1].cond == cond: newargs[-1] = ExprCondPair(expr, cond) continue newargs.append(ExprCondPair(expr, cond)) # some conditions may have been redundant missing = len(newargs) != len(_args) # some conditions may have changed same = all(a == b for a, b in zip(newargs, _args)) # if either change happened we return the expr with the # updated args if not newargs: raise ValueError(filldedent(''' There are no conditions (or none that are not trivially false) to define an expression.''')) if missing or not same: return cls(*newargs) def doit(self, **hints): """ Evaluate this piecewise function. """ newargs = [] for e, c in self.args: if hints.get('deep', True): if isinstance(e, Basic): newe = e.doit(**hints) if newe != self: e = newe if isinstance(c, Basic): c = c.doit(**hints) newargs.append((e, c)) return self.func(*newargs) def _eval_simplify(self, **kwargs): return piecewise_simplify(self, **kwargs) def _eval_as_leading_term(self, x, cdir=0): for e, c in self.args: if c == True or c.subs(x, 0) == True: return e.as_leading_term(x) def _eval_adjoint(self): return self.func(*[(e.adjoint(), c) for e, c in self.args]) def _eval_conjugate(self): return self.func(*[(e.conjugate(), c) for e, c in self.args]) def _eval_derivative(self, x): return self.func(*[(diff(e, x), c) for e, c in self.args]) def _eval_evalf(self, prec): return self.func(*[(e._evalf(prec), c) for e, c in self.args]) def piecewise_integrate(self, x, **kwargs): """Return the Piecewise with each expression being replaced with its antiderivative. To obtain a continuous antiderivative, use the `integrate` function or method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) Note that this does not give a continuous function, e.g. at x = 1 the 3rd condition applies and the antiderivative there is 2*x so the value of the antiderivative is 2: >>> anti = _ >>> anti.subs(x, 1) 2 The continuous derivative accounts for the integral *up to* the point of interest, however: >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> _.subs(x, 1) 1 See Also ======== Piecewise._eval_integral """ from sympy.integrals import integrate return self.func(*[(integrate(e, x, **kwargs), c) for e, c in self.args]) def _handle_irel(self, x, handler): """Return either None (if the conditions of self depend only on x) else a Piecewise expression whose expressions (handled by the handler that was passed) are paired with the governing x-independent relationals, e.g. Piecewise((A, a(x) & b(y)), (B, c(x) | c(y)) -> Piecewise( (handler(Piecewise((A, a(x) & True), (B, c(x) | True)), b(y) & c(y)), (handler(Piecewise((A, a(x) & True), (B, c(x) | False)), b(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | True)), c(y)), (handler(Piecewise((A, a(x) & False), (B, c(x) | False)), True)) """ # identify governing relationals rel = self.atoms(Relational) irel = list(ordered([r for r in rel if x not in r.free_symbols and r not in (S.true, S.false)])) if irel: args = {} exprinorder = [] for truth in product((1, 0), repeat=len(irel)): reps = dict(zip(irel, truth)) # only store the true conditions since the false are implied # when they appear lower in the Piecewise args if 1 not in truth: cond = None # flag this one so it doesn't get combined else: andargs = Tuple(*[i for i in reps if reps[i]]) free = list(andargs.free_symbols) if len(free) == 1: from sympy.solvers.inequalities import ( reduce_inequalities, _solve_inequality) try: t = reduce_inequalities(andargs, free[0]) # ValueError when there are potentially # nonvanishing imaginary parts except (ValueError, NotImplementedError): # at least isolate free symbol on left t = And(*[_solve_inequality( a, free[0], linear=True) for a in andargs]) else: t = And(*andargs) if t is S.false: continue # an impossible combination cond = t expr = handler(self.xreplace(reps)) if isinstance(expr, self.func) and len(expr.args) == 1: expr, econd = expr.args[0] cond = And(econd, True if cond is None else cond) # the ec pairs are being collected since all possibilities # are being enumerated, but don't put the last one in since # its expr might match a previous expression and it # must appear last in the args if cond is not None: args.setdefault(expr, []).append(cond) # but since we only store the true conditions we must maintain # the order so that the expression with the most true values # comes first exprinorder.append(expr) # convert collected conditions as args of Or for k in args: args[k] = Or(*args[k]) # take them in the order obtained args = [(e, args[e]) for e in uniq(exprinorder)] # add in the last arg args.append((expr, True)) return Piecewise(*args) def _eval_integral(self, x, _first=True, **kwargs): """Return the indefinite integral of the Piecewise such that subsequent substitution of x with a value will give the value of the integral (not including the constant of integration) up to that point. To only integrate the individual parts of Piecewise, use the `piecewise_integrate` method. Examples ======== >>> from sympy import Piecewise >>> from sympy.abc import x >>> p = Piecewise((0, x < 0), (1, x < 1), (2, True)) >>> p.integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x - 1, True)) >>> p.piecewise_integrate(x) Piecewise((0, x < 0), (x, x < 1), (2*x, True)) See Also ======== Piecewise.piecewise_integrate """ from sympy.integrals.integrals import integrate if _first: def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_integral(x, _first=False, **kwargs) else: return ipw.integrate(x, **kwargs) irv = self._handle_irel(x, handler) if irv is not None: return irv # handle a Piecewise from -oo to oo with and no x-independent relationals # ----------------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral return Integral(self, x) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] oo = S.Infinity done = [(-oo, oo, -1)] for k, p in enumerate(pieces): if p == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # append an arg if there is a hole so a reference to # argument -1 will give Undefined if any(i == -1 for (a, b, i) in done): abei.append((-oo, oo, Undefined, -1)) # return the sum of the intervals args = [] sum = None for a, b, i in done: anti = integrate(abei[i][-2], x, **kwargs) if sum is None: sum = anti else: sum = sum.subs(x, a) if sum == Undefined: sum = 0 sum += anti._eval_interval(x, a, x) # see if we know whether b is contained in original # condition if b is S.Infinity: cond = True elif self.args[abei[i][-1]].cond.subs(x, b) == False: cond = (x < b) else: cond = (x <= b) args.append((sum, cond)) return Piecewise(*args) def _eval_interval(self, sym, a, b, _first=True): """Evaluates the function along the sym in a given interval [a, b]""" # FIXME: Currently complex intervals are not supported. A possible # replacement algorithm, discussed in issue 5227, can be found in the # following papers; # http://portal.acm.org/citation.cfm?id=281649 # http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.4127&rep=rep1&type=pdf from sympy.core.symbol import Dummy if a is None or b is None: # In this case, it is just simple substitution return super()._eval_interval(sym, a, b) else: x, lo, hi = map(as_Basic, (sym, a, b)) if _first: # get only x-dependent relationals def handler(ipw): if isinstance(ipw, self.func): return ipw._eval_interval(x, lo, hi, _first=None) else: return ipw._eval_interval(x, lo, hi) irv = self._handle_irel(x, handler) if irv is not None: return irv if (lo < hi) is S.false or ( lo is S.Infinity or hi is S.NegativeInfinity): rv = self._eval_interval(x, hi, lo, _first=False) if isinstance(rv, Piecewise): rv = Piecewise(*[(-e, c) for e, c in rv.args]) else: rv = -rv return rv if (lo < hi) is S.true or ( hi is S.Infinity or lo is S.NegativeInfinity): pass else: _a = Dummy('lo') _b = Dummy('hi') a = lo if lo.is_comparable else _a b = hi if hi.is_comparable else _b pos = self._eval_interval(x, a, b, _first=False) if a == _a and b == _b: # it's purely symbolic so just swap lo and hi and # change the sign to get the value for when lo > hi neg, pos = (-pos.xreplace({_a: hi, _b: lo}), pos.xreplace({_a: lo, _b: hi})) else: # at least one of the bounds was comparable, so allow # _eval_interval to use that information when computing # the interval with lo and hi reversed neg, pos = (-self._eval_interval(x, hi, lo, _first=False), pos.xreplace({_a: lo, _b: hi})) # allow simplification based on ordering of lo and hi p = Dummy('', positive=True) if lo.is_Symbol: pos = pos.xreplace({lo: hi - p}).xreplace({p: hi - lo}) neg = neg.xreplace({lo: hi + p}).xreplace({p: lo - hi}) elif hi.is_Symbol: pos = pos.xreplace({hi: lo + p}).xreplace({p: hi - lo}) neg = neg.xreplace({hi: lo - p}).xreplace({p: lo - hi}) # evaluate limits that may have unevaluate Min/Max touch = lambda _: _.replace( lambda x: isinstance(x, (Min, Max)), lambda x: x.func(*x.args)) neg = touch(neg) pos = touch(pos) # assemble return expression; make the first condition be Lt # b/c then the first expression will look the same whether # the lo or hi limit is symbolic if a == _a: # the lower limit was symbolic rv = Piecewise( (pos, lo < hi), (neg, True)) else: rv = Piecewise( (neg, hi < lo), (pos, True)) if rv == Undefined: raise ValueError("Can't integrate across undefined region.") if any(isinstance(i, Piecewise) for i in (pos, neg)): rv = piecewise_fold(rv) return rv # handle a Piecewise with lo <= hi and no x-independent relationals # ----------------------------------------------------------------- try: abei = self._intervals(x) except NotImplementedError: from sympy import Integral # not being able to do the interval of f(x) can # be stated as not being able to do the integral # of f'(x) over the same range return Integral(self.diff(x), (x, lo, hi)) # unevaluated pieces = [(a, b) for a, b, _, _ in abei] done = [(lo, hi, -1)] oo = S.Infinity for k, p in enumerate(pieces): if p[:2] == (-oo, oo): # all undone intervals will get this key for j, (a, b, i) in enumerate(done): if i == -1: done[j] = a, b, k break # nothing else to consider N = len(done) - 1 for j, (a, b, i) in enumerate(reversed(done)): if i == -1: j = N - j done[j: j + 1] = _clip(p, (a, b), k) done = [(a, b, i) for a, b, i in done if a != b] # return the sum of the intervals sum = S.Zero upto = None for a, b, i in done: if i == -1: if upto is None: return Undefined # TODO simplify hi <= upto return Piecewise((sum, hi <= upto), (Undefined, True)) sum += abei[i][-2]._eval_interval(x, a, b) upto = b return sum def _intervals(self, sym): """Return a list of unique tuples, (a, b, e, i), where a and b are the lower and upper bounds in which the expression e of argument i in self is defined and a < b (when involving numbers) or a <= b when involving symbols. If there are any relationals not involving sym, or any relational cannot be solved for sym, NotImplementedError is raised. The calling routine should have removed such relationals before calling this routine. The evaluated conditions will be returned as ranges. Discontinuous ranges will be returned separately with identical expressions. The first condition that evaluates to True will be returned as the last tuple with a, b = -oo, oo. """ from sympy.solvers.inequalities import _solve_inequality from sympy.logic.boolalg import to_cnf, distribute_or_over_and assert isinstance(self, Piecewise) def _solve_relational(r): if sym not in r.free_symbols: nonsymfail(r) rv = _solve_inequality(r, sym) if isinstance(rv, Relational): free = rv.args[1].free_symbols if rv.args[0] != sym or sym in free: raise NotImplementedError(filldedent(''' Unable to solve relational %s for %s.''' % (r, sym))) if rv.rel_op == '==': # this equality has been affirmed to have the form # Eq(sym, rhs) where rhs is sym-free; it represents # a zero-width interval which will be ignored # whether it is an isolated condition or contained # within an And or an Or rv = S.false elif rv.rel_op == '!=': try: rv = Or(sym < rv.rhs, sym > rv.rhs) except TypeError: # e.g. x != I ==> all real x satisfy rv = S.true elif rv == (S.NegativeInfinity < sym) & (sym < S.Infinity): rv = S.true return rv def nonsymfail(cond): raise NotImplementedError(filldedent(''' A condition not involving %s appeared: %s''' % (sym, cond))) # make self canonical wrt Relationals reps = { r: _solve_relational(r) for r in self.atoms(Relational)} # process args individually so if any evaluate, their position # in the original Piecewise will be known args = [i.xreplace(reps) for i in self.args] # precondition args expr_cond = [] default = idefault = None for i, (expr, cond) in enumerate(args): if cond is S.false: continue elif cond is S.true: default = expr idefault = i break cond = to_cnf(cond) if isinstance(cond, And): cond = distribute_or_over_and(cond) if isinstance(cond, Or): expr_cond.extend( [(i, expr, o) for o in cond.args if not isinstance(o, Equality)]) elif cond is not S.false: expr_cond.append((i, expr, cond)) # determine intervals represented by conditions int_expr = [] for iarg, expr, cond in expr_cond: if isinstance(cond, And): lower = S.NegativeInfinity upper = S.Infinity exclude = [] for cond2 in cond.args: if isinstance(cond2, Equality): lower = upper # ignore break elif isinstance(cond2, Unequality): l, r = cond2.args if l == sym: exclude.append(r) elif r == sym: exclude.append(l) else: nonsymfail(cond2) continue elif cond2.lts == sym: upper = Min(cond2.gts, upper) elif cond2.gts == sym: lower = Max(cond2.lts, lower) else: nonsymfail(cond2) # should never get here if exclude: exclude = list(ordered(exclude)) newcond = [] for i, e in enumerate(exclude): if e < lower == True or e > upper == True: continue if not newcond: newcond.append((None, lower)) # add a primer newcond.append((newcond[-1][1], e)) newcond.append((newcond[-1][1], upper)) newcond.pop(0) # remove the primer expr_cond.extend([(iarg, expr, And(i[0] < sym, sym < i[1])) for i in newcond]) continue elif isinstance(cond, Relational): lower, upper = cond.lts, cond.gts # part 1: initialize with givens if cond.lts == sym: # part 1a: expand the side ... lower = S.NegativeInfinity # e.g. x <= 0 ---> -oo <= 0 elif cond.gts == sym: # part 1a: ... that can be expanded upper = S.Infinity # e.g. x >= 0 ---> oo >= 0 else: nonsymfail(cond) else: raise NotImplementedError( 'unrecognized condition: %s' % cond) lower, upper = lower, Max(lower, upper) if (lower >= upper) is not S.true: int_expr.append((lower, upper, expr, iarg)) if default is not None: int_expr.append( (S.NegativeInfinity, S.Infinity, default, idefault)) return list(uniq(int_expr)) def _eval_nseries(self, x, n, logx, cdir=0): args = [(ec.expr._eval_nseries(x, n, logx), ec.cond) for ec in self.args] return self.func(*args) def _eval_power(self, s): return self.func(*[(e**s, c) for e, c in self.args]) def _eval_subs(self, old, new): # this is strictly not necessary, but we can keep track # of whether True or False conditions arise and be # somewhat more efficient by avoiding other substitutions # and avoiding invalid conditions that appear after a # True condition args = list(self.args) args_exist = False for i, (e, c) in enumerate(args): c = c._subs(old, new) if c != False: args_exist = True e = e._subs(old, new) args[i] = (e, c) if c == True: break if not args_exist: args = ((Undefined, True),) return self.func(*args) def _eval_transpose(self): return self.func(*[(e.transpose(), c) for e, c in self.args]) def _eval_template_is_attr(self, is_attr): b = None for expr, _ in self.args: a = getattr(expr, is_attr) if a is None: return if b is None: b = a elif b is not a: return return b _eval_is_finite = lambda self: self._eval_template_is_attr( 'is_finite') _eval_is_complex = lambda self: self._eval_template_is_attr('is_complex') _eval_is_even = lambda self: self._eval_template_is_attr('is_even') _eval_is_imaginary = lambda self: self._eval_template_is_attr( 'is_imaginary') _eval_is_integer = lambda self: self._eval_template_is_attr('is_integer') _eval_is_irrational = lambda self: self._eval_template_is_attr( 'is_irrational') _eval_is_negative = lambda self: self._eval_template_is_attr('is_negative') _eval_is_nonnegative = lambda self: self._eval_template_is_attr( 'is_nonnegative') _eval_is_nonpositive = lambda self: self._eval_template_is_attr( 'is_nonpositive') _eval_is_nonzero = lambda self: self._eval_template_is_attr( 'is_nonzero') _eval_is_odd = lambda self: self._eval_template_is_attr('is_odd') _eval_is_polar = lambda self: self._eval_template_is_attr('is_polar') _eval_is_positive = lambda self: self._eval_template_is_attr('is_positive') _eval_is_extended_real = lambda self: self._eval_template_is_attr( 'is_extended_real') _eval_is_extended_positive = lambda self: self._eval_template_is_attr( 'is_extended_positive') _eval_is_extended_negative = lambda self: self._eval_template_is_attr( 'is_extended_negative') _eval_is_extended_nonzero = lambda self: self._eval_template_is_attr( 'is_extended_nonzero') _eval_is_extended_nonpositive = lambda self: self._eval_template_is_attr( 'is_extended_nonpositive') _eval_is_extended_nonnegative = lambda self: self._eval_template_is_attr( 'is_extended_nonnegative') _eval_is_real = lambda self: self._eval_template_is_attr('is_real') _eval_is_zero = lambda self: self._eval_template_is_attr( 'is_zero') @classmethod def __eval_cond(cls, cond): """Return the truth value of the condition.""" if cond == True: return True if isinstance(cond, Equality): try: diff = cond.lhs - cond.rhs if diff.is_commutative: return diff.is_zero except TypeError: pass def as_expr_set_pairs(self, domain=None): """Return tuples for each argument of self that give the expression and the interval in which it is valid which is contained within the given domain. If a condition cannot be converted to a set, an error will be raised. The variable of the conditions is assumed to be real; sets of real values are returned. Examples ======== >>> from sympy import Piecewise, Interval >>> from sympy.abc import x >>> p = Piecewise( ... (1, x < 2), ... (2,(x > 0) & (x < 4)), ... (3, True)) >>> p.as_expr_set_pairs() [(1, Interval.open(-oo, 2)), (2, Interval.Ropen(2, 4)), (3, Interval(4, oo))] >>> p.as_expr_set_pairs(Interval(0, 3)) [(1, Interval.Ropen(0, 2)), (2, Interval(2, 3))] """ if domain is None: domain = S.Reals exp_sets = [] U = domain complex = not domain.is_subset(S.Reals) cond_free = set() for expr, cond in self.args: cond_free |= cond.free_symbols if len(cond_free) > 1: raise NotImplementedError(filldedent(''' multivariate conditions are not handled.''')) if complex: for i in cond.atoms(Relational): if not isinstance(i, (Equality, Unequality)): raise ValueError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) cond_int = U.intersect(cond.as_set()) U = U - cond_int if cond_int != S.EmptySet: exp_sets.append((expr, cond_int)) return exp_sets def _eval_rewrite_as_ITE(self, *args, **kwargs): byfree = {} args = list(args) default = any(c == True for b, c in args) for i, (b, c) in enumerate(args): if not isinstance(b, Boolean) and b != True: raise TypeError(filldedent(''' Expecting Boolean or bool but got `%s` ''' % func_name(b))) if c == True: break # loop over independent conditions for this b for c in c.args if isinstance(c, Or) else [c]: free = c.free_symbols x = free.pop() try: byfree[x] = byfree.setdefault( x, S.EmptySet).union(c.as_set()) except NotImplementedError: if not default: raise NotImplementedError(filldedent(''' A method to determine whether a multivariate conditional is consistent with a complete coverage of all variables has not been implemented so the rewrite is being stopped after encountering `%s`. This error would not occur if a default expression like `(foo, True)` were given. ''' % c)) if byfree[x] in (S.UniversalSet, S.Reals): # collapse the ith condition to True and break args[i] = list(args[i]) c = args[i][1] = True break if c == True: break if c != True: raise ValueError(filldedent(''' Conditions must cover all reals or a final default condition `(foo, True)` must be given. ''')) last, _ = args[i] # ignore all past ith arg for a, c in reversed(args[:i]): last = ITE(c, a, last) return _canonical(last) def _eval_rewrite_as_KroneckerDelta(self, *args): from sympy import Ne, Eq, Not, KroneckerDelta rules = { And: [False, False], Or: [True, True], Not: [True, False], Eq: [None, None], Ne: [None, None] } class UnrecognizedCondition(Exception): pass def rewrite(cond): if isinstance(cond, Eq): return KroneckerDelta(*cond.args) if isinstance(cond, Ne): return 1 - KroneckerDelta(*cond.args) cls, args = type(cond), cond.args if cls not in rules: raise UnrecognizedCondition(cls) b1, b2 = rules[cls] k = 1 for c in args: if b1: k *= 1 - rewrite(c) else: k *= rewrite(c) if b2: return 1 - k return k conditions = [] true_value = None for value, cond in args: if type(cond) in rules: conditions.append((value, cond)) elif cond is S.true: if true_value is None: true_value = value else: return if true_value is not None: result = true_value for value, cond in conditions[::-1]: try: k = rewrite(cond) result = k * value + (1 - k) * result except UnrecognizedCondition: return return result def piecewise_fold(expr): """ Takes an expression containing a piecewise function and returns the expression in piecewise form. In addition, any ITE conditions are rewritten in negation normal form and simplified. Examples ======== >>> from sympy import Piecewise, piecewise_fold, sympify as S >>> from sympy.abc import x >>> p = Piecewise((x, x < 1), (1, S(1) <= x)) >>> piecewise_fold(x*p) Piecewise((x**2, x < 1), (x, True)) See Also ======== Piecewise """ if not isinstance(expr, Basic) or not expr.has(Piecewise): return expr new_args = [] if isinstance(expr, (ExprCondPair, Piecewise)): for e, c in expr.args: if not isinstance(e, Piecewise): e = piecewise_fold(e) # we don't keep Piecewise in condition because # it has to be checked to see that it's complete # and we convert it to ITE at that time assert not c.has(Piecewise) # pragma: no cover if isinstance(c, ITE): c = c.to_nnf() c = simplify_logic(c, form='cnf') if isinstance(e, Piecewise): new_args.extend([(piecewise_fold(ei), And(ci, c)) for ei, ci in e.args]) else: new_args.append((e, c)) else: from sympy.utilities.iterables import cartes, sift, common_prefix # Given # P1 = Piecewise((e11, c1), (e12, c2), A) # P2 = Piecewise((e21, c1), (e22, c2), B) # ... # the folding of f(P1, P2) is trivially # Piecewise( # (f(e11, e21), c1), # (f(e12, e22), c2), # (f(Piecewise(A), Piecewise(B)), True)) # Certain objects end up rewriting themselves as thus, so # we do that grouping before the more generic folding. # The following applies this idea when f = Add or f = Mul # (and the expression is commutative). if expr.is_Add or expr.is_Mul and expr.is_commutative: p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True) pc = sift(p, lambda x: tuple([c for e,c in x.args])) for c in list(ordered(pc)): if len(pc[c]) > 1: pargs = [list(i.args) for i in pc[c]] # the first one is the same; there may be more com = common_prefix(*[ [i.cond for i in j] for j in pargs]) n = len(com) collected = [] for i in range(n): collected.append(( expr.func(*[ai[i].expr for ai in pargs]), com[i])) remains = [] for a in pargs: if n == len(a): # no more args continue if a[n].cond == True: # no longer Piecewise remains.append(a[n].expr) else: # restore the remaining Piecewise remains.append( Piecewise(*a[n:], evaluate=False)) if remains: collected.append((expr.func(*remains), True)) args.append(Piecewise(*collected, evaluate=False)) continue args.extend(pc[c]) else: args = expr.args # fold folded = list(map(piecewise_fold, args)) for ec in cartes(*[ (i.args if isinstance(i, Piecewise) else [(i, true)]) for i in folded]): e, c = zip(*ec) new_args.append((expr.func(*e), And(*c))) return Piecewise(*new_args) def _clip(A, B, k): """Return interval B as intervals that are covered by A (keyed to k) and all other intervals of B not covered by A keyed to -1. The reference point of each interval is the rhs; if the lhs is greater than the rhs then an interval of zero width interval will result, e.g. (4, 1) is treated like (1, 1). Examples ======== >>> from sympy.functions.elementary.piecewise import _clip >>> from sympy import Tuple >>> A = Tuple(1, 3) >>> B = Tuple(2, 4) >>> _clip(A, B, 0) [(2, 3, 0), (3, 4, -1)] Interpretation: interval portion (2, 3) of interval (2, 4) is covered by interval (1, 3) and is keyed to 0 as requested; interval (3, 4) was not covered by (1, 3) and is keyed to -1. """ a, b = B c, d = A c, d = Min(Max(c, a), b), Min(Max(d, a), b) a, b = Min(a, b), b p = [] if a != c: p.append((a, c, -1)) else: pass if c != d: p.append((c, d, k)) else: pass if b != d: if d == c and p and p[-1][-1] == -1: p[-1] = p[-1][0], b, -1 else: p.append((d, b, -1)) else: pass return p def piecewise_simplify_arguments(expr, **kwargs): from sympy import simplify args = [] for e, c in expr.args: if isinstance(e, Basic): doit = kwargs.pop('doit', None) # Skip doit to avoid growth at every call for some integrals # and sums, see sympy/sympy#17165 newe = simplify(e, doit=False, **kwargs) if newe != expr: e = newe if isinstance(c, Basic): c = simplify(c, doit=doit, **kwargs) args.append((e, c)) return Piecewise(*args) def piecewise_simplify(expr, **kwargs): expr = piecewise_simplify_arguments(expr, **kwargs) if not isinstance(expr, Piecewise): return expr args = list(expr.args) _blessed = lambda e: getattr(e.lhs, '_diff_wrt', False) and ( getattr(e.rhs, '_diff_wrt', None) or isinstance(e.rhs, (Rational, NumberSymbol))) for i, (expr, cond) in enumerate(args): # try to simplify conditions and the expression for # equalities that are part of the condition, e.g. # Piecewise((n, And(Eq(n,0), Eq(n + m, 0))), (1, True)) # -> Piecewise((0, And(Eq(n, 0), Eq(m, 0))), (1, True)) if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] if eqs: eqs = list(ordered(eqs)) for j, e in enumerate(eqs): # these blessed lhs objects behave like Symbols # and the rhs are simple replacements for the "symbols" if _blessed(e): expr = expr.subs(*e.args) eqs[j + 1:] = [ei.subs(*e.args) for ei in eqs[j + 1:]] other = [ei.subs(*e.args) for ei in other] cond = And(*(eqs + other)) args[i] = args[i].func(expr, cond) # See if expressions valid for an Equal expression happens to evaluate # to the same function as in the next piecewise segment, see: # https://github.com/sympy/sympy/issues/8458 prevexpr = None for i, (expr, cond) in reversed(list(enumerate(args))): if prevexpr is not None: if isinstance(cond, And): eqs, other = sift(cond.args, lambda i: isinstance(i, Equality), binary=True) elif isinstance(cond, Equality): eqs, other = [cond], [] else: eqs = other = [] _prevexpr = prevexpr _expr = expr if eqs and not other: eqs = list(ordered(eqs)) for e in eqs: # allow 2 args to collapse into 1 for any e # otherwise limit simplification to only simple-arg # Eq instances if len(args) == 2 or _blessed(e): _prevexpr = _prevexpr.subs(*e.args) _expr = _expr.subs(*e.args) # Did it evaluate to the same? if _prevexpr == _expr: # Set the expression for the Not equal section to the same # as the next. These will be merged when creating the new # Piecewise args[i] = args[i].func(args[i+1][0], cond) else: # Update the expression that we compare against prevexpr = expr else: prevexpr = expr return Piecewise(*args)
58aa912d59577b825e5f16db87c4a66a2f32bb8afa1cdec2bd9366a93e2d0a5b
from sympy.core.logic import FuzzyBool from sympy.core import S, sympify, cacheit, pi, I, Rational from sympy.core.add import Add from sympy.core.function import Function, ArgumentIndexError, _coeff_isneg from sympy.functions.combinatorial.factorials import factorial, RisingFactorial from sympy.functions.elementary.exponential import exp, log, match_real_imag from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.integers import floor from sympy.core.logic import fuzzy_or, fuzzy_and def _rewrite_hyperbolics_as_exp(expr): expr = sympify(expr) return expr.xreplace({h: h.rewrite(exp) for h in expr.atoms(HyperbolicFunction)}) ############################################################################### ########################### HYPERBOLIC FUNCTIONS ############################## ############################################################################### class HyperbolicFunction(Function): """ Base class for hyperbolic functions. See Also ======== sinh, cosh, tanh, coth """ unbranched = True def _peeloff_ipi(arg): """ Split ARG into two parts, a "rest" and a multiple of I*pi/2. This assumes ARG to be an Add. The multiple of I*pi returned in the second position is always a Rational. Examples ======== >>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel >>> from sympy import pi, I >>> from sympy.abc import x, y >>> peel(x + I*pi/2) (x, I*pi/2) >>> peel(x + I*2*pi/3 + I*pi*y) (x + I*pi*y + I*pi/6, I*pi/2) """ for a in Add.make_args(arg): if a == S.Pi*S.ImaginaryUnit: K = S.One break elif a.is_Mul: K, p = a.as_two_terms() if p == S.Pi*S.ImaginaryUnit and K.is_Rational: break else: return arg, S.Zero m1 = (K % S.Half)*S.Pi*S.ImaginaryUnit m2 = K*S.Pi*S.ImaginaryUnit - m1 return arg - m2, m2 class sinh(HyperbolicFunction): r""" sinh(x) is the hyperbolic sine of x. The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$. Examples ======== >>> from sympy import sinh >>> from sympy.abc import x >>> sinh(x) sinh(x) See Also ======== cosh, tanh, asinh """ def fdiff(self, argindex=1): """ Returns the first derivative of this function. """ if argindex == 1: return cosh(self.args[0]) else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return asinh @classmethod def eval(cls, arg): from sympy import sin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg.is_zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * sin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return sinh(m)*cosh(x) + cosh(m)*sinh(x) if arg.is_zero: return S.Zero if arg.func == asinh: return arg.args[0] if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) if arg.func == atanh: x = arg.args[0] return x/sqrt(1 - x**2) if arg.func == acoth: x = arg.args[0] return 1/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion. """ if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n) / factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): """ Returns this function as a complex coordinate. """ from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (sinh(re)*cos(im), cosh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True) return sinh(arg) def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) - exp(-arg)) / 2 def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg) return 2*tanh_half/(1 - tanh_half**2) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg) return 2*coth_half/(coth_half**2 - 1) def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] if arg.is_real: return True # if `im` is of the form n*pi # else, check if it is a number re, im = arg.as_real_imag() return (im%pi).is_zero def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_is_finite(self): arg = self.args[0] return arg.is_finite def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class cosh(HyperbolicFunction): r""" cosh(x) is the hyperbolic cosine of x. The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$. Examples ======== >>> from sympy import cosh >>> from sympy.abc import x >>> cosh(x) cosh(x) See Also ======== sinh, tanh, acosh """ def fdiff(self, argindex=1): if argindex == 1: return sinh(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import cos arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg.is_zero: return S.One elif arg.is_negative: return cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return cos(i_coeff) else: if _coeff_isneg(arg): return cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: return cosh(m)*cosh(x) + sinh(m)*sinh(x) if arg.is_zero: return S.One if arg.func == asinh: return sqrt(1 + arg.args[0]**2) if arg.func == acosh: return arg.args[0] if arg.func == atanh: return 1/sqrt(1 - arg.args[0]**2) if arg.func == acoth: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2: p = previous_terms[-2] return p * x**2 / (n*(n - 1)) else: return x**(n)/factorial(n) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() return (cosh(re)*cos(im), sinh(re)*sin(im)) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit def _eval_expand_trig(self, deep=True, **hints): if deep: arg = self.args[0].expand(deep, **hints) else: arg = self.args[0] x = None if arg.is_Add: # TODO, implement more if deep stuff here x, y = arg.as_two_terms() else: coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One and coeff.is_Integer and terms is not S.One: x = terms y = (coeff - 1)*x if x is not None: return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True) return cosh(arg) def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_exp(self, arg, **kwargs): return (exp(arg) + exp(-arg)) / 2 def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(arg + S.Pi*S.ImaginaryUnit/2) def _eval_rewrite_as_tanh(self, arg, **kwargs): tanh_half = tanh(S.Half*arg)**2 return (1 + tanh_half)/(1 - tanh_half) def _eval_rewrite_as_coth(self, arg, **kwargs): coth_half = coth(S.Half*arg)**2 return (coth_half + 1)/(coth_half - 1) def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.One else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] # `cosh(x)` is real for real OR purely imaginary `x` if arg.is_real or arg.is_imaginary: return True # cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a) # the imaginary part can be an expression like n*pi # if not, check if the imaginary part is a number re, im = arg.as_real_imag() return (im%pi).is_zero def _eval_is_positive(self): # cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x) # cosh(z) is positive iff it is real and the real part is positive. # So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi # Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even # Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive z = self.args[0] x, y = z.as_real_imag() ymod = y % (2*pi) yzero = ymod.is_zero # shortcut if ymod is zero if yzero: return True xzero = x.is_zero # shortcut x is not zero if xzero is False: return yzero return fuzzy_or([ # Case 1: yzero, # Case 2: fuzzy_and([ xzero, fuzzy_or([ymod < pi/2, ymod > 3*pi/2]) ]) ]) def _eval_is_nonnegative(self): z = self.args[0] x, y = z.as_real_imag() ymod = y % (2*pi) yzero = ymod.is_zero # shortcut if ymod is zero if yzero: return True xzero = x.is_zero # shortcut x is not zero if xzero is False: return yzero return fuzzy_or([ # Case 1: yzero, # Case 2: fuzzy_and([ xzero, fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2]) ]) ]) def _eval_is_finite(self): arg = self.args[0] return arg.is_finite class tanh(HyperbolicFunction): r""" tanh(x) is the hyperbolic tangent of x. The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$. Examples ======== >>> from sympy import tanh >>> from sympy.abc import x >>> tanh(x) tanh(x) See Also ======== sinh, cosh, atanh """ def fdiff(self, argindex=1): if argindex == 1: return S.One - tanh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return atanh @classmethod def eval(cls, arg): from sympy import tan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.Zero elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return -S.ImaginaryUnit * tan(-i_coeff) return S.ImaginaryUnit * tan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: tanhm = tanh(m) if tanhm is S.ComplexInfinity: return coth(x) else: # tanhm == 0 return tanh(x) if arg.is_zero: return S.Zero if arg.func == asinh: x = arg.args[0] return x/sqrt(1 + x**2) if arg.func == acosh: x = arg.args[0] return sqrt(x - 1) * sqrt(x + 1) / x if arg.func == atanh: return arg.args[0] if arg.func == acoth: return 1/arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) a = 2**(n + 1) B = bernoulli(n + 1) F = factorial(n + 1) return a*(a - 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + cos(im)**2 return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom) def _eval_expand_trig(self, **hints): arg = self.args[0] if arg.is_Add: from sympy import symmetric_poly n = len(arg.args) TX = [tanh(x, evaluate=False)._eval_expand_trig() for x in arg.args] p = [0, 0] # [den, num] for i in range(n + 1): p[i % 2] += symmetric_poly(i, TX) return p[1]/p[0] elif arg.is_Mul: from sympy.functions.combinatorial.numbers import nC coeff, terms = arg.as_coeff_Mul() if coeff.is_Integer and coeff > 1: n = [] d = [] T = tanh(terms) for k in range(1, coeff + 1, 2): n.append(nC(range(coeff), k)*T**k) for k in range(0, coeff + 1, 2): d.append(nC(range(coeff), k)*T**k) return Add(*n)/Add(*d) return tanh(arg) def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp - neg_exp)/(pos_exp + neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit*sinh(arg)/sinh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit*cosh(S.Pi*S.ImaginaryUnit/2 - arg)/cosh(arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return 1/coth(arg) def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_is_real(self): arg = self.args[0] if arg.is_real: return True re, im = arg.as_real_imag() # if denom = 0, tanh(arg) = zoo if re == 0 and im % pi == pi/2: return None # check if im is of the form n*pi/2 to make sin(2*im) = 0 # if not, im could be a number, return False in that case return (im % (pi/2)).is_zero def _eval_is_extended_real(self): if self.args[0].is_extended_real: return True def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_is_finite(self): from sympy import sinh, cos arg = self.args[0] re, im = arg.as_real_imag() denom = cos(im)**2 + sinh(re)**2 if denom == 0: return False elif denom.is_number: return True if arg.is_extended_real: return True def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class coth(HyperbolicFunction): r""" coth(x) is the hyperbolic cotangent of x. The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$. Examples ======== >>> from sympy import coth >>> from sympy.abc import x >>> coth(x) coth(x) See Also ======== sinh, cosh, acoth """ def fdiff(self, argindex=1): if argindex == 1: return -1/sinh(self.args[0])**2 else: raise ArgumentIndexError(self, argindex) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return acoth @classmethod def eval(cls, arg): from sympy import cot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.One elif arg is S.NegativeInfinity: return S.NegativeOne elif arg.is_zero: return S.ComplexInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.NaN i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: if _coeff_isneg(i_coeff): return S.ImaginaryUnit * cot(-i_coeff) return -S.ImaginaryUnit * cot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_Add: x, m = _peeloff_ipi(arg) if m: cothm = coth(m) if cothm is S.ComplexInfinity: return coth(x) else: # cothm == 0 return tanh(x) if arg.is_zero: return S.ComplexInfinity if arg.func == asinh: x = arg.args[0] return sqrt(1 + x**2)/x if arg.func == acosh: x = arg.args[0] return x/(sqrt(x - 1) * sqrt(x + 1)) if arg.func == atanh: return 1/arg.args[0] if arg.func == acoth: return arg.args[0] @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy import bernoulli if n == 0: return 1 / sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2**(n + 1) * B/F * x**n def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def as_real_imag(self, deep=True, **hints): from sympy import cos, sin if self.args[0].is_extended_real: if deep: hints['complex'] = False return (self.expand(deep, **hints), S.Zero) else: return (self, S.Zero) if deep: re, im = self.args[0].expand(deep, **hints).as_real_imag() else: re, im = self.args[0].as_real_imag() denom = sinh(re)**2 + sin(im)**2 return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom) def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_exp(self, arg, **kwargs): neg_exp, pos_exp = exp(-arg), exp(arg) return (pos_exp + neg_exp)/(pos_exp - neg_exp) def _eval_rewrite_as_sinh(self, arg, **kwargs): return -S.ImaginaryUnit*sinh(S.Pi*S.ImaginaryUnit/2 - arg)/sinh(arg) def _eval_rewrite_as_cosh(self, arg, **kwargs): return -S.ImaginaryUnit*cosh(arg)/cosh(S.Pi*S.ImaginaryUnit/2 - arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return 1/tanh(arg) def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return 1/arg else: return self.func(arg) def _eval_expand_trig(self, **hints): arg = self.args[0] if arg.is_Add: from sympy import symmetric_poly CX = [coth(x, evaluate=False)._eval_expand_trig() for x in arg.args] p = [[], []] n = len(arg.args) for i in range(n, -1, -1): p[(n - i) % 2].append(symmetric_poly(i, CX)) return Add(*p[0])/Add(*p[1]) elif arg.is_Mul: from sympy import binomial coeff, x = arg.as_coeff_Mul(rational=True) if coeff.is_Integer and coeff > 1: c = coth(x, evaluate=False) p = [[], []] for i in range(coeff, -1, -1): p[(coeff - i) % 2].append(binomial(coeff, i)*c**i) return Add(*p[0])/Add(*p[1]) return coth(arg) class ReciprocalHyperbolicFunction(HyperbolicFunction): """Base class for reciprocal functions of hyperbolic functions. """ #To be defined in class _reciprocal_of = None _is_even = None # type: FuzzyBool _is_odd = None # type: FuzzyBool @classmethod def eval(cls, arg): if arg.could_extract_minus_sign(): if cls._is_even: return cls(-arg) if cls._is_odd: return -cls(-arg) t = cls._reciprocal_of.eval(arg) if hasattr(arg, 'inverse') and arg.inverse() == cls: return arg.args[0] return 1/t if t is not None else t def _call_reciprocal(self, method_name, *args, **kwargs): # Calls method_name on _reciprocal_of o = self._reciprocal_of(self.args[0]) return getattr(o, method_name)(*args, **kwargs) def _calculate_reciprocal(self, method_name, *args, **kwargs): # If calling method_name on _reciprocal_of returns a value != None # then return the reciprocal of that value t = self._call_reciprocal(method_name, *args, **kwargs) return 1/t if t is not None else t def _rewrite_reciprocal(self, method_name, arg): # Special handling for rewrite functions. If reciprocal rewrite returns # unmodified expression, then return None t = self._call_reciprocal(method_name, arg) if t is not None and t != self._reciprocal_of(arg): return 1/t def _eval_rewrite_as_exp(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg) def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg) def _eval_rewrite_as_tanh(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg) def _eval_rewrite_as_coth(self, arg, **kwargs): return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg) def as_real_imag(self, deep = True, **hints): return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints) def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=True, **hints) return re_part + S.ImaginaryUnit*im_part def _eval_expand_trig(self, **hints): return self._calculate_reciprocal("_eval_expand_trig", **hints) def _eval_as_leading_term(self, x, cdir=0): return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x) def _eval_is_extended_real(self): return self._reciprocal_of(self.args[0]).is_extended_real def _eval_is_finite(self): return (1/self._reciprocal_of(self.args[0])).is_finite class csch(ReciprocalHyperbolicFunction): r""" csch(x) is the hyperbolic cosecant of x. The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$ Examples ======== >>> from sympy import csch >>> from sympy.abc import x >>> csch(x) csch(x) See Also ======== sinh, cosh, tanh, sech, asinh, acosh """ _reciprocal_of = sinh _is_odd = True def fdiff(self, argindex=1): """ Returns the first derivative of this function """ if argindex == 1: return -coth(self.args[0]) * csch(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): """ Returns the next term in the Taylor series expansion """ from sympy import bernoulli if n == 0: return 1/sympify(x) elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) B = bernoulli(n + 1) F = factorial(n + 1) return 2 * (1 - 2**n) * B/F * x**n def _eval_rewrite_as_cosh(self, arg, **kwargs): return S.ImaginaryUnit / cosh(arg + S.ImaginaryUnit * S.Pi / 2) def _eval_is_positive(self): if self.args[0].is_extended_real: return self.args[0].is_positive def _eval_is_negative(self): if self.args[0].is_extended_real: return self.args[0].is_negative def _sage_(self): import sage.all as sage return sage.csch(self.args[0]._sage_()) class sech(ReciprocalHyperbolicFunction): r""" sech(x) is the hyperbolic secant of x. The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$ Examples ======== >>> from sympy import sech >>> from sympy.abc import x >>> sech(x) sech(x) See Also ======== sinh, cosh, tanh, coth, csch, asinh, acosh """ _reciprocal_of = cosh _is_even = True def fdiff(self, argindex=1): if argindex == 1: return - tanh(self.args[0])*sech(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): from sympy.functions.combinatorial.numbers import euler if n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) return euler(n) / factorial(n) * x**(n) def _eval_rewrite_as_sinh(self, arg, **kwargs): return S.ImaginaryUnit / sinh(arg + S.ImaginaryUnit * S.Pi /2) def _eval_is_positive(self): if self.args[0].is_extended_real: return True def _sage_(self): import sage.all as sage return sage.sech(self.args[0]._sage_()) ############################################################################### ############################# HYPERBOLIC INVERSES ############################# ############################################################################### class InverseHyperbolicFunction(Function): """Base class for inverse hyperbolic functions.""" pass class asinh(InverseHyperbolicFunction): """ asinh(x) is the inverse hyperbolic sine of x. The inverse hyperbolic sine function. Examples ======== >>> from sympy import asinh >>> from sympy.abc import x >>> asinh(x).diff(x) 1/sqrt(x**2 + 1) >>> asinh(1) log(1 + sqrt(2)) See Also ======== acosh, atanh, sinh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import asin arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.NegativeInfinity elif arg.is_zero: return S.Zero elif arg is S.One: return log(sqrt(2) + 1) elif arg is S.NegativeOne: return log(sqrt(2) - 1) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.ComplexInfinity if arg.is_zero: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * asin(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if isinstance(arg, sinh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: return z r, i = match_real_imag(z) if r is not None and i is not None: f = floor((i + pi/2)/pi) m = z - I*pi*f even = f.is_even if even is True: return m elif even is False: return -m @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return -p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return (-1)**k * R / F * x**n / n def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x**2 + 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sinh def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True class acosh(InverseHyperbolicFunction): """ acosh(x) is the inverse hyperbolic cosine of x. The inverse hyperbolic cosine function. Examples ======== >>> from sympy import acosh >>> from sympy.abc import x >>> acosh(x).diff(x) 1/sqrt(x**2 - 1) >>> acosh(1) 0 See Also ======== asinh, atanh, cosh """ def fdiff(self, argindex=1): if argindex == 1: return 1/sqrt(self.args[0]**2 - 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Infinity elif arg.is_zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: log(S.ImaginaryUnit*(1 + sqrt(2))), -S.ImaginaryUnit: log(-S.ImaginaryUnit*(1 + sqrt(2))), S.Half: S.Pi/3, Rational(-1, 2): S.Pi*Rational(2, 3), sqrt(2)/2: S.Pi/4, -sqrt(2)/2: S.Pi*Rational(3, 4), 1/sqrt(2): S.Pi/4, -1/sqrt(2): S.Pi*Rational(3, 4), sqrt(3)/2: S.Pi/6, -sqrt(3)/2: S.Pi*Rational(5, 6), (sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(5, 12), -(sqrt(3) - 1)/sqrt(2**3): S.Pi*Rational(7, 12), sqrt(2 + sqrt(2))/2: S.Pi/8, -sqrt(2 + sqrt(2))/2: S.Pi*Rational(7, 8), sqrt(2 - sqrt(2))/2: S.Pi*Rational(3, 8), -sqrt(2 - sqrt(2))/2: S.Pi*Rational(5, 8), (1 + sqrt(3))/(2*sqrt(2)): S.Pi/12, -(1 + sqrt(3))/(2*sqrt(2)): S.Pi*Rational(11, 12), (sqrt(5) + 1)/4: S.Pi/5, -(sqrt(5) + 1)/4: S.Pi*Rational(4, 5) } if arg in cst_table: if arg.is_extended_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: return S.ComplexInfinity if arg == S.ImaginaryUnit*S.Infinity: return S.Infinity + S.ImaginaryUnit*S.Pi/2 if arg == -S.ImaginaryUnit*S.Infinity: return S.Infinity - S.ImaginaryUnit*S.Pi/2 if arg.is_zero: return S.Pi*S.ImaginaryUnit*S.Half if isinstance(arg, cosh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: from sympy.functions.elementary.complexes import Abs return Abs(z) r, i = match_real_imag(z) if r is not None and i is not None: f = floor(i/pi) m = z - I*pi*f even = f.is_even if even is True: if r.is_nonnegative: return m elif r.is_negative: return -m elif even is False: m -= I*pi if r.is_nonpositive: return -m elif r.is_positive: return m @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) if len(previous_terms) >= 2 and n > 2: p = previous_terms[-2] return p * (n - 2)**2/(n*(n - 1)) * x**2 else: k = (n - 1) // 2 R = RisingFactorial(S.Half, k) F = factorial(k) return -R / F * S.ImaginaryUnit * x**n / n def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return log(x + sqrt(x + 1) * sqrt(x - 1)) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return cosh class atanh(InverseHyperbolicFunction): """ atanh(x) is the inverse hyperbolic tangent of x. The inverse hyperbolic tangent function. Examples ======== >>> from sympy import atanh >>> from sympy.abc import x >>> atanh(x).diff(x) 1/(1 - x**2) See Also ======== asinh, acosh, tanh """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import atan arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg.is_zero: return S.Zero elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg is S.Infinity: return -S.ImaginaryUnit * atan(arg) elif arg is S.NegativeInfinity: return S.ImaginaryUnit * atan(-arg) elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return S.ImaginaryUnit * atan(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_zero: return S.Zero if isinstance(arg, tanh) and arg.args[0].is_number: z = arg.args[0] if z.is_real: return z r, i = match_real_imag(z) if r is not None and i is not None: f = floor(2*i/pi) even = f.is_even m = z - I*f*pi/2 if even is True: return m elif even is False: return m - I*pi/2 @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return arg else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + x) - log(1 - x)) / 2 def _eval_is_zero(self): arg = self.args[0] if arg.is_zero: return True def inverse(self, argindex=1): """ Returns the inverse of this function. """ return tanh class acoth(InverseHyperbolicFunction): """ acoth(x) is the inverse hyperbolic cotangent of x. The inverse hyperbolic cotangent function. Examples ======== >>> from sympy import acoth >>> from sympy.abc import x >>> acoth(x).diff(x) 1/(1 - x**2) See Also ======== asinh, acosh, coth """ def fdiff(self, argindex=1): if argindex == 1: return 1/(1 - self.args[0]**2) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy import acot arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.One: return S.Infinity elif arg is S.NegativeOne: return S.NegativeInfinity elif arg.is_negative: return -cls(-arg) else: if arg is S.ComplexInfinity: return S.Zero i_coeff = arg.as_coefficient(S.ImaginaryUnit) if i_coeff is not None: return -S.ImaginaryUnit * acot(i_coeff) else: if _coeff_isneg(arg): return -cls(-arg) if arg.is_zero: return S.Pi*S.ImaginaryUnit*S.Half @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n == 0: return S.Pi*S.ImaginaryUnit / 2 elif n < 0 or n % 2 == 0: return S.Zero else: x = sympify(x) return x**n / n def _eval_as_leading_term(self, x, cdir=0): from sympy import Order arg = self.args[0].as_leading_term(x) if x in arg.free_symbols and Order(1, x).contains(arg): return S.ImaginaryUnit*S.Pi/2 else: return self.func(arg) def _eval_rewrite_as_log(self, x, **kwargs): return (log(1 + 1/x) - log(1 - 1/x)) / 2 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return coth class asech(InverseHyperbolicFunction): """ asech(x) is the inverse hyperbolic secant of x. The inverse hyperbolic secant function. Examples ======== >>> from sympy import asech, sqrt, S >>> from sympy.abc import x >>> asech(x).diff(x) -1/(x*sqrt(1 - x**2)) >>> asech(1).diff(x) 0 >>> asech(1) 0 >>> asech(S(2)) I*pi/3 >>> asech(-sqrt(2)) 3*I*pi/4 >>> asech((sqrt(6) - sqrt(2))) I*pi/12 See Also ======== asinh, atanh, cosh, acoth References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z*sqrt(1 - z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Pi*S.ImaginaryUnit / 2 elif arg is S.NegativeInfinity: return S.Pi*S.ImaginaryUnit / 2 elif arg.is_zero: return S.Infinity elif arg is S.One: return S.Zero elif arg is S.NegativeOne: return S.Pi*S.ImaginaryUnit if arg.is_number: cst_table = { S.ImaginaryUnit: - (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), -S.ImaginaryUnit: (S.Pi*S.ImaginaryUnit / 2) + log(1 + sqrt(2)), (sqrt(6) - sqrt(2)): S.Pi / 12, (sqrt(2) - sqrt(6)): 11*S.Pi / 12, sqrt(2 - 2/sqrt(5)): S.Pi / 10, -sqrt(2 - 2/sqrt(5)): 9*S.Pi / 10, 2 / sqrt(2 + sqrt(2)): S.Pi / 8, -2 / sqrt(2 + sqrt(2)): 7*S.Pi / 8, 2 / sqrt(3): S.Pi / 6, -2 / sqrt(3): 5*S.Pi / 6, (sqrt(5) - 1): S.Pi / 5, (1 - sqrt(5)): 4*S.Pi / 5, sqrt(2): S.Pi / 4, -sqrt(2): 3*S.Pi / 4, sqrt(2 + 2/sqrt(5)): 3*S.Pi / 10, -sqrt(2 + 2/sqrt(5)): 7*S.Pi / 10, S(2): S.Pi / 3, -S(2): 2*S.Pi / 3, sqrt(2*(2 + sqrt(2))): 3*S.Pi / 8, -sqrt(2*(2 + sqrt(2))): 5*S.Pi / 8, (1 + sqrt(5)): 2*S.Pi / 5, (-1 - sqrt(5)): 3*S.Pi / 5, (sqrt(6) + sqrt(2)): 5*S.Pi / 12, (-sqrt(6) - sqrt(2)): 7*S.Pi / 12, } if arg in cst_table: if arg.is_extended_real: return cst_table[arg]*S.ImaginaryUnit return cst_table[arg] if arg is S.ComplexInfinity: from sympy.calculus.util import AccumBounds return S.ImaginaryUnit*AccumBounds(-S.Pi/2, S.Pi/2) if arg.is_zero: return S.Infinity @staticmethod @cacheit def expansion_term(n, x, *previous_terms): if n == 0: return log(2 / x) elif n < 0 or n % 2 == 1: return S.Zero else: x = sympify(x) if len(previous_terms) > 2 and n > 2: p = previous_terms[-2] return p * (n - 1)**2 // (n // 2)**2 * x**2 / 4 else: k = n // 2 R = RisingFactorial(S.Half , k) * n F = factorial(k) * n // 2 * n // 2 return -1 * R / F * x**n / 4 def inverse(self, argindex=1): """ Returns the inverse of this function. """ return sech def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1)) class acsch(InverseHyperbolicFunction): """ acsch(x) is the inverse hyperbolic cosecant of x. The inverse hyperbolic cosecant function. Examples ======== >>> from sympy import acsch, sqrt, S >>> from sympy.abc import x >>> acsch(x).diff(x) -1/(x**2*sqrt(1 + x**(-2))) >>> acsch(1).diff(x) 0 >>> acsch(1) log(1 + sqrt(2)) >>> acsch(S.ImaginaryUnit) -I*pi/2 >>> acsch(-2*S.ImaginaryUnit) I*pi/6 >>> acsch(S.ImaginaryUnit*(sqrt(6) - sqrt(2))) -5*I*pi/12 See Also ======== asinh References ========== .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function .. [2] http://dlmf.nist.gov/4.37 .. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/ """ def fdiff(self, argindex=1): if argindex == 1: z = self.args[0] return -1/(z**2*sqrt(1 + 1/z**2)) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): arg = sympify(arg) if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.ComplexInfinity elif arg is S.One: return log(1 + sqrt(2)) elif arg is S.NegativeOne: return - log(1 + sqrt(2)) if arg.is_number: cst_table = { S.ImaginaryUnit: -S.Pi / 2, S.ImaginaryUnit*(sqrt(2) + sqrt(6)): -S.Pi / 12, S.ImaginaryUnit*(1 + sqrt(5)): -S.Pi / 10, S.ImaginaryUnit*2 / sqrt(2 - sqrt(2)): -S.Pi / 8, S.ImaginaryUnit*2: -S.Pi / 6, S.ImaginaryUnit*sqrt(2 + 2/sqrt(5)): -S.Pi / 5, S.ImaginaryUnit*sqrt(2): -S.Pi / 4, S.ImaginaryUnit*(sqrt(5)-1): -3*S.Pi / 10, S.ImaginaryUnit*2 / sqrt(3): -S.Pi / 3, S.ImaginaryUnit*2 / sqrt(2 + sqrt(2)): -3*S.Pi / 8, S.ImaginaryUnit*sqrt(2 - 2/sqrt(5)): -2*S.Pi / 5, S.ImaginaryUnit*(sqrt(6) - sqrt(2)): -5*S.Pi / 12, S(2): -S.ImaginaryUnit*log((1+sqrt(5))/2), } if arg in cst_table: return cst_table[arg]*S.ImaginaryUnit if arg is S.ComplexInfinity: return S.Zero if arg.is_zero: return S.ComplexInfinity if _coeff_isneg(arg): return -cls(-arg) def inverse(self, argindex=1): """ Returns the inverse of this function. """ return csch def _eval_rewrite_as_log(self, arg, **kwargs): return log(1/arg + sqrt(1/arg**2 + 1))
a05b6f03933a41428a9007199a637d3902c975632ce77e36af5d63eb84d34497
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.function import (Function, Derivative, ArgumentIndexError, AppliedUndef) from sympy.core.logic import fuzzy_not, fuzzy_or from sympy.core.numbers import pi, I, oo from sympy.core.relational import Eq from sympy.functions.elementary.exponential import exp, exp_polar, log from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, atan2 ############################################################################### ######################### REAL and IMAGINARY PARTS ############################ ############################################################################### class re(Function): """ Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, I, E, symbols >>> x, y = symbols('x y', real=True) >>> re(2*E) 2*E >>> re(2*I + 17) 17 >>> re(2*I) 0 >>> re(im(x) + x*I + 2) 2 >>> re(5 + I + 2) 7 Parameters ========== arg : Expr Real or complex expression. Returns ======= expr : Expr Real part of expression. See Also ======== im """ is_extended_real = True unbranched = True # implicitly works on the projection to C _singularities = True # non-holomorphic @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_extended_real: return arg elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real: return S.Zero elif arg.is_Matrix: return arg.as_real_imag()[0] elif arg.is_Function and isinstance(arg, conjugate): return re(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_extended_real: reverted.append(coeff) elif not term.has(S.ImaginaryUnit) and term.is_extended_real: excluded.append(term) else: # Try to do some advanced expansion. If # impossible, don't try to do re(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[0]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) - im(b) + c def as_real_imag(self, deep=True, **hints): """ Returns the real number with a zero imaginary part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_extended_real or self.args[0].is_extended_real: return re(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * im(Derivative(self.args[0], x, evaluate=True)) def _eval_rewrite_as_im(self, arg, **kwargs): return self.args[0] - S.ImaginaryUnit*im(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): # is_imaginary implies nonzero return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero]) def _eval_is_finite(self): if self.args[0].is_finite: return True def _eval_is_complex(self): if self.args[0].is_finite: return True def _sage_(self): import sage.all as sage return sage.real_part(self.args[0]._sage_()) class im(Function): """ Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, E, I >>> from sympy.abc import x, y >>> im(2*E) 0 >>> im(2*I + 17) 2 >>> im(x*I) re(x) >>> im(re(x) + y) im(y) >>> im(2 + 3*I) 3 Parameters ========== arg : Expr Real or complex expression. Returns ======= expr : Expr Imaginary part of expression. See Also ======== re """ is_extended_real = True unbranched = True # implicitly works on the projection to C _singularities = True # non-holomorphic @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg is S.ComplexInfinity: return S.NaN elif arg.is_extended_real: return S.Zero elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real: return -S.ImaginaryUnit * arg elif arg.is_Matrix: return arg.as_real_imag()[1] elif arg.is_Function and isinstance(arg, conjugate): return -im(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_extended_real: reverted.append(coeff) else: excluded.append(coeff) elif term.has(S.ImaginaryUnit) or not term.is_extended_real: # Try to do some advanced expansion. If # impossible, don't try to do im(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[1]) else: included.append(term) if len(args) != len(included): a, b, c = (Add(*xs) for xs in [included, reverted, excluded]) return cls(a) + re(b) + c def as_real_imag(self, deep=True, **hints): """ Return the imaginary part with a zero real part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_extended_real or self.args[0].is_extended_real: return im(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * re(Derivative(self.args[0], x, evaluate=True)) def _sage_(self): import sage.all as sage return sage.imag_part(self.args[0]._sage_()) def _eval_rewrite_as_re(self, arg, **kwargs): return -S.ImaginaryUnit*(self.args[0] - re(self.args[0])) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_is_zero(self): return self.args[0].is_extended_real def _eval_is_finite(self): if self.args[0].is_finite: return True def _eval_is_complex(self): if self.args[0].is_finite: return True ############################################################################### ############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ ############################################################################### class sign(Function): """ Returns the complex sign of an expression: Explanation =========== If the expression is real the sign will be: * 1 if expression is positive * 0 if expression is equal to zero * -1 if expression is negative If the expression is imaginary the sign will be: * I if im(expression) is positive * -I if im(expression) is negative Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. Examples ======== >>> from sympy.functions import sign >>> from sympy.core.numbers import I >>> sign(-1) -1 >>> sign(0) 0 >>> sign(-3*I) -I >>> sign(1 + I) sign(1 + I) >>> _.evalf() 0.707106781186548 + 0.707106781186548*I Parameters ========== arg : Expr Real or imaginary expression. Returns ======= expr : Expr Complex sign of expression. See Also ======== Abs, conjugate """ is_complex = True _singularities = True def doit(self, **hints): if self.args[0].is_zero is False: return self.args[0] / Abs(self.args[0]) return self @classmethod def eval(cls, arg): # handle what we can if arg.is_Mul: c, args = arg.as_coeff_mul() unk = [] s = sign(c) for a in args: if a.is_extended_negative: s = -s elif a.is_extended_positive: pass else: if a.is_imaginary: ai = im(a) if ai.is_comparable: # i.e. a = I*real s *= S.ImaginaryUnit if ai.is_extended_negative: # can't use sign(ai) here since ai might not be # a Number s = -s else: unk.append(a) else: unk.append(a) if c is S.One and len(unk) == len(args): return None return s * cls(arg._new_rawargs(*unk)) if arg is S.NaN: return S.NaN if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_extended_positive: return S.One if arg.is_extended_negative: return S.NegativeOne if arg.is_Function: if isinstance(arg, sign): return arg if arg.is_imaginary: if arg.is_Pow and arg.exp is S.Half: # we catch this because non-trivial sqrt args are not expanded # e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) return S.ImaginaryUnit arg2 = -S.ImaginaryUnit * arg if arg2.is_extended_positive: return S.ImaginaryUnit if arg2.is_extended_negative: return -S.ImaginaryUnit def _eval_Abs(self): if fuzzy_not(self.args[0].is_zero): return S.One def _eval_conjugate(self): return sign(conjugate(self.args[0])) def _eval_derivative(self, x): if self.args[0].is_extended_real: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(self.args[0]) elif self.args[0].is_imaginary: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(-S.ImaginaryUnit * self.args[0]) def _eval_is_nonnegative(self): if self.args[0].is_nonnegative: return True def _eval_is_nonpositive(self): if self.args[0].is_nonpositive: return True def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_extended_real def _eval_is_zero(self): return self.args[0].is_zero def _eval_power(self, other): if ( fuzzy_not(self.args[0].is_zero) and other.is_integer and other.is_even ): return S.One def _eval_nseries(self, x, n, logx, cdir=0): arg0 = self.args[0] x0 = arg0.subs(x, 0) if x0 != 0: return self.func(x0) if cdir != 0: cdir = arg0.dir(x, cdir) return -S.One if re(cdir) < 0 else S.One def _sage_(self): import sage.all as sage return sage.sgn(self.args[0]._sage_()) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_extended_real: return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): from sympy.functions.special.delta_functions import Heaviside if arg.is_extended_real: return Heaviside(arg) * 2 - 1 def _eval_rewrite_as_Abs(self, arg, **kwargs): return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True)) def _eval_simplify(self, **kwargs): return self.func(factor_terms(self.args[0])) # XXX include doit? class Abs(Function): """ Return the absolute value of the argument. Explanation =========== This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs(). Examples ======== >>> from sympy import Abs, Symbol, S, I >>> Abs(-1) 1 >>> x = Symbol('x', real=True) >>> Abs(-x) Abs(x) >>> Abs(x**2) x**2 >>> abs(-x) # The Python built-in Abs(x) >>> Abs(3*x + 2*I) sqrt(9*x**2 + 4) >>> Abs(8*I) 8 Note that the Python built-in will return either an Expr or int depending on the argument:: >>> type(abs(-1)) <... 'int'> >>> type(abs(S.NegativeOne)) <class 'sympy.core.numbers.One'> Abs will always return a sympy object. Parameters ========== arg : Expr Real or complex expression. Returns ======= expr : Expr Absolute value returned can be an expression or integer depending on input arg. See Also ======== sign, conjugate """ is_extended_real = True is_extended_negative = False is_extended_nonnegative = True unbranched = True _singularities = True # non-holomorphic def fdiff(self, argindex=1): """ Get the first derivative of the argument to Abs(). """ if argindex == 1: return sign(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.simplify.simplify import signsimp from sympy.core.function import expand_mul from sympy.core.power import Pow if hasattr(arg, '_eval_Abs'): obj = arg._eval_Abs() if obj is not None: return obj if not isinstance(arg, Expr): raise TypeError("Bad argument type for Abs(): %s" % type(arg)) # handle what we can arg = signsimp(arg, evaluate=False) n, d = arg.as_numer_denom() if d.free_symbols and not n.free_symbols: return cls(n)/cls(d) if arg.is_Mul: known = [] unk = [] for t in arg.args: if t.is_Pow and t.exp.is_integer and t.exp.is_negative: bnew = cls(t.base) if isinstance(bnew, cls): unk.append(t) else: known.append(Pow(bnew, t.exp)) else: tnew = cls(t) if isinstance(tnew, cls): unk.append(t) else: known.append(tnew) known = Mul(*known) unk = cls(Mul(*unk), evaluate=False) if unk else S.One return known*unk if arg is S.NaN: return S.NaN if arg is S.ComplexInfinity: return S.Infinity if arg.is_Pow: base, exponent = arg.as_base_exp() if base.is_extended_real: if exponent.is_integer: if exponent.is_even: return arg if base is S.NegativeOne: return S.One return Abs(base)**exponent if base.is_extended_nonnegative: return base**re(exponent) if base.is_extended_negative: return (-base)**re(exponent)*exp(-S.Pi*im(exponent)) return elif not base.has(Symbol): # complex base # express base**exponent as exp(exponent*log(base)) a, b = log(base).as_real_imag() z = a + I*b return exp(re(exponent*z)) if isinstance(arg, exp): return exp(re(arg.args[0])) if isinstance(arg, AppliedUndef): if arg.is_positive: return arg elif arg.is_negative: return -arg return if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity): if any(a.is_infinite for a in arg.as_real_imag()): return S.Infinity if arg.is_zero: return S.Zero if arg.is_extended_nonnegative: return arg if arg.is_extended_nonpositive: return -arg if arg.is_imaginary: arg2 = -S.ImaginaryUnit * arg if arg2.is_extended_nonnegative: return arg2 # reject result if all new conjugates are just wrappers around # an expression that was already in the arg conj = signsimp(arg.conjugate(), evaluate=False) new_conj = conj.atoms(conjugate) - arg.atoms(conjugate) if new_conj and all(arg.has(i.args[0]) for i in new_conj): return if arg != conj and arg != -conj: ignore = arg.atoms(Abs) abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore}) unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None] if not unk or not all(conj.has(conjugate(u)) for u in unk): return sqrt(expand_mul(arg*conj)) def _eval_is_real(self): if self.args[0].is_finite: return True def _eval_is_integer(self): if self.args[0].is_extended_real: return self.args[0].is_integer def _eval_is_extended_nonzero(self): return fuzzy_not(self._args[0].is_zero) def _eval_is_zero(self): return self._args[0].is_zero def _eval_is_extended_positive(self): is_z = self.is_zero if is_z is not None: return not is_z def _eval_is_rational(self): if self.args[0].is_extended_real: return self.args[0].is_rational def _eval_is_even(self): if self.args[0].is_extended_real: return self.args[0].is_even def _eval_is_odd(self): if self.args[0].is_extended_real: return self.args[0].is_odd def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_power(self, exponent): if self.args[0].is_extended_real and exponent.is_integer: if exponent.is_even: return self.args[0]**exponent elif exponent is not S.NegativeOne and exponent.is_Integer: return self.args[0]**(exponent - 1)*self return def _eval_nseries(self, x, n, logx, cdir=0): direction = self.args[0].leadterm(x)[0] if direction.has(log(x)): direction = direction.subs(log(x), logx) s = self.args[0]._eval_nseries(x, n=n, logx=logx) return (sign(direction)*s).expand() def _sage_(self): import sage.all as sage return sage.abs_symbolic(self.args[0]._sage_()) def _eval_derivative(self, x): if self.args[0].is_extended_real or self.args[0].is_imaginary: return Derivative(self.args[0], x, evaluate=True) \ * sign(conjugate(self.args[0])) rv = (re(self.args[0]) * Derivative(re(self.args[0]), x, evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), x, evaluate=True)) / Abs(self.args[0]) return rv.rewrite(sign) def _eval_rewrite_as_Heaviside(self, arg, **kwargs): # Note this only holds for real arg (since Heaviside is not defined # for complex arguments). from sympy.functions.special.delta_functions import Heaviside if arg.is_extended_real: return arg*(Heaviside(arg) - Heaviside(-arg)) def _eval_rewrite_as_Piecewise(self, arg, **kwargs): if arg.is_extended_real: return Piecewise((arg, arg >= 0), (-arg, True)) elif arg.is_imaginary: return Piecewise((I*arg, I*arg >= 0), (-I*arg, True)) def _eval_rewrite_as_sign(self, arg, **kwargs): return arg/sign(arg) def _eval_rewrite_as_conjugate(self, arg, **kwargs): return (arg*conjugate(arg))**S.Half class arg(Function): """ returns the argument (in radians) of a complex number. The argument is evaluated in consistent convention with atan2 where the branch-cut is taken along the negative real axis and arg(z) is in the interval (-pi,pi]. For a positive number, the argument is always 0. Examples ======== >>> from sympy.functions import arg >>> from sympy import I, sqrt >>> arg(2.0) 0 >>> arg(I) pi/2 >>> arg(sqrt(2) + I*sqrt(2)) pi/4 >>> arg(sqrt(3)/2 + I/2) pi/6 >>> arg(4 + 3*I) atan(3/4) >>> arg(0.8 + 0.6*I) 0.643501108793284 Parameters ========== arg : Expr Real or complex expression. Returns ======= value : Expr Returns arc tangent of arg measured in radians. """ is_extended_real = True is_real = True is_finite = True _singularities = True # non-holomorphic @classmethod def eval(cls, arg): if isinstance(arg, exp_polar): return periodic_argument(arg, oo) if not arg.is_Atom: c, arg_ = factor_terms(arg).as_coeff_Mul() if arg_.is_Mul: arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else sign(a) for a in arg_.args]) arg_ = sign(c)*arg_ else: arg_ = arg if any(i.is_extended_positive is None for i in arg_.atoms(AppliedUndef)): return x, y = arg_.as_real_imag() rv = atan2(y, x) if rv.is_number: return rv if arg_ != arg: return cls(arg_, evaluate=False) def _eval_derivative(self, t): x, y = self.args[0].as_real_imag() return (x * Derivative(y, t, evaluate=True) - y * Derivative(x, t, evaluate=True)) / (x**2 + y**2) def _eval_rewrite_as_atan2(self, arg, **kwargs): x, y = self.args[0].as_real_imag() return atan2(y, x) class conjugate(Function): """ Returns the `complex conjugate` Ref[1] of an argument. In mathematics, the complex conjugate of a complex number is given by changing the sign of the imaginary part. Thus, the conjugate of the complex number :math:`a + ib` (where a and b are real numbers) is :math:`a - ib` Examples ======== >>> from sympy import conjugate, I >>> conjugate(2) 2 >>> conjugate(I) -I >>> conjugate(3 + 2*I) 3 - 2*I >>> conjugate(5 - I) 5 + I Parameters ========== arg : Expr Real or complex expression. Returns ======= arg : Expr Complex conjugate of arg as real, imaginary or mixed expression. See Also ======== sign, Abs References ========== .. [1] https://en.wikipedia.org/wiki/Complex_conjugation """ _singularities = True # non-holomorphic @classmethod def eval(cls, arg): obj = arg._eval_conjugate() if obj is not None: return obj def _eval_Abs(self): return Abs(self.args[0], evaluate=True) def _eval_adjoint(self): return transpose(self.args[0]) def _eval_conjugate(self): return self.args[0] def _eval_derivative(self, x): if x.is_real: return conjugate(Derivative(self.args[0], x, evaluate=True)) elif x.is_imaginary: return -conjugate(Derivative(self.args[0], x, evaluate=True)) def _eval_transpose(self): return adjoint(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic class transpose(Function): """ Linear map transposition. Examples ======== >>> from sympy.functions import transpose >>> from sympy.matrices import MatrixSymbol >>> from sympy import Matrix >>> A = MatrixSymbol('A', 25, 9) >>> transpose(A) A.T >>> B = MatrixSymbol('B', 9, 22) >>> transpose(B) B.T >>> transpose(A*B) B.T*A.T >>> M = Matrix([[4, 5], [2, 1], [90, 12]]) >>> M Matrix([ [ 4, 5], [ 2, 1], [90, 12]]) >>> transpose(M) Matrix([ [4, 2, 90], [5, 1, 12]]) Parameters ========== arg : Matrix Matrix or matrix expression to take the transpose of. Returns ======= value : Matrix Transpose of arg. """ @classmethod def eval(cls, arg): obj = arg._eval_transpose() if obj is not None: return obj def _eval_adjoint(self): return conjugate(self.args[0]) def _eval_conjugate(self): return adjoint(self.args[0]) def _eval_transpose(self): return self.args[0] class adjoint(Function): """ Conjugate transpose or Hermite conjugation. Examples ======== >>> from sympy import adjoint >>> from sympy.matrices import MatrixSymbol >>> A = MatrixSymbol('A', 10, 5) >>> adjoint(A) Adjoint(A) Parameters ========== arg : Matrix Matrix or matrix expression to take the adjoint of. Returns ======= value : Matrix Represents the conjugate transpose or Hermite conjugation of arg. """ @classmethod def eval(cls, arg): obj = arg._eval_adjoint() if obj is not None: return obj obj = arg._eval_transpose() if obj is not None: return conjugate(obj) def _eval_adjoint(self): return self.args[0] def _eval_conjugate(self): return transpose(self.args[0]) def _eval_transpose(self): return conjugate(self.args[0]) def _latex(self, printer, exp=None, *args): arg = printer._print(self.args[0]) tex = r'%s^{\dagger}' % arg if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if printer._use_unicode: pform = pform**prettyForm('\N{DAGGER}') else: pform = pform**prettyForm('+') return pform ############################################################################### ############### HANDLING OF POLAR NUMBERS ##################################### ############################################################################### class polar_lift(Function): """ Lift argument to the Riemann surface of the logarithm, using the standard branch. Examples ======== >>> from sympy import Symbol, polar_lift, I >>> p = Symbol('p', polar=True) >>> x = Symbol('x') >>> polar_lift(4) 4*exp_polar(0) >>> polar_lift(-4) 4*exp_polar(I*pi) >>> polar_lift(-I) exp_polar(-I*pi/2) >>> polar_lift(I + 2) polar_lift(2 + I) >>> polar_lift(4*x) 4*polar_lift(x) >>> polar_lift(4*p) 4*p Parameters ========== arg : Expr Real or complex expression. See Also ======== sympy.functions.elementary.exponential.exp_polar periodic_argument """ is_polar = True is_comparable = False # Cannot be evalf'd. @classmethod def eval(cls, arg): from sympy.functions.elementary.complexes import arg as argument if arg.is_number: ar = argument(arg) # In general we want to affirm that something is known, # e.g. `not ar.has(argument) and not ar.has(atan)` # but for now we will just be more restrictive and # see that it has evaluated to one of the known values. if ar in (0, pi/2, -pi/2, pi): return exp_polar(I*ar)*abs(arg) if arg.is_Mul: args = arg.args else: args = [arg] included = [] excluded = [] positive = [] for arg in args: if arg.is_polar: included += [arg] elif arg.is_positive: positive += [arg] else: excluded += [arg] if len(excluded) < len(args): if excluded: return Mul(*(included + positive))*polar_lift(Mul(*excluded)) elif included: return Mul(*(included + positive)) else: return Mul(*positive)*exp_polar(0) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ return self.args[0]._eval_evalf(prec) def _eval_Abs(self): return Abs(self.args[0], evaluate=True) class periodic_argument(Function): """ Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period $P$, always return a value in (-P/2, P/2], by using exp(P*I) == 1. Examples ======== >>> from sympy import exp_polar, periodic_argument >>> from sympy import I, pi >>> periodic_argument(exp_polar(10*I*pi), 2*pi) 0 >>> periodic_argument(exp_polar(5*I*pi), 4*pi) pi >>> from sympy import exp_polar, periodic_argument >>> from sympy import I, pi >>> periodic_argument(exp_polar(5*I*pi), 2*pi) pi >>> periodic_argument(exp_polar(5*I*pi), 3*pi) -pi >>> periodic_argument(exp_polar(5*I*pi), pi) 0 Parameters ========== ar : Expr A polar number. period : ExprT The period $P$. See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm principal_branch """ @classmethod def _getunbranched(cls, ar): if ar.is_Mul: args = ar.args else: args = [ar] unbranched = 0 for a in args: if not a.is_polar: unbranched += arg(a) elif isinstance(a, exp_polar): unbranched += a.exp.as_real_imag()[1] elif a.is_Pow: re, im = a.exp.as_real_imag() unbranched += re*unbranched_argument( a.base) + im*log(abs(a.base)) elif isinstance(a, polar_lift): unbranched += arg(a.args[0]) else: return None return unbranched @classmethod def eval(cls, ar, period): # Our strategy is to evaluate the argument on the Riemann surface of the # logarithm, and then reduce. # NOTE evidently this means it is a rather bad idea to use this with # period != 2*pi and non-polar numbers. if not period.is_extended_positive: return None if period == oo and isinstance(ar, principal_branch): return periodic_argument(*ar.args) if isinstance(ar, polar_lift) and period >= 2*pi: return periodic_argument(ar.args[0], period) if ar.is_Mul: newargs = [x for x in ar.args if not x.is_positive] if len(newargs) != len(ar.args): return periodic_argument(Mul(*newargs), period) unbranched = cls._getunbranched(ar) if unbranched is None: return None if unbranched.has(periodic_argument, atan2, atan): return None if period == oo: return unbranched if period != oo: n = ceiling(unbranched/period - S.Half)*period if not n.has(ceiling): return unbranched - n def _eval_evalf(self, prec): z, period = self.args if period == oo: unbranched = periodic_argument._getunbranched(z) if unbranched is None: return self return unbranched._eval_evalf(prec) ub = periodic_argument(z, oo)._eval_evalf(prec) return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec) def unbranched_argument(arg): ''' Returns periodic argument of arg with period as infinity. Examples ======== >>> from sympy import exp_polar, unbranched_argument >>> from sympy import I, pi >>> unbranched_argument(exp_polar(15*I*pi)) 15*pi >>> unbranched_argument(exp_polar(7*I*pi)) 7*pi See also ======== periodic_argument ''' return periodic_argument(arg, oo) class principal_branch(Function): """ Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm. Explanation =========== This is a function of two arguments. The first argument is a polar number `z`, and the second one a positive real number or infinity, `p`. The result is "z mod exp_polar(I*p)". Examples ======== >>> from sympy import exp_polar, principal_branch, oo, I, pi >>> from sympy.abc import z >>> principal_branch(z, oo) z >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 3*exp_polar(0) >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 3*principal_branch(z, 2*pi) Parameters ========== x : Expr A polar number. period : Expr Positive real number or infinity. See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm periodic_argument """ is_polar = True is_comparable = False # cannot always be evalf'd @classmethod def eval(self, x, period): from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol if isinstance(x, polar_lift): return principal_branch(x.args[0], period) if period == oo: return x ub = periodic_argument(x, oo) barg = periodic_argument(x, period) if ub != barg and not ub.has(periodic_argument) \ and not barg.has(periodic_argument): pl = polar_lift(x) def mr(expr): if not isinstance(expr, Symbol): return polar_lift(expr) return expr pl = pl.replace(polar_lift, mr) # Recompute unbranched argument ub = periodic_argument(pl, oo) if not pl.has(polar_lift): if ub != barg: res = exp_polar(I*(barg - ub))*pl else: res = pl if not res.is_polar and not res.has(exp_polar): res *= exp_polar(0) return res if not x.free_symbols: c, m = x, () else: c, m = x.as_coeff_mul(*x.free_symbols) others = [] for y in m: if y.is_positive: c *= y else: others += [y] m = tuple(others) arg = periodic_argument(c, period) if arg.has(periodic_argument): return None if arg.is_number and (unbranched_argument(c) != arg or (arg == 0 and m != () and c != 1)): if arg == 0: return abs(c)*principal_branch(Mul(*m), period) return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ and m == (): return exp_polar(arg*I)*abs(c) def _eval_evalf(self, prec): from sympy import exp, pi, I z, period = self.args p = periodic_argument(z, period)._eval_evalf(prec) if abs(p) > pi or p == -pi: return self # Cannot evalf for this argument. return (abs(z)*exp(I*p))._eval_evalf(prec) def _polarify(eq, lift, pause=False): from sympy import Integral if eq.is_polar: return eq if eq.is_number and not pause: return polar_lift(eq) if isinstance(eq, Symbol) and not pause and lift: return polar_lift(eq) elif eq.is_Atom: return eq elif eq.is_Add: r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args]) if lift: return polar_lift(r) return r elif eq.is_Pow and eq.base == S.Exp1: return eq.func(S.Exp1, _polarify(eq.exp, lift, pause=False)) elif eq.is_Function: return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args]) elif isinstance(eq, Integral): # Don't lift the integration variable func = _polarify(eq.function, lift, pause=pause) limits = [] for limit in eq.args[1:]: var = _polarify(limit[0], lift=False, pause=pause) rest = _polarify(limit[1:], lift=lift, pause=pause) limits.append((var,) + rest) return Integral(*((func,) + tuple(limits))) else: return eq.func(*[_polarify(arg, lift, pause=pause) if isinstance(arg, Expr) else arg for arg in eq.args]) def polarify(eq, subs=True, lift=False): """ Turn all numbers in eq into their polar equivalents (under the standard choice of argument). Note that no attempt is made to guess a formal convention of adding polar numbers, expressions like 1 + x will generally not be altered. Note also that this function does not promote exp(x) to exp_polar(x). If ``subs`` is True, all symbols which are not already polar will be substituted for polar dummies; in this case the function behaves much like posify. If ``lift`` is True, both addition statements and non-polar symbols are changed to their polar_lift()ed versions. Note that lift=True implies subs=False. Examples ======== >>> from sympy import polarify, sin, I >>> from sympy.abc import x, y >>> expr = (-x)**y >>> expr.expand() (-x)**y >>> polarify(expr) ((_x*exp_polar(I*pi))**_y, {_x: x, _y: y}) >>> polarify(expr)[0].expand() _x**_y*exp_polar(_y*I*pi) >>> polarify(x, lift=True) polar_lift(x) >>> polarify(x*(1+y), lift=True) polar_lift(x)*polar_lift(y + 1) Adds are treated carefully: >>> polarify(1 + sin((1 + I)*x)) (sin(_x*polar_lift(1 + I)) + 1, {_x: x}) """ if lift: subs = False eq = _polarify(sympify(eq), lift) if not subs: return eq reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols} eq = eq.subs(reps) return eq, {r: s for s, r in reps.items()} def _unpolarify(eq, exponents_only, pause=False): if not isinstance(eq, Basic) or eq.is_Atom: return eq if not pause: if isinstance(eq, exp_polar): return exp(_unpolarify(eq.exp, exponents_only)) if isinstance(eq, principal_branch) and eq.args[1] == 2*pi: return _unpolarify(eq.args[0], exponents_only) if ( eq.is_Add or eq.is_Mul or eq.is_Boolean or eq.is_Relational and ( eq.rel_op in ('==', '!=') and 0 in eq.args or eq.rel_op not in ('==', '!=')) ): return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args]) if isinstance(eq, polar_lift): return _unpolarify(eq.args[0], exponents_only) if eq.is_Pow: expo = _unpolarify(eq.exp, exponents_only) base = _unpolarify(eq.base, exponents_only, not (expo.is_integer and not pause)) return base**expo if eq.is_Function and getattr(eq.func, 'unbranched', False): return eq.func(*[_unpolarify(x, exponents_only, exponents_only) for x in eq.args]) return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args]) def unpolarify(eq, subs={}, exponents_only=False): """ If p denotes the projection from the Riemann surface of the logarithm to the complex line, return a simplified version eq' of `eq` such that p(eq') == p(eq). Also apply the substitution subs in the end. (This is a convenience, since ``unpolarify``, in a certain sense, undoes polarify.) Examples ======== >>> from sympy import unpolarify, polar_lift, sin, I >>> unpolarify(polar_lift(I + 2)) 2 + I >>> unpolarify(sin(polar_lift(I + 7))) sin(7 + I) """ if isinstance(eq, bool): return eq eq = sympify(eq) if subs != {}: return unpolarify(eq.subs(subs)) changed = True pause = False if exponents_only: pause = True while changed: changed = False res = _unpolarify(eq, exponents_only, pause) if res != eq: changed = True eq = res if isinstance(res, bool): return res # Finally, replacing Exp(0) by 1 is always correct. # So is polar_lift(0) -> 0. return res.subs({exp_polar(0): 1, polar_lift(0): 0})
327cf6c27071ed5b6f1e47d8d62f07411394a5f365c90612255ad5d210f4afb5
from sympy.core import S, sympify, diff from sympy.core.decorators import deprecated from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq, Ne from sympy.functions.elementary.complexes import im, sign from sympy.functions.elementary.piecewise import Piecewise from sympy.polys.polyerrors import PolynomialError from sympy.utilities import filldedent ############################################################################### ################################ DELTA FUNCTION ############################### ############################################################################### class DiracDelta(Function): r""" The DiracDelta function and its derivatives. Explanation =========== DiracDelta is not an ordinary function. It can be rigorously defined either as a distribution or as a measure. DiracDelta only makes sense in definite integrals, and in particular, integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``, where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally, DiracDelta acts in some ways like a function that is ``0`` everywhere except at ``0``, but in many ways it also does not. It can often be useful to treat DiracDelta in formal ways, building up and manipulating expressions with delta functions (which may eventually be integrated), but care must be taken to not treat it as a real function. SymPy's ``oo`` is similar. It only truly makes sense formally in certain contexts (such as integration limits), but SymPy allows its use everywhere, and it tries to be consistent with operations on it (like ``1/oo``), but it is easy to get into trouble and get wrong results if ``oo`` is treated too much like a number. Similarly, if DiracDelta is treated too much like a function, it is easy to get wrong or nonsensical results. DiracDelta function has the following properties: 1) $\frac{d}{d x} \theta(x) = \delta(x)$ 2) $\int_{-\infty}^\infty \delta(x - a)f(x)\, dx = f(a)$ and $\int_{a- \epsilon}^{a+\epsilon} \delta(x - a)f(x)\, dx = f(a)$ 3) $\delta(x) = 0$ for all $x \neq 0$ 4) $\delta(g(x)) = \sum_i \frac{\delta(x - x_i)}{\|g'(x_i)\|}$ where $x_i$ are the roots of $g$ 5) $\delta(-x) = \delta(x)$ Derivatives of ``k``-th order of DiracDelta have the following properties: 6) $\delta(x, k) = 0$ for all $x \neq 0$ 7) $\delta(-x, k) = -\delta(x, k)$ for odd $k$ 8) $\delta(-x, k) = \delta(x, k)$ for even $k$ Examples ======== >>> from sympy import DiracDelta, diff, pi >>> from sympy.abc import x, y >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(1) 0 >>> DiracDelta(-1) 0 >>> DiracDelta(pi) 0 >>> DiracDelta(x - 4).subs(x, 4) DiracDelta(0) >>> diff(DiracDelta(x)) DiracDelta(x, 1) >>> diff(DiracDelta(x - 1),x,2) DiracDelta(x - 1, 2) >>> diff(DiracDelta(x**2 - 1),x,2) 2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1)) >>> DiracDelta(3*x).is_simple(x) True >>> DiracDelta(x**2).is_simple(x) False >>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y)) See Also ======== Heaviside sympy.simplify.simplify.simplify, is_simple sympy.functions.special.tensor_functions.KroneckerDelta References ========== .. [1] http://mathworld.wolfram.com/DeltaFunction.html """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a DiracDelta Function. Explanation =========== The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. Examples ======== >>> from sympy import DiracDelta, diff >>> from sympy.abc import x >>> DiracDelta(x).fdiff() DiracDelta(x, 1) >>> DiracDelta(x, 1).fdiff() DiracDelta(x, 2) >>> DiracDelta(x**2 - 1).fdiff() DiracDelta(x**2 - 1, 1) >>> diff(DiracDelta(x, 1)).fdiff() DiracDelta(x, 3) Parameters ========== argindex : integer degree of derivative """ if argindex == 1: #I didn't know if there is a better way to handle default arguments k = 0 if len(self.args) > 1: k = self.args[1] return self.func(self.args[0], k + 1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg, k=0): """ Returns a simplified form or a value of DiracDelta depending on the argument passed by the DiracDelta object. Explanation =========== The ``eval()`` method is automatically called when the ``DiracDelta`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import DiracDelta, S >>> from sympy.abc import x >>> DiracDelta(x) DiracDelta(x) >>> DiracDelta(-x, 1) -DiracDelta(x, 1) >>> DiracDelta(1) 0 >>> DiracDelta(5, 1) 0 >>> DiracDelta(0) DiracDelta(0) >>> DiracDelta(-1) 0 >>> DiracDelta(S.NaN) nan >>> DiracDelta(x).eval(1) 0 >>> DiracDelta(x - 100).subs(x, 5) 0 >>> DiracDelta(x - 100).subs(x, 100) DiracDelta(0) Parameters ========== k : integer order of derivative arg : argument passed to DiracDelta """ k = sympify(k) if not k.is_Integer or k.is_negative: raise ValueError("Error: the second argument of DiracDelta must be \ a non-negative integer, %s given instead." % (k,)) arg = sympify(arg) if arg is S.NaN: return S.NaN if arg.is_nonzero: return S.Zero if fuzzy_not(im(arg).is_zero): raise ValueError(filldedent(''' Function defined only for Real Values. Complex part: %s found in %s .''' % ( repr(im(arg)), repr(arg)))) c, nc = arg.args_cnc() if c and c[0] is S.NegativeOne: # keep this fast and simple instead of using # could_extract_minus_sign if k.is_odd: return -cls(-arg, k) elif k.is_even: return cls(-arg, k) if k else cls(-arg) @deprecated(useinstead="expand(diracdelta=True, wrt=x)", issue=12859, deprecated_since_version="1.1") def simplify(self, x, **kwargs): return self.expand(diracdelta=True, wrt=x) def _eval_expand_diracdelta(self, **hints): """ Compute a simplified representation of the function using property number 4. Pass ``wrt`` as a hint to expand the expression with respect to a particular variable. Explanation =========== ``wrt`` is: - a variable with respect to which a DiracDelta expression will get expanded. Examples ======== >>> from sympy import DiracDelta >>> from sympy.abc import x, y >>> DiracDelta(x*y).expand(diracdelta=True, wrt=x) DiracDelta(x)/Abs(y) >>> DiracDelta(x*y).expand(diracdelta=True, wrt=y) DiracDelta(y)/Abs(x) >>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x) DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3 See Also ======== is_simple, Diracdelta """ from sympy.polys.polyroots import roots wrt = hints.get('wrt', None) if wrt is None: free = self.free_symbols if len(free) == 1: wrt = free.pop() else: raise TypeError(filldedent(''' When there is more than 1 free symbol or variable in the expression, the 'wrt' keyword is required as a hint to expand when using the DiracDelta hint.''')) if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ): return self try: argroots = roots(self.args[0], wrt) result = 0 valid = True darg = abs(diff(self.args[0], wrt)) for r, m in argroots.items(): if r.is_real is not False and m == 1: result += self.func(wrt - r)/darg.subs(wrt, r) else: # don't handle non-real and if m != 1 then # a polynomial will have a zero in the derivative (darg) # at r valid = False break if valid: return result except PolynomialError: pass return self def is_simple(self, x): """ Tells whether the argument(args[0]) of DiracDelta is a linear expression in *x*. Examples ======== >>> from sympy import DiracDelta, cos >>> from sympy.abc import x, y >>> DiracDelta(x*y).is_simple(x) True >>> DiracDelta(x*y).is_simple(y) True >>> DiracDelta(x**2 + x - 2).is_simple(x) False >>> DiracDelta(cos(x)).is_simple(x) False Parameters ========== x : can be a symbol See Also ======== sympy.simplify.simplify.simplify, DiracDelta """ p = self.args[0].as_poly(x) if p: return p.degree() == 1 return False def _eval_rewrite_as_Piecewise(self, *args, **kwargs): """ Represents DiracDelta in a piecewise form. Examples ======== >>> from sympy import DiracDelta, Piecewise, Symbol >>> x = Symbol('x') >>> DiracDelta(x).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x, 0)), (0, True)) >>> DiracDelta(x - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True)) >>> DiracDelta(x**2 - 5).rewrite(Piecewise) Piecewise((DiracDelta(0), Eq(x**2 - 5, 0)), (0, True)) >>> DiracDelta(x - 5, 4).rewrite(Piecewise) DiracDelta(x - 5, 4) """ if len(args) == 1: return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True)) def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs): """ Returns the DiracDelta expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == DiracDelta(0): return SingularityFunction(0, 0, -1) if self == DiracDelta(0, 1): return SingularityFunction(0, 0, -2) free = self.free_symbols if len(free) == 1: x = (free.pop()) if len(args) == 1: return SingularityFunction(x, solve(args[0], x)[0], -1) return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1) else: # I don't know how to handle the case for DiracDelta expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.dirac_delta(self.args[0]._sage_()) ############################################################################### ############################## HEAVISIDE FUNCTION ############################# ############################################################################### class Heaviside(Function): r""" Heaviside step function. Explanation =========== The Heaviside step function has the following properties: 1) $\frac{d}{d x} \theta(x) = \delta(x)$ 2) $\theta(x) = \begin{cases} 0 & \text{for}\: x < 0 \\ \frac{1}{2} & \text{for}\: x = 0 \\1 & \text{for}\: x > 0 \end{cases}$ 3) $\frac{d}{d x} \max(x, 0) = \theta(x)$ Heaviside(x) is printed as $\theta(x)$ with the SymPy LaTeX printer. The value at 0 is set differently in different fields. SymPy uses 1/2, which is a convention from electronics and signal processing, and is consistent with solving improper integrals by Fourier transform and convolution. To specify a different value of Heaviside at ``x=0``, a second argument can be given. Using ``Heaviside(x, nan)`` gives an expression that will evaluate to nan for x=0. .. versionchanged:: 1.9 ``Heaviside(0)`` now returns 1/2 (before: undefined) Examples ======== >>> from sympy import Heaviside, nan >>> from sympy.abc import x >>> Heaviside(9) 1 >>> Heaviside(-9) 0 >>> Heaviside(0) 1/2 >>> Heaviside(0, nan) nan >>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1)) Heaviside(x, 1) + 1 See Also ======== DiracDelta References ========== .. [1] http://mathworld.wolfram.com/HeavisideStepFunction.html .. [2] http://dlmf.nist.gov/1.16#iv """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a Heaviside Function. Examples ======== >>> from sympy import Heaviside, diff >>> from sympy.abc import x >>> Heaviside(x).fdiff() DiracDelta(x) >>> Heaviside(x**2 - 1).fdiff() DiracDelta(x**2 - 1) >>> diff(Heaviside(x)).fdiff() DiracDelta(x, 1) Parameters ========== argindex : integer order of derivative """ if argindex == 1: return DiracDelta(self.args[0]) else: raise ArgumentIndexError(self, argindex) def __new__(cls, arg, H0=S.Half, **options): if isinstance(H0, Heaviside) and len(H0.args) == 1: H0 = S.Half return super(cls, cls).__new__(cls, arg, H0, **options) @classmethod def eval(cls, arg, H0=S.Half): """ Returns a simplified form or a value of Heaviside depending on the argument passed by the Heaviside object. Explanation =========== The ``eval()`` method is automatically called when the ``Heaviside`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import Heaviside, S >>> from sympy.abc import x >>> Heaviside(x) Heaviside(x, 1/2) >>> Heaviside(19) 1 >>> Heaviside(0) 1/2 >>> Heaviside(0, 1) 1 >>> Heaviside(-5) 0 >>> Heaviside(S.NaN) nan >>> Heaviside(x).eval(42) 1 >>> Heaviside(x - 100).subs(x, 5) 0 >>> Heaviside(x - 100).subs(x, 105) 1 Parameters ========== arg : argument passed by Heaviside object H0 : value of Heaviside(0) """ H0 = sympify(H0) arg = sympify(arg) if arg.is_extended_negative: return S.Zero elif arg.is_extended_positive: return S.One elif arg.is_zero: return H0 elif arg is S.NaN: return S.NaN elif fuzzy_not(im(arg).is_zero): raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) ) def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs): """ Represents Heaviside in a Piecewise form. Examples ======== >>> from sympy import Heaviside, Piecewise, Symbol, nan >>> x = Symbol('x') >>> Heaviside(x).rewrite(Piecewise) Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, x > 0)) >>> Heaviside(x,nan).rewrite(Piecewise) Piecewise((0, x < 0), (nan, Eq(x, 0)), (1, x > 0)) >>> Heaviside(x - 5).rewrite(Piecewise) Piecewise((0, x - 5 < 0), (1/2, Eq(x - 5, 0)), (1, x - 5 > 0)) >>> Heaviside(x**2 - 1).rewrite(Piecewise) Piecewise((0, x**2 - 1 < 0), (1/2, Eq(x**2 - 1, 0)), (1, x**2 - 1 > 0)) """ if H0 == 0: return Piecewise((0, arg <= 0), (1, arg > 0)) if H0 == 1: return Piecewise((0, arg < 0), (1, arg >= 0)) return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, arg > 0)) def _eval_rewrite_as_sign(self, arg, H0=S.Half, **kwargs): """ Represents the Heaviside function in the form of sign function. Explanation =========== The value of Heaviside(0) must be 1/2 for rewritting as sign to be strictly equivalent. For easier usage, we also allow this rewriting when Heaviside(0) is undefined. Examples ======== >>> from sympy import Heaviside, Symbol, sign, nan >>> x = Symbol('x', real=True) >>> y = Symbol('y') >>> Heaviside(x).rewrite(sign) sign(x)/2 + 1/2 >>> Heaviside(x, 0).rewrite(sign) Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True)) >>> Heaviside(x, nan).rewrite(sign) Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (nan, True)) >>> Heaviside(x - 2).rewrite(sign) sign(x - 2)/2 + 1/2 >>> Heaviside(x**2 - 2*x + 1).rewrite(sign) sign(x**2 - 2*x + 1)/2 + 1/2 >>> Heaviside(y).rewrite(sign) Heaviside(y, 1/2) >>> Heaviside(y**2 - 2*y + 1).rewrite(sign) Heaviside(y**2 - 2*y + 1, 1/2) See Also ======== sign """ if arg.is_extended_real: pw1 = Piecewise( ((sign(arg) + 1)/2, Ne(arg, 0)), (Heaviside(0, H0=H0), True)) pw2 = Piecewise( ((sign(arg) + 1)/2, Eq(Heaviside(0, H0=H0), S(1)/2)), (pw1, True)) return pw2 def _eval_rewrite_as_SingularityFunction(self, args, H0=S.Half, **kwargs): """ Returns the Heaviside expression written in the form of Singularity Functions. """ from sympy.solvers import solve from sympy.functions import SingularityFunction if self == Heaviside(0): return SingularityFunction(0, 0, 0) free = self.free_symbols if len(free) == 1: x = (free.pop()) return SingularityFunction(x, solve(args, x)[0], 0) # TODO # ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output # SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0) else: # I don't know how to handle the case for Heaviside expressions # having arguments with more than one variable. raise TypeError(filldedent(''' rewrite(SingularityFunction) doesn't support arguments with more that 1 variable.''')) def _sage_(self): import sage.all as sage return sage.heaviside(self.args[0]._sage_())
2e2d2324cf4e5834305d602ab6b231c53131b5d3eef4034f2e7fadef8353518e
""" Riemann zeta and related function. """ from sympy.core import Function, S, sympify, pi, I from sympy.core.function import ArgumentIndexError from sympy.functions.combinatorial.numbers import bernoulli, factorial, harmonic from sympy.functions.elementary.exponential import log, exp_polar from sympy.functions.elementary.miscellaneous import sqrt ############################################################################### ###################### LERCH TRANSCENDENT ##################################### ############################################################################### class lerchphi(Function): r""" Lerch transcendent (Lerch phi function). Explanation =========== For $\operatorname{Re}(a) > 0$, $|z| < 1$ and $s \in \mathbb{C}$, the Lerch transcendent is defined as .. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s}, where the standard branch of the argument is used for $n + a$, and by analytic continuation for other values of the parameters. A commonly used related function is the Lerch zeta function, defined by .. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a). **Analytic Continuation and Branching Behavior** It can be shown that .. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}. This provides the analytic continuation to $\operatorname{Re}(a) \le 0$. Assume now $\operatorname{Re}(a) > 0$. The integral representation .. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}} \frac{\mathrm{d}t}{\Gamma(s)} provides an analytic continuation to $\mathbb{C} - [1, \infty)$. Finally, for $x \in (1, \infty)$ we find .. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a) -\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a) = \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)}, using the standard branch for both $\log{x}$ and $\log{\log{x}}$ (a branch of $\log{\log{x}}$ is needed to evaluate $\log{x}^{s-1}$). This concludes the analytic continuation. The Lerch transcendent is thus branched at $z \in \{0, 1, \infty\}$ and $a \in \mathbb{Z}_{\le 0}$. For fixed $z, a$ outside these branch points, it is an entire function of $s$. Examples ======== The Lerch transcendent is a fairly general function, for this reason it does not automatically evaluate to simpler functions. Use ``expand_func()`` to achieve this. If $z=1$, the Lerch transcendent reduces to the Hurwitz zeta function: >>> from sympy import lerchphi, expand_func >>> from sympy.abc import z, s, a >>> expand_func(lerchphi(1, s, a)) zeta(s, a) More generally, if $z$ is a root of unity, the Lerch transcendent reduces to a sum of Hurwitz zeta functions: >>> expand_func(lerchphi(-1, s, a)) zeta(s, a/2)/2**s - zeta(s, a/2 + 1/2)/2**s If $a=1$, the Lerch transcendent reduces to the polylogarithm: >>> expand_func(lerchphi(z, s, 1)) polylog(s, z)/z More generally, if $a$ is rational, the Lerch transcendent reduces to a sum of polylogarithms: >>> from sympy import S >>> expand_func(lerchphi(z, s, S(1)/2)) 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z)) >>> expand_func(lerchphi(z, s, S(3)/2)) -2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) - polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z The derivatives with respect to $z$ and $a$ can be computed in closed form: >>> lerchphi(z, s, a).diff(z) (-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z >>> lerchphi(z, s, a).diff(a) -s*lerchphi(z, s + 1, a) See Also ======== polylog, zeta References ========== .. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions, Vol. I, New York: McGraw-Hill. Section 1.11. .. [2] http://dlmf.nist.gov/25.14 .. [3] https://en.wikipedia.org/wiki/Lerch_transcendent """ def _eval_expand_func(self, **hints): from sympy import exp, I, floor, Add, Poly, Dummy, exp_polar, unpolarify z, s, a = self.args if z == 1: return zeta(s, a) if s.is_Integer and s <= 0: t = Dummy('t') p = Poly((t + a)**(-s), t) start = 1/(1 - t) res = S.Zero for c in reversed(p.all_coeffs()): res += c*start start = t*start.diff(t) return res.subs(t, z) if a.is_Rational: # See section 18 of # Kelly B. Roach. Hypergeometric Function Representations. # In: Proceedings of the 1997 International Symposium on Symbolic and # Algebraic Computation, pages 205-211, New York, 1997. ACM. # TODO should something be polarified here? add = S.Zero mul = S.One # First reduce a to the interaval (0, 1] if a > 1: n = floor(a) if n == a: n -= 1 a -= n mul = z**(-n) add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)]) elif a <= 0: n = floor(-a) + 1 a += n mul = z**n add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)]) m, n = S([a.p, a.q]) zet = exp_polar(2*pi*I/n) root = z**(1/n) return add + mul*n**(s - 1)*Add( *[polylog(s, zet**k*root)._eval_expand_func(**hints) / (unpolarify(zet)**k*root)**m for k in range(n)]) # TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]: # TODO reference? if z == -1: p, q = S([1, 2]) elif z == I: p, q = S([1, 4]) elif z == -I: p, q = S([-1, 4]) else: arg = z.args[0]/(2*pi*I) p, q = S([arg.p, arg.q]) return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q) for k in range(q)]) return lerchphi(z, s, a) def fdiff(self, argindex=1): z, s, a = self.args if argindex == 3: return -s*lerchphi(z, s + 1, a) elif argindex == 1: return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z else: raise ArgumentIndexError def _eval_rewrite_helper(self, z, s, a, target): res = self._eval_expand_func() if res.has(target): return res else: return self def _eval_rewrite_as_zeta(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, zeta) def _eval_rewrite_as_polylog(self, z, s, a, **kwargs): return self._eval_rewrite_helper(z, s, a, polylog) ############################################################################### ###################### POLYLOGARITHM ########################################## ############################################################################### class polylog(Function): r""" Polylogarithm function. Explanation =========== For $|z| < 1$ and $s \in \mathbb{C}$, the polylogarithm is defined by .. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s}, where the standard branch of the argument is used for $n$. It admits an analytic continuation which is branched at $z=1$ (notably not on the sheet of initial definition), $z=0$ and $z=\infty$. The name polylogarithm comes from the fact that for $s=1$, the polylogarithm is related to the ordinary logarithm (see examples), and that .. math:: \operatorname{Li}_{s+1}(z) = \int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t. The polylogarithm is a special case of the Lerch transcendent: .. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1). Examples ======== For $z \in \{0, 1, -1\}$, the polylogarithm is automatically expressed using other functions: >>> from sympy import polylog >>> from sympy.abc import s >>> polylog(s, 0) 0 >>> polylog(s, 1) zeta(s) >>> polylog(s, -1) -dirichlet_eta(s) If $s$ is a negative integer, $0$ or $1$, the polylogarithm can be expressed using elementary functions. This can be done using ``expand_func()``: >>> from sympy import expand_func >>> from sympy.abc import z >>> expand_func(polylog(1, z)) -log(1 - z) >>> expand_func(polylog(0, z)) z/(1 - z) The derivative with respect to $z$ can be computed in closed form: >>> polylog(s, z).diff(z) polylog(s - 1, z)/z The polylogarithm can be expressed in terms of the lerch transcendent: >>> from sympy import lerchphi >>> polylog(s, z).rewrite(lerchphi) z*lerchphi(z, s, 1) See Also ======== zeta, lerchphi """ @classmethod def eval(cls, s, z): s, z = sympify((s, z)) if z is S.One: return zeta(s) elif z is S.NegativeOne: return -dirichlet_eta(s) elif z is S.Zero: return S.Zero elif s == 2: if z == S.Half: return pi**2/12 - log(2)**2/2 elif z == 2: return pi**2/4 - I*pi*log(2) elif z == -(sqrt(5) - 1)/2: return -pi**2/15 + log((sqrt(5)-1)/2)**2/2 elif z == -(sqrt(5) + 1)/2: return -pi**2/10 - log((sqrt(5)+1)/2)**2 elif z == (3 - sqrt(5))/2: return pi**2/15 - log((sqrt(5)-1)/2)**2 elif z == (sqrt(5) - 1)/2: return pi**2/10 - log((sqrt(5)-1)/2)**2 if z.is_zero: return S.Zero # Make an effort to determine if z is 1 to avoid replacing into # expression with singularity zone = z.equals(S.One) if zone: return zeta(s) elif zone is False: # For s = 0 or -1 use explicit formulas to evaluate, but # automatically expanding polylog(1, z) to -log(1-z) seems # undesirable for summation methods based on hypergeometric # functions if s is S.Zero: return z/(1 - z) elif s is S.NegativeOne: return z/(1 - z)**2 if s.is_zero: return z/(1 - z) # polylog is branched, but not over the unit disk from sympy.functions.elementary.complexes import (Abs, unpolarify, polar_lift) if z.has(exp_polar, polar_lift) and (zone or (Abs(z) <= S.One) == True): return cls(s, unpolarify(z)) def fdiff(self, argindex=1): s, z = self.args if argindex == 2: return polylog(s - 1, z)/z raise ArgumentIndexError def _eval_rewrite_as_lerchphi(self, s, z, **kwargs): return z*lerchphi(z, s, 1) def _eval_expand_func(self, **hints): from sympy import log, expand_mul, Dummy s, z = self.args if s == 1: return -log(1 - z) if s.is_Integer and s <= 0: u = Dummy('u') start = u/(1 - u) for _ in range(-s): start = u*start.diff(u) return expand_mul(start).subs(u, z) return polylog(s, z) def _eval_is_zero(self): z = self.args[1] if z.is_zero: return True ############################################################################### ###################### HURWITZ GENERALIZED ZETA FUNCTION ###################### ############################################################################### class zeta(Function): r""" Hurwitz zeta function (or Riemann zeta function). Explanation =========== For $\operatorname{Re}(a) > 0$ and $\operatorname{Re}(s) > 1$, this function is defined as .. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s}, where the standard choice of argument for $n + a$ is used. For fixed $a$ with $\operatorname{Re}(a) > 0$ the Hurwitz zeta function admits a meromorphic continuation to all of $\mathbb{C}$, it is an unbranched function with a simple pole at $s = 1$. Analytic continuation to other $a$ is possible under some circumstances, but this is not typically done. The Hurwitz zeta function is a special case of the Lerch transcendent: .. math:: \zeta(s, a) = \Phi(1, s, a). This formula defines an analytic continuation for all possible values of $s$ and $a$ (also $\operatorname{Re}(a) < 0$), see the documentation of :class:`lerchphi` for a description of the branching behavior. If no value is passed for $a$, by this function assumes a default value of $a = 1$, yielding the Riemann zeta function. Examples ======== For $a = 1$ the Hurwitz zeta function reduces to the famous Riemann zeta function: .. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}. >>> from sympy import zeta >>> from sympy.abc import s >>> zeta(s, 1) zeta(s) >>> zeta(s) zeta(s) The Riemann zeta function can also be expressed using the Dirichlet eta function: >>> from sympy import dirichlet_eta >>> zeta(s).rewrite(dirichlet_eta) dirichlet_eta(s)/(1 - 2**(1 - s)) The Riemann zeta function at positive even integer and negative odd integer values is related to the Bernoulli numbers: >>> zeta(2) pi**2/6 >>> zeta(4) pi**4/90 >>> zeta(-1) -1/12 The specific formulae are: .. math:: \zeta(2n) = (-1)^{n+1} \frac{B_{2n} (2\pi)^{2n}}{2(2n)!} .. math:: \zeta(-n) = -\frac{B_{n+1}}{n+1} At negative even integers the Riemann zeta function is zero: >>> zeta(-4) 0 No closed-form expressions are known at positive odd integers, but numerical evaluation is possible: >>> zeta(3).n() 1.20205690315959 The derivative of $\zeta(s, a)$ with respect to $a$ can be computed: >>> from sympy.abc import a >>> zeta(s, a).diff(a) -s*zeta(s + 1, a) However the derivative with respect to $s$ has no useful closed form expression: >>> zeta(s, a).diff(s) Derivative(zeta(s, a), s) The Hurwitz zeta function can be expressed in terms of the Lerch transcendent, :class:`~.lerchphi`: >>> from sympy import lerchphi >>> zeta(s, a).rewrite(lerchphi) lerchphi(1, s, a) See Also ======== dirichlet_eta, lerchphi, polylog References ========== .. [1] http://dlmf.nist.gov/25.11 .. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function """ @classmethod def eval(cls, z, a_=None): if a_ is None: z, a = list(map(sympify, (z, 1))) else: z, a = list(map(sympify, (z, a_))) if a.is_Number: if a is S.NaN: return S.NaN elif a is S.One and a_ is not None: return cls(z) # TODO Should a == 0 return S.NaN as well? if z.is_Number: if z is S.NaN: return S.NaN elif z is S.Infinity: return S.One elif z.is_zero: return S.Half - a elif z is S.One: return S.ComplexInfinity if z.is_integer: if a.is_Integer: if z.is_negative: zeta = (-1)**z * bernoulli(-z + 1)/(-z + 1) elif z.is_even and z.is_positive: B, F = bernoulli(z), factorial(z) zeta = ((-1)**(z/2+1) * 2**(z - 1) * B * pi**z) / F else: return if a.is_negative: return zeta + harmonic(abs(a), z) else: return zeta - harmonic(a - 1, z) if z.is_zero: return S.Half - a def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs): if a != 1: return self s = self.args[0] return dirichlet_eta(s)/(1 - 2**(1 - s)) def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs): return lerchphi(1, s, a) def _eval_is_finite(self): arg_is_one = (self.args[0] - 1).is_zero if arg_is_one is not None: return not arg_is_one def fdiff(self, argindex=1): if len(self.args) == 2: s, a = self.args else: s, a = self.args + (1,) if argindex == 2: return -s*zeta(s + 1, a) else: raise ArgumentIndexError class dirichlet_eta(Function): r""" Dirichlet eta function. Explanation =========== For $\operatorname{Re}(s) > 0$, this function is defined as .. math:: \eta(s) = \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}. It admits a unique analytic continuation to all of $\mathbb{C}$. It is an entire, unbranched function. Examples ======== The Dirichlet eta function is closely related to the Riemann zeta function: >>> from sympy import dirichlet_eta, zeta >>> from sympy.abc import s >>> dirichlet_eta(s).rewrite(zeta) (1 - 2**(1 - s))*zeta(s) See Also ======== zeta References ========== .. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function """ @classmethod def eval(cls, s): if s == 1: return log(2) z = zeta(s) if not z.has(zeta): return (1 - 2**(1 - s))*z def _eval_rewrite_as_zeta(self, s, **kwargs): return (1 - 2**(1 - s)) * zeta(s) class riemann_xi(Function): r""" Riemann Xi function. Examples ======== The Riemann Xi function is closely related to the Riemann zeta function. The zeros of Riemann Xi function are precisely the non-trivial zeros of the zeta function. >>> from sympy import riemann_xi, zeta >>> from sympy.abc import s >>> riemann_xi(s).rewrite(zeta) s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2)) References ========== .. [1] https://en.wikipedia.org/wiki/Riemann_Xi_function """ @classmethod def eval(cls, s): from sympy import gamma z = zeta(s) if s is S.Zero or s is S.One: return S.Half if not isinstance(z, zeta): return s*(s - 1)*gamma(s/2)*z/(2*pi**(s/2)) def _eval_rewrite_as_zeta(self, s, **kwargs): from sympy import gamma return s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2)) class stieltjes(Function): r""" Represents Stieltjes constants, $\gamma_{k}$ that occur in Laurent Series expansion of the Riemann zeta function. Examples ======== >>> from sympy import stieltjes >>> from sympy.abc import n, m >>> stieltjes(n) stieltjes(n) The zero'th stieltjes constant: >>> stieltjes(0) EulerGamma >>> stieltjes(0, 1) EulerGamma For generalized stieltjes constants: >>> stieltjes(n, m) stieltjes(n, m) Constants are only defined for integers >= 0: >>> stieltjes(-1) zoo References ========== .. [1] https://en.wikipedia.org/wiki/Stieltjes_constants """ @classmethod def eval(cls, n, a=None): n = sympify(n) if a is not None: a = sympify(a) if a is S.NaN: return S.NaN if a.is_Integer and a.is_nonpositive: return S.ComplexInfinity if n.is_Number: if n is S.NaN: return S.NaN elif n < 0: return S.ComplexInfinity elif not n.is_Integer: return S.ComplexInfinity elif n is S.Zero and a in [None, 1]: return S.EulerGamma if n.is_extended_negative: return S.ComplexInfinity if n.is_zero and a in [None, 1]: return S.EulerGamma if n.is_integer == False: return S.ComplexInfinity
8fef1e87074522b1a56f0329e449a84803d03ebbe9f7fddc193e9067043f9ea8
from sympy.core import S, sympify, oo, diff from sympy.core.function import Function, ArgumentIndexError from sympy.core.logic import fuzzy_not from sympy.core.relational import Eq from sympy.functions.elementary.complexes import im from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside ############################################################################### ############################# SINGULARITY FUNCTION ############################ ############################################################################### class SingularityFunction(Function): r""" Singularity functions are a class of discontinuous functions. Explanation =========== Singularity functions take a variable, an offset, and an exponent as arguments. These functions are represented using Macaulay brackets as: SingularityFunction(x, a, n) := <x - a>^n The singularity function will automatically evaluate to ``Derivative(DiracDelta(x - a), x, -n - 1)`` if ``n < 0`` and ``(x - a)**n*Heaviside(x - a)`` if ``n >= 0``. Examples ======== >>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol >>> from sympy.abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> SingularityFunction(y, -10, n) (y + 10)**n >>> y = Symbol('y', negative=True) >>> SingularityFunction(y, 10, n) 0 >>> SingularityFunction(x, 4, -1).subs(x, 4) oo >>> SingularityFunction(x, 10, -2).subs(x, 10) oo >>> SingularityFunction(4, 1, 5) 243 >>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x) 4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4) >>> diff(SingularityFunction(x, 4, 0), x, 2) SingularityFunction(x, 4, -2) >>> SingularityFunction(x, 4, 5).rewrite(Piecewise) Piecewise(((x - 4)**5, x - 4 > 0), (0, True)) >>> expr = SingularityFunction(x, a, n) >>> y = Symbol('y', positive=True) >>> n = Symbol('n', nonnegative=True) >>> expr.subs({x: y, a: -10, n: n}) (y + 10)**n The methods ``rewrite(DiracDelta)``, ``rewrite(Heaviside)``, and ``rewrite('HeavisideDiracDelta')`` returns the same output. One can use any of these methods according to their choice. >>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2) >>> expr.rewrite(Heaviside) (x - 4)**5*Heaviside(x - 4, 1/2) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite(DiracDelta) (x - 4)**5*Heaviside(x - 4, 1/2) + DiracDelta(x + 3) - DiracDelta(x, 1) >>> expr.rewrite('HeavisideDiracDelta') (x - 4)**5*Heaviside(x - 4, 1/2) + DiracDelta(x + 3) - DiracDelta(x, 1) See Also ======== DiracDelta, Heaviside References ========== .. [1] https://en.wikipedia.org/wiki/Singularity_function """ is_real = True def fdiff(self, argindex=1): """ Returns the first derivative of a DiracDelta Function. Explanation =========== The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the user-level function and ``fdiff()`` is an object method. ``fdiff()`` is a convenience method available in the ``Function`` class. It returns the derivative of the function without considering the chain rule. ``diff(function, x)`` calls ``Function._eval_derivative`` which in turn calls ``fdiff()`` internally to compute the derivative of the function. """ if argindex == 1: x = sympify(self.args[0]) a = sympify(self.args[1]) n = sympify(self.args[2]) if n == 0 or n == -1: return self.func(x, a, n-1) elif n.is_positive: return n*self.func(x, a, n-1) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, variable, offset, exponent): """ Returns a simplified form or a value of Singularity Function depending on the argument passed by the object. Explanation =========== The ``eval()`` method is automatically called when the ``SingularityFunction`` class is about to be instantiated and it returns either some simplified instance or the unevaluated instance depending on the argument passed. In other words, ``eval()`` method is not needed to be called explicitly, it is being called and evaluated once the object is called. Examples ======== >>> from sympy import SingularityFunction, Symbol, nan >>> from sympy.abc import x, a, n >>> SingularityFunction(x, a, n) SingularityFunction(x, a, n) >>> SingularityFunction(5, 3, 2) 4 >>> SingularityFunction(x, a, nan) nan >>> SingularityFunction(x, 3, 0).subs(x, 3) 1 >>> SingularityFunction(x, a, n).eval(3, 5, 1) 0 >>> SingularityFunction(x, a, n).eval(4, 1, 5) 243 >>> x = Symbol('x', positive = True) >>> a = Symbol('a', negative = True) >>> n = Symbol('n', nonnegative = True) >>> SingularityFunction(x, a, n) (-a + x)**n >>> x = Symbol('x', negative = True) >>> a = Symbol('a', positive = True) >>> SingularityFunction(x, a, n) 0 """ x = sympify(variable) a = sympify(offset) n = sympify(exponent) shift = (x - a) if fuzzy_not(im(shift).is_zero): raise ValueError("Singularity Functions are defined only for Real Numbers.") if fuzzy_not(im(n).is_zero): raise ValueError("Singularity Functions are not defined for imaginary exponents.") if shift is S.NaN or n is S.NaN: return S.NaN if (n + 2).is_negative: raise ValueError("Singularity Functions are not defined for exponents less than -2.") if shift.is_extended_negative: return S.Zero if n.is_nonnegative and shift.is_extended_nonnegative: return (x - a)**n if n == -1 or n == -2: if shift.is_negative or shift.is_extended_positive: return S.Zero if shift.is_zero: return S.Infinity def _eval_rewrite_as_Piecewise(self, *args, **kwargs): ''' Converts a Singularity Function expression into its Piecewise form. ''' x = self.args[0] a = self.args[1] n = sympify(self.args[2]) if n == -1 or n == -2: return Piecewise((oo, Eq((x - a), 0)), (0, True)) elif n.is_nonnegative: return Piecewise(((x - a)**n, (x - a) > 0), (0, True)) def _eval_rewrite_as_Heaviside(self, *args, **kwargs): ''' Rewrites a Singularity Function expression using Heavisides and DiracDeltas. ''' x = self.args[0] a = self.args[1] n = sympify(self.args[2]) if n == -2: return diff(Heaviside(x - a), x.free_symbols.pop(), 2) if n == -1: return diff(Heaviside(x - a), x.free_symbols.pop(), 1) if n.is_nonnegative: return (x - a)**n*Heaviside(x - a) _eval_rewrite_as_DiracDelta = _eval_rewrite_as_Heaviside _eval_rewrite_as_HeavisideDiracDelta = _eval_rewrite_as_Heaviside
c02d17e4a3a52ee0d6cce5fd8141472e0a81b8503493814108a2a2416dcb68a4
from functools import wraps from sympy import Add, S, pi, I, Rational, Wild, cacheit, sympify from sympy.core.function import Function, ArgumentIndexError, _mexpand from sympy.core.logic import fuzzy_or, fuzzy_not from sympy.core.power import Pow from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.trigonometric import sin, cos, csc, cot from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import sqrt, root from sympy.functions.elementary.complexes import re, im from sympy.functions.special.gamma_functions import gamma, digamma from sympy.functions.special.hyper import hyper from sympy.polys.orthopolys import spherical_bessel_fn as fn # TODO # o Scorer functions G1 and G2 # o Asymptotic expansions # These are possible, e.g. for fixed order, but since the bessel type # functions are oscillatory they are not actually tractable at # infinity, so this is not particularly useful right now. # o Nicer series expansions. # o More rewriting. # o Add solvers to ode.py (or rather add solvers for the hypergeometric equation). class BesselBase(Function): """ Abstract base class for Bessel-type functions. This class is meant to reduce code duplication. All Bessel-type functions can 1) be differentiated, with the derivatives expressed in terms of similar functions, and 2) be rewritten in terms of other Bessel-type functions. Here, Bessel-type functions are assumed to have one complex parameter. To use this base class, define class attributes ``_a`` and ``_b`` such that ``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``. """ @property def order(self): """ The order of the Bessel-type function. """ return self.args[0] @property def argument(self): """ The argument of the Bessel-type function. """ return self.args[1] @classmethod def eval(cls, nu, z): return def fdiff(self, argindex=2): if argindex != 2: raise ArgumentIndexError(self, argindex) return (self._b/2 * self.__class__(self.order - 1, self.argument) - self._a/2 * self.__class__(self.order + 1, self.argument)) def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return self.__class__(self.order.conjugate(), z.conjugate()) def _eval_is_meromorphic(self, x, a): nu, z = self.order, self.argument if nu.has(x): return False if not z._eval_is_meromorphic(x, a): return None z0 = z.subs(x, a) if nu.is_integer: if isinstance(self, (besselj, besseli, hn1, hn2, jn, yn)) or not nu.is_zero: return fuzzy_not(z0.is_infinite) return fuzzy_not(fuzzy_or([z0.is_zero, z0.is_infinite])) def _eval_expand_func(self, **hints): nu, z, f = self.order, self.argument, self.__class__ if nu.is_real: if (nu - 1).is_positive: return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() + 2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z) elif (nu + 1).is_negative: return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z - self._a*self._b*f(nu + 2, z)._eval_expand_func()) return self def _eval_simplify(self, **kwargs): from sympy.simplify.simplify import besselsimp return besselsimp(self) class besselj(BesselBase): r""" Bessel function of the first kind. Explanation =========== The Bessel $J$ function of order $\nu$ is defined to be the function satisfying Bessel's differential equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0, with Laurent expansion .. math :: J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right), if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$ *is* a negative integer, then the definition is .. math :: J_{-n}(z) = (-1)^n J_n(z). Examples ======== Create a Bessel function object: >>> from sympy import besselj, jn >>> from sympy.abc import z, n >>> b = besselj(n, z) Differentiate it: >>> b.diff(z) besselj(n - 1, z)/2 - besselj(n + 1, z)/2 Rewrite in terms of spherical Bessel functions: >>> b.rewrite(jn) sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi) Access the parameter and argument: >>> b.order n >>> b.argument z See Also ======== bessely, besseli, besselk References ========== .. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9", Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables .. [2] Luke, Y. L. (1969), The Special Functions and Their Approximations, Volume 1 .. [3] https://en.wikipedia.org/wiki/Bessel_function .. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/ """ _a = S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive: return S.Zero elif re(nu).is_negative and not (nu.is_integer is True): return S.ComplexInfinity elif nu.is_imaginary: return S.NaN if z is S.Infinity or (z is S.NegativeInfinity): return S.Zero if z.could_extract_minus_sign(): return (z)**nu*(-z)**(-nu)*besselj(nu, -z) if nu.is_integer: if nu.could_extract_minus_sign(): return S.NegativeOne**(-nu)*besselj(-nu, z) newz = z.extract_multiplicatively(I) if newz: # NOTE we don't want to change the function if z==0 return I**(nu)*besseli(nu, newz) # branch handling: from sympy import unpolarify if nu.is_integer: newz = unpolarify(z) if newz != z: return besselj(nu, newz) else: newz, n = z.extract_branch_factor() if n != 0: return exp(2*n*pi*nu*I)*besselj(nu, newz) nnu = unpolarify(nu) if nu != nnu: return besselj(nnu, z) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): from sympy import polar_lift return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): if nu.is_integer is False: return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return sqrt(2*z/pi)*jn(nu - S.Half, self.argument) def _eval_as_leading_term(self, x, cdir=0): nu, z = self.args arg = z.as_leading_term(x) if x in arg.free_symbols: return z**nu else: return self.func(*self.args) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_extended_real: return True def _eval_nseries(self, x, n, logx, cdir=0): from sympy.series.order import Order nu, z = self.args # In case of powers less than 1, number of terms need to be computed # separately to avoid repeated callings of _eval_nseries with wrong n try: _, exp = z.leadterm(x) except (ValueError, NotImplementedError): return self if exp.is_positive: newn = ceiling(n/exp) o = Order(x**n, x) r = (z/2)._eval_nseries(x, n, logx, cdir).removeO() if r is S.Zero: return o t = (_mexpand(r**2) + o).removeO() term = r**nu/gamma(nu + 1) s = [term] for k in range(1, (newn + 1)//2): term *= -t/(k*(nu + k)) term = (_mexpand(term) + o).removeO() s.append(term) return Add(*s) + o return super(besselj, self)._eval_nseries(x, n, logx, cdir) def _sage_(self): import sage.all as sage return sage.bessel_J(self.args[0]._sage_(), self.args[1]._sage_()) class bessely(BesselBase): r""" Bessel function of the second kind. Explanation =========== The Bessel $Y$ function of order $\nu$ is defined as .. math :: Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu) - J_{-\mu}(z)}{\sin(\pi \mu)}, where $J_\mu(z)$ is the Bessel function of the first kind. It is a solution to Bessel's equation, and linearly independent from $J_\nu$. Examples ======== >>> from sympy import bessely, yn >>> from sympy.abc import z, n >>> b = bessely(n, z) >>> b.diff(z) bessely(n - 1, z)/2 - bessely(n + 1, z)/2 >>> b.rewrite(yn) sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi) See Also ======== besselj, besseli, besselk References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/ """ _a = S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.NegativeInfinity elif re(nu).is_zero is False: return S.ComplexInfinity elif re(nu).is_zero: return S.NaN if z is S.Infinity or z is S.NegativeInfinity: return S.Zero if nu.is_integer: if nu.could_extract_minus_sign(): return S.NegativeOne**(-nu)*bessely(-nu, z) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): if nu.is_integer is False: return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z)) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(besseli) def _eval_rewrite_as_yn(self, nu, z, **kwargs): return sqrt(2*z/pi) * yn(nu - S.Half, self.argument) def _eval_as_leading_term(self, x, cdir=0): nu, z = self.args arg = z.as_leading_term(x) if x in arg.free_symbols: return z**nu else: return self.func(*self.args) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_positive: return True def _eval_nseries(self, x, n, logx, cdir=0): from sympy.series.order import Order nu, z = self.args # In case of powers less than 1, number of terms need to be computed # separately to avoid repeated callings of _eval_nseries with wrong n try: _, exp = z.leadterm(x) except (ValueError, NotImplementedError): return self if exp.is_positive and nu.is_integer: newn = ceiling(n/exp) bn = besselj(nu, z) a = ((2/pi)*log(z/2)*bn)._eval_nseries(x, n, logx, cdir) b, c = [], [] o = Order(x**n, x) r = (z/2)._eval_nseries(x, n, logx, cdir).removeO() if r is S.Zero: return o t = (_mexpand(r**2) + o).removeO() if nu > S.One: term = r**(-nu)*factorial(nu - 1)/pi b.append(term) for k in range(1, nu - 1): term *= t*(nu - k - 1)/k term = (_mexpand(term) + o).removeO() b.append(term) p = r**nu/(pi*factorial(nu)) term = p*(digamma(nu + 1) - S.EulerGamma) c.append(term) for k in range(1, (newn + 1)//2): p *= -t/(k*(k + nu)) p = (_mexpand(p) + o).removeO() term = p*(digamma(k + nu + 1) + digamma(k + 1)) c.append(term) return a - Add(*b) - Add(*c) # Order term comes from a return super(bessely, self)._eval_nseries(x, n, logx, cdir) def _sage_(self): import sage.all as sage return sage.bessel_Y(self.args[0]._sage_(), self.args[1]._sage_()) class besseli(BesselBase): r""" Modified Bessel function of the first kind. Explanation =========== The Bessel $I$ function is a solution to the modified Bessel equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0. It can be defined as .. math :: I_\nu(z) = i^{-\nu} J_\nu(iz), where $J_\nu(z)$ is the Bessel function of the first kind. Examples ======== >>> from sympy import besseli >>> from sympy.abc import z, n >>> besseli(n, z).diff(z) besseli(n - 1, z)/2 + besseli(n + 1, z)/2 See Also ======== besselj, bessely, besselk References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/ """ _a = -S.One _b = S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive: return S.Zero elif re(nu).is_negative and not (nu.is_integer is True): return S.ComplexInfinity elif nu.is_imaginary: return S.NaN if im(z) is S.Infinity or im(z) is S.NegativeInfinity: return S.Zero if z.could_extract_minus_sign(): return (z)**nu*(-z)**(-nu)*besseli(nu, -z) if nu.is_integer: if nu.could_extract_minus_sign(): return besseli(-nu, z) newz = z.extract_multiplicatively(I) if newz: # NOTE we don't want to change the function if z==0 return I**(-nu)*besselj(nu, -newz) # branch handling: from sympy import unpolarify if nu.is_integer: newz = unpolarify(z) if newz != z: return besseli(nu, newz) else: newz, n = z.extract_branch_factor() if n != 0: return exp(2*n*pi*nu*I)*besseli(nu, newz) nnu = unpolarify(nu) if nu != nnu: return besseli(nnu, z) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): from sympy import polar_lift return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(bessely) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return self._eval_rewrite_as_besselj(*self.args).rewrite(jn) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_extended_real: return True def _sage_(self): import sage.all as sage return sage.bessel_I(self.args[0]._sage_(), self.args[1]._sage_()) class besselk(BesselBase): r""" Modified Bessel function of the second kind. Explanation =========== The Bessel $K$ function of order $\nu$ is defined as .. math :: K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2} \frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)}, where $I_\mu(z)$ is the modified Bessel function of the first kind. It is a solution of the modified Bessel equation, and linearly independent from $Y_\nu$. Examples ======== >>> from sympy import besselk >>> from sympy.abc import z, n >>> besselk(n, z).diff(z) -besselk(n - 1, z)/2 - besselk(n + 1, z)/2 See Also ======== besselj, besseli, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/ """ _a = S.One _b = -S.One @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.Infinity elif re(nu).is_zero is False: return S.ComplexInfinity elif re(nu).is_zero: return S.NaN if z in (S.Infinity, I*S.Infinity, I*S.NegativeInfinity): return S.Zero if nu.is_integer: if nu.could_extract_minus_sign(): return besselk(-nu, z) def _eval_rewrite_as_besseli(self, nu, z, **kwargs): if nu.is_integer is False: return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2 def _eval_rewrite_as_besselj(self, nu, z, **kwargs): ai = self._eval_rewrite_as_besseli(*self.args) if ai: return ai.rewrite(besselj) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): aj = self._eval_rewrite_as_besselj(*self.args) if aj: return aj.rewrite(bessely) def _eval_rewrite_as_yn(self, nu, z, **kwargs): ay = self._eval_rewrite_as_bessely(*self.args) if ay: return ay.rewrite(yn) def _eval_is_extended_real(self): nu, z = self.args if nu.is_integer and z.is_positive: return True def _sage_(self): import sage.all as sage return sage.bessel_K(self.args[0]._sage_(), self.args[1]._sage_()) class hankel1(BesselBase): r""" Hankel function of the first kind. Explanation =========== This function is defined as .. math :: H_\nu^{(1)} = J_\nu(z) + iY_\nu(z), where $J_\nu(z)$ is the Bessel function of the first kind, and $Y_\nu(z)$ is the Bessel function of the second kind. It is a solution to Bessel's equation. Examples ======== >>> from sympy import hankel1 >>> from sympy.abc import z, n >>> hankel1(n, z).diff(z) hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2 See Also ======== hankel2, besselj, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/ """ _a = S.One _b = S.One def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return hankel2(self.order.conjugate(), z.conjugate()) class hankel2(BesselBase): r""" Hankel function of the second kind. Explanation =========== This function is defined as .. math :: H_\nu^{(2)} = J_\nu(z) - iY_\nu(z), where $J_\nu(z)$ is the Bessel function of the first kind, and $Y_\nu(z)$ is the Bessel function of the second kind. It is a solution to Bessel's equation, and linearly independent from $H_\nu^{(1)}$. Examples ======== >>> from sympy import hankel2 >>> from sympy.abc import z, n >>> hankel2(n, z).diff(z) hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2 See Also ======== hankel1, besselj, bessely References ========== .. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/ """ _a = S.One _b = S.One def _eval_conjugate(self): z = self.argument if z.is_extended_negative is False: return hankel1(self.order.conjugate(), z.conjugate()) def assume_integer_order(fn): @wraps(fn) def g(self, nu, z): if nu.is_integer: return fn(self, nu, z) return g class SphericalBesselBase(BesselBase): """ Base class for spherical Bessel functions. These are thin wrappers around ordinary Bessel functions, since spherical Bessel functions differ from the ordinary ones just by a slight change in order. To use this class, define the ``_rewrite()`` and ``_expand()`` methods. """ def _expand(self, **hints): """ Expand self into a polynomial. Nu is guaranteed to be Integer. """ raise NotImplementedError('expansion') def _rewrite(self): """ Rewrite self in terms of ordinary Bessel functions. """ raise NotImplementedError('rewriting') def _eval_expand_func(self, **hints): if self.order.is_Integer: return self._expand(**hints) return self def _eval_evalf(self, prec): if self.order.is_Integer: return self._rewrite()._eval_evalf(prec) def fdiff(self, argindex=2): if argindex != 2: raise ArgumentIndexError(self, argindex) return self.__class__(self.order - 1, self.argument) - \ self * (self.order + 1)/self.argument def _jn(n, z): return fn(n, z)*sin(z) + (-1)**(n + 1)*fn(-n - 1, z)*cos(z) def _yn(n, z): # (-1)**(n + 1) * _jn(-n - 1, z) return (-1)**(n + 1) * fn(-n - 1, z)*sin(z) - fn(n, z)*cos(z) class jn(SphericalBesselBase): r""" Spherical Bessel function of the first kind. Explanation =========== This function is a solution to the spherical Bessel equation .. math :: z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2} + 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0. It can be defined as .. math :: j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z), where $J_\nu(z)$ is the Bessel function of the first kind. The spherical Bessel functions of integral order are calculated using the formula: .. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z}, where the coefficients $f_n(z)$ are available as :func:`sympy.polys.orthopolys.spherical_bessel_fn`. Examples ======== >>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(jn(0, z))) sin(z)/z >>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z True >>> expand_func(jn(3, z)) (-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z) >>> jn(nu, z).rewrite(besselj) sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2 >>> jn(nu, z).rewrite(bessely) (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2 >>> jn(2, 5.2+0.3j).evalf(20) 0.099419756723640344491 - 0.054525080242173562897*I See Also ======== besselj, bessely, besselk, yn References ========== .. [1] http://dlmf.nist.gov/10.47 """ @classmethod def eval(cls, nu, z): if z.is_zero: if nu.is_zero: return S.One elif nu.is_integer: if nu.is_positive: return S.Zero else: return S.ComplexInfinity if z in (S.NegativeInfinity, S.Infinity): return S.Zero def _rewrite(self): return self._eval_rewrite_as_besselj(self.order, self.argument) def _eval_rewrite_as_besselj(self, nu, z, **kwargs): return sqrt(pi/(2*z)) * besselj(nu + S.Half, z) def _eval_rewrite_as_bessely(self, nu, z, **kwargs): return (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z) def _eval_rewrite_as_yn(self, nu, z, **kwargs): return (-1)**(nu) * yn(-nu - 1, z) def _expand(self, **hints): return _jn(self.order, self.argument) class yn(SphericalBesselBase): r""" Spherical Bessel function of the second kind. Explanation =========== This function is another solution to the spherical Bessel equation, and linearly independent from $j_n$. It can be defined as .. math :: y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z), where $Y_\nu(z)$ is the Bessel function of the second kind. For integral orders $n$, $y_n$ is calculated using the formula: .. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(yn(0, z))) -cos(z)/z >>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z True >>> yn(nu, z).rewrite(besselj) (-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2 >>> yn(nu, z).rewrite(bessely) sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2 >>> yn(2, 5.2+0.3j).evalf(20) 0.18525034196069722536 + 0.014895573969924817587*I See Also ======== besselj, bessely, besselk, jn References ========== .. [1] http://dlmf.nist.gov/10.47 """ def _rewrite(self): return self._eval_rewrite_as_bessely(self.order, self.argument) @assume_integer_order def _eval_rewrite_as_besselj(self, nu, z, **kwargs): return (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z) @assume_integer_order def _eval_rewrite_as_bessely(self, nu, z, **kwargs): return sqrt(pi/(2*z)) * bessely(nu + S.Half, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): return (-1)**(nu + 1) * jn(-nu - 1, z) def _expand(self, **hints): return _yn(self.order, self.argument) class SphericalHankelBase(SphericalBesselBase): def _rewrite(self): return self._eval_rewrite_as_besselj(self.order, self.argument) @assume_integer_order def _eval_rewrite_as_besselj(self, nu, z, **kwargs): # jn +- I*yn # jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z) # yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z) hks = self._hankel_kind_sign return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) + hks*I*(-1)**(nu+1)*besselj(-nu - S.Half, z)) @assume_integer_order def _eval_rewrite_as_bessely(self, nu, z, **kwargs): # jn +- I*yn # jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z) # yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z) hks = self._hankel_kind_sign return sqrt(pi/(2*z))*((-1)**nu*bessely(-nu - S.Half, z) + hks*I*bessely(nu + S.Half, z)) def _eval_rewrite_as_yn(self, nu, z, **kwargs): hks = self._hankel_kind_sign return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z) def _eval_rewrite_as_jn(self, nu, z, **kwargs): hks = self._hankel_kind_sign return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn) def _eval_expand_func(self, **hints): if self.order.is_Integer: return self._expand(**hints) else: nu = self.order z = self.argument hks = self._hankel_kind_sign return jn(nu, z) + hks*I*yn(nu, z) def _expand(self, **hints): n = self.order z = self.argument hks = self._hankel_kind_sign # fully expanded version # return ((fn(n, z) * sin(z) + # (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn # (hks * I * (-1)**(n + 1) * # (fn(-n - 1, z) * hk * I * sin(z) + # (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn # ) return (_jn(n, z) + hks*I*_yn(n, z)).expand() class hn1(SphericalHankelBase): r""" Spherical Hankel function of the first kind. Explanation =========== This function is defined as .. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z), where $j_\nu(z)$ and $y_\nu(z)$ are the spherical Bessel function of the first and second kinds. For integral orders $n$, $h_n^(1)$ is calculated using the formula: .. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn1(nu, z))) jn(nu, z) + I*yn(nu, z) >>> print(expand_func(hn1(0, z))) sin(z)/z - I*cos(z)/z >>> print(expand_func(hn1(1, z))) -I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2 >>> hn1(nu, z).rewrite(jn) (-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn1(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) + I*yn(nu, z) >>> hn1(nu, z).rewrite(hankel1) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2 See Also ======== hn2, jn, yn, hankel1, hankel2 References ========== .. [1] http://dlmf.nist.gov/10.47 """ _hankel_kind_sign = S.One @assume_integer_order def _eval_rewrite_as_hankel1(self, nu, z, **kwargs): return sqrt(pi/(2*z))*hankel1(nu, z) class hn2(SphericalHankelBase): r""" Spherical Hankel function of the second kind. Explanation =========== This function is defined as .. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z), where $j_\nu(z)$ and $y_\nu(z)$ are the spherical Bessel function of the first and second kinds. For integral orders $n$, $h_n^(2)$ is calculated using the formula: .. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z) Examples ======== >>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn >>> z = Symbol("z") >>> nu = Symbol("nu", integer=True) >>> print(expand_func(hn2(nu, z))) jn(nu, z) - I*yn(nu, z) >>> print(expand_func(hn2(0, z))) sin(z)/z + I*cos(z)/z >>> print(expand_func(hn2(1, z))) I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2 >>> hn2(nu, z).rewrite(hankel2) sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2 >>> hn2(nu, z).rewrite(jn) -(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z) >>> hn2(nu, z).rewrite(yn) (-1)**nu*yn(-nu - 1, z) - I*yn(nu, z) See Also ======== hn1, jn, yn, hankel1, hankel2 References ========== .. [1] http://dlmf.nist.gov/10.47 """ _hankel_kind_sign = -S.One @assume_integer_order def _eval_rewrite_as_hankel2(self, nu, z, **kwargs): return sqrt(pi/(2*z))*hankel2(nu, z) def jn_zeros(n, k, method="sympy", dps=15): """ Zeros of the spherical Bessel function of the first kind. Explanation =========== This returns an array of zeros of $jn$ up to the $k$-th zero. * method = "sympy": uses `mpmath.besseljzero <http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_ * method = "scipy": uses the `SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_ and `newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_ to find all roots, which is faster than computing the zeros using a general numerical solver, but it requires SciPy and only works with low precision floating point numbers. (The function used with method="sympy" is a recent addition to mpmath; before that a general solver was used.) Examples ======== >>> from sympy import jn_zeros >>> jn_zeros(2, 4, dps=5) [5.7635, 9.095, 12.323, 15.515] See Also ======== jn, yn, besselj, besselk, bessely Parameters ========== n : integer order of Bessel function k : integer number of zeros to return """ from math import pi if method == "sympy": from mpmath import besseljzero from mpmath.libmp.libmpf import dps_to_prec from sympy import Expr prec = dps_to_prec(dps) return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec), int(l)), prec) for l in range(1, k + 1)] elif method == "scipy": from scipy.optimize import newton try: from scipy.special import spherical_jn f = lambda x: spherical_jn(n, x) except ImportError: from scipy.special import sph_jn f = lambda x: sph_jn(n, x)[0][-1] else: raise NotImplementedError("Unknown method.") def solver(f, x): if method == "scipy": root = newton(f, x) else: raise NotImplementedError("Unknown method.") return root # we need to approximate the position of the first root: root = n + pi # determine the first root exactly: root = solver(f, root) roots = [root] for i in range(k - 1): # estimate the position of the next root using the last root + pi: root = solver(f, root + pi) roots.append(root) return roots class AiryBase(Function): """ Abstract base class for Airy functions. This class is meant to reduce code duplication. """ def _eval_conjugate(self): return self.func(self.args[0].conjugate()) def _eval_is_extended_real(self): return self.args[0].is_extended_real def as_real_imag(self, deep=True, **hints): z = self.args[0] zc = z.conjugate() f = self.func u = (f(z)+f(zc))/2 v = I*(f(zc)-f(z))/2 return u, v def _eval_expand_complex(self, deep=True, **hints): re_part, im_part = self.as_real_imag(deep=deep, **hints) return re_part + im_part*S.ImaginaryUnit class airyai(AiryBase): r""" The Airy function $\operatorname{Ai}$ of the first kind. Explanation =========== The Airy function $\operatorname{Ai}(z)$ is defined to be the function satisfying Airy's differential equation .. math:: \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0. Equivalently, for real $z$ .. math:: \operatorname{Ai}(z) := \frac{1}{\pi} \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t. Examples ======== Create an Airy function object: >>> from sympy import airyai >>> from sympy.abc import z >>> airyai(z) airyai(z) Several special values are known: >>> airyai(0) 3**(1/3)/(3*gamma(2/3)) >>> from sympy import oo >>> airyai(oo) 0 >>> airyai(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airyai(z)) airyai(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airyai(z), z) airyaiprime(z) >>> diff(airyai(z), z, 2) z*airyai(z) Series expansion is also supported: >>> from sympy import series >>> series(airyai(z), z, 0, 3) 3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airyai(-2).evalf(50) 0.22740742820168557599192443603787379946077222541710 Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airyai(z).rewrite(hyper) -3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)) See Also ======== airybi: Airy function of the second kind. airyaiprime: Derivative of the Airy function of the first kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3))) if arg.is_zero: return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3))) def fdiff(self, argindex=1): if argindex == 1: return airyaiprime(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return ((3**Rational(1, 3)*x)**(-n)*(3**Rational(1, 3)*x)**(n + 1)*sin(pi*(n*Rational(2, 3) + Rational(4, 3)))*factorial(n) * gamma(n/3 + Rational(2, 3))/(sin(pi*(n*Rational(2, 3) + Rational(2, 3)))*factorial(n + 1)*gamma(n/3 + Rational(1, 3))) * p) else: return (S.One/(3**Rational(2, 3)*pi) * gamma((n+S.One)/S(3)) * sin(2*pi*(n+S.One)/S(3)) / factorial(n) * (root(3, 3)*x)**n) def _eval_rewrite_as_besselj(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(z, Rational(3, 2)) if re(z).is_positive: return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a)) else: return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (3**Rational(2, 3)*gamma(Rational(2, 3))) pf2 = z / (root(3, 3)*gamma(Rational(1, 3))) return pf1 * hyper([], [Rational(2, 3)], z**3/9) - pf2 * hyper([], [Rational(4, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is given by 03.05.16.0001.01 # http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d * z**n)**m / (d**m * z**(m*n)) newarg = c * d**m * z**(m*n) return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg)) class airybi(AiryBase): r""" The Airy function $\operatorname{Bi}$ of the second kind. Explanation =========== The Airy function $\operatorname{Bi}(z)$ is defined to be the function satisfying Airy's differential equation .. math:: \frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0. Equivalently, for real $z$ .. math:: \operatorname{Bi}(z) := \frac{1}{\pi} \int_0^\infty \exp\left(-\frac{t^3}{3} + z t\right) + \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t. Examples ======== Create an Airy function object: >>> from sympy import airybi >>> from sympy.abc import z >>> airybi(z) airybi(z) Several special values are known: >>> airybi(0) 3**(5/6)/(3*gamma(2/3)) >>> from sympy import oo >>> airybi(oo) oo >>> airybi(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airybi(z)) airybi(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airybi(z), z) airybiprime(z) >>> diff(airybi(z), z, 2) z*airybi(z) Series expansion is also supported: >>> from sympy import series >>> series(airybi(z), z, 0, 3) 3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airybi(-2).evalf(50) -0.41230258795639848808323405461146104203453483447240 Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airybi(z).rewrite(hyper) 3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3)) See Also ======== airyai: Airy function of the first kind. airyaiprime: Derivative of the Airy function of the first kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3))) if arg.is_zero: return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3))) def fdiff(self, argindex=1): if argindex == 1: return airybiprime(self.args[0]) else: raise ArgumentIndexError(self, argindex) @staticmethod @cacheit def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (3**Rational(1, 3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * factorial((n - S.One)/S(3)) / ((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * factorial((n - 2)/S(3))) * p) else: return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) / factorial(n) * (root(3, 3)*x)**n) def _eval_rewrite_as_besselj(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = Pow(z, Rational(3, 2)) if re(z).is_positive: return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a)) else: b = Pow(a, ot) c = Pow(a, -ot) return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (root(3, 6)*gamma(Rational(2, 3))) pf2 = z*root(3, 6) / gamma(Rational(1, 3)) return pf1 * hyper([], [Rational(2, 3)], z**3/9) + pf2 * hyper([], [Rational(4, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is given by 03.06.16.0001.01 # http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d * z**n)**m / (d**m * z**(m*n)) newarg = c * d**m * z**(m*n) return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg)) class airyaiprime(AiryBase): r""" The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first kind. Explanation =========== The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the function .. math:: \operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}. Examples ======== Create an Airy function object: >>> from sympy import airyaiprime >>> from sympy.abc import z >>> airyaiprime(z) airyaiprime(z) Several special values are known: >>> airyaiprime(0) -3**(2/3)/(3*gamma(1/3)) >>> from sympy import oo >>> airyaiprime(oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airyaiprime(z)) airyaiprime(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airyaiprime(z), z) z*airyai(z) >>> diff(airyaiprime(z), z, 2) z*airyaiprime(z) + airyai(z) Series expansion is also supported: >>> from sympy import series >>> series(airyaiprime(z), z, 0, 3) -3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airyaiprime(-2).evalf(50) 0.61825902074169104140626429133247528291577794512415 Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airyaiprime(z).rewrite(hyper) 3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3)) See Also ======== airyai: Airy function of the first kind. airybi: Airy function of the second kind. airybiprime: Derivative of the Airy function of the second kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero if arg.is_zero: return S.NegativeOne / (3**Rational(1, 3) * gamma(Rational(1, 3))) def fdiff(self, argindex=1): if argindex == 1: return self.args[0]*airyai(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr z = self.args[0]._to_mpmath(prec) with workprec(prec): res = mp.airyai(z, derivative=1) return Expr._from_mpmath(res, prec) def _eval_rewrite_as_besselj(self, z, **kwargs): tt = Rational(2, 3) a = Pow(-z, Rational(3, 2)) if re(z).is_negative: return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = tt * Pow(z, Rational(3, 2)) if re(z).is_positive: return z/3 * (besseli(tt, a) - besseli(-tt, a)) else: a = Pow(z, Rational(3, 2)) b = Pow(a, tt) c = Pow(a, -tt) return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2*3**Rational(2, 3)*gamma(Rational(2, 3))) pf2 = 1 / (root(3, 3)*gamma(Rational(1, 3))) return pf1 * hyper([], [Rational(5, 3)], z**3/9) - pf2 * hyper([], [Rational(1, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is in principle # given by 03.07.16.0001.01 but note # that there is an error in this formula. # http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d**m * z**(n*m)) / (d * z**n)**m newarg = c * d**m * z**(n*m) return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg)) class airybiprime(AiryBase): r""" The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first kind. Explanation =========== The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the function .. math:: \operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}. Examples ======== Create an Airy function object: >>> from sympy import airybiprime >>> from sympy.abc import z >>> airybiprime(z) airybiprime(z) Several special values are known: >>> airybiprime(0) 3**(1/6)/gamma(1/3) >>> from sympy import oo >>> airybiprime(oo) oo >>> airybiprime(-oo) 0 The Airy function obeys the mirror symmetry: >>> from sympy import conjugate >>> conjugate(airybiprime(z)) airybiprime(conjugate(z)) Differentiation with respect to $z$ is supported: >>> from sympy import diff >>> diff(airybiprime(z), z) z*airybi(z) >>> diff(airybiprime(z), z, 2) z*airybiprime(z) + airybi(z) Series expansion is also supported: >>> from sympy import series >>> series(airybiprime(z), z, 0, 3) 3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3) We can numerically evaluate the Airy function to arbitrary precision on the whole complex plane: >>> airybiprime(-2).evalf(50) 0.27879516692116952268509756941098324140300059345163 Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions: >>> from sympy import hyper >>> airybiprime(z).rewrite(hyper) 3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3) See Also ======== airyai: Airy function of the first kind. airybi: Airy function of the second kind. airyaiprime: Derivative of the Airy function of the first kind. References ========== .. [1] https://en.wikipedia.org/wiki/Airy_function .. [2] http://dlmf.nist.gov/9 .. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions .. [4] http://mathworld.wolfram.com/AiryFunctions.html """ nargs = 1 unbranched = True @classmethod def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg.is_zero: return 3**Rational(1, 6) / gamma(Rational(1, 3)) if arg.is_zero: return 3**Rational(1, 6) / gamma(Rational(1, 3)) def fdiff(self, argindex=1): if argindex == 1: return self.args[0]*airybi(self.args[0]) else: raise ArgumentIndexError(self, argindex) def _eval_evalf(self, prec): from mpmath import mp, workprec from sympy import Expr z = self.args[0]._to_mpmath(prec) with workprec(prec): res = mp.airybi(z, derivative=1) return Expr._from_mpmath(res, prec) def _eval_rewrite_as_besselj(self, z, **kwargs): tt = Rational(2, 3) a = tt * Pow(-z, Rational(3, 2)) if re(z).is_negative: return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a)) def _eval_rewrite_as_besseli(self, z, **kwargs): ot = Rational(1, 3) tt = Rational(2, 3) a = tt * Pow(z, Rational(3, 2)) if re(z).is_positive: return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a)) else: a = Pow(z, Rational(3, 2)) b = Pow(a, tt) c = Pow(a, -tt) return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a)) def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2*root(3, 6)*gamma(Rational(2, 3))) pf2 = root(3, 6) / gamma(Rational(1, 3)) return pf1 * hyper([], [Rational(5, 3)], z**3/9) + pf2 * hyper([], [Rational(1, 3)], z**3/9) def _eval_expand_func(self, **hints): arg = self.args[0] symbs = arg.free_symbols if len(symbs) == 1: z = symbs.pop() c = Wild("c", exclude=[z]) d = Wild("d", exclude=[z]) m = Wild("m", exclude=[z]) n = Wild("n", exclude=[z]) M = arg.match(c*(d*z**n)**m) if M is not None: m = M[m] # The transformation is in principle # given by 03.08.16.0001.01 but note # that there is an error in this formula. # http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/ if (3*m).is_integer: c = M[c] d = M[d] n = M[n] pf = (d**m * z**(n*m)) / (d * z**n)**m newarg = c * d**m * z**(n*m) return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg)) class marcumq(Function): r""" The Marcum Q-function. Explanation =========== The Marcum Q-function is defined by the meromorphic continuation of .. math:: Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx Examples ======== >>> from sympy import marcumq >>> from sympy.abc import m, a, b >>> marcumq(m, a, b) marcumq(m, a, b) Special values: >>> marcumq(m, 0, b) uppergamma(m, b**2/2)/gamma(m) >>> marcumq(0, 0, 0) 0 >>> marcumq(0, a, 0) 1 - exp(-a**2/2) >>> marcumq(1, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 >>> marcumq(2, a, a) 1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2) Differentiation with respect to $a$ and $b$ is supported: >>> from sympy import diff >>> diff(marcumq(m, a, b), a) a*(-marcumq(m, a, b) + marcumq(m + 1, a, b)) >>> diff(marcumq(m, a, b), b) -a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b) References ========== .. [1] https://en.wikipedia.org/wiki/Marcum_Q-function .. [2] http://mathworld.wolfram.com/MarcumQ-Function.html """ @classmethod def eval(cls, m, a, b): from sympy import exp, uppergamma if a is S.Zero: if m is S.Zero and b is S.Zero: return S.Zero return uppergamma(m, b**2 * S.Half) / gamma(m) if m is S.Zero and b is S.Zero: return 1 - 1 / exp(a**2 * S.Half) if a == b: if m is S.One: return (1 + exp(-a**2) * besseli(0, a**2))*S.Half if m == 2: return S.Half + S.Half * exp(-a**2) * besseli(0, a**2) + exp(-a**2) * besseli(1, a**2) if a.is_zero: if m.is_zero and b.is_zero: return S.Zero return uppergamma(m, b**2*S.Half) / gamma(m) if m.is_zero and b.is_zero: return 1 - 1 / exp(a**2*S.Half) def fdiff(self, argindex=2): from sympy import exp m, a, b = self.args if argindex == 2: return a * (-marcumq(m, a, b) + marcumq(1+m, a, b)) elif argindex == 3: return (-b**m / a**(m-1)) * exp(-(a**2 + b**2)/2) * besseli(m-1, a*b) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_Integral(self, m, a, b, **kwargs): from sympy import Integral, exp, Dummy, oo x = kwargs.get('x', Dummy('x')) return a ** (1 - m) * \ Integral(x**m * exp(-(x**2 + a**2)/2) * besseli(m-1, a*x), [x, b, oo]) def _eval_rewrite_as_Sum(self, m, a, b, **kwargs): from sympy import Sum, exp, Dummy, oo k = kwargs.get('k', Dummy('k')) return exp(-(a**2 + b**2) / 2) * Sum((a/b)**k * besseli(k, a*b), [k, 1-m, oo]) def _eval_rewrite_as_besseli(self, m, a, b, **kwargs): if a == b: from sympy import exp if m == 1: return (1 + exp(-a**2) * besseli(0, a**2)) / 2 if m.is_Integer and m >= 2: s = sum([besseli(i, a**2) for i in range(1, m)]) return S.Half + exp(-a**2) * besseli(0, a**2) / 2 + exp(-a**2) * s def _eval_is_zero(self): if all(arg.is_zero for arg in self.args): return True
64931d75aa221e418ad6c3332575e1f143ae5530be3f874e1ea0b57df34294fa
""" This module mainly implements special orthogonal polynomials. See also functions.combinatorial.numbers which contains some combinatorial polynomials. """ from sympy.core import Rational from sympy.core.function import Function, ArgumentIndexError from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.functions.combinatorial.factorials import binomial, factorial, RisingFactorial from sympy.functions.elementary.complexes import re from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos, sec from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper from sympy.polys.orthopolys import ( jacobi_poly, gegenbauer_poly, chebyshevt_poly, chebyshevu_poly, laguerre_poly, hermite_poly, legendre_poly ) _x = Dummy('x') class OrthogonalPolynomial(Function): """Base class for orthogonal polynomials. """ @classmethod def _eval_at_order(cls, n, x): if n.is_integer and n >= 0: return cls._ortho_poly(int(n), _x).subs(_x, x) def _eval_conjugate(self): return self.func(self.args[0], self.args[1].conjugate()) #---------------------------------------------------------------------------- # Jacobi polynomials # class jacobi(OrthogonalPolynomial): r""" Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. Explanation =========== ``jacobi(n, alpha, beta, x)`` gives the nth Jacobi polynomial in x, $P_n^{\left(\alpha, \beta\right)}(x)$. The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. Examples ======== >>> from sympy import jacobi, S, conjugate, diff >>> from sympy.abc import a, b, n, x >>> jacobi(0, a, b, x) 1 >>> jacobi(1, a, b, x) a/2 - b/2 + x*(a/2 + b/2 + 1) >>> jacobi(2, a, b, x) a**2/8 - a*b/4 - a/8 + b**2/8 - b/8 + x**2*(a**2/8 + a*b/4 + 7*a/8 + b**2/8 + 7*b/8 + 3/2) + x*(a**2/4 + 3*a/4 - b**2/4 - 3*b/4) - 1/2 >>> jacobi(n, a, b, x) jacobi(n, a, b, x) >>> jacobi(n, a, a, x) RisingFactorial(a + 1, n)*gegenbauer(n, a + 1/2, x)/RisingFactorial(2*a + 1, n) >>> jacobi(n, 0, 0, x) legendre(n, x) >>> jacobi(n, S(1)/2, S(1)/2, x) RisingFactorial(3/2, n)*chebyshevu(n, x)/factorial(n + 1) >>> jacobi(n, -S(1)/2, -S(1)/2, x) RisingFactorial(1/2, n)*chebyshevt(n, x)/factorial(n) >>> jacobi(n, a, b, -x) (-1)**n*jacobi(n, b, a, x) >>> jacobi(n, a, b, 0) gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(2**n*factorial(n)*gamma(a + 1)) >>> jacobi(n, a, b, 1) RisingFactorial(a + 1, n)/factorial(n) >>> conjugate(jacobi(n, a, b, x)) jacobi(n, conjugate(a), conjugate(b), conjugate(x)) >>> diff(jacobi(n,a,b,x), x) (a/2 + b/2 + n/2 + 1/2)*jacobi(n - 1, a + 1, b + 1, x) See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ @classmethod def eval(cls, n, a, b, x): # Simplify to other polynomials # P^{a, a}_n(x) if a == b: if a == Rational(-1, 2): return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt(n, x) elif a.is_zero: return legendre(n, x) elif a == S.Half: return RisingFactorial(3*S.Half, n) / factorial(n + 1) * chebyshevu(n, x) else: return RisingFactorial(a + 1, n) / RisingFactorial(2*a + 1, n) * gegenbauer(n, a + S.Half, x) elif b == -a: # P^{a, -a}_n(x) return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a/2) / (1 - x)**(a/2) * assoc_legendre(n, -a, x) if not n.is_Number: # Symbolic result P^{a,b}_n(x) # P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x) if x.could_extract_minus_sign(): return S.NegativeOne**n * jacobi(n, b, a, -x) # We can evaluate for some special values of x if x.is_zero: return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) * hyper([-b - n, -n], [a + 1], -1)) if x == S.One: return RisingFactorial(a + 1, n) / factorial(n) elif x is S.Infinity: if n.is_positive: # Make sure a+b+2*n \notin Z if (a + b + 2*n).is_integer: raise ValueError("Error. a + b + 2*n should not be an integer.") return RisingFactorial(a + b + n + 1, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return jacobi_poly(n, a, b, x) def fdiff(self, argindex=4): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt a n, a, b, x = self.args k = Dummy("k") f1 = 1 / (a + b + n + k + 1) f2 = ((a + b + 2*k + 1) * RisingFactorial(b + k + 1, n - k) / ((n - k) * RisingFactorial(a + b + k + 1, n - k))) return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) elif argindex == 3: # Diff wrt b n, a, b, x = self.args k = Dummy("k") f1 = 1 / (a + b + n + k + 1) f2 = (-1)**(n - k) * ((a + b + 2*k + 1) * RisingFactorial(a + k + 1, n - k) / ((n - k) * RisingFactorial(a + b + k + 1, n - k))) return Sum(f1 * (jacobi(n, a, b, x) + f2*jacobi(k, a, b, x)), (k, 0, n - 1)) elif argindex == 4: # Diff wrt x n, a, b, x = self.args return S.Half * (a + b + n + 1) * jacobi(n - 1, a + 1, b + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, a, b, x, **kwargs): from sympy import Sum # Make sure n \in N if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = (RisingFactorial(-n, k) * RisingFactorial(a + b + n + 1, k) * RisingFactorial(a + k + 1, n - k) / factorial(k) * ((1 - x)/2)**k) return 1 / factorial(n) * Sum(kern, (k, 0, n)) def _eval_conjugate(self): n, a, b, x = self.args return self.func(n, a.conjugate(), b.conjugate(), x.conjugate()) def jacobi_normalized(n, a, b, x): r""" Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. Explanation =========== ``jacobi_normalized(n, alpha, beta, x)`` gives the nth Jacobi polynomial in *x*, $P_n^{\left(\alpha, \beta\right)}(x)$. The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. This functions returns the polynomials normilzed: .. math:: \int_{-1}^{1} P_m^{\left(\alpha, \beta\right)}(x) P_n^{\left(\alpha, \beta\right)}(x) (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x = \delta_{m,n} Examples ======== >>> from sympy import jacobi_normalized >>> from sympy.abc import n,a,b,x >>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))) Parameters ========== n : integer degree of polynomial a : alpha value b : beta value x : symbol See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ nfactor = (S(2)**(a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1)) / (2*n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1))) return jacobi(n, a, b, x) / sqrt(nfactor) #---------------------------------------------------------------------------- # Gegenbauer polynomials # class gegenbauer(OrthogonalPolynomial): r""" Gegenbauer polynomial $C_n^{\left(\alpha\right)}(x)$. Explanation =========== ``gegenbauer(n, alpha, x)`` gives the nth Gegenbauer polynomial in x, $C_n^{\left(\alpha\right)}(x)$. The Gegenbauer polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x^2\right)^{\alpha-\frac{1}{2}}$. Examples ======== >>> from sympy import gegenbauer, conjugate, diff >>> from sympy.abc import n,a,x >>> gegenbauer(0, a, x) 1 >>> gegenbauer(1, a, x) 2*a*x >>> gegenbauer(2, a, x) -a + x**2*(2*a**2 + 2*a) >>> gegenbauer(3, a, x) x**3*(4*a**3/3 + 4*a**2 + 8*a/3) + x*(-2*a**2 - 2*a) >>> gegenbauer(n, a, x) gegenbauer(n, a, x) >>> gegenbauer(n, a, -x) (-1)**n*gegenbauer(n, a, x) >>> gegenbauer(n, a, 0) 2**n*sqrt(pi)*gamma(a + n/2)/(gamma(a)*gamma(1/2 - n/2)*gamma(n + 1)) >>> gegenbauer(n, a, 1) gamma(2*a + n)/(gamma(2*a)*gamma(n + 1)) >>> conjugate(gegenbauer(n, a, x)) gegenbauer(n, conjugate(a), conjugate(x)) >>> diff(gegenbauer(n, a, x), x) 2*a*gegenbauer(n - 1, a + 1, x) See Also ======== jacobi, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Gegenbauer_polynomials .. [2] http://mathworld.wolfram.com/GegenbauerPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/GegenbauerC3/ """ @classmethod def eval(cls, n, a, x): # For negative n the polynomials vanish # See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/ if n.is_negative: return S.Zero # Some special values for fixed a if a == S.Half: return legendre(n, x) elif a == S.One: return chebyshevu(n, x) elif a == S.NegativeOne: return S.Zero if not n.is_Number: # Handle this before the general sign extraction rule if x == S.NegativeOne: if (re(a) > S.Half) == True: return S.ComplexInfinity else: return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) / (gamma(2*a) * gamma(n+1))) # Symbolic result C^a_n(x) # C^a_n(-x) ---> (-1)**n * C^a_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * gegenbauer(n, a, -x) # We can evaluate for some special values of x if x.is_zero: return (2**n * sqrt(S.Pi) * gamma(a + S.Half*n) / (gamma((1 - n)/2) * gamma(n + 1) * gamma(a)) ) if x == S.One: return gamma(2*a + n) / (gamma(2*a) * gamma(n + 1)) elif x is S.Infinity: if n.is_positive: return RisingFactorial(a, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return gegenbauer_poly(n, a, x) def fdiff(self, argindex=3): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt a n, a, x = self.args k = Dummy("k") factor1 = 2 * (1 + (-1)**(n - k)) * (k + a) / ((k + n + 2*a) * (n - k)) factor2 = 2*(k + 1) / ((k + 2*a) * (2*k + 2*a + 1)) + \ 2 / (k + n + 2*a) kern = factor1*gegenbauer(k, a, x) + factor2*gegenbauer(n, a, x) return Sum(kern, (k, 0, n - 1)) elif argindex == 3: # Diff wrt x n, a, x = self.args return 2*a*gegenbauer(n - 1, a + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, a, x, **kwargs): from sympy import Sum k = Dummy("k") kern = ((-1)**k * RisingFactorial(a, n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k))) return Sum(kern, (k, 0, floor(n/2))) def _eval_conjugate(self): n, a, x = self.args return self.func(n, a.conjugate(), x.conjugate()) #---------------------------------------------------------------------------- # Chebyshev polynomials of first and second kind # class chebyshevt(OrthogonalPolynomial): r""" Chebyshev polynomial of the first kind, $T_n(x)$. Explanation =========== ``chebyshevt(n, x)`` gives the nth Chebyshev polynomial (of the first kind) in x, $T_n(x)$. The Chebyshev polynomials of the first kind are orthogonal on $[-1, 1]$ with respect to the weight $\frac{1}{\sqrt{1-x^2}}$. Examples ======== >>> from sympy import chebyshevt, diff >>> from sympy.abc import n,x >>> chebyshevt(0, x) 1 >>> chebyshevt(1, x) x >>> chebyshevt(2, x) 2*x**2 - 1 >>> chebyshevt(n, x) chebyshevt(n, x) >>> chebyshevt(n, -x) (-1)**n*chebyshevt(n, x) >>> chebyshevt(-n, x) chebyshevt(n, x) >>> chebyshevt(n, 0) cos(pi*n/2) >>> chebyshevt(n, -1) (-1)**n >>> diff(chebyshevt(n, x), x) n*chebyshevu(n - 1, x) See Also ======== jacobi, gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial .. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html .. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html .. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/ .. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/ """ _ortho_poly = staticmethod(chebyshevt_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result T_n(x) # T_n(-x) ---> (-1)**n * T_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * chebyshevt(n, -x) # T_{-n}(x) ---> T_n(x) if n.could_extract_minus_sign(): return chebyshevt(-n, x) # We can evaluate for some special values of x if x.is_zero: return cos(S.Half * S.Pi * n) if x == S.One: return S.One elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: # T_{-n}(x) == T_n(x) return cls._eval_at_order(-n, x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return n * chebyshevu(n - 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = binomial(n, 2*k) * (x**2 - 1)**k * x**(n - 2*k) return Sum(kern, (k, 0, floor(n/2))) class chebyshevu(OrthogonalPolynomial): r""" Chebyshev polynomial of the second kind, $U_n(x)$. Explanation =========== ``chebyshevu(n, x)`` gives the nth Chebyshev polynomial of the second kind in x, $U_n(x)$. The Chebyshev polynomials of the second kind are orthogonal on $[-1, 1]$ with respect to the weight $\sqrt{1-x^2}$. Examples ======== >>> from sympy import chebyshevu, diff >>> from sympy.abc import n,x >>> chebyshevu(0, x) 1 >>> chebyshevu(1, x) 2*x >>> chebyshevu(2, x) 4*x**2 - 1 >>> chebyshevu(n, x) chebyshevu(n, x) >>> chebyshevu(n, -x) (-1)**n*chebyshevu(n, x) >>> chebyshevu(-n, x) -chebyshevu(n - 2, x) >>> chebyshevu(n, 0) cos(pi*n/2) >>> chebyshevu(n, 1) n + 1 >>> diff(chebyshevu(n, x), x) (-x*chebyshevu(n, x) + (n + 1)*chebyshevt(n + 1, x))/(x**2 - 1) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Chebyshev_polynomial .. [2] http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html .. [3] http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html .. [4] http://functions.wolfram.com/Polynomials/ChebyshevT/ .. [5] http://functions.wolfram.com/Polynomials/ChebyshevU/ """ _ortho_poly = staticmethod(chebyshevu_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result U_n(x) # U_n(-x) ---> (-1)**n * U_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * chebyshevu(n, -x) # U_{-n}(x) ---> -U_{n-2}(x) if n.could_extract_minus_sign(): if n == S.NegativeOne: # n can not be -1 here return S.Zero elif not (-n - 2).could_extract_minus_sign(): return -chebyshevu(-n - 2, x) # We can evaluate for some special values of x if x.is_zero: return cos(S.Half * S.Pi * n) if x == S.One: return S.One + n elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: # U_{-n}(x) ---> -U_{n-2}(x) if n == S.NegativeOne: return S.Zero else: return -cls._eval_at_order(-n - 2, x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return ((n + 1) * chebyshevt(n + 1, x) - x * chebyshevu(n, x)) / (x**2 - 1) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = S.NegativeOne**k * factorial( n - k) * (2*x)**(n - 2*k) / (factorial(k) * factorial(n - 2*k)) return Sum(kern, (k, 0, floor(n/2))) class chebyshevt_root(Function): r""" ``chebyshev_root(n, k)`` returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the first kind; that is, if 0 <= k < n, ``chebyshevt(n, chebyshevt_root(n, k)) == 0``. Examples ======== >>> from sympy import chebyshevt, chebyshevt_root >>> chebyshevt_root(3, 2) -sqrt(3)/2 >>> chebyshevt(3, chebyshevt_root(3, 2)) 0 See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly """ @classmethod def eval(cls, n, k): if not ((0 <= k) and (k < n)): raise ValueError("must have 0 <= k < n, " "got k = %s and n = %s" % (k, n)) return cos(S.Pi*(2*k + 1)/(2*n)) class chebyshevu_root(Function): r""" ``chebyshevu_root(n, k)`` returns the kth root (indexed from zero) of the nth Chebyshev polynomial of the second kind; that is, if 0 <= k < n, ``chebyshevu(n, chebyshevu_root(n, k)) == 0``. Examples ======== >>> from sympy import chebyshevu, chebyshevu_root >>> chebyshevu_root(3, 2) -sqrt(2)/2 >>> chebyshevu(3, chebyshevu_root(3, 2)) 0 See Also ======== chebyshevt, chebyshevt_root, chebyshevu, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly """ @classmethod def eval(cls, n, k): if not ((0 <= k) and (k < n)): raise ValueError("must have 0 <= k < n, " "got k = %s and n = %s" % (k, n)) return cos(S.Pi*(k + 1)/(n + 1)) #---------------------------------------------------------------------------- # Legendre polynomials and Associated Legendre polynomials # class legendre(OrthogonalPolynomial): r""" ``legendre(n, x)`` gives the nth Legendre polynomial of x, $P_n(x)$ Explanation =========== The Legendre polynomials are orthogonal on [-1, 1] with respect to the constant weight 1. They satisfy $P_n(1) = 1$ for all n; further, $P_n$ is odd for odd n and even for even n. Examples ======== >>> from sympy import legendre, diff >>> from sympy.abc import x, n >>> legendre(0, x) 1 >>> legendre(1, x) x >>> legendre(2, x) 3*x**2/2 - 1/2 >>> legendre(n, x) legendre(n, x) >>> diff(legendre(n,x), x) n*(x*legendre(n, x) - legendre(n - 1, x))/(x**2 - 1) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Legendre_polynomial .. [2] http://mathworld.wolfram.com/LegendrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LegendreP/ .. [4] http://functions.wolfram.com/Polynomials/LegendreP2/ """ _ortho_poly = staticmethod(legendre_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result L_n(x) # L_n(-x) ---> (-1)**n * L_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * legendre(n, -x) # L_{-n}(x) ---> L_{n-1}(x) if n.could_extract_minus_sign() and not(-n - 1).could_extract_minus_sign(): return legendre(-n - S.One, x) # We can evaluate for some special values of x if x.is_zero: return sqrt(S.Pi)/(gamma(S.Half - n/2)*gamma(S.One + n/2)) elif x == S.One: return S.One elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial; # L_{-n}(x) ---> L_{n-1}(x) if n.is_negative: n = -n - S.One return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x # Find better formula, this is unsuitable for x = +/-1 # http://www.autodiff.org/ad16/Oral/Buecker_Legendre.pdf says # at x = 1: # n*(n + 1)/2 , m = 0 # oo , m = 1 # -(n-1)*n*(n+1)*(n+2)/4 , m = 2 # 0 , m = 3, 4, ..., n # # at x = -1 # (-1)**(n+1)*n*(n + 1)/2 , m = 0 # (-1)**n*oo , m = 1 # (-1)**n*(n-1)*n*(n+1)*(n+2)/4 , m = 2 # 0 , m = 3, 4, ..., n n, x = self.args return n/(x**2 - 1)*(x*legendre(n, x) - legendre(n - 1, x)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = (-1)**k*binomial(n, k)**2*((1 + x)/2)**(n - k)*((1 - x)/2)**k return Sum(kern, (k, 0, n)) class assoc_legendre(Function): r""" ``assoc_legendre(n, m, x)`` gives $P_n^m(x)$, where n and m are the degree and order or an expression which is related to the nth order Legendre polynomial, $P_n(x)$ in the following manner: .. math:: P_n^m(x) = (-1)^m (1 - x^2)^{\frac{m}{2}} \frac{\mathrm{d}^m P_n(x)}{\mathrm{d} x^m} Explanation =========== Associated Legendre polynomials are orthogonal on [-1, 1] with: - weight = 1 for the same m, and different n. - weight = 1/(1-x**2) for the same n, and different m. Examples ======== >>> from sympy import assoc_legendre >>> from sympy.abc import x, m, n >>> assoc_legendre(0,0, x) 1 >>> assoc_legendre(1,0, x) x >>> assoc_legendre(1,1, x) -sqrt(1 - x**2) >>> assoc_legendre(n,m,x) assoc_legendre(n, m, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Associated_Legendre_polynomials .. [2] http://mathworld.wolfram.com/LegendrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LegendreP/ .. [4] http://functions.wolfram.com/Polynomials/LegendreP2/ """ @classmethod def _eval_at_order(cls, n, m): P = legendre_poly(n, _x, polys=True).diff((_x, m)) return (-1)**m * (1 - _x**2)**Rational(m, 2) * P.as_expr() @classmethod def eval(cls, n, m, x): if m.could_extract_minus_sign(): # P^{-m}_n ---> F * P^m_n return S.NegativeOne**(-m) * (factorial(m + n)/factorial(n - m)) * assoc_legendre(n, -m, x) if m == 0: # P^0_n ---> L_n return legendre(n, x) if x == 0: return 2**m*sqrt(S.Pi) / (gamma((1 - m - n)/2)*gamma(1 - (m - n)/2)) if n.is_Number and m.is_Number and n.is_integer and m.is_integer: if n.is_negative: raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n)) if abs(m) > n: raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m)) return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x) def fdiff(self, argindex=3): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt m raise ArgumentIndexError(self, argindex) elif argindex == 3: # Diff wrt x # Find better formula, this is unsuitable for x = 1 n, m, x = self.args return 1/(x**2 - 1)*(x*n*assoc_legendre(n, m, x) - (m + n)*assoc_legendre(n - 1, m, x)) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, m, x, **kwargs): from sympy import Sum k = Dummy("k") kern = factorial(2*n - 2*k)/(2**n*factorial(n - k)*factorial( k)*factorial(n - 2*k - m))*(-1)**k*x**(n - m - 2*k) return (1 - x**2)**(m/2) * Sum(kern, (k, 0, floor((n - m)*S.Half))) def _eval_conjugate(self): n, m, x = self.args return self.func(n, m.conjugate(), x.conjugate()) #---------------------------------------------------------------------------- # Hermite polynomials # class hermite(OrthogonalPolynomial): r""" ``hermite(n, x)`` gives the nth Hermite polynomial in x, $H_n(x)$ Explanation =========== The Hermite polynomials are orthogonal on $(-\infty, \infty)$ with respect to the weight $\exp\left(-x^2\right)$. Examples ======== >>> from sympy import hermite, diff >>> from sympy.abc import x, n >>> hermite(0, x) 1 >>> hermite(1, x) 2*x >>> hermite(2, x) 4*x**2 - 2 >>> hermite(n, x) hermite(n, x) >>> diff(hermite(n,x), x) 2*n*hermite(n - 1, x) >>> hermite(n, -x) (-1)**n*hermite(n, x) See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Hermite_polynomial .. [2] http://mathworld.wolfram.com/HermitePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/HermiteH/ """ _ortho_poly = staticmethod(hermite_poly) @classmethod def eval(cls, n, x): if not n.is_Number: # Symbolic result H_n(x) # H_n(-x) ---> (-1)**n * H_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * hermite(n, -x) # We can evaluate for some special values of x if x.is_zero: return 2**n * sqrt(S.Pi) / gamma((S.One - n)/2) elif x is S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return 2*n*hermite(n - 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum k = Dummy("k") kern = (-1)**k / (factorial(k)*factorial(n - 2*k)) * (2*x)**(n - 2*k) return factorial(n)*Sum(kern, (k, 0, floor(n/2))) #---------------------------------------------------------------------------- # Laguerre polynomials # class laguerre(OrthogonalPolynomial): r""" Returns the nth Laguerre polynomial in x, $L_n(x)$. Examples ======== >>> from sympy import laguerre, diff >>> from sympy.abc import x, n >>> laguerre(0, x) 1 >>> laguerre(1, x) 1 - x >>> laguerre(2, x) x**2/2 - 2*x + 1 >>> laguerre(3, x) -x**3/6 + 3*x**2/2 - 3*x + 1 >>> laguerre(n, x) laguerre(n, x) >>> diff(laguerre(n, x), x) -assoc_laguerre(n - 1, 1, x) Parameters ========== n : int Degree of Laguerre polynomial. Must be ``n >= 0``. See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial .. [2] http://mathworld.wolfram.com/LaguerrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LaguerreL/ .. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/ """ _ortho_poly = staticmethod(laguerre_poly) @classmethod def eval(cls, n, x): if n.is_integer is False: raise ValueError("Error: n should be an integer.") if not n.is_Number: # Symbolic result L_n(x) # L_{n}(-x) ---> exp(-x) * L_{-n-1}(x) # L_{-n}(x) ---> exp(x) * L_{n-1}(-x) if n.could_extract_minus_sign() and not(-n - 1).could_extract_minus_sign(): return exp(x)*laguerre(-n - 1, -x) # We can evaluate for some special values of x if x.is_zero: return S.One elif x is S.NegativeInfinity: return S.Infinity elif x is S.Infinity: return S.NegativeOne**n * S.Infinity else: if n.is_negative: return exp(x)*laguerre(-n - 1, -x) else: return cls._eval_at_order(n, x) def fdiff(self, argindex=2): if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt x n, x = self.args return -assoc_laguerre(n - 1, 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, x, **kwargs): from sympy import Sum # Make sure n \in N_0 if n.is_negative: return exp(x) * self._eval_rewrite_as_polynomial(-n - 1, -x, **kwargs) if n.is_integer is False: raise ValueError("Error: n should be an integer.") k = Dummy("k") kern = RisingFactorial(-n, k) / factorial(k)**2 * x**k return Sum(kern, (k, 0, n)) class assoc_laguerre(OrthogonalPolynomial): r""" Returns the nth generalized Laguerre polynomial in x, $L_n(x)$. Examples ======== >>> from sympy import assoc_laguerre, diff >>> from sympy.abc import x, n, a >>> assoc_laguerre(0, a, x) 1 >>> assoc_laguerre(1, a, x) a - x + 1 >>> assoc_laguerre(2, a, x) a**2/2 + 3*a/2 + x**2/2 + x*(-a - 2) + 1 >>> assoc_laguerre(3, a, x) a**3/6 + a**2 + 11*a/6 - x**3/6 + x**2*(a/2 + 3/2) + x*(-a**2/2 - 5*a/2 - 3) + 1 >>> assoc_laguerre(n, a, 0) binomial(a + n, a) >>> assoc_laguerre(n, a, x) assoc_laguerre(n, a, x) >>> assoc_laguerre(n, 0, x) laguerre(n, x) >>> diff(assoc_laguerre(n, a, x), x) -assoc_laguerre(n - 1, a + 1, x) >>> diff(assoc_laguerre(n, a, x), a) Sum(assoc_laguerre(_k, a, x)/(-a + n), (_k, 0, n - 1)) Parameters ========== n : int Degree of Laguerre polynomial. Must be ``n >= 0``. alpha : Expr Arbitrary expression. For ``alpha=0`` regular Laguerre polynomials will be generated. See Also ======== jacobi, gegenbauer, chebyshevt, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, sympy.polys.orthopolys.jacobi_poly sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Laguerre_polynomial#Generalized_Laguerre_polynomials .. [2] http://mathworld.wolfram.com/AssociatedLaguerrePolynomial.html .. [3] http://functions.wolfram.com/Polynomials/LaguerreL/ .. [4] http://functions.wolfram.com/Polynomials/LaguerreL3/ """ @classmethod def eval(cls, n, alpha, x): # L_{n}^{0}(x) ---> L_{n}(x) if alpha.is_zero: return laguerre(n, x) if not n.is_Number: # We can evaluate for some special values of x if x.is_zero: return binomial(n + alpha, alpha) elif x is S.Infinity and n > 0: return S.NegativeOne**n * S.Infinity elif x is S.NegativeInfinity and n > 0: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return laguerre_poly(n, x, alpha) def fdiff(self, argindex=3): from sympy import Sum if argindex == 1: # Diff wrt n raise ArgumentIndexError(self, argindex) elif argindex == 2: # Diff wrt alpha n, alpha, x = self.args k = Dummy("k") return Sum(assoc_laguerre(k, alpha, x) / (n - alpha), (k, 0, n - 1)) elif argindex == 3: # Diff wrt x n, alpha, x = self.args return -assoc_laguerre(n - 1, alpha + 1, x) else: raise ArgumentIndexError(self, argindex) def _eval_rewrite_as_polynomial(self, n, alpha, x, **kwargs): from sympy import Sum # Make sure n \in N_0 if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = RisingFactorial( -n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n)) def _eval_conjugate(self): n, alpha, x = self.args return self.func(n, alpha.conjugate(), x.conjugate())
eab83884e93ea80c098b1ff2c584e4e9426868ea9c0225c639adbb5c0cac4763
from sympy import (symbols, Symbol, nan, oo, zoo, I, sinh, sin, pi, atan, acos, Rational, sqrt, asin, acot, coth, E, S, tan, tanh, cos, cosh, atan2, exp, log, asinh, acoth, atanh, O, cancel, Matrix, re, im, Float, Pow, gcd, sec, csc, cot, diff, simplify, Heaviside, arg, conjugate, series, FiniteSet, asec, acsc, Mul, sinc, jn, AccumBounds, Interval, ImageSet, Lambda, besselj, Add, limit) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.core.relational import Ne, Eq from sympy.functions.elementary.piecewise import Piecewise from sympy.sets.setexpr import SetExpr from sympy.testing.pytest import XFAIL, slow, raises x, y, z = symbols('x y z') r = Symbol('r', real=True) k, m = symbols('k m', integer=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('p', nonpositive=True) nn = Symbol('n', nonnegative=True) nz = Symbol('nz', nonzero=True) ep = Symbol('ep', extended_positive=True) en = Symbol('en', extended_negative=True) enp = Symbol('ep', extended_nonpositive=True) enn = Symbol('en', extended_nonnegative=True) enz = Symbol('enz', extended_nonzero=True) a = Symbol('a', algebraic=True) na = Symbol('na', nonzero=True, algebraic=True) def test_sin(): x, y = symbols('x y') assert sin.nargs == FiniteSet(1) assert sin(nan) is nan assert sin(zoo) is nan assert sin(oo) == AccumBounds(-1, 1) assert sin(oo) - sin(oo) == AccumBounds(-2, 2) assert sin(oo*I) == oo*I assert sin(-oo*I) == -oo*I assert 0*sin(oo) is S.Zero assert 0/sin(oo) is S.Zero assert 0 + sin(oo) == AccumBounds(-1, 1) assert 5 + sin(oo) == AccumBounds(4, 6) assert sin(0) == 0 assert sin(asin(x)) == x assert sin(atan(x)) == x / sqrt(1 + x**2) assert sin(acos(x)) == sqrt(1 - x**2) assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x) assert sin(acsc(x)) == 1 / x assert sin(asec(x)) == sqrt(1 - 1 / x**2) assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2) assert sin(pi*I) == sinh(pi)*I assert sin(-pi*I) == -sinh(pi)*I assert sin(-2*I) == -sinh(2)*I assert sin(pi) == 0 assert sin(-pi) == 0 assert sin(2*pi) == 0 assert sin(-2*pi) == 0 assert sin(-3*10**73*pi) == 0 assert sin(7*10**103*pi) == 0 assert sin(pi/2) == 1 assert sin(-pi/2) == -1 assert sin(pi*Rational(5, 2)) == 1 assert sin(pi*Rational(7, 2)) == -1 ne = symbols('ne', integer=True, even=False) e = symbols('e', even=True) assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half) assert sin(pi*k/2).func == sin assert sin(pi*e/2) == 0 assert sin(pi*k) == 0 assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298 assert sin(pi/3) == S.Half*sqrt(3) assert sin(pi*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3) assert sin(pi/4) == S.Half*sqrt(2) assert sin(-pi/4) == Rational(-1, 2)*sqrt(2) assert sin(pi*Rational(17, 4)) == S.Half*sqrt(2) assert sin(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert sin(pi/6) == S.Half assert sin(-pi/6) == Rational(-1, 2) assert sin(pi*Rational(7, 6)) == Rational(-1, 2) assert sin(pi*Rational(-5, 6)) == Rational(-1, 2) assert sin(pi*Rational(1, 5)) == sqrt((5 - sqrt(5)) / 8) assert sin(pi*Rational(2, 5)) == sqrt((5 + sqrt(5)) / 8) assert sin(pi*Rational(3, 5)) == sin(pi*Rational(2, 5)) assert sin(pi*Rational(4, 5)) == sin(pi*Rational(1, 5)) assert sin(pi*Rational(6, 5)) == -sin(pi*Rational(1, 5)) assert sin(pi*Rational(8, 5)) == -sin(pi*Rational(2, 5)) assert sin(pi*Rational(-1273, 5)) == -sin(pi*Rational(2, 5)) assert sin(pi/8) == sqrt((2 - sqrt(2))/4) assert sin(pi/10) == Rational(-1, 4) + sqrt(5)/4 assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4 assert sin(pi*Rational(5, 12)) == sqrt(2)/4 + sqrt(6)/4 assert sin(pi*Rational(-7, 12)) == -sqrt(2)/4 - sqrt(6)/4 assert sin(pi*Rational(-11, 12)) == sqrt(2)/4 - sqrt(6)/4 assert sin(pi*Rational(104, 105)) == sin(pi/105) assert sin(pi*Rational(106, 105)) == -sin(pi/105) assert sin(pi*Rational(-104, 105)) == -sin(pi/105) assert sin(pi*Rational(-106, 105)) == sin(pi/105) assert sin(x*I) == sinh(x)*I assert sin(k*pi) == 0 assert sin(17*k*pi) == 0 assert sin(2*k*pi + 4) == sin(4) assert sin(2*k*pi + m*pi + 1) == (-1)**(m + 2*k)*sin(1) assert sin(k*pi*I) == sinh(k*pi)*I assert sin(r).is_real is True assert sin(0, evaluate=False).is_algebraic assert sin(a).is_algebraic is None assert sin(na).is_algebraic is False q = Symbol('q', rational=True) assert sin(pi*q).is_algebraic qn = Symbol('qn', rational=True, nonzero=True) assert sin(qn).is_rational is False assert sin(q).is_rational is None # issue 8653 assert isinstance(sin( re(x) - im(y)), sin) is True assert isinstance(sin(-re(x) + im(y)), sin) is False assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)), Interval(0, 1))) for d in list(range(1, 22)) + [60, 85]: for n in range(0, d*2 + 1): x = n*pi/d e = abs( float(sin(x)) - sin(float(x)) ) assert e < 1e-12 assert sin(0, evaluate=False).is_zero is True assert sin(k*pi, evaluate=False).is_zero is None assert sin(Add(1, -1, evaluate=False), evaluate=False).is_zero is True def test_sin_cos(): for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive... for n in range(-2*d, d*2): x = n*pi/d assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d) assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d) assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d) def test_sin_series(): assert sin(x).series(x, 0, 9) == \ x - x**3/6 + x**5/120 - x**7/5040 + O(x**9) def test_sin_rewrite(): assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2 assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2) assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2) assert sin(sinh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n() assert sin(cosh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n() assert sin(tanh(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n() assert sin(coth(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n() assert sin(sin(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n() assert sin(cos(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n() assert sin(tan(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n() assert sin(cot(x)).rewrite( exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n() assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2 assert sin(x).rewrite(csc) == 1/csc(x) assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False) assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False) assert sin(cos(x)).rewrite(Pow) == sin(cos(x)) def _test_extrig(f, i, e): from sympy.core.expr import unchanged from sympy.core.function import expand_trig assert unchanged(f, i) assert expand_trig(f(i)) == f(i) # testing directly instead of with .expand(trig=True) # because the other expansions undo the unevaluated Mul assert expand_trig(f(Mul(i, 1, evaluate=False))) == e assert abs(f(i) - e).n() < 1e-10 def test_sin_expansion(): # Note: these formulas are not unique. The ones here come from the # Chebyshev formulas. assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y) assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y) assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y) assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x) assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x) assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x) _test_extrig(sin, 2, 2*sin(1)*cos(1)) _test_extrig(sin, 3, -4*sin(1)**3 + 3*sin(1)) def test_sin_AccumBounds(): assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert sin(AccumBounds(0, S.Pi*Rational(3, 4))) == AccumBounds(0, 1) assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(7, 4))) == AccumBounds(-1, sin(S.Pi*Rational(3, 4))) assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3)) assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 6))) == AccumBounds(sin(S.Pi*Rational(5, 6)), sin(S.Pi*Rational(3, 4))) def test_sin_fdiff(): assert sin(x).fdiff() == cos(x) raises(ArgumentIndexError, lambda: sin(x).fdiff(2)) def test_trig_symmetry(): assert sin(-x) == -sin(x) assert cos(-x) == cos(x) assert tan(-x) == -tan(x) assert cot(-x) == -cot(x) assert sin(x + pi) == -sin(x) assert sin(x + 2*pi) == sin(x) assert sin(x + 3*pi) == -sin(x) assert sin(x + 4*pi) == sin(x) assert sin(x - 5*pi) == -sin(x) assert cos(x + pi) == -cos(x) assert cos(x + 2*pi) == cos(x) assert cos(x + 3*pi) == -cos(x) assert cos(x + 4*pi) == cos(x) assert cos(x - 5*pi) == -cos(x) assert tan(x + pi) == tan(x) assert tan(x - 3*pi) == tan(x) assert cot(x + pi) == cot(x) assert cot(x - 3*pi) == cot(x) assert sin(pi/2 - x) == cos(x) assert sin(pi*Rational(3, 2) - x) == -cos(x) assert sin(pi*Rational(5, 2) - x) == cos(x) assert cos(pi/2 - x) == sin(x) assert cos(pi*Rational(3, 2) - x) == -sin(x) assert cos(pi*Rational(5, 2) - x) == sin(x) assert tan(pi/2 - x) == cot(x) assert tan(pi*Rational(3, 2) - x) == cot(x) assert tan(pi*Rational(5, 2) - x) == cot(x) assert cot(pi/2 - x) == tan(x) assert cot(pi*Rational(3, 2) - x) == tan(x) assert cot(pi*Rational(5, 2) - x) == tan(x) assert sin(pi/2 + x) == cos(x) assert cos(pi/2 + x) == -sin(x) assert tan(pi/2 + x) == -cot(x) assert cot(pi/2 + x) == -tan(x) def test_cos(): x, y = symbols('x y') assert cos.nargs == FiniteSet(1) assert cos(nan) is nan assert cos(oo) == AccumBounds(-1, 1) assert cos(oo) - cos(oo) == AccumBounds(-2, 2) assert cos(oo*I) is oo assert cos(-oo*I) is oo assert cos(zoo) is nan assert cos(0) == 1 assert cos(acos(x)) == x assert cos(atan(x)) == 1 / sqrt(1 + x**2) assert cos(asin(x)) == sqrt(1 - x**2) assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2) assert cos(acsc(x)) == sqrt(1 - 1 / x**2) assert cos(asec(x)) == 1 / x assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2) assert cos(pi*I) == cosh(pi) assert cos(-pi*I) == cosh(pi) assert cos(-2*I) == cosh(2) assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos(pi/2) == 0 assert cos(-pi/2) == 0 assert cos((-3*10**73 + 1)*pi/2) == 0 assert cos((7*10**103 + 1)*pi/2) == 0 n = symbols('n', integer=True, even=False) e = symbols('e', even=True) assert cos(pi*n/2) == 0 assert cos(pi*e/2) == (-1)**(e/2) assert cos(pi) == -1 assert cos(-pi) == -1 assert cos(2*pi) == 1 assert cos(5*pi) == -1 assert cos(8*pi) == 1 assert cos(pi/3) == S.Half assert cos(pi*Rational(-2, 3)) == Rational(-1, 2) assert cos(pi/4) == S.Half*sqrt(2) assert cos(-pi/4) == S.Half*sqrt(2) assert cos(pi*Rational(11, 4)) == Rational(-1, 2)*sqrt(2) assert cos(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert cos(pi/6) == S.Half*sqrt(3) assert cos(-pi/6) == S.Half*sqrt(3) assert cos(pi*Rational(7, 6)) == Rational(-1, 2)*sqrt(3) assert cos(pi*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3) assert cos(pi*Rational(1, 5)) == (sqrt(5) + 1)/4 assert cos(pi*Rational(2, 5)) == (sqrt(5) - 1)/4 assert cos(pi*Rational(3, 5)) == -cos(pi*Rational(2, 5)) assert cos(pi*Rational(4, 5)) == -cos(pi*Rational(1, 5)) assert cos(pi*Rational(6, 5)) == -cos(pi*Rational(1, 5)) assert cos(pi*Rational(8, 5)) == cos(pi*Rational(2, 5)) assert cos(pi*Rational(-1273, 5)) == -cos(pi*Rational(2, 5)) assert cos(pi/8) == sqrt((2 + sqrt(2))/4) assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4 assert cos(pi*Rational(5, 12)) == -sqrt(2)/4 + sqrt(6)/4 assert cos(pi*Rational(7, 12)) == sqrt(2)/4 - sqrt(6)/4 assert cos(pi*Rational(11, 12)) == -sqrt(2)/4 - sqrt(6)/4 assert cos(pi*Rational(104, 105)) == -cos(pi/105) assert cos(pi*Rational(106, 105)) == -cos(pi/105) assert cos(pi*Rational(-104, 105)) == -cos(pi/105) assert cos(pi*Rational(-106, 105)) == -cos(pi/105) assert cos(x*I) == cosh(x) assert cos(k*pi*I) == cosh(k*pi) assert cos(r).is_real is True assert cos(0, evaluate=False).is_algebraic assert cos(a).is_algebraic is None assert cos(na).is_algebraic is False q = Symbol('q', rational=True) assert cos(pi*q).is_algebraic assert cos(pi*Rational(2, 7)).is_algebraic assert cos(k*pi) == (-1)**k assert cos(2*k*pi) == 1 for d in list(range(1, 22)) + [60, 85]: for n in range(0, 2*d + 1): x = n*pi/d e = abs( float(cos(x)) - cos(float(x)) ) assert e < 1e-12 def test_issue_6190(): c = Float('123456789012345678901234567890.25', '') for cls in [sin, cos, tan, cot]: assert cls(c*pi) == cls(pi/4) assert cls(4.125*pi) == cls(pi/8) assert cls(4.7*pi) == cls((4.7 % 2)*pi) def test_cos_series(): assert cos(x).series(x, 0, 9) == \ 1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9) def test_cos_rewrite(): assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2 assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2) assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2) assert cos(sinh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n() assert cos(cosh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n() assert cos(tanh(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n() assert cos(coth(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n() assert cos(sin(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n() assert cos(cos(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n() assert cos(tan(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n() assert cos(cot(x)).rewrite( exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n() assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2 assert cos(x).rewrite(sec) == 1/sec(x) assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False) assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False) assert cos(sin(x)).rewrite(Pow) == cos(sin(x)) def test_cos_expansion(): assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y) assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y) assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1 assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x) assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1 _test_extrig(cos, 2, 2*cos(1)**2 - 1) _test_extrig(cos, 3, 4*cos(1)**3 - 3*cos(1)) def test_cos_AccumBounds(): assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1) assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1) assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1) assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1) assert cos(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 4))) == AccumBounds(-1, cos(S.Pi*Rational(3, 4))) assert cos(AccumBounds(S.Pi*Rational(5, 4), S.Pi*Rational(4, 3))) == AccumBounds(cos(S.Pi*Rational(5, 4)), cos(S.Pi*Rational(4, 3))) assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4)) def test_cos_fdiff(): assert cos(x).fdiff() == -sin(x) raises(ArgumentIndexError, lambda: cos(x).fdiff(2)) def test_tan(): assert tan(nan) is nan assert tan(zoo) is nan assert tan(oo) == AccumBounds(-oo, oo) assert tan(oo) - tan(oo) == AccumBounds(-oo, oo) assert tan.nargs == FiniteSet(1) assert tan(oo*I) == I assert tan(-oo*I) == -I assert tan(0) == 0 assert tan(atan(x)) == x assert tan(asin(x)) == x / sqrt(1 - x**2) assert tan(acos(x)) == sqrt(1 - x**2) / x assert tan(acot(x)) == 1 / x assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x assert tan(atan2(y, x)) == y/x assert tan(pi*I) == tanh(pi)*I assert tan(-pi*I) == -tanh(pi)*I assert tan(-2*I) == -tanh(2)*I assert tan(pi) == 0 assert tan(-pi) == 0 assert tan(2*pi) == 0 assert tan(-2*pi) == 0 assert tan(-3*10**73*pi) == 0 assert tan(pi/2) is zoo assert tan(pi*Rational(3, 2)) is zoo assert tan(pi/3) == sqrt(3) assert tan(pi*Rational(-2, 3)) == sqrt(3) assert tan(pi/4) is S.One assert tan(-pi/4) is S.NegativeOne assert tan(pi*Rational(17, 4)) is S.One assert tan(pi*Rational(-3, 4)) is S.One assert tan(pi/5) == sqrt(5 - 2*sqrt(5)) assert tan(pi*Rational(2, 5)) == sqrt(5 + 2*sqrt(5)) assert tan(pi*Rational(18, 5)) == -sqrt(5 + 2*sqrt(5)) assert tan(pi*Rational(-16, 5)) == -sqrt(5 - 2*sqrt(5)) assert tan(pi/6) == 1/sqrt(3) assert tan(-pi/6) == -1/sqrt(3) assert tan(pi*Rational(7, 6)) == 1/sqrt(3) assert tan(pi*Rational(-5, 6)) == 1/sqrt(3) assert tan(pi/8) == -1 + sqrt(2) assert tan(pi*Rational(3, 8)) == 1 + sqrt(2) # issue 15959 assert tan(pi*Rational(5, 8)) == -1 - sqrt(2) assert tan(pi*Rational(7, 8)) == 1 - sqrt(2) assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5) assert tan(pi*Rational(3, 10)) == sqrt(1 + 2*sqrt(5)/5) assert tan(pi*Rational(17, 10)) == -sqrt(1 + 2*sqrt(5)/5) assert tan(pi*Rational(-31, 10)) == -sqrt(1 - 2*sqrt(5)/5) assert tan(pi/12) == -sqrt(3) + 2 assert tan(pi*Rational(5, 12)) == sqrt(3) + 2 assert tan(pi*Rational(7, 12)) == -sqrt(3) - 2 assert tan(pi*Rational(11, 12)) == sqrt(3) - 2 assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6) assert tan(pi*Rational(5, 24)).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6) assert tan(pi*Rational(7, 24)).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6) assert tan(pi*Rational(11, 24)).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6) assert tan(pi*Rational(13, 24)).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6) assert tan(pi*Rational(17, 24)).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6) assert tan(pi*Rational(19, 24)).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6) assert tan(pi*Rational(23, 24)).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6) assert tan(x*I) == tanh(x)*I assert tan(k*pi) == 0 assert tan(17*k*pi) == 0 assert tan(k*pi*I) == tanh(k*pi)*I assert tan(r).is_real is None assert tan(r).is_extended_real is True assert tan(0, evaluate=False).is_algebraic assert tan(a).is_algebraic is None assert tan(na).is_algebraic is False assert tan(pi*Rational(10, 7)) == tan(pi*Rational(3, 7)) assert tan(pi*Rational(11, 7)) == -tan(pi*Rational(3, 7)) assert tan(pi*Rational(-11, 7)) == tan(pi*Rational(3, 7)) assert tan(pi*Rational(15, 14)) == tan(pi/14) assert tan(pi*Rational(-15, 14)) == -tan(pi/14) assert tan(r).is_finite is None assert tan(I*r).is_finite is True # https://github.com/sympy/sympy/issues/21177 f = tan(pi*(x + S(3)/2))/(3*x) assert f.as_leading_term(x) == -1/(3*pi*x**2) def test_tan_series(): assert tan(x).series(x, 0, 9) == \ x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9) def test_tan_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp) assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x) assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x) assert tan(x).rewrite(cot) == 1/cot(x) assert tan(sinh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n() assert tan(cosh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n() assert tan(tanh(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n() assert tan(coth(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n() assert tan(sin(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n() assert tan(cos(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n() assert tan(tan(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n() assert tan(cot(x)).rewrite( exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n() assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I) assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow) assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow) assert tan(pi/19).rewrite(pow) == tan(pi/19) assert tan(pi*Rational(8, 19)).rewrite(sqrt) == tan(pi*Rational(8, 19)) assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False) assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x) assert tan(sin(x)).rewrite(Pow) == tan(sin(x)) assert tan(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 + Rational(5, 8))/(Rational(-1, 4) + sqrt(5)/4) def test_tan_subs(): assert tan(x).subs(tan(x), y) == y assert tan(x).subs(x, y) == tan(y) assert tan(x).subs(x, S.Pi/2) is zoo assert tan(x).subs(x, S.Pi*Rational(3, 2)) is zoo def test_tan_expansion(): assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand() assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand() assert tan(x + y + z).expand(trig=True) == ( (tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/ (1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand() assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7 assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37 assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1 _test_extrig(tan, 2, 2*tan(1)/(1 - tan(1)**2)) _test_extrig(tan, 3, (-tan(1)**3 + 3*tan(1))/(1 - 3*tan(1)**2)) def test_tan_AccumBounds(): assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/3, S.Pi*Rational(2, 3))) == AccumBounds(-oo, oo) assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3)) def test_tan_fdiff(): assert tan(x).fdiff() == tan(x)**2 + 1 raises(ArgumentIndexError, lambda: tan(x).fdiff(2)) def test_cot(): assert cot(nan) is nan assert cot.nargs == FiniteSet(1) assert cot(oo*I) == -I assert cot(-oo*I) == I assert cot(zoo) is nan assert cot(0) is zoo assert cot(2*pi) is zoo assert cot(acot(x)) == x assert cot(atan(x)) == 1 / x assert cot(asin(x)) == sqrt(1 - x**2) / x assert cot(acos(x)) == x / sqrt(1 - x**2) assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x) assert cot(atan2(y, x)) == x/y assert cot(pi*I) == -coth(pi)*I assert cot(-pi*I) == coth(pi)*I assert cot(-2*I) == coth(2)*I assert cot(pi) == cot(2*pi) == cot(3*pi) assert cot(-pi) == cot(-2*pi) == cot(-3*pi) assert cot(pi/2) == 0 assert cot(-pi/2) == 0 assert cot(pi*Rational(5, 2)) == 0 assert cot(pi*Rational(7, 2)) == 0 assert cot(pi/3) == 1/sqrt(3) assert cot(pi*Rational(-2, 3)) == 1/sqrt(3) assert cot(pi/4) is S.One assert cot(-pi/4) is S.NegativeOne assert cot(pi*Rational(17, 4)) is S.One assert cot(pi*Rational(-3, 4)) is S.One assert cot(pi/6) == sqrt(3) assert cot(-pi/6) == -sqrt(3) assert cot(pi*Rational(7, 6)) == sqrt(3) assert cot(pi*Rational(-5, 6)) == sqrt(3) assert cot(pi/8) == 1 + sqrt(2) assert cot(pi*Rational(3, 8)) == -1 + sqrt(2) assert cot(pi*Rational(5, 8)) == 1 - sqrt(2) assert cot(pi*Rational(7, 8)) == -1 - sqrt(2) assert cot(pi/12) == sqrt(3) + 2 assert cot(pi*Rational(5, 12)) == -sqrt(3) + 2 assert cot(pi*Rational(7, 12)) == sqrt(3) - 2 assert cot(pi*Rational(11, 12)) == -sqrt(3) - 2 assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6) assert cot(pi*Rational(5, 24)).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6) assert cot(pi*Rational(7, 24)).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6) assert cot(pi*Rational(11, 24)).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6) assert cot(pi*Rational(13, 24)).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6) assert cot(pi*Rational(17, 24)).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6) assert cot(pi*Rational(19, 24)).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6) assert cot(pi*Rational(23, 24)).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6) assert cot(x*I) == -coth(x)*I assert cot(k*pi*I) == -coth(k*pi)*I assert cot(r).is_real is None assert cot(r).is_extended_real is True assert cot(a).is_algebraic is None assert cot(na).is_algebraic is False assert cot(pi*Rational(10, 7)) == cot(pi*Rational(3, 7)) assert cot(pi*Rational(11, 7)) == -cot(pi*Rational(3, 7)) assert cot(pi*Rational(-11, 7)) == cot(pi*Rational(3, 7)) assert cot(pi*Rational(39, 34)) == cot(pi*Rational(5, 34)) assert cot(pi*Rational(-41, 34)) == -cot(pi*Rational(7, 34)) assert cot(x).is_finite is None assert cot(r).is_finite is None i = Symbol('i', imaginary=True) assert cot(i).is_finite is True assert cot(x).subs(x, 3*pi) is zoo # https://github.com/sympy/sympy/issues/21177 f = cot(pi*(x + 4))/(3*x) assert f.as_leading_term(x) == 1/(3*pi*x**2) def test_tan_cot_sin_cos_evalf(): assert abs((tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15)) - 1).evalf()) < 1e-14 assert abs((cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15)) - 1).evalf()) < 1e-14 @XFAIL def test_tan_cot_sin_cos_ratsimp(): assert 1 == (tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15))).ratsimp() assert 1 == (cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15))).ratsimp() def test_cot_series(): assert cot(x).series(x, 0, 9) == \ 1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9) # issue 6210 assert cot(x**4 + x**5).series(x, 0, 1) == \ x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x) assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3) assert cot(x).taylor_term(0, x) == 1/x assert cot(x).taylor_term(2, x) is S.Zero assert cot(x).taylor_term(3, x) == -x**3/45 def test_cot_rewrite(): neg_exp, pos_exp = exp(-x*I), exp(x*I) assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp) assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2)) assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False) assert cot(x).rewrite(tan) == 1/tan(x) assert cot(sinh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sinh(3)).n() assert cot(cosh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, cosh(3)).n() assert cot(tanh(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tanh(3)).n() assert cot(coth(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, coth(3)).n() assert cot(sin(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, sin(3)).n() assert cot(tan(x)).rewrite( exp).subs(x, 3).n() == cot(x).rewrite(exp).subs(x, tan(3)).n() assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I) assert cot(pi*Rational(4, 34)).rewrite(pow).ratsimp() == (cos(pi*Rational(4, 34))/sin(pi*Rational(4, 34))).rewrite(pow).ratsimp() assert cot(pi*Rational(4, 17)).rewrite(pow) == (cos(pi*Rational(4, 17))/sin(pi*Rational(4, 17))).rewrite(pow) assert cot(pi/19).rewrite(pow) == cot(pi/19) assert cot(pi/19).rewrite(sqrt) == cot(pi/19) assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x) assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False) assert cot(sin(x)).rewrite(Pow) == cot(sin(x)) assert cot(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == (Rational(-1, 4) + sqrt(5)/4)/\ sqrt(sqrt(5)/8 + Rational(5, 8)) def test_cot_subs(): assert cot(x).subs(cot(x), y) == y assert cot(x).subs(x, y) == cot(y) assert cot(x).subs(x, 0) is zoo assert cot(x).subs(x, S.Pi) is zoo def test_cot_expansion(): assert cot(x + y).expand(trig=True).together() == ( (cot(x)*cot(y) - 1)/(cot(x) + cot(y))) assert cot(x - y).expand(trig=True).together() == ( cot(x)*cot(-y) - 1)/(cot(x) + cot(-y)) assert cot(x + y + z).expand(trig=True).together() == ( (cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/ (-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z))) assert cot(3*x).expand(trig=True).together() == ( (cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1)) assert cot(2*x).expand(trig=True) == cot(x)/2 - 1/(2*cot(x)) assert cot(3*x).expand(trig=True).together() == ( cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1) assert cot(4*x - pi/4).expand(trig=True).cancel() == ( -tan(x)**4 + 4*tan(x)**3 + 6*tan(x)**2 - 4*tan(x) - 1 )/(tan(x)**4 + 4*tan(x)**3 - 6*tan(x)**2 - 4*tan(x) + 1) _test_extrig(cot, 2, (-1 + cot(1)**2)/(2*cot(1))) _test_extrig(cot, 3, (-3*cot(1) + cot(1)**3)/(-1 + 3*cot(1)**2)) def test_cot_AccumBounds(): assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo) assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo) assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6)) def test_cot_fdiff(): assert cot(x).fdiff() == -cot(x)**2 - 1 raises(ArgumentIndexError, lambda: cot(x).fdiff(2)) def test_sinc(): assert isinstance(sinc(x), sinc) s = Symbol('s', zero=True) assert sinc(s) is S.One assert sinc(S.Infinity) is S.Zero assert sinc(S.NegativeInfinity) is S.Zero assert sinc(S.NaN) is S.NaN assert sinc(S.ComplexInfinity) is S.NaN n = Symbol('n', integer=True, nonzero=True) assert sinc(n*pi) is S.Zero assert sinc(-n*pi) is S.Zero assert sinc(pi/2) == 2 / pi assert sinc(-pi/2) == 2 / pi assert sinc(pi*Rational(5, 2)) == 2 / (5*pi) assert sinc(pi*Rational(7, 2)) == -2 / (7*pi) assert sinc(-x) == sinc(x) assert sinc(x).diff(x) == cos(x)/x - sin(x)/x**2 assert sinc(x).diff(x) == (sin(x)/x).diff(x) assert sinc(x).diff(x, x) == (-sin(x) - 2*cos(x)/x + 2*sin(x)/x**2)/x assert sinc(x).diff(x, x) == (sin(x)/x).diff(x, x) assert limit(sinc(x).diff(x), x, 0) == 0 assert limit(sinc(x).diff(x, x), x, 0) == -S(1)/3 # https://github.com/sympy/sympy/issues/11402 # # assert sinc(x).diff(x) == Piecewise(((x*cos(x) - sin(x)) / x**2, Ne(x, 0)), (0, True)) # # assert sinc(x).diff(x).equals(sinc(x).rewrite(sin).diff(x)) # # assert sinc(x).diff(x).subs(x, 0) is S.Zero assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6) assert sinc(x).rewrite(jn) == jn(0, x) assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True)) def test_asin(): assert asin(nan) is nan assert asin.nargs == FiniteSet(1) assert asin(oo) == -I*oo assert asin(-oo) == I*oo assert asin(zoo) is zoo # Note: asin(-x) = - asin(x) assert asin(0) == 0 assert asin(1) == pi/2 assert asin(-1) == -pi/2 assert asin(sqrt(3)/2) == pi/3 assert asin(-sqrt(3)/2) == -pi/3 assert asin(sqrt(2)/2) == pi/4 assert asin(-sqrt(2)/2) == -pi/4 assert asin(sqrt((5 - sqrt(5))/8)) == pi/5 assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5 assert asin(S.Half) == pi/6 assert asin(Rational(-1, 2)) == -pi/6 assert asin((sqrt(2 - sqrt(2)))/2) == pi/8 assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8 assert asin((sqrt(5) - 1)/4) == pi/10 assert asin(-(sqrt(5) - 1)/4) == -pi/10 assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12 assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12 # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for n in range(-(d//2), d//2 + 1): if gcd(n, d) == 1: assert asin(sin(n*pi/d)) == n*pi/d assert asin(x).diff(x) == 1/sqrt(1 - x**2) assert asin(1/x).as_leading_term(x) == I*log(1/x) assert asin(0.2).is_real is True assert asin(-2).is_real is False assert asin(r).is_real is None assert asin(-2*I) == -I*asinh(2) assert asin(Rational(1, 7), evaluate=False).is_positive is True assert asin(Rational(-1, 7), evaluate=False).is_positive is False assert asin(p).is_positive is None assert asin(sin(Rational(7, 2))) == Rational(-7, 2) + pi assert asin(sin(Rational(-7, 4))) == Rational(7, 4) - pi assert unchanged(asin, cos(x)) def test_asin_series(): assert asin(x).series(x, 0, 9) == \ x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9) t5 = asin(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112 def test_asin_rewrite(): assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2)) assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2))) assert asin(x).rewrite(acos) == S.Pi/2 - acos(x) assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x) assert asin(x).rewrite(asec) == -asec(1/x) + pi/2 assert asin(x).rewrite(acsc) == acsc(1/x) def test_asin_fdiff(): assert asin(x).fdiff() == 1/sqrt(1 - x**2) raises(ArgumentIndexError, lambda: asin(x).fdiff(2)) def test_acos(): assert acos(nan) is nan assert acos(zoo) is zoo assert acos.nargs == FiniteSet(1) assert acos(oo) == I*oo assert acos(-oo) == -I*oo # Note: acos(-x) = pi - acos(x) assert acos(0) == pi/2 assert acos(S.Half) == pi/3 assert acos(Rational(-1, 2)) == pi*Rational(2, 3) assert acos(1) == 0 assert acos(-1) == pi assert acos(sqrt(2)/2) == pi/4 assert acos(-sqrt(2)/2) == pi*Rational(3, 4) # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for num in range(d): if gcd(num, d) == 1: assert acos(cos(num*pi/d)) == num*pi/d assert acos(2*I) == pi/2 - asin(2*I) assert acos(x).diff(x) == -1/sqrt(1 - x**2) assert acos(1/x).as_leading_term(x) == I*log(1/x) assert acos(0.2).is_real is True assert acos(-2).is_real is False assert acos(r).is_real is None assert acos(Rational(1, 7), evaluate=False).is_positive is True assert acos(Rational(-1, 7), evaluate=False).is_positive is True assert acos(Rational(3, 2), evaluate=False).is_positive is False assert acos(p).is_positive is None assert acos(2 + p).conjugate() != acos(10 + p) assert acos(-3 + n).conjugate() != acos(-3 + n) assert acos(Rational(1, 3)).conjugate() == acos(Rational(1, 3)) assert acos(Rational(-1, 3)).conjugate() == acos(Rational(-1, 3)) assert acos(p + n*I).conjugate() == acos(p - n*I) assert acos(z).conjugate() != acos(conjugate(z)) def test_acos_series(): assert acos(x).series(x, 0, 8) == \ pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8) assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8) t5 = acos(x).taylor_term(5, x) assert t5 == -3*x**5/40 assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112 assert acos(x).taylor_term(0, x) == pi/2 assert acos(x).taylor_term(2, x) is S.Zero def test_acos_rewrite(): assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2)) assert acos(x).rewrite(atan) == \ atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2)) assert acos(0).rewrite(atan) == S.Pi/2 assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log) assert acos(x).rewrite(asin) == S.Pi/2 - asin(x) assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2 assert acos(x).rewrite(asec) == asec(1/x) assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2 def test_acos_fdiff(): assert acos(x).fdiff() == -1/sqrt(1 - x**2) raises(ArgumentIndexError, lambda: acos(x).fdiff(2)) def test_atan(): assert atan(nan) is nan assert atan.nargs == FiniteSet(1) assert atan(oo) == pi/2 assert atan(-oo) == -pi/2 assert atan(zoo) == AccumBounds(-pi/2, pi/2) assert atan(0) == 0 assert atan(1) == pi/4 assert atan(sqrt(3)) == pi/3 assert atan(-(1 + sqrt(2))) == pi*Rational(-3, 8) assert atan(sqrt(5 - 2 * sqrt(5))) == pi/5 assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10 assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == pi*Rational(3, 10) assert atan(-2 + sqrt(3)) == -pi/12 assert atan(2 + sqrt(3)) == pi*Rational(5, 12) assert atan(-2 - sqrt(3)) == pi*Rational(-5, 12) # check round-trip for exact values: for d in [5, 6, 8, 10, 12]: for num in range(-(d//2), d//2 + 1): if gcd(num, d) == 1: assert atan(tan(num*pi/d)) == num*pi/d assert atan(oo) == pi/2 assert atan(x).diff(x) == 1/(1 + x**2) assert atan(1/x).as_leading_term(x) == pi/2 assert atan(r).is_real is True assert atan(-2*I) == -I*atanh(2) assert unchanged(atan, cot(x)) assert atan(cot(Rational(1, 4))) == Rational(-1, 4) + pi/2 assert acot(Rational(1, 4)).is_rational is False for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz): if s.is_real or s.is_extended_real is None: assert s.is_nonzero is atan(s).is_nonzero assert s.is_positive is atan(s).is_positive assert s.is_negative is atan(s).is_negative assert s.is_nonpositive is atan(s).is_nonpositive assert s.is_nonnegative is atan(s).is_nonnegative else: assert s.is_extended_nonzero is atan(s).is_nonzero assert s.is_extended_positive is atan(s).is_positive assert s.is_extended_negative is atan(s).is_negative assert s.is_extended_nonpositive is atan(s).is_nonpositive assert s.is_extended_nonnegative is atan(s).is_nonnegative assert s.is_extended_nonzero is atan(s).is_extended_nonzero assert s.is_extended_positive is atan(s).is_extended_positive assert s.is_extended_negative is atan(s).is_extended_negative assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative def test_atan_rewrite(): assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2 assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x assert atan(x).rewrite(acot) == acot(1/x) assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I}) assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I}) def test_atan_fdiff(): assert atan(x).fdiff() == 1/(x**2 + 1) raises(ArgumentIndexError, lambda: atan(x).fdiff(2)) def test_atan2(): assert atan2.nargs == FiniteSet(2) assert atan2(0, 0) is S.NaN assert atan2(0, 1) == 0 assert atan2(1, 1) == pi/4 assert atan2(1, 0) == pi/2 assert atan2(1, -1) == pi*Rational(3, 4) assert atan2(0, -1) == pi assert atan2(-1, -1) == pi*Rational(-3, 4) assert atan2(-1, 0) == -pi/2 assert atan2(-1, 1) == -pi/4 i = symbols('i', imaginary=True) r = symbols('r', real=True) eq = atan2(r, i) ans = -I*log((i + I*r)/sqrt(i**2 + r**2)) reps = ((r, 2), (i, I)) assert eq.subs(reps) == ans.subs(reps) x = Symbol('x', negative=True) y = Symbol('y', negative=True) assert atan2(y, x) == atan(y/x) - pi y = Symbol('y', nonnegative=True) assert atan2(y, x) == atan(y/x) + pi y = Symbol('y') assert atan2(y, x) == atan2(y, x, evaluate=False) u = Symbol("u", positive=True) assert atan2(0, u) == 0 u = Symbol("u", negative=True) assert atan2(0, u) == pi assert atan2(y, oo) == 0 assert atan2(y, -oo)== 2*pi*Heaviside(re(y), S.Half) - pi assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2)) assert atan2(0, 0) is S.NaN ex = atan2(y, x) - arg(x + I*y) assert ex.subs({x:2, y:3}).rewrite(arg) == 0 assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5) assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I) assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(Rational(2, 3)) + atan(Rational(3, 2)) i = symbols('i', imaginary=True) r = symbols('r', real=True) e = atan2(i, r) rewrite = e.rewrite(arg) reps = {i: I, r: -2} assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2)) assert (e - rewrite).subs(reps).equals(0) assert atan2(0, x).rewrite(atan) == Piecewise((pi, re(x) < 0), (0, Ne(x, 0)), (nan, True)) assert atan2(0, r).rewrite(atan) == Piecewise((pi, r < 0), (0, Ne(r, 0)), (S.NaN, True)) assert atan2(0, i),rewrite(atan) == 0 assert atan2(0, r + i).rewrite(atan) == Piecewise((pi, r < 0), (0, True)) assert atan2(y, x).rewrite(atan) == Piecewise( (2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, (re(x) > 0) | Ne(im(x), 0)), (nan, True)) assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y)) assert diff(atan2(y, x), x) == -y/(x**2 + y**2) assert diff(atan2(y, x), y) == x/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2) assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2) assert str(atan2(1, 2).evalf(5)) == '0.46365' raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3)) def test_issue_17461(): class A(Symbol): is_extended_real = True def _eval_evalf(self, prec): return Float(5.0) x = A('X') y = A('Y') assert abs(atan2(x, y).evalf() - 0.785398163397448) <= 1e-10 def test_acot(): assert acot(nan) is nan assert acot.nargs == FiniteSet(1) assert acot(-oo) == 0 assert acot(oo) == 0 assert acot(zoo) == 0 assert acot(1) == pi/4 assert acot(0) == pi/2 assert acot(sqrt(3)/3) == pi/3 assert acot(1/sqrt(3)) == pi/3 assert acot(-1/sqrt(3)) == -pi/3 assert acot(x).diff(x) == -1/(1 + x**2) assert acot(1/x).as_leading_term(x) == x assert acot(r).is_extended_real is True assert acot(I*pi) == -I*acoth(pi) assert acot(-2*I) == I*acoth(2) assert acot(x).is_positive is None assert acot(n).is_positive is False assert acot(p).is_positive is True assert acot(I).is_positive is False assert acot(Rational(1, 4)).is_rational is False assert unchanged(acot, cot(x)) assert unchanged(acot, tan(x)) assert acot(cot(Rational(1, 4))) == Rational(1, 4) assert acot(tan(Rational(-1, 4))) == Rational(1, 4) - pi/2 def test_acot_rewrite(): assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2 assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2)) assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1)) assert acot(x).rewrite(atan) == atan(1/x) assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2)) assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2)) assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5}) assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5}) def test_acot_fdiff(): assert acot(x).fdiff() == -1/(x**2 + 1) raises(ArgumentIndexError, lambda: acot(x).fdiff(2)) def test_attributes(): assert sin(x).args == (x,) def test_sincos_rewrite(): assert sin(pi/2 - x) == cos(x) assert sin(pi - x) == sin(x) assert cos(pi/2 - x) == sin(x) assert cos(pi - x) == -cos(x) def _check_even_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> f(x) arg : -x """ return func(arg).args[0] == -arg def _check_odd_rewrite(func, arg): """Checks that the expr has been rewritten using f(-x) -> -f(x) arg : -x """ return func(arg).func.is_Mul def _check_no_rewrite(func, arg): """Checks that the expr is not rewritten""" return func(arg).args[0] == arg def test_evenodd_rewrite(): a = cos(2) # negative b = sin(1) # positive even = [cos] odd = [sin, tan, cot, asin, atan, acot] with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y] for func in even: for expr in with_minus: assert _check_even_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == func(y - x) # it doesn't matter which form is canonical for func in odd: for expr in with_minus: assert _check_odd_rewrite(func, expr) assert _check_no_rewrite(func, a*b) assert func( x - y) == -func(y - x) # it doesn't matter which form is canonical def test_issue_4547(): assert sin(x).rewrite(cot) == 2*cot(x/2)/(1 + cot(x/2)**2) assert cos(x).rewrite(cot) == -(1 - cot(x/2)**2)/(1 + cot(x/2)**2) assert tan(x).rewrite(cot) == 1/cot(x) assert cot(x).fdiff() == -1 - cot(x)**2 def test_as_leading_term_issue_5272(): assert sin(x).as_leading_term(x) == x assert cos(x).as_leading_term(x) == 1 assert tan(x).as_leading_term(x) == x assert cot(x).as_leading_term(x) == 1/x assert asin(x).as_leading_term(x) == x assert acos(x).as_leading_term(x) == pi/2 assert atan(x).as_leading_term(x) == x assert acot(x).as_leading_term(x) == pi/2 def test_leading_terms(): for func in [sin, cos, tan, cot]: for a in (1/x, S.Half): eq = func(a) assert eq.as_leading_term(x) == eq # https://github.com/sympy/sympy/issues/21038 f = sin(pi*(x + 4))/(3*x) assert f.as_leading_term(x) == pi/3 def test_atan2_expansion(): assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0 assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5) + atan2(0, x) - atan(0)) == O(y**5) assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4) + atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1)) assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3) + atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1)) assert Matrix([atan2(y, x)]).jacobian([y, x]) == \ Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]]) def test_aseries(): def t(n, v, d, e): assert abs( n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e t(atan, 0.1, '+', 1e-5) t(atan, -0.1, '-', 1e-5) t(acot, 0.1, '+', 1e-5) t(acot, -0.1, '-', 1e-5) def test_issue_4420(): i = Symbol('i', integer=True) e = Symbol('e', even=True) o = Symbol('o', odd=True) # unknown parity for variable assert cos(4*i*pi) == 1 assert sin(4*i*pi) == 0 assert tan(4*i*pi) == 0 assert cot(4*i*pi) is zoo assert cos(3*i*pi) == cos(pi*i) # +/-1 assert sin(3*i*pi) == 0 assert tan(3*i*pi) == 0 assert cot(3*i*pi) is zoo assert cos(4.0*i*pi) == 1 assert sin(4.0*i*pi) == 0 assert tan(4.0*i*pi) == 0 assert cot(4.0*i*pi) is zoo assert cos(3.0*i*pi) == cos(pi*i) # +/-1 assert sin(3.0*i*pi) == 0 assert tan(3.0*i*pi) == 0 assert cot(3.0*i*pi) is zoo assert cos(4.5*i*pi) == cos(0.5*pi*i) assert sin(4.5*i*pi) == sin(0.5*pi*i) assert tan(4.5*i*pi) == tan(0.5*pi*i) assert cot(4.5*i*pi) == cot(0.5*pi*i) # parity of variable is known assert cos(4*e*pi) == 1 assert sin(4*e*pi) == 0 assert tan(4*e*pi) == 0 assert cot(4*e*pi) is zoo assert cos(3*e*pi) == 1 assert sin(3*e*pi) == 0 assert tan(3*e*pi) == 0 assert cot(3*e*pi) is zoo assert cos(4.0*e*pi) == 1 assert sin(4.0*e*pi) == 0 assert tan(4.0*e*pi) == 0 assert cot(4.0*e*pi) is zoo assert cos(3.0*e*pi) == 1 assert sin(3.0*e*pi) == 0 assert tan(3.0*e*pi) == 0 assert cot(3.0*e*pi) is zoo assert cos(4.5*e*pi) == cos(0.5*pi*e) assert sin(4.5*e*pi) == sin(0.5*pi*e) assert tan(4.5*e*pi) == tan(0.5*pi*e) assert cot(4.5*e*pi) == cot(0.5*pi*e) assert cos(4*o*pi) == 1 assert sin(4*o*pi) == 0 assert tan(4*o*pi) == 0 assert cot(4*o*pi) is zoo assert cos(3*o*pi) == -1 assert sin(3*o*pi) == 0 assert tan(3*o*pi) == 0 assert cot(3*o*pi) is zoo assert cos(4.0*o*pi) == 1 assert sin(4.0*o*pi) == 0 assert tan(4.0*o*pi) == 0 assert cot(4.0*o*pi) is zoo assert cos(3.0*o*pi) == -1 assert sin(3.0*o*pi) == 0 assert tan(3.0*o*pi) == 0 assert cot(3.0*o*pi) is zoo assert cos(4.5*o*pi) == cos(0.5*pi*o) assert sin(4.5*o*pi) == sin(0.5*pi*o) assert tan(4.5*o*pi) == tan(0.5*pi*o) assert cot(4.5*o*pi) == cot(0.5*pi*o) # x could be imaginary assert cos(4*x*pi) == cos(4*pi*x) assert sin(4*x*pi) == sin(4*pi*x) assert tan(4*x*pi) == tan(4*pi*x) assert cot(4*x*pi) == cot(4*pi*x) assert cos(3*x*pi) == cos(3*pi*x) assert sin(3*x*pi) == sin(3*pi*x) assert tan(3*x*pi) == tan(3*pi*x) assert cot(3*x*pi) == cot(3*pi*x) assert cos(4.0*x*pi) == cos(4.0*pi*x) assert sin(4.0*x*pi) == sin(4.0*pi*x) assert tan(4.0*x*pi) == tan(4.0*pi*x) assert cot(4.0*x*pi) == cot(4.0*pi*x) assert cos(3.0*x*pi) == cos(3.0*pi*x) assert sin(3.0*x*pi) == sin(3.0*pi*x) assert tan(3.0*x*pi) == tan(3.0*pi*x) assert cot(3.0*x*pi) == cot(3.0*pi*x) assert cos(4.5*x*pi) == cos(4.5*pi*x) assert sin(4.5*x*pi) == sin(4.5*pi*x) assert tan(4.5*x*pi) == tan(4.5*pi*x) assert cot(4.5*x*pi) == cot(4.5*pi*x) def test_inverses(): raises(AttributeError, lambda: sin(x).inverse()) raises(AttributeError, lambda: cos(x).inverse()) assert tan(x).inverse() == atan assert cot(x).inverse() == acot raises(AttributeError, lambda: csc(x).inverse()) raises(AttributeError, lambda: sec(x).inverse()) assert asin(x).inverse() == sin assert acos(x).inverse() == cos assert atan(x).inverse() == tan assert acot(x).inverse() == cot def test_real_imag(): a, b = symbols('a b', real=True) z = a + b*I for deep in [True, False]: assert sin( z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b)) assert cos( z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b)) assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) + cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b))) assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) - cosh(2*b)), sinh(2*b)/(cos(2*a) - cosh(2*b))) assert sin(a).as_real_imag(deep=deep) == (sin(a), 0) assert cos(a).as_real_imag(deep=deep) == (cos(a), 0) assert tan(a).as_real_imag(deep=deep) == (tan(a), 0) assert cot(a).as_real_imag(deep=deep) == (cot(a), 0) @XFAIL def test_sin_cos_with_infinity(): # Test for issue 5196 # https://github.com/sympy/sympy/issues/5196 assert sin(oo) is S.NaN assert cos(oo) is S.NaN @slow def test_sincos_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p # The vertices `exp(i*pi/n)` of a regular `n`-gon can # be expressed by means of nested square roots if and # only if `n` is a product of Fermat primes, `p`, and # powers of 2, `t'. The code aims to check all vertices # not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`). # For large `n` this makes the test too slow, therefore # the vertices are limited to those of index `i < 10`. for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n s1 = sin(x).rewrite(sqrt) c1 = cos(x).rewrite(sqrt) assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n) assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half) assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64) assert cos(pi*Rational(-15, 2)/11, evaluate=False).rewrite( sqrt) == -sqrt(-cos(pi*Rational(4, 11))/2 + S.Half) assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite( sqrt) == -1 e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation a = ( -3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 - 3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - Rational(1, 32) + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + 3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128 + 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) + 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32 + sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/8 - 5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - 3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32 + sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 + sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/2 + S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32)/2) assert e.rewrite(sqrt) == a assert e.n() == a.n() # coverage of fermatCoords: multiplicity > 1; the following could be # different but that portion of the code should be tested in some way assert cos(pi/9/17).rewrite(sqrt) == \ sin(pi/9)*sin(pi*Rational(2, 17)) + cos(pi/9)*cos(pi*Rational(2, 17)) @slow def test_tancot_rewrite_sqrt(): # equivalent to testing rewrite(pow) for p in [1, 3, 5, 17]: for t in [1, 8]: n = t*p for i in range(1, min((n + 1)//2 + 1, 10)): if 1 == gcd(i, n): x = i*pi/n if 2*i != n and 3*i != 2*n: t1 = tan(x).rewrite(sqrt) assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n) if i != 0 and i != n: c1 = cot(x).rewrite(sqrt) assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n) assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n) def test_sec(): x = symbols('x', real=True) z = symbols('z') assert sec.nargs == FiniteSet(1) assert sec(zoo) is nan assert sec(0) == 1 assert sec(pi) == -1 assert sec(pi/2) is zoo assert sec(-pi/2) is zoo assert sec(pi/6) == 2*sqrt(3)/3 assert sec(pi/3) == 2 assert sec(pi*Rational(5, 2)) is zoo assert sec(pi*Rational(9, 7)) == -sec(pi*Rational(2, 7)) assert sec(pi*Rational(3, 4)) == -sqrt(2) # issue 8421 assert sec(I) == 1/cosh(1) assert sec(x*I) == 1/cosh(x) assert sec(-x) == sec(x) assert sec(asec(x)) == x assert sec(z).conjugate() == sec(conjugate(z)) assert (sec(z).as_real_imag() == (cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2), sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 + cos(re(z))**2*cosh(im(z))**2))) assert sec(x).expand(trig=True) == 1/cos(x) assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1) assert sec(x).is_extended_real == True assert sec(z).is_real == None assert sec(a).is_algebraic is None assert sec(na).is_algebraic is False assert sec(x).as_leading_term() == sec(x) assert sec(0).is_finite == True assert sec(x).is_finite == None assert sec(pi/2).is_finite == False assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6) # https://github.com/sympy/sympy/issues/7166 assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6) # https://github.com/sympy/sympy/issues/7167 assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) == 1/sqrt(x - pi*Rational(3, 2)) + (x - pi*Rational(3, 2))**Rational(3, 2)/12 + (x - pi*Rational(3, 2))**Rational(7, 2)/160 + O((x - pi*Rational(3, 2))**4, (x, pi*Rational(3, 2)))) assert sec(x).diff(x) == tan(x)*sec(x) # Taylor Term checks assert sec(z).taylor_term(4, z) == 5*z**4/24 assert sec(z).taylor_term(6, z) == 61*z**6/720 assert sec(z).taylor_term(5, z) == 0 def test_sec_rewrite(): assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2) assert sec(x).rewrite(cos) == 1/cos(x) assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1) assert sec(x).rewrite(pow) == sec(x) assert sec(x).rewrite(sqrt) == sec(x) assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1) assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False) assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1) assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False) def test_sec_fdiff(): assert sec(x).fdiff() == tan(x)*sec(x) raises(ArgumentIndexError, lambda: sec(x).fdiff(2)) def test_csc(): x = symbols('x', real=True) z = symbols('z') # https://github.com/sympy/sympy/issues/6707 cosecant = csc('x') alternate = 1/sin('x') assert cosecant.equals(alternate) == True assert alternate.equals(cosecant) == True assert csc.nargs == FiniteSet(1) assert csc(0) is zoo assert csc(pi) is zoo assert csc(zoo) is nan assert csc(pi/2) == 1 assert csc(-pi/2) == -1 assert csc(pi/6) == 2 assert csc(pi/3) == 2*sqrt(3)/3 assert csc(pi*Rational(5, 2)) == 1 assert csc(pi*Rational(9, 7)) == -csc(pi*Rational(2, 7)) assert csc(pi*Rational(3, 4)) == sqrt(2) # issue 8421 assert csc(I) == -I/sinh(1) assert csc(x*I) == -I/sinh(x) assert csc(-x) == -csc(x) assert csc(acsc(x)) == x assert csc(z).conjugate() == csc(conjugate(z)) assert (csc(z).as_real_imag() == (sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2), -cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 + cos(re(z))**2*sinh(im(z))**2))) assert csc(x).expand(trig=True) == 1/sin(x) assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x)) assert csc(x).is_extended_real == True assert csc(z).is_real == None assert csc(a).is_algebraic is None assert csc(na).is_algebraic is False assert csc(x).as_leading_term() == csc(x) assert csc(0).is_finite == False assert csc(x).is_finite == None assert csc(pi/2).is_finite == True assert series(csc(x), x, x0=pi/2, n=6) == \ 1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2)) assert series(csc(x), x, x0=0, n=6) == \ 1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6) assert csc(x).diff(x) == -cot(x)*csc(x) assert csc(x).taylor_term(2, x) == 0 assert csc(x).taylor_term(3, x) == 7*x**3/360 assert csc(x).taylor_term(5, x) == 31*x**5/15120 raises(ArgumentIndexError, lambda: csc(x).fdiff(2)) def test_asec(): z = Symbol('z', zero=True) assert asec(z) is zoo assert asec(nan) is nan assert asec(1) == 0 assert asec(-1) == pi assert asec(oo) == pi/2 assert asec(-oo) == pi/2 assert asec(zoo) == pi/2 assert asec(sec(pi*Rational(13, 4))) == pi*Rational(3, 4) assert asec(1 + sqrt(5)) == pi*Rational(2, 5) assert asec(2/sqrt(3)) == pi/6 assert asec(sqrt(4 - 2*sqrt(2))) == pi/8 assert asec(-sqrt(4 + 2*sqrt(2))) == pi*Rational(5, 8) assert asec(sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(3, 10) assert asec(-sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(7, 10) assert asec(sqrt(2) - sqrt(6)) == pi*Rational(11, 12) assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2)) assert asec(x).as_leading_term(x) == I*log(x) assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2 assert asec(x).rewrite(asin) == -asin(1/x) + pi/2 assert asec(x).rewrite(acos) == acos(1/x) assert asec(x).rewrite(atan) == (2*atan(x + sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x assert asec(x).rewrite(acot) == (2*acot(x - sqrt(x**2 - 1)) - pi/2)*sqrt(x**2)/x assert asec(x).rewrite(acsc) == -acsc(x) + pi/2 raises(ArgumentIndexError, lambda: asec(x).fdiff(2)) def test_asec_is_real(): assert asec(S.Half).is_real is False n = Symbol('n', positive=True, integer=True) assert asec(n).is_extended_real is True assert asec(x).is_real is None assert asec(r).is_real is None t = Symbol('t', real=False, finite=True) assert asec(t).is_real is False def test_acsc(): assert acsc(nan) is nan assert acsc(1) == pi/2 assert acsc(-1) == -pi/2 assert acsc(oo) == 0 assert acsc(-oo) == 0 assert acsc(zoo) == 0 assert acsc(0) is zoo assert acsc(csc(3)) == -3 + pi assert acsc(csc(4)) == -4 + pi assert acsc(csc(6)) == 6 - 2*pi assert unchanged(acsc, csc(x)) assert unchanged(acsc, sec(x)) assert acsc(2/sqrt(3)) == pi/3 assert acsc(csc(pi*Rational(13, 4))) == -pi/4 assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5 assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5 assert acsc(-2) == -pi/6 assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8 assert acsc(sqrt(4 - 2*sqrt(2))) == pi*Rational(3, 8) assert acsc(1 + sqrt(5)) == pi/10 assert acsc(sqrt(2) - sqrt(6)) == pi*Rational(-5, 12) assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2)) assert acsc(x).as_leading_term(x) == I*log(x) assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x) assert acsc(x).rewrite(asin) == asin(1/x) assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2 assert acsc(x).rewrite(atan) == (-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x assert acsc(x).rewrite(asec) == -asec(x) + pi/2 raises(ArgumentIndexError, lambda: acsc(x).fdiff(2)) def test_csc_rewrite(): assert csc(x).rewrite(pow) == csc(x) assert csc(x).rewrite(sqrt) == csc(x) assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x)) assert csc(x).rewrite(sin) == 1/sin(x) assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2)) assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2)) assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False) assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False) # issue 17349 assert csc(1 - exp(-besselj(I, I))).rewrite(cos) == \ -1/cos(-pi/2 - 1 + cos(I*besselj(I, I)) + I*cos(-pi/2 + I*besselj(I, I), evaluate=False), evaluate=False) def test_inverses_nseries(): assert asin(x + 2)._eval_nseries(x, 4, None, I) == -asin(2) + pi + sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 + \ sqrt(3)*I*x**3/18 + O(x**4) assert asin(x + 2)._eval_nseries(x, 4, None, -I) == asin(2) - sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) assert asin(x - 2)._eval_nseries(x, 4, None, I) == -asin(2) - sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) assert asin(x - 2)._eval_nseries(x, 4, None, -I) == asin(2) - pi + sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 + \ sqrt(3)*I*x**3/18 + O(x**4) assert asin(I*x + I*x**3 + 2)._eval_nseries(x, 3, None, 1) == -asin(2) + pi - sqrt(3)*x/3 + sqrt(3)*I*x**2/9 + O(x**3) assert asin(I*x + I*x**3 + 2)._eval_nseries(x, 3, None, -1) == asin(2) + sqrt(3)*x/3 - sqrt(3)*I*x**2/9 + O(x**3) assert asin(I*x + I*x**3 - 2)._eval_nseries(x, 3, None, 1) == -asin(2) + sqrt(3)*x/3 + sqrt(3)*I*x**2/9 + O(x**3) assert asin(I*x + I*x**3 - 2)._eval_nseries(x, 3, None, -1) == asin(2) - pi - sqrt(3)*x/3 - sqrt(3)*I*x**2/9 + O(x**3) assert asin(I*x**2 + I*x**3 + 2)._eval_nseries(x, 3, None, 1) == -asin(2) + pi - sqrt(3)*x**2/3 + O(x**3) assert asin(I*x**2 + I*x**3 + 2)._eval_nseries(x, 3, None, -1) == -asin(2) + pi - sqrt(3)*x**2/3 + O(x**3) assert asin(I*x**2 + I*x**3 - 2)._eval_nseries(x, 3, None, 1) == -asin(2) + sqrt(3)*x**2/3 + O(x**3) assert asin(I*x**2 + I*x**3 - 2)._eval_nseries(x, 3, None, -1) == -asin(2) + sqrt(3)*x**2/3 + O(x**3) assert asin(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) - \ sqrt(2)*(-x)**(S(3)/2)/12 - 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) assert asin(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) + \ sqrt(2)*x**(S(3)/2)/12 + 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3) assert asin(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) + \ sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) assert asin(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \ sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) assert acos(x + 2)._eval_nseries(x, 4, None, I) == -acos(2) - sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) assert acos(x + 2)._eval_nseries(x, 4, None, -I) == acos(2) + sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4) assert acos(x - 2)._eval_nseries(x, 4, None, I) == acos(-2) + sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4) assert acos(x - 2)._eval_nseries(x, 4, None, -I) == -acos(-2) + 2*pi - sqrt(3)*I*x/3 - \ sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4) # assert acos(I*x + I*x**3 + 2)._eval_nseries(x, 3, None, 1) == -acos(2) + sqrt(3)*x/3 - sqrt(3)*I*x**2/9 + O(x**3) # assert acos(I*x + I*x**3 + 2)._eval_nseries(x, 3, None, -1) == acos(2) - sqrt(3)*x/3 + sqrt(3)*I*x**2/9 + O(x**3) # assert acos(I*x + I*x**3 - 2)._eval_nseries(x, 3, None, 1) == acos(-2) - sqrt(3)*x/3 - sqrt(3)*I*x**2/9 + O(x**3) # assert acos(I*x + I*x**3 - 2)._eval_nseries(x, 3, None, -1) == -acos(-2) + 2*pi + sqrt(3)*x/3 + sqrt(3)*I*x**2/9 + O(x**3) # assert acos(I*x**2 + I*x**3 + 2)._eval_nseries(x, 3, None, 1) == -acos(2) + sqrt(3)*x**2/3 + O(x**3) # assert acos(I*x**2 + I*x**3 + 2)._eval_nseries(x, 3, None, -1) == -acos(2) + sqrt(3)*x**2/3 + O(x**3) # assert acos(I*x**2 + I*x**3 - 2)._eval_nseries(x, 3, None, 1) == acos(-2) - sqrt(3)*x**2/3 + O(x**3) # assert acos(I*x**2 + I*x**3 - 2)._eval_nseries(x, 3, None, -1) == acos(-2) - sqrt(3)*x**2/3 + O(x**3) # assert acos(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) + sqrt(2)*(-x)**(S(3)/2)/12 + 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) # assert acos(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) - sqrt(2)*x**(S(3)/2)/12 - 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3) # assert acos(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) - sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) # assert acos(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3) assert atan(x + 2*I)._eval_nseries(x, 4, None, 1) == I*atanh(2) - x/3 - 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(x + 2*I)._eval_nseries(x, 4, None, -1) == I*atanh(2) - pi - x/3 - 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(x - 2*I)._eval_nseries(x, 4, None, 1) == -I*atanh(2) + pi - x/3 + 2*I*x**2/9 + 13*x**3/81 + O(x**4) assert atan(x - 2*I)._eval_nseries(x, 4, None, -1) == -I*atanh(2) - x/3 + 2*I*x**2/9 + 13*x**3/81 + O(x**4) # assert atan(x**2 + 2*I)._eval_nseries(x, 3, None, 1) == I*atanh(2) - x**2/3 + O(x**3) # assert atan(x**2 + 2*I)._eval_nseries(x, 3, None, -1) == I*atanh(2) - x**2/3 + O(x**3) # assert atan(x**2 - 2*I)._eval_nseries(x, 3, None, 1) == -I*atanh(2) + pi - x**2/3 + O(x**3) # assert atan(x**2 - 2*I)._eval_nseries(x, 3, None, -1) == -I*atanh(2) + pi - x**2/3 + O(x**3) assert atan(1/x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2) assert atan(1/x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2) assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, 1) == -I*acoth(S(1)/2) + pi - 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, -1) == -I*acoth(S(1)/2) - 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, 1) == I*acoth(S(1)/2) - 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4) assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, -1) == I*acoth(S(1)/2) - pi - 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4) # assert acot(x**2 + S(1)/2*I)._eval_nseries(x, 3, None, 1) == -I*acoth(S(1)/2) + pi - 4*x**2/3 + O(x**3) # assert acot(x**2 + S(1)/2*I)._eval_nseries(x, 3, None, -1) == -I*acoth(S(1)/2) + pi - 4*x**2/3 + O(x**3) # assert acot(x**2 - S(1)/2*I)._eval_nseries(x, 3, None, 1) == I*acoth(S(1)/2) - 4*x**2/3 + O(x**3) # assert acot(x**2 - S(1)/2*I)._eval_nseries(x, 3, None, -1) == I*acoth(S(1)/2) - 4*x**2/3 + O(x**3) # assert acot(x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2) # assert acot(x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2) assert asec(x + S(1)/2)._eval_nseries(x, 4, None, I) == asec(S(1)/2) - 4*sqrt(3)*I*x/3 + \ 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) assert asec(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -asec(S(1)/2) + 4*sqrt(3)*I*x/3 - \ 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) assert asec(x - S(1)/2)._eval_nseries(x, 4, None, I) == -asec(-S(1)/2) + 2*pi + 4*sqrt(3)*I*x/3 + \ 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) assert asec(x - S(1)/2)._eval_nseries(x, 4, None, -I) == asec(-S(1)/2) - 4*sqrt(3)*I*x/3 - \ 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) # assert asec(I*x + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, 1) == asec(S(1)/2) + 4*sqrt(3)*x/3 - 8*sqrt(3)*I*x**2/9 + O(x**3) # assert asec(I*x + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, -1) == -asec(S(1)/2) - 4*sqrt(3)*x/3 + 8*sqrt(3)*I*x**2/9 + O(x**3) # assert asec(I*x + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, 1) == -asec(-S(1)/2) + 2*pi - 4*sqrt(3)*x/3 - 8*sqrt(3)*I*x**2/9 + O(x**3) # assert asec(I*x + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, -1) == asec(-S(1)/2) + 4*sqrt(3)*x/3 + 8*sqrt(3)*I*x**2/9 + O(x**3) # assert asec(I*x**2 + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, 1) == asec(S(1)/2) + 4*sqrt(3)*x**2/3 + O(x**3) # assert asec(I*x**2 + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, -1) == asec(S(1)/2) + 4*sqrt(3)*x**2/3 + O(x**3) # assert asec(I*x**2 + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, 1) == -asec(-S(1)/2) + 2*pi - 4*sqrt(3)*x**2/3 + O(x**3) # assert asec(I*x**2 + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, -1) == -asec(-S(1)/2) + 2*pi - 4*sqrt(3)*x**2/3 + O(x**3) # assert asec(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - 5*sqrt(2)*x**(S(3)/2)/12 + 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3) # assert asec(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + 5*sqrt(2)*(-x)**(S(3)/2)/12 - 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) # assert asec(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3) # assert asec(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) + sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3) assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) + 4*sqrt(3)*I*x/3 - \ 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + pi - 4*sqrt(3)*I*x/3 + \ 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) - pi - 4*sqrt(3)*I*x/3 - \ 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4) assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + 4*sqrt(3)*I*x/3 + \ 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4) # assert acsc(I*x + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, 1) == acsc(S(1)/2) - 4*sqrt(3)*x/3 + 8*sqrt(3)*I*x**2/9 + O(x**3) # assert acsc(I*x + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, -1) == -acsc(S(1)/2) + pi + 4*sqrt(3)*x/3 - 8*sqrt(3)*I*x**2/9 + O(x**3) # assert acsc(I*x + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, 1) == acsc(S(1)/2) - pi + 4*sqrt(3)*x/3 + 8*sqrt(3)*I*x**2/9 + O(x**3) # assert acsc(I*x + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, -1) == -acsc(S(1)/2) - 4*sqrt(3)*x/3 - 8*sqrt(3)*I*x**2/9 + O(x**3) # assert acsc(I*x**2 + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, 1) == acsc(S(1)/2) - 4*sqrt(3)*x**2/3 + O(x**3) # assert acsc(I*x**2 + I*x**3 + S(1)/2)._eval_nseries(x, 3, None, -1) == acsc(S(1)/2) - 4*sqrt(3)*x**2/3 + O(x**3) # assert acsc(I*x**2 + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, 1) == acsc(S(1)/2) - pi + 4*sqrt(3)*x**2/3 + O(x**3) # assert acsc(I*x**2 + I*x**3 - S(1)/2)._eval_nseries(x, 3, None, -1) == acsc(S(1)/2) - pi + 4*sqrt(3)*x**2/3 + O(x**3) # assert acsc(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + 5*sqrt(2)*x**(S(3)/2)/12 - 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3) # assert acsc(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - 5*sqrt(2)*(-x)**(S(3)/2)/12 + 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3) # assert acsc(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3) # assert acsc(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) - sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3) def test_issue_8653(): n = Symbol('n', integer=True) assert sin(n).is_irrational is None assert cos(n).is_irrational is None assert tan(n).is_irrational is None def test_issue_9157(): n = Symbol('n', integer=True, positive=True) assert atan(n - 1).is_nonnegative is True def test_trig_period(): x, y = symbols('x, y') assert sin(x).period() == 2*pi assert cos(x).period() == 2*pi assert tan(x).period() == pi assert cot(x).period() == pi assert sec(x).period() == 2*pi assert csc(x).period() == 2*pi assert sin(2*x).period() == pi assert cot(4*x - 6).period() == pi/4 assert cos((-3)*x).period() == pi*Rational(2, 3) assert cos(x*y).period(x) == 2*pi/abs(y) assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x) assert tan(3*x).period(y) is S.Zero raises(NotImplementedError, lambda: sin(x**2).period(x)) def test_issue_7171(): assert sin(x).rewrite(sqrt) == sin(x) assert sin(x).rewrite(pow) == sin(x) def test_issue_11864(): w, k = symbols('w, k', real=True) F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True)) soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True)) assert F.rewrite(sinc) == soln def test_real_assumptions(): z = Symbol('z', real=False, finite=True) assert sin(z).is_real is None assert cos(z).is_real is None assert tan(z).is_real is False assert sec(z).is_real is None assert csc(z).is_real is None assert cot(z).is_real is False assert asin(p).is_real is None assert asin(n).is_real is None assert asec(p).is_real is None assert asec(n).is_real is None assert acos(p).is_real is None assert acos(n).is_real is None assert acsc(p).is_real is None assert acsc(n).is_real is None assert atan(p).is_positive is True assert atan(n).is_negative is True assert acot(p).is_positive is True assert acot(n).is_negative is True def test_issue_14320(): assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi) assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2) assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2) assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20) assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi) assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17) assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15) assert atan(cot(12)) == -12 + pi*Rational(7, 2) and (-pi/2 < -12 + pi*Rational(7, 2) < pi/2) and cot(12) == tan(-12 + pi*Rational(7, 2)) assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15) assert acot(tan(19)) == -19 + pi*Rational(13, 2) and (-pi/2 < -19 + pi*Rational(13, 2) <= pi/2) and tan(19) == cot(-19 + pi*Rational(13, 2)) assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi) assert asec(csc(13)) == -13 + pi*Rational(9, 2) and (0 <= -13 + pi*Rational(9, 2) <= pi) and sin(13) == cos(-13 + pi*Rational(9, 2)) assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14) assert acsc(sec(10)) == pi*Rational(-7, 2) + 10 and (-pi/2 <= pi*Rational(-7, 2) + 10 <= pi/2) and cos(10) == sin(pi*Rational(-7, 2) + 10) def test_issue_14543(): assert sec(2*pi + 11) == sec(11) assert sec(2*pi - 11) == sec(11) assert sec(pi + 11) == -sec(11) assert sec(pi - 11) == -sec(11) assert csc(2*pi + 17) == csc(17) assert csc(2*pi - 17) == -csc(17) assert csc(pi + 17) == -csc(17) assert csc(pi - 17) == csc(17) x = Symbol('x') assert csc(pi/2 + x) == sec(x) assert csc(pi/2 - x) == sec(x) assert csc(pi*Rational(3, 2) + x) == -sec(x) assert csc(pi*Rational(3, 2) - x) == -sec(x) assert sec(pi/2 - x) == csc(x) assert sec(pi/2 + x) == -csc(x) assert sec(pi*Rational(3, 2) + x) == csc(x) assert sec(pi*Rational(3, 2) - x) == -csc(x) def test_as_real_imag(): # This is for https://github.com/sympy/sympy/issues/17142 # If it start failing again in irrelevant builds or in the master # please open up the issue again. expr = atan(I/(I + I*tan(1))) assert expr.as_real_imag() == (expr, 0) def test_issue_18746(): e3 = cos(S.Pi*(x/4 + 1/4)) assert e3.period() == 8
254128b0b27b70ca228cde2fc4951460ecb850979fa2b3fc5b6f6da8d432076b
from sympy import ( Abs, acos, adjoint, arg, atan, atan2, conjugate, cos, DiracDelta, E, exp, expand, Expr, Function, Heaviside, I, im, log, nan, oo, pi, Rational, re, S, sign, sin, sqrt, Symbol, symbols, transpose, zoo, exp_polar, Piecewise, Interval, comp, Integral, Matrix, ImmutableMatrix, SparseMatrix, ImmutableSparseMatrix, MatrixSymbol, FunctionMatrix, Lambda, Derivative, Eq) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.testing.pytest import XFAIL, raises, _both_exp_pow def N_equals(a, b): """Check whether two complex numbers are numerically close""" return comp(a.n(), b.n(), 1.e-6) def test_re(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert re(nan) is nan assert re(oo) is oo assert re(-oo) is -oo assert re(0) == 0 assert re(1) == 1 assert re(-1) == -1 assert re(E) == E assert re(-E) == -E assert unchanged(re, x) assert re(x*I) == -im(x) assert re(r*I) == 0 assert re(r) == r assert re(i*I) == I * i assert re(i) == 0 assert re(x + y) == re(x) + re(y) assert re(x + r) == re(x) + r assert re(re(x)) == re(x) assert re(2 + I) == 2 assert re(x + I) == re(x) assert re(x + y*I) == re(x) - im(y) assert re(x + r*I) == re(x) assert re(log(2*I)) == log(2) assert re((2 + I)**2).expand(complex=True) == 3 assert re(conjugate(x)) == re(x) assert conjugate(re(x)) == re(x) assert re(x).as_real_imag() == (re(x), 0) assert re(i*r*x).diff(r) == re(i*x) assert re(i*r*x).diff(i) == I*r*im(x) assert re( sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2) assert re(a * (2 + b*I)) == 2*a assert re((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*cos(atan2(b, a)/2)/2 + S.Half assert re(x).rewrite(im) == x - S.ImaginaryUnit*im(x) assert (x + re(y)).rewrite(re, im) == x + y - S.ImaginaryUnit*im(y) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert re(S.ComplexInfinity) is S.NaN n, m, l = symbols('n m l') A = MatrixSymbol('A',n,m) assert re(A) == (S.Half) * (A + conjugate(A)) A = Matrix([[1 + 4*I,2],[0, -3*I]]) assert re(A) == Matrix([[1, 2],[0, 0]]) A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]]) assert re(A) == ImmutableMatrix([[1, 3],[0, 0]]) X = SparseMatrix([[2*j + i*I for i in range(5)] for j in range(5)]) assert re(X) - Matrix([[0, 0, 0, 0, 0], [2, 2, 2, 2, 2], [4, 4, 4, 4, 4], [6, 6, 6, 6, 6], [8, 8, 8, 8, 8]]) == Matrix.zeros(5) assert im(X) - Matrix([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) == Matrix.zeros(5) X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I)) assert re(X) == Matrix([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) def test_im(): x, y = symbols('x,y') a, b = symbols('a,b', real=True) r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert im(nan) is nan assert im(oo*I) is oo assert im(-oo*I) is -oo assert im(0) == 0 assert im(1) == 0 assert im(-1) == 0 assert im(E*I) == E assert im(-E*I) == -E assert unchanged(im, x) assert im(x*I) == re(x) assert im(r*I) == r assert im(r) == 0 assert im(i*I) == 0 assert im(i) == -I * i assert im(x + y) == im(x) + im(y) assert im(x + r) == im(x) assert im(x + r*I) == im(x) + r assert im(im(x)*I) == im(x) assert im(2 + I) == 1 assert im(x + I) == im(x) + 1 assert im(x + y*I) == im(x) + re(y) assert im(x + r*I) == im(x) + r assert im(log(2*I)) == pi/2 assert im((2 + I)**2).expand(complex=True) == 4 assert im(conjugate(x)) == -im(x) assert conjugate(im(x)) == im(x) assert im(x).as_real_imag() == (im(x), 0) assert im(i*r*x).diff(r) == im(i*x) assert im(i*r*x).diff(i) == -I * re(r*x) assert im( sqrt(a + b*I)) == (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2) assert im(a * (2 + b*I)) == a*b assert im((1 + sqrt(a + b*I))/2) == \ (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2 assert im(x).rewrite(re) == -S.ImaginaryUnit * (x - re(x)) assert (x + im(y)).rewrite(im, re) == x - S.ImaginaryUnit * (y - re(y)) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert im(S.ComplexInfinity) is S.NaN n, m, l = symbols('n m l') A = MatrixSymbol('A',n,m) assert im(A) == (S.One/(2*I)) * (A - conjugate(A)) A = Matrix([[1 + 4*I, 2],[0, -3*I]]) assert im(A) == Matrix([[4, 0],[0, -3]]) A = ImmutableMatrix([[1 + 3*I, 3-2*I],[0, 2*I]]) assert im(A) == ImmutableMatrix([[3, -2],[0, 2]]) X = ImmutableSparseMatrix( [[i*I + i for i in range(5)] for i in range(5)]) Y = SparseMatrix([[i for i in range(5)] for i in range(5)]) assert im(X).as_immutable() == Y X = FunctionMatrix(3, 3, Lambda((n, m), n + m*I)) assert im(X) == Matrix([[0, 1, 2], [0, 1, 2], [0, 1, 2]]) def test_sign(): assert sign(1.2) == 1 assert sign(-1.2) == -1 assert sign(3*I) == I assert sign(-3*I) == -I assert sign(0) == 0 assert sign(nan) is nan assert sign(2 + 2*I).doit() == sqrt(2)*(2 + 2*I)/4 assert sign(2 + 3*I).simplify() == sign(2 + 3*I) assert sign(2 + 2*I).simplify() == sign(1 + I) assert sign(im(sqrt(1 - sqrt(3)))) == 1 assert sign(sqrt(1 - sqrt(3))) == I x = Symbol('x') assert sign(x).is_finite is True assert sign(x).is_complex is True assert sign(x).is_imaginary is None assert sign(x).is_integer is None assert sign(x).is_real is None assert sign(x).is_zero is None assert sign(x).doit() == sign(x) assert sign(1.2*x) == sign(x) assert sign(2*x) == sign(x) assert sign(I*x) == I*sign(x) assert sign(-2*I*x) == -I*sign(x) assert sign(conjugate(x)) == conjugate(sign(x)) p = Symbol('p', positive=True) n = Symbol('n', negative=True) m = Symbol('m', negative=True) assert sign(2*p*x) == sign(x) assert sign(n*x) == -sign(x) assert sign(n*m*x) == sign(x) x = Symbol('x', imaginary=True) assert sign(x).is_imaginary is True assert sign(x).is_integer is False assert sign(x).is_real is False assert sign(x).is_zero is False assert sign(x).diff(x) == 2*DiracDelta(-I*x) assert sign(x).doit() == x / Abs(x) assert conjugate(sign(x)) == -sign(x) x = Symbol('x', real=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is None assert sign(x).diff(x) == 2*DiracDelta(x) assert sign(x).doit() == sign(x) assert conjugate(sign(x)) == sign(x) x = Symbol('x', nonzero=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = Symbol('x', positive=True) assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is False assert sign(x).doit() == x / Abs(x) assert sign(Abs(x)) == 1 assert Abs(sign(x)) == 1 x = 0 assert sign(x).is_imaginary is False assert sign(x).is_integer is True assert sign(x).is_real is True assert sign(x).is_zero is True assert sign(x).doit() == 0 assert sign(Abs(x)) == 0 assert Abs(sign(x)) == 0 nz = Symbol('nz', nonzero=True, integer=True) assert sign(nz).is_imaginary is False assert sign(nz).is_integer is True assert sign(nz).is_real is True assert sign(nz).is_zero is False assert sign(nz)**2 == 1 assert (sign(nz)**3).args == (sign(nz), 3) assert sign(Symbol('x', nonnegative=True)).is_nonnegative assert sign(Symbol('x', nonnegative=True)).is_nonpositive is None assert sign(Symbol('x', nonpositive=True)).is_nonnegative is None assert sign(Symbol('x', nonpositive=True)).is_nonpositive assert sign(Symbol('x', real=True)).is_nonnegative is None assert sign(Symbol('x', real=True)).is_nonpositive is None assert sign(Symbol('x', real=True, zero=False)).is_nonpositive is None x, y = Symbol('x', real=True), Symbol('y') f = Function('f') assert sign(x).rewrite(Piecewise) == \ Piecewise((1, x > 0), (-1, x < 0), (0, True)) assert sign(y).rewrite(Piecewise) == sign(y) assert sign(x).rewrite(Heaviside) == 2*Heaviside(x, H0=S(1)/2) - 1 assert sign(y).rewrite(Heaviside) == sign(y) assert sign(y).rewrite(Abs) == Piecewise((0, Eq(y, 0)), (y/Abs(y), True)) assert sign(f(y)).rewrite(Abs) == Piecewise((0, Eq(f(y), 0)), (f(y)/Abs(f(y)), True)) # evaluate what can be evaluated assert sign(exp_polar(I*pi)*pi) is S.NegativeOne eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) # if there is a fast way to know when and when you cannot prove an # expression like this is zero then the equality to zero is ok assert sign(eq).func is sign or sign(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert sign(d).func is sign or sign(d) == 0 def test_as_real_imag(): n = pi**1000 # the special code for working out the real # and complex parts of a power with Integer exponent # should not run if there is no imaginary part, hence # this should not hang assert n.as_real_imag() == (n, 0) # issue 6261 x = Symbol('x') assert sqrt(x).as_real_imag() == \ ((re(x)**2 + im(x)**2)**Rational(1, 4)*cos(atan2(im(x), re(x))/2), (re(x)**2 + im(x)**2)**Rational(1, 4)*sin(atan2(im(x), re(x))/2)) # issue 3853 a, b = symbols('a,b', real=True) assert ((1 + sqrt(a + b*I))/2).as_real_imag() == \ ( (a**2 + b**2)**Rational( 1, 4)*cos(atan2(b, a)/2)/2 + S.Half, (a**2 + b**2)**Rational(1, 4)*sin(atan2(b, a)/2)/2) assert sqrt(a**2).as_real_imag() == (sqrt(a**2), 0) i = symbols('i', imaginary=True) assert sqrt(i**2).as_real_imag() == (0, abs(i)) assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1) assert ((1 + I)**3/(1 - I)).as_real_imag() == (-2, 0) @XFAIL def test_sign_issue_3068(): n = pi**1000 i = int(n) x = Symbol('x') assert (n - i).round() == 1 # doesn't hang assert sign(n - i) == 1 # perhaps it's not possible to get the sign right when # only 1 digit is being requested for this situation; # 2 digits works assert (n - x).n(1, subs={x: i}) > 0 assert (n - x).n(2, subs={x: i}) > 0 def test_Abs(): raises(TypeError, lambda: Abs(Interval(2, 3))) # issue 8717 x, y = symbols('x,y') assert sign(sign(x)) == sign(x) assert sign(x*y).func is sign assert Abs(0) == 0 assert Abs(1) == 1 assert Abs(-1) == 1 assert Abs(I) == 1 assert Abs(-I) == 1 assert Abs(nan) is nan assert Abs(zoo) is oo assert Abs(I * pi) == pi assert Abs(-I * pi) == pi assert Abs(I * x) == Abs(x) assert Abs(-I * x) == Abs(x) assert Abs(-2*x) == 2*Abs(x) assert Abs(-2.0*x) == 2.0*Abs(x) assert Abs(2*pi*x*y) == 2*pi*Abs(x*y) assert Abs(conjugate(x)) == Abs(x) assert conjugate(Abs(x)) == Abs(x) assert Abs(x).expand(complex=True) == sqrt(re(x)**2 + im(x)**2) a = Symbol('a', positive=True) assert Abs(2*pi*x*a) == 2*pi*a*Abs(x) assert Abs(2*pi*I*x*a) == 2*pi*a*Abs(x) x = Symbol('x', real=True) n = Symbol('n', integer=True) assert Abs((-1)**n) == 1 assert x**(2*n) == Abs(x)**(2*n) assert Abs(x).diff(x) == sign(x) assert abs(x) == Abs(x) # Python built-in assert Abs(x)**3 == x**2*Abs(x) assert Abs(x)**4 == x**4 assert ( Abs(x)**(3*n)).args == (Abs(x), 3*n) # leave symbolic odd unchanged assert (1/Abs(x)).args == (Abs(x), -1) assert 1/Abs(x)**3 == 1/(x**2*Abs(x)) assert Abs(x)**-3 == Abs(x)/(x**4) assert Abs(x**3) == x**2*Abs(x) assert Abs(I**I) == exp(-pi/2) assert Abs((4 + 5*I)**(6 + 7*I)) == 68921*exp(-7*atan(Rational(5, 4))) y = Symbol('y', real=True) assert Abs(I**y) == 1 y = Symbol('y') assert Abs(I**y) == exp(-pi*im(y)/2) x = Symbol('x', imaginary=True) assert Abs(x).diff(x) == -sign(x) eq = -sqrt(10 + 6*sqrt(3)) + sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) # if there is a fast way to know when you can and when you cannot prove an # expression like this is zero then the equality to zero is ok assert abs(eq).func is Abs or abs(eq) == 0 # but sometimes it's hard to do this so it's better not to load # abs down with tests that will be very slow q = 1 + sqrt(2) - 2*sqrt(3) + 1331*sqrt(6) p = expand(q**3)**Rational(1, 3) d = p - q assert abs(d).func is Abs or abs(d) == 0 assert Abs(4*exp(pi*I/4)) == 4 assert Abs(3**(2 + I)) == 9 assert Abs((-3)**(1 - I)) == 3*exp(pi) assert Abs(oo) is oo assert Abs(-oo) is oo assert Abs(oo + I) is oo assert Abs(oo + I*oo) is oo a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) x = Symbol('x') assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False assert Abs(x).fdiff() == sign(x) raises(ArgumentIndexError, lambda: Abs(x).fdiff(2)) # doesn't have recursion error arg = sqrt(acos(1 - I)*acos(1 + I)) assert abs(arg) == arg # special handling to put Abs in denom assert abs(1/x) == 1/Abs(x) e = abs(2/x**2) assert e.is_Mul and e == 2/Abs(x**2) assert unchanged(Abs, y/x) assert unchanged(Abs, x/(x + 1)) assert unchanged(Abs, x*y) p = Symbol('p', positive=True) assert abs(x/p) == abs(x)/p # coverage assert unchanged(Abs, Symbol('x', real=True)**y) # issue 19627 f = Function('f', positive=True) assert sqrt(f(x)**2) == f(x) def test_Abs_rewrite(): x = Symbol('x', real=True) a = Abs(x).rewrite(Heaviside).expand() assert a == x*Heaviside(x) - x*Heaviside(-x) for i in [-2, -1, 0, 1, 2]: assert a.subs(x, i) == abs(i) y = Symbol('y') assert Abs(y).rewrite(Heaviside) == Abs(y) x, y = Symbol('x', real=True), Symbol('y') assert Abs(x).rewrite(Piecewise) == Piecewise((x, x >= 0), (-x, True)) assert Abs(y).rewrite(Piecewise) == Abs(y) assert Abs(y).rewrite(sign) == y/sign(y) i = Symbol('i', imaginary=True) assert abs(i).rewrite(Piecewise) == Piecewise((I*i, I*i >= 0), (-I*i, True)) assert Abs(y).rewrite(conjugate) == sqrt(y*conjugate(y)) assert Abs(i).rewrite(conjugate) == sqrt(-i**2) # == -I*i y = Symbol('y', extended_real=True) assert (Abs(exp(-I*x)-exp(-I*y))**2).rewrite(conjugate) == \ -exp(I*x)*exp(-I*y) + 2 - exp(-I*x)*exp(I*y) def test_Abs_real(): # test some properties of abs that only apply # to real numbers x = Symbol('x', complex=True) assert sqrt(x**2) != Abs(x) assert Abs(x**2) != x**2 x = Symbol('x', real=True) assert sqrt(x**2) == Abs(x) assert Abs(x**2) == x**2 # if the symbol is zero, the following will still apply nn = Symbol('nn', nonnegative=True, real=True) np = Symbol('np', nonpositive=True, real=True) assert Abs(nn) == nn assert Abs(np) == -np def test_Abs_properties(): x = Symbol('x') assert Abs(x).is_real is None assert Abs(x).is_extended_real is True assert Abs(x).is_rational is None assert Abs(x).is_positive is None assert Abs(x).is_nonnegative is None assert Abs(x).is_extended_positive is None assert Abs(x).is_extended_nonnegative is True f = Symbol('x', finite=True) assert Abs(f).is_real is True assert Abs(f).is_extended_real is True assert Abs(f).is_rational is None assert Abs(f).is_positive is None assert Abs(f).is_nonnegative is True assert Abs(f).is_extended_positive is None assert Abs(f).is_extended_nonnegative is True z = Symbol('z', complex=True, zero=False) assert Abs(z).is_real is True # since complex implies finite assert Abs(z).is_extended_real is True assert Abs(z).is_rational is None assert Abs(z).is_positive is True assert Abs(z).is_extended_positive is True assert Abs(z).is_zero is False p = Symbol('p', positive=True) assert Abs(p).is_real is True assert Abs(p).is_extended_real is True assert Abs(p).is_rational is None assert Abs(p).is_positive is True assert Abs(p).is_zero is False q = Symbol('q', rational=True) assert Abs(q).is_real is True assert Abs(q).is_rational is True assert Abs(q).is_integer is None assert Abs(q).is_positive is None assert Abs(q).is_nonnegative is True i = Symbol('i', integer=True) assert Abs(i).is_real is True assert Abs(i).is_integer is True assert Abs(i).is_positive is None assert Abs(i).is_nonnegative is True e = Symbol('n', even=True) ne = Symbol('ne', real=True, even=False) assert Abs(e).is_even is True assert Abs(ne).is_even is False assert Abs(i).is_even is None o = Symbol('n', odd=True) no = Symbol('no', real=True, odd=False) assert Abs(o).is_odd is True assert Abs(no).is_odd is False assert Abs(i).is_odd is None def test_abs(): # this tests that abs calls Abs; don't rename to # test_Abs since that test is already above a = Symbol('a', positive=True) assert abs(I*(1 + a)**2) == (1 + a)**2 def test_arg(): assert arg(0) is nan assert arg(1) == 0 assert arg(-1) == pi assert arg(I) == pi/2 assert arg(-I) == -pi/2 assert arg(1 + I) == pi/4 assert arg(-1 + I) == pi*Rational(3, 4) assert arg(1 - I) == -pi/4 assert arg(exp_polar(4*pi*I)) == 4*pi assert arg(exp_polar(-7*pi*I)) == -7*pi assert arg(exp_polar(5 - 3*pi*I/4)) == pi*Rational(-3, 4) f = Function('f') assert not arg(f(0) + I*f(1)).atoms(re) x = Symbol('x') p = Function('p', extended_positive=True) assert arg(p(x)) == 0 assert arg((3 + I)*p(x)) == arg(3 + I) p = Symbol('p', positive=True) assert arg(p) == 0 n = Symbol('n', negative=True) assert arg(n) == pi x = Symbol('x') assert conjugate(arg(x)) == arg(x) e = p + I*p**2 assert arg(e) == arg(1 + p*I) # make sure sign doesn't swap e = -2*p + 4*I*p**2 assert arg(e) == arg(-1 + 2*p*I) # make sure sign isn't lost x = symbols('x', real=True) # could be zero e = x + I*x assert arg(e) == arg(x*(1 + I)) assert arg(e/p) == arg(x*(1 + I)) e = p*cos(p) + I*log(p)*exp(p) assert arg(e).args[0] == e # keep it simple -- let the user do more advanced cancellation e = (p + 1) + I*(p**2 - 1) assert arg(e).args[0] == e f = Function('f') e = 2*x*(f(0) - 1) - 2*x*f(0) assert arg(e) == arg(-2*x) assert arg(f(0)).func == arg and arg(f(0)).args == (f(0),) def test_arg_rewrite(): assert arg(1 + I) == atan2(1, 1) x = Symbol('x', real=True) y = Symbol('y', real=True) assert arg(x + I*y).rewrite(atan2) == atan2(y, x) def test_adjoint(): a = Symbol('a', antihermitian=True) b = Symbol('b', hermitian=True) assert adjoint(a) == -a assert adjoint(I*a) == I*a assert adjoint(b) == b assert adjoint(I*b) == -I*b assert adjoint(a*b) == -b*a assert adjoint(I*a*b) == I*b*a x, y = symbols('x y') assert adjoint(adjoint(x)) == x assert adjoint(x + y) == adjoint(x) + adjoint(y) assert adjoint(x - y) == adjoint(x) - adjoint(y) assert adjoint(x * y) == adjoint(x) * adjoint(y) assert adjoint(x / y) == adjoint(x) / adjoint(y) assert adjoint(-x) == -adjoint(x) x, y = symbols('x y', commutative=False) assert adjoint(adjoint(x)) == x assert adjoint(x + y) == adjoint(x) + adjoint(y) assert adjoint(x - y) == adjoint(x) - adjoint(y) assert adjoint(x * y) == adjoint(y) * adjoint(x) assert adjoint(x / y) == 1 / adjoint(y) * adjoint(x) assert adjoint(-x) == -adjoint(x) def test_conjugate(): a = Symbol('a', real=True) b = Symbol('b', imaginary=True) assert conjugate(a) == a assert conjugate(I*a) == -I*a assert conjugate(b) == -b assert conjugate(I*b) == I*b assert conjugate(a*b) == -a*b assert conjugate(I*a*b) == I*a*b x, y = symbols('x y') assert conjugate(conjugate(x)) == x assert conjugate(x + y) == conjugate(x) + conjugate(y) assert conjugate(x - y) == conjugate(x) - conjugate(y) assert conjugate(x * y) == conjugate(x) * conjugate(y) assert conjugate(x / y) == conjugate(x) / conjugate(y) assert conjugate(-x) == -conjugate(x) a = Symbol('a', algebraic=True) t = Symbol('t', transcendental=True) assert re(a).is_algebraic assert re(x).is_algebraic is None assert re(t).is_algebraic is False def test_conjugate_transpose(): x = Symbol('x') assert conjugate(transpose(x)) == adjoint(x) assert transpose(conjugate(x)) == adjoint(x) assert adjoint(transpose(x)) == conjugate(x) assert transpose(adjoint(x)) == conjugate(x) assert adjoint(conjugate(x)) == transpose(x) assert conjugate(adjoint(x)) == transpose(x) class Symmetric(Expr): def _eval_adjoint(self): return None def _eval_conjugate(self): return None def _eval_transpose(self): return self x = Symmetric() assert conjugate(x) == adjoint(x) assert transpose(x) == x def test_transpose(): a = Symbol('a', complex=True) assert transpose(a) == a assert transpose(I*a) == I*a x, y = symbols('x y') assert transpose(transpose(x)) == x assert transpose(x + y) == transpose(x) + transpose(y) assert transpose(x - y) == transpose(x) - transpose(y) assert transpose(x * y) == transpose(x) * transpose(y) assert transpose(x / y) == transpose(x) / transpose(y) assert transpose(-x) == -transpose(x) x, y = symbols('x y', commutative=False) assert transpose(transpose(x)) == x assert transpose(x + y) == transpose(x) + transpose(y) assert transpose(x - y) == transpose(x) - transpose(y) assert transpose(x * y) == transpose(y) * transpose(x) assert transpose(x / y) == 1 / transpose(y) * transpose(x) assert transpose(-x) == -transpose(x) @_both_exp_pow def test_polarify(): from sympy import polar_lift, polarify x = Symbol('x') z = Symbol('z', polar=True) f = Function('f') ES = {} assert polarify(-1) == (polar_lift(-1), ES) assert polarify(1 + I) == (polar_lift(1 + I), ES) assert polarify(exp(x), subs=False) == exp(x) assert polarify(1 + x, subs=False) == 1 + x assert polarify(f(I) + x, subs=False) == f(polar_lift(I)) + x assert polarify(x, lift=True) == polar_lift(x) assert polarify(z, lift=True) == z assert polarify(f(x), lift=True) == f(polar_lift(x)) assert polarify(1 + x, lift=True) == polar_lift(1 + x) assert polarify(1 + f(x), lift=True) == polar_lift(1 + f(polar_lift(x))) newex, subs = polarify(f(x) + z) assert newex.subs(subs) == f(x) + z mu = Symbol("mu") sigma = Symbol("sigma", positive=True) # Make sure polarify(lift=True) doesn't try to lift the integration # variable assert polarify( Integral(sqrt(2)*x*exp(-(-mu + x)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (x, -oo, oo)), lift=True) == Integral(sqrt(2)*(sigma*exp_polar(0))**exp_polar(I*pi)* exp((sigma*exp_polar(0))**(2*exp_polar(I*pi))*exp_polar(I*pi)*polar_lift(-mu + x)** (2*exp_polar(0))/2)*exp_polar(0)*polar_lift(x)/(2*sqrt(pi)), (x, -oo, oo)) def test_unpolarify(): from sympy import (exp_polar, polar_lift, exp, unpolarify, principal_branch) from sympy import gamma, erf, sin, tanh, uppergamma, Eq, Ne from sympy.abc import x p = exp_polar(7*I) + 1 u = exp(7*I) + 1 assert unpolarify(1) == 1 assert unpolarify(p) == u assert unpolarify(p**2) == u**2 assert unpolarify(p**x) == p**x assert unpolarify(p*x) == u*x assert unpolarify(p + x) == u + x assert unpolarify(sqrt(sin(p))) == sqrt(sin(u)) # Test reduction to principal branch 2*pi. t = principal_branch(x, 2*pi) assert unpolarify(t) == x assert unpolarify(sqrt(t)) == sqrt(t) # Test exponents_only. assert unpolarify(p**p, exponents_only=True) == p**u assert unpolarify(uppergamma(x, p**p)) == uppergamma(x, p**u) # Test functions. assert unpolarify(sin(p)) == sin(u) assert unpolarify(tanh(p)) == tanh(u) assert unpolarify(gamma(p)) == gamma(u) assert unpolarify(erf(p)) == erf(u) assert unpolarify(uppergamma(x, p)) == uppergamma(x, p) assert unpolarify(uppergamma(sin(p), sin(p + exp_polar(0)))) == \ uppergamma(sin(u), sin(u + 1)) assert unpolarify(uppergamma(polar_lift(0), 2*exp_polar(0))) == \ uppergamma(0, 2) assert unpolarify(Eq(p, 0)) == Eq(u, 0) assert unpolarify(Ne(p, 0)) == Ne(u, 0) assert unpolarify(polar_lift(x) > 0) == (x > 0) # Test bools assert unpolarify(True) is True def test_issue_4035(): x = Symbol('x') assert Abs(x).expand(trig=True) == Abs(x) assert sign(x).expand(trig=True) == sign(x) assert arg(x).expand(trig=True) == arg(x) def test_issue_3206(): x = Symbol('x') assert Abs(Abs(x)) == Abs(x) def test_issue_4754_derivative_conjugate(): x = Symbol('x', real=True) y = Symbol('y', imaginary=True) f = Function('f') assert (f(x).conjugate()).diff(x) == (f(x).diff(x)).conjugate() assert (f(y).conjugate()).diff(y) == -(f(y).diff(y)).conjugate() def test_derivatives_issue_4757(): x = Symbol('x', real=True) y = Symbol('y', imaginary=True) f = Function('f') assert re(f(x)).diff(x) == re(f(x).diff(x)) assert im(f(x)).diff(x) == im(f(x).diff(x)) assert re(f(y)).diff(y) == -I*im(f(y).diff(y)) assert im(f(y)).diff(y) == -I*re(f(y).diff(y)) assert Abs(f(x)).diff(x).subs(f(x), 1 + I*x).doit() == x/sqrt(1 + x**2) assert arg(f(x)).diff(x).subs(f(x), 1 + I*x**2).doit() == 2*x/(1 + x**4) assert Abs(f(y)).diff(y).subs(f(y), 1 + y).doit() == -y/sqrt(1 - y**2) assert arg(f(y)).diff(y).subs(f(y), I + y**2).doit() == 2*y/(1 + y**4) def test_issue_11413(): from sympy import Matrix, simplify v0 = Symbol('v0') v1 = Symbol('v1') v2 = Symbol('v2') V = Matrix([[v0],[v1],[v2]]) U = V.normalized() assert U == Matrix([ [v0/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)], [v1/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)], [v2/sqrt(Abs(v0)**2 + Abs(v1)**2 + Abs(v2)**2)]]) U.norm = sqrt(v0**2/(v0**2 + v1**2 + v2**2) + v1**2/(v0**2 + v1**2 + v2**2) + v2**2/(v0**2 + v1**2 + v2**2)) assert simplify(U.norm) == 1 def test_periodic_argument(): from sympy import (periodic_argument, unbranched_argument, oo, principal_branch, polar_lift, pi) x = Symbol('x') p = Symbol('p', positive=True) assert unbranched_argument(2 + I) == periodic_argument(2 + I, oo) assert unbranched_argument(1 + x) == periodic_argument(1 + x, oo) assert N_equals(unbranched_argument((1 + I)**2), pi/2) assert N_equals(unbranched_argument((1 - I)**2), -pi/2) assert N_equals(periodic_argument((1 + I)**2, 3*pi), pi/2) assert N_equals(periodic_argument((1 - I)**2, 3*pi), -pi/2) assert unbranched_argument(principal_branch(x, pi)) == \ periodic_argument(x, pi) assert unbranched_argument(polar_lift(2 + I)) == unbranched_argument(2 + I) assert periodic_argument(polar_lift(2 + I), 2*pi) == \ periodic_argument(2 + I, 2*pi) assert periodic_argument(polar_lift(2 + I), 3*pi) == \ periodic_argument(2 + I, 3*pi) assert periodic_argument(polar_lift(2 + I), pi) == \ periodic_argument(polar_lift(2 + I), pi) assert unbranched_argument(polar_lift(1 + I)) == pi/4 assert periodic_argument(2*p, p) == periodic_argument(p, p) assert periodic_argument(pi*p, p) == periodic_argument(p, p) assert Abs(polar_lift(1 + I)) == Abs(1 + I) @XFAIL def test_principal_branch_fail(): # TODO XXX why does abs(x)._eval_evalf() not fall back to global evalf? from sympy import principal_branch assert N_equals(principal_branch((1 + I)**2, pi/2), 0) def test_principal_branch(): from sympy import principal_branch, polar_lift, exp_polar p = Symbol('p', positive=True) x = Symbol('x') neg = Symbol('x', negative=True) assert principal_branch(polar_lift(x), p) == principal_branch(x, p) assert principal_branch(polar_lift(2 + I), p) == principal_branch(2 + I, p) assert principal_branch(2*x, p) == 2*principal_branch(x, p) assert principal_branch(1, pi) == exp_polar(0) assert principal_branch(-1, 2*pi) == exp_polar(I*pi) assert principal_branch(-1, pi) == exp_polar(0) assert principal_branch(exp_polar(3*pi*I)*x, 2*pi) == \ principal_branch(exp_polar(I*pi)*x, 2*pi) assert principal_branch(neg*exp_polar(pi*I), 2*pi) == neg*exp_polar(-I*pi) # related to issue #14692 assert principal_branch(exp_polar(-I*pi/2)/polar_lift(neg), 2*pi) == \ exp_polar(-I*pi/2)/neg assert N_equals(principal_branch((1 + I)**2, 2*pi), 2*I) assert N_equals(principal_branch((1 + I)**2, 3*pi), 2*I) assert N_equals(principal_branch((1 + I)**2, 1*pi), 2*I) # test argument sanitization assert principal_branch(x, I).func is principal_branch assert principal_branch(x, -4).func is principal_branch assert principal_branch(x, -oo).func is principal_branch assert principal_branch(x, zoo).func is principal_branch @XFAIL def test_issue_6167_6151(): n = pi**1000 i = int(n) assert sign(n - i) == 1 assert abs(n - i) == n - i x = Symbol('x') eps = pi**-1500 big = pi**1000 one = cos(x)**2 + sin(x)**2 e = big*one - big + eps from sympy import simplify assert sign(simplify(e)) == 1 for xi in (111, 11, 1, Rational(1, 10)): assert sign(e.subs(x, xi)) == 1 def test_issue_14216(): from sympy.functions.elementary.complexes import unpolarify A = MatrixSymbol("A", 2, 2) assert unpolarify(A[0, 0]) == A[0, 0] assert unpolarify(A[0, 0]*A[1, 0]) == A[0, 0]*A[1, 0] def test_issue_14238(): # doesn't cause recursion error r = Symbol('r', real=True) assert Abs(r + Piecewise((0, r > 0), (1 - r, True))) def test_zero_assumptions(): nr = Symbol('nonreal', real=False, finite=True) ni = Symbol('nonimaginary', imaginary=False) # imaginary implies not zero nzni = Symbol('nonzerononimaginary', zero=False, imaginary=False) assert re(nr).is_zero is None assert im(nr).is_zero is False assert re(ni).is_zero is None assert im(ni).is_zero is None assert re(nzni).is_zero is False assert im(nzni).is_zero is None @_both_exp_pow def test_issue_15893(): f = Function('f', real=True) x = Symbol('x', real=True) eq = Derivative(Abs(f(x)), f(x)) assert eq.doit() == sign(f(x))
afd3cda417a78c4a27cb6ec4f30bd73e57229693c99eb16bc96f38c97feed227
from sympy import ( adjoint, And, Basic, conjugate, diff, expand, Eq, Function, I, ITE, Integral, integrate, Interval, KroneckerDelta, lambdify, log, Max, Min, oo, Or, pi, Piecewise, piecewise_fold, Rational, solve, symbols, transpose, cos, sin, exp, Abs, Ne, Not, Symbol, S, sqrt, Sum, Tuple, zoo, Float, DiracDelta, Heaviside, Add, Mul, factorial, Ge, Contains) from sympy.core.expr import unchanged from sympy.functions.elementary.piecewise import Undefined, ExprCondPair from sympy.printing import srepr from sympy.testing.pytest import raises, slow from sympy.simplify import simplify a, b, c, d, x, y = symbols('a:d, x, y') z = symbols('z', nonzero=True) def test_piecewise1(): # Test canonicalization assert unchanged(Piecewise, ExprCondPair(x, x < 1), ExprCondPair(0, True)) assert Piecewise((x, x < 1), (0, True)) == Piecewise(ExprCondPair(x, x < 1), ExprCondPair(0, True)) assert Piecewise((x, x < 1), (0, True), (1, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, False), (-1, 1 > 2)) == \ Piecewise((x, x < 1)) assert Piecewise((x, x < 1), (0, x < 1), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (0, x < 2), (0, True)) == \ Piecewise((x, x < 1), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (0, True)) == \ Piecewise((x, Or(x < 1, x < 2)), (0, True)) assert Piecewise((x, x < 1), (x, x < 2), (x, True)) == x assert Piecewise((x, True)) == x # Explicitly constructed empty Piecewise not accepted raises(TypeError, lambda: Piecewise()) # False condition is never retained assert Piecewise((2*x, x < 0), (x, False)) == \ Piecewise((2*x, x < 0), (x, False), evaluate=False) == \ Piecewise((2*x, x < 0)) assert Piecewise((x, False)) == Undefined raises(TypeError, lambda: Piecewise(x)) assert Piecewise((x, 1)) == x # 1 and 0 are accepted as True/False raises(TypeError, lambda: Piecewise((x, 2))) raises(TypeError, lambda: Piecewise((x, x**2))) raises(TypeError, lambda: Piecewise(([1], True))) assert Piecewise(((1, 2), True)) == Tuple(1, 2) cond = (Piecewise((1, x < 0), (2, True)) < y) assert Piecewise((1, cond) ) == Piecewise((1, ITE(x < 0, y > 1, y > 2))) assert Piecewise((1, x > 0), (2, And(x <= 0, x > -1)) ) == Piecewise((1, x > 0), (2, x > -1)) # test for supporting Contains in Piecewise pwise = Piecewise( (1, And(x <= 6, x > 1, Contains(x, S.Integers))), (0, True)) assert pwise.subs(x, pi) == 0 assert pwise.subs(x, 2) == 1 assert pwise.subs(x, 7) == 0 # Test subs p = Piecewise((-1, x < -1), (x**2, x < 0), (log(x), x >= 0)) p_x2 = Piecewise((-1, x**2 < -1), (x**4, x**2 < 0), (log(x**2), x**2 >= 0)) assert p.subs(x, x**2) == p_x2 assert p.subs(x, -5) == -1 assert p.subs(x, -1) == 1 assert p.subs(x, 1) == log(1) # More subs tests p2 = Piecewise((1, x < pi), (-1, x < 2*pi), (0, x > 2*pi)) p3 = Piecewise((1, Eq(x, 0)), (1/x, True)) p4 = Piecewise((1, Eq(x, 0)), (2, 1/x>2)) assert p2.subs(x, 2) == 1 assert p2.subs(x, 4) == -1 assert p2.subs(x, 10) == 0 assert p3.subs(x, 0.0) == 1 assert p4.subs(x, 0.0) == 1 f, g, h = symbols('f,g,h', cls=Function) pf = Piecewise((f(x), x < -1), (f(x) + h(x) + 2, x <= 1)) pg = Piecewise((g(x), x < -1), (g(x) + h(x) + 2, x <= 1)) assert pg.subs(g, f) == pf assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 0) == 1 assert Piecewise((1, Eq(x, 0)), (0, True)).subs(x, 1) == 0 assert Piecewise((1, Eq(x, y)), (0, True)).subs(x, y) == 1 assert Piecewise((1, Eq(x, z)), (0, True)).subs(x, z) == 1 assert Piecewise((1, Eq(exp(x), cos(z))), (0, True)).subs(x, z) == \ Piecewise((1, Eq(exp(z), cos(z))), (0, True)) p5 = Piecewise( (0, Eq(cos(x) + y, 0)), (1, True)) assert p5.subs(y, 0) == Piecewise( (0, Eq(cos(x), 0)), (1, True)) assert Piecewise((-1, y < 1), (0, x < 0), (1, Eq(x, 0)), (2, True) ).subs(x, 1) == Piecewise((-1, y < 1), (2, True)) assert Piecewise((1, Eq(x**2, -1)), (2, x < 0)).subs(x, I) == 1 p6 = Piecewise((x, x > 0)) n = symbols('n', negative=True) assert p6.subs(x, n) == Undefined # Test evalf assert p.evalf() == p assert p.evalf(subs={x: -2}) == -1 assert p.evalf(subs={x: -1}) == 1 assert p.evalf(subs={x: 1}) == log(1) assert p6.evalf(subs={x: -5}) == Undefined # Test doit f_int = Piecewise((Integral(x, (x, 0, 1)), x < 1)) assert f_int.doit() == Piecewise( (S.Half, x < 1) ) # Test differentiation f = x fp = x*p dp = Piecewise((0, x < -1), (2*x, x < 0), (1/x, x >= 0)) fp_dx = x*dp + p assert diff(p, x) == dp assert diff(f*p, x) == fp_dx # Test simple arithmetic assert x*p == fp assert x*p + p == p + x*p assert p + f == f + p assert p + dp == dp + p assert p - dp == -(dp - p) # Test power dp2 = Piecewise((0, x < -1), (4*x**2, x < 0), (1/x**2, x >= 0)) assert dp**2 == dp2 # Test _eval_interval f1 = x*y + 2 f2 = x*y**2 + 3 peval = Piecewise((f1, x < 0), (f2, x > 0)) peval_interval = f1.subs( x, 0) - f1.subs(x, -1) + f2.subs(x, 1) - f2.subs(x, 0) assert peval._eval_interval(x, 0, 0) == 0 assert peval._eval_interval(x, -1, 1) == peval_interval peval2 = Piecewise((f1, x < 0), (f2, True)) assert peval2._eval_interval(x, 0, 0) == 0 assert peval2._eval_interval(x, 1, -1) == -peval_interval assert peval2._eval_interval(x, -1, -2) == f1.subs(x, -2) - f1.subs(x, -1) assert peval2._eval_interval(x, -1, 1) == peval_interval assert peval2._eval_interval(x, None, 0) == peval2.subs(x, 0) assert peval2._eval_interval(x, -1, None) == -peval2.subs(x, -1) # Test integration assert p.integrate() == Piecewise( (-x, x < -1), (x**3/3 + Rational(4, 3), x < 0), (x*log(x) - x + Rational(4, 3), True)) p = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) assert integrate(p, (x, -2, 2)) == Rational(5, 6) assert integrate(p, (x, 2, -2)) == Rational(-5, 6) p = Piecewise((0, x < 0), (1, x < 1), (0, x < 2), (1, x < 3), (0, True)) assert integrate(p, (x, -oo, oo)) == 2 p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert integrate(p, (x, -2, 2)) == Undefined # Test commutativity assert isinstance(p, Piecewise) and p.is_commutative is True def test_piecewise_free_symbols(): f = Piecewise((x, a < 0), (y, True)) assert f.free_symbols == {x, y, a} def test_piecewise_integrate1(): x, y = symbols('x y', real=True, finite=True) f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert integrate(f, (x, -2, 2)) == Rational(14, 3) g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(43, 6) assert g == Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) g = Piecewise(((x - 5)**5, 2 <= x), (f, x < 2)) assert integrate(g, (x, -2, 2)) == Rational(14, 3) assert integrate(g, (x, -2, 5)) == Rational(-701, 6) assert g == Piecewise(((x - 5)**5, 2 <= x), (f, True)) g = Piecewise(((x - 5)**5, 2 <= x), (2*f, True)) assert integrate(g, (x, -2, 2)) == Rational(28, 3) assert integrate(g, (x, -2, 5)) == Rational(-673, 6) def test_piecewise_integrate1b(): g = Piecewise((1, x > 0), (0, Eq(x, 0)), (-1, x < 0)) assert integrate(g, (x, -1, 1)) == 0 g = Piecewise((1, x - y < 0), (0, True)) assert integrate(g, (y, -oo, 0)) == -Min(0, x) assert g.subs(x, -3).integrate((y, -oo, 0)) == 3 assert integrate(g, (y, 0, -oo)) == Min(0, x) assert integrate(g, (y, 0, oo)) == -Max(0, x) + oo assert integrate(g, (y, -oo, 42)) == -Min(42, x) + 42 assert integrate(g, (y, -oo, oo)) == -x + oo g = Piecewise((0, x < 0), (x, x <= 1), (1, True)) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) for yy in (-1, S.Half, 2): assert g.integrate((x, yy, 1)) == gy1.subs(y, yy) assert g.integrate((x, 1, yy)) == g1y.subs(y, yy) assert gy1 == Piecewise( (-Min(1, Max(0, y))**2/2 + S.Half, y < 1), (-y + 1, True)) assert g1y == Piecewise( (Min(1, Max(0, y))**2/2 - S.Half, y < 1), (y - 1, True)) @slow def test_piecewise_integrate1ca(): y = symbols('y', real=True) g = Piecewise( (1 - x, Interval(0, 1).contains(x)), (1 + x, Interval(-1, 0).contains(x)), (0, True) ) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) assert g.integrate((x, -2, 1)) == gy1.subs(y, -2) assert g.integrate((x, 1, -2)) == g1y.subs(y, -2) assert g.integrate((x, 0, 1)) == gy1.subs(y, 0) assert g.integrate((x, 1, 0)) == g1y.subs(y, 0) assert g.integrate((x, 2, 1)) == gy1.subs(y, 2) assert g.integrate((x, 1, 2)) == g1y.subs(y, 2) assert piecewise_fold(gy1.rewrite(Piecewise)) == \ Piecewise( (1, y <= -1), (-y**2/2 - y + S.Half, y <= 0), (y**2/2 - y + S.Half, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise)) == \ Piecewise( (-1, y <= -1), (y**2/2 + y - S.Half, y <= 0), (-y**2/2 + y - S.Half, y < 1), (0, True)) assert gy1 == Piecewise( ( -Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S.Half, y < 1), (0, True) ) assert g1y == Piecewise( ( Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S.Half, y < 1), (0, True)) @slow def test_piecewise_integrate1cb(): y = symbols('y', real=True) g = Piecewise( (0, Or(x <= -1, x >= 1)), (1 - x, x > 0), (1 + x, True) ) gy1 = g.integrate((x, y, 1)) g1y = g.integrate((x, 1, y)) assert g.integrate((x, -2, 1)) == gy1.subs(y, -2) assert g.integrate((x, 1, -2)) == g1y.subs(y, -2) assert g.integrate((x, 0, 1)) == gy1.subs(y, 0) assert g.integrate((x, 1, 0)) == g1y.subs(y, 0) assert g.integrate((x, 2, 1)) == gy1.subs(y, 2) assert g.integrate((x, 1, 2)) == g1y.subs(y, 2) assert piecewise_fold(gy1.rewrite(Piecewise)) == \ Piecewise( (1, y <= -1), (-y**2/2 - y + S.Half, y <= 0), (y**2/2 - y + S.Half, y < 1), (0, True)) assert piecewise_fold(g1y.rewrite(Piecewise)) == \ Piecewise( (-1, y <= -1), (y**2/2 + y - S.Half, y <= 0), (-y**2/2 + y - S.Half, y < 1), (0, True)) # g1y and gy1 should simplify if the condition that y < 1 # is applied, e.g. Min(1, Max(-1, y)) --> Max(-1, y) assert gy1 == Piecewise( ( -Min(1, Max(-1, y))**2/2 - Min(1, Max(-1, y)) + Min(1, Max(0, y))**2 + S.Half, y < 1), (0, True) ) assert g1y == Piecewise( ( Min(1, Max(-1, y))**2/2 + Min(1, Max(-1, y)) - Min(1, Max(0, y))**2 - S.Half, y < 1), (0, True)) def test_piecewise_integrate2(): from itertools import permutations lim = Tuple(x, c, d) p = Piecewise((1, x < a), (2, x > b), (3, True)) q = p.integrate(lim) assert q == Piecewise( (-c + 2*d - 2*Min(d, Max(a, c)) + Min(d, Max(a, b, c)), c < d), (-2*c + d + 2*Min(c, Max(a, d)) - Min(c, Max(a, b, d)), True)) for v in permutations((1, 2, 3, 4)): r = dict(zip((a, b, c, d), v)) assert p.subs(r).integrate(lim.subs(r)) == q.subs(r) def test_meijer_bypass(): # totally bypass meijerg machinery when dealing # with Piecewise in integrate assert Piecewise((1, x < 4), (0, True)).integrate((x, oo, 1)) == -3 def test_piecewise_integrate3_inequality_conditions(): from sympy.utilities.iterables import cartes lim = (x, 0, 5) # set below includes two pts below range, 2 pts in range, # 2 pts above range, and the boundaries N = (-2, -1, 0, 1, 2, 5, 6, 7) p = Piecewise((1, x > a), (2, x > b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) assert ans.subs(a, 4).subs(b, 1) == 0 + 2*3 + 1 p = Piecewise((1, x > a), (2, x < b), (0, True)) ans = p.integrate(lim) for i, j in cartes(N, repeat=2): reps = dict(zip((a, b), (i, j))) assert ans.subs(reps) == p.subs(reps).integrate(lim) # delete old tests that involved c1 and c2 since those # reduce to the above except that a value of 0 was used # for two expressions whereas the above uses 3 different # values @slow def test_piecewise_integrate4_symbolic_conditions(): a = Symbol('a', real=True, finite=True) b = Symbol('b', real=True, finite=True) x = Symbol('x', real=True, finite=True) y = Symbol('y', real=True, finite=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, x < a), (0, x > b), (1, True)) p2 = Piecewise((0, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0, True)) p4 = Piecewise((0, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) lim = Tuple(x, y, oo) for p in (p0, p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a:3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) ans = Piecewise( (0, x <= Min(a, b)), (x - Min(a, b), x <= b), (b - Min(a, b), True)) for i in (p0, p1, p2, p4): assert i.integrate(x) == ans assert p3.integrate(x) == Piecewise( (0, x < a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) assert p5.integrate(x) == Piecewise( (0, x <= a), (-a + x, x <= Max(a, b)), (-a + Max(a, b), True)) p1 = Piecewise((0, x < a), (0.5, x > b), (1, True)) p2 = Piecewise((0.5, x > b), (0, x < a), (1, True)) p3 = Piecewise((0, x < a), (1, x < b), (0.5, True)) p4 = Piecewise((0.5, x > b), (1, x > a), (0, True)) p5 = Piecewise((1, And(a < x, x < b)), (0.5, x > b), (0, True)) # check values of a=1, b=3 (and reversed) with values # of y of 0, 1, 2, 3, 4 lim = Tuple(x, -oo, y) for p in (p1, p2, p3, p4, p5): ans = p.integrate(lim) for i in range(5): reps = {a:1, b:3, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) reps = {a: 3, b:1, y:i} assert ans.subs(reps) == p.subs(reps).integrate(lim.subs(reps)) def test_piecewise_integrate5_independent_conditions(): p = Piecewise((0, Eq(y, 0)), (x*y, True)) assert integrate(p, (x, 1, 3)) == Piecewise((0, Eq(y, 0)), (4*y, True)) def test_piecewise_simplify(): p = Piecewise(((x**2 + 1)/x**2, Eq(x*(1 + x) - x**2, 0)), ((-1)**x*(-1), True)) assert p.simplify() == \ Piecewise((zoo, Eq(x, 0)), ((-1)**(x + 1), True)) # simplify when there are Eq in conditions assert Piecewise( (a, And(Eq(a, 0), Eq(a + b, 0))), (1, True)).simplify( ) == Piecewise( (0, And(Eq(a, 0), Eq(b, 0))), (1, True)) assert Piecewise((2*x*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 0)), (2*factorial(a)/(factorial(y)*factorial(-y + a)), Eq(y, 0) & Eq(-y + a, 1)), (0, True)).simplify( ) == Piecewise( (2*x, And(Eq(a, 0), Eq(y, 0))), (2, And(Eq(a, 1), Eq(y, 0))), (0, True)) args = (2, And(Eq(x, 2), Ge(y ,0))), (x, True) assert Piecewise(*args).simplify() == Piecewise(*args) args = (1, Eq(x, 0)), (sin(x)/x, True) assert Piecewise(*args).simplify() == Piecewise(*args) assert Piecewise((2 + y, And(Eq(x, 2), Eq(y, 0))), (x, True) ).simplify() == x # check that x or f(x) are recognized as being Symbol-like for lhs args = Tuple((1, Eq(x, 0)), (sin(x) + 1 + x, True)) ans = x + sin(x) + 1 f = Function('f') assert Piecewise(*args).simplify() == ans assert Piecewise(*args.subs(x, f(x))).simplify() == ans.subs(x, f(x)) # issue 18634 d = Symbol("d", integer=True) n = Symbol("n", integer=True) t = Symbol("t", real=True, positive=True) expr = Piecewise((-d + 2*n, Eq(1/t, 1)), (t**(1 - 4*n)*t**(4*n - 1)*(-d + 2*n), True)) assert expr.simplify() == -d + 2*n def test_piecewise_solve(): abs2 = Piecewise((-x, x <= 0), (x, x > 0)) f = abs2.subs(x, x - 2) assert solve(f, x) == [2] assert solve(f - 1, x) == [1, 3] f = Piecewise(((x - 2)**2, x >= 0), (1, True)) assert solve(f, x) == [2] g = Piecewise(((x - 5)**5, x >= 4), (f, True)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 4), (f, x < 4)) assert solve(g, x) == [2, 5] g = Piecewise(((x - 5)**5, x >= 2), (f, x < 2)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (f, True), (10, False)) assert solve(g, x) == [5] g = Piecewise(((x - 5)**5, x >= 2), (-x + 2, x - 2 <= 0), (x - 2, x - 2 > 0)) assert solve(g, x) == [5] # if no symbol is given the piecewise detection must still work assert solve(Piecewise((x - 2, x > 2), (2 - x, True)) - 3) == [-1, 5] f = Piecewise(((x - 2)**2, x >= 0), (0, True)) raises(NotImplementedError, lambda: solve(f, x)) def nona(ans): return list(filter(lambda x: x is not S.NaN, ans)) p = Piecewise((x**2 - 4, x < y), (x - 2, True)) ans = solve(p, x) assert nona([i.subs(y, -2) for i in ans]) == [2] assert nona([i.subs(y, 2) for i in ans]) == [-2, 2] assert nona([i.subs(y, 3) for i in ans]) == [-2, 2] assert ans == [ Piecewise((-2, y > -2), (S.NaN, True)), Piecewise((2, y <= 2), (S.NaN, True)), Piecewise((2, y > 2), (S.NaN, True))] # issue 6060 absxm3 = Piecewise( (x - 3, 0 <= x - 3), (3 - x, 0 > x - 3) ) assert solve(absxm3 - y, x) == [ Piecewise((-y + 3, -y < 0), (S.NaN, True)), Piecewise((y + 3, y >= 0), (S.NaN, True))] p = Symbol('p', positive=True) assert solve(absxm3 - p, x) == [-p + 3, p + 3] # issue 6989 f = Function('f') assert solve(Eq(-f(x), Piecewise((1, x > 0), (0, True))), f(x)) == \ [Piecewise((-1, x > 0), (0, True))] # issue 8587 f = Piecewise((2*x**2, And(0 < x, x < 1)), (2, True)) assert solve(f - 1) == [1/sqrt(2)] def test_piecewise_fold(): p = Piecewise((x, x < 1), (1, 1 <= x)) assert piecewise_fold(x*p) == Piecewise((x**2, x < 1), (x, 1 <= x)) assert piecewise_fold(p + p) == Piecewise((2*x, x < 1), (2, 1 <= x)) assert piecewise_fold(Piecewise((1, x < 0), (2, True)) + Piecewise((10, x < 0), (-10, True))) == \ Piecewise((11, x < 0), (-8, True)) p1 = Piecewise((0, x < 0), (x, x <= 1), (0, True)) p2 = Piecewise((0, x < 0), (1 - x, x <= 1), (0, True)) p = 4*p1 + 2*p2 assert integrate( piecewise_fold(p), (x, -oo, oo)) == integrate(2*x + 2, (x, 0, 1)) assert piecewise_fold( Piecewise((1, y <= 0), (-Piecewise((2, y >= 0)), True) )) == Piecewise((1, y <= 0), (-2, y >= 0)) assert piecewise_fold(Piecewise((x, ITE(x > 0, y < 1, y > 1))) ) == Piecewise((x, ((x <= 0) | (y < 1)) & ((x > 0) | (y > 1)))) a, b = (Piecewise((2, Eq(x, 0)), (0, True)), Piecewise((x, Eq(-x + y, 0)), (1, Eq(-x + y, 1)), (0, True))) assert piecewise_fold(Mul(a, b, evaluate=False) ) == piecewise_fold(Mul(b, a, evaluate=False)) def test_piecewise_fold_piecewise_in_cond(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (p1 / Abs(p1), True)) assert p2.subs(x, -pi/2) == 0 assert p2.subs(x, 1) == 0 assert p2.subs(x, -pi/4) == 1 p4 = Piecewise((0, Eq(p1, 0)), (1,True)) ans = piecewise_fold(p4) for i in range(-1, 1): assert ans.subs(x, i) == p4.subs(x, i) r1 = 1 < Piecewise((1, x < 1), (3, True)) ans = piecewise_fold(r1) for i in range(2): assert ans.subs(x, i) == r1.subs(x, i) p5 = Piecewise((1, x < 0), (3, True)) p6 = Piecewise((1, x < 1), (3, True)) p7 = Piecewise((1, p5 < p6), (0, True)) ans = piecewise_fold(p7) for i in range(-1, 2): assert ans.subs(x, i) == p7.subs(x, i) def test_piecewise_fold_piecewise_in_cond_2(): p1 = Piecewise((cos(x), x < 0), (0, True)) p2 = Piecewise((0, Eq(p1, 0)), (1 / p1, True)) p3 = Piecewise( (0, (x >= 0) | Eq(cos(x), 0)), (1/cos(x), x < 0), (zoo, True)) # redundant b/c all x are already covered assert(piecewise_fold(p2) == p3) def test_piecewise_fold_expand(): p1 = Piecewise((1, Interval(0, 1, False, True).contains(x)), (0, True)) p2 = piecewise_fold(expand((1 - x)*p1)) assert p2 == Piecewise((1 - x, (x >= 0) & (x < 1)), (0, True)) assert p2 == expand(piecewise_fold((1 - x)*p1)) def test_piecewise_duplicate(): p = Piecewise((x, x < -10), (x**2, x <= -1), (x, 1 < x)) assert p == Piecewise(*p.args) def test_doit(): p1 = Piecewise((x, x < 1), (x**2, -1 <= x), (x, 3 < x)) p2 = Piecewise((x, x < 1), (Integral(2 * x), -1 <= x), (x, 3 < x)) assert p2.doit() == p1 assert p2.doit(deep=False) == p2 # issue 17165 p1 = Sum(y**x, (x, -1, oo)).doit() assert p1.doit() == p1 def test_piecewise_interval(): p1 = Piecewise((x, Interval(0, 1).contains(x)), (0, True)) assert p1.subs(x, -0.5) == 0 assert p1.subs(x, 0.5) == 0.5 assert p1.diff(x) == Piecewise((1, Interval(0, 1).contains(x)), (0, True)) assert integrate(p1, x) == Piecewise( (0, x <= 0), (x**2/2, x <= 1), (S.Half, True)) def test_piecewise_collapse(): assert Piecewise((x, True)) == x a = x < 1 assert Piecewise((x, a), (x + 1, a)) == Piecewise((x, a)) assert Piecewise((x, a), (x + 1, a.reversed)) == Piecewise((x, a)) b = x < 5 def canonical(i): if isinstance(i, Piecewise): return Piecewise(*i.args) return i for args in [ ((1, a), (Piecewise((2, a), (3, b)), b)), ((1, a), (Piecewise((2, a), (3, b.reversed)), b)), ((1, a), (Piecewise((2, a), (3, b)), b), (4, True)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b)), ((1, a), (Piecewise((2, a), (3, b), (4, True)), b), (5, True))]: for i in (0, 2, 10): assert canonical( Piecewise(*args, evaluate=False).subs(x, i) ) == canonical(Piecewise(*args).subs(x, i)) r1, r2, r3, r4 = symbols('r1:5') a = x < r1 b = x < r2 c = x < r3 d = x < r4 assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, a), (3, b), (5, c)) assert Piecewise((1, a), (Piecewise( (2, a), (3, b), (4, c), (6, True)), c), (5, d) ) == Piecewise((1, a), (Piecewise( (3, b), (4, c)), c), (5, d)) assert Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b), (4, c)), b), (5, c) ) == Piecewise((1, Or(a, d)), (Piecewise( (2, d), (3, b)), b), (5, c)) assert Piecewise((1, c), (2, ~c), (3, S.true) ) == Piecewise((1, c), (2, S.true)) assert Piecewise((1, c), (2, And(~c, b)), (3,True) ) == Piecewise((1, c), (2, b), (3, True)) assert Piecewise((1, c), (2, Or(~c, b)), (3,True) ).subs(dict(zip((r1, r2, r3, r4, x), (1, 2, 3, 4, 3.5)))) == 2 assert Piecewise((1, c), (2, ~c)) == Piecewise((1, c), (2, True)) def test_piecewise_lambdify(): p = Piecewise( (x**2, x < 0), (x, Interval(0, 1, False, True).contains(x)), (2 - x, x >= 1), (0, True) ) f = lambdify(x, p) assert f(-2.0) == 4.0 assert f(0.0) == 0.0 assert f(0.5) == 0.5 assert f(2.0) == 0.0 def test_piecewise_series(): from sympy import sin, cos, O p1 = Piecewise((sin(x), x < 0), (cos(x), x > 0)) p2 = Piecewise((x + O(x**2), x < 0), (1 + O(x**2), x > 0)) assert p1.nseries(x, n=2) == p2 def test_piecewise_as_leading_term(): p1 = Piecewise((1/x, x > 1), (0, True)) p2 = Piecewise((x, x > 1), (0, True)) p3 = Piecewise((1/x, x > 1), (x, True)) p4 = Piecewise((x, x > 1), (1/x, True)) p5 = Piecewise((1/x, x > 1), (x, True)) p6 = Piecewise((1/x, x < 1), (x, True)) p7 = Piecewise((x, x < 1), (1/x, True)) p8 = Piecewise((x, x > 1), (1/x, True)) assert p1.as_leading_term(x) == 0 assert p2.as_leading_term(x) == 0 assert p3.as_leading_term(x) == x assert p4.as_leading_term(x) == 1/x assert p5.as_leading_term(x) == x assert p6.as_leading_term(x) == 1/x assert p7.as_leading_term(x) == x assert p8.as_leading_term(x) == 1/x def test_piecewise_complex(): p1 = Piecewise((2, x < 0), (1, 0 <= x)) p2 = Piecewise((2*I, x < 0), (I, 0 <= x)) p3 = Piecewise((I*x, x > 1), (1 + I, True)) p4 = Piecewise((-I*conjugate(x), x > 1), (1 - I, True)) assert conjugate(p1) == p1 assert conjugate(p2) == piecewise_fold(-p2) assert conjugate(p3) == p4 assert p1.is_imaginary is False assert p1.is_real is True assert p2.is_imaginary is True assert p2.is_real is False assert p3.is_imaginary is None assert p3.is_real is None assert p1.as_real_imag() == (p1, 0) assert p2.as_real_imag() == (0, -I*p2) def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) p = Piecewise((A*B**2, x > 0), (A**2*B, True)) assert p.adjoint() == \ Piecewise((adjoint(A*B**2), x > 0), (adjoint(A**2*B), True)) assert p.conjugate() == \ Piecewise((conjugate(A*B**2), x > 0), (conjugate(A**2*B), True)) assert p.transpose() == \ Piecewise((transpose(A*B**2), x > 0), (transpose(A**2*B), True)) def test_piecewise_evaluate(): assert Piecewise((x, True)) == x assert Piecewise((x, True), evaluate=True) == x p = Piecewise((x, True), evaluate=False) assert p != x assert p.is_Piecewise assert all(isinstance(i, Basic) for i in p.args) assert Piecewise((1, Eq(1, x))).args == ((1, Eq(x, 1)),) assert Piecewise((1, Eq(1, x)), evaluate=False).args == ( (1, Eq(1, x)),) def test_as_expr_set_pairs(): assert Piecewise((x, x > 0), (-x, x <= 0)).as_expr_set_pairs() == \ [(x, Interval(0, oo, True, True)), (-x, Interval(-oo, 0))] assert Piecewise(((x - 2)**2, x >= 0), (0, True)).as_expr_set_pairs() == \ [((x - 2)**2, Interval(0, oo)), (0, Interval(-oo, 0, True, True))] def test_S_srepr_is_identity(): p = Piecewise((10, Eq(x, 0)), (12, True)) q = S(srepr(p)) assert p == q def test_issue_12587(): # sort holes into intervals p = Piecewise((1, x > 4), (2, Not((x <= 3) & (x > -1))), (3, True)) assert p.integrate((x, -5, 5)) == 23 p = Piecewise((1, x > 1), (2, x < y), (3, True)) lim = x, -3, 3 ans = p.integrate(lim) for i in range(-1, 3): assert ans.subs(y, i) == p.subs(y, i).integrate(lim) def test_issue_11045(): assert integrate(1/(x*sqrt(x**2 - 1)), (x, 1, 2)) == pi/3 # handle And with Or arguments assert Piecewise((1, And(Or(x < 1, x > 3), x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # hidden false assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # targetcond is Eq assert Piecewise((1, x > 1), (2, Eq(1, x)), (3, True) ).integrate((x, 0, 4)) == 6 # And has Relational needing to be solved assert Piecewise((1, And(2*x > x + 1, x < 2)), (0, True) ).integrate((x, 0, 3)) == 1 # Or has Relational needing to be solved assert Piecewise((1, Or(2*x > x + 2, x < 1)), (0, True) ).integrate((x, 0, 3)) == 2 # ignore hidden false (handled in canonicalization) assert Piecewise((1, x > 1), (2, x > x + 1), (3, True) ).integrate((x, 0, 3)) == 5 # watch for hidden True Piecewise assert Piecewise((2, Eq(1 - x, x*(1/x - 1))), (0, True) ).integrate((x, 0, 3)) == 6 # overlapping conditions of targetcond are recognized and ignored; # the condition x > 3 will be pre-empted by the first condition assert Piecewise((1, Or(x < 1, x > 2)), (2, x > 3), (3, True) ).integrate((x, 0, 4)) == 6 # convert Ne to Or assert Piecewise((1, Ne(x, 0)), (2, True) ).integrate((x, -1, 1)) == 2 # no default but well defined assert Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4)) ).integrate((x, 1, 4)) == 5 p = Piecewise((x, (x > 1) & (x < 3)), (1, (x < 4))) nan = Undefined i = p.integrate((x, 1, y)) assert i == Piecewise( (y - 1, y < 1), (Min(3, y)**2/2 - Min(3, y) + Min(4, y) - S.Half, y <= Min(4, y)), (nan, True)) assert p.integrate((x, 1, -1)) == i.subs(y, -1) assert p.integrate((x, 1, 4)) == 5 assert p.integrate((x, 1, 5)) is nan # handle Not p = Piecewise((1, x > 1), (2, Not(And(x > 1, x< 3))), (3, True)) assert p.integrate((x, 0, 3)) == 4 # handle updating of int_expr when there is overlap p = Piecewise( (1, And(5 > x, x > 1)), (2, Or(x < 3, x > 7)), (4, x < 8)) assert p.integrate((x, 0, 10)) == 20 # And with Eq arg handling assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)) ).integrate((x, 0, 3)) is S.NaN assert Piecewise((1, x < 1), (2, And(Eq(x, 3), x > 1)), (3, True) ).integrate((x, 0, 3)) == 7 assert Piecewise((1, x < 0), (2, And(Eq(x, 3), x < 1)), (3, True) ).integrate((x, -1, 1)) == 4 # middle condition doesn't matter: it's a zero width interval assert Piecewise((1, x < 1), (2, Eq(x, 3) & (y < x)), (3, True) ).integrate((x, 0, 3)) == 7 def test_holes(): nan = Undefined assert Piecewise((1, x < 2)).integrate(x) == Piecewise( (x, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate(x) == Piecewise( (nan, x < 1), (x - 1, x < 2), (nan, True)) assert Piecewise((1, And(x > 1, x < 2))).integrate((x, 0, 3)) is nan assert Piecewise((1, And(x > 0, x < 4))).integrate((x, 1, 3)) == 2 # this also tests that the integrate method is used on non-Piecwise # arguments in _eval_integral A, B = symbols("A B") a, b = symbols('a b', real=True) assert Piecewise((A, And(x < 0, a < 1)), (B, Or(x < 1, a > 2)) ).integrate(x) == Piecewise( (B*x, (a > 2)), (Piecewise((A*x, x < 0), (B*x, x < 1), (nan, True)), a < 1), (Piecewise((B*x, x < 1), (nan, True)), True)) def test_issue_11922(): def f(x): return Piecewise((0, x < -1), (1 - x**2, x < 1), (0, True)) autocorr = lambda k: ( f(x) * f(x + k)).integrate((x, -1, 1)) assert autocorr(1.9) > 0 k = symbols('k') good_autocorr = lambda k: ( (1 - x**2) * f(x + k)).integrate((x, -1, 1)) a = good_autocorr(k) assert a.subs(k, 3) == 0 k = symbols('k', positive=True) a = good_autocorr(k) assert a.subs(k, 3) == 0 assert Piecewise((0, x < 1), (10, (x >= 1)) ).integrate() == Piecewise((0, x < 1), (10*x - 10, True)) def test_issue_5227(): f = 0.0032513612725229*Piecewise((0, x < -80.8461538461539), (-0.0160799238820171*x + 1.33215984776403, x < 2), (Piecewise((0.3, x > 123), (0.7, True)) + Piecewise((0.4, x > 2), (0.6, True)), x <= 123), (-0.00817409766454352*x + 2.10541401273885, x < 380.571428571429), (0, True)) i = integrate(f, (x, -oo, oo)) assert i == Integral(f, (x, -oo, oo)).doit() assert str(i) == '1.00195081676351' assert Piecewise((1, x - y < 0), (0, True) ).integrate(y) == Piecewise((0, y <= x), (-x + y, True)) def test_issue_10137(): a = Symbol('a', real=True, finite=True) b = Symbol('b', real=True, finite=True) x = Symbol('x', real=True, finite=True) y = Symbol('y', real=True, finite=True) p0 = Piecewise((0, Or(x < a, x > b)), (1, True)) p1 = Piecewise((0, Or(a > x, b < x)), (1, True)) assert integrate(p0, (x, y, oo)) == integrate(p1, (x, y, oo)) p3 = Piecewise((1, And(0 < x, x < a)), (0, True)) p4 = Piecewise((1, And(a > x, x > 0)), (0, True)) ip3 = integrate(p3, x) assert ip3 == Piecewise( (0, x <= 0), (x, x <= Max(0, a)), (Max(0, a), True)) ip4 = integrate(p4, x) assert ip4 == ip3 assert p3.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 assert p4.integrate((x, 2, 4)) == Min(4, Max(2, a)) - 2 def test_stackoverflow_43852159(): f = lambda x: Piecewise((1 , (x >= -1) & (x <= 1)) , (0, True)) Conv = lambda x: integrate(f(x - y)*f(y), (y, -oo, +oo)) cx = Conv(x) assert cx.subs(x, -1.5) == cx.subs(x, 1.5) assert cx.subs(x, 3) == 0 assert piecewise_fold(f(x - y)*f(y)) == Piecewise( (1, (y >= -1) & (y <= 1) & (x - y >= -1) & (x - y <= 1)), (0, True)) def test_issue_12557(): ''' # 3200 seconds to compute the fourier part of issue import sympy as sym x,y,z,t = sym.symbols('x y z t') k = sym.symbols("k", integer=True) fourier = sym.fourier_series(sym.cos(k*x)*sym.sqrt(x**2), (x, -sym.pi, sym.pi)) assert fourier == FourierSeries( sqrt(x**2)*cos(k*x), (x, -pi, pi), (Piecewise((pi**2, Eq(k, 0)), (2*(-1)**k/k**2 - 2/k**2, True))/(2*pi), SeqFormula(Piecewise((pi**2, (Eq(_n, 0) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), (pi**2/2, Eq(_n, k) | Eq(_n, -k) | (Eq(_n, 0) & Eq(_n, k)) | (Eq(_n, k) & Eq(k, 0)) | (Eq(_n, 0) & Eq(_n, -k)) | (Eq(_n, k) & Eq(_n, -k)) | (Eq(k, 0) & Eq(_n, -k)) | (Eq(_n, 0) & Eq(_n, k) & Eq(_n, -k)) | (Eq(_n, k) & Eq(k, 0) & Eq(_n, -k))), ((-1)**k*pi**2*_n**3*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi**2*_n**3*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*_n**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*_n**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) + (-1)**k*pi**2*_n*k**2*sin(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) + (-1)**k*pi*k**2*cos(pi*_n)/(pi*_n**4 - 2*pi*_n**2*k**2 + pi*k**4) - (-1)**k*pi*k**2*cos(pi*_n)/(-pi*_n**4 + 2*pi*_n**2*k**2 - pi*k**4) - (2*_n**2 + 2*k**2)/(_n**4 - 2*_n**2*k**2 + k**4), True))*cos(_n*x)/pi, (_n, 1, oo)), SeqFormula(0, (_k, 1, oo)))) ''' x = symbols("x", real=True) k = symbols('k', integer=True, finite=True) abs2 = lambda x: Piecewise((-x, x <= 0), (x, x > 0)) assert integrate(abs2(x), (x, -pi, pi)) == pi**2 func = cos(k*x)*sqrt(x**2) assert integrate(func, (x, -pi, pi)) == Piecewise( (2*(-1)**k/k**2 - 2/k**2, Ne(k, 0)), (pi**2, True)) def test_issue_6900(): from itertools import permutations t0, t1, T, t = symbols('t0, t1 T t') f = Piecewise((0, t < t0), (x, And(t0 <= t, t < t1)), (0, t >= t1)) g = f.integrate(t) assert g == Piecewise( (0, t <= t0), (t*x - t0*x, t <= Max(t0, t1)), (-t0*x + x*Max(t0, t1), True)) for i in permutations(range(2)): reps = dict(zip((t0,t1), i)) for tt in range(-1,3): assert (g.xreplace(reps).subs(t,tt) == f.xreplace(reps).integrate(t).subs(t,tt)) lim = Tuple(t, t0, T) g = f.integrate(lim) ans = Piecewise( (-t0*x + x*Min(T, Max(t0, t1)), T > t0), (0, True)) for i in permutations(range(3)): reps = dict(zip((t0,t1,T), i)) tru = f.xreplace(reps).integrate(lim.xreplace(reps)) assert tru == ans.xreplace(reps) assert g == ans def test_issue_10122(): assert solve(abs(x) + abs(x - 1) - 1 > 0, x ) == Or(And(-oo < x, x < S.Zero), And(S.One < x, x < oo)) def test_issue_4313(): u = Piecewise((0, x <= 0), (1, x >= a), (x/a, True)) e = (u - u.subs(x, y))**2/(x - y)**2 M = Max(0, a) assert integrate(e, x).expand() == Piecewise( (Piecewise( (0, x <= 0), (-y**2/(a**2*x - a**2*y) + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-y**2/(-a**2*y + a**2*M) + 1/(-y + M) - 1/(x - y) - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), ((a <= y) & (y <= 0)) | ((y <= 0) & (y > -oo))), (Piecewise( (-1/(x - y), x <= 0), (-a**2/(a**2*x - a**2*y) + 2*a*y/(a**2*x - a**2*y) - y**2/(a**2*x - a**2*y) + 2*log(-y)/a - 2*log(x - y)/a + 2/a + x/a**2 - 2*y*log(-y)/a**2 + 2*y*log(x - y)/a**2 - y/a**2, x <= M), (-a**2/(-a**2*y + a**2*M) + 2*a*y/(-a**2*y + a**2*M) - y**2/(-a**2*y + a**2*M) + 2*log(-y)/a - 2*log(-y + M)/a + 2/a - 2*y*log(-y)/a**2 + 2*y*log(-y + M)/a**2 - y/a**2 + M/a**2, True)), a <= y), (Piecewise( (-y**2/(a**2*x - a**2*y), x <= 0), (x/a**2 + y/a**2, x <= M), (a**2/(-a**2*y + a**2*M) - a**2/(a**2*x - a**2*y) - 2*a*y/(-a**2*y + a**2*M) + 2*a*y/(a**2*x - a**2*y) + y**2/(-a**2*y + a**2*M) - y**2/(a**2*x - a**2*y) + y/a**2 + M/a**2, True)), True)) def test__intervals(): assert Piecewise((x + 2, Eq(x, 3)))._intervals(x) == [] assert Piecewise( (1, x > x + 1), (Piecewise((1, x < x + 1)), 2*x < 2*x + 1), (1, True))._intervals(x) == [(-oo, oo, 1, 1)] assert Piecewise((1, Ne(x, I)), (0, True))._intervals(x) == [ (-oo, oo, 1, 0)] assert Piecewise((-cos(x), sin(x) >= 0), (cos(x), True) )._intervals(x) == [(0, pi, -cos(x), 0), (-oo, oo, cos(x), 1)] # the following tests that duplicates are removed and that non-Eq # generated zero-width intervals are removed assert Piecewise((1, Abs(x**(-2)) > 1), (0, True) )._intervals(x) == [(-1, 0, 1, 0), (0, 1, 1, 0), (-oo, oo, 0, 1)] def test_containment(): a, b, c, d, e = [1, 2, 3, 4, 5] p = (Piecewise((d, x > 1), (e, True))* Piecewise((a, Abs(x - 1) < 1), (b, Abs(x - 2) < 2), (c, True))) assert p.integrate(x).diff(x) == Piecewise( (c*e, x <= 0), (a*e, x <= 1), (a*d, x < 2), # this is what we want to get right (b*d, x < 4), (c*d, True)) def test_piecewise_with_DiracDelta(): d1 = DiracDelta(x - 1) assert integrate(d1, (x, -oo, oo)) == 1 assert integrate(d1, (x, 0, 2)) == 1 assert Piecewise((d1, Eq(x, 2)), (0, True)).integrate(x) == 0 assert Piecewise((d1, x < 2), (0, True)).integrate(x) == Piecewise( (Heaviside(x - 1), x < 2), (1, True)) # TODO raise error if function is discontinuous at limit of # integration, e.g. integrate(d1, (x, -2, 1)) or Piecewise( # (d1, Eq(x ,1) def test_issue_10258(): assert Piecewise((0, x < 1), (1, True)).is_zero is None assert Piecewise((-1, x < 1), (1, True)).is_zero is False a = Symbol('a', zero=True) assert Piecewise((0, x < 1), (a, True)).is_zero assert Piecewise((1, x < 1), (a, x < 3)).is_zero is None a = Symbol('a') assert Piecewise((0, x < 1), (a, True)).is_zero is None assert Piecewise((0, x < 1), (1, True)).is_nonzero is None assert Piecewise((1, x < 1), (2, True)).is_nonzero assert Piecewise((0, x < 1), (oo, True)).is_finite is None assert Piecewise((0, x < 1), (1, True)).is_finite b = Basic() assert Piecewise((b, x < 1)).is_finite is None # 10258 c = Piecewise((1, x < 0), (2, True)) < 3 assert c != True assert piecewise_fold(c) == True def test_issue_10087(): a, b = Piecewise((x, x > 1), (2, True)), Piecewise((x, x > 3), (3, True)) m = a*b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) m = a + b f = piecewise_fold(m) for i in (0, 2, 4): assert m.subs(x, i) == f.subs(x, i) def test_issue_8919(): c = symbols('c:5') x = symbols("x") f1 = Piecewise((c[1], x < 1), (c[2], True)) f2 = Piecewise((c[3], x < Rational(1, 3)), (c[4], True)) assert integrate(f1*f2, (x, 0, 2) ) == c[1]*c[3]/3 + 2*c[1]*c[4]/3 + c[2]*c[4] f1 = Piecewise((0, x < 1), (2, True)) f2 = Piecewise((3, x < 2), (0, True)) assert integrate(f1*f2, (x, 0, 3)) == 6 y = symbols("y", positive=True) a, b, c, x, z = symbols("a,b,c,x,z", real=True) I = Integral(Piecewise( (0, (x >= y) | (x < 0) | (b > c)), (a, True)), (x, 0, z)) ans = I.doit() assert ans == Piecewise((0, b > c), (a*Min(y, z) - a*Min(0, z), True)) for cond in (True, False): for yy in range(1, 3): for zz in range(-yy, 0, yy): reps = [(b > c, cond), (y, yy), (z, zz)] assert ans.subs(reps) == I.subs(reps).doit() def test_unevaluated_integrals(): f = Function('f') p = Piecewise((1, Eq(f(x) - 1, 0)), (2, x - 10 < 0), (0, True)) assert p.integrate(x) == Integral(p, x) assert p.integrate((x, 0, 5)) == Integral(p, (x, 0, 5)) # test it by replacing f(x) with x%2 which will not # affect the answer: the integrand is essentially 2 over # the domain of integration assert Integral(p, (x, 0, 5)).subs(f(x), x%2).n() == 10 # this is a test of using _solve_inequality when # solve_univariate_inequality fails assert p.integrate(y) == Piecewise( (y, Eq(f(x), 1) | ((x < 10) & Eq(f(x), 1))), (2*y, (x >= -oo) & (x < 10)), (0, True)) def test_conditions_as_alternate_booleans(): a, b, c = symbols('a:c') assert Piecewise((x, Piecewise((y < 1, x > 0), (y > 1, True))) ) == Piecewise((x, ITE(x > 0, y < 1, y > 1))) def test_Piecewise_rewrite_as_ITE(): a, b, c, d = symbols('a:d') def _ITE(*args): return Piecewise(*args).rewrite(ITE) assert _ITE((a, x < 1), (b, x >= 1)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < oo)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, Or(y < 1, x < oo)), (c, y > 0) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, True)) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (b, x < 2), (c, True) ) == ITE(x < 1, a, ITE(x < 2, b, c)) assert _ITE((a, x < 1), (b, y < 2), (c, True) ) == ITE(x < 1, a, ITE(y < 2, b, c)) assert _ITE((a, x < 1), (b, x < oo), (c, y < 1) ) == ITE(x < 1, a, b) assert _ITE((a, x < 1), (c, y < 1), (b, x < oo), (d, True) ) == ITE(x < 1, a, ITE(y < 1, c, b)) assert _ITE((a, x < 0), (b, Or(x < oo, y < 1)) ) == ITE(x < 0, a, b) raises(TypeError, lambda: _ITE((x + 1, x < 1), (x, True))) # if `a` in the following were replaced with y then the coverage # is complete but something other than as_set would need to be # used to detect this raises(NotImplementedError, lambda: _ITE((x, x < y), (y, x >= a))) raises(ValueError, lambda: _ITE((a, x < 2), (b, x > 3))) def test_issue_14052(): assert integrate(abs(sin(x)), (x, 0, 2*pi)) == 4 def test_issue_14240(): assert piecewise_fold( Piecewise((1, a), (2, b), (4, True)) + Piecewise((8, a), (16, True)) ) == Piecewise((9, a), (18, b), (20, True)) assert piecewise_fold( Piecewise((2, a), (3, b), (5, True)) * Piecewise((7, a), (11, True)) ) == Piecewise((14, a), (33, b), (55, True)) # these will hang if naive folding is used assert piecewise_fold(Add(*[ Piecewise((i, a), (0, True)) for i in range(40)]) ) == Piecewise((780, a), (0, True)) assert piecewise_fold(Mul(*[ Piecewise((i, a), (0, True)) for i in range(1, 41)]) ) == Piecewise((factorial(40), a), (0, True)) def test_issue_14787(): x = Symbol('x') f = Piecewise((x, x < 1), ((S(58) / 7), True)) assert str(f.evalf()) == "Piecewise((x, x < 1), (8.28571428571429, True))" def test_issue_8458(): x, y = symbols('x y') # Original issue p1 = Piecewise((0, Eq(x, 0)), (sin(x), True)) assert p1.simplify() == sin(x) # Slightly larger variant p2 = Piecewise((x, Eq(x, 0)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p2.simplify() == sin(x) # Test for problem highlighted during review p3 = Piecewise((x+1, Eq(x, -1)), (4*x + (y-2)**4, Eq(x, 0) & Eq(x+y, 2)), (sin(x), True)) assert p3.simplify() == Piecewise((0, Eq(x, -1)), (sin(x), True)) def test_issue_16417(): from sympy import im, re, Gt z = Symbol('z') assert unchanged(Piecewise, (1, Or(Eq(im(z), 0), Gt(re(z), 0))), (2, True)) x = Symbol('x') assert unchanged(Piecewise, (S.Pi, re(x) < 0), (0, Or(re(x) > 0, Ne(im(x), 0))), (S.NaN, True)) r = Symbol('r', real=True) p = Piecewise((S.Pi, re(r) < 0), (0, Or(re(r) > 0, Ne(im(r), 0))), (S.NaN, True)) assert p == Piecewise((S.Pi, r < 0), (0, r > 0), (S.NaN, True), evaluate=False) # Does not work since imaginary != 0... #i = Symbol('i', imaginary=True) #p = Piecewise((S.Pi, re(i) < 0), # (0, Or(re(i) > 0, Ne(im(i), 0))), # (S.NaN, True)) #assert p == Piecewise((0, Ne(im(i), 0)), # (S.NaN, True), evaluate=False) i = I*r p = Piecewise((S.Pi, re(i) < 0), (0, Or(re(i) > 0, Ne(im(i), 0))), (S.NaN, True)) assert p == Piecewise((0, Ne(im(i), 0)), (S.NaN, True), evaluate=False) assert p == Piecewise((0, Ne(r, 0)), (S.NaN, True), evaluate=False) def test_eval_rewrite_as_KroneckerDelta(): x, y, z, n, t, m = symbols('x y z n t m') K = KroneckerDelta f = lambda p: expand(p.rewrite(K)) p1 = Piecewise((0, Eq(x, y)), (1, True)) assert f(p1) == 1 - K(x, y) p2 = Piecewise((x, Eq(y,0)), (z, Eq(t,0)), (n, True)) assert f(p2) == n*K(0, t)*K(0, y) - n*K(0, t) - n*K(0, y) + n + \ x*K(0, y) - z*K(0, t)*K(0, y) + z*K(0, t) p3 = Piecewise((1, Ne(x, y)), (0, True)) assert f(p3) == 1 - K(x, y) p4 = Piecewise((1, Eq(x, 3)), (4, True), (5, True)) assert f(p4) == 4 - 3*K(3, x) p5 = Piecewise((3, Ne(x, 2)), (4, Eq(y, 2)), (5, True)) assert f(p5) == -K(2, x)*K(2, y) + 2*K(2, x) + 3 p6 = Piecewise((0, Ne(x, 1) & Ne(y, 4)), (1, True)) assert f(p6) == -K(1, x)*K(4, y) + K(1, x) + K(4, y) p7 = Piecewise((2, Eq(y, 3) & Ne(x, 2)), (1, True)) assert f(p7) == -K(2, x)*K(3, y) + K(3, y) + 1 p8 = Piecewise((4, Eq(x, 3) & Ne(y, 2)), (1, True)) assert f(p8) == -3*K(2, y)*K(3, x) + 3*K(3, x) + 1 p9 = Piecewise((6, Eq(x, 4) & Eq(y, 1)), (1, True)) assert f(p9) == 5 * K(1, y) * K(4, x) + 1 p10 = Piecewise((4, Ne(x, -4) | Ne(y, 1)), (1, True)) assert f(p10) == -3 * K(-4, x) * K(1, y) + 4 p11 = Piecewise((1, Eq(y, 2) | Ne(x, -3)), (2, True)) assert f(p11) == -K(-3, x)*K(2, y) + K(-3, x) + 1 p12 = Piecewise((-1, Eq(x, 1) | Ne(y, 3)), (1, True)) assert f(p12) == -2*K(1, x)*K(3, y) + 2*K(3, y) - 1 p13 = Piecewise((3, Eq(x, 2) | Eq(y, 4)), (1, True)) assert f(p13) == -2*K(2, x)*K(4, y) + 2*K(2, x) + 2*K(4, y) + 1 p14 = Piecewise((1, Ne(x, 0) | Ne(y, 1)), (3, True)) assert f(p14) == 2 * K(0, x) * K(1, y) + 1 p15 = Piecewise((2, Eq(x, 3) | Ne(y, 2)), (3, Eq(x, 4) & Eq(y, 5)), (1, True)) assert f(p15) == -2*K(2, y)*K(3, x)*K(4, x)*K(5, y) + K(2, y)*K(3, x) + \ 2*K(2, y)*K(4, x)*K(5, y) - K(2, y) + 2 p16 = Piecewise((0, Ne(m, n)), (1, True))*Piecewise((0, Ne(n, t)), (1, True))\ *Piecewise((0, Ne(n, x)), (1, True)) - Piecewise((0, Ne(t, x)), (1, True)) assert f(p16) == K(m, n)*K(n, t)*K(n, x) - K(t, x) p17 = Piecewise((0, Ne(t, x) & (Ne(m, n) | Ne(n, t) | Ne(n, x))), (1, Ne(t, x)), (-1, Ne(m, n) | Ne(n, t) | Ne(n, x)), (0, True)) assert f(p17) == K(m, n)*K(n, t)*K(n, x) - K(t, x) p18 = Piecewise((-4, Eq(y, 1) | (Eq(x, -5) & Eq(x, z))), (4, True)) assert f(p18) == 8*K(-5, x)*K(1, y)*K(x, z) - 8*K(-5, x)*K(x, z) - 8*K(1, y) + 4 p19 = Piecewise((0, x > 2), (1, True)) assert f(p19) == p19 p20 = Piecewise((0, And(x < 2, x > -5)), (1, True)) assert f(p20) == p20 p21 = Piecewise((0, Or(x > 1, x < 0)), (1, True)) assert f(p21) == p21 p22 = Piecewise((0, ~((Eq(y, -1) | Ne(x, 0)) & (Ne(x, 1) | Ne(y, -1)))), (1, True)) assert f(p22) == K(-1, y)*K(0, x) - K(-1, y)*K(1, x) - K(0, x) + 1 @slow def test_identical_conds_issue(): from sympy.stats import Uniform, density u1 = Uniform('u1', 0, 1) u2 = Uniform('u2', 0, 1) # Result is quite big, so not really important here (and should ideally be # simpler). Should not give an exception though. density(u1 + u2) def test_issue_7370(): f = Piecewise((1, x <= 2400)) v = integrate(f, (x, 0, Float("252.4", 30))) assert str(v) == '252.400000000000000000000000000' def test_issue_16715(): raises(NotImplementedError, lambda: Piecewise((x, x<0), (0, y>1)).as_expr_set_pairs()) def test_issue_20360(): t, tau = symbols("t tau", real=True) n = symbols("n", integer=True) lam = pi * (n - S.Half) eq = integrate(exp(lam * tau), (tau, 0, t)) assert simplify(eq) == (2*exp(pi*t*(2*n - 1)/2) - 2)/(pi*(2*n - 1))
c6c467b8005155e63c0a38dd9c7eabb817ad8d70cb41cda0c96ef785ae2dd28f
import itertools as it from sympy.core.expr import unchanged from sympy.core.function import Function from sympy.core.numbers import I, oo, Rational from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.external import import_module from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.elementary.miscellaneous import (sqrt, cbrt, root, Min, Max, real_root) from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.delta_functions import Heaviside from sympy.utilities.lambdify import lambdify from sympy.testing.pytest import raises, skip, ignore_warnings def test_Min(): from sympy.abc import x, y, z n = Symbol('n', negative=True) n_ = Symbol('n_', negative=True) nn = Symbol('nn', nonnegative=True) nn_ = Symbol('nn_', nonnegative=True) p = Symbol('p', positive=True) p_ = Symbol('p_', positive=True) np = Symbol('np', nonpositive=True) np_ = Symbol('np_', nonpositive=True) r = Symbol('r', real=True) assert Min(5, 4) == 4 assert Min(-oo, -oo) is -oo assert Min(-oo, n) is -oo assert Min(n, -oo) is -oo assert Min(-oo, np) is -oo assert Min(np, -oo) is -oo assert Min(-oo, 0) is -oo assert Min(0, -oo) is -oo assert Min(-oo, nn) is -oo assert Min(nn, -oo) is -oo assert Min(-oo, p) is -oo assert Min(p, -oo) is -oo assert Min(-oo, oo) is -oo assert Min(oo, -oo) is -oo assert Min(n, n) == n assert unchanged(Min, n, np) assert Min(np, n) == Min(n, np) assert Min(n, 0) == n assert Min(0, n) == n assert Min(n, nn) == n assert Min(nn, n) == n assert Min(n, p) == n assert Min(p, n) == n assert Min(n, oo) == n assert Min(oo, n) == n assert Min(np, np) == np assert Min(np, 0) == np assert Min(0, np) == np assert Min(np, nn) == np assert Min(nn, np) == np assert Min(np, p) == np assert Min(p, np) == np assert Min(np, oo) == np assert Min(oo, np) == np assert Min(0, 0) == 0 assert Min(0, nn) == 0 assert Min(nn, 0) == 0 assert Min(0, p) == 0 assert Min(p, 0) == 0 assert Min(0, oo) == 0 assert Min(oo, 0) == 0 assert Min(nn, nn) == nn assert unchanged(Min, nn, p) assert Min(p, nn) == Min(nn, p) assert Min(nn, oo) == nn assert Min(oo, nn) == nn assert Min(p, p) == p assert Min(p, oo) == p assert Min(oo, p) == p assert Min(oo, oo) is oo assert Min(n, n_).func is Min assert Min(nn, nn_).func is Min assert Min(np, np_).func is Min assert Min(p, p_).func is Min # lists assert Min() is S.Infinity assert Min(x) == x assert Min(x, y) == Min(y, x) assert Min(x, y, z) == Min(z, y, x) assert Min(x, Min(y, z)) == Min(z, y, x) assert Min(x, Max(y, -oo)) == Min(x, y) assert Min(p, oo, n, p, p, p_) == n assert Min(p_, n_, p) == n_ assert Min(n, oo, -7, p, p, 2) == Min(n, -7) assert Min(2, x, p, n, oo, n_, p, 2, -2, -2) == Min(-2, x, n, n_) assert Min(0, x, 1, y) == Min(0, x, y) assert Min(1000, 100, -100, x, p, n) == Min(n, x, -100) assert unchanged(Min, sin(x), cos(x)) assert Min(sin(x), cos(x)) == Min(cos(x), sin(x)) assert Min(cos(x), sin(x)).subs(x, 1) == cos(1) assert Min(cos(x), sin(x)).subs(x, S.Half) == sin(S.Half) raises(ValueError, lambda: Min(cos(x), sin(x)).subs(x, I)) raises(ValueError, lambda: Min(I)) raises(ValueError, lambda: Min(I, x)) raises(ValueError, lambda: Min(S.ComplexInfinity, x)) assert Min(1, x).diff(x) == Heaviside(1 - x) assert Min(x, 1).diff(x) == Heaviside(1 - x) assert Min(0, -x, 1 - 2*x).diff(x) == -Heaviside(x + Min(0, -2*x + 1)) \ - 2*Heaviside(2*x + Min(0, -x) - 1) # issue 7619 f = Function('f') assert Min(1, 2*Min(f(1), 2)) # doesn't fail # issue 7233 e = Min(0, x) assert e.n().args == (0, x) # issue 8643 m = Min(n, p_, n_, r) assert m.is_positive is False assert m.is_nonnegative is False assert m.is_negative is True m = Min(p, p_) assert m.is_positive is True assert m.is_nonnegative is True assert m.is_negative is False m = Min(p, nn_, p_) assert m.is_positive is None assert m.is_nonnegative is True assert m.is_negative is False m = Min(nn, p, r) assert m.is_positive is None assert m.is_nonnegative is None assert m.is_negative is None def test_Max(): from sympy.abc import x, y, z n = Symbol('n', negative=True) n_ = Symbol('n_', negative=True) nn = Symbol('nn', nonnegative=True) p = Symbol('p', positive=True) p_ = Symbol('p_', positive=True) r = Symbol('r', real=True) assert Max(5, 4) == 5 # lists assert Max() is S.NegativeInfinity assert Max(x) == x assert Max(x, y) == Max(y, x) assert Max(x, y, z) == Max(z, y, x) assert Max(x, Max(y, z)) == Max(z, y, x) assert Max(x, Min(y, oo)) == Max(x, y) assert Max(n, -oo, n_, p, 2) == Max(p, 2) assert Max(n, -oo, n_, p) == p assert Max(2, x, p, n, -oo, S.NegativeInfinity, n_, p, 2) == Max(2, x, p) assert Max(0, x, 1, y) == Max(1, x, y) assert Max(r, r + 1, r - 1) == 1 + r assert Max(1000, 100, -100, x, p, n) == Max(p, x, 1000) assert Max(cos(x), sin(x)) == Max(sin(x), cos(x)) assert Max(cos(x), sin(x)).subs(x, 1) == sin(1) assert Max(cos(x), sin(x)).subs(x, S.Half) == cos(S.Half) raises(ValueError, lambda: Max(cos(x), sin(x)).subs(x, I)) raises(ValueError, lambda: Max(I)) raises(ValueError, lambda: Max(I, x)) raises(ValueError, lambda: Max(S.ComplexInfinity, 1)) assert Max(n, -oo, n_, p, 2) == Max(p, 2) assert Max(n, -oo, n_, p, 1000) == Max(p, 1000) assert Max(1, x).diff(x) == Heaviside(x - 1) assert Max(x, 1).diff(x) == Heaviside(x - 1) assert Max(x**2, 1 + x, 1).diff(x) == \ 2*x*Heaviside(x**2 - Max(1, x + 1)) \ + Heaviside(x - Max(1, x**2) + 1) e = Max(0, x) assert e.n().args == (0, x) # issue 8643 m = Max(p, p_, n, r) assert m.is_positive is True assert m.is_nonnegative is True assert m.is_negative is False m = Max(n, n_) assert m.is_positive is False assert m.is_nonnegative is False assert m.is_negative is True m = Max(n, n_, r) assert m.is_positive is None assert m.is_nonnegative is None assert m.is_negative is None m = Max(n, nn, r) assert m.is_positive is None assert m.is_nonnegative is True assert m.is_negative is False def test_minmax_assumptions(): r = Symbol('r', real=True) a = Symbol('a', real=True, algebraic=True) t = Symbol('t', real=True, transcendental=True) q = Symbol('q', rational=True) p = Symbol('p', irrational=True) n = Symbol('n', rational=True, integer=False) i = Symbol('i', integer=True) o = Symbol('o', odd=True) e = Symbol('e', even=True) k = Symbol('k', prime=True) reals = [r, a, t, q, p, n, i, o, e, k] for ext in (Max, Min): for x, y in it.product(reals, repeat=2): # Must be real assert ext(x, y).is_real # Algebraic? if x.is_algebraic and y.is_algebraic: assert ext(x, y).is_algebraic elif x.is_transcendental and y.is_transcendental: assert ext(x, y).is_transcendental else: assert ext(x, y).is_algebraic is None # Rational? if x.is_rational and y.is_rational: assert ext(x, y).is_rational elif x.is_irrational and y.is_irrational: assert ext(x, y).is_irrational else: assert ext(x, y).is_rational is None # Integer? if x.is_integer and y.is_integer: assert ext(x, y).is_integer elif x.is_noninteger and y.is_noninteger: assert ext(x, y).is_noninteger else: assert ext(x, y).is_integer is None # Odd? if x.is_odd and y.is_odd: assert ext(x, y).is_odd elif x.is_odd is False and y.is_odd is False: assert ext(x, y).is_odd is False else: assert ext(x, y).is_odd is None # Even? if x.is_even and y.is_even: assert ext(x, y).is_even elif x.is_even is False and y.is_even is False: assert ext(x, y).is_even is False else: assert ext(x, y).is_even is None # Prime? if x.is_prime and y.is_prime: assert ext(x, y).is_prime elif x.is_prime is False and y.is_prime is False: assert ext(x, y).is_prime is False else: assert ext(x, y).is_prime is None def test_issue_8413(): x = Symbol('x', real=True) # we can't evaluate in general because non-reals are not # comparable: Min(floor(3.2 + I), 3.2 + I) -> ValueError assert Min(floor(x), x) == floor(x) assert Min(ceiling(x), x) == x assert Max(floor(x), x) == x assert Max(ceiling(x), x) == ceiling(x) def test_root(): from sympy.abc import x n = Symbol('n', integer=True) k = Symbol('k', integer=True) assert root(2, 2) == sqrt(2) assert root(2, 1) == 2 assert root(2, 3) == 2**Rational(1, 3) assert root(2, 3) == cbrt(2) assert root(2, -5) == 2**Rational(4, 5)/2 assert root(-2, 1) == -2 assert root(-2, 2) == sqrt(2)*I assert root(-2, 1) == -2 assert root(x, 2) == sqrt(x) assert root(x, 1) == x assert root(x, 3) == x**Rational(1, 3) assert root(x, 3) == cbrt(x) assert root(x, -5) == x**Rational(-1, 5) assert root(x, n) == x**(1/n) assert root(x, -n) == x**(-1/n) assert root(x, n, k) == (-1)**(2*k/n)*x**(1/n) def test_real_root(): assert real_root(-8, 3) == -2 assert real_root(-16, 4) == root(-16, 4) r = root(-7, 4) assert real_root(r) == r r1 = root(-1, 3) r2 = r1**2 r3 = root(-1, 4) assert real_root(r1 + r2 + r3) == -1 + r2 + r3 assert real_root(root(-2, 3)) == -root(2, 3) assert real_root(-8., 3) == -2 x = Symbol('x') n = Symbol('n') g = real_root(x, n) assert g.subs(dict(x=-8, n=3)) == -2 assert g.subs(dict(x=8, n=3)) == 2 # give principle root if there is no real root -- if this is not desired # then maybe a Root class is needed to raise an error instead assert g.subs(dict(x=I, n=3)) == cbrt(I) assert g.subs(dict(x=-8, n=2)) == sqrt(-8) assert g.subs(dict(x=I, n=2)) == sqrt(I) def test_issue_11463(): numpy = import_module('numpy') if not numpy: skip("numpy not installed.") x = Symbol('x') f = lambdify(x, real_root((log(x/(x-2))), 3), 'numpy') # numpy.select evaluates all options before considering conditions, # so it raises a warning about root of negative number which does # not affect the outcome. This warning is suppressed here with ignore_warnings(RuntimeWarning): assert f(numpy.array(-1)) < -1 def test_rewrite_MaxMin_as_Heaviside(): from sympy.abc import x assert Max(0, x).rewrite(Heaviside) == x*Heaviside(x) assert Max(3, x).rewrite(Heaviside) == x*Heaviside(x - 3) + \ 3*Heaviside(-x + 3) assert Max(0, x+2, 2*x).rewrite(Heaviside) == \ 2*x*Heaviside(2*x)*Heaviside(x - 2) + \ (x + 2)*Heaviside(-x + 2)*Heaviside(x + 2) assert Min(0, x).rewrite(Heaviside) == x*Heaviside(-x) assert Min(3, x).rewrite(Heaviside) == x*Heaviside(-x + 3) + \ 3*Heaviside(x - 3) assert Min(x, -x, -2).rewrite(Heaviside) == \ x*Heaviside(-2*x)*Heaviside(-x - 2) - \ x*Heaviside(2*x)*Heaviside(x - 2) \ - 2*Heaviside(-x + 2)*Heaviside(x + 2) def test_rewrite_MaxMin_as_Piecewise(): from sympy import symbols, Piecewise x, y, z, a, b = symbols('x y z a b', real=True) vx, vy, va = symbols('vx vy va') assert Max(a, b).rewrite(Piecewise) == Piecewise((a, a >= b), (b, True)) assert Max(x, y, z).rewrite(Piecewise) == Piecewise((x, (x >= y) & (x >= z)), (y, y >= z), (z, True)) assert Max(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a >= b) & (a >= x) & (a >= y)), (b, (b >= x) & (b >= y)), (x, x >= y), (y, True)) assert Min(a, b).rewrite(Piecewise) == Piecewise((a, a <= b), (b, True)) assert Min(x, y, z).rewrite(Piecewise) == Piecewise((x, (x <= y) & (x <= z)), (y, y <= z), (z, True)) assert Min(x, y, a, b).rewrite(Piecewise) == Piecewise((a, (a <= b) & (a <= x) & (a <= y)), (b, (b <= x) & (b <= y)), (x, x <= y), (y, True)) # Piecewise rewriting of Min/Max does also takes place for not explicitly real arguments assert Max(vx, vy).rewrite(Piecewise) == Piecewise((vx, vx >= vy), (vy, True)) assert Min(va, vx, vy).rewrite(Piecewise) == Piecewise((va, (va <= vx) & (va <= vy)), (vx, vx <= vy), (vy, True)) def test_issue_11099(): from sympy.abc import x, y # some fixed value tests fixed_test_data = {x: -2, y: 3} assert Min(x, y).evalf(subs=fixed_test_data) == \ Min(x, y).subs(fixed_test_data).evalf() assert Max(x, y).evalf(subs=fixed_test_data) == \ Max(x, y).subs(fixed_test_data).evalf() # randomly generate some test data from random import randint for i in range(20): random_test_data = {x: randint(-100, 100), y: randint(-100, 100)} assert Min(x, y).evalf(subs=random_test_data) == \ Min(x, y).subs(random_test_data).evalf() assert Max(x, y).evalf(subs=random_test_data) == \ Max(x, y).subs(random_test_data).evalf() def test_issue_12638(): from sympy.abc import a, b, c assert Min(a, b, c, Max(a, b)) == Min(a, b, c) assert Min(a, b, Max(a, b, c)) == Min(a, b) assert Min(a, b, Max(a, c)) == Min(a, b) def test_issue_21399(): from sympy.abc import a, b, c assert Max(Min(a, b), Min(a, b, c)) == Min(a, b) def test_instantiation_evaluation(): from sympy.abc import v, w, x, y, z assert Min(1, Max(2, x)) == 1 assert Max(3, Min(2, x)) == 3 assert Min(Max(x, y), Max(x, z)) == Max(x, Min(y, z)) assert set(Min(Max(w, x), Max(y, z)).args) == { Max(w, x), Max(y, z)} assert Min(Max(x, y), Max(x, z), w) == Min( w, Max(x, Min(y, z))) A, B = Min, Max for i in range(2): assert A(x, B(x, y)) == x assert A(x, B(y, A(x, w, z))) == A(x, B(y, A(w, z))) A, B = B, A assert Min(w, Max(x, y), Max(v, x, z)) == Min( w, Max(x, Min(y, Max(v, z)))) def test_rewrite_as_Abs(): from itertools import permutations from sympy.functions.elementary.complexes import Abs from sympy.abc import x, y, z, w def test(e): free = e.free_symbols a = e.rewrite(Abs) assert not a.has(Min, Max) for i in permutations(range(len(free))): reps = dict(zip(free, i)) assert a.xreplace(reps) == e.xreplace(reps) test(Min(x, y)) test(Max(x, y)) test(Min(x, y, z)) test(Min(Max(w, x), Max(y, z))) def test_issue_14000(): assert isinstance(sqrt(4, evaluate=False), Pow) == True assert isinstance(cbrt(3.5, evaluate=False), Pow) == True assert isinstance(root(16, 4, evaluate=False), Pow) == True assert sqrt(4, evaluate=False) == Pow(4, S.Half, evaluate=False) assert cbrt(3.5, evaluate=False) == Pow(3.5, Rational(1, 3), evaluate=False) assert root(4, 2, evaluate=False) == Pow(4, S.Half, evaluate=False) assert root(16, 4, 2, evaluate=False).has(Pow) == True assert real_root(-8, 3, evaluate=False).has(Pow) == True
e40daf44bea59797d0583ac449fc528abb95c623d7b75d01b35ac28966f5711f
from sympy import (symbols, Symbol, sinh, nan, oo, zoo, pi, asinh, acosh, log, sqrt, coth, I, cot, E, tanh, tan, cosh, cos, S, sin, Rational, atanh, acoth, Integer, O, exp, sech, sec, csch, asech, acsch, acos, asin, expand_mul, AccumBounds, im, re, expand_trig) from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError from sympy.testing.pytest import raises def test_sinh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert sinh(nan) is nan assert sinh(zoo) is nan assert sinh(oo) is oo assert sinh(-oo) is -oo assert sinh(0) == 0 assert unchanged(sinh, 1) assert sinh(-1) == -sinh(1) assert unchanged(sinh, x) assert sinh(-x) == -sinh(x) assert unchanged(sinh, pi) assert sinh(-pi) == -sinh(pi) assert unchanged(sinh, 2**1024 * E) assert sinh(-2**1024 * E) == -sinh(2**1024 * E) assert sinh(pi*I) == 0 assert sinh(-pi*I) == 0 assert sinh(2*pi*I) == 0 assert sinh(-2*pi*I) == 0 assert sinh(-3*10**73*pi*I) == 0 assert sinh(7*10**103*pi*I) == 0 assert sinh(pi*I/2) == I assert sinh(-pi*I/2) == -I assert sinh(pi*I*Rational(5, 2)) == I assert sinh(pi*I*Rational(7, 2)) == -I assert sinh(pi*I/3) == S.Half*sqrt(3)*I assert sinh(pi*I*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)*I assert sinh(pi*I/4) == S.Half*sqrt(2)*I assert sinh(-pi*I/4) == Rational(-1, 2)*sqrt(2)*I assert sinh(pi*I*Rational(17, 4)) == S.Half*sqrt(2)*I assert sinh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)*I assert sinh(pi*I/6) == S.Half*I assert sinh(-pi*I/6) == Rational(-1, 2)*I assert sinh(pi*I*Rational(7, 6)) == Rational(-1, 2)*I assert sinh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*I assert sinh(pi*I/105) == sin(pi/105)*I assert sinh(-pi*I/105) == -sin(pi/105)*I assert unchanged(sinh, 2 + 3*I) assert sinh(x*I) == sin(x)*I assert sinh(k*pi*I) == 0 assert sinh(17*k*pi*I) == 0 assert sinh(k*pi*I/2) == sin(k*pi/2)*I assert sinh(x).as_real_imag(deep=False) == (cos(im(x))*sinh(re(x)), sin(im(x))*cosh(re(x))) x = Symbol('x', extended_real=True) assert sinh(x).as_real_imag(deep=False) == (sinh(x), 0) x = Symbol('x', real=True) assert sinh(I*x).is_finite is True assert sinh(x).is_real is True assert sinh(I).is_real is False def test_sinh_series(): x = Symbol('x') assert sinh(x).series(x, 0, 10) == \ x + x**3/6 + x**5/120 + x**7/5040 + x**9/362880 + O(x**10) def test_sinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sinh(x).fdiff(2)) def test_cosh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert cosh(nan) is nan assert cosh(zoo) is nan assert cosh(oo) is oo assert cosh(-oo) is oo assert cosh(0) == 1 assert unchanged(cosh, 1) assert cosh(-1) == cosh(1) assert unchanged(cosh, x) assert cosh(-x) == cosh(x) assert cosh(pi*I) == cos(pi) assert cosh(-pi*I) == cos(pi) assert unchanged(cosh, 2**1024 * E) assert cosh(-2**1024 * E) == cosh(2**1024 * E) assert cosh(pi*I/2) == 0 assert cosh(-pi*I/2) == 0 assert cosh((-3*10**73 + 1)*pi*I/2) == 0 assert cosh((7*10**103 + 1)*pi*I/2) == 0 assert cosh(pi*I) == -1 assert cosh(-pi*I) == -1 assert cosh(5*pi*I) == -1 assert cosh(8*pi*I) == 1 assert cosh(pi*I/3) == S.Half assert cosh(pi*I*Rational(-2, 3)) == Rational(-1, 2) assert cosh(pi*I/4) == S.Half*sqrt(2) assert cosh(-pi*I/4) == S.Half*sqrt(2) assert cosh(pi*I*Rational(11, 4)) == Rational(-1, 2)*sqrt(2) assert cosh(pi*I*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2) assert cosh(pi*I/6) == S.Half*sqrt(3) assert cosh(-pi*I/6) == S.Half*sqrt(3) assert cosh(pi*I*Rational(7, 6)) == Rational(-1, 2)*sqrt(3) assert cosh(pi*I*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3) assert cosh(pi*I/105) == cos(pi/105) assert cosh(-pi*I/105) == cos(pi/105) assert unchanged(cosh, 2 + 3*I) assert cosh(x*I) == cos(x) assert cosh(k*pi*I) == cos(k*pi) assert cosh(17*k*pi*I) == cos(17*k*pi) assert unchanged(cosh, k*pi) assert cosh(x).as_real_imag(deep=False) == (cos(im(x))*cosh(re(x)), sin(im(x))*sinh(re(x))) x = Symbol('x', extended_real=True) assert cosh(x).as_real_imag(deep=False) == (cosh(x), 0) x = Symbol('x', real=True) assert cosh(I*x).is_finite is True assert cosh(I*x).is_real is True assert cosh(I*2 + 1).is_real is False def test_cosh_series(): x = Symbol('x') assert cosh(x).series(x, 0, 10) == \ 1 + x**2/2 + x**4/24 + x**6/720 + x**8/40320 + O(x**10) def test_cosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: cosh(x).fdiff(2)) def test_tanh(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert tanh(nan) is nan assert tanh(zoo) is nan assert tanh(oo) == 1 assert tanh(-oo) == -1 assert tanh(0) == 0 assert unchanged(tanh, 1) assert tanh(-1) == -tanh(1) assert unchanged(tanh, x) assert tanh(-x) == -tanh(x) assert unchanged(tanh, pi) assert tanh(-pi) == -tanh(pi) assert unchanged(tanh, 2**1024 * E) assert tanh(-2**1024 * E) == -tanh(2**1024 * E) assert tanh(pi*I) == 0 assert tanh(-pi*I) == 0 assert tanh(2*pi*I) == 0 assert tanh(-2*pi*I) == 0 assert tanh(-3*10**73*pi*I) == 0 assert tanh(7*10**103*pi*I) == 0 assert tanh(pi*I/2) is zoo assert tanh(-pi*I/2) is zoo assert tanh(pi*I*Rational(5, 2)) is zoo assert tanh(pi*I*Rational(7, 2)) is zoo assert tanh(pi*I/3) == sqrt(3)*I assert tanh(pi*I*Rational(-2, 3)) == sqrt(3)*I assert tanh(pi*I/4) == I assert tanh(-pi*I/4) == -I assert tanh(pi*I*Rational(17, 4)) == I assert tanh(pi*I*Rational(-3, 4)) == I assert tanh(pi*I/6) == I/sqrt(3) assert tanh(-pi*I/6) == -I/sqrt(3) assert tanh(pi*I*Rational(7, 6)) == I/sqrt(3) assert tanh(pi*I*Rational(-5, 6)) == I/sqrt(3) assert tanh(pi*I/105) == tan(pi/105)*I assert tanh(-pi*I/105) == -tan(pi/105)*I assert unchanged(tanh, 2 + 3*I) assert tanh(x*I) == tan(x)*I assert tanh(k*pi*I) == 0 assert tanh(17*k*pi*I) == 0 assert tanh(k*pi*I/2) == tan(k*pi/2)*I assert tanh(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(cos(im(x))**2 + sinh(re(x))**2), sin(im(x))*cos(im(x))/(cos(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert tanh(x).as_real_imag(deep=False) == (tanh(x), 0) assert tanh(I*pi/3 + 1).is_real is False assert tanh(x).is_real is True assert tanh(I*pi*x/2).is_real is None def test_tanh_series(): x = Symbol('x') assert tanh(x).series(x, 0, 10) == \ x - x**3/3 + 2*x**5/15 - 17*x**7/315 + 62*x**9/2835 + O(x**10) def test_tanh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: tanh(x).fdiff(2)) def test_coth(): x, y = symbols('x,y') k = Symbol('k', integer=True) assert coth(nan) is nan assert coth(zoo) is nan assert coth(oo) == 1 assert coth(-oo) == -1 assert coth(0) is zoo assert unchanged(coth, 1) assert coth(-1) == -coth(1) assert unchanged(coth, x) assert coth(-x) == -coth(x) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == cot(pi)*I assert unchanged(coth, 2**1024 * E) assert coth(-2**1024 * E) == -coth(2**1024 * E) assert coth(pi*I) == -I*cot(pi) assert coth(-pi*I) == I*cot(pi) assert coth(2*pi*I) == -I*cot(2*pi) assert coth(-2*pi*I) == I*cot(2*pi) assert coth(-3*10**73*pi*I) == I*cot(3*10**73*pi) assert coth(7*10**103*pi*I) == -I*cot(7*10**103*pi) assert coth(pi*I/2) == 0 assert coth(-pi*I/2) == 0 assert coth(pi*I*Rational(5, 2)) == 0 assert coth(pi*I*Rational(7, 2)) == 0 assert coth(pi*I/3) == -I/sqrt(3) assert coth(pi*I*Rational(-2, 3)) == -I/sqrt(3) assert coth(pi*I/4) == -I assert coth(-pi*I/4) == I assert coth(pi*I*Rational(17, 4)) == -I assert coth(pi*I*Rational(-3, 4)) == -I assert coth(pi*I/6) == -sqrt(3)*I assert coth(-pi*I/6) == sqrt(3)*I assert coth(pi*I*Rational(7, 6)) == -sqrt(3)*I assert coth(pi*I*Rational(-5, 6)) == -sqrt(3)*I assert coth(pi*I/105) == -cot(pi/105)*I assert coth(-pi*I/105) == cot(pi/105)*I assert unchanged(coth, 2 + 3*I) assert coth(x*I) == -cot(x)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(17*k*pi*I) == -cot(17*k*pi)*I assert coth(k*pi*I) == -cot(k*pi)*I assert coth(log(tan(2))) == coth(log(-tan(2))) assert coth(1 + I*pi/2) == tanh(1) assert coth(x).as_real_imag(deep=False) == (sinh(re(x))*cosh(re(x))/(sin(im(x))**2 + sinh(re(x))**2), -sin(im(x))*cos(im(x))/(sin(im(x))**2 + sinh(re(x))**2)) x = Symbol('x', extended_real=True) assert coth(x).as_real_imag(deep=False) == (coth(x), 0) assert expand_trig(coth(2*x)) == (coth(x)**2 + 1)/(2*coth(x)) assert expand_trig(coth(3*x)) == (coth(x)**3 + 3*coth(x))/(1 + 3*coth(x)**2) assert expand_trig(coth(x + y)) == (1 + coth(x)*coth(y))/(coth(x) + coth(y)) def test_coth_series(): x = Symbol('x') assert coth(x).series(x, 0, 8) == \ 1/x + x/3 - x**3/45 + 2*x**5/945 - x**7/4725 + O(x**8) def test_coth_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: coth(x).fdiff(2)) def test_csch(): x, y = symbols('x,y') k = Symbol('k', integer=True) n = Symbol('n', positive=True) assert csch(nan) is nan assert csch(zoo) is nan assert csch(oo) == 0 assert csch(-oo) == 0 assert csch(0) is zoo assert csch(-1) == -csch(1) assert csch(-x) == -csch(x) assert csch(-pi) == -csch(pi) assert csch(-2**1024 * E) == -csch(2**1024 * E) assert csch(pi*I) is zoo assert csch(-pi*I) is zoo assert csch(2*pi*I) is zoo assert csch(-2*pi*I) is zoo assert csch(-3*10**73*pi*I) is zoo assert csch(7*10**103*pi*I) is zoo assert csch(pi*I/2) == -I assert csch(-pi*I/2) == I assert csch(pi*I*Rational(5, 2)) == -I assert csch(pi*I*Rational(7, 2)) == I assert csch(pi*I/3) == -2/sqrt(3)*I assert csch(pi*I*Rational(-2, 3)) == 2/sqrt(3)*I assert csch(pi*I/4) == -sqrt(2)*I assert csch(-pi*I/4) == sqrt(2)*I assert csch(pi*I*Rational(7, 4)) == sqrt(2)*I assert csch(pi*I*Rational(-3, 4)) == sqrt(2)*I assert csch(pi*I/6) == -2*I assert csch(-pi*I/6) == 2*I assert csch(pi*I*Rational(7, 6)) == 2*I assert csch(pi*I*Rational(-7, 6)) == -2*I assert csch(pi*I*Rational(-5, 6)) == 2*I assert csch(pi*I/105) == -1/sin(pi/105)*I assert csch(-pi*I/105) == 1/sin(pi/105)*I assert csch(x*I) == -1/sin(x)*I assert csch(k*pi*I) is zoo assert csch(17*k*pi*I) is zoo assert csch(k*pi*I/2) == -1/sin(k*pi/2)*I assert csch(n).is_real is True assert expand_trig(csch(x + y)) == 1/(sinh(x)*cosh(y) + cosh(x)*sinh(y)) def test_csch_series(): x = Symbol('x') assert csch(x).series(x, 0, 10) == \ 1/ x - x/6 + 7*x**3/360 - 31*x**5/15120 + 127*x**7/604800 \ - 73*x**9/3421440 + O(x**10) def test_csch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: csch(x).fdiff(2)) def test_sech(): x, y = symbols('x, y') k = Symbol('k', integer=True) n = Symbol('n', positive=True) assert sech(nan) is nan assert sech(zoo) is nan assert sech(oo) == 0 assert sech(-oo) == 0 assert sech(0) == 1 assert sech(-1) == sech(1) assert sech(-x) == sech(x) assert sech(pi*I) == sec(pi) assert sech(-pi*I) == sec(pi) assert sech(-2**1024 * E) == sech(2**1024 * E) assert sech(pi*I/2) is zoo assert sech(-pi*I/2) is zoo assert sech((-3*10**73 + 1)*pi*I/2) is zoo assert sech((7*10**103 + 1)*pi*I/2) is zoo assert sech(pi*I) == -1 assert sech(-pi*I) == -1 assert sech(5*pi*I) == -1 assert sech(8*pi*I) == 1 assert sech(pi*I/3) == 2 assert sech(pi*I*Rational(-2, 3)) == -2 assert sech(pi*I/4) == sqrt(2) assert sech(-pi*I/4) == sqrt(2) assert sech(pi*I*Rational(5, 4)) == -sqrt(2) assert sech(pi*I*Rational(-5, 4)) == -sqrt(2) assert sech(pi*I/6) == 2/sqrt(3) assert sech(-pi*I/6) == 2/sqrt(3) assert sech(pi*I*Rational(7, 6)) == -2/sqrt(3) assert sech(pi*I*Rational(-5, 6)) == -2/sqrt(3) assert sech(pi*I/105) == 1/cos(pi/105) assert sech(-pi*I/105) == 1/cos(pi/105) assert sech(x*I) == 1/cos(x) assert sech(k*pi*I) == 1/cos(k*pi) assert sech(17*k*pi*I) == 1/cos(17*k*pi) assert sech(n).is_real is True assert expand_trig(sech(x + y)) == 1/(cosh(x)*cosh(y) + sinh(x)*sinh(y)) def test_sech_series(): x = Symbol('x') assert sech(x).series(x, 0, 10) == \ 1 - x**2/2 + 5*x**4/24 - 61*x**6/720 + 277*x**8/8064 + O(x**10) def test_sech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: sech(x).fdiff(2)) def test_asinh(): x, y = symbols('x,y') assert unchanged(asinh, x) assert asinh(-x) == -asinh(x) #at specific points assert asinh(nan) is nan assert asinh( 0) == 0 assert asinh(+1) == log(sqrt(2) + 1) assert asinh(-1) == log(sqrt(2) - 1) assert asinh(I) == pi*I/2 assert asinh(-I) == -pi*I/2 assert asinh(I/2) == pi*I/6 assert asinh(-I/2) == -pi*I/6 # at infinites assert asinh(oo) is oo assert asinh(-oo) is -oo assert asinh(I*oo) is oo assert asinh(-I *oo) is -oo assert asinh(zoo) is zoo #properties assert asinh(I *(sqrt(3) - 1)/(2**Rational(3, 2))) == pi*I/12 assert asinh(-I *(sqrt(3) - 1)/(2**Rational(3, 2))) == -pi*I/12 assert asinh(I*(sqrt(5) - 1)/4) == pi*I/10 assert asinh(-I*(sqrt(5) - 1)/4) == -pi*I/10 assert asinh(I*(sqrt(5) + 1)/4) == pi*I*Rational(3, 10) assert asinh(-I*(sqrt(5) + 1)/4) == pi*I*Rational(-3, 10) # Symmetry assert asinh(Rational(-1, 2)) == -asinh(S.Half) # inverse composition assert unchanged(asinh, sinh(Symbol('v1'))) assert asinh(sinh(0, evaluate=False)) == 0 assert asinh(sinh(-3, evaluate=False)) == -3 assert asinh(sinh(2, evaluate=False)) == 2 assert asinh(sinh(I, evaluate=False)) == I assert asinh(sinh(-I, evaluate=False)) == -I assert asinh(sinh(5*I, evaluate=False)) == -2*I*pi + 5*I assert asinh(sinh(15 + 11*I)) == 15 - 4*I*pi + 11*I assert asinh(sinh(-73 + 97*I)) == 73 - 97*I + 31*I*pi assert asinh(sinh(-7 - 23*I)) == 7 - 7*I*pi + 23*I assert asinh(sinh(13 - 3*I)) == -13 - I*pi + 3*I def test_asinh_rewrite(): x = Symbol('x') assert asinh(x).rewrite(log) == log(x + sqrt(x**2 + 1)) def test_asinh_series(): x = Symbol('x') assert asinh(x).series(x, 0, 8) == \ x - x**3/6 + 3*x**5/40 - 5*x**7/112 + O(x**8) t5 = asinh(x).taylor_term(5, x) assert t5 == 3*x**5/40 assert asinh(x).taylor_term(7, x, t5, 0) == -5*x**7/112 def test_asinh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asinh(x).fdiff(2)) def test_acosh(): x = Symbol('x') assert unchanged(acosh, -x) #at specific points assert acosh(1) == 0 assert acosh(-1) == pi*I assert acosh(0) == I*pi/2 assert acosh(S.Half) == I*pi/3 assert acosh(Rational(-1, 2)) == pi*I*Rational(2, 3) assert acosh(nan) is nan # at infinites assert acosh(oo) is oo assert acosh(-oo) is oo assert acosh(I*oo) == oo + I*pi/2 assert acosh(-I*oo) == oo - I*pi/2 assert acosh(zoo) is zoo assert acosh(I) == log(I*(1 + sqrt(2))) assert acosh(-I) == log(-I*(1 + sqrt(2))) assert acosh((sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(5, 12) assert acosh(-(sqrt(3) - 1)/(2*sqrt(2))) == pi*I*Rational(7, 12) assert acosh(sqrt(2)/2) == I*pi/4 assert acosh(-sqrt(2)/2) == I*pi*Rational(3, 4) assert acosh(sqrt(3)/2) == I*pi/6 assert acosh(-sqrt(3)/2) == I*pi*Rational(5, 6) assert acosh(sqrt(2 + sqrt(2))/2) == I*pi/8 assert acosh(-sqrt(2 + sqrt(2))/2) == I*pi*Rational(7, 8) assert acosh(sqrt(2 - sqrt(2))/2) == I*pi*Rational(3, 8) assert acosh(-sqrt(2 - sqrt(2))/2) == I*pi*Rational(5, 8) assert acosh((1 + sqrt(3))/(2*sqrt(2))) == I*pi/12 assert acosh(-(1 + sqrt(3))/(2*sqrt(2))) == I*pi*Rational(11, 12) assert acosh((sqrt(5) + 1)/4) == I*pi/5 assert acosh(-(sqrt(5) + 1)/4) == I*pi*Rational(4, 5) assert str(acosh(5*I).n(6)) == '2.31244 + 1.5708*I' assert str(acosh(-5*I).n(6)) == '2.31244 - 1.5708*I' # inverse composition assert unchanged(acosh, Symbol('v1')) assert acosh(cosh(-3, evaluate=False)) == 3 assert acosh(cosh(3, evaluate=False)) == 3 assert acosh(cosh(0, evaluate=False)) == 0 assert acosh(cosh(I, evaluate=False)) == I assert acosh(cosh(-I, evaluate=False)) == I assert acosh(cosh(7*I, evaluate=False)) == -2*I*pi + 7*I assert acosh(cosh(1 + I)) == 1 + I assert acosh(cosh(3 - 3*I)) == 3 - 3*I assert acosh(cosh(-3 + 2*I)) == 3 - 2*I assert acosh(cosh(-5 - 17*I)) == 5 - 6*I*pi + 17*I assert acosh(cosh(-21 + 11*I)) == 21 - 11*I + 4*I*pi assert acosh(cosh(cosh(1) + I)) == cosh(1) + I def test_acosh_rewrite(): x = Symbol('x') assert acosh(x).rewrite(log) == log(x + sqrt(x - 1)*sqrt(x + 1)) def test_acosh_series(): x = Symbol('x') assert acosh(x).series(x, 0, 8) == \ -I*x + pi*I/2 - I*x**3/6 - 3*I*x**5/40 - 5*I*x**7/112 + O(x**8) t5 = acosh(x).taylor_term(5, x) assert t5 == - 3*I*x**5/40 assert acosh(x).taylor_term(7, x, t5, 0) == - 5*I*x**7/112 def test_acosh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acosh(x).fdiff(2)) def test_asech(): x = Symbol('x') assert unchanged(asech, -x) # values at fixed points assert asech(1) == 0 assert asech(-1) == pi*I assert asech(0) is oo assert asech(2) == I*pi/3 assert asech(-2) == 2*I*pi / 3 assert asech(nan) is nan # at infinites assert asech(oo) == I*pi/2 assert asech(-oo) == I*pi/2 assert asech(zoo) == I*AccumBounds(-pi/2, pi/2) assert asech(I) == log(1 + sqrt(2)) - I*pi/2 assert asech(-I) == log(1 + sqrt(2)) + I*pi/2 assert asech(sqrt(2) - sqrt(6)) == 11*I*pi / 12 assert asech(sqrt(2 - 2/sqrt(5))) == I*pi / 10 assert asech(-sqrt(2 - 2/sqrt(5))) == 9*I*pi / 10 assert asech(2 / sqrt(2 + sqrt(2))) == I*pi / 8 assert asech(-2 / sqrt(2 + sqrt(2))) == 7*I*pi / 8 assert asech(sqrt(5) - 1) == I*pi / 5 assert asech(1 - sqrt(5)) == 4*I*pi / 5 assert asech(-sqrt(2*(2 + sqrt(2)))) == 5*I*pi / 8 # properties # asech(x) == acosh(1/x) assert asech(sqrt(2)) == acosh(1/sqrt(2)) assert asech(2/sqrt(3)) == acosh(sqrt(3)/2) assert asech(2/sqrt(2 + sqrt(2))) == acosh(sqrt(2 + sqrt(2))/2) assert asech(2) == acosh(S.Half) # asech(x) == I*acos(1/x) # (Note: the exact formula is asech(x) == +/- I*acos(1/x)) assert asech(-sqrt(2)) == I*acos(-1/sqrt(2)) assert asech(-2/sqrt(3)) == I*acos(-sqrt(3)/2) assert asech(-S(2)) == I*acos(Rational(-1, 2)) assert asech(-2/sqrt(2)) == I*acos(-sqrt(2)/2) # sech(asech(x)) / x == 1 assert expand_mul(sech(asech(sqrt(6) - sqrt(2))) / (sqrt(6) - sqrt(2))) == 1 assert expand_mul(sech(asech(sqrt(6) + sqrt(2))) / (sqrt(6) + sqrt(2))) == 1 assert (sech(asech(sqrt(2 + 2/sqrt(5)))) / (sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(-sqrt(2 + 2/sqrt(5)))) / (-sqrt(2 + 2/sqrt(5)))).simplify() == 1 assert (sech(asech(sqrt(2*(2 + sqrt(2))))) / (sqrt(2*(2 + sqrt(2))))).simplify() == 1 assert expand_mul(sech(asech(1 + sqrt(5))) / (1 + sqrt(5))) == 1 assert expand_mul(sech(asech(-1 - sqrt(5))) / (-1 - sqrt(5))) == 1 assert expand_mul(sech(asech(-sqrt(6) - sqrt(2))) / (-sqrt(6) - sqrt(2))) == 1 # numerical evaluation assert str(asech(5*I).n(6)) == '0.19869 - 1.5708*I' assert str(asech(-5*I).n(6)) == '0.19869 + 1.5708*I' def test_asech_series(): x = Symbol('x') t6 = asech(x).expansion_term(6, x) assert t6 == -5*x**6/96 assert asech(x).expansion_term(8, x, t6, 0) == -35*x**8/1024 def test_asech_rewrite(): x = Symbol('x') assert asech(x).rewrite(log) == log(1/x + sqrt(1/x - 1) * sqrt(1/x + 1)) def test_asech_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: asech(x).fdiff(2)) def test_acsch(): x = Symbol('x') assert unchanged(acsch, x) assert acsch(-x) == -acsch(x) # values at fixed points assert acsch(1) == log(1 + sqrt(2)) assert acsch(-1) == - log(1 + sqrt(2)) assert acsch(0) is zoo assert acsch(2) == log((1+sqrt(5))/2) assert acsch(-2) == - log((1+sqrt(5))/2) assert acsch(I) == - I*pi/2 assert acsch(-I) == I*pi/2 assert acsch(-I*(sqrt(6) + sqrt(2))) == I*pi / 12 assert acsch(I*(sqrt(2) + sqrt(6))) == -I*pi / 12 assert acsch(-I*(1 + sqrt(5))) == I*pi / 10 assert acsch(I*(1 + sqrt(5))) == -I*pi / 10 assert acsch(-I*2 / sqrt(2 - sqrt(2))) == I*pi / 8 assert acsch(I*2 / sqrt(2 - sqrt(2))) == -I*pi / 8 assert acsch(-I*2) == I*pi / 6 assert acsch(I*2) == -I*pi / 6 assert acsch(-I*sqrt(2 + 2/sqrt(5))) == I*pi / 5 assert acsch(I*sqrt(2 + 2/sqrt(5))) == -I*pi / 5 assert acsch(-I*sqrt(2)) == I*pi / 4 assert acsch(I*sqrt(2)) == -I*pi / 4 assert acsch(-I*(sqrt(5)-1)) == 3*I*pi / 10 assert acsch(I*(sqrt(5)-1)) == -3*I*pi / 10 assert acsch(-I*2 / sqrt(3)) == I*pi / 3 assert acsch(I*2 / sqrt(3)) == -I*pi / 3 assert acsch(-I*2 / sqrt(2 + sqrt(2))) == 3*I*pi / 8 assert acsch(I*2 / sqrt(2 + sqrt(2))) == -3*I*pi / 8 assert acsch(-I*sqrt(2 - 2/sqrt(5))) == 2*I*pi / 5 assert acsch(I*sqrt(2 - 2/sqrt(5))) == -2*I*pi / 5 assert acsch(-I*(sqrt(6) - sqrt(2))) == 5*I*pi / 12 assert acsch(I*(sqrt(6) - sqrt(2))) == -5*I*pi / 12 assert acsch(nan) is nan # properties # acsch(x) == asinh(1/x) assert acsch(-I*sqrt(2)) == asinh(I/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == asinh(I*sqrt(3) / 2) # acsch(x) == -I*asin(I/x) assert acsch(-I*sqrt(2)) == -I*asin(-1/sqrt(2)) assert acsch(-I*2 / sqrt(3)) == -I*asin(-sqrt(3)/2) # csch(acsch(x)) / x == 1 assert expand_mul(csch(acsch(-I*(sqrt(6) + sqrt(2)))) / (-I*(sqrt(6) + sqrt(2)))) == 1 assert expand_mul(csch(acsch(I*(1 + sqrt(5)))) / (I*(1 + sqrt(5)))) == 1 assert (csch(acsch(I*sqrt(2 - 2/sqrt(5)))) / (I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 assert (csch(acsch(-I*sqrt(2 - 2/sqrt(5)))) / (-I*sqrt(2 - 2/sqrt(5)))).simplify() == 1 # numerical evaluation assert str(acsch(5*I+1).n(6)) == '0.0391819 - 0.193363*I' assert str(acsch(-5*I+1).n(6)) == '0.0391819 + 0.193363*I' def test_acsch_infinities(): assert acsch(oo) == 0 assert acsch(-oo) == 0 assert acsch(zoo) == 0 def test_acsch_rewrite(): x = Symbol('x') assert acsch(x).rewrite(log) == log(1/x + sqrt(1/x**2 + 1)) def test_acsch_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acsch(x).fdiff(2)) def test_atanh(): x = Symbol('x') #at specific points assert atanh(0) == 0 assert atanh(I) == I*pi/4 assert atanh(-I) == -I*pi/4 assert atanh(1) is oo assert atanh(-1) is -oo assert atanh(nan) is nan # at infinites assert atanh(oo) == -I*pi/2 assert atanh(-oo) == I*pi/2 assert atanh(I*oo) == I*pi/2 assert atanh(-I*oo) == -I*pi/2 assert atanh(zoo) == I*AccumBounds(-pi/2, pi/2) #properties assert atanh(-x) == -atanh(x) assert atanh(I/sqrt(3)) == I*pi/6 assert atanh(-I/sqrt(3)) == -I*pi/6 assert atanh(I*sqrt(3)) == I*pi/3 assert atanh(-I*sqrt(3)) == -I*pi/3 assert atanh(I*(1 + sqrt(2))) == pi*I*Rational(3, 8) assert atanh(I*(sqrt(2) - 1)) == pi*I/8 assert atanh(I*(1 - sqrt(2))) == -pi*I/8 assert atanh(-I*(1 + sqrt(2))) == pi*I*Rational(-3, 8) assert atanh(I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(2, 5) assert atanh(-I*sqrt(5 + 2*sqrt(5))) == I*pi*Rational(-2, 5) assert atanh(I*(2 - sqrt(3))) == pi*I/12 assert atanh(I*(sqrt(3) - 2)) == -pi*I/12 assert atanh(oo) == -I*pi/2 # Symmetry assert atanh(Rational(-1, 2)) == -atanh(S.Half) # inverse composition assert unchanged(atanh, tanh(Symbol('v1'))) assert atanh(tanh(-5, evaluate=False)) == -5 assert atanh(tanh(0, evaluate=False)) == 0 assert atanh(tanh(7, evaluate=False)) == 7 assert atanh(tanh(I, evaluate=False)) == I assert atanh(tanh(-I, evaluate=False)) == -I assert atanh(tanh(-11*I, evaluate=False)) == -11*I + 4*I*pi assert atanh(tanh(3 + I)) == 3 + I assert atanh(tanh(4 + 5*I)) == 4 - 2*I*pi + 5*I assert atanh(tanh(pi/2)) == pi/2 assert atanh(tanh(pi)) == pi assert atanh(tanh(-3 + 7*I)) == -3 - 2*I*pi + 7*I assert atanh(tanh(9 - I*Rational(2, 3))) == 9 - I*Rational(2, 3) assert atanh(tanh(-32 - 123*I)) == -32 - 123*I + 39*I*pi def test_atanh_rewrite(): x = Symbol('x') assert atanh(x).rewrite(log) == (log(1 + x) - log(1 - x)) / 2 def test_atanh_series(): x = Symbol('x') assert atanh(x).series(x, 0, 10) == \ x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10) def test_atanh_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: atanh(x).fdiff(2)) def test_acoth(): x = Symbol('x') #at specific points assert acoth(0) == I*pi/2 assert acoth(I) == -I*pi/4 assert acoth(-I) == I*pi/4 assert acoth(1) is oo assert acoth(-1) is -oo assert acoth(nan) is nan # at infinites assert acoth(oo) == 0 assert acoth(-oo) == 0 assert acoth(I*oo) == 0 assert acoth(-I*oo) == 0 assert acoth(zoo) == 0 #properties assert acoth(-x) == -acoth(x) assert acoth(I/sqrt(3)) == -I*pi/3 assert acoth(-I/sqrt(3)) == I*pi/3 assert acoth(I*sqrt(3)) == -I*pi/6 assert acoth(-I*sqrt(3)) == I*pi/6 assert acoth(I*(1 + sqrt(2))) == -pi*I/8 assert acoth(-I*(sqrt(2) + 1)) == pi*I/8 assert acoth(I*(1 - sqrt(2))) == pi*I*Rational(3, 8) assert acoth(I*(sqrt(2) - 1)) == pi*I*Rational(-3, 8) assert acoth(I*sqrt(5 + 2*sqrt(5))) == -I*pi/10 assert acoth(-I*sqrt(5 + 2*sqrt(5))) == I*pi/10 assert acoth(I*(2 + sqrt(3))) == -pi*I/12 assert acoth(-I*(2 + sqrt(3))) == pi*I/12 assert acoth(I*(2 - sqrt(3))) == pi*I*Rational(-5, 12) assert acoth(I*(sqrt(3) - 2)) == pi*I*Rational(5, 12) # Symmetry assert acoth(Rational(-1, 2)) == -acoth(S.Half) def test_acoth_rewrite(): x = Symbol('x') assert acoth(x).rewrite(log) == (log(1 + 1/x) - log(1 - 1/x)) / 2 def test_acoth_series(): x = Symbol('x') assert acoth(x).series(x, 0, 10) == \ I*pi/2 + x + x**3/3 + x**5/5 + x**7/7 + x**9/9 + O(x**10) def test_acoth_fdiff(): x = Symbol('x') raises(ArgumentIndexError, lambda: acoth(x).fdiff(2)) def test_inverses(): x = Symbol('x') assert sinh(x).inverse() == asinh raises(AttributeError, lambda: cosh(x).inverse()) assert tanh(x).inverse() == atanh assert coth(x).inverse() == acoth assert asinh(x).inverse() == sinh assert acosh(x).inverse() == cosh assert atanh(x).inverse() == tanh assert acoth(x).inverse() == coth assert asech(x).inverse() == sech assert acsch(x).inverse() == csch def test_leading_term(): x = Symbol('x') assert cosh(x).as_leading_term(x) == 1 assert coth(x).as_leading_term(x) == 1/x assert acosh(x).as_leading_term(x) == I*pi/2 assert acoth(x).as_leading_term(x) == I*pi/2 for func in [sinh, tanh, asinh, atanh]: assert func(x).as_leading_term(x) == x for func in [sinh, cosh, tanh, coth, asinh, acosh, atanh, acoth]: for arg in (1/x, S.Half): eq = func(arg) assert eq.as_leading_term(x) == eq for func in [csch, sech]: eq = func(S.Half) assert eq.as_leading_term(x) == eq def test_complex(): a, b = symbols('a,b', real=True) z = a + b*I for func in [sinh, cosh, tanh, coth, sech, csch]: assert func(z).conjugate() == func(a - b*I) for deep in [True, False]: assert sinh(z).expand( complex=True, deep=deep) == sinh(a)*cos(b) + I*cosh(a)*sin(b) assert cosh(z).expand( complex=True, deep=deep) == cosh(a)*cos(b) + I*sinh(a)*sin(b) assert tanh(z).expand(complex=True, deep=deep) == sinh(a)*cosh( a)/(cos(b)**2 + sinh(a)**2) + I*sin(b)*cos(b)/(cos(b)**2 + sinh(a)**2) assert coth(z).expand(complex=True, deep=deep) == sinh(a)*cosh( a)/(sin(b)**2 + sinh(a)**2) - I*sin(b)*cos(b)/(sin(b)**2 + sinh(a)**2) assert csch(z).expand(complex=True, deep=deep) == cos(b) * sinh(a) / (sin(b)**2\ *cosh(a)**2 + cos(b)**2 * sinh(a)**2) - I*sin(b) * cosh(a) / (sin(b)**2\ *cosh(a)**2 + cos(b)**2 * sinh(a)**2) assert sech(z).expand(complex=True, deep=deep) == cos(b) * cosh(a) / (sin(b)**2\ *sinh(a)**2 + cos(b)**2 * cosh(a)**2) - I*sin(b) * sinh(a) / (sin(b)**2\ *sinh(a)**2 + cos(b)**2 * cosh(a)**2) def test_complex_2899(): a, b = symbols('a,b', real=True) for deep in [True, False]: for func in [sinh, cosh, tanh, coth]: assert func(a).expand(complex=True, deep=deep) == func(a) def test_simplifications(): x = Symbol('x') assert sinh(asinh(x)) == x assert sinh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) assert sinh(atanh(x)) == x/sqrt(1 - x**2) assert sinh(acoth(x)) == 1/(sqrt(x - 1) * sqrt(x + 1)) assert cosh(asinh(x)) == sqrt(1 + x**2) assert cosh(acosh(x)) == x assert cosh(atanh(x)) == 1/sqrt(1 - x**2) assert cosh(acoth(x)) == x/(sqrt(x - 1) * sqrt(x + 1)) assert tanh(asinh(x)) == x/sqrt(1 + x**2) assert tanh(acosh(x)) == sqrt(x - 1) * sqrt(x + 1) / x assert tanh(atanh(x)) == x assert tanh(acoth(x)) == 1/x assert coth(asinh(x)) == sqrt(1 + x**2)/x assert coth(acosh(x)) == x/(sqrt(x - 1) * sqrt(x + 1)) assert coth(atanh(x)) == 1/x assert coth(acoth(x)) == x assert csch(asinh(x)) == 1/x assert csch(acosh(x)) == 1/(sqrt(x - 1) * sqrt(x + 1)) assert csch(atanh(x)) == sqrt(1 - x**2)/x assert csch(acoth(x)) == sqrt(x - 1) * sqrt(x + 1) assert sech(asinh(x)) == 1/sqrt(1 + x**2) assert sech(acosh(x)) == 1/x assert sech(atanh(x)) == sqrt(1 - x**2) assert sech(acoth(x)) == sqrt(x - 1) * sqrt(x + 1)/x def test_issue_4136(): assert cosh(asinh(Integer(3)/2)) == sqrt(Integer(13)/4) def test_sinh_rewrite(): x = Symbol('x') assert sinh(x).rewrite(exp) == (exp(x) - exp(-x))/2 \ == sinh(x).rewrite('tractable') assert sinh(x).rewrite(cosh) == -I*cosh(x + I*pi/2) tanh_half = tanh(S.Half*x) assert sinh(x).rewrite(tanh) == 2*tanh_half/(1 - tanh_half**2) coth_half = coth(S.Half*x) assert sinh(x).rewrite(coth) == 2*coth_half/(coth_half**2 - 1) def test_cosh_rewrite(): x = Symbol('x') assert cosh(x).rewrite(exp) == (exp(x) + exp(-x))/2 \ == cosh(x).rewrite('tractable') assert cosh(x).rewrite(sinh) == -I*sinh(x + I*pi/2) tanh_half = tanh(S.Half*x)**2 assert cosh(x).rewrite(tanh) == (1 + tanh_half)/(1 - tanh_half) coth_half = coth(S.Half*x)**2 assert cosh(x).rewrite(coth) == (coth_half + 1)/(coth_half - 1) def test_tanh_rewrite(): x = Symbol('x') assert tanh(x).rewrite(exp) == (exp(x) - exp(-x))/(exp(x) + exp(-x)) \ == tanh(x).rewrite('tractable') assert tanh(x).rewrite(sinh) == I*sinh(x)/sinh(I*pi/2 - x) assert tanh(x).rewrite(cosh) == I*cosh(I*pi/2 - x)/cosh(x) assert tanh(x).rewrite(coth) == 1/coth(x) def test_coth_rewrite(): x = Symbol('x') assert coth(x).rewrite(exp) == (exp(x) + exp(-x))/(exp(x) - exp(-x)) \ == coth(x).rewrite('tractable') assert coth(x).rewrite(sinh) == -I*sinh(I*pi/2 - x)/sinh(x) assert coth(x).rewrite(cosh) == -I*cosh(x)/cosh(I*pi/2 - x) assert coth(x).rewrite(tanh) == 1/tanh(x) def test_csch_rewrite(): x = Symbol('x') assert csch(x).rewrite(exp) == 1 / (exp(x)/2 - exp(-x)/2) \ == csch(x).rewrite('tractable') assert csch(x).rewrite(cosh) == I/cosh(x + I*pi/2) tanh_half = tanh(S.Half*x) assert csch(x).rewrite(tanh) == (1 - tanh_half**2)/(2*tanh_half) coth_half = coth(S.Half*x) assert csch(x).rewrite(coth) == (coth_half**2 - 1)/(2*coth_half) def test_sech_rewrite(): x = Symbol('x') assert sech(x).rewrite(exp) == 1 / (exp(x)/2 + exp(-x)/2) \ == sech(x).rewrite('tractable') assert sech(x).rewrite(sinh) == I/sinh(x + I*pi/2) tanh_half = tanh(S.Half*x)**2 assert sech(x).rewrite(tanh) == (1 - tanh_half)/(1 + tanh_half) coth_half = coth(S.Half*x)**2 assert sech(x).rewrite(coth) == (coth_half - 1)/(coth_half + 1) def test_derivs(): x = Symbol('x') assert coth(x).diff(x) == -sinh(x)**(-2) assert sinh(x).diff(x) == cosh(x) assert cosh(x).diff(x) == sinh(x) assert tanh(x).diff(x) == -tanh(x)**2 + 1 assert csch(x).diff(x) == -coth(x)*csch(x) assert sech(x).diff(x) == -tanh(x)*sech(x) assert acoth(x).diff(x) == 1/(-x**2 + 1) assert asinh(x).diff(x) == 1/sqrt(x**2 + 1) assert acosh(x).diff(x) == 1/sqrt(x**2 - 1) assert atanh(x).diff(x) == 1/(-x**2 + 1) assert asech(x).diff(x) == -1/(x*sqrt(1 - x**2)) assert acsch(x).diff(x) == -1/(x**2*sqrt(1 + x**(-2))) def test_sinh_expansion(): x, y = symbols('x,y') assert sinh(x+y).expand(trig=True) == sinh(x)*cosh(y) + cosh(x)*sinh(y) assert sinh(2*x).expand(trig=True) == 2*sinh(x)*cosh(x) assert sinh(3*x).expand(trig=True).expand() == \ sinh(x)**3 + 3*sinh(x)*cosh(x)**2 def test_cosh_expansion(): x, y = symbols('x,y') assert cosh(x+y).expand(trig=True) == cosh(x)*cosh(y) + sinh(x)*sinh(y) assert cosh(2*x).expand(trig=True) == cosh(x)**2 + sinh(x)**2 assert cosh(3*x).expand(trig=True).expand() == \ 3*sinh(x)**2*cosh(x) + cosh(x)**3 def test_cosh_positive(): # See issue 11721 # cosh(x) is positive for real values of x k = symbols('k', real=True) n = symbols('n', integer=True) assert cosh(k, evaluate=False).is_positive is True assert cosh(k + 2*n*pi*I, evaluate=False).is_positive is True assert cosh(I*pi/4, evaluate=False).is_positive is True assert cosh(3*I*pi/4, evaluate=False).is_positive is False def test_cosh_nonnegative(): k = symbols('k', real=True) n = symbols('n', integer=True) assert cosh(k, evaluate=False).is_nonnegative is True assert cosh(k + 2*n*pi*I, evaluate=False).is_nonnegative is True assert cosh(I*pi/4, evaluate=False).is_nonnegative is True assert cosh(3*I*pi/4, evaluate=False).is_nonnegative is False assert cosh(S.Zero, evaluate=False).is_nonnegative is True def test_real_assumptions(): z = Symbol('z', real=False) assert sinh(z).is_real is None assert cosh(z).is_real is None assert tanh(z).is_real is None assert sech(z).is_real is None assert csch(z).is_real is None assert coth(z).is_real is None def test_sign_assumptions(): p = Symbol('p', positive=True) n = Symbol('n', negative=True) assert sinh(n).is_negative is True assert sinh(p).is_positive is True assert cosh(n).is_positive is True assert cosh(p).is_positive is True assert tanh(n).is_negative is True assert tanh(p).is_positive is True assert csch(n).is_negative is True assert csch(p).is_positive is True assert sech(n).is_positive is True assert sech(p).is_positive is True assert coth(n).is_negative is True assert coth(p).is_positive is True
fa1d42b6e1466cde1882b2858322c2e3f612e2f4a181313d0079a9c4613cc501
from sympy import (hyper, meijerg, S, Tuple, pi, I, exp, log, Rational, cos, sqrt, symbols, oo, Derivative, gamma, O, appellf1) from sympy.abc import x, z, k from sympy.series.limits import limit from sympy.testing.pytest import raises, slow from sympy.testing.randtest import ( random_complex_number as randcplx, verify_numerically as tn, test_derivative_numerically as td) def test_TupleParametersBase(): # test that our implementation of the chain rule works p = hyper((), (), z**2) assert p.diff(z) == p*2*z def test_hyper(): raises(TypeError, lambda: hyper(1, 2, z)) assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z) h = hyper((1, 2), (3, 4, 5), z) assert h.ap == Tuple(1, 2) assert h.bq == Tuple(3, 4, 5) assert h.argument == z assert h.is_commutative is True # just a few checks to make sure that all arguments go where they should assert tn(hyper(Tuple(), Tuple(), z), exp(z), z) assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z) # differentiation h = hyper( (randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z) assert td(h, z) a1, a2, b1, b2, b3 = symbols('a1:3, b1:4') assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \ a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z) # differentiation wrt parameters is not supported assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z) # hyper is unbranched wrt parameters from sympy import polar_lift assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \ hyper([z], [k], polar_lift(x)) # hyper does not automatically evaluate anyway, but the test is to make # sure that the evaluate keyword is accepted assert hyper((1, 2), (1,), z, evaluate=False).func is hyper def test_expand_func(): # evaluation at 1 of Gauss' hypergeometric function: from sympy.abc import a, b, c from sympy import gamma, expand_func a1, b1, c1 = randcplx(), randcplx(), randcplx() + 5 assert expand_func(hyper([a, b], [c], 1)) == \ gamma(c)*gamma(-a - b + c)/(gamma(-a + c)*gamma(-b + c)) assert abs(expand_func(hyper([a1, b1], [c1], 1)).n() - hyper([a1, b1], [c1], 1).n()) < 1e-10 # hyperexpand wrapper for hyper: assert expand_func(hyper([], [], z)) == exp(z) assert expand_func(hyper([1, 2, 3], [], z)) == hyper([1, 2, 3], [], z) assert expand_func(meijerg([[1, 1], []], [[1], [0]], z)) == log(z + 1) assert expand_func(meijerg([[1, 1], []], [[], []], z)) == \ meijerg([[1, 1], []], [[], []], z) def replace_dummy(expr, sym): from sympy import Dummy dum = expr.atoms(Dummy) if not dum: return expr assert len(dum) == 1 return expr.xreplace({dum.pop(): sym}) def test_hyper_rewrite_sum(): from sympy import RisingFactorial, factorial, Dummy, Sum _k = Dummy("k") assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \ Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) / RisingFactorial(3, _k), (_k, 0, oo)) assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \ hyper((1, 2, 3), (-1, 3), z) def test_radius_of_convergence(): assert hyper((1, 2), [3], z).radius_of_convergence == 1 assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0 assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0 assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0 assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1 assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0 assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo assert hyper([1, 1], [3], 1).convergence_statement == True assert hyper([1, 1], [2], 1).convergence_statement == False assert hyper([1, 1], [2], -1).convergence_statement == True assert hyper([1, 1], [1], -1).convergence_statement == False def test_meijer(): raises(TypeError, lambda: meijerg(1, z)) raises(TypeError, lambda: meijerg(((1,), (2,)), (3,), (4,), z)) assert meijerg(((1, 2), (3,)), ((4,), (5,)), z) == \ meijerg(Tuple(1, 2), Tuple(3), Tuple(4), Tuple(5), z) g = meijerg((1, 2), (3, 4, 5), (6, 7, 8, 9), (10, 11, 12, 13, 14), z) assert g.an == Tuple(1, 2) assert g.ap == Tuple(1, 2, 3, 4, 5) assert g.aother == Tuple(3, 4, 5) assert g.bm == Tuple(6, 7, 8, 9) assert g.bq == Tuple(6, 7, 8, 9, 10, 11, 12, 13, 14) assert g.bother == Tuple(10, 11, 12, 13, 14) assert g.argument == z assert g.nu == 75 assert g.delta == -1 assert g.is_commutative is True assert g.is_number is False #issue 13071 assert meijerg([[],[]], [[S.Half],[0]], 1).is_number is True assert meijerg([1, 2], [3], [4], [5], z).delta == S.Half # just a few checks to make sure that all arguments go where they should assert tn(meijerg(Tuple(), Tuple(), Tuple(0), Tuple(), -z), exp(z), z) assert tn(sqrt(pi)*meijerg(Tuple(), Tuple(), Tuple(0), Tuple(S.Half), z**2/4), cos(z), z) assert tn(meijerg(Tuple(1, 1), Tuple(), Tuple(1), Tuple(0), z), log(1 + z), z) # test exceptions raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((oo,), (2, 0)), x)) raises(ValueError, lambda: meijerg(((3, 1), (2,)), ((1,), (2, 0)), x)) # differentiation g = meijerg((randcplx(),), (randcplx() + 2*I,), Tuple(), (randcplx(), randcplx()), z) assert td(g, z) g = meijerg(Tuple(), (randcplx(),), Tuple(), (randcplx(), randcplx()), z) assert td(g, z) g = meijerg(Tuple(), Tuple(), Tuple(randcplx()), Tuple(randcplx(), randcplx()), z) assert td(g, z) a1, a2, b1, b2, c1, c2, d1, d2 = symbols('a1:3, b1:3, c1:3, d1:3') assert meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z).diff(z) == \ (meijerg((a1 - 1, a2), (b1, b2), (c1, c2), (d1, d2), z) + (a1 - 1)*meijerg((a1, a2), (b1, b2), (c1, c2), (d1, d2), z))/z assert meijerg([z, z], [], [], [], z).diff(z) == \ Derivative(meijerg([z, z], [], [], [], z), z) # meijerg is unbranched wrt parameters from sympy import polar_lift as pl assert meijerg([pl(a1)], [pl(a2)], [pl(b1)], [pl(b2)], pl(z)) == \ meijerg([a1], [a2], [b1], [b2], pl(z)) # integrand from sympy.abc import a, b, c, d, s assert meijerg([a], [b], [c], [d], z).integrand(s) == \ z**s*gamma(c - s)*gamma(-a + s + 1)/(gamma(b - s)*gamma(-d + s + 1)) def test_meijerg_derivative(): assert meijerg([], [1, 1], [0, 0, x], [], z).diff(x) == \ log(z)*meijerg([], [1, 1], [0, 0, x], [], z) \ + 2*meijerg([], [1, 1, 1], [0, 0, x, 0], [], z) y = randcplx() a = 5 # mpmath chokes with non-real numbers, and Mod1 with floats assert td(meijerg([x], [], [], [], y), x) assert td(meijerg([x**2], [], [], [], y), x) assert td(meijerg([], [x], [], [], y), x) assert td(meijerg([], [], [x], [], y), x) assert td(meijerg([], [], [], [x], y), x) assert td(meijerg([x], [a], [a + 1], [], y), x) assert td(meijerg([x], [a + 1], [a], [], y), x) assert td(meijerg([x, a], [], [], [a + 1], y), x) assert td(meijerg([x, a + 1], [], [], [a], y), x) b = Rational(3, 2) assert td(meijerg([a + 2], [b], [b - 3, x], [a], y), x) def test_meijerg_period(): assert meijerg([], [1], [0], [], x).get_period() == 2*pi assert meijerg([1], [], [], [0], x).get_period() == 2*pi assert meijerg([], [], [0], [], x).get_period() == 2*pi # exp(x) assert meijerg( [], [], [0], [S.Half], x).get_period() == 2*pi # cos(sqrt(x)) assert meijerg( [], [], [S.Half], [0], x).get_period() == 4*pi # sin(sqrt(x)) assert meijerg([1, 1], [], [1], [0], x).get_period() is oo # log(1 + x) def test_hyper_unpolarify(): from sympy import exp_polar a = exp_polar(2*pi*I)*x b = x assert hyper([], [], a).argument == b assert hyper([0], [], a).argument == a assert hyper([0], [0], a).argument == b assert hyper([0, 1], [0], a).argument == a assert hyper([0, 1], [0], exp_polar(2*pi*I)).argument == 1 @slow def test_hyperrep(): from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh, HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1, HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2, HyperRep_cosasin, HyperRep_sinasin) # First test the base class works. from sympy import Piecewise, exp_polar a, b, c, d, z = symbols('a b c d z') class myrep(HyperRep): @classmethod def _expr_small(cls, x): return a @classmethod def _expr_small_minus(cls, x): return b @classmethod def _expr_big(cls, x, n): return c*n @classmethod def _expr_big_minus(cls, x, n): return d*n assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True)) assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \ Piecewise((0, abs(z) > 1), (b, True)) assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \ Piecewise((c, abs(z) > 1), (a, True)) assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \ Piecewise((d, abs(z) > 1), (b, True)) assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*c, abs(z) > 1), (a, True)) assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \ Piecewise((2*d, abs(z) > 1), (b, True)) assert myrep(z).rewrite('nonrepsmall') == a assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b def t(func, hyp, z): """ Test that func is a valid representation of hyp. """ # First test that func agrees with hyp for small z if not tn(func.rewrite('nonrepsmall'), hyp, z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half): return False # Next check that the two small representations agree. if not tn( func.rewrite('nonrepsmall').subs( z, exp_polar(I*pi)*z).replace(exp_polar, exp), func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'), z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half): return False # Next check continuity along exp_polar(I*pi)*t expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep') if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10: return False # Finally check continuity of the big reps. def dosubs(func, a, b): rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep') return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp) for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]: expr1 = dosubs(func, 2*I*pi*n, I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2) if not tn(expr1, expr2, z): return False expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2) expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2) if not tn(expr1, expr2, z): return False return True # Now test the various representatives. a = Rational(1, 3) assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z) assert t(HyperRep_power1(a, z), hyper([-a], [], z), z) assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z) assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z) assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z) assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z) assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z) assert t(HyperRep_sqrts2(a, z), -2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z) assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z) assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z) assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z) @slow def test_meijerg_eval(): from sympy import besseli, exp_polar from sympy.abc import l a = randcplx() arg = x*exp_polar(k*pi*I) expr1 = pi*meijerg([[], [(a + 1)/2]], [[a/2], [-a/2, (a + 1)/2]], arg**2/4) expr2 = besseli(a, arg) # Test that the two expressions agree for all arguments. for x_ in [0.5, 1.5]: for k_ in [0.0, 0.1, 0.3, 0.5, 0.8, 1, 5.751, 15.3]: assert abs((expr1 - expr2).n(subs={x: x_, k: k_})) < 1e-10 assert abs((expr1 - expr2).n(subs={x: x_, k: -k_})) < 1e-10 # Test continuity independently eps = 1e-13 expr2 = expr1.subs(k, l) for x_ in [0.5, 1.5]: for k_ in [0.5, Rational(1, 3), 0.25, 0.75, Rational(2, 3), 1.0, 1.5]: assert abs((expr1 - expr2).n( subs={x: x_, k: k_ + eps, l: k_ - eps})) < 1e-10 assert abs((expr1 - expr2).n( subs={x: x_, k: -k_ + eps, l: -k_ - eps})) < 1e-10 expr = (meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(-I*pi)/4) + meijerg(((0.5,), ()), ((0.5, 0, 0.5), ()), exp_polar(I*pi)/4)) \ /(2*sqrt(pi)) assert (expr - pi/exp(1)).n(chop=True) == 0 def test_limits(): k, x = symbols('k, x') assert hyper((1,), (Rational(4, 3), Rational(5, 3)), k**2).series(k) == \ 1 + 9*k**2/20 + 81*k**4/1120 + O(k**6) # issue 6350 assert limit(meijerg((), (), (1,), (0,), -x), x, 0) == \ meijerg(((), ()), ((1,), (0,)), 0) # issue 6052 # https://github.com/sympy/sympy/issues/11465 assert limit(1/hyper((1, ), (1, ), x), x, 0) == 1 def test_appellf1(): a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert appellf1(a, b2, b1, c, y, x) == appellf1(a, b1, b2, c, x, y) assert appellf1(a, b1, b1, c, y, x) == appellf1(a, b1, b1, c, x, y) assert appellf1(a, b1, b2, c, S.Zero, S.Zero) is S.One f = appellf1(a, b1, b2, c, S.Zero, S.Zero, evaluate=False) assert f.func is appellf1 assert f.doit() is S.One def test_derivative_appellf1(): from sympy import diff a, b1, b2, c, x, y, z = symbols('a b1 b2 c x y z') assert diff(appellf1(a, b1, b2, c, x, y), x) == a*b1*appellf1(a + 1, b2, b1 + 1, c + 1, y, x)/c assert diff(appellf1(a, b1, b2, c, x, y), y) == a*b2*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)/c assert diff(appellf1(a, b1, b2, c, x, y), z) == 0 assert diff(appellf1(a, b1, b2, c, x, y), a) == Derivative(appellf1(a, b1, b2, c, x, y), a) def test_eval_nseries(): a1, b1, a2, b2 = symbols('a1 b1 a2 b2') assert hyper((1,2), (1,2,3), x**2)._eval_nseries(x, 7, None) == 1 + x**2/3 + x**4/24 + x**6/360 + O(x**7) assert exp(x)._eval_nseries(x,7,None) == hyper((a1, b1), (a1, b1), x)._eval_nseries(x, 7, None) assert hyper((a1, a2), (b1, b2), x)._eval_nseries(z, 7, None) == hyper((a1, a2), (b1, b2), x) + O(z**7)
e74412534b80e4344d6849a5bd42718a3b0963f7198ef0b55eb5cfd1b8ae36cf
from sympy import ( adjoint, conjugate, DiracDelta, Heaviside, nan, pi, sign, sqrt, symbols, transpose, Symbol, Piecewise, I, S, Eq, Ne, oo, SingularityFunction, signsimp ) from sympy.testing.pytest import raises, warns_deprecated_sympy from sympy.core.expr import unchanged from sympy.core.function import ArgumentIndexError x, y = symbols('x y') i = symbols('t', nonzero=True) j = symbols('j', positive=True) k = symbols('k', negative=True) def test_DiracDelta(): assert DiracDelta(1) == 0 assert DiracDelta(5.1) == 0 assert DiracDelta(-pi) == 0 assert DiracDelta(5, 7) == 0 assert DiracDelta(i) == 0 assert DiracDelta(j) == 0 assert DiracDelta(k) == 0 assert DiracDelta(nan) is nan assert DiracDelta(0).func is DiracDelta assert DiracDelta(x).func is DiracDelta # FIXME: this is generally undefined @ x=0 # But then limit(Delta(c)*Heaviside(x),x,-oo) # need's to be implemented. # assert 0*DiracDelta(x) == 0 assert adjoint(DiracDelta(x)) == DiracDelta(x) assert adjoint(DiracDelta(x - y)) == DiracDelta(x - y) assert conjugate(DiracDelta(x)) == DiracDelta(x) assert conjugate(DiracDelta(x - y)) == DiracDelta(x - y) assert transpose(DiracDelta(x)) == DiracDelta(x) assert transpose(DiracDelta(x - y)) == DiracDelta(x - y) assert DiracDelta(x).diff(x) == DiracDelta(x, 1) assert DiracDelta(x, 1).diff(x) == DiracDelta(x, 2) assert DiracDelta(x).is_simple(x) is True assert DiracDelta(3*x).is_simple(x) is True assert DiracDelta(x**2).is_simple(x) is False assert DiracDelta(sqrt(x)).is_simple(x) is False assert DiracDelta(x).is_simple(y) is False assert DiracDelta(x*y).expand(diracdelta=True, wrt=x) == DiracDelta(x)/abs(y) assert DiracDelta(x*y).expand(diracdelta=True, wrt=y) == DiracDelta(y)/abs(x) assert DiracDelta(x**2*y).expand(diracdelta=True, wrt=x) == DiracDelta(x**2*y) assert DiracDelta(y).expand(diracdelta=True, wrt=x) == DiracDelta(y) assert DiracDelta((x - 1)*(x - 2)*(x - 3)).expand(diracdelta=True, wrt=x) == ( DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2) assert DiracDelta(2*x) != DiracDelta(x) # scaling property assert DiracDelta(x) == DiracDelta(-x) # even function assert DiracDelta(-x, 2) == DiracDelta(x, 2) assert DiracDelta(-x, 1) == -DiracDelta(x, 1) # odd deriv is odd assert DiracDelta(-oo*x) == DiracDelta(oo*x) assert DiracDelta(x - y) != DiracDelta(y - x) assert signsimp(DiracDelta(x - y) - DiracDelta(y - x)) == 0 with warns_deprecated_sympy(): assert DiracDelta(x*y).simplify(x) == DiracDelta(x)/abs(y) with warns_deprecated_sympy(): assert DiracDelta(x*y).simplify(y) == DiracDelta(y)/abs(x) with warns_deprecated_sympy(): assert DiracDelta(x**2*y).simplify(x) == DiracDelta(x**2*y) with warns_deprecated_sympy(): assert DiracDelta(y).simplify(x) == DiracDelta(y) with warns_deprecated_sympy(): assert DiracDelta((x - 1)*(x - 2)*(x - 3)).simplify(x) == ( DiracDelta(x - 3)/2 + DiracDelta(x - 2) + DiracDelta(x - 1)/2) raises(ArgumentIndexError, lambda: DiracDelta(x).fdiff(2)) raises(ValueError, lambda: DiracDelta(x, -1)) raises(ValueError, lambda: DiracDelta(I)) raises(ValueError, lambda: DiracDelta(2 + 3*I)) def test_heaviside(): assert Heaviside(-5) == 0 assert Heaviside(1) == 1 assert Heaviside(0) == S.Half assert Heaviside(0, x) == x assert unchanged(Heaviside,x, nan) assert Heaviside(0, nan) == nan assert adjoint(Heaviside(x)) == Heaviside(x) assert adjoint(Heaviside(x - y)) == Heaviside(x - y) assert conjugate(Heaviside(x)) == Heaviside(x) assert conjugate(Heaviside(x - y)) == Heaviside(x - y) assert transpose(Heaviside(x)) == Heaviside(x) assert transpose(Heaviside(x - y)) == Heaviside(x - y) assert Heaviside(x).diff(x) == DiracDelta(x) assert Heaviside(x + I).is_Function is True assert Heaviside(I*x).is_Function is True raises(ArgumentIndexError, lambda: Heaviside(x).fdiff(2)) raises(ValueError, lambda: Heaviside(I)) raises(ValueError, lambda: Heaviside(2 + 3*I)) def test_rewrite(): x, y = Symbol('x', real=True), Symbol('y') assert Heaviside(x).rewrite(Piecewise) == ( Piecewise((0, x < 0), (Heaviside(0), Eq(x, 0)), (1, x > 0))) assert Heaviside(y).rewrite(Piecewise) == ( Piecewise((0, y < 0), (Heaviside(0), Eq(y, 0)), (1, y > 0))) assert Heaviside(x, y).rewrite(Piecewise) == ( Piecewise((0, x < 0), (y, Eq(x, 0)), (1, x > 0))) assert Heaviside(x, 0).rewrite(Piecewise) == ( Piecewise((0, x <= 0), (1, x > 0))) assert Heaviside(x, 1).rewrite(Piecewise) == ( Piecewise((0, x < 0), (1, x >= 0))) assert Heaviside(x, nan).rewrite(Piecewise) == ( Piecewise((0, x < 0), (nan, Eq(x, 0)), (1, x > 0))) assert Heaviside(x).rewrite(sign) == \ Heaviside(x, H0=Heaviside(0)).rewrite(sign) == \ Piecewise( (sign(x)/2 + S(1)/2, Eq(Heaviside(0), S(1)/2)), (Piecewise( (sign(x)/2 + S(1)/2, Ne(x, 0)), (Heaviside(0), True)), True) ) assert Heaviside(y).rewrite(sign) == Heaviside(y) assert Heaviside(x, S.Half).rewrite(sign) == (sign(x)+1)/2 assert Heaviside(x, y).rewrite(sign) == \ Piecewise( (sign(x)/2 + S(1)/2, Eq(y, S(1)/2)), (Piecewise( (sign(x)/2 + S(1)/2, Ne(x, 0)), (y, True)), True) ) assert DiracDelta(y).rewrite(Piecewise) == Piecewise((DiracDelta(0), Eq(y, 0)), (0, True)) assert DiracDelta(y, 1).rewrite(Piecewise) == DiracDelta(y, 1) assert DiracDelta(x - 5).rewrite(Piecewise) == ( Piecewise((DiracDelta(0), Eq(x - 5, 0)), (0, True))) assert (x*DiracDelta(x - 10)).rewrite(SingularityFunction) == x*SingularityFunction(x, 10, -1) assert 5*x*y*DiracDelta(y, 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, 0, -2) assert DiracDelta(0).rewrite(SingularityFunction) == SingularityFunction(0, 0, -1) assert DiracDelta(0, 1).rewrite(SingularityFunction) == SingularityFunction(0, 0, -2) assert Heaviside(x).rewrite(SingularityFunction) == SingularityFunction(x, 0, 0) assert 5*x*y*Heaviside(y + 1).rewrite(SingularityFunction) == 5*x*y*SingularityFunction(y, -1, 0) assert ((x - 3)**3*Heaviside(x - 3)).rewrite(SingularityFunction) == (x - 3)**3*SingularityFunction(x, 3, 0) assert Heaviside(0).rewrite(SingularityFunction) == S.Half
50a549295b7baf486e40d1ce2a4bf4ef3dc7d17b60bc96cea930b75e0cbbf5ac
from itertools import product from sympy import (jn, yn, symbols, Symbol, sin, cos, pi, S, jn_zeros, besselj, bessely, besseli, besselk, hankel1, hankel2, hn1, hn2, expand_func, sqrt, sinh, cosh, diff, series, gamma, hyper, I, O, oo, conjugate, uppergamma, exp, Integral, Sum, Rational, log, polar_lift, exp_polar) from sympy.functions.special.bessel import fn from sympy.functions.special.bessel import (airyai, airybi, airyaiprime, airybiprime, marcumq) from sympy.testing.randtest import (random_complex_number as randcplx, verify_numerically as tn, test_derivative_numerically as td, _randint) from sympy.simplify import besselsimp from sympy.testing.pytest import raises, slow from sympy.abc import z, n, k, x randint = _randint() def test_bessel_rand(): for f in [besselj, bessely, besseli, besselk, hankel1, hankel2]: assert td(f(randcplx(), z), z) for f in [jn, yn, hn1, hn2]: assert td(f(randint(-10, 10), z), z) def test_bessel_twoinputs(): for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn]: raises(TypeError, lambda: f(1)) raises(TypeError, lambda: f(1, 2, 3)) def test_besselj_series(): assert besselj(0, x).series(x) == 1 - x**2/4 + x**4/64 + O(x**6) assert besselj(0, x**(1.1)).series(x) == 1 + x**4.4/64 - x**2.2/4 + O(x**6) assert besselj(0, x**2 + x).series(x) == 1 - x**2/4 - x**3/2\ - 15*x**4/64 + x**5/16 + O(x**6) assert besselj(0, sqrt(x) + x).series(x, n=4) == 1 - x/4 - 15*x**2/64\ + 215*x**3/2304 - x**Rational(3, 2)/2 + x**Rational(5, 2)/16\ + 23*x**Rational(7, 2)/384 + O(x**4) assert besselj(0, x/(1 - x)).series(x) == 1 - x**2/4 - x**3/2 - 47*x**4/64\ - 15*x**5/16 + O(x**6) assert besselj(0, log(1 + x)).series(x) == 1 - x**2/4 + x**3/4\ - 41*x**4/192 + 17*x**5/96 + O(x**6) assert besselj(1, sin(x)).series(x) == x/2 - 7*x**3/48 + 73*x**5/1920 + O(x**6) assert besselj(1, 2*sqrt(x)).series(x) == sqrt(x) - x**Rational(3, 2)/2\ + x**Rational(5, 2)/12 - x**Rational(7, 2)/144 + x**Rational(9, 2)/2880\ - x**Rational(11, 2)/86400 + O(x**6) assert besselj(-2, sin(x)).series(x, n=4) == besselj(2, sin(x)).series(x, n=4) def test_bessely_series(): const = 2*S.EulerGamma/pi - 2*log(2)/pi + 2*log(x)/pi assert bessely(0, x).series(x, n=4) == const + x**2*(-log(x)/(2*pi)\ + (2 - 2*S.EulerGamma)/(4*pi) + log(2)/(2*pi)) + O(x**4*log(x)) assert bessely(0, x**(1.1)).series(x, n=4) == 2*S.EulerGamma/pi\ - 2*log(2)/pi + 2.2*log(x)/pi + x**2.2*(-0.55*log(x)/pi\ + (2 - 2*S.EulerGamma)/(4*pi) + log(2)/(2*pi)) + O(x**4*log(x)) assert bessely(0, x**2 + x).series(x, n=4) == \ const - (2 - 2*S.EulerGamma)*(-x**3/(2*pi) - x**2/(4*pi)) + 2*x/pi\ + x**2*(-log(x)/(2*pi) - 1/pi + log(2)/(2*pi))\ + x**3*(-log(x)/pi + 1/(6*pi) + log(2)/pi) + O(x**4*log(x)) assert bessely(0, x/(1 - x)).series(x, n=3) == const\ + 2*x/pi + x**2*(-log(x)/(2*pi) + (2 - 2*S.EulerGamma)/(4*pi)\ + log(2)/(2*pi) + 1/pi) + O(x**3*log(x)) assert bessely(0, log(1 + x)).series(x, n=3) == const\ - x/pi + x**2*(-log(x)/(2*pi) + (2 - 2*S.EulerGamma)/(4*pi)\ + log(2)/(2*pi) + 5/(12*pi)) + O(x**3*log(x)) assert bessely(1, sin(x)).series(x, n=4) == -(1/pi)*(1 - 2*S.EulerGamma)\ * (-x**3/12 + x/2) + x*(log(x)/pi - log(2)/pi) + x**3*(-7*log(x)\ / (24*pi) - 1/(6*pi) + (Rational(5, 2) - 2*S.EulerGamma)/(16*pi)\ + 7*log(2)/(24*pi)) + O(x**4*log(x)) assert bessely(1, 2*sqrt(x)).series(x, n=3) == sqrt(x)*(log(x)/pi \ - (1 - 2*S.EulerGamma)/pi) + x**Rational(3, 2)*(-log(x)/(2*pi)\ + (Rational(5, 2) - 2*S.EulerGamma)/(2*pi))\ + x**Rational(5, 2)*(log(x)/(12*pi)\ - (Rational(10, 3) - 2*S.EulerGamma)/(12*pi)) + O(x**3*log(x)) assert bessely(-2, sin(x)).series(x, n=4) == bessely(2, sin(x)).series(x, n=4) def test_diff(): assert besselj(n, z).diff(z) == besselj(n - 1, z)/2 - besselj(n + 1, z)/2 assert bessely(n, z).diff(z) == bessely(n - 1, z)/2 - bessely(n + 1, z)/2 assert besseli(n, z).diff(z) == besseli(n - 1, z)/2 + besseli(n + 1, z)/2 assert besselk(n, z).diff(z) == -besselk(n - 1, z)/2 - besselk(n + 1, z)/2 assert hankel1(n, z).diff(z) == hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2 assert hankel2(n, z).diff(z) == hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2 def test_rewrite(): assert besselj(n, z).rewrite(jn) == sqrt(2*z/pi)*jn(n - S.Half, z) assert bessely(n, z).rewrite(yn) == sqrt(2*z/pi)*yn(n - S.Half, z) assert besseli(n, z).rewrite(besselj) == \ exp(-I*n*pi/2)*besselj(n, polar_lift(I)*z) assert besselj(n, z).rewrite(besseli) == \ exp(I*n*pi/2)*besseli(n, polar_lift(-I)*z) nu = randcplx() assert tn(besselj(nu, z), besselj(nu, z).rewrite(besseli), z) assert tn(besselj(nu, z), besselj(nu, z).rewrite(bessely), z) assert tn(besseli(nu, z), besseli(nu, z).rewrite(besselj), z) assert tn(besseli(nu, z), besseli(nu, z).rewrite(bessely), z) assert tn(bessely(nu, z), bessely(nu, z).rewrite(besselj), z) assert tn(bessely(nu, z), bessely(nu, z).rewrite(besseli), z) assert tn(besselk(nu, z), besselk(nu, z).rewrite(besselj), z) assert tn(besselk(nu, z), besselk(nu, z).rewrite(besseli), z) assert tn(besselk(nu, z), besselk(nu, z).rewrite(bessely), z) # check that a rewrite was triggered, when the order is set to a generic # symbol 'nu' assert yn(nu, z) != yn(nu, z).rewrite(jn) assert hn1(nu, z) != hn1(nu, z).rewrite(jn) assert hn2(nu, z) != hn2(nu, z).rewrite(jn) assert jn(nu, z) != jn(nu, z).rewrite(yn) assert hn1(nu, z) != hn1(nu, z).rewrite(yn) assert hn2(nu, z) != hn2(nu, z).rewrite(yn) # rewriting spherical bessel functions (SBFs) w.r.t. besselj, bessely is # not allowed if a generic symbol 'nu' is used as the order of the SBFs # to avoid inconsistencies (the order of bessel[jy] is allowed to be # complex-valued, whereas SBFs are defined only for integer orders) order = nu for f in (besselj, bessely): assert hn1(order, z) == hn1(order, z).rewrite(f) assert hn2(order, z) == hn2(order, z).rewrite(f) assert jn(order, z).rewrite(besselj) == sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(order + S.Half, z)/2 assert jn(order, z).rewrite(bessely) == (-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-order - S.Half, z)/2 # for integral orders rewriting SBFs w.r.t bessel[jy] is allowed N = Symbol('n', integer=True) ri = randint(-11, 10) for order in (ri, N): for f in (besselj, bessely): assert yn(order, z) != yn(order, z).rewrite(f) assert jn(order, z) != jn(order, z).rewrite(f) assert hn1(order, z) != hn1(order, z).rewrite(f) assert hn2(order, z) != hn2(order, z).rewrite(f) for func, refunc in product((yn, jn, hn1, hn2), (jn, yn, besselj, bessely)): assert tn(func(ri, z), func(ri, z).rewrite(refunc), z) def test_expand(): assert expand_func(besselj(S.Half, z).rewrite(jn)) == \ sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert expand_func(bessely(S.Half, z).rewrite(yn)) == \ -sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z)) # XXX: teach sin/cos to work around arguments like # x*exp_polar(I*pi*n/2). Then change besselsimp -> expand_func assert besselsimp(besselj(S.Half, z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besselj(Rational(-1, 2), z)) == sqrt(2)*cos(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besselj(Rational(5, 2), z)) == \ -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besselj(Rational(-5, 2), z)) == \ -sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(bessely(S.Half, z)) == \ -(sqrt(2)*cos(z))/(sqrt(pi)*sqrt(z)) assert besselsimp(bessely(Rational(-1, 2), z)) == sqrt(2)*sin(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(bessely(Rational(5, 2), z)) == \ sqrt(2)*(z**2*cos(z) - 3*z*sin(z) - 3*cos(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(bessely(Rational(-5, 2), z)) == \ -sqrt(2)*(z**2*sin(z) + 3*z*cos(z) - 3*sin(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besseli(S.Half, z)) == sqrt(2)*sinh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(Rational(-1, 2), z)) == \ sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z)) assert besselsimp(besseli(Rational(5, 2), z)) == \ sqrt(2)*(z**2*sinh(z) - 3*z*cosh(z) + 3*sinh(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besseli(Rational(-5, 2), z)) == \ sqrt(2)*(z**2*cosh(z) - 3*z*sinh(z) + 3*cosh(z))/(sqrt(pi)*z**Rational(5, 2)) assert besselsimp(besselk(S.Half, z)) == \ besselsimp(besselk(Rational(-1, 2), z)) == sqrt(pi)*exp(-z)/(sqrt(2)*sqrt(z)) assert besselsimp(besselk(Rational(5, 2), z)) == \ besselsimp(besselk(Rational(-5, 2), z)) == \ sqrt(2)*sqrt(pi)*(z**2 + 3*z + 3)*exp(-z)/(2*z**Rational(5, 2)) n = Symbol('n', integer=True, positive=True) assert expand_func(besseli(n + 2, z)) == \ besseli(n, z) + (-2*n - 2)*(-2*n*besseli(n, z)/z + besseli(n - 1, z))/z assert expand_func(besselj(n + 2, z)) == \ -besselj(n, z) + (2*n + 2)*(2*n*besselj(n, z)/z - besselj(n - 1, z))/z assert expand_func(besselk(n + 2, z)) == \ besselk(n, z) + (2*n + 2)*(2*n*besselk(n, z)/z + besselk(n - 1, z))/z assert expand_func(bessely(n + 2, z)) == \ -bessely(n, z) + (2*n + 2)*(2*n*bessely(n, z)/z - bessely(n - 1, z))/z assert expand_func(besseli(n + S.Half, z).rewrite(jn)) == \ (sqrt(2)*sqrt(z)*exp(-I*pi*(n + S.Half)/2) * exp_polar(I*pi/4)*jn(n, z*exp_polar(I*pi/2))/sqrt(pi)) assert expand_func(besselj(n + S.Half, z).rewrite(jn)) == \ sqrt(2)*sqrt(z)*jn(n, z)/sqrt(pi) r = Symbol('r', real=True) p = Symbol('p', positive=True) i = Symbol('i', integer=True) for besselx in [besselj, bessely, besseli, besselk]: assert besselx(i, p).is_extended_real is True assert besselx(i, x).is_extended_real is None assert besselx(x, z).is_extended_real is None for besselx in [besselj, besseli]: assert besselx(i, r).is_extended_real is True for besselx in [bessely, besselk]: assert besselx(i, r).is_extended_real is None for besselx in [besselj, bessely, besseli, besselk]: assert expand_func(besselx(oo, x)) == besselx(oo, x, evaluate=False) assert expand_func(besselx(-oo, x)) == besselx(-oo, x, evaluate=False) @slow def test_slow_expand(): def check(eq, ans): return tn(eq, ans) and eq == ans rn = randcplx(a=1, b=0, d=0, c=2) for besselx in [besselj, bessely, besseli, besselk]: ri = S(2*randint(-11, 10) + 1) / 2 # half integer in [-21/2, 21/2] assert tn(besselsimp(besselx(ri, z)), besselx(ri, z)) assert check(expand_func(besseli(rn, x)), besseli(rn - 2, x) - 2*(rn - 1)*besseli(rn - 1, x)/x) assert check(expand_func(besseli(-rn, x)), besseli(-rn + 2, x) + 2*(-rn + 1)*besseli(-rn + 1, x)/x) assert check(expand_func(besselj(rn, x)), -besselj(rn - 2, x) + 2*(rn - 1)*besselj(rn - 1, x)/x) assert check(expand_func(besselj(-rn, x)), -besselj(-rn + 2, x) + 2*(-rn + 1)*besselj(-rn + 1, x)/x) assert check(expand_func(besselk(rn, x)), besselk(rn - 2, x) + 2*(rn - 1)*besselk(rn - 1, x)/x) assert check(expand_func(besselk(-rn, x)), besselk(-rn + 2, x) - 2*(-rn + 1)*besselk(-rn + 1, x)/x) assert check(expand_func(bessely(rn, x)), -bessely(rn - 2, x) + 2*(rn - 1)*bessely(rn - 1, x)/x) assert check(expand_func(bessely(-rn, x)), -bessely(-rn + 2, x) + 2*(-rn + 1)*bessely(-rn + 1, x)/x) def test_fn(): x, z = symbols("x z") assert fn(1, z) == 1/z**2 assert fn(2, z) == -1/z + 3/z**3 assert fn(3, z) == -6/z**2 + 15/z**4 assert fn(4, z) == 1/z - 45/z**3 + 105/z**5 def mjn(n, z): return expand_func(jn(n, z)) def myn(n, z): return expand_func(yn(n, z)) def test_jn(): z = symbols("z") assert jn(0, 0) == 1 assert jn(1, 0) == 0 assert jn(-1, 0) == S.ComplexInfinity assert jn(z, 0) == jn(z, 0, evaluate=False) assert jn(0, oo) == 0 assert jn(0, -oo) == 0 assert mjn(0, z) == sin(z)/z assert mjn(1, z) == sin(z)/z**2 - cos(z)/z assert mjn(2, z) == (3/z**3 - 1/z)*sin(z) - (3/z**2) * cos(z) assert mjn(3, z) == (15/z**4 - 6/z**2)*sin(z) + (1/z - 15/z**3)*cos(z) assert mjn(4, z) == (1/z + 105/z**5 - 45/z**3)*sin(z) + \ (-105/z**4 + 10/z**2)*cos(z) assert mjn(5, z) == (945/z**6 - 420/z**4 + 15/z**2)*sin(z) + \ (-1/z - 945/z**5 + 105/z**3)*cos(z) assert mjn(6, z) == (-1/z + 10395/z**7 - 4725/z**5 + 210/z**3)*sin(z) + \ (-10395/z**6 + 1260/z**4 - 21/z**2)*cos(z) assert expand_func(jn(n, z)) == jn(n, z) # SBFs not defined for complex-valued orders assert jn(2+3j, 5.2+0.3j).evalf() == jn(2+3j, 5.2+0.3j) assert eq([jn(2, 5.2+0.3j).evalf(10)], [0.09941975672 - 0.05452508024*I]) def test_yn(): z = symbols("z") assert myn(0, z) == -cos(z)/z assert myn(1, z) == -cos(z)/z**2 - sin(z)/z assert myn(2, z) == -((3/z**3 - 1/z)*cos(z) + (3/z**2)*sin(z)) assert expand_func(yn(n, z)) == yn(n, z) # SBFs not defined for complex-valued orders assert yn(2+3j, 5.2+0.3j).evalf() == yn(2+3j, 5.2+0.3j) assert eq([yn(2, 5.2+0.3j).evalf(10)], [0.185250342 + 0.01489557397*I]) def test_sympify_yn(): assert S(15) in myn(3, pi).atoms() assert myn(3, pi) == 15/pi**4 - 6/pi**2 def eq(a, b, tol=1e-6): for u, v in zip(a, b): if not (abs(u - v) < tol): return False return True def test_jn_zeros(): assert eq(jn_zeros(0, 4), [3.141592, 6.283185, 9.424777, 12.566370]) assert eq(jn_zeros(1, 4), [4.493409, 7.725251, 10.904121, 14.066193]) assert eq(jn_zeros(2, 4), [5.763459, 9.095011, 12.322940, 15.514603]) assert eq(jn_zeros(3, 4), [6.987932, 10.417118, 13.698023, 16.923621]) assert eq(jn_zeros(4, 4), [8.182561, 11.704907, 15.039664, 18.301255]) def test_bessel_eval(): n, m, k = Symbol('n', integer=True), Symbol('m'), Symbol('k', integer=True, zero=False) for f in [besselj, besseli]: assert f(0, 0) is S.One assert f(2.1, 0) is S.Zero assert f(-3, 0) is S.Zero assert f(-10.2, 0) is S.ComplexInfinity assert f(1 + 3*I, 0) is S.Zero assert f(-3 + I, 0) is S.ComplexInfinity assert f(-2*I, 0) is S.NaN assert f(n, 0) != S.One and f(n, 0) != S.Zero assert f(m, 0) != S.One and f(m, 0) != S.Zero assert f(k, 0) is S.Zero assert bessely(0, 0) is S.NegativeInfinity assert besselk(0, 0) is S.Infinity for f in [bessely, besselk]: assert f(1 + I, 0) is S.ComplexInfinity assert f(I, 0) is S.NaN for f in [besselj, bessely]: assert f(m, S.Infinity) is S.Zero assert f(m, S.NegativeInfinity) is S.Zero for f in [besseli, besselk]: assert f(m, I*S.Infinity) is S.Zero assert f(m, I*S.NegativeInfinity) is S.Zero for f in [besseli, besselk]: assert f(-4, z) == f(4, z) assert f(-3, z) == f(3, z) assert f(-n, z) == f(n, z) assert f(-m, z) != f(m, z) for f in [besselj, bessely]: assert f(-4, z) == f(4, z) assert f(-3, z) == -f(3, z) assert f(-n, z) == (-1)**n*f(n, z) assert f(-m, z) != (-1)**m*f(m, z) for f in [besselj, besseli]: assert f(m, -z) == (-z)**m*z**(-m)*f(m, z) assert besseli(2, -z) == besseli(2, z) assert besseli(3, -z) == -besseli(3, z) assert besselj(0, -z) == besselj(0, z) assert besselj(1, -z) == -besselj(1, z) assert besseli(0, I*z) == besselj(0, z) assert besseli(1, I*z) == I*besselj(1, z) assert besselj(3, I*z) == -I*besseli(3, z) def test_bessel_nan(): # FIXME: could have these return NaN; for now just fix infinite recursion for f in [besselj, bessely, besseli, besselk, hankel1, hankel2, yn, jn]: assert f(1, S.NaN) == f(1, S.NaN, evaluate=False) def test_meromorphic(): assert besselj(2, x).is_meromorphic(x, 1) == True assert besselj(2, x).is_meromorphic(x, 0) == True assert besselj(2, x).is_meromorphic(x, oo) == False assert besselj(S(2)/3, x).is_meromorphic(x, 1) == True assert besselj(S(2)/3, x).is_meromorphic(x, 0) == False assert besselj(S(2)/3, x).is_meromorphic(x, oo) == False assert besselj(x, 2*x).is_meromorphic(x, 2) == False assert besselk(0, x).is_meromorphic(x, 1) == True assert besselk(2, x).is_meromorphic(x, 0) == True assert besseli(0, x).is_meromorphic(x, 1) == True assert besseli(2, x).is_meromorphic(x, 0) == True assert bessely(0, x).is_meromorphic(x, 1) == True assert bessely(0, x).is_meromorphic(x, 0) == False assert bessely(2, x).is_meromorphic(x, 0) == True assert hankel1(3, x**2 + 2*x).is_meromorphic(x, 1) == True assert hankel1(0, x).is_meromorphic(x, 0) == False assert hankel2(11, 4).is_meromorphic(x, 5) == True assert hn1(6, 7*x**3 + 4).is_meromorphic(x, 7) == True assert hn2(3, 2*x).is_meromorphic(x, 9) == True assert jn(5, 2*x + 7).is_meromorphic(x, 4) == True assert yn(8, x**2 + 11).is_meromorphic(x, 6) == True def test_conjugate(): n = Symbol('n') z = Symbol('z', extended_real=False) x = Symbol('x', extended_real=True) y = Symbol('y', real=True, positive=True) t = Symbol('t', negative=True) for f in [besseli, besselj, besselk, bessely, hankel1, hankel2]: assert f(n, -1).conjugate() != f(conjugate(n), -1) assert f(n, x).conjugate() != f(conjugate(n), x) assert f(n, t).conjugate() != f(conjugate(n), t) rz = randcplx(b=0.5) for f in [besseli, besselj, besselk, bessely]: assert f(n, 1 + I).conjugate() == f(conjugate(n), 1 - I) assert f(n, 0).conjugate() == f(conjugate(n), 0) assert f(n, 1).conjugate() == f(conjugate(n), 1) assert f(n, z).conjugate() == f(conjugate(n), conjugate(z)) assert f(n, y).conjugate() == f(conjugate(n), y) assert tn(f(n, rz).conjugate(), f(conjugate(n), conjugate(rz))) assert hankel1(n, 1 + I).conjugate() == hankel2(conjugate(n), 1 - I) assert hankel1(n, 0).conjugate() == hankel2(conjugate(n), 0) assert hankel1(n, 1).conjugate() == hankel2(conjugate(n), 1) assert hankel1(n, y).conjugate() == hankel2(conjugate(n), y) assert hankel1(n, z).conjugate() == hankel2(conjugate(n), conjugate(z)) assert tn(hankel1(n, rz).conjugate(), hankel2(conjugate(n), conjugate(rz))) assert hankel2(n, 1 + I).conjugate() == hankel1(conjugate(n), 1 - I) assert hankel2(n, 0).conjugate() == hankel1(conjugate(n), 0) assert hankel2(n, 1).conjugate() == hankel1(conjugate(n), 1) assert hankel2(n, y).conjugate() == hankel1(conjugate(n), y) assert hankel2(n, z).conjugate() == hankel1(conjugate(n), conjugate(z)) assert tn(hankel2(n, rz).conjugate(), hankel1(conjugate(n), conjugate(rz))) def test_branching(): assert besselj(polar_lift(k), x) == besselj(k, x) assert besseli(polar_lift(k), x) == besseli(k, x) n = Symbol('n', integer=True) assert besselj(n, exp_polar(2*pi*I)*x) == besselj(n, x) assert besselj(n, polar_lift(x)) == besselj(n, x) assert besseli(n, exp_polar(2*pi*I)*x) == besseli(n, x) assert besseli(n, polar_lift(x)) == besseli(n, x) def tn(func, s): from random import uniform c = uniform(1, 5) expr = func(s, c*exp_polar(I*pi)) - func(s, c*exp_polar(-I*pi)) eps = 1e-15 expr2 = func(s + eps, -c + eps*I) - func(s + eps, -c - eps*I) return abs(expr.n() - expr2.n()).n() < 1e-10 nu = Symbol('nu') assert besselj(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besselj(nu, x) assert besseli(nu, exp_polar(2*pi*I)*x) == exp(2*pi*I*nu)*besseli(nu, x) assert tn(besselj, 2) assert tn(besselj, pi) assert tn(besselj, I) assert tn(besseli, 2) assert tn(besseli, pi) assert tn(besseli, I) def test_airy_base(): z = Symbol('z') x = Symbol('x', real=True) y = Symbol('y', real=True) assert conjugate(airyai(z)) == airyai(conjugate(z)) assert airyai(x).is_extended_real assert airyai(x+I*y).as_real_imag() == ( airyai(x - I*y)/2 + airyai(x + I*y)/2, I*(airyai(x - I*y) - airyai(x + I*y))/2) def test_airyai(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airyai(z), airyai) assert airyai(0) == 3**Rational(1, 3)/(3*gamma(Rational(2, 3))) assert airyai(oo) == 0 assert airyai(-oo) == 0 assert diff(airyai(z), z) == airyaiprime(z) assert series(airyai(z), z, 0, 3) == ( 3**Rational(5, 6)*gamma(Rational(1, 3))/(6*pi) - 3**Rational(1, 6)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3)) assert airyai(z).rewrite(hyper) == ( -3**Rational(2, 3)*z*hyper((), (Rational(4, 3),), z**3/9)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3)))) assert isinstance(airyai(z).rewrite(besselj), airyai) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airyai(z).rewrite(besseli) == ( -z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(1, 3)) + (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3) assert airyai(p).rewrite(besseli) == ( sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) - besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airyai(2*(3*z**5)**Rational(1, 3))) == ( -sqrt(3)*(-1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/6 + (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_airybi(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airybi(z), airybi) assert airybi(0) == 3**Rational(5, 6)/(3*gamma(Rational(2, 3))) assert airybi(oo) is oo assert airybi(-oo) == 0 assert diff(airybi(z), z) == airybiprime(z) assert series(airybi(z), z, 0, 3) == ( 3**Rational(1, 3)*gamma(Rational(1, 3))/(2*pi) + 3**Rational(2, 3)*z*gamma(Rational(2, 3))/(2*pi) + O(z**3)) assert airybi(z).rewrite(hyper) == ( 3**Rational(1, 6)*z*hyper((), (Rational(4, 3),), z**3/9)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*hyper((), (Rational(2, 3),), z**3/9)/(3*gamma(Rational(2, 3)))) assert isinstance(airybi(z).rewrite(besselj), airybi) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airybi(z).rewrite(besseli) == ( sqrt(3)*(z*besseli(Rational(1, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(1, 3) + (z**Rational(3, 2))**Rational(1, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3))/3) assert airybi(p).rewrite(besseli) == ( sqrt(3)*sqrt(p)*(besseli(Rational(-1, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(1, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airybi(2*(3*z**5)**Rational(1, 3))) == ( sqrt(3)*(1 - (z**5)**Rational(1, 3)/z**Rational(5, 3))*airyai(2*3**Rational(1, 3)*z**Rational(5, 3))/2 + (1 + (z**5)**Rational(1, 3)/z**Rational(5, 3))*airybi(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_airyaiprime(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airyaiprime(z), airyaiprime) assert airyaiprime(0) == -3**Rational(2, 3)/(3*gamma(Rational(1, 3))) assert airyaiprime(oo) == 0 assert diff(airyaiprime(z), z) == z*airyai(z) assert series(airyaiprime(z), z, 0, 3) == ( -3**Rational(2, 3)/(3*gamma(Rational(1, 3))) + 3**Rational(1, 3)*z**2/(6*gamma(Rational(2, 3))) + O(z**3)) assert airyaiprime(z).rewrite(hyper) == ( 3**Rational(1, 3)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) - 3**Rational(2, 3)*hyper((), (Rational(1, 3),), z**3/9)/(3*gamma(Rational(1, 3)))) assert isinstance(airyaiprime(z).rewrite(besselj), airyaiprime) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airyaiprime(z).rewrite(besseli) == ( z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(3*(z**Rational(3, 2))**Rational(2, 3)) - (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-1, 3), 2*z**Rational(3, 2)/3)/3) assert airyaiprime(p).rewrite(besseli) == ( p*(-besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airyaiprime(2*(3*z**5)**Rational(1, 3))) == ( sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/6 + (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_airybiprime(): z = Symbol('z', real=False) t = Symbol('t', negative=True) p = Symbol('p', positive=True) assert isinstance(airybiprime(z), airybiprime) assert airybiprime(0) == 3**Rational(1, 6)/gamma(Rational(1, 3)) assert airybiprime(oo) is oo assert airybiprime(-oo) == 0 assert diff(airybiprime(z), z) == z*airybi(z) assert series(airybiprime(z), z, 0, 3) == ( 3**Rational(1, 6)/gamma(Rational(1, 3)) + 3**Rational(5, 6)*z**2/(6*gamma(Rational(2, 3))) + O(z**3)) assert airybiprime(z).rewrite(hyper) == ( 3**Rational(5, 6)*z**2*hyper((), (Rational(5, 3),), z**3/9)/(6*gamma(Rational(2, 3))) + 3**Rational(1, 6)*hyper((), (Rational(1, 3),), z**3/9)/gamma(Rational(1, 3))) assert isinstance(airybiprime(z).rewrite(besselj), airybiprime) assert airyai(t).rewrite(besselj) == ( sqrt(-t)*(besselj(Rational(-1, 3), 2*(-t)**Rational(3, 2)/3) + besselj(Rational(1, 3), 2*(-t)**Rational(3, 2)/3))/3) assert airybiprime(z).rewrite(besseli) == ( sqrt(3)*(z**2*besseli(Rational(2, 3), 2*z**Rational(3, 2)/3)/(z**Rational(3, 2))**Rational(2, 3) + (z**Rational(3, 2))**Rational(2, 3)*besseli(Rational(-2, 3), 2*z**Rational(3, 2)/3))/3) assert airybiprime(p).rewrite(besseli) == ( sqrt(3)*p*(besseli(Rational(-2, 3), 2*p**Rational(3, 2)/3) + besseli(Rational(2, 3), 2*p**Rational(3, 2)/3))/3) assert expand_func(airybiprime(2*(3*z**5)**Rational(1, 3))) == ( sqrt(3)*(z**Rational(5, 3)/(z**5)**Rational(1, 3) - 1)*airyaiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2 + (z**Rational(5, 3)/(z**5)**Rational(1, 3) + 1)*airybiprime(2*3**Rational(1, 3)*z**Rational(5, 3))/2) def test_marcumq(): m = Symbol('m') a = Symbol('a') b = Symbol('b') assert marcumq(0, 0, 0) == 0 assert marcumq(m, 0, b) == uppergamma(m, b**2/2)/gamma(m) assert marcumq(2, 0, 5) == 27*exp(Rational(-25, 2))/2 assert marcumq(0, a, 0) == 1 - exp(-a**2/2) assert marcumq(0, pi, 0) == 1 - exp(-pi**2/2) assert marcumq(1, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 assert marcumq(2, a, a) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2) assert diff(marcumq(1, a, 3), a) == a*(-marcumq(1, a, 3) + marcumq(2, a, 3)) assert diff(marcumq(2, 3, b), b) == -b**2*exp(-b**2/2 - Rational(9, 2))*besseli(1, 3*b)/3 x = Symbol('x') assert marcumq(2, 3, 4).rewrite(Integral, x=x) == \ Integral(x**2*exp(-x**2/2 - Rational(9, 2))*besseli(1, 3*x), (x, 4, oo))/3 assert eq([marcumq(5, -2, 3).rewrite(Integral).evalf(10)], [0.7905769565]) k = Symbol('k') assert marcumq(-3, -5, -7).rewrite(Sum, k=k) == \ exp(-37)*Sum((Rational(5, 7))**k*besseli(k, 35), (k, 4, oo)) assert eq([marcumq(1, 3, 1).rewrite(Sum).evalf(10)], [0.9891705502]) assert marcumq(1, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 assert marcumq(2, a, a, evaluate=False).rewrite(besseli) == S.Half + exp(-a**2)*besseli(0, a**2)/2 + \ exp(-a**2)*besseli(1, a**2) assert marcumq(3, a, a).rewrite(besseli) == (besseli(1, a**2) + besseli(2, a**2))*exp(-a**2) + \ S.Half + exp(-a**2)*besseli(0, a**2)/2 assert marcumq(5, 8, 8).rewrite(besseli) == exp(-64)*besseli(0, 64)/2 + \ (besseli(4, 64) + besseli(3, 64) + besseli(2, 64) + besseli(1, 64))*exp(-64) + S.Half assert marcumq(m, a, a).rewrite(besseli) == marcumq(m, a, a) x = Symbol('x', integer=True) assert marcumq(x, a, a).rewrite(besseli) == marcumq(x, a, a)
3f0887de9d73c6fae0e0e4b8717167533ba59b108fe465ef21b2801e40912d38
from sympy.core.add import Add from sympy.core.assumptions import check_assumptions from sympy.core.containers import Tuple from sympy.core.compatibility import as_int, is_sequence, ordered from sympy.core.exprtools import factor_terms from sympy.core.function import _mexpand from sympy.core.mul import Mul from sympy.core.numbers import Rational from sympy.core.numbers import igcdex, ilcm, igcd from sympy.core.power import integer_nthroot, isqrt from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import sign from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.ntheory.factor_ import ( divisors, factorint, multiplicity, perfect_power) from sympy.ntheory.generate import nextprime from sympy.ntheory.primetest import is_square, isprime from sympy.ntheory.residue_ntheory import sqrt_mod from sympy.polys.polyerrors import GeneratorsNeeded from sympy.polys.polytools import Poly, factor_list from sympy.simplify.simplify import signsimp from sympy.solvers.solveset import solveset_real from sympy.utilities import default_sort_key, numbered_symbols from sympy.utilities.misc import filldedent # these are imported with 'from sympy.solvers.diophantine import * __all__ = ['diophantine', 'classify_diop'] class DiophantineSolutionSet(set): """ Container for a set of solutions to a particular diophantine equation. The base representation is a set of tuples representing each of the solutions. Parameters ========== symbols : list List of free symbols in the original equation. parameters: list List of parameters to be used in the solution. Examples ======== Adding solutions: >>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet >>> from sympy.abc import x, y, t, u >>> s1 = DiophantineSolutionSet([x, y], [t, u]) >>> s1 set() >>> s1.add((2, 3)) >>> s1.add((-1, u)) >>> s1 {(-1, u), (2, 3)} >>> s2 = DiophantineSolutionSet([x, y], [t, u]) >>> s2.add((3, 4)) >>> s1.update(*s2) >>> s1 {(-1, u), (2, 3), (3, 4)} Conversion of solutions into dicts: >>> list(s1.dict_iterator()) [{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}] Substituting values: >>> s3 = DiophantineSolutionSet([x, y], [t, u]) >>> s3.add((t**2, t + u)) >>> s3 {(t**2, t + u)} >>> s3.subs({t: 2, u: 3}) {(4, 5)} >>> s3.subs(t, -1) {(1, u - 1)} >>> s3.subs(t, 3) {(9, u + 3)} Evaluation at specific values. Positional arguments are given in the same order as the parameters: >>> s3(-2, 3) {(4, 1)} >>> s3(5) {(25, u + 5)} >>> s3(None, 2) {(t**2, t + 2)} """ def __init__(self, symbols_seq, parameters): super().__init__() if not is_sequence(symbols_seq): raise ValueError("Symbols must be given as a sequence.") if not is_sequence(parameters): raise ValueError("Parameters must be given as a sequence.") self.symbols = tuple(symbols_seq) self.parameters = tuple(parameters) def add(self, solution): if len(solution) != len(self.symbols): raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution))) super().add(Tuple(*solution)) def update(self, *solutions): for solution in solutions: self.add(solution) def dict_iterator(self): for solution in ordered(self): yield dict(zip(self.symbols, solution)) def subs(self, *args, **kwargs): result = DiophantineSolutionSet(self.symbols, self.parameters) for solution in self: result.add(solution.subs(*args, **kwargs)) return result def __call__(self, *args): if len(args) > len(self.parameters): raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args))) return self.subs(list(zip(self.parameters, args))) class DiophantineEquationType: """ Internal representation of a particular diophantine equation type. Parameters ========== equation : The diophantine equation that is being solved. free_symbols : list (optional) The symbols being solved for. Attributes ========== total_degree : The maximum of the degrees of all terms in the equation homogeneous : Does the equation contain a term of degree 0 homogeneous_order : Does the equation contain any coefficient that is in the symbols being solved for dimension : The number of symbols being solved for """ name = None # type: str def __init__(self, equation, free_symbols=None): self.equation = _sympify(equation).expand(force=True) if free_symbols is not None: self.free_symbols = free_symbols else: self.free_symbols = list(self.equation.free_symbols) self.free_symbols.sort(key=default_sort_key) if not self.free_symbols: raise ValueError('equation should have 1 or more free symbols') self.coeff = self.equation.as_coefficients_dict() if not all(_is_int(c) for c in self.coeff.values()): raise TypeError("Coefficients should be Integers") self.total_degree = Poly(self.equation).total_degree() self.homogeneous = 1 not in self.coeff self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols)) self.dimension = len(self.free_symbols) self._parameters = None def matches(self): """ Determine whether the given equation can be matched to the particular equation type. """ return False @property def n_parameters(self): return self.dimension @property def parameters(self): if self._parameters is None: self._parameters = symbols('t_:%i' % (self.n_parameters,), integer=True) return self._parameters def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: raise NotImplementedError('No solver has been written for %s.' % self.name) def pre_solve(self, parameters=None): if not self.matches(): raise ValueError("This equation does not match the %s equation type." % self.name) if parameters is not None: if len(parameters) != self.n_parameters: raise ValueError("Expected %s parameter(s) but got %s" % (self.n_parameters, len(parameters))) self._parameters = parameters class Univariate(DiophantineEquationType): """ Representation of a univariate diophantine equation. A univariate diophantine equation is an equation of the form `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x` is an integer variable. Examples ======== >>> from sympy.solvers.diophantine.diophantine import Univariate >>> from sympy.abc import x >>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0 {(2,), (3,)} """ name = 'univariate' def matches(self): return self.dimension == 1 def solve(self, parameters=None, limit=None): self.pre_solve(parameters) result = DiophantineSolutionSet(self.free_symbols, parameters=self.parameters) for i in solveset_real(self.equation, self.free_symbols[0]).intersect(S.Integers): result.add((i,)) return result class Linear(DiophantineEquationType): """ Representation of a linear diophantine equation. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Examples ======== >>> from sympy.solvers.diophantine.diophantine import Linear >>> from sympy.abc import x, y, z >>> l1 = Linear(2*x - 3*y - 5) >>> l1.matches() # is this equation linear True >>> l1.solve() # solves equation 2*x - 3*y - 5 == 0 {(3*t_0 - 5, 2*t_0 - 5)} Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> Linear(2*x - 3*y - 4*z -3).solve() {(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)} """ name = 'linear' def matches(self): return self.total_degree == 1 def solve(self, parameters=None, limit=None): self.pre_solve(parameters) coeff = self.coeff var = self.free_symbols if 1 in coeff: # negate coeff[] because input is of the form: ax + by + c == 0 # but is used as: ax + by == -c c = -coeff[1] else: c = 0 result = DiophantineSolutionSet(var, parameters=self.parameters) params = result.parameters if len(var) == 1: q, r = divmod(c, coeff[var[0]]) if not r: result.add((q,)) return result else: return result ''' base_solution_linear() can solve diophantine equations of the form: a*x + b*y == c We break down multivariate linear diophantine equations into a series of bivariate linear diophantine equations which can then be solved individually by base_solution_linear(). Consider the following: a_0*x_0 + a_1*x_1 + a_2*x_2 == c which can be re-written as: a_0*x_0 + g_0*y_0 == c where g_0 == gcd(a_1, a_2) and y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0 This leaves us with two binary linear diophantine equations. For the first equation: a == a_0 b == g_0 c == c For the second: a == a_1/g_0 b == a_2/g_0 c == the solution we find for y_0 in the first equation. The arrays A and B are the arrays of integers used for 'a' and 'b' in each of the n-1 bivariate equations we solve. ''' A = [coeff[v] for v in var] B = [] if len(var) > 2: B.append(igcd(A[-2], A[-1])) A[-2] = A[-2] // B[0] A[-1] = A[-1] // B[0] for i in range(len(A) - 3, 0, -1): gcd = igcd(B[0], A[i]) B[0] = B[0] // gcd A[i] = A[i] // gcd B.insert(0, gcd) B.append(A[-1]) ''' Consider the trivariate linear equation: 4*x_0 + 6*x_1 + 3*x_2 == 2 This can be re-written as: 4*x_0 + 3*y_0 == 2 where y_0 == 2*x_1 + x_2 (Note that gcd(3, 6) == 3) The complete integral solution to this equation is: x_0 == 2 + 3*t_0 y_0 == -2 - 4*t_0 where 't_0' is any integer. Now that we have a solution for 'x_0', find 'x_1' and 'x_2': 2*x_1 + x_2 == -2 - 4*t_0 We can then solve for '-2' and '-4' independently, and combine the results: 2*x_1a + x_2a == -2 x_1a == 0 + t_0 x_2a == -2 - 2*t_0 2*x_1b + x_2b == -4*t_0 x_1b == 0*t_0 + t_1 x_2b == -4*t_0 - 2*t_1 ==> x_1 == t_0 + t_1 x_2 == -2 - 6*t_0 - 2*t_1 where 't_0' and 't_1' are any integers. Note that: 4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2 for any integral values of 't_0', 't_1'; as required. This method is generalised for many variables, below. ''' solutions = [] for i in range(len(B)): tot_x, tot_y = [], [] for j, arg in enumerate(Add.make_args(c)): if arg.is_Integer: # example: 5 -> k = 5 k, p = arg, S.One pnew = params[0] else: # arg is a Mul or Symbol # example: 3*t_1 -> k = 3 # example: t_0 -> k = 1 k, p = arg.as_coeff_Mul() pnew = params[params.index(p) + 1] sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew) if p is S.One: if None in sol: return result else: # convert a + b*pnew -> a*p + b*pnew if isinstance(sol_x, Add): sol_x = sol_x.args[0]*p + sol_x.args[1] if isinstance(sol_y, Add): sol_y = sol_y.args[0]*p + sol_y.args[1] tot_x.append(sol_x) tot_y.append(sol_y) solutions.append(Add(*tot_x)) c = Add(*tot_y) solutions.append(c) result.add(solutions) return result class BinaryQuadratic(DiophantineEquationType): """ Representation of a binary quadratic diophantine equation. A binary quadratic diophantine equation is an equation of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`, where `A, B, C, D, E, F` are integer constants and `x` and `y` are integer variables. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic >>> b1 = BinaryQuadratic(x**3 + y**2 + 1) >>> b1.matches() False >>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2) >>> b2.matches() True >>> b2.solve() {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf """ name = 'binary_quadratic' def matches(self): return self.total_degree == 2 and self.dimension == 2 def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff x, y = var A = coeff[x**2] B = coeff[x*y] C = coeff[y**2] D = coeff[x] E = coeff[y] F = coeff[S.One] A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)] # (1) Simple-Hyperbolic case: A = C = 0, B != 0 # In this case equation can be converted to (Bx + E)(By + D) = DE - BF # We consider two cases; DE - BF = 0 and DE - BF != 0 # More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb result = DiophantineSolutionSet(var, self.parameters) t, u = result.parameters discr = B**2 - 4*A*C if A == 0 and C == 0 and B != 0: if D*E - B*F == 0: q, r = divmod(E, B) if not r: result.add((-q, t)) q, r = divmod(D, B) if not r: result.add((t, -q)) else: div = divisors(D*E - B*F) div = div + [-term for term in div] for d in div: x0, r = divmod(d - E, B) if not r: q, r = divmod(D*E - B*F, d) if not r: y0, r = divmod(q - D, B) if not r: result.add((x0, y0)) # (2) Parabolic case: B**2 - 4*A*C = 0 # There are two subcases to be considered in this case. # sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0 # More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol elif discr == 0: if A == 0: s = BinaryQuadratic(self.equation, free_symbols=[y, x]).solve(parameters=[t, u]) for soln in s: result.add((soln[1], soln[0])) else: g = sign(A)*igcd(A, C) a = A // g c = C // g e = sign(B / A) sqa = isqrt(a) sqc = isqrt(c) _c = e*sqc*D - sqa*E if not _c: z = symbols("z", real=True) eq = sqa*g*z**2 + D*z + sqa*F roots = solveset_real(eq, z).intersect(S.Integers) for root in roots: ans = diop_solve(sqa*x + e*sqc*y - root) result.add((ans[0], ans[1])) elif _is_int(c): solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t \ - (e*sqc*g*u**2 + E*u + e*sqc*F) // _c solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \ + (sqa*g*u**2 + D*u + sqa*F) // _c for z0 in range(0, abs(_c)): # Check if the coefficients of y and x obtained are integers or not if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)): result.add((solve_x(z0), solve_y(z0))) # (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper # by John P. Robertson. # https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf elif is_square(discr): if A != 0: r = sqrt(discr) u, v = symbols("u, v", integer=True) eq = _mexpand( 4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) + 2*A*4*A*E*(u - v) + 4*A*r*4*A*F) solution = diop_solve(eq, t) for s0, t0 in solution: num = B*t0 + r*s0 + r*t0 - B*s0 x_0 = S(num) / (4*A*r) y_0 = S(s0 - t0) / (2*r) if isinstance(s0, Symbol) or isinstance(t0, Symbol): if len(check_param(x_0, y_0, 4*A*r, parameters)) > 0: ans = check_param(x_0, y_0, 4*A*r, parameters) result.update(*ans) elif x_0.is_Integer and y_0.is_Integer: if is_solution_quad(var, coeff, x_0, y_0): result.add((x_0, y_0)) else: s = BinaryQuadratic(self.equation, free_symbols=var[::-1]).solve(parameters=[t, u]) # Interchange x and y while s: result.add(s.pop()[::-1]) # and solution <--------+ # (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0 else: P, Q = _transformation_to_DN(var, coeff) D, N = _find_DN(var, coeff) solns_pell = diop_DN(D, N) if D < 0: for x0, y0 in solns_pell: for x in [-x0, x0]: for y in [-y0, y0]: s = P*Matrix([x, y]) + Q try: result.add([as_int(_) for _ in s]) except ValueError: pass else: # In this case equation can be transformed into a Pell equation solns_pell = set(solns_pell) for X, Y in list(solns_pell): solns_pell.add((-X, -Y)) a = diop_DN(D, 1) T = a[0][0] U = a[0][1] if all(_is_int(_) for _ in P[:4] + Q[:2]): for r, s in solns_pell: _a = (r + s*sqrt(D))*(T + U*sqrt(D))**t _b = (r - s*sqrt(D))*(T - U*sqrt(D))**t x_n = _mexpand(S(_a + _b) / 2) y_n = _mexpand(S(_a - _b) / (2*sqrt(D))) s = P*Matrix([x_n, y_n]) + Q result.add(s) else: L = ilcm(*[_.q for _ in P[:4] + Q[:2]]) k = 1 T_k = T U_k = U while (T_k - 1) % L != 0 or U_k % L != 0: T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T k += 1 for X, Y in solns_pell: for i in range(k): if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q): _a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t _b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t Xt = S(_a + _b) / 2 Yt = S(_a - _b) / (2*sqrt(D)) s = P*Matrix([Xt, Yt]) + Q result.add(s) X, Y = X*T + D*U*Y, X*U + Y*T return result class InhomogeneousTernaryQuadratic(DiophantineEquationType): """ Representation of an inhomogeneous ternary quadratic. No solver is currently implemented for this equation type. """ name = 'inhomogeneous_ternary_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False return not self.homogeneous_order class HomogeneousTernaryQuadraticNormal(DiophantineEquationType): """ Representation of a homogeneous ternary quadratic normal diophantine equation. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal >>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve() {(1, 2, 4)} """ name = 'homogeneous_ternary_quadratic_normal' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False if not self.homogeneous_order: return False nonzero = [k for k in self.coeff if self.coeff[k]] return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols) def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet: self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff x, y, z = var a = coeff[x**2] b = coeff[y**2] c = coeff[z**2] (sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \ sqf_normal(a, b, c, steps=True) A = -a_2*c_2 B = -b_2*c_2 result = DiophantineSolutionSet(var, parameters=self.parameters) # If following two conditions are satisfied then there are no solutions if A < 0 and B < 0: return result if ( sqrt_mod(-b_2*c_2, a_2) is None or sqrt_mod(-c_2*a_2, b_2) is None or sqrt_mod(-a_2*b_2, c_2) is None): return result z_0, x_0, y_0 = descent(A, B) z_0, q = _rational_pq(z_0, abs(c_2)) x_0 *= q y_0 *= q x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0) # Holzer reduction if sign(a) == sign(b): x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2)) elif sign(a) == sign(c): x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2)) else: y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2)) x_0 = reconstruct(b_1, c_1, x_0) y_0 = reconstruct(a_1, c_1, y_0) z_0 = reconstruct(a_1, b_1, z_0) sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c) x_0 = abs(x_0*sq_lcm // sqf_of_a) y_0 = abs(y_0*sq_lcm // sqf_of_b) z_0 = abs(z_0*sq_lcm // sqf_of_c) result.add(_remove_gcd(x_0, y_0, z_0)) return result class HomogeneousTernaryQuadratic(DiophantineEquationType): """ Representation of a homogeneous ternary quadratic diophantine equation. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadratic >>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve() {(-1, 2, 1)} >>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).solve() {(3, 12, 13)} """ name = 'homogeneous_ternary_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension == 3): return False if not self.homogeneous: return False if not self.homogeneous_order: return False nonzero = [k for k in self.coeff if self.coeff[k]] return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)) def solve(self, parameters=None, limit=None): self.pre_solve(parameters) _var = self.free_symbols coeff = self.coeff x, y, z = _var var = [x, y, z] # Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the # coefficients A, B, C are non-zero. # There are infinitely many solutions for the equation. # Ex: (0, 0, t), (0, t, 0), (t, 0, 0) # Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather # unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by # using methods for binary quadratic diophantine equations. Let's select the # solution which minimizes |x| + |z| result = DiophantineSolutionSet(var, parameters=self.parameters) def unpack_sol(sol): if len(sol) > 0: return list(sol)[0] return None, None, None if not any(coeff[i**2] for i in var): if coeff[x*z]: sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z) s = sols.pop() min_sum = abs(s[0]) + abs(s[1]) for r in sols: m = abs(r[0]) + abs(r[1]) if m < min_sum: s = r min_sum = m result.add(_remove_gcd(s[0], -coeff[x*z], s[1])) return result else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) if x_0 is not None: result.add((x_0, y_0, z_0)) return result if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: if coeff[x*y] or coeff[x*z]: # Apply the transformation x --> X - (B*y + C*z)/(2*A) A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff)) if x_0 is None: return result p, q = _rational_pq(B*y_0 + C*z_0, 2*A) x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q elif coeff[z*y] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. A = coeff[x**2] E = coeff[y*z] b, a = _rational_pq(-E, A) x_0, y_0, z_0 = b, a, b else: # Ax**2 + E*y*z + F*z**2 = 0 var[0], var[2] = _var[2], _var[0] z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero var[0], var[1] = _var[1], _var[0] y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff)) else: # Ax**2 + D*y**2 + F*z**2 = 0, C may be zero x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff)) if x_0 is None: return result result.add(_remove_gcd(x_0, y_0, z_0)) return result class InhomogeneousGeneralQuadratic(DiophantineEquationType): """ Representation of an inhomogeneous general quadratic. No solver is currently implemented for this equation type. """ name = 'inhomogeneous_general_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return True else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in self.coeff): # cross terms return not self.homogeneous return False class HomogeneousGeneralQuadratic(DiophantineEquationType): """ Representation of a homogeneous general quadratic. No solver is currently implemented for this equation type. """ name = 'homogeneous_general_quadratic' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False else: # there may be Pow keys like x**2 or Mul keys like x*y if any(k.is_Mul for k in self.coeff): # cross terms return self.homogeneous return False class GeneralSumOfSquares(DiophantineEquationType): r""" Representation of the diophantine equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares >>> from sympy.abc import a, b, c, d, e >>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve() {(15, 22, 22, 24, 24)} By default only 1 solution is returned. Use the `limit` keyword for more: >>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3)) [(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)] References ========== .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ name = 'general_sum_of_squares' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False if any(k.is_Mul for k in self.coeff): return False return all(self.coeff[k] == 1 for k in self.coeff if k != 1) def solve(self, parameters=None, limit=1): self.pre_solve(parameters) var = self.free_symbols k = -int(self.coeff[1]) n = self.dimension result = DiophantineSolutionSet(var, parameters=self.parameters) if k < 0 or limit < 1: return result signs = [-1 if x.is_nonpositive else 1 for x in var] negs = signs.count(-1) != 0 took = 0 for t in sum_of_squares(k, n, zeros=True): if negs: result.add([signs[i]*j for i, j in enumerate(t)]) else: result.add(t) took += 1 if took == limit: break return result class GeneralPythagorean(DiophantineEquationType): """ Representation of the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean >>> from sympy.abc import a, b, c, d, e, x, y, z, t >>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve() {(t_0**2 + t_1**2 - t_2**2, 2*t_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)} >>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t]) {(-10*t**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)} """ name = 'general_pythagorean' def matches(self): if not (self.total_degree == 2 and self.dimension >= 3): return False if not self.homogeneous_order: return False if any(k.is_Mul for k in self.coeff): return False if all(self.coeff[k] == 1 for k in self.coeff if k != 1): return False if not all(is_square(abs(self.coeff[k])) for k in self.coeff): return False # all but one has the same sign # e.g. 4*x**2 + y**2 - 4*z**2 return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2 @property def n_parameters(self): return self.dimension - 1 def solve(self, parameters=None, limit=1): self.pre_solve(parameters) coeff = self.coeff var = self.free_symbols n = self.dimension if sign(coeff[var[0] ** 2]) + sign(coeff[var[1] ** 2]) + sign(coeff[var[2] ** 2]) < 0: for key in coeff.keys(): coeff[key] = -coeff[key] result = DiophantineSolutionSet(var, parameters=self.parameters) index = 0 for i, v in enumerate(var): if sign(coeff[v ** 2]) == -1: index = i m = result.parameters ith = sum(m_i ** 2 for m_i in m) L = [ith - 2 * m[n - 2] ** 2] L.extend([2 * m[i] * m[n - 2] for i in range(n - 2)]) sol = L[:index] + [ith] + L[index:] lcm = 1 for i, v in enumerate(var): if i == index or (index > 0 and i == 0) or (index == 0 and i == 1): lcm = ilcm(lcm, sqrt(abs(coeff[v ** 2]))) else: s = sqrt(coeff[v ** 2]) lcm = ilcm(lcm, s if _odd(s) else s // 2) for i, v in enumerate(var): sol[i] = (lcm * sol[i]) / sqrt(abs(coeff[v ** 2])) result.add(sol) return result class CubicThue(DiophantineEquationType): """ Representation of a cubic Thue diophantine equation. A cubic Thue diophantine equation is a polynomial of the form `f(x, y) = r` of degree 3, where `x` and `y` are integers and `r` is a rational number. No solver is currently implemented for this equation type. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import CubicThue >>> c1 = CubicThue(x**3 + y**2 + 1) >>> c1.matches() True """ name = 'cubic_thue' def matches(self): return self.total_degree == 3 and self.dimension == 2 class GeneralSumOfEvenPowers(DiophantineEquationType): """ Representation of the diophantine equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Examples ======== >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfEvenPowers >>> from sympy.abc import a, b >>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve() {(2, 3)} """ name = 'general_sum_of_even_powers' def matches(self): if not self.total_degree > 3: return False if self.total_degree % 2 != 0: return False if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1): return False return all(self.coeff[k] == 1 for k in self.coeff if k != 1) def solve(self, parameters=None, limit=1): self.pre_solve(parameters) var = self.free_symbols coeff = self.coeff p = None for q in coeff.keys(): if q.is_Pow and coeff[q]: p = q.exp k = len(var) n = -coeff[1] result = DiophantineSolutionSet(var, parameters=self.parameters) if n < 0 or limit < 1: return result sign = [-1 if x.is_nonpositive else 1 for x in var] negs = sign.count(-1) != 0 took = 0 for t in power_representation(n, p, k): if negs: result.add([sign[i]*j for i, j in enumerate(t)]) else: result.add(t) took += 1 if took == limit: break return result # these types are known (but not necessarily handled) # note that order is important here (in the current solver state) all_diop_classes = [ Linear, Univariate, BinaryQuadratic, InhomogeneousTernaryQuadratic, HomogeneousTernaryQuadraticNormal, HomogeneousTernaryQuadratic, InhomogeneousGeneralQuadratic, HomogeneousGeneralQuadratic, GeneralSumOfSquares, GeneralPythagorean, CubicThue, GeneralSumOfEvenPowers, ] diop_known = {diop_class.name for diop_class in all_diop_classes} def _is_int(i): try: as_int(i) return True except ValueError: pass def _sorted_tuple(*i): return tuple(sorted(i)) def _remove_gcd(*x): try: g = igcd(*x) except ValueError: fx = list(filter(None, x)) if len(fx) < 2: return x g = igcd(*[i.as_content_primitive()[0] for i in fx]) except TypeError: raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)') if g == 1: return x return tuple([i//g for i in x]) def _rational_pq(a, b): # return `(numer, denom)` for a/b; sign in numer and gcd removed return _remove_gcd(sign(b)*a, abs(b)) def _nint_or_floor(p, q): # return nearest int to p/q; in case of tie return floor(p/q) w, r = divmod(p, q) if abs(r) <= abs(q)//2: return w return w + 1 def _odd(i): return i % 2 != 0 def _even(i): return i % 2 == 0 def diophantine(eq, param=symbols("t", integer=True), syms=None, permute=False): """ Simplify the solution procedure of diophantine equation ``eq`` by converting it into a product of terms which should equal zero. Explanation =========== For example, when solving, `x^2 - y^2 = 0` this is treated as `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved independently and combined. Each term is solved by calling ``diop_solve()``. (Although it is possible to call ``diop_solve()`` directly, one must be careful to pass an equation in the correct form and to interpret the output correctly; ``diophantine()`` is the public-facing function to use in general.) Output of ``diophantine()`` is a set of tuples. The elements of the tuple are the solutions for each variable in the equation and are arranged according to the alphabetic ordering of the variables. e.g. For an equation with two variables, `a` and `b`, the first element of the tuple is the solution for `a` and the second for `b`. Usage ===== ``diophantine(eq, t, syms)``: Solve the diophantine equation ``eq``. ``t`` is the optional parameter to be used by ``diop_solve()``. ``syms`` is an optional list of symbols which determines the order of the elements in the returned tuple. By default, only the base solution is returned. If ``permute`` is set to True then permutations of the base solution and/or permutations of the signs of the values will be returned when applicable. Examples ======== >>> from sympy.solvers.diophantine import diophantine >>> from sympy.abc import a, b >>> eq = a**4 + b**4 - (2**4 + 3**4) >>> diophantine(eq) {(2, 3)} >>> diophantine(eq, permute=True) {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, z >>> diophantine(x**2 - y**2) {(t_0, -t_0), (t_0, t_0)} >>> diophantine(x*(2*x + 3*y - z)) {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)} >>> diophantine(x**2 + 3*x*y + 4*x) {(0, n1), (3*t_0 - 4, -t_0)} See Also ======== diop_solve() sympy.utilities.iterables.permute_signs sympy.utilities.iterables.signed_permutations """ from sympy.utilities.iterables import ( subsets, permute_signs, signed_permutations) eq = _sympify(eq) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs try: var = list(eq.expand(force=True).free_symbols) var.sort(key=default_sort_key) if syms: if not is_sequence(syms): raise TypeError( 'syms should be given as a sequence, e.g. a list') syms = [i for i in syms if i in var] if syms != var: dict_sym_index = dict(zip(syms, range(len(syms)))) return {tuple([t[dict_sym_index[i]] for i in var]) for t in diophantine(eq, param, permute=permute)} n, d = eq.as_numer_denom() if n.is_number: return set() if not d.is_number: dsol = diophantine(d) good = diophantine(n) - dsol return {s for s in good if _mexpand(d.subs(zip(var, s)))} else: eq = n eq = factor_terms(eq) assert not eq.is_number eq = eq.as_independent(*var, as_Add=False)[1] p = Poly(eq) assert not any(g.is_number for g in p.gens) eq = p.as_expr() assert eq.is_polynomial() except (GeneratorsNeeded, AssertionError): raise TypeError(filldedent(''' Equation should be a polynomial with Rational coefficients.''')) # permute only sign do_permute_signs = False # permute sign and values do_permute_signs_var = False # permute few signs permute_few_signs = False try: # if we know that factoring should not be attempted, skip # the factoring step v, c, t = classify_diop(eq) # check for permute sign if permute: len_var = len(v) permute_signs_for = [ GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name] permute_signs_check = [ HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, BinaryQuadratic.name] if t in permute_signs_for: do_permute_signs_var = True elif t in permute_signs_check: # if all the variables in eq have even powers # then do_permute_sign = True if len_var == 3: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y), (x, z), (y, z)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul) # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then # `xy_coeff` => True and do_permute_sign => False. # Means no permuted solution. for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2, z**2, const is present do_permute_signs = True elif not x_coeff: permute_few_signs = True elif len_var == 2: var_mul = list(subsets(v, 2)) # here var_mul is like [(x, y)] xy_coeff = True x_coeff = True var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul) for v1_mul_v2 in var1_mul_var2: try: coeff = c[v1_mul_v2] except KeyError: coeff = 0 xy_coeff = bool(xy_coeff) and bool(coeff) var_mul = list(subsets(v, 1)) # here var_mul is like [(x,), (y, )] for v1 in var_mul: try: coeff = c[v1[0]] except KeyError: coeff = 0 x_coeff = bool(x_coeff) and bool(coeff) if not any([xy_coeff, x_coeff]): # means only x**2, y**2 and const is present # so we can get more soln by permuting this soln. do_permute_signs = True elif not x_coeff: # when coeff(x), coeff(y) is not present then signs of # x, y can be permuted such that their sign are same # as sign of x*y. # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val) # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val) permute_few_signs = True if t == 'general_sum_of_squares': # trying to factor such expressions will sometimes hang terms = [(eq, 1)] else: raise TypeError except (TypeError, NotImplementedError): fl = factor_list(eq) if fl[0].is_Rational and fl[0] != 1: return diophantine(eq/fl[0], param=param, syms=syms, permute=permute) terms = fl[1] sols = set() for term in terms: base, _ = term var_t, _, eq_type = classify_diop(base, _dict=False) _, base = signsimp(base, evaluate=False).as_coeff_Mul() solution = diop_solve(base, param) if eq_type in [ Linear.name, HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name, GeneralPythagorean.name]: sols.add(merge_solution(var, var_t, solution)) elif eq_type in [ BinaryQuadratic.name, GeneralSumOfSquares.name, GeneralSumOfEvenPowers.name, Univariate.name]: for sol in solution: sols.add(merge_solution(var, var_t, sol)) else: raise NotImplementedError('unhandled type: %s' % eq_type) # remove null merge results if () in sols: sols.remove(()) null = tuple([0]*len(var)) # if there is no solution, return trivial solution if not sols and eq.subs(zip(var, null)).is_zero: sols.add(null) final_soln = set() for sol in sols: if all(_is_int(s) for s in sol): if do_permute_signs: permuted_sign = set(permute_signs(sol)) final_soln.update(permuted_sign) elif permute_few_signs: lst = list(permute_signs(sol)) lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst)) permuted_sign = set(lst) final_soln.update(permuted_sign) elif do_permute_signs_var: permuted_sign_var = set(signed_permutations(sol)) final_soln.update(permuted_sign_var) else: final_soln.add(sol) else: final_soln.add(sol) return final_soln def merge_solution(var, var_t, solution): """ This is used to construct the full solution from the solutions of sub equations. Explanation =========== For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`, solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But we should introduce a value for z when we output the solution for the original equation. This function converts `(t, t)` into `(t, t, n_{1})` where `n_{1}` is an integer parameter. """ sol = [] if None in solution: return () solution = iter(solution) params = numbered_symbols("n", integer=True, start=1) for v in var: if v in var_t: sol.append(next(solution)) else: sol.append(next(params)) for val, symb in zip(sol, var): if check_assumptions(val, **symb.assumptions0) is False: return tuple() return tuple(sol) def _diop_solve(eq, params=None): for diop_type in all_diop_classes: if diop_type(eq).matches(): return diop_type(eq).solve(parameters=params) def diop_solve(eq, param=symbols("t", integer=True)): """ Solves the diophantine equation ``eq``. Explanation =========== Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses ``classify_diop()`` to determine the type of the equation and calls the appropriate solver function. Use of ``diophantine()`` is recommended over other helper functions. ``diop_solve()`` can return either a set or a tuple depending on the nature of the equation. Usage ===== ``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t`` as a parameter if needed. Details ======= ``eq`` should be an expression which is assumed to be zero. ``t`` is a parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine import diop_solve >>> from sympy.abc import x, y, z, w >>> diop_solve(2*x + 3*y - 5) (3*t_0 - 5, 5 - 2*t_0) >>> diop_solve(4*x + 3*y - 4*z + 5) (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) >>> diop_solve(x + 3*y - 4*z + w - 6) (t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6) >>> diop_solve(x**2 + y**2 - 5) {(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)} See Also ======== diophantine() """ var, coeff, eq_type = classify_diop(eq, _dict=False) if eq_type == Linear.name: return diop_linear(eq, param) elif eq_type == BinaryQuadratic.name: return diop_quadratic(eq, param) elif eq_type == HomogeneousTernaryQuadratic.name: return diop_ternary_quadratic(eq, parameterize=True) elif eq_type == HomogeneousTernaryQuadraticNormal.name: return diop_ternary_quadratic_normal(eq, parameterize=True) elif eq_type == GeneralPythagorean.name: return diop_general_pythagorean(eq, param) elif eq_type == Univariate.name: return diop_univariate(eq) elif eq_type == GeneralSumOfSquares.name: return diop_general_sum_of_squares(eq, limit=S.Infinity) elif eq_type == GeneralSumOfEvenPowers.name: return diop_general_sum_of_even_powers(eq, limit=S.Infinity) if eq_type is not None and eq_type not in diop_known: raise ValueError(filldedent(''' Alhough this type of equation was identified, it is not yet handled. It should, however, be listed in `diop_known` at the top of this file. Developers should see comments at the end of `classify_diop`. ''')) # pragma: no cover else: raise NotImplementedError( 'No solver has been written for %s.' % eq_type) def classify_diop(eq, _dict=True): # docstring supplied externally matched = False diop_type = None for diop_class in all_diop_classes: diop_type = diop_class(eq) if diop_type.matches(): matched = True break if matched: return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name # new diop type instructions # -------------------------- # if this error raises and the equation *can* be classified, # * it should be identified in the if-block above # * the type should be added to the diop_known # if a solver can be written for it, # * a dedicated handler should be written (e.g. diop_linear) # * it should be passed to that handler in diop_solve raise NotImplementedError(filldedent(''' This equation is not yet recognized or else has not been simplified sufficiently to put it in a form recognized by diop_classify().''')) classify_diop.func_doc = ( # type: ignore ''' Helper routine used by diop_solve() to find information about ``eq``. Explanation =========== Returns a tuple containing the type of the diophantine equation along with the variables (free symbols) and their coefficients. Variables are returned as a list and coefficients are returned as a dict with the key being the respective term and the constant term is keyed to 1. The type is one of the following: * %s Usage ===== ``classify_diop(eq)``: Return variables, coefficients and type of the ``eq``. Details ======= ``eq`` should be an expression which is assumed to be zero. ``_dict`` is for internal use: when True (default) a dict is returned, otherwise a defaultdict which supplies 0 for missing keys is returned. Examples ======== >>> from sympy.solvers.diophantine import classify_diop >>> from sympy.abc import x, y, z, w, t >>> classify_diop(4*x + 6*y - 4) ([x, y], {1: -4, x: 4, y: 6}, 'linear') >>> classify_diop(x + 3*y -4*z + 5) ([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear') >>> classify_diop(x**2 + y**2 - x*y + x + 5) ([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic') ''' % ('\n * '.join(sorted(diop_known)))) def diop_linear(eq, param=symbols("t", integer=True)): """ Solves linear diophantine equations. A linear diophantine equation is an equation of the form `a_{1}x_{1} + a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables. Usage ===== ``diop_linear(eq)``: Returns a tuple containing solutions to the diophantine equation ``eq``. Values in the tuple is arranged in the same order as the sorted variables. Details ======= ``eq`` is a linear diophantine equation which is assumed to be zero. ``param`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_linear >>> from sympy.abc import x, y, z >>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0 (3*t_0 - 5, 2*t_0 - 5) Here x = -3*t_0 - 5 and y = -2*t_0 - 5 >>> diop_linear(2*x - 3*y - 4*z -3) (t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3) See Also ======== diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(), diop_general_sum_of_squares() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == Linear.name: parameters = None if param is not None: parameters = symbols('%s_0:%i' % (param, len(var)), integer=True) result = Linear(eq).solve(parameters=parameters) if param is None: result = result(*[0]*len(result.parameters)) if len(result) > 0: return list(result)[0] else: return tuple([None]*len(result.parameters)) def base_solution_linear(c, a, b, t=None): """ Return the base solution for the linear equation, `ax + by = c`. Explanation =========== Used by ``diop_linear()`` to find the base solution of a linear Diophantine equation. If ``t`` is given then the parametrized solution is returned. Usage ===== ``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients in `ax + by = c` and ``t`` is the parameter to be used in the solution. Examples ======== >>> from sympy.solvers.diophantine.diophantine import base_solution_linear >>> from sympy.abc import t >>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5 (-5, 5) >>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0 (0, 0) >>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5 (3*t - 5, 5 - 2*t) >>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0 (7*t, -5*t) """ a, b, c = _remove_gcd(a, b, c) if c == 0: if t is not None: if b < 0: t = -t return (b*t , -a*t) else: return (0, 0) else: x0, y0, d = igcdex(abs(a), abs(b)) x0 *= sign(a) y0 *= sign(b) if divisible(c, d): if t is not None: if b < 0: t = -t return (c*x0 + b*t, c*y0 - a*t) else: return (c*x0, c*y0) else: return (None, None) def diop_univariate(eq): """ Solves a univariate diophantine equations. Explanation =========== A univariate diophantine equation is an equation of the form `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are integer constants and `x` is an integer variable. Usage ===== ``diop_univariate(eq)``: Returns a set containing solutions to the diophantine equation ``eq``. Details ======= ``eq`` is a univariate diophantine equation which is assumed to be zero. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_univariate >>> from sympy.abc import x >>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0 {(2,), (3,)} """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == Univariate.name: return {(int(i),) for i in solveset_real( eq, var[0]).intersect(S.Integers)} def divisible(a, b): """ Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise. """ return not a % b def diop_quadratic(eq, param=symbols("t", integer=True)): """ Solves quadratic diophantine equations. i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a set containing the tuples `(x, y)` which contains the solutions. If there are no solutions then `(None, None)` is returned. Usage ===== ``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine equation. ``param`` is used to indicate the parameter to be used in the solution. Details ======= ``eq`` should be an expression which is assumed to be zero. ``param`` is a parameter to be used in the solution. Examples ======== >>> from sympy.abc import x, y, t >>> from sympy.solvers.diophantine.diophantine import diop_quadratic >>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t) {(-1, -1)} References ========== .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online], Available: http://www.alpertron.com.ar/METHODS.HTM .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online], Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf See Also ======== diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(), diop_general_pythagorean() """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: if param is not None: parameters = [param, Symbol("u", integer=True)] else: parameters = None return set(BinaryQuadratic(eq).solve(parameters=parameters)) def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0 def diop_DN(D, N, t=symbols("t", integer=True)): """ Solves the equation `x^2 - Dy^2 = N`. Explanation =========== Mainly concerned with the case `D > 0, D` is not a perfect square, which is the same as the generalized Pell equation. The LMM algorithm [1]_ is used to solve this equation. Returns one solution tuple, (`x, y)` for each class of the solutions. Other solutions of the class can be constructed according to the values of ``D`` and ``N``. Usage ===== ``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_DN >>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4 [(3, 1), (393, 109), (36, 10)] The output can be interpreted as follows: There are three fundamental solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109) and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means that `x = 3` and `y = 1`. >>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1 [(49299, 1570)] See Also ======== find_DN(), diop_bf_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Pages 16 - 17. [online], Available: https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ if D < 0: if N == 0: return [(0, 0)] elif N < 0: return [] elif N > 0: sol = [] for d in divisors(square_factor(N)): sols = cornacchia(1, -D, N // d**2) if sols: for x, y in sols: sol.append((d*x, d*y)) if D == -1: sol.append((d*y, d*x)) return sol elif D == 0: if N < 0: return [] if N == 0: return [(0, t)] sN, _exact = integer_nthroot(N, 2) if _exact: return [(sN, t)] else: return [] else: # D > 0 sD, _exact = integer_nthroot(D, 2) if _exact: if N == 0: return [(sD*t, t)] else: sol = [] for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1): try: sq, _exact = integer_nthroot(D*y**2 + N, 2) except ValueError: _exact = False if _exact: sol.append((sq, y)) return sol elif 1 < N**2 < D: # It is much faster to call `_special_diop_DN`. return _special_diop_DN(D, N) else: if N == 0: return [(0, 0)] elif abs(N) == 1: pqa = PQa(0, 1, D) j = 0 G = [] B = [] for i in pqa: a = i[2] G.append(i[5]) B.append(i[4]) if j != 0 and a == 2*sD: break j = j + 1 if _odd(j): if N == -1: x = G[j - 1] y = B[j - 1] else: count = j while count < 2*j - 1: i = next(pqa) G.append(i[5]) B.append(i[4]) count += 1 x = G[count] y = B[count] else: if N == 1: x = G[j - 1] y = B[j - 1] else: return [] return [(x, y)] else: fs = [] sol = [] div = divisors(N) for d in div: if divisible(N, d**2): fs.append(d) for f in fs: m = N // f**2 zs = sqrt_mod(D, abs(m), all_roots=True) zs = [i for i in zs if i <= abs(m) // 2 ] if abs(m) != 2: zs = zs + [-i for i in zs if i] # omit dupl 0 for z in zs: pqa = PQa(z, abs(m), D) j = 0 G = [] B = [] for i in pqa: G.append(i[5]) B.append(i[4]) if j != 0 and abs(i[1]) == 1: r = G[j-1] s = B[j-1] if r**2 - D*s**2 == m: sol.append((f*r, f*s)) elif diop_DN(D, -1) != []: a = diop_DN(D, -1) sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0]))) break j = j + 1 if j == length(z, abs(m), D): break return sol def _special_diop_DN(D, N): """ Solves the equation `x^2 - Dy^2 = N` for the special case where `1 < N**2 < D` and `D` is not a perfect square. It is better to call `diop_DN` rather than this function, as the former checks the condition `1 < N**2 < D`, and calls the latter only if appropriate. Usage ===== WARNING: Internal method. Do not call directly! ``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`. Details ======= ``D`` and ``N`` correspond to D and N in the equation. Examples ======== >>> from sympy.solvers.diophantine.diophantine import _special_diop_DN >>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3 [(7, 2), (137, 38)] The output can be interpreted as follows: There are two fundamental solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and (137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means that `x = 7` and `y = 2`. >>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20 [(445, 9), (17625560, 356454), (698095554475, 14118073569)] See Also ======== diop_DN() References ========== .. [1] Section 4.4.4 of the following book: Quadratic Diophantine Equations, T. Andreescu and D. Andrica, Springer, 2015. """ # The following assertion was removed for efficiency, with the understanding # that this method is not called directly. The parent method, `diop_DN` # is responsible for performing the appropriate checks. # # assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1]) sqrt_D = sqrt(D) F = [(N, 1)] f = 2 while True: f2 = f**2 if f2 > abs(N): break n, r = divmod(N, f2) if r == 0: F.append((n, f)) f += 1 P = 0 Q = 1 G0, G1 = 0, 1 B0, B1 = 1, 0 solutions = [] i = 0 while True: a = floor((P + sqrt_D) / Q) P = a*Q - P Q = (D - P**2) // Q G2 = a*G1 + G0 B2 = a*B1 + B0 for n, f in F: if G2**2 - D*B2**2 == n: solutions.append((f*G2, f*B2)) i += 1 if Q == 1 and i % 2 == 0: break G0, G1 = G1, G2 B0, B1 = B1, B2 return solutions def cornacchia(a, b, m): r""" Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`. Explanation =========== Uses the algorithm due to Cornacchia. The method only finds primitive solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to find the solutions of `x^2 + y^2 = 20` since the only solution to former is `(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the solutions with `x \leq y` are found. For more details, see the References. Examples ======== >>> from sympy.solvers.diophantine.diophantine import cornacchia >>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35 {(2, 3), (4, 1)} >>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25 {(4, 3)} References =========== .. [1] A. Nitaj, "L'algorithme de Cornacchia" .. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's method, [online], Available: http://www.numbertheory.org/php/cornacchia.html See Also ======== sympy.utilities.iterables.signed_permutations """ sols = set() a1 = igcdex(a, m)[0] v = sqrt_mod(-b*a1, m, all_roots=True) if not v: return None for t in v: if t < m // 2: continue u, r = t, m while True: u, r = r, u % r if a*r**2 < m: break m1 = m - a*r**2 if m1 % b == 0: m1 = m1 // b s, _exact = integer_nthroot(m1, 2) if _exact: if a == b and r < s: r, s = s, r sols.add((int(r), int(s))) return sols def PQa(P_0, Q_0, D): r""" Returns useful information needed to solve the Pell equation. Explanation =========== There are six sequences of integers defined related to the continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`}, {`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns these values as a 6-tuple in the same order as mentioned above. Refer [1]_ for more detailed information. Usage ===== ``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding to `P_{0}`, `Q_{0}` and `D` in the continued fraction `\\frac{P_{0} + \sqrt{D}}{Q_{0}}`. Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free. Examples ======== >>> from sympy.solvers.diophantine.diophantine import PQa >>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4 >>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0) (13, 4, 3, 3, 1, -1) >>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1) (-1, 1, 1, 4, 1, 3) References ========== .. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P. Robertson, July 31, 2004, Pages 4 - 8. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ A_i_2 = B_i_1 = 0 A_i_1 = B_i_2 = 1 G_i_2 = -P_0 G_i_1 = Q_0 P_i = P_0 Q_i = Q_0 while True: a_i = floor((P_i + sqrt(D))/Q_i) A_i = a_i*A_i_1 + A_i_2 B_i = a_i*B_i_1 + B_i_2 G_i = a_i*G_i_1 + G_i_2 yield P_i, Q_i, a_i, A_i, B_i, G_i A_i_1, A_i_2 = A_i, A_i_1 B_i_1, B_i_2 = B_i, B_i_1 G_i_1, G_i_2 = G_i, G_i_1 P_i = a_i*Q_i - P_i Q_i = (D - P_i**2)/Q_i def diop_bf_DN(D, N, t=symbols("t", integer=True)): r""" Uses brute force to solve the equation, `x^2 - Dy^2 = N`. Explanation =========== Mainly concerned with the generalized Pell equation which is the case when `D > 0, D` is not a perfect square. For more information on the case refer [1]_. Let `(t, u)` be the minimal positive solution of the equation `x^2 - Dy^2 = 1`. Then this method requires `\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small. Usage ===== ``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions. Details ======= ``D`` and ``N`` correspond to D and N in the equation. ``t`` is the parameter to be used in the solutions. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_bf_DN >>> diop_bf_DN(13, -4) [(3, 1), (-3, 1), (36, 10)] >>> diop_bf_DN(986, 1) [(49299, 1570)] See Also ======== diop_DN() References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 15. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ D = as_int(D) N = as_int(N) sol = [] a = diop_DN(D, 1) u = a[0][0] if abs(N) == 1: return diop_DN(D, N) elif N > 1: L1 = 0 L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1 elif N < -1: L1, _exact = integer_nthroot(-int(N/D), 2) if not _exact: L1 += 1 L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1 else: # N = 0 if D < 0: return [(0, 0)] elif D == 0: return [(0, t)] else: sD, _exact = integer_nthroot(D, 2) if _exact: return [(sD*t, t), (-sD*t, t)] else: return [(0, 0)] for y in range(L1, L2): try: x, _exact = integer_nthroot(N + D*y**2, 2) except ValueError: _exact = False if _exact: sol.append((x, y)) if not equivalent(x, y, -x, y, D, N): sol.append((-x, y)) return sol def equivalent(u, v, r, s, D, N): """ Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N` belongs to the same equivalence class and False otherwise. Explanation =========== Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by `N`. See reference [1]_. No test is performed to test whether `(u, v)` and `(r, s)` are actually solutions to the equation. User should take care of this. Usage ===== ``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions of the equation `x^2 - Dy^2 = N` and all parameters involved are integers. Examples ======== >>> from sympy.solvers.diophantine.diophantine import equivalent >>> equivalent(18, 5, -18, -5, 13, -1) True >>> equivalent(3, 1, -18, 393, 109, -4) False References ========== .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004, Page 12. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf """ return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N) def length(P, Q, D): r""" Returns the (length of aperiodic part + length of periodic part) of continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`. It is important to remember that this does NOT return the length of the periodic part but the sum of the lengths of the two parts as mentioned above. Usage ===== ``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to the continued fraction `\\frac{P + \sqrt{D}}{Q}`. Details ======= ``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction, `\\frac{P + \sqrt{D}}{Q}`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import length >>> length(-2 , 4, 5) # (-2 + sqrt(5))/4 3 >>> length(-5, 4, 17) # (-5 + sqrt(17))/4 4 See Also ======== sympy.ntheory.continued_fraction.continued_fraction_periodic """ from sympy.ntheory.continued_fraction import continued_fraction_periodic v = continued_fraction_periodic(P, Q, D) if type(v[-1]) is list: rpt = len(v[-1]) nonrpt = len(v) - 1 else: rpt = 0 nonrpt = len(v) return rpt + nonrpt def transformation_to_DN(eq): """ This function transforms general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0` to more easy to deal with `X^2 - DY^2 = N` form. Explanation =========== This is used to solve the general quadratic equation by transforming it to the latter form. Refer [1]_ for more detailed information on the transformation. This function returns a tuple (A, B) where A is a 2 X 2 matrix and B is a 2 X 1 matrix such that, Transpose([x y]) = A * Transpose([X Y]) + B Usage ===== ``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import transformation_to_DN >>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1) >>> A Matrix([ [1/26, 3/26], [ 0, 1/13]]) >>> B Matrix([ [-6/13], [-4/13]]) A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B. Substituting these values for `x` and `y` and a bit of simplifying work will give an equation of the form `x^2 - Dy^2 = N`. >>> from sympy.abc import X, Y >>> from sympy import Matrix, simplify >>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x >>> u X/26 + 3*Y/26 - 6/13 >>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y >>> v Y/13 - 4/13 Next we will substitute these formulas for `x` and `y` and do ``simplify()``. >>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v)))) >>> eq X**2/676 - Y**2/52 + 17/13 By multiplying the denominator appropriately, we can get a Pell equation in the standard form. >>> eq * 676 X**2 - 13*Y**2 + 884 If only the final equation is needed, ``find_DN()`` can be used. See Also ======== find_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: return _transformation_to_DN(var, coeff) def _transformation_to_DN(var, coeff): x, y = var a = coeff[x**2] b = coeff[x*y] c = coeff[y**2] d = coeff[x] e = coeff[y] f = coeff[1] a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)] X, Y = symbols("X, Y", integer=True) if b: B, C = _rational_pq(2*a, b) A, T = _rational_pq(a, B**2) # eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0 else: if d: B, C = _rational_pq(2*a, d) A, T = _rational_pq(a, B**2) # eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2 coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0]) else: if e: B, C = _rational_pq(2*c, e) A, T = _rational_pq(c, B**2) # eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2 coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2} A_0, B_0 = _transformation_to_DN([X, Y], coeff) return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B]) else: # TODO: pre-simplification: Not necessary but may simplify # the equation. return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0]) def find_DN(eq): """ This function returns a tuple, `(D, N)` of the simplified form, `x^2 - Dy^2 = N`, corresponding to the general quadratic, `ax^2 + bxy + cy^2 + dx + ey + f = 0`. Solving the general quadratic is then equivalent to solving the equation `X^2 - DY^2 = N` and transforming the solutions by using the transformation matrices returned by ``transformation_to_DN()``. Usage ===== ``find_DN(eq)``: where ``eq`` is the quadratic to be transformed. Examples ======== >>> from sympy.abc import x, y >>> from sympy.solvers.diophantine.diophantine import find_DN >>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1) (13, -884) Interpretation of the output is that we get `X^2 -13Y^2 = -884` after transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned by ``transformation_to_DN()``. See Also ======== transformation_to_DN() References ========== .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0, John P.Robertson, May 8, 2003, Page 7 - 11. https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == BinaryQuadratic.name: return _find_DN(var, coeff) def _find_DN(var, coeff): x, y = var X, Y = symbols("X, Y", integer=True) A, B = _transformation_to_DN(var, coeff) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1] simplified = _mexpand(eq.subs(zip((x, y), (u, v)))) coeff = simplified.as_coefficients_dict() return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2] def check_param(x, y, a, params): """ If there is a number modulo ``a`` such that ``x`` and ``y`` are both integers, then return a parametric representation for ``x`` and ``y`` else return (None, None). Here ``x`` and ``y`` are functions of ``t``. """ from sympy.simplify.simplify import clear_coefficients if x.is_number and not x.is_Integer: return DiophantineSolutionSet([x, y], parameters=params) if y.is_number and not y.is_Integer: return DiophantineSolutionSet([x, y], parameters=params) m, n = symbols("m, n", integer=True) c, p = (m*x + n*y).as_content_primitive() if a % c.q: return DiophantineSolutionSet([x, y], parameters=params) # clear_coefficients(mx + b, R)[1] -> (R - b)/m eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1] junk, eq = eq.as_content_primitive() return _diop_solve(eq, params=params) def diop_ternary_quadratic(eq, parameterize=False): """ Solves the general quadratic ternary form, `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Returns a tuple `(x, y, z)` which is a base solution for the above equation. If there are no solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution to ``eq``. Details ======= ``eq`` should be an homogeneous expression of degree two in three variables and it is assumed to be zero. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic >>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2) (28, 45, 105) >>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) (9, 1, 5) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( HomogeneousTernaryQuadratic.name, HomogeneousTernaryQuadraticNormal.name): sol = _diop_ternary_quadratic(var, coeff) if len(sol) > 0: x_0, y_0, z_0 = list(sol)[0] else: x_0, y_0, z_0 = None, None, None if parameterize: return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) return x_0, y_0, z_0 def _diop_ternary_quadratic(_var, coeff): eq = sum([i*coeff[i] for i in coeff]) if HomogeneousTernaryQuadratic(eq).matches(): return HomogeneousTernaryQuadratic(eq, free_symbols=_var).solve() elif HomogeneousTernaryQuadraticNormal(eq).matches(): return HomogeneousTernaryQuadraticNormal(eq, free_symbols=_var).solve() def transformation_to_normal(eq): """ Returns the transformation Matrix that converts a general ternary quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`) to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is not used in solving ternary quadratics; it is only implemented for the sake of completeness. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): return _transformation_to_normal(var, coeff) def _transformation_to_normal(var, coeff): _var = list(var) # copy x, y, z = var if not any(coeff[i**2] for i in var): # https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065 a = coeff[x*y] b = coeff[y*z] c = coeff[x*z] swap = False if not a: # b can't be 0 or else there aren't 3 vars swap = True a, b = b, a T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1))) if swap: T.row_swap(0, 1) T.col_swap(0, 1) return T if coeff[x**2] == 0: # If the coefficient of x is zero change the variables if coeff[y**2] == 0: _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T # Apply the transformation x --> X - (B*Y + C*Z)/(2*A) if coeff[x*y] != 0 or coeff[x*z] != 0: A = coeff[x**2] B = coeff[x*y] C = coeff[x*z] D = coeff[y**2] E = coeff[y*z] F = coeff[z**2] _coeff = dict() _coeff[x**2] = 4*A**2 _coeff[y**2] = 4*A*D - B**2 _coeff[z**2] = 4*A*F - C**2 _coeff[y*z] = 4*A*E - 2*B*C _coeff[x*y] = 0 _coeff[x*z] = 0 T_0 = _transformation_to_normal(_var, _coeff) return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0 elif coeff[y*z] != 0: if coeff[y**2] == 0: if coeff[z**2] == 0: # Equations of the form A*x**2 + E*yz = 0. # Apply transformation y -> Y + Z ans z -> Y - Z return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1]) else: # Ax**2 + E*y*z + F*z**2 = 0 _var[0], _var[2] = var[2], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 2) T.col_swap(0, 2) return T else: # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero _var[0], _var[1] = var[1], var[0] T = _transformation_to_normal(_var, coeff) T.row_swap(0, 1) T.col_swap(0, 1) return T else: return Matrix.eye(3) def parametrize_ternary_quadratic(eq): """ Returns the parametrized general solution for the ternary quadratic equation ``eq`` which has the form `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`. Examples ======== >>> from sympy import Tuple, ordered >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic The parametrized solution may be returned with three parameters: >>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2) (p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r) There might also be only two parameters: >>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2) (2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2) Notes ===== Consider ``p`` and ``q`` in the previous 2-parameter solution and observe that more than one solution can be represented by a given pair of parameters. If `p` and ``q`` are not coprime, this is trivially true since the common factor will also be a common factor of the solution values. But it may also be true even when ``p`` and ``q`` are coprime: >>> sol = Tuple(*_) >>> p, q = ordered(sol.free_symbols) >>> sol.subs([(p, 3), (q, 2)]) (6, 12, 12) >>> sol.subs([(q, 1), (p, 1)]) (-1, 2, 2) >>> sol.subs([(q, 0), (p, 1)]) (2, -4, 4) >>> sol.subs([(q, 1), (p, 0)]) (-3, -6, 6) Except for sign and a common factor, these are equivalent to the solution of (1, 2, 2). References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type in ( "homogeneous_ternary_quadratic", "homogeneous_ternary_quadratic_normal"): x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0] return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) def _parametrize_ternary_quadratic(solution, _var, coeff): # called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0 assert 1 not in coeff x_0, y_0, z_0 = solution v = list(_var) # copy if x_0 is None: return (None, None, None) if solution.count(0) >= 2: # if there are 2 zeros the equation reduces # to k*X**2 == 0 where X is x, y, or z so X must # be zero, too. So there is only the trivial # solution. return (None, None, None) if x_0 == 0: v[0], v[1] = v[1], v[0] y_p, x_p, z_p = _parametrize_ternary_quadratic( (y_0, x_0, z_0), v, coeff) return x_p, y_p, z_p x, y, z = v r, p, q = symbols("r, p, q", integer=True) eq = sum(k*v for k, v in coeff.items()) eq_1 = _mexpand(eq.subs(zip( (x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q)))) A, B = eq_1.as_independent(r, as_Add=True) x = A*x_0 y = (A*y_0 - _mexpand(B/r*p)) z = (A*z_0 - _mexpand(B/r*q)) return _remove_gcd(x, y, z) def diop_ternary_quadratic_normal(eq, parameterize=False): """ Solves the quadratic ternary diophantine equation, `ax^2 + by^2 + cz^2 = 0`. Explanation =========== Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the equation will be a quadratic binary or univariate equation. If solvable, returns a tuple `(x, y, z)` that satisfies the given equation. If the equation does not have integer solutions, `(None, None, None)` is returned. Usage ===== ``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form `ax^2 + by^2 + cz^2 = 0`. Examples ======== >>> from sympy.abc import x, y, z >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal >>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2) (1, 0, 1) >>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) (1, 0, 2) >>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2) (4, 9, 1) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == HomogeneousTernaryQuadraticNormal.name: sol = _diop_ternary_quadratic_normal(var, coeff) if len(sol) > 0: x_0, y_0, z_0 = list(sol)[0] else: x_0, y_0, z_0 = None, None, None if parameterize: return _parametrize_ternary_quadratic( (x_0, y_0, z_0), var, coeff) return x_0, y_0, z_0 def _diop_ternary_quadratic_normal(var, coeff): eq = sum([i * coeff[i] for i in coeff]) return HomogeneousTernaryQuadraticNormal(eq, free_symbols=var).solve() def sqf_normal(a, b, c, steps=False): """ Return `a', b', c'`, the coefficients of the square-free normal form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise prime. If `steps` is True then also return three tuples: `sq`, `sqf`, and `(a', b', c')` where `sq` contains the square factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`; `sqf` contains the values of `a`, `b` and `c` after removing both the `gcd(a, b, c)` and the square factors. The solutions for `ax^2 + by^2 + cz^2 = 0` can be recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sqf_normal >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11) (11, 1, 5) >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True) ((3, 1, 7), (5, 55, 11), (11, 1, 5)) References ========== .. [1] Legendre's Theorem, Legrange's Descent, http://public.csusm.edu/aitken_html/notes/legendre.pdf See Also ======== reconstruct() """ ABC = _remove_gcd(a, b, c) sq = tuple(square_factor(i) for i in ABC) sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)]) pc = igcd(A, B) A /= pc B /= pc pa = igcd(B, C) B /= pa C /= pa pb = igcd(A, C) A /= pb B /= pb A *= pa B *= pb C *= pc if steps: return (sq, sqf, (A, B, C)) else: return A, B, C def square_factor(a): r""" Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square free. `a` can be given as an integer or a dictionary of factors. Examples ======== >>> from sympy.solvers.diophantine.diophantine import square_factor >>> square_factor(24) 2 >>> square_factor(-36*3) 6 >>> square_factor(1) 1 >>> square_factor({3: 2, 2: 1, -1: 1}) # -18 3 See Also ======== sympy.ntheory.factor_.core """ f = a if isinstance(a, dict) else factorint(a) return Mul(*[p**(e//2) for p, e in f.items()]) def reconstruct(A, B, z): """ Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2` from the `z` value of a solution of the square-free normal form of the equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square free and `gcd(a', b', c') == 1`. """ f = factorint(igcd(A, B)) for p, e in f.items(): if e != 1: raise ValueError('a and b should be square-free') z *= p return z def ldescent(A, B): """ Return a non-trivial solution to `w^2 = Ax^2 + By^2` using Lagrange's method; return None if there is no such solution. . Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a tuple `(w_0, x_0, y_0)` which is a solution to the above equation. Examples ======== >>> from sympy.solvers.diophantine.diophantine import ldescent >>> ldescent(1, 1) # w^2 = x^2 + y^2 (1, 1, 0) >>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2 (2, -1, 0) This means that `x = -1, y = 0` and `w = 2` is a solution to the equation `w^2 = 4x^2 - 7y^2` >>> ldescent(5, -1) # w^2 = 5x^2 - y^2 (2, 1, -1) References ========== .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart, London Mathematical Society Student Texts 41, Cambridge University Press, Cambridge, 1998. .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, [online], Available: http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf """ if abs(A) > abs(B): w, y, x = ldescent(B, A) return w, x, y if A == 1: return (1, 1, 0) if B == 1: return (1, 0, 1) if B == -1: # and A == -1 return r = sqrt_mod(A, B) Q = (r**2 - A) // B if Q == 0: B_0 = 1 d = 0 else: div = divisors(Q) B_0 = None for i in div: sQ, _exact = integer_nthroot(abs(Q) // i, 2) if _exact: B_0, d = sign(Q)*i, sQ break if B_0 is not None: W, X, Y = ldescent(A, B_0) return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d)) def descent(A, B): """ Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2` using Lagrange's descent method with lattice-reduction. `A` and `B` are assumed to be valid for such a solution to exist. This is faster than the normal Lagrange's descent algorithm because the Gaussian reduction is used. Examples ======== >>> from sympy.solvers.diophantine.diophantine import descent >>> descent(3, 1) # x**2 = 3*y**2 + z**2 (1, 0, 1) `(x, y, z) = (1, 0, 1)` is a solution to the above equation. >>> descent(41, -113) (-16, -3, 1) References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ if abs(A) > abs(B): x, y, z = descent(B, A) return x, z, y if B == 1: return (1, 0, 1) if A == 1: return (1, 1, 0) if B == -A: return (0, 1, 1) if B == A: x, z, y = descent(-1, A) return (A*y, z, x) w = sqrt_mod(A, B) x_0, z_0 = gaussian_reduce(w, A, B) t = (x_0**2 - A*z_0**2) // B t_2 = square_factor(t) t_1 = t // t_2**2 x_1, z_1, y_1 = descent(A, t_1) return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1) def gaussian_reduce(w, a, b): r""" Returns a reduced solution `(x, z)` to the congruence `X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal. Details ======= Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)` References ========== .. [1] Gaussian lattice Reduction [online]. Available: http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404 .. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. """ u = (0, 1) v = (1, 0) if dot(u, v, w, a, b) < 0: v = (-v[0], -v[1]) if norm(u, w, a, b) < norm(v, w, a, b): u, v = v, u while norm(u, w, a, b) > norm(v, w, a, b): k = dot(u, v, w, a, b) // dot(v, v, w, a, b) u, v = v, (u[0]- k*v[0], u[1]- k*v[1]) u, v = v, u if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b): c = v else: c = (u[0] - v[0], u[1] - v[1]) return c[0]*w + b*c[1], c[0] def dot(u, v, w, a, b): r""" Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})` which is defined in order to reduce solution of the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`. """ u_1, u_2 = u v_1, v_2 = v return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1 def norm(u, w, a, b): r""" Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}` where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`. """ u_1, u_2 = u return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b)) def holzer(x, y, z, a, b, c): r""" Simplify the solution `(x, y, z)` of the equation `ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`. The algorithm is an interpretation of Mordell's reduction as described on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in reference [2]_. References ========== .. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin, Mathematics of Computation, Volume 00, Number 0. .. [2] Diophantine Equations, L. J. Mordell, page 48. """ if _odd(c): k = 2*c else: k = c//2 small = a*b*c step = 0 while True: t1, t2, t3 = a*x**2, b*y**2, c*z**2 # check that it's a solution if t1 + t2 != t3: if step == 0: raise ValueError('bad starting solution') break x_0, y_0, z_0 = x, y, z if max(t1, t2, t3) <= small: # Holzer condition break uv = u, v = base_solution_linear(k, y_0, -x_0) if None in uv: break p, q = -(a*u*x_0 + b*v*y_0), c*z_0 r = Rational(p, q) if _even(c): w = _nint_or_floor(p, q) assert abs(w - r) <= S.Half else: w = p//q # floor if _odd(a*u + b*v + c*w): w += 1 assert abs(w - r) <= S.One A = (a*u**2 + b*v**2 + c*w**2) B = (a*u*x_0 + b*v*y_0 + c*w*z_0) x = Rational(x_0*A - 2*u*B, k) y = Rational(y_0*A - 2*v*B, k) z = Rational(z_0*A - 2*w*B, k) assert all(i.is_Integer for i in (x, y, z)) step += 1 return tuple([int(i) for i in (x_0, y_0, z_0)]) def diop_general_pythagorean(eq, param=symbols("m", integer=True)): """ Solves the general pythagorean equation, `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`. Returns a tuple which contains a parametrized solution to the equation, sorted in the same order as the input variables. Usage ===== ``diop_general_pythagorean(eq, param)``: where ``eq`` is a general pythagorean equation which is assumed to be zero and ``param`` is the base parameter used to construct other parameters by subscripting. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean >>> from sympy.abc import a, b, c, d, e >>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2) (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) >>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2) (10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4) """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralPythagorean.name: if param is None: params = None else: params = symbols('%s1:%i' % (param, len(var)), integer=True) return list(GeneralPythagorean(eq).solve(parameters=params))[0] def diop_general_sum_of_squares(eq, limit=1): r""" Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`. Details ======= When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be no solutions. Refer [1]_ for more details. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares >>> from sympy.abc import a, b, c, d, e >>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345) {(15, 22, 22, 24, 24)} Reference ========= .. [1] Representing an integer as a sum of three squares, [online], Available: http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralSumOfSquares.name: return set(GeneralSumOfSquares(eq).solve(limit=limit)) def diop_general_sum_of_even_powers(eq, limit=1): """ Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0` where `e` is an even, integer power. Returns at most ``limit`` number of solutions. Usage ===== ``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which is assumed to be zero. Also, ``eq`` should be in the form, `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`. Examples ======== >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers >>> from sympy.abc import a, b >>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4)) {(2, 3)} See Also ======== power_representation """ var, coeff, diop_type = classify_diop(eq, _dict=False) if diop_type == GeneralSumOfEvenPowers.name: return set(GeneralSumOfEvenPowers(eq).solve(limit=limit)) ## Functions below this comment can be more suitably grouped under ## an Additive number theory module rather than the Diophantine ## equation module. def partition(n, k=None, zeros=False): """ Returns a generator that can be used to generate partitions of an integer `n`. Explanation =========== A partition of `n` is a set of positive integers which add up to `n`. For example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned as a tuple. If ``k`` equals None, then all possible partitions are returned irrespective of their size, otherwise only the partitions of size ``k`` are returned. If the ``zero`` parameter is set to True then a suitable number of zeros are added at the end of every partition of size less than ``k``. ``zero`` parameter is considered only if ``k`` is not None. When the partitions are over, the last `next()` call throws the ``StopIteration`` exception, so this function should always be used inside a try - except block. Details ======= ``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size of the partition which is also positive integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import partition >>> f = partition(5) >>> next(f) (1, 1, 1, 1, 1) >>> next(f) (1, 1, 1, 2) >>> g = partition(5, 3) >>> next(g) (1, 1, 3) >>> next(g) (1, 2, 2) >>> g = partition(5, 3, zeros=True) >>> next(g) (0, 0, 5) """ from sympy.utilities.iterables import ordered_partitions if not zeros or k is None: for i in ordered_partitions(n, k): yield tuple(i) else: for m in range(1, k + 1): for i in ordered_partitions(n, m): i = tuple(i) yield (0,)*(k - len(i)) + i def prime_as_sum_of_two_squares(p): """ Represent a prime `p` as a unique sum of two squares; this can only be done if the prime is congruent to 1 mod 4. Examples ======== >>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares >>> prime_as_sum_of_two_squares(7) # can't be done >>> prime_as_sum_of_two_squares(5) (1, 2) Reference ========= .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if not p % 4 == 1: return if p % 8 == 5: b = 2 else: b = 3 while pow(b, (p - 1) // 2, p) == 1: b = nextprime(b) b = pow(b, (p - 1) // 4, p) a = p while b**2 > p: a, b = b, a % b return (int(a % b), int(b)) # convert from long def sum_of_three_squares(n): r""" Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and `a, b, c \geq 0`. Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See [1]_ for more details. Usage ===== ``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares >>> sum_of_three_squares(44542) (18, 37, 207) References ========== .. [1] Representing a number as a sum of three squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0), 85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15), 526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36), 2986: (21, 32, 39), 9634: (56, 57, 57)} v = 0 if n == 0: return (0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: return if n in special.keys(): x, y, z = special[n] return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) s, _exact = integer_nthroot(n, 2) if _exact: return (2**v*s, 0, 0) x = None if n % 8 == 3: s = s if _odd(s) else s - 1 for x in range(s, -1, -2): N = (n - x**2) // 2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z)) return if n % 8 == 2 or n % 8 == 6: s = s if _odd(s) else s - 1 else: s = s - 1 if _odd(s) else s for x in range(s, -1, -2): N = n - x**2 if isprime(N): y, z = prime_as_sum_of_two_squares(N) return _sorted_tuple(2**v*x, 2**v*y, 2**v*z) def sum_of_four_squares(n): r""" Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`. Here `a, b, c, d \geq 0`. Usage ===== ``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares >>> sum_of_four_squares(3456) (8, 8, 32, 48) >>> sum_of_four_squares(1294585930293) (0, 1234, 2161, 1137796) References ========== .. [1] Representing a number as a sum of four squares, [online], Available: http://schorn.ch/lagrange.html See Also ======== sum_of_squares() """ if n == 0: return (0, 0, 0, 0) v = multiplicity(4, n) n //= 4**v if n % 8 == 7: d = 2 n = n - 4 elif n % 8 == 6 or n % 8 == 2: d = 1 n = n - 1 else: d = 0 x, y, z = sum_of_three_squares(n) return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z) def power_representation(n, p, k, zeros=False): r""" Returns a generator for finding k-tuples of integers, `(n_{1}, n_{2}, . . . n_{k})`, such that `n = n_{1}^p + n_{2}^p + . . . n_{k}^p`. Usage ===== ``power_representation(n, p, k, zeros)``: Represent non-negative number ``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the solutions is allowed to contain zeros. Examples ======== >>> from sympy.solvers.diophantine.diophantine import power_representation Represent 1729 as a sum of two cubes: >>> f = power_representation(1729, 3, 2) >>> next(f) (9, 10) >>> next(f) (1, 12) If the flag `zeros` is True, the solution may contain tuples with zeros; any such solutions will be generated after the solutions without zeros: >>> list(power_representation(125, 2, 3, zeros=True)) [(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)] For even `p` the `permute_sign` function can be used to get all signed values: >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12)] All possible signed permutations can also be obtained: >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((1, 12))) [(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)] """ n, p, k = [as_int(i) for i in (n, p, k)] if n < 0: if p % 2: for t in power_representation(-n, p, k, zeros): yield tuple(-i for i in t) return if p < 1 or k < 1: raise ValueError(filldedent(''' Expecting positive integers for `(p, k)`, but got `(%s, %s)`''' % (p, k))) if n == 0: if zeros: yield (0,)*k return if k == 1: if p == 1: yield (n,) else: be = perfect_power(n) if be: b, e = be d, r = divmod(e, p) if not r: yield (b**d,) return if p == 1: for t in partition(n, k, zeros=zeros): yield t return if p == 2: feasible = _can_do_sum_of_squares(n, k) if not feasible: return if not zeros and n > 33 and k >= 5 and k <= n and n - k in ( 13, 10, 7, 5, 4, 2, 1): '''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online]. Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf''' return if feasible is not True: # it's prime and k == 2 yield prime_as_sum_of_two_squares(n) return if k == 2 and p > 2: be = perfect_power(n) if be and be[1] % p == 0: return # Fermat: a**n + b**n = c**n has no solution for n > 2 if n >= k: a = integer_nthroot(n - (k - 1), p)[0] for t in pow_rep_recursive(a, k, n, [], p): yield tuple(reversed(t)) if zeros: a = integer_nthroot(n, p)[0] for i in range(1, k): for t in pow_rep_recursive(a, i, n, [], p): yield tuple(reversed(t + (0,)*(k - i))) sum_of_powers = power_representation def pow_rep_recursive(n_i, k, n_remaining, terms, p): if k == 0 and n_remaining == 0: yield tuple(terms) else: if n_i >= 1 and k > 0: yield from pow_rep_recursive(n_i - 1, k, n_remaining, terms, p) residual = n_remaining - pow(n_i, p) if residual >= 0: yield from pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p) def sum_of_squares(n, k, zeros=False): """Return a generator that yields the k-tuples of nonnegative values, the squares of which sum to n. If zeros is False (default) then the solution will not contain zeros. The nonnegative elements of a tuple are sorted. * If k == 1 and n is square, (n,) is returned. * If k == 2 then n can only be written as a sum of squares if every prime in the factorization of n that has the form 4*k + 3 has an even multiplicity. If n is prime then it can only be written as a sum of two squares if it is in the form 4*k + 1. * if k == 3 then n can be written as a sum of squares if it does not have the form 4**m*(8*k + 7). * all integers can be written as the sum of 4 squares. * if k > 4 then n can be partitioned and each partition can be written as a sum of 4 squares; if n is not evenly divisible by 4 then n can be written as a sum of squares only if the an additional partition can be written as sum of squares. For example, if k = 6 then n is partitioned into two parts, the first being written as a sum of 4 squares and the second being written as a sum of 2 squares -- which can only be done if the condition above for k = 2 can be met, so this will automatically reject certain partitions of n. Examples ======== >>> from sympy.solvers.diophantine.diophantine import sum_of_squares >>> list(sum_of_squares(25, 2)) [(3, 4)] >>> list(sum_of_squares(25, 2, True)) [(3, 4), (0, 5)] >>> list(sum_of_squares(25, 4)) [(1, 2, 2, 4)] See Also ======== sympy.utilities.iterables.signed_permutations """ yield from power_representation(n, 2, k, zeros) def _can_do_sum_of_squares(n, k): """Return True if n can be written as the sum of k squares, False if it can't, or 1 if ``k == 2`` and ``n`` is prime (in which case it *can* be written as a sum of two squares). A False is returned only if it can't be written as ``k``-squares, even if 0s are allowed. """ if k < 1: return False if n < 0: return False if n == 0: return True if k == 1: return is_square(n) if k == 2: if n in (1, 2): return True if isprime(n): if n % 4 == 1: return 1 # signal that it was prime return False else: f = factorint(n) for p, m in f.items(): # we can proceed iff no prime factor in the form 4*k + 3 # has an odd multiplicity if (p % 4 == 3) and m % 2: return False return True if k == 3: if (n//4**multiplicity(4, n)) % 8 == 7: return False # every number can be written as a sum of 4 squares; for k > 4 partitions # can be 0 return True
3d0e8f6afe34b47e0d280bef2c70b1a5894457108920c188b04cd7847c170f82
r""" This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper functions that it uses. :py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations. See the docstring on the various functions for their uses. Note that partial differential equations support is in ``pde.py``. Note that hint functions have docstrings describing their various methods, but they are intended for internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a specific hint. See also the docstring on :py:meth:`~sympy.solvers.ode.dsolve`. **Functions in this module** These are the user functions in this module: - :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs. - :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into possible hints for :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the solution to an ODE. - :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the homogeneous order of an expression. - :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals of the Lie group of point transformations of an ODE, such that it is invariant. - :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals are the actual infinitesimals of a first order ODE. These are the non-solver helper functions that are for internal use. The user should use the various options to :py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided by these functions: - :py:meth:`~sympy.solvers.ode.ode.odesimp` - Does all forms of ODE simplification. - :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity` - A key function for comparing solutions by simplicity. - :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary constants. - :py:meth:`~sympy.solvers.ode.ode.constant_renumber` - Renumber arbitrary constants. - :py:meth:`~sympy.solvers.ode.ode._handle_Integral` - Evaluate unevaluated Integrals. See also the docstrings of these functions. **Currently implemented solver methods** The following methods are implemented for solving ordinary differential equations. See the docstrings of the various hint functions for more information on each (run ``help(ode)``): - 1st order separable differential equations. - 1st order differential equations whose coefficients or `dx` and `dy` are functions homogeneous of the same order. - 1st order exact differential equations. - 1st order linear differential equations. - 1st order Bernoulli differential equations. - Power series solutions for first order differential equations. - Lie Group method of solving first order differential equations. - 2nd order Liouville differential equations. - Power series solutions for second order differential equations at ordinary and regular singular points. - `n`\th order differential equation that can be solved with algebraic rearrangement and integration. - `n`\th order linear homogeneous differential equation with constant coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of undetermined coefficients. - `n`\th order linear inhomogeneous differential equation with constant coefficients using the method of variation of parameters. **Philosophy behind this module** This module is designed to make it easy to add new ODE solving methods without having to mess with the solving code for other methods. The idea is that there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in an ODE and tells you what hints, if any, will solve the ODE. It does this without attempting to solve the ODE, so it is fast. Each solving method is a hint, and it has its own function, named ``ode_<hint>``. That function takes in the ODE and any match expression gathered by :py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If this result has any integrals in it, the hint function will return an unevaluated :py:class:`~sympy.integrals.integrals.Integral` class. :py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function around all of this, will then call :py:meth:`~sympy.solvers.ode.ode.odesimp` on the result, which, among other things, will attempt to solve the equation for the dependent variable (the function we are solving for), simplify the arbitrary constants in the expression, and evaluate any integrals, if the hint allows it. **How to add new solution methods** If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be able to solve, try to avoid adding special case code here. Instead, try finding a general method that will solve your ODE, as well as others. This way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and unhindered by special case hacks. WolphramAlpha and Maple's DETools[odeadvisor] function are two resources you can use to classify a specific ODE. It is also better for a method to work with an `n`\th order ODE instead of only with specific orders, if possible. To add a new method, there are a few things that you need to do. First, you need a hint name for your method. Try to name your hint so that it is unambiguous with all other methods, including ones that may not be implemented yet. If your method uses integrals, also include a ``hint_Integral`` hint. If there is more than one way to solve ODEs with your method, include a hint for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()`` function should choose the best using min with ``ode_sol_simplicity`` as the key argument. See :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`, for example. The function that uses your method will be called ``ode_<hint>()``, so the hint must only use characters that are allowed in a Python function name (alphanumeric characters and the underscore '``_``' character). Include a function for every hint, except for ``_Integral`` hints (:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically). Hint names should be all lowercase, unless a word is commonly capitalized (such as Integral or Bernoulli). If you have a hint that you do not want to run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such as a best hint that would defeat the purpose of ``all_Integral``), you will need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for guidelines on writing a hint name. Determine *in general* how the solutions returned by your method compare with other methods that can potentially solve the same ODEs. Then, put your hints in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they should be called. The ordering of this tuple determines which hints are default. Note that exceptions are ok, because it is easy for the user to choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In general, ``_Integral`` variants should go at the end of the list, and ``_best`` variants should go before the various hints they apply to. For example, the ``undetermined_coefficients`` hint comes before the ``variation_of_parameters`` hint because, even though variation of parameters is more general than undetermined coefficients, undetermined coefficients generally returns cleaner results for the ODEs that it can solve than variation of parameters does, and it does not require integration, so it is much faster. Next, you need to have a match expression or a function that matches the type of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode` (if the match function is more than just a few lines, like :py:meth:`~sympy.solvers.ode.ode._undetermined_coefficients_match`, it should go outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the ODE without solving for it as much as possible, so that :py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by bugs in solving code. Be sure to consider corner cases. For example, if your solution method involves dividing by something, make sure you exclude the case where that division will be 0. In most cases, the matching of the ODE will also give you the various parts that you need to solve it. You should put that in a dictionary (``.match()`` will do this for you), and add that as ``matching_hints['hint'] = matchdict`` in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`. :py:meth:`~sympy.solvers.ode.classify_ode` will then send this to :py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as the ``match`` argument. Your function should be named ``ode_<hint>(eq, func, order, match)`. If you need to send more information, put it in the ``match`` dictionary. For example, if you had to substitute in a dummy variable in :py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to pass it to your function using the `match` dict to access it. You can access the independent variable using ``func.args[0]``, and the dependent variable (the function you are trying to solve for) as ``func.func``. If, while trying to solve the ODE, you find that you cannot, raise ``NotImplementedError``. :py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all`` meta-hint, rather than causing the whole routine to fail. Add a docstring to your function that describes the method employed. Like with anything else in SymPy, you will need to add a doctest to the docstring, in addition to real tests in ``test_ode.py``. Try to maintain consistency with the other hint functions' docstrings. Add your method to the list at the top of this docstring. Also, add your method to ``ode.rst`` in the ``docs/src`` directory, so that the Sphinx docs will pull its docstring into the main SymPy documentation. Be sure to make the Sphinx documentation by running ``make html`` from within the doc directory to verify that the docstring formats correctly. If your solution method involves integrating, use :py:obj:`~.Integral` instead of :py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass hard/slow integration by using the ``_Integral`` variant of your hint. In most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your solution. If this is not the case, you will need to write special code in :py:meth:`~sympy.solvers.ode.ode._handle_Integral`. Arbitrary constants should be symbols named ``C1``, ``C2``, and so on. All solution methods should return an equality instance. If you need an arbitrary number of arbitrary constants, you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``. If it is possible to solve for the dependent function in a general way, do so. Otherwise, do as best as you can, but do not call solve in your ``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.ode.odesimp` will attempt to solve the solution for you, so you do not need to do that. Lastly, if your ODE has a common simplification that can be applied to your solutions, you can add a special case in :py:meth:`~sympy.solvers.ode.ode.odesimp` for it. For example, solutions returned from the ``1st_homogeneous_coeff`` hints often have many :obj:`~sympy.functions.elementary.exponential.log` terms, so :py:meth:`~sympy.solvers.ode.ode.odesimp` calls :py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also consider common ways that you can rearrange your solution to have :py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is better to put simplification in :py:meth:`~sympy.solvers.ode.ode.odesimp` than in your method, because it can then be turned off with the simplify flag in :py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous simplification in your function, be sure to only run it using ``if match.get('simplify', True):``, especially if it can be slow or if it can reduce the domain of the solution. Finally, as with every contribution to SymPy, your method will need to be tested. Add a test for each method in ``test_ode.py``. Follow the conventions there, i.e., test the solver using ``dsolve(eq, f(x), hint=your_hint)``, and also test the solution using :py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test won't be broken simply by the introduction of another matching hint. If your method works for higher order (>1) ODEs, you will need to run ``sol = constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is the order of the ODE. This is because ``constant_renumber`` renumbers the arbitrary constants by printing order, which is platform dependent. Try to test every corner case of your solver, including a range of orders if it is a `n`\th order solver, but if your solver is slow, such as if it involves hard integration, try to keep the test run time down. Feel free to refactor existing hints to avoid duplicating code or creating inconsistencies. If you can show that your method exactly duplicates an existing method, including in the simplicity and speed of obtaining the solutions, then you can remove the old, less general method. The existing code is tested extensively in ``test_ode.py``, so if anything is broken, one of those tests will surely fail. """ from collections import defaultdict from itertools import islice from sympy.functions import hyper from sympy.core import Add, S, Mul, Pow, oo, Rational from sympy.core.compatibility import ordered, iterable from sympy.core.containers import Tuple from sympy.core.exprtools import factor_terms from sympy.core.expr import AtomicExpr, Expr from sympy.core.function import (Function, Derivative, AppliedUndef, diff, expand, expand_mul, Subs, _mexpand) from sympy.core.multidimensional import vectorize from sympy.core.numbers import NaN, zoo, Number from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Wild, Dummy, symbols from sympy.core.sympify import sympify from sympy.logic.boolalg import (BooleanAtom, BooleanTrue, BooleanFalse) from sympy.functions import cos, cosh, exp, im, log, re, sin, sinh, sqrt, \ atan2, conjugate, cbrt, besselj, bessely, airyai, airybi from sympy.functions.combinatorial.factorials import factorial from sympy.integrals.integrals import Integral, integrate from sympy.matrices import wronskian from sympy.polys import (Poly, RootOf, rootof, terms_gcd, PolynomialError, lcm, roots, gcd) from sympy.polys.polytools import cancel, degree, div from sympy.series import Order from sympy.series.series import series from sympy.simplify import (collect, logcombine, powsimp, # type: ignore separatevars, simplify, trigsimp, posify, cse) from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import collect_const from sympy.solvers import checksol, solve from sympy.solvers.pde import pdsolve from sympy.utilities import numbered_symbols, default_sort_key, sift from sympy.utilities.iterables import uniq from sympy.solvers.deutils import _preprocess, ode_order, _desolve from .subscheck import sub_func_doit #: This is a list of hints in the order that they should be preferred by #: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the #: list should produce simpler solutions than those later in the list (for #: ODEs that fit both). For now, the order of this list is based on empirical #: observations by the developers of SymPy. #: #: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE #: can be overridden (see the docstring). #: #: In general, ``_Integral`` hints are grouped at the end of the list, unless #: there is a method that returns an unevaluable integral most of the time #: (which go near the end of the list anyway). ``default``, ``all``, #: ``best``, and ``all_Integral`` meta-hints should not be included in this #: list, but ``_best`` and ``_Integral`` hints should be included. allhints = ( "factorable", "nth_algebraic", "separable", "1st_exact", "1st_linear", "Bernoulli", "Riccati_special_minus2", "1st_homogeneous_coeff_best", "1st_homogeneous_coeff_subs_indep_div_dep", "1st_homogeneous_coeff_subs_dep_div_indep", "almost_linear", "linear_coefficients", "separable_reduced", "1st_power_series", "lie_group", "nth_linear_constant_coeff_homogeneous", "nth_linear_euler_eq_homogeneous", "nth_linear_constant_coeff_undetermined_coefficients", "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", "nth_linear_constant_coeff_variation_of_parameters", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", "Liouville", "2nd_linear_airy", "2nd_linear_bessel", "2nd_hypergeometric", "2nd_hypergeometric_Integral", "nth_order_reducible", "2nd_power_series_ordinary", "2nd_power_series_regular", "nth_algebraic_Integral", "separable_Integral", "1st_exact_Integral", "1st_linear_Integral", "Bernoulli_Integral", "1st_homogeneous_coeff_subs_indep_div_dep_Integral", "1st_homogeneous_coeff_subs_dep_div_indep_Integral", "almost_linear_Integral", "linear_coefficients_Integral", "separable_reduced_Integral", "nth_linear_constant_coeff_variation_of_parameters_Integral", "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral", "Liouville_Integral", "2nd_nonlinear_autonomous_conserved", "2nd_nonlinear_autonomous_conserved_Integral", ) lie_heuristics = ( "abaco1_simple", "abaco1_product", "abaco2_similar", "abaco2_unique_unknown", "abaco2_unique_general", "linear", "function_sum", "bivariate", "chi" ) def get_numbered_constants(eq, num=1, start=1, prefix='C'): """ Returns a list of constants that do not occur in eq already. """ ncs = iter_numbered_constants(eq, start, prefix) Cs = [next(ncs) for i in range(num)] return (Cs[0] if num == 1 else tuple(Cs)) def iter_numbered_constants(eq, start=1, prefix='C'): """ Returns an iterator of constants that do not occur in eq already. """ if isinstance(eq, (Expr, Eq)): eq = [eq] elif not iterable(eq): raise ValueError("Expected Expr or iterable but got %s" % eq) atom_set = set().union(*[i.free_symbols for i in eq]) func_set = set().union(*[i.atoms(Function) for i in eq]) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) def dsolve(eq, func=None, hint="default", simplify=True, ics= None, xi=None, eta=None, x0=0, n=6, **kwargs): r""" Solves any (supported) kind of ordinary differential equation and system of ordinary differential equations. For single ordinary differential equation ========================================= It is classified under this when number of equation in ``eq`` is one. **Usage** ``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation ``eq`` for function ``f(x)``, using method ``hint``. **Details** ``eq`` can be any supported ordinary differential equation (see the :py:mod:`~sympy.solvers.ode` docstring for supported methods). This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``f(x)`` is a function of one variable whose derivatives in that variable make up the ordinary differential equation ``eq``. In many cases it is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). ``hint`` is the solving method that you want dsolve to use. Use ``classify_ode(eq, f(x))`` to get all of the possible hints for an ODE. The default hint, ``default``, will use whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See Hints below for more options that you can use for hint. ``simplify`` enables simplification by :py:meth:`~sympy.solvers.ode.ode.odesimp`. See its docstring for more information. Turn this off, for example, to disable solving of solutions for ``func`` or simplification of arbitrary constants. It will still integrate with this hint. Note that the solution may contain more arbitrary constants than the order of the ODE with this option enabled. ``xi`` and ``eta`` are the infinitesimal functions of an ordinary differential equation. They are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. The user can specify values for the infinitesimals. If nothing is specified, ``xi`` and ``eta`` are calculated using :py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various heuristics. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. For power series solutions, if no initial conditions are specified ``f(0)`` is assumed to be ``C0`` and the power series solution is calculated about 0. ``x0`` is the point about which the power series solution of a differential equation is to be evaluated. ``n`` gives the exponent of the dependent variable up to which the power series solution of a differential equation is to be evaluated. **Hints** Aside from the various solving methods, there are also some meta-hints that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`: ``default``: This uses whatever hint is returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. This is the default argument to :py:meth:`~sympy.solvers.ode.dsolve`. ``all``: To make :py:meth:`~sympy.solvers.ode.dsolve` apply all relevant classification hints, use ``dsolve(ODE, func, hint="all")``. This will return a dictionary of ``hint:solution`` terms. If a hint causes dsolve to raise the ``NotImplementedError``, value of that hint's key will be the exception object raised. The dictionary will also include some special keys: - ``order``: The order of the ODE. See also :py:meth:`~sympy.solvers.deutils.ode_order` in ``deutils.py``. - ``best``: The simplest hint; what would be returned by ``best`` below. - ``best_hint``: The hint that would produce the solution given by ``best``. If more than one hint produces the best solution, the first one in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode` is chosen. - ``default``: The solution that would be returned by default. This is the one produced by the hint that appears first in the tuple returned by :py:meth:`~sympy.solvers.ode.classify_ode`. ``all_Integral``: This is the same as ``all``, except if a hint also has a corresponding ``_Integral`` hint, it only returns the ``_Integral`` hint. This is useful if ``all`` causes :py:meth:`~sympy.solvers.ode.dsolve` to hang because of a difficult or impossible integral. This meta-hint will also be much faster than ``all``, because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. ``best``: To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods and return the simplest one. This takes into account whether the solution is solvable in the function, whether it contains any Integral classes (i.e. unevaluatable integrals), and which one is the shortest in size. See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints. **Tips** - You can declare the derivative of an unknown function this way: >>> from sympy import Function, Derivative >>> from sympy.abc import x # x is the independent variable >>> f = Function("f")(x) # f is a function of x >>> # f_ will be the derivative of f with respect to x >>> f_ = Derivative(f, x) - See ``test_ode.py`` for many tests, which serves also as a set of examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`. - :py:meth:`~sympy.solvers.ode.dsolve` always returns an :py:class:`~sympy.core.relational.Equality` class (except for the case when the hint is ``all`` or ``all_Integral``). If possible, it solves the solution explicitly for the function being solved for. Otherwise, it returns an implicit solution. - Arbitrary constants are symbols named ``C1``, ``C2``, and so on. - Because all solutions should be mathematically equivalent, some hints may return the exact same result for an ODE. Often, though, two different hints will return the same solution formatted differently. The two should be equivalent. Also note that sometimes the values of the arbitrary constants in two different solutions may not be the same, because one constant may have "absorbed" other constants into it. - Do ``help(ode.ode_<hintname>)`` to get help more information on a specific hint, where ``<hintname>`` is the name of a hint without ``_Integral``. For system of ordinary differential equations ============================================= **Usage** ``dsolve(eq, func)`` -> Solve a system of ordinary differential equations ``eq`` for ``func`` being list of functions including `x(t)`, `y(t)`, `z(t)` where number of functions in the list depends upon the number of equations provided in ``eq``. **Details** ``eq`` can be any supported system of ordinary differential equations This can either be an :py:class:`~sympy.core.relational.Equality`, or an expression, which is assumed to be equal to ``0``. ``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which together with some of their derivatives make up the system of ordinary differential equation ``eq``. It is not necessary to provide this; it will be autodetected (and an error raised if it couldn't be detected). **Hints** The hints are formed by parameters returned by classify_sysode, combining them give hints name used later for forming method name. Examples ======== >>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x)) Eq(f(x), C1*sin(3*x) + C2*cos(3*x)) >>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x) >>> dsolve(eq, hint='1st_exact') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> dsolve(eq, hint='almost_linear') [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))] >>> t = symbols('t') >>> x, y = symbols('x, y', cls=Function) >>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t))) >>> dsolve(eq) [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)), Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) + exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))] >>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t))) >>> dsolve(eq) {Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))} """ if iterable(eq): from sympy.solvers.ode.systems import dsolve_system # This may have to be changed in future # when we have weakly and strongly # connected components. This have to # changed to show the systems that haven't # been solved. try: sol = dsolve_system(eq, funcs=func, ics=ics, doit=True) return sol[0] if len(sol) == 1 else sol except NotImplementedError: pass match = classify_sysode(eq, func) eq = match['eq'] order = match['order'] func = match['func'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] # keep highest order term coefficient positive for i in range(len(eq)): for func_ in func: if isinstance(func_, list): pass else: if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative: eq[i] = -eq[i] match['eq'] = eq if len(set(order.values()))!=1: raise ValueError("It solves only those systems of equations whose orders are equal") match['order'] = list(order.values())[0] def recur_len(l): return sum(recur_len(item) if isinstance(item,list) else 1 for item in l) if recur_len(func) != len(eq): raise ValueError("dsolve() and classify_sysode() work with " "number of functions being equal to number of equations") if match['type_of_equation'] is None: raise NotImplementedError else: if match['is_linear'] == True: solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match] else: solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match] sols = solvefunc(match) if ics: constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols solved_constants = solve_ics(sols, func, constants, ics) return [sol.subs(solved_constants) for sol in sols] return sols else: given_hint = hint # hint given by the user # See the docstring of _desolve for more details. hints = _desolve(eq, func=func, hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics, x0=x0, n=n, **kwargs) eq = hints.pop('eq', eq) all_ = hints.pop('all', False) if all_: retdict = {} failed_hints = {} gethints = classify_ode(eq, dict=True) orderedhints = gethints['ordered_hints'] for hint in hints: try: rv = _helper_simplify(eq, hint, hints[hint], simplify) except NotImplementedError as detail: failed_hints[hint] = detail else: retdict[hint] = rv func = hints[hint]['func'] retdict['best'] = min(list(retdict.values()), key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) if given_hint == 'best': return retdict['best'] for i in orderedhints: if retdict['best'] == retdict.get(i, None): retdict['best_hint'] = i break retdict['default'] = gethints['default'] retdict['order'] = gethints['order'] retdict.update(failed_hints) return retdict else: # The key 'hint' stores the hint needed to be solved for. hint = hints['hint'] return _helper_simplify(eq, hint, hints, simplify, ics=ics) def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs): r""" Helper function of dsolve that calls the respective :py:mod:`~sympy.solvers.ode` functions to solve for the ordinary differential equations. This minimizes the computation in calling :py:meth:`~sympy.solvers.deutils._desolve` multiple times. """ r = match func = r['func'] order = r['order'] match = r[hint] if isinstance(match, SingleODESolver): solvefunc = match elif hint.endswith('_Integral'): solvefunc = globals()['ode_' + hint[:-len('_Integral')]] else: solvefunc = globals()['ode_' + hint] free = eq.free_symbols cons = lambda s: s.free_symbols.difference(free) if simplify: # odesimp() will attempt to integrate, if necessary, apply constantsimp(), # attempt to solve for func, and apply any other hint specific # simplifications if isinstance(solvefunc, SingleODESolver): sols = solvefunc.get_general_solution() else: sols = solvefunc(eq, func, order, match) if iterable(sols): rv = [odesimp(eq, s, func, hint) for s in sols] else: rv = odesimp(eq, sols, func, hint) else: # We still want to integrate (you can disable it separately with the hint) if isinstance(solvefunc, SingleODESolver): exprs = solvefunc.get_general_solution(simplify=False) else: match['simplify'] = False # Some hints can take advantage of this option exprs = solvefunc(eq, func, order, match) if isinstance(exprs, list): rv = [_handle_Integral(expr, func, hint) for expr in exprs] else: rv = _handle_Integral(exprs, func, hint) if isinstance(rv, list): if simplify: rv = _remove_redundant_solutions(eq, rv, order, func.args[0]) if len(rv) == 1: rv = rv[0] if ics and not 'power_series' in hint: if isinstance(rv, (Expr, Eq)): solved_constants = solve_ics([rv], [r['func']], cons(rv), ics) rv = rv.subs(solved_constants) else: rv1 = [] for s in rv: try: solved_constants = solve_ics([s], [r['func']], cons(s), ics) except ValueError: continue rv1.append(s.subs(solved_constants)) if len(rv1) == 1: return rv1[0] rv = rv1 return rv def solve_ics(sols, funcs, constants, ics): """ Solve for the constants given initial conditions ``sols`` is a list of solutions. ``funcs`` is a list of functions. ``constants`` is a list of constants. ``ics`` is the set of initial/boundary conditions for the differential equation. It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2): x3}`` and so on. Returns a dictionary mapping constants to values. ``solution.subs(constants)`` will replace the constants in ``solution``. Example ======= >>> # From dsolve(f(x).diff(x) - f(x), f(x)) >>> from sympy import symbols, Eq, exp, Function >>> from sympy.solvers.ode.ode import solve_ics >>> f = Function('f') >>> x, C1 = symbols('x C1') >>> sols = [Eq(f(x), C1*exp(x))] >>> funcs = [f(x)] >>> constants = [C1] >>> ics = {f(0): 2} >>> solved_constants = solve_ics(sols, funcs, constants, ics) >>> solved_constants {C1: 2} >>> sols[0].subs(solved_constants) Eq(f(x), 2*exp(x)) """ # Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x, # x0)): value (currently checked by classify_ode). To solve, replace x # with x0, f(x0) with value, then solve for constants. For f^(n)(x0), # differentiate the solution n times, so that f^(n)(x) appears. x = funcs[0].args[0] diff_sols = [] subs_sols = [] diff_variables = set() for funcarg, value in ics.items(): if isinstance(funcarg, AppliedUndef): x0 = funcarg.args[0] matching_func = [f for f in funcs if f.func == funcarg.func][0] S = sols elif isinstance(funcarg, (Subs, Derivative)): if isinstance(funcarg, Subs): # Make sure it stays a subs. Otherwise subs below will produce # a different looking term. funcarg = funcarg.doit() if isinstance(funcarg, Subs): deriv = funcarg.expr x0 = funcarg.point[0] variables = funcarg.expr.variables matching_func = deriv elif isinstance(funcarg, Derivative): deriv = funcarg x0 = funcarg.variables[0] variables = (x,)*len(funcarg.variables) matching_func = deriv.subs(x0, x) if variables not in diff_variables: for sol in sols: if sol.has(deriv.expr.func): diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables))) diff_variables.add(variables) S = diff_sols else: raise NotImplementedError("Unrecognized initial condition") for sol in S: if sol.has(matching_func): sol2 = sol sol2 = sol2.subs(x, x0) sol2 = sol2.subs(funcarg, value) # This check is necessary because of issue #15724 if not isinstance(sol2, BooleanAtom) or not subs_sols: subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)] subs_sols.append(sol2) # TODO: Use solveset here try: solved_constants = solve(subs_sols, constants, dict=True) except NotImplementedError: solved_constants = [] # XXX: We can't differentiate between the solution not existing because of # invalid initial conditions, and not existing because solve is not smart # enough. If we could use solveset, this might be improvable, but for now, # we use NotImplementedError in this case. if not solved_constants: raise ValueError("Couldn't solve for initial conditions") if solved_constants == True: raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.") if len(solved_constants) > 1: raise NotImplementedError("Initial conditions produced too many solutions for constants") return solved_constants[0] def classify_ode(eq, func=None, dict=False, ics=None, *, prep=True, xi=None, eta=None, n=None, **kwargs): r""" Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve` classifications for an ODE. The tuple is ordered so that first item is the classification that :py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In general, classifications at the near the beginning of the list will produce better solutions faster than those near the end, thought there are always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a different classification, use ``dsolve(ODE, func, hint=<classification>)``. See also the :py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints you can use. If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will return a dictionary of ``hint:match`` expression terms. This is intended for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that because dictionaries are ordered arbitrarily, this will most likely not be in the same order as the tuple. You can get help on different hints by executing ``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint without ``_Integral``. See :py:data:`~sympy.solvers.ode.allhints` or the :py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`. Notes ===== These are remarks on hint names. ``_Integral`` If a classification has ``_Integral`` at the end, it will return the expression with an unevaluated :py:class:`~.Integral` class in it. Note that a hint may do this anyway if :py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral, though just using an ``_Integral`` will do so much faster. Indeed, an ``_Integral`` hint will always be faster than its corresponding hint without ``_Integral`` because :py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine. If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because :py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or impossible integral. Try using an ``_Integral`` hint or ``all_Integral`` to get it return something. Note that some hints do not have ``_Integral`` counterparts. This is because :py:func:`~sympy.integrals.integrals.integrate` is not used in solving the ODE for those method. For example, `n`\th order linear homogeneous ODEs with constant coefficients do not require integration to solve, so there is no ``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can easily evaluate any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s in an expression by doing ``expr.doit()``. Ordinals Some hints contain an ordinal such as ``1st_linear``. This is to help differentiate them from other hints, as well as from other methods that may not be implemented yet. If a hint has ``nth`` in it, such as the ``nth_linear`` hints, this means that the method used to applies to ODEs of any order. ``indep`` and ``dep`` Some hints contain the words ``indep`` or ``dep``. These reference the independent variable and the dependent function, respectively. For example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to `x` and ``dep`` will refer to `f`. ``subs`` If a hints has the word ``subs`` in it, it means the the ODE is solved by substituting the expression given after the word ``subs`` for a single dummy variable. This is usually in terms of ``indep`` and ``dep`` as above. The substituted expression will be written only in characters allowed for names of Python objects, meaning operators will be spelled out. For example, ``indep``/``dep`` will be written as ``indep_div_dep``. ``coeff`` The word ``coeff`` in a hint refers to the coefficients of something in the ODE, usually of the derivative terms. See the docstring for the individual methods for more info (``help(ode)``). This is contrast to ``coefficients``, as in ``undetermined_coefficients``, which refers to the common name of a method. ``_best`` Methods that have more than one fundamental way to solve will have a hint for each sub-method and a ``_best`` meta-classification. This will evaluate all hints and return the best, using the same considerations as the normal ``best`` meta-hint. Examples ======== >>> from sympy import Function, classify_ode, Eq >>> from sympy.abc import x >>> f = Function('f') >>> classify_ode(Eq(f(x).diff(x), 0), f(x)) ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') >>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4) ('nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_constant_coeff_variation_of_parameters_Integral') """ ics = sympify(ics) if func and len(func.args) != 1: raise ValueError("dsolve() and classify_ode() only " "work with functions of one variable, not %s" % func) if isinstance(eq, Equality): eq = eq.lhs - eq.rhs # Some methods want the unprocessed equation eq_orig = eq if prep or func is None: eq, func_ = _preprocess(eq, func) if func is None: func = func_ x = func.args[0] f = func.func y = Dummy('y') terms = n order = ode_order(eq, f(x)) # hint:matchdict or hint:(tuple of matchdicts) # Also will contain "default":<default hint> and "order":order items. matching_hints = {"order": order} df = f(x).diff(x) a = Wild('a', exclude=[f(x)]) d = Wild('d', exclude=[df, f(x).diff(x, 2)]) e = Wild('e', exclude=[df]) n = Wild('n', exclude=[x, f(x), df]) c1 = Wild('c1', exclude=[x]) a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)]) b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)]) c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)]) r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint boundary = {} # Used to extract initial conditions C1 = Symbol("C1") # Preprocessing to get the initial conditions out if ics is not None: for funcarg in ics: # Separating derivatives if isinstance(funcarg, (Subs, Derivative)): # f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x, # y) is a Derivative if isinstance(funcarg, Subs): deriv = funcarg.expr old = funcarg.variables[0] new = funcarg.point[0] elif isinstance(funcarg, Derivative): deriv = funcarg # No information on this. Just assume it was x old = x new = funcarg.variables[0] if (isinstance(deriv, Derivative) and isinstance(deriv.args[0], AppliedUndef) and deriv.args[0].func == f and len(deriv.args[0].args) == 1 and old == x and not new.has(x) and all(i == deriv.variables[0] for i in deriv.variables) and not ics[funcarg].has(f)): dorder = ode_order(deriv, x) temp = 'f' + str(dorder) boundary.update({temp: new, temp + 'val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Derivatives") # Separating functions elif isinstance(funcarg, AppliedUndef): if (funcarg.func == f and len(funcarg.args) == 1 and not funcarg.args[0].has(x) and not ics[funcarg].has(f)): boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]}) else: raise ValueError("Enter valid boundary conditions for Function") else: raise ValueError("Enter boundary conditions of the form ics={f(point): value, f(x).diff(x, order).subs(x, point): value}") # Any ODE that can be solved with a combination of algebra and # integrals e.g.: # d^3/dx^3(x y) = F(x) ode = SingleODEProblem(eq_orig, func, x, prep=prep) solvers = { NthAlgebraic: ('nth_algebraic',), FirstExact:('1st_exact',), FirstLinear: ('1st_linear',), AlmostLinear: ('almost_linear',), Bernoulli: ('Bernoulli',), Factorable: ('factorable',), RiccatiSpecial: ('Riccati_special_minus2',), SecondNonlinearAutonomousConserved: ('2nd_nonlinear_autonomous_conserved',), Liouville: ('Liouville',), Separable: ('separable',), SeparableReduced: ('separable_reduced',), } for solvercls in solvers: solver = solvercls(ode) if solver.matches(): for hints in solvers[solvercls]: matching_hints[hints] = solver if solvercls.has_integral: matching_hints[hints + "_Integral"] = solver eq = expand(eq) # Precondition to try remove f(x) from highest order derivative reduced_eq = None if eq.is_Add: deriv_coef = eq.coeff(f(x).diff(x, order)) if deriv_coef not in (1, 0): r = deriv_coef.match(a*f(x)**c1) if r and r[c1]: den = f(x)**r[c1] reduced_eq = Add(*[arg/den for arg in eq.args]) if not reduced_eq: reduced_eq = eq if order == 1: # NON-REDUCED FORM OF EQUATION matches r = collect(eq, df, exact=True).match(d + e * df) if r: r['d'] = d r['e'] = e r['y'] = y r[d] = r[d].subs(f(x), y) r[e] = r[e].subs(f(x), y) # FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS # TODO: Hint first order series should match only if d/e is analytic. # For now, only d/e and (d/e).diff(arg) is checked for existence at # at a given point. # This is currently done internally in ode_1st_power_series. point = boundary.get('f0', 0) value = boundary.get('f0val', C1) check = cancel(r[d]/r[e]) check1 = check.subs({x: point, y: value}) if not check1.has(oo) and not check1.has(zoo) and \ not check1.has(NaN) and not check1.has(-oo): check2 = (check1.diff(x)).subs({x: point, y: value}) if not check2.has(oo) and not check2.has(zoo) and \ not check2.has(NaN) and not check2.has(-oo): rseries = r.copy() rseries.update({'terms': terms, 'f0': point, 'f0val': value}) matching_hints["1st_power_series"] = rseries r3.update(r) # Any first order ODE can be ideally solved by the Lie Group # method matching_hints["lie_group"] = r3 # This match is used for several cases below; we now collect on # f(x) so the matching works. r = collect(reduced_eq, df, exact=True).match(d + e*df) if r: # Using r[d] and r[e] without any modification for hints # linear-coefficients and separable-reduced. num, den = r[d], r[e] # ODE = d/e + df r['d'] = d r['e'] = e r['y'] = y r[d] = num.subs(f(x), y) r[e] = den.subs(f(x), y) ## Separable Case: y' == P(y)*Q(x) r[d] = separatevars(r[d]) r[e] = separatevars(r[e]) ## First order equation with homogeneous coefficients: # dy/dx == F(y/x) or dy/dx == F(x/y) ordera = homogeneous_order(r[d], x, y) if ordera is not None: orderb = homogeneous_order(r[e], x, y) if ordera == orderb: # u1=y/x and u2=x/y u1 = Dummy('u1') u2 = Dummy('u2') s = "1st_homogeneous_coeff_subs" s1 = s + "_dep_div_indep" s2 = s + "_indep_div_dep" if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0: matching_hints[s1] = r matching_hints[s1 + "_Integral"] = r if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0: matching_hints[s2] = r matching_hints[s2 + "_Integral"] = r if s1 in matching_hints and s2 in matching_hints: matching_hints["1st_homogeneous_coeff_best"] = r ## Linear coefficients of the form # y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0 # that can be reduced to homogeneous form. F = num/den params = _linear_coeff_match(F, func) if params: xarg, yarg = params u = Dummy('u') t = Dummy('t') # Dummy substitution for df and f(x). dummy_eq = reduced_eq.subs(((df, t), (f(x), u))) reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x))) dummy_eq = simplify(dummy_eq.subs(reps)) # get the re-cast values for e and d r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d) if r2: orderd = homogeneous_order(r2[d], x, f(x)) if orderd is not None: ordere = homogeneous_order(r2[e], x, f(x)) if orderd == ordere: # Match arguments are passed in such a way that it # is coherent with the already existing homogeneous # functions. r2[d] = r2[d].subs(f(x), y) r2[e] = r2[e].subs(f(x), y) r2.update({'xarg': xarg, 'yarg': yarg, 'd': d, 'e': e, 'y': y}) matching_hints["linear_coefficients"] = r2 matching_hints["linear_coefficients_Integral"] = r2 elif order == 2: # Homogeneous second order differential equation of the form # a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3 # It has a definite power series solution at point x0 if, b3/a3 and c3/a3 # are analytic at x0. deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) ordinary = False if r: if not all([r[key].is_polynomial() for key in r]): n, d = reduced_eq.as_numer_denom() reduced_eq = expand(n) r = collect(reduced_eq, [f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq) if r and r[a3] != 0: p = cancel(r[b3]/r[a3]) # Used below q = cancel(r[c3]/r[a3]) # Used below point = kwargs.get('x0', 0) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): ordinary = True r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms}) matching_hints["2nd_power_series_ordinary"] = r # Checking if the differential equation has a regular singular point # at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0) # and (c3/a3)*((x - x0)**2) are analytic at x0. if not ordinary: p = cancel((x - point)*p) check = p.subs(x, point) if not check.has(oo, NaN, zoo, -oo): q = cancel(((x - point)**2)*q) check = q.subs(x, point) if not check.has(oo, NaN, zoo, -oo): coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms} matching_hints["2nd_power_series_regular"] = coeff_dict # For Hypergeometric solutions. _r = {} _r.update(r) rn = match_2nd_hypergeometric(_r, func) if rn: matching_hints["2nd_hypergeometric"] = rn matching_hints["2nd_hypergeometric_Integral"] = rn # If the ODE has regular singular point at x0 and is of the form # Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) + # (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation rn = match_2nd_linear_bessel(r, f(x)) if rn: matching_hints["2nd_linear_bessel"] = rn # If the ODE is ordinary and is of the form of Airy's Equation # Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x)) if p.is_zero: a4 = Wild('a4', exclude=[x,f(x),df]) b4 = Wild('b4', exclude=[x,f(x),df]) rn = q.match(a4+b4*x) if rn and rn[b4] != 0: rn = {'b':rn[a4],'m':rn[b4]} matching_hints["2nd_linear_airy"] = rn if order > 0: # Any ODE that can be solved with a substitution and # repeated integration e.g.: # `d^2/dx^2(y) + x*d/dx(y) = constant #f'(x) must be finite for this to work r = _nth_order_reducible_match(reduced_eq, func) if r: matching_hints['nth_order_reducible'] = r # nth order linear ODE # a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b r = _nth_linear_match(reduced_eq, func, order) # Constant coefficient case (a_i is constant for all i) if r and not any(r[i].has(x) for i in r if i >= 0): # Inhomogeneous case: F(x) is not identically 0 if r[-1]: eq_homogeneous = Add(eq,-r[-1]) undetcoeff = _undetermined_coefficients_match(r[-1], x, func, eq_homogeneous) s = "nth_linear_constant_coeff_variation_of_parameters" matching_hints[s] = r matching_hints[s + "_Integral"] = r if undetcoeff['test']: r['trialset'] = undetcoeff['trialset'] matching_hints[ "nth_linear_constant_coeff_undetermined_coefficients" ] = r # Homogeneous case: F(x) is identically 0 else: matching_hints["nth_linear_constant_coeff_homogeneous"] = r # nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x) #In case of Homogeneous euler equation F(x) = 0 def _test_term(coeff, order): r""" Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x), where K is independent of x and y(x), order>= 0. So we need to check that for each term, coeff == K*x**order from some K. We have a few cases, since coeff may have several different types. """ if order < 0: raise ValueError("order should be greater than 0") if coeff == 0: return True if order == 0: if x in coeff.free_symbols: return False return True if coeff.is_Mul: if coeff.has(f(x)): return False return x**order in coeff.args elif coeff.is_Pow: return coeff.as_base_exp() == (x, order) elif order == 1: return x == coeff return False # Find coefficient for highest derivative, multiply coefficients to # bring the equation into Euler form if possible r_rescaled = None if r is not None: coeff = r[order] factor = x**order / coeff r_rescaled = {i: factor*r[i] for i in r if i != 'trialset'} # XXX: Mixing up the trialset with the coefficients is error-prone. # These should be separated as something like r['coeffs'] and # r['trialset'] if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in r_rescaled if i != 'trialset' and i >= 0): if not r_rescaled[-1]: matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled else: matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled e, re = posify(r_rescaled[-1].subs(x, exp(x))) undetcoeff = _undetermined_coefficients_match(e.subs(re), x) if undetcoeff['test']: r_rescaled['trialset'] = undetcoeff['trialset'] matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled # Order keys based on allhints. retlist = [i for i in allhints if i in matching_hints] if dict: # Dictionaries are ordered arbitrarily, so make note of which # hint would come first for dsolve(). Use an ordered dict in Py 3. matching_hints["default"] = retlist[0] if retlist else None matching_hints["ordered_hints"] = tuple(retlist) return matching_hints else: return tuple(retlist) def equivalence(max_num_pow, dem_pow): # this function is made for checking the equivalence with 2F1 type of equation. # max_num_pow is the value of maximum power of x in numerator # and dem_pow is list of powers of different factor of form (a*x b). # reference from table 1 in paper - "Non-Liouvillian solutions for second order # linear ODEs" by L. Chan, E.S. Cheb-Terrab. # We can extend it for 1F1 and 0F1 type also. if max_num_pow == 2: if dem_pow in [[2, 2], [2, 2, 2]]: return "2F1" elif max_num_pow == 1: if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]: return "2F1" elif max_num_pow == 0: if dem_pow in [[1, 1, 2], [2, 2], [1 ,2, 2], [1, 1], [2], [1, 2], [2, 2]]: return "2F1" return None def equivalence_hypergeometric(A, B, func): from sympy import factor # This method for finding the equivalence is only for 2F1 type. # We can extend it for 1F1 and 0F1 type also. x = func.args[0] # making given equation in normal form I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B)) # computing shifted invariant(J1) of the equation J1 = factor(cancel(x**2*I1 + S(1)/4)) num, dem = J1.as_numer_denom() num = powdenest(expand(num)) dem = powdenest(expand(dem)) pow_num = set() pow_dem = set() # this function will compute the different powers of variable(x) in J1. # then it will help in finding value of k. k is power of x such that we can express # J1 = x**k * J0(x**k) then all the powers in J0 become integers. def _power_counting(num): _pow = {0} for val in num: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: _pow.add(val.as_base_exp()[1]) elif val == x: _pow.add(val.as_base_exp()[1]) else: _pow.update(_power_counting(val.args)) return _pow pow_num = _power_counting((num, )) pow_dem = _power_counting((dem, )) pow_dem.update(pow_num) _pow = pow_dem k = gcd(_pow) # computing I0 of the given equation I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True) I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True))) num, dem = I0.as_numer_denom() max_num_pow = max(_power_counting((num, ))) dem_args = dem.args sing_point = [] dem_pow = [] # calculating singular point of I0. for arg in dem_args: if arg.has(x): if isinstance(arg, Pow): # (x-a)**n dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0]) else: # (x-a) type dem_pow.append(arg.as_base_exp()[1]) sing_point.append(list(roots(arg, x).keys())[0]) dem_pow.sort() # checking if equivalence is exists or not. if equivalence(max_num_pow, dem_pow) == "2F1": return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"} else: return None def ode_2nd_hypergeometric(eq, func, order, match): from sympy.simplify.hyperexpand import hyperexpand from sympy import factor x = func.args[0] C0, C1 = get_numbered_constants(eq, num=2) a = match['a'] b = match['b'] c = match['c'] A = match['A'] # B = match['B'] sol = None if match['type'] == "2F1": if c.is_integer == False: sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c) elif c == 1: y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x) sol = C0*hyper([a, b], [c], x) + C1*y2 elif (c-a-b).is_integer == False: sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b) if sol is None: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the hypergeometric method") # applying transformation in the solution subs = match['mobius'] dtdx = simplify(1/(subs.diff(x))) _B = ((a + b + 1)*x - c).subs(x, subs)*dtdx _B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx)) _A = factor((x**2 - x).subs(x, subs)*(dtdx**2)) e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True)) sol = sol.subs(x, match['mobius']) sol = sol.subs(x, x**match['k']) e = e.subs(x, x**match['k']) if not A.is_zero: e1 = Integral(A/2, x) e1 = exp(logcombine(e1, force=True)) sol = cancel((e/e1)*x**((-match['k']+1)/2))*sol sol = Eq(func, sol) return sol sol = cancel((e)*x**((-match['k']+1)/2))*sol sol = Eq(func, sol) return sol def match_2nd_2F1_hypergeometric(I, k, sing_point, func): from sympy import factor x = func.args[0] a = Wild("a") b = Wild("b") c = Wild("c") t = Wild("t") s = Wild("s") r = Wild("r") alpha = Wild("alpha") beta = Wild("beta") gamma = Wild("gamma") delta = Wild("delta") rn = {'type':None} # I0 of the standerd 2F1 equation. I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2) if sing_point != [0, 1]: # If singular point is [0, 1] then we have standerd equation. eqs = [] sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)] # making equations for the finding the mobius transformation for i in range(3): if i<len(sing_point): eqs.append(Eq(sing_eqs[i], sing_point[i])) else: eqs.append(Eq(1/sing_eqs[i], 0)) # solving above equations for the mobius transformation _beta = -alpha*sing_point[0] _delta = -gamma*sing_point[1] _gamma = alpha if len(sing_point) == 3: _gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1]) mob = (alpha*x + beta)/(gamma*x + delta) mob = mob.subs(beta, _beta) mob = mob.subs(delta, _delta) mob = mob.subs(gamma, _gamma) mob = cancel(mob) t = (beta - delta*x)/(gamma*x - alpha) t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma)) else: mob = x t = x # applying mobius transformation in I to make it into I0. I = I.subs(x, t) I = I*(t.diff(x))**2 I = factor(I) dict_I = {x**2:0, x:0, 1:0} I0_num, I0_dem = I0.as_numer_denom() # collecting coeff of (x**2, x), of the standerd equation. # substituting (a-b) = s, (a+b) = r dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)} # collecting coeff of (x**2, x) from I0 of the given equation. dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False)) eqs = [] # We are comparing the coeff of powers of different x, for finding the values of # parameters of standerd equation. for key in [x**2, x, 1]: eqs.append(Eq(dict_I[key], dict_I0[key])) # We can have many possible roots for the equation. # I am selecting the root on the basis that when we have # standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x) # then root should be a, b, c. _c = 1 - factor(sqrt(1+eqs[2].lhs)) if not _c.has(Symbol): _c = min(list(roots(eqs[2], c))) _s = factor(sqrt(eqs[0].lhs + 1)) _r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c)) _a = (_r + _s)/2 _b = (_r - _s)/2 rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"} return rn def match_2nd_hypergeometric(r, func): x = func.args[0] a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)]) b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)]) c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)]) A = cancel(r[b3]/r[a3]) B = cancel(r[c3]/r[a3]) d = equivalence_hypergeometric(A, B, func) rn = None if d: if d['type'] == "2F1": rn = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func) if rn is not None: rn.update({'A':A, 'B':B}) # We can extend it for 1F1 and 0F1 type also. return rn def match_2nd_linear_bessel(r, func): from sympy.polys.polytools import factor # eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x) f = func x = func.args[0] df = f.diff(x) a = Wild('a', exclude=[f,df]) b = Wild('b', exclude=[x, f,df]) a4 = Wild('a4', exclude=[x,f,df]) b4 = Wild('b4', exclude=[x,f,df]) c4 = Wild('c4', exclude=[x,f,df]) d4 = Wild('d4', exclude=[x,f,df]) a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)]) b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)]) c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)]) # leading coeff of f(x).diff(x, 2) coeff = factor(r[a3]).match(a4*(x-b)**b4) if coeff: # if coeff[b4] = 0 means constant coefficient if coeff[b4] == 0: return None point = coeff[b] else: return None if point: r[a3] = simplify(r[a3].subs(x, x+point)) r[b3] = simplify(r[b3].subs(x, x+point)) r[c3] = simplify(r[c3].subs(x, x+point)) # making a3 in the form of x**2 r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4]))) r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4]))) # checking if b3 is of form c*(x-b) coeff1 = factor(r[b3]).match(a4*(x)) if coeff1 is None: return None # c3 maybe of very complex form so I am simply checking (a - b) form # if yes later I will match with the standerd form of bessel in a and b # a, b are wild variable defined above. _coeff2 = r[c3].match(a - b) if _coeff2 is None: return None # matching with standerd form for c3 coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4)) if coeff2 is None: return None if _coeff2[b] == 0: coeff2[d4] = 0 else: coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4] rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]} rn['c4'] = coeff1[a4] rn['b4'] = point return rn def classify_sysode(eq, funcs=None, **kwargs): r""" Returns a dictionary of parameter names and values that define the system of ordinary differential equations in ``eq``. The parameters are further used in :py:meth:`~sympy.solvers.ode.dsolve` for solving that system. Some parameter names and values are: 'is_linear' (boolean), which tells whether the given system is linear. Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators. 'func' (list) contains the :py:class:`~sympy.core.function.Function`s that appear with a derivative in the ODE, i.e. those that we are trying to solve the ODE for. 'order' (dict) with the maximum derivative for each element of the 'func' parameter. 'func_coeff' (dict or Matrix) with the coefficient for each triple ``(equation number, function, order)```. The coefficients are those subexpressions that do not appear in 'func', and hence can be considered constant for purposes of ODE solving. The value of this parameter can also be a Matrix if the system of ODEs are linear first order of the form X' = AX where X is the vector of dependent variables. Here, this function returns the coefficient matrix A. 'eq' (list) with the equations from ``eq``, sympified and transformed into expressions (we are solving for these expressions to be zero). 'no_of_equations' (int) is the number of equations (same as ``len(eq)``). 'type_of_equation' (string) is an internal classification of the type of ODE. 'is_constant' (boolean), which tells if the system of ODEs is constant coefficient or not. This key is temporary addition for now and is in the match dict only when the system of ODEs is linear first order constant coefficient homogeneous. So, this key's value is True for now if it is available else it doesn't exist. 'is_homogeneous' (boolean), which tells if the system of ODEs is homogeneous. Like the key 'is_constant', this key is a temporary addition and it is True since this key value is available only when the system is linear first order constant coefficient homogeneous. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm -A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists Examples ======== >>> from sympy import Function, Eq, symbols, diff >>> from sympy.solvers.ode.ode import classify_sysode >>> from sympy.abc import t >>> f, x, y = symbols('f, x, y', cls=Function) >>> k, l, m, n = symbols('k, l, m, n', Integer=True) >>> x1 = diff(x(t), t) ; y1 = diff(y(t), t) >>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t) >>> eq = (Eq(x1, 12*x(t) - 6*y(t)), Eq(y1, 11*x(t) + 3*y(t))) >>> classify_sysode(eq) {'eq': [-12*x(t) + 6*y(t) + Derivative(x(t), t), -11*x(t) - 3*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 1, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None} >>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t) + 2), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t))) >>> classify_sysode(eq) {'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t) - 2, t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0, (1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None} """ # Sympify equations and convert iterables of equations into # a list of equations def _sympify(eq): return list(map(sympify, eq if iterable(eq) else [eq])) eq, funcs = (_sympify(w) for w in [eq, funcs]) for i, fi in enumerate(eq): if isinstance(fi, Equality): eq[i] = fi.lhs - fi.rhs t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] matching_hints = {"no_of_equation":i+1} matching_hints['eq'] = eq if i==0: raise ValueError("classify_sysode() works for systems of ODEs. " "For scalar ODEs, classify_ode should be used") # find all the functions if not given order = dict() if funcs==[None]: funcs = _extract_funcs(eq) funcs = list(set(funcs)) if len(funcs) != len(eq): raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs) # This logic of list of lists in funcs to # be replaced later. func_dict = dict() for func in funcs: if not order.get(func, False): max_order = 0 for i, eqs_ in enumerate(eq): order_ = ode_order(eqs_,func) if max_order < order_: max_order = order_ eq_no = i if eq_no in func_dict: func_dict[eq_no] = [func_dict[eq_no], func] else: func_dict[eq_no] = func order[func] = max_order funcs = [func_dict[i] for i in range(len(func_dict))] matching_hints['func'] = funcs for func in funcs: if isinstance(func, list): for func_elem in func: if len(func_elem.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) else: if func and len(func.args) != 1: raise ValueError("dsolve() and classify_sysode() work with " "functions of one variable only, not %s" % func) # find the order of all equation in system of odes matching_hints["order"] = order # find coefficients of terms f(t), diff(f(t),t) and higher derivatives # and similarly for other functions g(t), diff(g(t),t) in all equations. # Here j denotes the equation number, funcs[l] denotes the function about # which we are talking about and k denotes the order of function funcs[l] # whose coefficient we are calculating. def linearity_check(eqs, j, func, is_linear_): for k in range(order[func] + 1): func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k)) if is_linear_ == True: if func_coef[j, func, k] == 0: if k == 0: coef = eqs.as_independent(func, as_Add=True)[1] for xr in range(1, ode_order(eqs,func) + 1): coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1] if coef != 0: is_linear_ = False else: if eqs.as_independent(diff(func, t, k), as_Add=True)[1]: is_linear_ = False else: for func_ in funcs: if isinstance(func_, list): for elem_func_ in func_: dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1] if dep != 0: is_linear_ = False else: dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1] if dep != 0: is_linear_ = False return is_linear_ func_coef = {} is_linear = True for j, eqs in enumerate(eq): for func in funcs: if isinstance(func, list): for func_elem in func: is_linear = linearity_check(eqs, j, func_elem, is_linear) else: is_linear = linearity_check(eqs, j, func, is_linear) matching_hints['func_coeff'] = func_coef matching_hints['is_linear'] = is_linear if len(set(order.values())) == 1: order_eq = list(matching_hints['order'].values())[0] if matching_hints['is_linear'] == True: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None # If the equation doesn't match up with any of the # general case solvers in systems.py and the number # of equations is greater than 2, then NotImplementedError # should be raised. else: type_of_equation = None else: if matching_hints['no_of_equation'] == 2: if order_eq == 1: type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef) else: type_of_equation = None elif matching_hints['no_of_equation'] == 3: if order_eq == 1: type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef) else: type_of_equation = None else: type_of_equation = None else: type_of_equation = None matching_hints['type_of_equation'] = type_of_equation return matching_hints def check_linear_2eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] r = dict() # for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1) # and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2) r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1] r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1] r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): # We can handle homogeneous case and simple constant forcings r['d1'] = forcing[0] r['d2'] = forcing[1] else: # Issue #9244: nonhomogeneous linear systems are not supported return None # Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and # Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t)) p = 0 q = 0 p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0])) p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0])) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q and n==0: if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j: p = 1 elif q and n==1: if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j: p = 2 # End of condition for type 6 if r['d1']!=0 or r['d2']!=0: return None else: if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()): return None else: r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2'] r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2'] if p: return "type6" else: # Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t)) return "type7" def check_nonlinear_2eq_order1(eq, func, func_coef): t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] f = Wild('f') g = Wild('g') u, v = symbols('u, v', cls=Dummy) def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \ or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)): return 'type5' else: return None for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func eq_type = check_type(x, y) if not eq_type: eq_type = check_type(y, x) return eq_type x = func[0].func y = func[1].func fc = func_coef n = Wild('n', exclude=[x(t),y(t)]) f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r = eq[0].match(diff(x(t),t) - x(t)**n*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type1' r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) if r: g = (diff(y(t),t) - eq[1])/r[f] if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)): return 'type2' g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \ r2[g].subs(x(t),u).subs(y(t),v).has(t)): return 'type3' r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) # phi = (r1[f].subs(x(t),u).subs(y(t),v))/num if R1 and R2: return 'type4' return None def check_nonlinear_2eq_order2(eq, func, func_coef): return None def check_nonlinear_3eq_order1(eq, func, func_coef): x = func[0].func y = func[1].func z = func[2].func fc = func_coef t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] u, v, w = symbols('u, v, w', cls=Dummy) a = Wild('a', exclude=[x(t), y(t), z(t), t]) b = Wild('b', exclude=[x(t), y(t), z(t), t]) c = Wild('c', exclude=[x(t), y(t), z(t), t]) f = Wild('f') F1 = Wild('F1') F2 = Wild('F2') F3 = Wild('F3') for i in range(3): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t)) r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t)) r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type1' r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f) if r: r1 = collect_const(r[f]).match(a*f) r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t)) r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t)) if r1 and r2 and r3: num1, den1 = r1[a].as_numer_denom() num2, den2 = r2[b].as_numer_denom() num3, den3 = r3[c].as_numer_denom() if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]): return 'type2' r = eq[0].match(diff(x(t),t) - (F2-F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1) if r2: r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2]) if r1 and r2 and r3: return 'type3' r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1) if r2: r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2]) if r1 and r2 and r3: return 'type4' r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3)) if r: r1 = collect_const(r[F2]).match(c*F2) r1.update(collect_const(r[F3]).match(b*F3)) if r1: if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]): r1[F2], r1[F3] = r1[F3], r1[F2] r1[c], r1[b] = -r1[b], -r1[c] r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1)) if r2: r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2])) if r1 and r2 and r3: return 'type5' return None def check_nonlinear_3eq_order2(eq, func, func_coef): return None @vectorize(0) def odesimp(ode, eq, func, hint): r""" Simplifies solutions of ODEs, including trying to solve for ``func`` and running :py:meth:`~sympy.solvers.ode.constantsimp`. It may use knowledge of the type of solution that the hint returns to apply additional simplifications. It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s in the expression, if the hint is not an ``_Integral`` hint. This function should have no effect on expressions returned by :py:meth:`~sympy.solvers.ode.dsolve`, as :py:meth:`~sympy.solvers.ode.dsolve` already calls :py:meth:`~sympy.solvers.ode.ode.odesimp`, but the individual hint functions do not call :py:meth:`~sympy.solvers.ode.ode.odesimp` (because the :py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this function is designed for mainly internal use. Examples ======== >>> from sympy import sin, symbols, dsolve, pprint, Function >>> from sympy.solvers.ode.ode import odesimp >>> x , u2, C1= symbols('x,u2,C1') >>> f = Function('f') >>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral', ... simplify=False) >>> pprint(eq, wrap_line=False) x ---- f(x) / | | / 1 \ | -|u2 + -------| | | /1 \| | | sin|--|| | \ \u2// log(f(x)) = log(C1) + | ---------------- d(u2) | 2 | u2 | / >>> pprint(odesimp(eq, f(x), 1, {C1}, ... hint='1st_homogeneous_coeff_subs_indep_div_dep' ... )) #doctest: +SKIP x --------- = C1 /f(x)\ tan|----| \2*x / """ x = func.args[0] f = func.func C1 = get_numbered_constants(eq, num=1) constants = eq.free_symbols - ode.free_symbols # First, integrate if the hint allows it. eq = _handle_Integral(eq, func, hint) if hint.startswith("nth_linear_euler_eq_nonhomogeneous"): eq = simplify(eq) if not isinstance(eq, Equality): raise TypeError("eq should be an instance of Equality") # Second, clean up the arbitrary constants. # Right now, nth linear hints can put as many as 2*order constants in an # expression. If that number grows with another hint, the third argument # here should be raised accordingly, or constantsimp() rewritten to handle # an arbitrary number of constants. eq = constantsimp(eq, constants) # Lastly, now that we have cleaned up the expression, try solving for func. # When CRootOf is implemented in solve(), we will want to return a CRootOf # every time instead of an Equality. # Get the f(x) on the left if possible. if eq.rhs == func and not eq.lhs.has(func): eq = [Eq(eq.rhs, eq.lhs)] # make sure we are working with lists of solutions in simplified form. if eq.lhs == func and not eq.rhs.has(func): # The solution is already solved eq = [eq] # special simplification of the rhs if hint.startswith("nth_linear_constant_coeff"): # Collect terms to make the solution look nice. # This is also necessary for constantsimp to remove unnecessary # terms from the particular solution from variation of parameters # # Collect is not behaving reliably here. The results for # some linear constant-coefficient equations with repeated # roots do not properly simplify all constants sometimes. # 'collectterms' gives different orders sometimes, and results # differ in collect based on that order. The # sort-reverse trick fixes things, but may fail in the # future. In addition, collect is splitting exponentials with # rational powers for no reason. We have to do a match # to fix this using Wilds. # # XXX: This global collectterms hack should be removed. global collectterms collectterms.sort(key=default_sort_key) collectterms.reverse() assert len(eq) == 1 and eq[0].lhs == f(x) sol = eq[0].rhs sol = expand_mul(sol) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x)) sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x)) for i, reroot, imroot in collectterms: sol = collect(sol, x**i*exp(reroot*x)) del collectterms # Collect is splitting exponentials with rational powers for # no reason. We call powsimp to fix. sol = powsimp(sol) eq[0] = Eq(f(x), sol) else: # The solution is not solved, so try to solve it try: floats = any(i.is_Float for i in eq.atoms(Number)) eqsol = solve(eq, func, force=True, rational=False if floats else None) if not eqsol: raise NotImplementedError except (NotImplementedError, PolynomialError): eq = [eq] else: def _expand(expr): numer, denom = expr.as_numer_denom() if denom.is_Add: return expr else: return powsimp(expr.expand(), combine='exp', deep=True) # XXX: the rest of odesimp() expects each ``t`` to be in a # specific normal form: rational expression with numerator # expanded, but with combined exponential functions (at # least in this setup all tests pass). eq = [Eq(f(x), _expand(t)) for t in eqsol] # special simplification of the lhs. if hint.startswith("1st_homogeneous_coeff"): for j, eqi in enumerate(eq): newi = logcombine(eqi, force=True) if isinstance(newi.lhs, log) and newi.rhs == 0: newi = Eq(newi.lhs.args[0]/C1, C1) eq[j] = newi # We cleaned up the constants before solving to help the solve engine with # a simpler expression, but the solved expression could have introduced # things like -C1, so rerun constantsimp() one last time before returning. for i, eqi in enumerate(eq): eq[i] = constantsimp(eqi, constants) eq[i] = constant_renumber(eq[i], ode.free_symbols) # If there is only 1 solution, return it; # otherwise return the list of solutions. if len(eq) == 1: eq = eq[0] return eq def ode_sol_simplicity(sol, func, trysolving=True): r""" Returns an extended integer representing how simple a solution to an ODE is. The following things are considered, in order from most simple to least: - ``sol`` is solved for ``func``. - ``sol`` is not solved for ``func``, but can be if passed to solve (e.g., a solution returned by ``dsolve(ode, func, simplify=False``). - If ``sol`` is not solved for ``func``, then base the result on the length of ``sol``, as computed by ``len(str(sol))``. - If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s, this will automatically be considered less simple than any of the above. This function returns an integer such that if solution A is simpler than solution B by above metric, then ``ode_sol_simplicity(sola, func) < ode_sol_simplicity(solb, func)``. Currently, the following are the numbers returned, but if the heuristic is ever improved, this may change. Only the ordering is guaranteed. +----------------------------------------------+-------------------+ | Simplicity | Return | +==============================================+===================+ | ``sol`` solved for ``func`` | ``-2`` | +----------------------------------------------+-------------------+ | ``sol`` not solved for ``func`` but can be | ``-1`` | +----------------------------------------------+-------------------+ | ``sol`` is not solved nor solvable for | ``len(str(sol))`` | | ``func`` | | +----------------------------------------------+-------------------+ | ``sol`` contains an | ``oo`` | | :obj:`~sympy.integrals.integrals.Integral` | | +----------------------------------------------+-------------------+ ``oo`` here means the SymPy infinity, which should compare greater than any integer. If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve ``sol``, you can use ``trysolving=False`` to skip that step, which is the only potentially slow step. For example, :py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag should do this. If ``sol`` is a list of solutions, if the worst solution in the list returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``, that is, the length of the string representation of the whole list. Examples ======== This function is designed to be passed to ``min`` as the key argument, such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i, f(x)))``. >>> from sympy import symbols, Function, Eq, tan, Integral >>> from sympy.solvers.ode.ode import ode_sol_simplicity >>> x, C1, C2 = symbols('x, C1, C2') >>> f = Function('f') >>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x)) -2 >>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x)) -1 >>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x)) oo >>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1) >>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2) >>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]] [28, 35] >>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x))) Eq(f(x)/tan(f(x)/(2*x)), C1) """ # TODO: if two solutions are solved for f(x), we still want to be # able to get the simpler of the two # See the docstring for the coercion rules. We check easier (faster) # things here first, to save time. if iterable(sol): # See if there are Integrals for i in sol: if ode_sol_simplicity(i, func, trysolving=trysolving) == oo: return oo return len(str(sol)) if sol.has(Integral): return oo # Next, try to solve for func. This code will change slightly when CRootOf # is implemented in solve(). Probably a CRootOf solution should fall # somewhere between a normal solution and an unsolvable expression. # First, see if they are already solved if sol.lhs == func and not sol.rhs.has(func) or \ sol.rhs == func and not sol.lhs.has(func): return -2 # We are not so lucky, try solving manually if trysolving: try: sols = solve(sol, func) if not sols: raise NotImplementedError except NotImplementedError: pass else: return -1 # Finally, a naive computation based on the length of the string version # of the expression. This may favor combined fractions because they # will not have duplicate denominators, and may slightly favor expressions # with fewer additions and subtractions, as those are separated by spaces # by the printer. # Additional ideas for simplicity heuristics are welcome, like maybe # checking if a equation has a larger domain, or if constantsimp has # introduced arbitrary constants numbered higher than the order of a # given ODE that sol is a solution of. return len(str(sol)) def _extract_funcs(eqs): from sympy.core.basic import preorder_traversal funcs = [] for eq in eqs: derivs = [node for node in preorder_traversal(eq) if isinstance(node, Derivative)] func = [] for d in derivs: func += list(d.atoms(AppliedUndef)) for func_ in func: funcs.append(func_) funcs = list(uniq(funcs)) return funcs def _get_constant_subexpressions(expr, Cs): Cs = set(Cs) Ces = [] def _recursive_walk(expr): expr_syms = expr.free_symbols if expr_syms and expr_syms.issubset(Cs): Ces.append(expr) else: if expr.func == exp: expr = expr.expand(mul=True) if expr.func in (Add, Mul): d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs)) if len(d[True]) > 1: x = expr.func(*d[True]) if not x.is_number: Ces.append(x) elif isinstance(expr, Integral): if expr.free_symbols.issubset(Cs) and \ all(len(x) == 3 for x in expr.limits): Ces.append(expr) for i in expr.args: _recursive_walk(i) return _recursive_walk(expr) return Ces def __remove_linear_redundancies(expr, Cs): cnts = {i: expr.count(i) for i in Cs} Cs = [i for i in Cs if cnts[i] > 0] def _linear(expr): if isinstance(expr, Add): xs = [i for i in Cs if expr.count(i)==cnts[i] \ and 0 == expr.diff(i, 2)] d = {} for x in xs: y = expr.diff(x) if y not in d: d[y]=[] d[y].append(x) for y in d: if len(d[y]) > 1: d[y].sort(key=str) for x in d[y][1:]: expr = expr.subs(x, 0) return expr def _recursive_walk(expr): if len(expr.args) != 0: expr = expr.func(*[_recursive_walk(i) for i in expr.args]) expr = _linear(expr) return expr if isinstance(expr, Equality): lhs, rhs = [_recursive_walk(i) for i in expr.args] f = lambda i: isinstance(i, Number) or i in Cs if isinstance(lhs, Symbol) and lhs in Cs: rhs, lhs = lhs, rhs if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f) for i in [True, False]: for hs in [dlhs, drhs]: if i not in hs: hs[i] = [0] # this calculation can be simplified lhs = Add(*dlhs[False]) - Add(*drhs[False]) rhs = Add(*drhs[True]) - Add(*dlhs[True]) elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol): dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f) if True in dlhs: if False not in dlhs: dlhs[False] = [1] lhs = Mul(*dlhs[False]) rhs = rhs/Mul(*dlhs[True]) return Eq(lhs, rhs) else: return _recursive_walk(expr) @vectorize(0) def constantsimp(expr, constants): r""" Simplifies an expression with arbitrary constants in it. This function is written specifically to work with :py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use. Simplification is done by "absorbing" the arbitrary constants into other arbitrary constants, numbers, and symbols that they are not independent of. The symbols must all have the same name with numbers after it, for example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be '``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3. If the arbitrary constants are independent of the variable ``x``, then the independent symbol would be ``x``. There is no need to specify the dependent function, such as ``f(x)``, because it already has the independent symbol, ``x``, in it. Because terms are "absorbed" into arbitrary constants and because constants are renumbered after simplifying, the arbitrary constants in expr are not necessarily equal to the ones of the same name in the returned result. If two or more arbitrary constants are added, multiplied, or raised to the power of each other, they are first absorbed together into a single arbitrary constant. Then the new constant is combined into other terms if necessary. Absorption of constants is done with limited assistance: 1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x C_1 \cos(x)`; 2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`. Use :py:meth:`~sympy.solvers.ode.ode.constant_renumber` to renumber constants after simplification or else arbitrary numbers on constants may appear, e.g. `C_1 + C_3 x`. In rare cases, a single constant can be "simplified" into two constants. Every differential equation solution should have as many arbitrary constants as the order of the differential equation. The result here will be technically correct, but it may, for example, have `C_1` and `C_2` in an expression, when `C_1` is actually equal to `C_2`. Use your discretion in such situations, and also take advantage of the ability to use hints in :py:meth:`~sympy.solvers.ode.dsolve`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode.ode import constantsimp >>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y') >>> constantsimp(2*C1*x, {C1, C2, C3}) C1*x >>> constantsimp(C1 + 2 + x, {C1, C2, C3}) C1 + x >>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3}) C1 + C3*x """ # This function works recursively. The idea is that, for Mul, # Add, Pow, and Function, if the class has a constant in it, then # we can simplify it, which we do by recursing down and # simplifying up. Otherwise, we can skip that part of the # expression. Cs = constants orig_expr = expr constant_subexprs = _get_constant_subexpressions(expr, Cs) for xe in constant_subexprs: xes = list(xe.free_symbols) if not xes: continue if all([expr.count(c) == xe.count(c) for c in xes]): xes.sort(key=str) expr = expr.subs(xe, xes[0]) # try to perform common sub-expression elimination of constant terms try: commons, rexpr = cse(expr) commons.reverse() rexpr = rexpr[0] for s in commons: cs = list(s[1].atoms(Symbol)) if len(cs) == 1 and cs[0] in Cs and \ cs[0] not in rexpr.atoms(Symbol) and \ not any(cs[0] in ex for ex in commons if ex != s): rexpr = rexpr.subs(s[0], cs[0]) else: rexpr = rexpr.subs(*s) expr = rexpr except IndexError: pass expr = __remove_linear_redundancies(expr, Cs) def _conditional_term_factoring(expr): new_expr = terms_gcd(expr, clear=False, deep=True, expand=False) # we do not want to factor exponentials, so handle this separately if new_expr.is_Mul: infac = False asfac = False for m in new_expr.args: if isinstance(m, exp): asfac = True elif m.is_Add: infac = any(isinstance(fi, exp) for t in m.args for fi in Mul.make_args(t)) if asfac and infac: new_expr = expr break return new_expr expr = _conditional_term_factoring(expr) # call recursively if more simplification is possible if orig_expr != expr: return constantsimp(expr, Cs) return expr def constant_renumber(expr, variables=None, newconstants=None): r""" Renumber arbitrary constants in ``expr`` to use the symbol names as given in ``newconstants``. In the process, this reorders expression terms in a standard way. If ``newconstants`` is not provided then the new constant names will be ``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable giving the new symbols to use for the constants in order. The ``variables`` argument is a list of non-constant symbols. All other free symbols found in ``expr`` are assumed to be constants and will be renumbered. If ``variables`` is not given then any numbered symbol beginning with ``C`` (e.g. ``C1``) is assumed to be a constant. Symbols are renumbered based on ``.sort_key()``, so they should be numbered roughly in the order that they appear in the final, printed expression. Note that this ordering is based in part on hashes, so it can produce different results on different machines. The structure of this function is very similar to that of :py:meth:`~sympy.solvers.ode.constantsimp`. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.ode.ode import constant_renumber >>> x, C1, C2, C3 = symbols('x,C1:4') >>> expr = C3 + C2*x + C1*x**2 >>> expr C1*x**2 + C2*x + C3 >>> constant_renumber(expr) C1 + C2*x + C3*x**2 The ``variables`` argument specifies which are constants so that the other symbols will not be renumbered: >>> constant_renumber(expr, [C1, x]) C1*x**2 + C2 + C3*x The ``newconstants`` argument is used to specify what symbols to use when replacing the constants: >>> constant_renumber(expr, [x], newconstants=symbols('E1:4')) E1 + E2*x + E3*x**2 """ # System of expressions if isinstance(expr, (set, list, tuple)): return type(expr)(constant_renumber(Tuple(*expr), variables=variables, newconstants=newconstants)) # Symbols in solution but not ODE are constants if variables is not None: variables = set(variables) free_symbols = expr.free_symbols constantsymbols = list(free_symbols - variables) # Any Cn is a constant... else: variables = set() isconstant = lambda s: s.startswith('C') and s[1:].isdigit() constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)] # Find new constants checking that they aren't already in the ODE if newconstants is None: iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables) else: iter_constants = (sym for sym in newconstants if sym not in variables) constants_found = [] # make a mapping to send all constantsymbols to S.One and use # that to make sure that term ordering is not dependent on # the indexed value of C C_1 = [(ci, S.One) for ci in constantsymbols] sort_key=lambda arg: default_sort_key(arg.subs(C_1)) def _constant_renumber(expr): r""" We need to have an internal recursive function """ # For system of expressions if isinstance(expr, Tuple): renumbered = [_constant_renumber(e) for e in expr] return Tuple(*renumbered) if isinstance(expr, Equality): return Eq( _constant_renumber(expr.lhs), _constant_renumber(expr.rhs)) if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \ not expr.has(*constantsymbols): # Base case, as above. Hope there aren't constants inside # of some other class, because they won't be renumbered. return expr elif expr.is_Piecewise: return expr elif expr in constantsymbols: if expr not in constants_found: constants_found.append(expr) return expr elif expr.is_Function or expr.is_Pow: return expr.func( *[_constant_renumber(x) for x in expr.args]) else: sortedargs = list(expr.args) sortedargs.sort(key=sort_key) return expr.func(*[_constant_renumber(x) for x in sortedargs]) expr = _constant_renumber(expr) # Don't renumber symbols present in the ODE. constants_found = [c for c in constants_found if c not in variables] # Renumbering happens here subs_dict = {var: cons for var, cons in zip(constants_found, iter_constants)} expr = expr.subs(subs_dict, simultaneous=True) return expr def _handle_Integral(expr, func, hint): r""" Converts a solution with Integrals in it into an actual solution. For most hints, this simply runs ``expr.doit()``. """ if hint == "nth_linear_constant_coeff_homogeneous": sol = expr elif not hint.endswith("_Integral"): sol = expr.doit() else: sol = expr return sol def ode_1st_homogeneous_coeff_best(eq, func, order, match): r""" Returns the best solution to an ODE from the two hints ``1st_homogeneous_coeff_subs_dep_div_indep`` and ``1st_homogeneous_coeff_subs_indep_div_dep``. This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`. See the :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` docstrings for more information on these hints. Note that there is no ``ode_1st_homogeneous_coeff_best_Integral`` hint. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_best', simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ # There are two substitutions that solve the equation, u1=y/x and u2=x/y # They produce different integrals, so try them both and see which # one is easier. sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match) sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match) simplify = match.get('simplify', True) if simplify: # why is odesimp called here? Should it be at the usual spot? sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep") sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep") return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func, trysolving=not simplify)) def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_1 = \frac{\text{<dependent variable>}}{\text{<independent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential equation into an equation separable in the variables `x` and `u`. If `h(u_1)` is the function that results from making the substitution `u_1 = f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is:: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x) >>> pprint(genform) /f(x)\ /f(x)\ d g|----| + h|----|*--(f(x)) \ x / \ x / dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral')) f(x) ---- x / | | -h(u1) log(x) = C1 + | ---------------- d(u1) | u1*h(u1) + g(u1) | / Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`. Examples ======== >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False)) / 3 \ |3*f(x) f (x)| log|------ + -----| | x 3 | \ x / log(x) = log(C1) - ------------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u1 = Dummy('u1') # u1 == f(x)/x r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) yarg = match.get('yarg', 0) int = Integral( (-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}), (u1, None, f(x)/x)) sol = logcombine(Eq(log(x), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match): r""" Solves a 1st order differential equation with homogeneous coefficients using the substitution `u_2 = \frac{\text{<independent variable>}}{\text{<dependent variable>}}`. This is a differential equation .. math:: P(x, y) + Q(x, y) dy/dx = 0 such that `P` and `Q` are homogeneous and of the same order. A function `F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`. Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`. If the coefficients `P` and `Q` in the differential equation above are homogeneous functions of the same order, then it can be shown that the substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential equation into an equation separable in the variables `y` and `u_2`. If `h(u_2)` is the function that results from making the substitution `u_2 = x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) + Q(x, f(x)) f'(x) = 0`, then the general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x) >>> pprint(genform) / x \ / x \ d g|----| + h|----|*--(f(x)) \f(x)/ \f(x)/ dx >>> pprint(dsolve(genform, f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral')) x ---- f(x) / | | -g(u2) | ---------------- d(u2) | u2*g(u2) + h(u2) | / <BLANKLINE> f(x) = C1*e Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`. See also the docstrings of :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`. Examples ======== >>> from sympy import Function, pprint, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x), ... hint='1st_homogeneous_coeff_subs_indep_div_dep', ... simplify=False)) / 2 \ | 3*x | log|----- + 1| | 2 | \f (x) / log(f(x)) = log(C1) - -------------- 3 References ========== - https://en.wikipedia.org/wiki/Homogeneous_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 59 # indirect doctest """ x = func.args[0] f = func.func u = Dummy('u') u2 = Dummy('u2') # u2 == x/f(x) r = match # d+e*diff(f(x),x) C1 = get_numbered_constants(eq, num=1) xarg = match.get('xarg', 0) # If xarg present take xarg, else zero yarg = match.get('yarg', 0) # If yarg present take yarg, else zero int = Integral( simplify( (-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})), (u2, None, x/f(x))) sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True) sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x)))) return sol # XXX: Should this function maybe go somewhere else? def homogeneous_order(eq, *symbols): r""" Returns the order `n` if `g` is homogeneous and ``None`` if it is not homogeneous. Determines if a function is homogeneous and if so of what order. A function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y, \cdots) = t^n f(x, y, \cdots)`. If the function is of two variables, `F(x, y)`, then `f` being homogeneous of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)` or `H(y/x)`. This fact is used to solve 1st order ordinary differential equations whose coefficients are homogeneous of the same order (see the docstrings of :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and :py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`). Symbols can be functions, but every argument of the function must be a symbol, and the arguments of the function that appear in the expression must match those given in the list of symbols. If a declared function appears with different arguments than given in the list of symbols, ``None`` is returned. Examples ======== >>> from sympy import Function, homogeneous_order, sqrt >>> from sympy.abc import x, y >>> f = Function('f') >>> homogeneous_order(f(x), f(x)) is None True >>> homogeneous_order(f(x,y), f(y, x), x, y) is None True >>> homogeneous_order(f(x), f(x), x) 1 >>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x)) 2 >>> homogeneous_order(x**2+f(x), x, f(x)) is None True """ if not symbols: raise ValueError("homogeneous_order: no symbols were given.") symset = set(symbols) eq = sympify(eq) # The following are not supported if eq.has(Order, Derivative): return None # These are all constants if (eq.is_Number or eq.is_NumberSymbol or eq.is_number ): return S.Zero # Replace all functions with dummy variables dum = numbered_symbols(prefix='d', cls=Dummy) newsyms = set() for i in [j for j in symset if getattr(j, 'is_Function')]: iargs = set(i.args) if iargs.difference(symset): return None else: dummyvar = next(dum) eq = eq.subs(i, dummyvar) symset.remove(i) newsyms.add(dummyvar) symset.update(newsyms) if not eq.free_symbols & symset: return None # assuming order of a nested function can only be equal to zero if isinstance(eq, Function): return None if homogeneous_order( eq.args[0], *tuple(symset)) != 0 else S.Zero # make the replacement of x with x*t and see if t can be factored out t = Dummy('t', positive=True) # It is sufficient that t > 0 eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t] if eqs is S.One: return S.Zero # there was no term with only t i, d = eqs.as_independent(t, as_Add=False) b, e = d.as_base_exp() if b == t: return e def ode_2nd_power_series_ordinary(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at an ordinary point. A homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials, it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at `x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`, in the differential equation, and equating the nth term. Using this relation various terms can be generated. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) + f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_ordinary')) / 4 2 \ / 2\ |x x | | x | / 6\ f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x / \24 2 / \ 6 / References ========== - http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = Dummy("n", integer=True) s = Wild("s") k = Wild("k", exclude=[x]) x0 = match.get('x0') terms = match.get('terms', 5) p = match[match['a3']] q = match[match['b3']] r = match[match['c3']] seriesdict = {} recurr = Function("r") # Generating the recurrence relation which works this way: # for the second order term the summation begins at n = 2. The coefficients # p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that # the exponent of x becomes n. # For example, if p is x, then the second degree recurrence term is # an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to # an+1*n*(n - 1)*x**n. # A similar process is done with the first order and zeroth order term. coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)] for index, coeff in enumerate(coefflist): if coeff[1]: f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0))) if f2.is_Add: addargs = f2.args else: addargs = [f2] for arg in addargs: powm = arg.match(s*x**k) term = coeff[0]*powm[s] if not powm[k].is_Symbol: term = term.subs(n, n - powm[k].as_independent(n)[0]) startind = powm[k].subs(n, index) # Seeing if the startterm can be reduced further. # If it vanishes for n lesser than startind, it is # equal to summation from n. if startind: for i in reversed(range(startind)): if not term.subs(n, i): seriesdict[term] = i else: seriesdict[term] = i + 1 break else: seriesdict[term] = S.Zero # Stripping of terms so that the sum starts with the same number. teq = S.Zero suminit = seriesdict.values() rkeys = seriesdict.keys() req = Add(*rkeys) if any(suminit): maxval = max(suminit) for term in seriesdict: val = seriesdict[term] if val != maxval: for i in range(val, maxval): teq += term.subs(n, val) finaldict = {} if teq: fargs = teq.atoms(AppliedUndef) if len(fargs) == 1: finaldict[fargs.pop()] = 0 else: maxf = max(fargs, key = lambda x: x.args[0]) sol = solve(teq, maxf) if isinstance(sol, list): sol = sol[0] finaldict[maxf] = sol # Finding the recurrence relation in terms of the largest term. fargs = req.atoms(AppliedUndef) maxf = max(fargs, key = lambda x: x.args[0]) minf = min(fargs, key = lambda x: x.args[0]) if minf.args[0].is_Symbol: startiter = 0 else: startiter = -minf.args[0].as_independent(n)[0] lhs = maxf rhs = solve(req, maxf) if isinstance(rhs, list): rhs = rhs[0] # Checking how many values are already present tcounter = len([t for t in finaldict.values() if t]) for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary check = rhs.subs(n, startiter) nlhs = lhs.subs(n, startiter) nrhs = check.subs(finaldict) finaldict[nlhs] = nrhs startiter += 1 # Post processing series = C0 + C1*(x - x0) for term in finaldict: if finaldict[term]: fact = term.args[0] series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*( x - x0)**fact) series = collect(expand_mul(series), [C0, C1]) + Order(x**terms) return Eq(f(x), series) def ode_2nd_linear_airy(eq, func, order, match): r""" Gives solution of the Airy differential equation .. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0 in terms of Airy special functions airyai and airybi. Examples ======== >>> from sympy import dsolve, Function >>> from sympy.abc import x >>> f = Function("f") >>> eq = f(x).diff(x, 2) - x*f(x) >>> dsolve(eq) Eq(f(x), C1*airyai(x) + C2*airybi(x)) """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) b = match['b'] m = match['m'] if m.is_positive: arg = - b/cbrt(m)**2 - cbrt(m)*x elif m.is_negative: arg = - b/cbrt(-m)**2 + cbrt(-m)*x else: arg = - b/cbrt(-m)**2 + cbrt(-m)*x return Eq(f(x), C0*airyai(arg) + C1*airybi(arg)) def ode_2nd_power_series_regular(eq, func, order, match): r""" Gives a power series solution to a second order homogeneous differential equation with polynomial coefficients at a regular point. A second order homogeneous differential equation is of the form .. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0 A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}` and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity `P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for finding the power series solutions is: 1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series solutions about x0. Find `p0` and `q0` which are the constants of the power series expansions. 2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the roots `m1` and `m2` of the indicial equation. 3. If `m1 - m2` is a non integer there exists two series solutions. If `m1 = m2`, there exists only one solution. If `m1 - m2` is an integer, then the existence of one solution is confirmed. The other solution may or may not exist. The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The coefficients are determined by the following recurrence relation. `a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case in which `m1 - m2` is an integer, it can be seen from the recurrence relation that for the lower root `m`, when `n` equals the difference of both the roots, the denominator becomes zero. So if the numerator is not equal to zero, a second series solution exists. Examples ======== >>> from sympy import dsolve, Function, pprint >>> from sympy.abc import x >>> f = Function("f") >>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x) >>> pprint(dsolve(eq, hint='2nd_power_series_regular')) / 6 4 2 \ | x x x | / 4 2 \ C1*|- --- + -- - -- + 1| | x x | \ 720 24 2 / / 6\ f(x) = C2*|--- - -- + 1| + ------------------------ + O\x / \120 6 / x References ========== - George E. Simmons, "Differential Equations with Applications and Historical Notes", p.p 176 - 184 """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) m = Dummy("m") # for solving the indicial equation x0 = match.get('x0') terms = match.get('terms', 5) p = match['p'] q = match['q'] # Generating the indicial equation indicial = [] for term in [p, q]: if not term.has(x): indicial.append(term) else: term = series(term, x=x, n=1, x0=x0) if isinstance(term, Order): indicial.append(S.Zero) else: for arg in term.args: if not arg.has(x): indicial.append(arg) break p0, q0 = indicial sollist = solve(m*(m - 1) + m*p0 + q0, m) if sollist and isinstance(sollist, list) and all( [sol.is_real for sol in sollist]): serdict1 = {} serdict2 = {} if len(sollist) == 1: # Only one series solution exists in this case. m1 = m2 = sollist.pop() if terms-m1-1 <= 0: return Eq(f(x), Order(terms)) serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) else: m1 = sollist[0] m2 = sollist[1] if m1 < m2: m1, m2 = m2, m1 # Irrespective of whether m1 - m2 is an integer or not, one # Frobenius series solution exists. serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0) if not (m1 - m2).is_integer: # Second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1) else: # Check if second frobenius series solution exists. serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1) if serdict1: finalseries1 = C0 for key in serdict1: power = int(key.name[1:]) finalseries1 += serdict1[key]*(x - x0)**power finalseries1 = (x - x0)**m1*finalseries1 finalseries2 = S.Zero if serdict2: for key in serdict2: power = int(key.name[1:]) finalseries2 += serdict2[key]*(x - x0)**power finalseries2 += C1 finalseries2 = (x - x0)**m2*finalseries2 return Eq(f(x), collect(finalseries1 + finalseries2, [C0, C1]) + Order(x**terms)) def ode_2nd_linear_bessel(eq, func, order, match): r""" Gives solution of the Bessel differential equation .. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x) if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)) as both the solutions are linearly independent else if n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x) + C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x) + C1 bessely(n,x)). Examples ======== >>> from sympy.abc import x >>> from sympy import Symbol >>> v = Symbol('v', positive=True) >>> from sympy.solvers.ode import dsolve >>> from sympy import Function >>> f = Function('f') >>> y = f(x) >>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y >>> dsolve(genform) Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x)) References ========== https://www.math24.net/bessel-differential-equation/ """ x = func.args[0] f = func.func C0, C1 = get_numbered_constants(eq, num=2) n = match['n'] a4 = match['a4'] c4 = match['c4'] d4 = match['d4'] b4 = match['b4'] n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2) return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4) + C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4)) def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None): r""" Returns a dict with keys as coefficients and values as their values in terms of C0 """ n = int(n) # In cases where m1 - m2 is not an integer m2 = check d = Dummy("d") numsyms = numbered_symbols("C", start=0) numsyms = [next(numsyms) for i in range(n + 1)] serlist = [] for ser in [p, q]: # Order term not present if ser.is_polynomial(x) and Poly(ser, x).degree() <= n: if x0: ser = ser.subs(x, x + x0) dict_ = Poly(ser, x).as_dict() # Order term present else: tseries = series(ser, x=x0, n=n+1) # Removing order dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict() # Fill in with zeros, if coefficients are zero. for i in range(n + 1): if (i,) not in dict_: dict_[(i,)] = S.Zero serlist.append(dict_) pseries = serlist[0] qseries = serlist[1] indicial = d*(d - 1) + d*p0 + q0 frobdict = {} for i in range(1, n + 1): num = c*(m*pseries[(i,)] + qseries[(i,)]) for j in range(1, i): sym = Symbol("C" + str(j)) num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)]) # Checking for cases when m1 - m2 is an integer. If num equals zero # then a second Frobenius series solution cannot be found. If num is not zero # then set constant as zero and proceed. if m2 is not None and i == m2 - m: if num: return False else: frobdict[numsyms[i]] = S.Zero else: frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i)) return frobdict def _nth_order_reducible_match(eq, func): r""" Matches any differential equation that can be rewritten with a smaller order. Only derivatives of ``func`` alone, wrt a single variable, are considered, and only in them should ``func`` appear. """ # ODE only handles functions of 1 variable so this affirms that state assert len(func.args) == 1 x = func.args[0] vc = [d.variable_count[0] for d in eq.atoms(Derivative) if d.expr == func and len(d.variable_count) == 1] ords = [c for v, c in vc if v == x] if len(ords) < 2: return smallest = min(ords) # make sure func does not appear outside of derivatives D = Dummy() if eq.subs(func.diff(x, smallest), D).has(func): return return {'n': smallest} def ode_nth_order_reducible(eq, func, order, match): r""" Solves ODEs that only involve derivatives of the dependent variable using a substitution of the form `f^n(x) = g(x)`. For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and `f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If that gives an explicit solution for `g` then `f` is found simply by integration. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0) >>> dsolve(eq, f(x), hint='nth_order_reducible') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x)) """ x = func.args[0] f = func.func n = match['n'] # get a unique function name for g names = [a.name for a in eq.atoms(AppliedUndef)] while True: name = Dummy().name if name not in names: g = Function(name) break w = f(x).diff(x, n) geq = eq.subs(w, g(x)) gsol = dsolve(geq, g(x)) if not isinstance(gsol, list): gsol = [gsol] # Might be multiple solutions to the reduced ODE: fsol = [] for gsoli in gsol: fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times fsol.append(fsoli) if len(fsol) == 1: fsol = fsol[0] return fsol def _remove_redundant_solutions(eq, solns, order, var): r""" Remove redundant solutions from the set of solutions. This function is needed because otherwise dsolve can return redundant solutions. As an example consider: eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0) There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0 leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0 leading to the solution f(x) = C1. In this particular case we then see that the second solution is a special case of the first and we don't want to return it. This does not always happen. If we have eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0) then we get the algebraic solution f(x) = [-2, 2] and the integral solution f(x) = x + C1 and in this case the two solutions are not equivalent wrt initial conditions so both should be returned. """ def is_special_case_of(soln1, soln2): return _is_special_case_of(soln1, soln2, eq, order, var) unique_solns = [] for soln1 in solns: for soln2 in unique_solns[:]: if is_special_case_of(soln1, soln2): break elif is_special_case_of(soln2, soln1): unique_solns.remove(soln2) else: unique_solns.append(soln1) return unique_solns def _is_special_case_of(soln1, soln2, eq, order, var): r""" True if soln1 is found to be a special case of soln2 wrt some value of the constants that appear in soln2. False otherwise. """ # The solutions returned by dsolve may be given explicitly or implicitly. # We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs) # of the two solutions. # # Since this is supposed to hold for all x it also holds for derivatives. # For an order n ode we should be able to differentiate # each solution n times to get n+1 equations. # # We then try to solve those n+1 equations for the integrations constants # in sol2. If we can find a solution that doesn't depend on x then it # means that some value of the constants in sol1 is a special case of # sol2 corresponding to a particular choice of the integration constants. # In case the solution is in implicit form we subtract the sides soln1 = soln1.rhs - soln1.lhs soln2 = soln2.rhs - soln2.lhs # Work for the series solution if soln1.has(Order) and soln2.has(Order): if soln1.getO() == soln2.getO(): soln1 = soln1.removeO() soln2 = soln2.removeO() else: return False elif soln1.has(Order) or soln2.has(Order): return False constants1 = soln1.free_symbols.difference(eq.free_symbols) constants2 = soln2.free_symbols.difference(eq.free_symbols) constants1_new = get_numbered_constants(Tuple(soln1, soln2), len(constants1)) if len(constants1) == 1: constants1_new = {constants1_new} for c_old, c_new in zip(constants1, constants1_new): soln1 = soln1.subs(c_old, c_new) # n equations for sol1 = sol2, sol1'=sol2', ... lhs = soln1 rhs = soln2 eqns = [Eq(lhs, rhs)] for n in range(1, order): lhs = lhs.diff(var) rhs = rhs.diff(var) eq = Eq(lhs, rhs) eqns.append(eq) # BooleanTrue/False awkwardly show up for trivial equations if any(isinstance(eq, BooleanFalse) for eq in eqns): return False eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)] try: constant_solns = solve(eqns, constants2) except NotImplementedError: return False # Sometimes returns a dict and sometimes a list of dicts if isinstance(constant_solns, dict): constant_solns = [constant_solns] # after solving the issue 17418, maybe we don't need the following checksol code. for constant_soln in constant_solns: for eq in eqns: eq=eq.rhs-eq.lhs if checksol(eq, constant_soln) is not True: return False # If any solution gives all constants as expressions that don't depend on # x then there exists constants for soln2 that give soln1 for constant_soln in constant_solns: if not any(c.has(var) for c in constant_soln.values()): return True return False def _nth_linear_match(eq, func, order): r""" Matches a differential equation to the linear form: .. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0 Returns a dict of order:coeff terms, where order is the order of the derivative on each term, and coeff is the coefficient of that derivative. The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is not linear. This function assumes that ``func`` has already been checked to be good. Examples ======== >>> from sympy import Function, cos, sin >>> from sympy.abc import x >>> from sympy.solvers.ode.ode import _nth_linear_match >>> f = Function('f') >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(x), f(x), 3) {-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1} >>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) + ... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - ... sin(f(x)), f(x), 3) == None True """ x = func.args[0] one_x = {x} terms = {i: S.Zero for i in range(-1, order + 1)} for i in Add.make_args(eq): if not i.has(func): terms[-1] += i else: c, f = i.as_independent(func) if (isinstance(f, Derivative) and set(f.variables) == one_x and f.args[0] == func): terms[f.derivative_count] += c elif f == func: terms[len(f.args[1:])] += c else: return None return terms def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous variable-coefficient Cauchy-Euler equidimensional ordinary differential equation. This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `f(x) = x^r`, and deriving a characteristic equation for `r`. When there are repeated roots, we include extra terms of the form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration constant, `r` is a root of the characteristic equation, and `k` ranges over the multiplicity of `r`. In the cases where the roots are complex, solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))` are returned, based on expansions with Euler's formula. The general solution is the sum of the terms found. If SymPy cannot find exact roots to the characteristic equation, a :py:obj:`~.ComplexRootOf` instance will be returned instead. >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x), ... hint='nth_linear_euler_eq_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), sqrt(x)*(C1 + C2*log(x))) Note that because this method does not involve integration, there is no ``nth_linear_euler_eq_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, corresponding to the fundamental solution set, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x) >>> pprint(dsolve(eq, f(x), ... hint='nth_linear_euler_eq_homogeneous')) 2 f(x) = x *(C1 + C2*x) References ========== - https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation - C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and Engineers", Springer 1999, pp. 12 # indirect doctest """ # XXX: This global collectterms hack should be removed. global collectterms collectterms = [] x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, str) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() chareq = Poly(chareq, symbol) chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) constants.reverse() # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 gsol = S.Zero # We need keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. ln = log for root, multiplicity in charroots.items(): for i in range(multiplicity): if isinstance(root, RootOf): gsol += (x**root) * constants.pop() if multiplicity != 1: raise ValueError("Value should be 1") collectterms = [(0, root, 0)] + collectterms elif root.is_real: gsol += ln(x)**i*(x**root) * constants.pop() collectterms = [(i, root, 0)] + collectterms else: reroot = re(root) imroot = im(root) gsol += ln(x)**i * (x**reroot) * ( constants.pop() * sin(abs(imroot)*ln(x)) + constants.pop() * cos(imroot*ln(x))) # Preserve ordering (multiplicity, real part, imaginary part) # It will be assumed implicitly when constructing # fundamental solution sets. collectterms = [(i, reroot, imroot)] + collectterms if returns == 'sol': return Eq(f(x), gsol) elif returns in ('list' 'both'): # HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through) # Create a list of (hopefully) linearly independent solutions gensols = [] # Keep track of when to use sin or cos for nonzero imroot for i, reroot, imroot in collectterms: if imroot == 0: gensols.append(ln(x)**i*x**reroot) else: sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x)) if sin_form in gensols: cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x)) gensols.append(cos_form) else: gensols.append(sin_form) if returns == 'list': return gensols else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using undetermined coefficients. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. These equations can be solved in a general manner, by substituting solutions of the form `x = exp(t)`, and deriving a characteristic equation of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can be then solved by nth_linear_constant_coeff_undetermined_coefficients if g(exp(t)) has finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. After replacement of x by exp(t), this method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import dsolve, Function, Derivative, log >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x) >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand() Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4) """ x = func.args[0] f = func.func r = match chareq, eq, symbol = S.Zero, S.Zero, Dummy('x') for i in r.keys(): if not isinstance(i, str) and i >= 0: chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand() for i in range(1,degree(Poly(chareq, symbol))+1): eq += chareq.coeff(symbol**i)*diff(f(x), x, i) if chareq.as_coeff_add(symbol)[0]: eq += chareq.as_coeff_add(symbol)[0]*f(x) e, re = posify(r[-1].subs(x, exp(x))) eq += e.subs(re) match = _nth_linear_match(eq, f(x), ode_order(eq, f(x))) eq_homogeneous = Add(eq,-match[-1]) match['trialset'] = _undetermined_coefficients_match(match[-1], x, func, eq_homogeneous)['trialset'] return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand() def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional ordinary differential equation using variation of parameters. This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x) \cdots`. This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by multiplying eq given below with `a_n x^{n}` .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, Derivative >>> from sympy.abc import x >>> f = Function('f') >>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4 >>> dsolve(eq, f(x), ... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand() Eq(f(x), C1*x + C2*x**2 + x**4/6) """ x = func.args[0] f = func.func r = match gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both') match.update(gensol) r[-1] = r[-1]/r[ode_order(eq, f(x))] sol = _solve_variation_of_parameters(eq, func, order, match) return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))]) def _linear_coeff_match(expr, func): r""" Helper function to match hint ``linear_coefficients``. Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2 f(x) + c_2)` where the following conditions hold: 1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals; 2. `c_1` or `c_2` are not equal to zero; 3. `a_2 b_1 - a_1 b_2` is not equal to zero. Return ``xarg``, ``yarg`` where 1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)` 2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)` Examples ======== >>> from sympy import Function >>> from sympy.abc import x >>> from sympy.solvers.ode.ode import _linear_coeff_match >>> from sympy.functions.elementary.trigonometric import sin >>> f = Function('f') >>> _linear_coeff_match(( ... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x)) (1/9, 22/9) >>> _linear_coeff_match( ... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x)) (19/27, 2/27) >>> _linear_coeff_match(sin(f(x)/x), f(x)) """ f = func.func x = func.args[0] def abc(eq): r''' Internal function of _linear_coeff_match that returns Rationals a, b, c if eq is a*x + b*f(x) + c, else None. ''' eq = _mexpand(eq) c = eq.as_independent(x, f(x), as_Add=True)[0] if not c.is_Rational: return a = eq.coeff(x) if not a.is_Rational: return b = eq.coeff(f(x)) if not b.is_Rational: return if eq == a*x + b*f(x) + c: return a, b, c def match(arg): r''' Internal function of _linear_coeff_match that returns Rationals a1, b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x) + c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is non-zero, else None. ''' n, d = arg.together().as_numer_denom() m = abc(n) if m is not None: a1, b1, c1 = m m = abc(d) if m is not None: a2, b2, c2 = m d = a2*b1 - a1*b2 if (c1 or c2) and d: return a1, b1, c1, a2, b2, c2, d m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and len(fi.args) == 1 and not fi.args[0].is_Function] or {expr} m1 = match(m.pop()) if m1 and all(match(mi) == m1 for mi in m): a1, b1, c1, a2, b2, c2, denom = m1 return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom def ode_linear_coefficients(eq, func, order, match): r""" Solves a differential equation with linear coefficients. The general form of a differential equation with linear coefficients is .. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y + c_2}\!\right) = 0\text{,} where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2 - a_2 b_1 \ne 0`. This can be solved by substituting: .. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2} y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1 b_2}\text{.} This substitution reduces the equation to a homogeneous differential equation. See Also ======== :meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` :meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep` :meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` Examples ======== >>> from sympy import Function, pprint >>> from sympy.solvers.ode.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> df = f(x).diff(x) >>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1) >>> dsolve(eq, hint='linear_coefficients') [Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)] >>> pprint(dsolve(eq, hint='linear_coefficients')) ___________ ___________ / 2 / 2 [f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ return ode_1st_homogeneous_coeff_best(eq, func, order, match) def ode_1st_power_series(eq, func, order, match): r""" The power series solution is a method which gives the Taylor series expansion to the solution of a differential equation. For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`. The solution is given by .. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!}, where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`. To compute the values of the `F_{n}(x_{0},b)` the following algorithm is followed, until the required number of terms are generated. 1. `F_1 = h(x_{0}, b)` 2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}` Examples ======== >>> from sympy import Function, pprint, exp >>> from sympy.solvers.ode.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> eq = exp(x)*(f(x).diff(x)) - f(x) >>> pprint(dsolve(eq, hint='1st_power_series')) 3 4 5 C1*x C1*x C1*x / 6\ f(x) = C1 + C1*x - ----- + ----- + ----- + O\x / 6 24 60 References ========== - Travis W. Walker, Analytic power series technique for solving first-order differential equations, p.p 17, 18 """ x = func.args[0] y = match['y'] f = func.func h = -match[match['d']]/match[match['e']] point = match.get('f0') value = match.get('f0val') terms = match.get('terms') # First term F = h if not h: return Eq(f(x), value) # Initialization series = value if terms > 1: hc = h.subs({x: point, y: value}) if hc.has(oo) or hc.has(NaN) or hc.has(zoo): # Derivative does not exist, not analytic return Eq(f(x), oo) elif hc: series += hc*(x - point) for factcount in range(2, terms): Fnew = F.diff(x) + F.diff(y)*h Fnewc = Fnew.subs({x: point, y: value}) # Same logic as above if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo): return Eq(f(x), oo) series += Fnewc*((x - point)**factcount)/factorial(factcount) F = Fnew series += Order(x**terms) return Eq(f(x), series) def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='sol'): r""" Solves an `n`\th order linear homogeneous differential equation with constant coefficients. This is an equation of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = 0\text{.} These equations can be solved in a general manner, by taking the roots of the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m + a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms, for each where `C_n` is an arbitrary constant, `r` is a root of the characteristic equation and `i` is one of each from 0 to the multiplicity of the root - 1 (for example, a root 3 of multiplicity 2 would create the terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`. Complex roots always come in conjugate pairs in polynomials with real coefficients, so the two roots will be represented (after simplifying the constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`. If SymPy cannot find exact roots to the characteristic equation, a :py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return instead. >>> from sympy import Function, dsolve >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous') ... # doctest: +NORMALIZE_WHITESPACE Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0)) + (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1))) + C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1))) + (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3))) + C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3)))) Note that because this method does not involve integration, there is no ``nth_linear_constant_coeff_homogeneous_Integral`` hint. The following is for internal use: - ``returns = 'sol'`` returns the solution to the ODE. - ``returns = 'list'`` returns a list of linearly independent solutions, for use with non homogeneous solution methods like variation of parameters and undetermined coefficients. Note that, though the solutions should be linearly independent, this function does not explicitly check that. You can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear independence. Also, ``assert len(sollist) == order`` will need to pass. - ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>, 'list': <list of linearly independent solutions>}``. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) - ... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x), ... hint='nth_linear_constant_coeff_homogeneous')) x -2*x f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation section: Nonhomogeneous_equation_with_constant_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 211 # indirect doctest """ x = func.args[0] f = func.func r = match # First, set up characteristic equation. chareq, symbol = S.Zero, Dummy('x') for i in r.keys(): if type(i) == str or i < 0: pass else: chareq += r[i]*symbol**i chareq = Poly(chareq, symbol) # Can't just call roots because it doesn't return rootof for unsolveable # polynomials. chareqroots = roots(chareq, multiple=True) if len(chareqroots) != order: chareqroots = [rootof(chareq, k) for k in range(chareq.degree())] chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()]) # A generator of constants constants = list(get_numbered_constants(eq, num=chareq.degree()*2)) # Create a dict root: multiplicity or charroots charroots = defaultdict(int) for root in chareqroots: charroots[root] += 1 # We need to keep track of terms so we can run collect() at the end. # This is necessary for constantsimp to work properly. # # XXX: This global collectterms hack should be removed. global collectterms collectterms = [] gensols = [] conjugate_roots = [] # used to prevent double-use of conjugate roots # Loop over roots in theorder provided by roots/rootof... for root in chareqroots: # but don't repoeat multiple roots. if root not in charroots: continue multiplicity = charroots.pop(root) for i in range(multiplicity): if chareq_is_complex: gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms continue reroot = re(root) imroot = im(root) if imroot.has(atan2) and reroot.has(atan2): # Remove this condition when re and im stop returning # circular atan2 usages. gensols.append(x**i*exp(root*x)) collectterms = [(i, root, 0)] + collectterms else: if root in conjugate_roots: collectterms = [(i, reroot, imroot)] + collectterms continue if imroot == 0: gensols.append(x**i*exp(reroot*x)) collectterms = [(i, reroot, 0)] + collectterms continue conjugate_roots.append(conjugate(root)) gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x)) gensols.append(x**i*exp(reroot*x) * cos( imroot * x)) # This ordering is important collectterms = [(i, reroot, imroot)] + collectterms if returns == 'list': return gensols elif returns in ('sol' 'both'): gsol = Add(*[i*j for (i, j) in zip(constants, gensols)]) if returns == 'sol': return Eq(f(x), gsol) else: return {'sol': Eq(f(x), gsol), 'list': gensols} else: raise ValueError('Unknown value for key "returns".') def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of undetermined coefficients. This method works on differential equations of the form .. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{,} where `P(x)` is a function that has a finite number of linearly independent derivatives. Functions that fit this requirement are finite sums functions of the form `a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i` is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`, and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have a finite number of derivatives, because they can be expanded into `\sin(a x)` and `\cos(b x)` terms. However, SymPy currently cannot do that expansion, so you will need to manually rewrite the expression in terms of the above to use this method. So, for example, you will need to manually convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method of undetermined coefficients on it. This method works by creating a trial function from the expression and all of its linear independent derivatives and substituting them into the original ODE. The coefficients for each term will be a system of linear equations, which are be solved for and substituted, giving the solution. If any of the trial functions are linearly dependent on the solution to the homogeneous equation, they are multiplied by sufficient `x` to make them linearly independent. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, cos >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) - ... 4*exp(-x)*x**2 + cos(2*x), f(x), ... hint='nth_linear_constant_coeff_undetermined_coefficients')) / / 3\\ | | x || -x 4*sin(2*x) 3*cos(2*x) f(x) = |C1 + x*|C2 + --||*e - ---------- + ---------- \ \ 3 // 25 25 References ========== - https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 221 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_undetermined_coefficients(eq, func, order, match) def _solve_undetermined_coefficients(eq, func, order, match): r""" Helper function for the method of undetermined coefficients. See the :py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_undetermined_coefficients` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. ``trialset`` The set of trial functions as returned by ``_undetermined_coefficients_match()['trialset']``. """ x = func.args[0] f = func.func r = match coeffs = numbered_symbols('a', cls=Dummy) coefflist = [] gensols = r['list'] gsol = r['sol'] trialset = r['trialset'] if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply" + " undetermined coefficients to " + str(eq) + " (number of terms != order)") trialfunc = 0 for i in trialset: c = next(coeffs) coefflist.append(c) trialfunc += c*i eqs = sub_func_doit(eq, f(x), trialfunc) coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1)))) eqs = _mexpand(eqs) for i in Add.make_args(eqs): s = separatevars(i, dict=True, symbols=[x]) if coeffsdict.get(s[x]): coeffsdict[s[x]] += s['coeff'] else: coeffsdict[s[x]] = s['coeff'] coeffvals = solve(list(coeffsdict.values()), coefflist) if not coeffvals: raise NotImplementedError( "Could not solve `%s` using the " "method of undetermined coefficients " "(unable to solve for coefficients)." % eq) psol = trialfunc.subs(coeffvals) return Eq(f(x), gsol.rhs + psol) def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero): r""" Returns a trial function match if undetermined coefficients can be applied to ``expr``, and ``None`` otherwise. A trial expression can be found for an expression for use with the method of undetermined coefficients if the expression is an additive/multiplicative combination of constants, polynomials in `x` (the independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and `e^{a x}` terms (in other words, it has a finite number of linearly independent derivatives). Note that you may still need to multiply each term returned here by sufficient `x` to make it linearly independent with the solutions to the homogeneous equation. This is intended for internal use by ``undetermined_coefficients`` hints. SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So, for example, you will need to manually convert `\sin^2(x)` into `[1 + \cos(2 x)]/2` to properly apply the method of undetermined coefficients on it. Examples ======== >>> from sympy import log, exp >>> from sympy.solvers.ode.ode import _undetermined_coefficients_match >>> from sympy.abc import x >>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) {'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}} >>> _undetermined_coefficients_match(log(x), x) {'test': False} """ a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1) retdict = {} def _test_term(expr, x): r""" Test if ``expr`` fits the proper form for undetermined coefficients. """ if not expr.has(x): return True elif expr.is_Add: return all(_test_term(i, x) for i in expr.args) elif expr.is_Mul: if expr.has(sin, cos): foundtrig = False # Make sure that there is only one trig function in the args. # See the docstring. for i in expr.args: if i.has(sin, cos): if foundtrig: return False else: foundtrig = True return all(_test_term(i, x) for i in expr.args) elif expr.is_Function: if expr.func in (sin, cos, exp, sinh, cosh): if expr.args[0].match(a*x + b): return True else: return False else: return False elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \ expr.exp >= 0: return True elif expr.is_Pow and expr.base.is_number: if expr.exp.match(a*x + b): return True else: return False elif expr.is_Symbol or expr.is_number: return True else: return False def _get_trial_set(expr, x, exprs=set()): r""" Returns a set of trial terms for undetermined coefficients. The idea behind undetermined coefficients is that the terms expression repeat themselves after a finite number of derivatives, except for the coefficients (they are linearly dependent). So if we collect these, we should have the terms of our trial function. """ def _remove_coefficient(expr, x): r""" Returns the expression without a coefficient. Similar to expr.as_independent(x)[1], except it only works multiplicatively. """ term = S.One if expr.is_Mul: for i in expr.args: if i.has(x): term *= i elif expr.has(x): term = expr return term expr = expand_mul(expr) if expr.is_Add: for term in expr.args: if _remove_coefficient(term, x) in exprs: pass else: exprs.add(_remove_coefficient(term, x)) exprs = exprs.union(_get_trial_set(term, x, exprs)) else: term = _remove_coefficient(expr, x) tmpset = exprs.union({term}) oldset = set() while tmpset != oldset: # If you get stuck in this loop, then _test_term is probably # broken oldset = tmpset.copy() expr = expr.diff(x) term = _remove_coefficient(expr, x) if term.is_Add: tmpset = tmpset.union(_get_trial_set(term, x, tmpset)) else: tmpset.add(term) exprs = tmpset return exprs def is_homogeneous_solution(term): r""" This function checks whether the given trialset contains any root of homogenous equation""" return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero retdict['test'] = _test_term(expr, x) if retdict['test']: # Try to generate a list of trial solutions that will have the # undetermined coefficients. Note that if any of these are not linearly # independent with any of the solutions to the homogeneous equation, # then they will need to be multiplied by sufficient x to make them so. # This function DOES NOT do that (it doesn't even look at the # homogeneous equation). temp_set = set() for i in Add.make_args(expr): act = _get_trial_set(i,x) if eq_homogeneous is not S.Zero: while any(is_homogeneous_solution(ts) for ts in act): act = {x*ts for ts in act} temp_set = temp_set.union(act) retdict['trialset'] = temp_set return retdict def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match): r""" Solves an `n`\th order linear differential equation with constant coefficients using the method of variation of parameters. This method works on any differential equations of the form .. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0 f(x) = P(x)\text{.} This method works by assuming that the particular solution takes the form .. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,} where `y_i` is the `i`\th solution to the homogeneous equation. The solution is then solved using Wronskian's and Cramer's Rule. The particular solution is given by .. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx \right) y_i(x) \text{,} where `W(x)` is the Wronskian of the fundamental system (the system of `n` linearly independent solutions to the homogeneous equation), and `W_i(x)` is the Wronskian of the fundamental system with the `i`\th column replaced with `[0, 0, \cdots, 0, P(x)]`. This method is general enough to solve any `n`\th order inhomogeneous linear differential equation with constant coefficients, but sometimes SymPy cannot simplify the Wronskian well enough to integrate it. If this method hangs, try using the ``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and simplifying the integrals manually. Also, prefer using ``nth_linear_constant_coeff_undetermined_coefficients`` when it applies, because it doesn't use integration, making it faster and more reliable. Warning, using simplify=False with 'nth_linear_constant_coeff_variation_of_parameters' in :py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will not attempt to simplify the Wronskian before integrating. It is recommended that you only use simplify=False with 'nth_linear_constant_coeff_variation_of_parameters_Integral' for this method, especially if the solution to the homogeneous equation has trigonometric functions in it. Examples ======== >>> from sympy import Function, dsolve, pprint, exp, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) + ... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x), ... hint='nth_linear_constant_coeff_variation_of_parameters')) / / / x*log(x) 11*x\\\ x f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e \ \ \ 6 36 /// References ========== - https://en.wikipedia.org/wiki/Variation_of_parameters - http://planetmath.org/VariationOfParameters - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 233 # indirect doctest """ gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match, returns='both') match.update(gensol) return _solve_variation_of_parameters(eq, func, order, match) def _solve_variation_of_parameters(eq, func, order, match): r""" Helper function for the method of variation of parameters and nonhomogeneous euler eq. See the :py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_variation_of_parameters` docstring for more information on this method. The parameter ``match`` should be a dictionary that has the following keys: ``list`` A list of solutions to the homogeneous equation, such as the list returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='list')``. ``sol`` The general solution, such as the solution returned by ``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``. """ x = func.args[0] f = func.func r = match psol = 0 gensols = r['list'] gsol = r['sol'] wr = wronskian(gensols, x) if r.get('simplify', True): wr = simplify(wr) # We need much better simplification for # some ODEs. See issue 4662, for example. # To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1 wr = trigsimp(wr, deep=True, recursive=True) if not wr: # The wronskian will be 0 iff the solutions are not linearly # independent. raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (Wronskian == 0)") if len(gensols) != order: raise NotImplementedError("Cannot find " + str(order) + " solutions to the homogeneous equation necessary to apply " + "variation of parameters to " + str(eq) + " (number of terms != order)") negoneterm = (-1)**(order) for i in gensols: psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order] negoneterm *= -1 if r.get('simplify', True): psol = simplify(psol) psol = trigsimp(psol, deep=True) return Eq(f(x), gsol.rhs + psol) def checkinfsol(eq, infinitesimals, func=None, order=None): r""" This function is used to check if the given infinitesimals are the actual infinitesimals of the given first order differential equation. This method is specific to the Lie Group Solver of ODEs. As of now, it simply checks, by substituting the infinitesimals in the partial differential equation. .. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x}\right)*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0 where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}` The infinitesimals should be given in the form of a list of dicts ``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the output of the function infinitesimals. It returns a list of values of the form ``[(True/False, sol)]`` where ``sol`` is the value obtained after substituting the infinitesimals in the PDE. If it is ``True``, then ``sol`` would be 0. """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Lie groups solver has been implemented " "only for first order differential equations") else: df = func.diff(x) a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy('y') h = h.subs(func, y) xi = Function('xi')(x, y) eta = Function('eta')(x, y) dxi = Function('xi')(x, func) deta = Function('eta')(x, func) pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y))) soltup = [] for sol in infinitesimals: tsol = {xi: S(sol[dxi]).subs(func, y), eta: S(sol[deta]).subs(func, y)} sol = simplify(pde.subs(tsol).doit()) if sol: soltup.append((False, sol.subs(y, func))) else: soltup.append((True, 0)) return soltup def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf): xi = Function("xi") eta = Function("eta") f = func.func x = func.args[0] y = match['y'] h = match['h'] tempsol = [] if not inf: try: inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match) except ValueError: return None for infsim in inf: xiinf = (infsim[xi(x, func)]).subs(func, y) etainf = (infsim[eta(x, func)]).subs(func, y) # This condition creates recursion while using pdsolve. # Since the first step while solving a PDE of form # a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0 # is to solve the ODE dy/dx = b/a if simplify(etainf/xiinf) == h: continue rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf r = pdsolve(rpde, func=f(x, y)).rhs s = pdsolve(rpde - 1, func=f(x, y)).rhs newcoord = [_lie_group_remove(coord) for coord in [r, s]] r = Dummy("r") s = Dummy("s") C1 = Symbol("C1") rcoord = newcoord[0] scoord = newcoord[-1] try: sol = solve([r - rcoord, s - scoord], x, y, dict=True) if sol == []: continue except NotImplementedError: continue else: sol = sol[0] xsub = sol[x] ysub = sol[y] num = simplify(scoord.diff(x) + scoord.diff(y)*h) denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h) if num and denom: diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)])) sep = separatevars(diffeq, symbols=[r, s], dict=True) if sep: # Trying to separate, r and s coordinates deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r) # Substituting and reverting back to original coordinates deq = deq.subs([(r, rcoord), (s, scoord)]) try: sdeq = solve(deq, y) except NotImplementedError: tempsol.append(deq) else: return [Eq(f(x), sol) for sol in sdeq] elif denom: # (ds/dr) is zero which means s is constant return [Eq(f(x), solve(scoord - C1, y)[0])] elif num: # (dr/ds) is zero which means r is constant return [Eq(f(x), solve(rcoord - C1, y)[0])] # If nothing works, return solution as it is, without solving for y if tempsol: return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol] return None def _ode_lie_group( s, func, order, match): heuristics = lie_heuristics inf = {} f = func.func x = func.args[0] df = func.diff(x) xi = Function("xi") eta = Function("eta") xis = match['xi'] etas = match['eta'] y = match.pop('y', None) if y: h = -simplify(match[match['d']]/match[match['e']]) y = y else: y = Dummy("y") h = s.subs(func, y) if xis is not None and etas is not None: inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}] if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]: heuristics = ["user_defined"] + list(heuristics) match = {'h': h, 'y': y} # This is done so that if any heuristic raises a ValueError # another heuristic can be used. sol = None for heuristic in heuristics: sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf) if sol: return sol return sol def ode_lie_group(eq, func, order, match): r""" This hint implements the Lie group method of solving first order differential equations. The aim is to convert the given differential equation from the given coordinate system into another coordinate system where it becomes invariant under the one-parameter Lie group of translations. The converted ODE can be easily solved by quadrature. It makes use of the :py:meth:`sympy.solvers.ode.infinitesimals` function which returns the infinitesimals of the transformation. The coordinates `r` and `s` can be found by solving the following Partial Differential Equations. .. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y} = 0 .. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y} = 1 The differential equation becomes separable in the new coordinate system .. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} + h(x, y)\frac{\partial s}{\partial y}}{ \frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}} After finding the solution by integration, it is then converted back to the original coordinate system by substituting `r` and `s` in terms of `x` and `y` again. Examples ======== >>> from sympy import Function, dsolve, exp, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x), ... hint='lie_group')) / 2\ 2 | x | -x f(x) = |C1 + --|*e \ 2 / References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ x = func.args[0] df = func.diff(x) try: eqsol = solve(eq, df) except NotImplementedError: eqsol = [] desols = [] for s in eqsol: sol = _ode_lie_group(s, func, order, match=match) if sol: desols.extend(sol) if desols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the lie group method") return desols def _lie_group_remove(coords): r""" This function is strictly meant for internal use by the Lie group ODE solving method. It replaces arbitrary functions returned by pdsolve as follows: 1] If coords is an arbitrary function, then its argument is returned. 2] An arbitrary function in an Add object is replaced by zero. 3] An arbitrary function in a Mul object is replaced by one. 4] If there is no arbitrary function coords is returned unchanged. Examples ======== >>> from sympy.solvers.ode.ode import _lie_group_remove >>> from sympy import Function >>> from sympy.abc import x, y >>> F = Function("F") >>> eq = x**2*y >>> _lie_group_remove(eq) x**2*y >>> eq = F(x**2*y) >>> _lie_group_remove(eq) x**2*y >>> eq = x*y**2 + F(x**3) >>> _lie_group_remove(eq) x*y**2 >>> eq = (F(x**3) + y)*x**4 >>> _lie_group_remove(eq) x**4*y """ if isinstance(coords, AppliedUndef): return coords.args[0] elif coords.is_Add: subfunc = coords.atoms(AppliedUndef) if subfunc: for func in subfunc: coords = coords.subs(func, 0) return coords elif coords.is_Pow: base, expr = coords.as_base_exp() base = _lie_group_remove(base) expr = _lie_group_remove(expr) return base**expr elif coords.is_Mul: mulargs = [] coordargs = coords.args for arg in coordargs: if not isinstance(coords, AppliedUndef): mulargs.append(_lie_group_remove(arg)) return Mul(*mulargs) return coords def infinitesimals(eq, func=None, order=None, hint='default', match=None): r""" The infinitesimal functions of an ordinary differential equation, `\xi(x,y)` and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations for which the differential equation is invariant. So, the ODE `y'=f(x,y)` would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`, `y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`. A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`. They are tangents to the coordinate curves of the new system. Consider the transformation `(x, y) \to (X, Y)` such that the differential equation remains invariant. `\xi` and `\eta` are the tangents to the transformed coordinates `X` and `Y`, at `\varepsilon=0`. .. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \xi, \left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon }\right)|_{\varepsilon=0} = \eta, The infinitesimals can be found by solving the following PDE: >>> from sympy import Function, Eq, pprint >>> from sympy.abc import x, y >>> xi, eta, h = map(Function, ['xi', 'eta', 'h']) >>> h = h(x, y) # dy/dx = h >>> eta = eta(x, y) >>> xi = xi(x, y) >>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h ... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0) >>> pprint(genform) /d d \ d 2 d |--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x \dy dx / dy dy <BLANKLINE> d d i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0 dx dx Solving the above mentioned PDE is not trivial, and can be solved only by making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an infinitesimal is found, the attempt to find more heuristics stops. This is done to optimise the speed of solving the differential equation. If a list of all the infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives the complete list of infinitesimals. If the infinitesimals for a particular heuristic needs to be found, it can be passed as a flag to ``hint``. Examples ======== >>> from sympy import Function >>> from sympy.solvers.ode.ode import infinitesimals >>> from sympy.abc import x >>> f = Function('f') >>> eq = f(x).diff(x) - x**2*f(x) >>> infinitesimals(eq) [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}] References ========== - Solving differential equations by Symmetry Groups, John Starrett, pp. 1 - pp. 14 """ if isinstance(eq, Equality): eq = eq.lhs - eq.rhs if not func: eq, func = _preprocess(eq) variables = func.args if len(variables) != 1: raise ValueError("ODE's have only one independent variable") else: x = variables[0] if not order: order = ode_order(eq, func) if order != 1: raise NotImplementedError("Infinitesimals for only " "first order ODE's have been implemented") else: df = func.diff(x) # Matching differential equation of the form a*df + b a = Wild('a', exclude = [df]) b = Wild('b', exclude = [df]) if match: # Used by lie_group hint h = match['h'] y = match['y'] else: match = collect(expand(eq), df).match(a*df + b) if match: h = -simplify(match[b]/match[a]) else: try: sol = solve(eq, df) except NotImplementedError: raise NotImplementedError("Infinitesimals for the " "first order ODE could not be found") else: h = sol[0] # Find infinitesimals for one solution y = Dummy("y") h = h.subs(func, y) u = Dummy("u") hx = h.diff(x) hy = h.diff(y) hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv} if hint == 'all': xieta = [] for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] inflist = function(match, comp=True) if inflist: xieta.extend([inf for inf in inflist if inf not in xieta]) if xieta: return xieta else: raise NotImplementedError("Infinitesimals could not be found for " "the given ODE") elif hint == 'default': for heuristic in lie_heuristics: function = globals()['lie_heuristic_' + heuristic] xieta = function(match, comp=False) if xieta: return xieta raise NotImplementedError("Infinitesimals could not be found for" " the given ODE") elif hint not in lie_heuristics: raise ValueError("Heuristic not recognized: " + hint) else: function = globals()['lie_heuristic_' + hint] xieta = function(match, comp=True) if xieta: return xieta else: raise ValueError("Infinitesimals could not be found using the" " given heuristic") def lie_heuristic_abaco1_simple(match, comp=False): r""" The first heuristic uses the following four sets of assumptions on `\xi` and `\eta` .. math:: \xi = 0, \eta = f(x) .. math:: \xi = 0, \eta = f(y) .. math:: \xi = f(x), \eta = 0 .. math:: \xi = f(y), \eta = 0 The success of this heuristic is determined by algebraic factorisation. For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE .. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y} - \frac{\partial \xi}{\partial x})*h - \frac{\partial \xi}{\partial y}*h^{2} - \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0 reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0` If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually be integrated easily. A similar idea is applied to the other 3 assumptions as well. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ xieta = [] y = match['y'] h = match['h'] func = match['func'] x = func.args[0] hx = match['hx'] hy = match['hy'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) hysym = hy.free_symbols if y not in hysym: try: fx = exp(integrate(hy, x)) except NotImplementedError: pass else: inf = {xi: S.Zero, eta: fx} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = hy/h facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: S.Zero, eta: fy.subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/h facsym = factor.free_symbols if y not in facsym: try: fx = exp(integrate(factor, x)) except NotImplementedError: pass else: inf = {xi: fx, eta: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) factor = -hx/(h**2) facsym = factor.free_symbols if x not in facsym: try: fy = exp(integrate(factor, y)) except NotImplementedError: pass else: inf = {xi: fy.subs(y, func), eta: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco1_product(match, comp=False): r""" The second heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x)*g(y) .. math:: \eta = f(x)*g(y), \xi = 0 The first assumption of this heuristic holds good if `\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is separable in `x` and `y`, then the separated factors containing `x` is `f(x)`, and `g(y)` is obtained by .. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy} provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function of `y` only. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x)*g(y)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] y = match['y'] h = match['h'] hinv = match['hinv'] func = match['func'] x = func.args[0] xi = Function('xi')(x, func) eta = Function('eta')(x, func) inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*h)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) u1 = Dummy("u1") inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y]) if inf and inf['coeff']: fx = inf[x] gy = simplify(fx*((1/(fx*hinv)).diff(x))) gysyms = gy.free_symbols if x not in gysyms: gy = exp(integrate(gy, y)) etaval = fx*gy etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y) inf = {eta: etaval.subs(y, func), xi: S.Zero} if not comp: return [inf] if comp and inf not in xieta: xieta.append(inf) if xieta: return xieta def lie_heuristic_bivariate(match, comp=False): r""" The third heuristic assumes the infinitesimals `\xi` and `\eta` to be bi-variate polynomials in `x` and `y`. The assumption made here for the logic below is that `h` is a rational function in `x` and `y` though that may not be necessary for the infinitesimals to be bivariate polynomials. The coefficients of the infinitesimals are found out by substituting them in the PDE and grouping similar terms that are polynomials and since they form a linear system, solve and check for non trivial solutions. The degree of the assumed bivariates are increased till a certain maximum value. References ========== - Lie Groups and Differential Equations pp. 327 - pp. 329 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): # The maximum degree that the infinitesimals can take is # calculated by this technique. etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid") ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy num, denom = cancel(ipde).as_numer_denom() deg = Poly(num, x, y).total_degree() deta = Function('deta')(x, y) dxi = Function('dxi')(x, y) ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2 - dxi*hx - deta*hy) xieq = Symbol("xi0") etaeq = Symbol("eta0") for i in range(deg + 1): if i: xieq += Add(*[ Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) etaeq += Add(*[ Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom() pden = expand(pden) # If the individual terms are monomials, the coefficients # are grouped if pden.is_polynomial(x, y) and pden.is_Add: polyy = Poly(pden, x, y).as_dict() if polyy: symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y} soldict = solve(polyy.values(), *symset) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): xired = xieq.subs(soldict) etared = etaeq.subs(soldict) # Scaling is done by substituting one for the parameters # This can be any number except zero. dict_ = {sym: 1 for sym in symset} inf = {eta: etared.subs(dict_).subs(y, func), xi: xired.subs(dict_).subs(y, func)} return [inf] def lie_heuristic_chi(match, comp=False): r""" The aim of the fourth heuristic is to find the function `\chi(x, y)` that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx} - \frac{\partial h}{\partial y}\chi = 0`. This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition, `h` should be a rational function in `x` and `y`. The method used here is to substitute a general binomial for `\chi` up to a certain maximum degree is reached. The coefficients of the polynomials, are calculated by by collecting terms of the same order in `x` and `y`. After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h` which would give `-\xi` as the quotient and `\eta` as the remainder. References ========== - E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra Solving of First Order ODEs Using Symmetry Methods, pp. 8 """ h = match['h'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) if h.is_rational_function(): schi, schix, schiy = symbols("schi, schix, schiy") cpde = schix + h*schiy - hy*schi num, denom = cancel(cpde).as_numer_denom() deg = Poly(num, x, y).total_degree() chi = Function('chi')(x, y) chix = chi.diff(x) chiy = chi.diff(y) cpde = chix + h*chiy - hy*chi chieq = Symbol("chi") for i in range(1, deg + 1): chieq += Add(*[ Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power) for power in range(i + 1)]) cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom() cnum = expand(cnum) if cnum.is_polynomial(x, y) and cnum.is_Add: cpoly = Poly(cnum, x, y).as_dict() if cpoly: solsyms = chieq.free_symbols - {x, y} soldict = solve(cpoly.values(), *solsyms) if isinstance(soldict, list): soldict = soldict[0] if any(soldict.values()): chieq = chieq.subs(soldict) dict_ = {sym: 1 for sym in solsyms} chieq = chieq.subs(dict_) # After finding chi, the main aim is to find out # eta, xi by the equation eta = xi*h + chi # One method to set xi, would be rearranging it to # (eta/h) - xi = (chi/h). This would mean dividing # chi by h would give -xi as the quotient and eta # as the remainder. Thanks to Sean Vig for suggesting # this method. xic, etac = div(chieq, h) inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)} return [inf] def lie_heuristic_function_sum(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = 0, \xi = f(x) + g(y) .. math:: \eta = f(x) + g(y), \xi = 0 The first assumption of this heuristic holds good if .. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{ \partial x^{2}}(h^{-1}))^{-1}] is separable in `x` and `y`, 1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`. From this `g(y)` can be determined. 2. The separated factors containing `x` is `f''(x)`. 3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals `\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined. The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again interchanged, to get `\eta` as `f(x) + g(y)`. For both assumptions, the constant factors are separated among `g(y)` and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that obtained from 2]. If not possible, then this heuristic fails. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 7 - pp. 8 """ xieta = [] h = match['h'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) for odefac in [h, hinv]: factor = odefac*((1/odefac).diff(x, 2)) sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y]) if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y): k = Dummy("k") try: gy = k*integrate(sep[y], y) except NotImplementedError: pass else: fdd = 1/(k*sep[x]*sep['coeff']) fx = simplify(fdd/factor - gy) check = simplify(fx.diff(x, 2) - fdd) if fx: if not check: fx = fx.subs(k, 1) gy = (gy/k) else: sol = solve(check, k) if sol: sol = sol[0] fx = fx.subs(k, sol) gy = (gy/k)*sol else: continue if odefac == hinv: # Inverse ODE fx = fx.subs(x, y) gy = gy.subs(y, x) etaval = factor_terms(fx + gy) if etaval.is_Mul: etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)]) if odefac == hinv: # Inverse ODE inf = {eta: etaval.subs(y, func), xi : S.Zero} else: inf = {xi: etaval.subs(y, func), eta : S.Zero} if not comp: return [inf] else: xieta.append(inf) if xieta: return xieta def lie_heuristic_abaco2_similar(match, comp=False): r""" This heuristic uses the following two assumptions on `\xi` and `\eta` .. math:: \eta = g(x), \xi = f(x) .. math:: \eta = f(y), \xi = g(y) For the first assumption, 1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{ \partial yy}}` is calculated. Let us say this value is A 2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{ \frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)` and `A(x)*f(x)` gives `g(x)` 3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{ \partial Y}} = \gamma` is calculated. If a] `\gamma` is a function of `x` alone b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{ \partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone. then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)` The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as `\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)` References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] hinv = match['hinv'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) factor = cancel(h.diff(y)/h.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{xi: tau, eta: gx}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{xi: tau, eta: gx}] factor = cancel(hinv.diff(y)/hinv.diff(y, 2)) factorx = factor.diff(x) factory = factor.diff(y) if not factor.has(x) and not factor.has(y): A = Wild('A', exclude=[y]) B = Wild('B', exclude=[y]) C = Wild('C', exclude=[x, y]) match = h.match(A + B*exp(y/C)) try: tau = exp(-integrate(match[A]/match[C]), x)/match[B] except NotImplementedError: pass else: gx = match[A]*tau return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] else: gamma = cancel(factorx/factory) if not gamma.has(y): tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/( hinv + gamma)) if not tauint.has(y): try: tau = exp(integrate(tauint, x)) except NotImplementedError: pass else: gx = -tau*gamma return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}] def lie_heuristic_abaco2_unique_unknown(match, comp=False): r""" This heuristic assumes the presence of unknown functions or known functions with non-integer powers. 1. A list of all functions and non-integer powers containing x and y 2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{ \frac{\partial f}{\partial x}} = R` If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return `\xi` and `\eta` b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE. If yes, then return `\xi` and `\eta` If not, then check if a] :math:`\xi = -R,\eta = 1` b] :math:`\xi = 1, \eta = -\frac{1}{R}` are solutions. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) funclist = [] for atom in h.atoms(Pow): base, exp = atom.as_base_exp() if base.has(x) and base.has(y): if not exp.is_Integer: funclist.append(atom) for function in h.atoms(AppliedUndef): syms = function.free_symbols if x in syms and y in syms: funclist.append(function) for f in funclist: frac = cancel(f.diff(y)/f.diff(x)) sep = separatevars(frac, dict=True, symbols=[x, y]) if sep and sep['coeff']: xitry1 = sep[x] etatry1 = -1/(sep[y]*sep['coeff']) pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy if not simplify(pde1): return [{xi: xitry1, eta: etatry1.subs(y, func)}] xitry2 = 1/etatry1 etatry2 = 1/xitry1 pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy if not simplify(expand(pde2)): return [{xi: xitry2.subs(y, func), eta: etatry2}] else: etatry = -1/frac pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy if not simplify(pde): return [{xi: S.One, eta: etatry.subs(y, func)}] xitry = -frac pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy if not simplify(expand(pde)): return [{xi: xitry.subs(y, func), eta: S.One}] def lie_heuristic_abaco2_unique_general(match, comp=False): r""" This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)` without making any assumptions on `h`. The complete sequence of steps is given in the paper mentioned below. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) A = hx.diff(y) B = hy.diff(y) + hy**2 C = hx.diff(x) - hx**2 if not (A and B and C): return Ax = A.diff(x) Ay = A.diff(y) Axy = Ax.diff(y) Axx = Ax.diff(x) Ayy = Ay.diff(y) D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay if not D: E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A) if E1: E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if not E2: E3 = simplify( E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4) if not E3: etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -4*A**3*etaval/E1 if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] else: E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2) if E1: E2 = simplify( 4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2)) if not E2: E3 = simplify( -(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D + (A*hx - 3*Ax)*E1)*E1) if not E3: etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D)) if x not in etaval: try: etaval = exp(integrate(etaval, y)) except NotImplementedError: pass else: xival = -E1*etaval/D if y not in xival: return [{xi: xival, eta: etaval.subs(y, func)}] def lie_heuristic_linear(match, comp=False): r""" This heuristic assumes 1. `\xi = ax + by + c` and 2. `\eta = fx + gy + h` After substituting the following assumptions in the determining PDE, it reduces to .. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x} - (fx + gy + c)\frac{\partial h}{\partial y} Solving the reduced PDE obtained, using the method of characteristics, becomes impractical. The method followed is grouping similar terms and solving the system of linear equations obtained. The difference between the bivariate heuristic is that `h` need not be a rational function in this case. References ========== - E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order ODE Patterns, pp. 10 - pp. 12 """ h = match['h'] hx = match['hx'] hy = match['hy'] func = match['func'] x = func.args[0] y = match['y'] xi = Function('xi')(x, func) eta = Function('eta')(x, func) coeffdict = {} symbols = numbered_symbols("c", cls=Dummy) symlist = [next(symbols) for _ in islice(symbols, 6)] C0, C1, C2, C3, C4, C5 = symlist pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2 pde, denom = pde.as_numer_denom() pde = powsimp(expand(pde)) if pde.is_Add: terms = pde.args for term in terms: if term.is_Mul: rem = Mul(*[m for m in term.args if not m.has(x, y)]) xypart = term/rem if xypart not in coeffdict: coeffdict[xypart] = rem else: coeffdict[xypart] += rem else: if term not in coeffdict: coeffdict[term] = S.One else: coeffdict[term] += S.One sollist = coeffdict.values() soldict = solve(sollist, symlist) if soldict: if isinstance(soldict, list): soldict = soldict[0] subval = soldict.values() if any(t for t in subval): onedict = dict(zip(symlist, [1]*6)) xival = C0*x + C1*func + C2 etaval = C3*x + C4*func + C5 xival = xival.subs(soldict) etaval = etaval.subs(soldict) xival = xival.subs(onedict) etaval = etaval.subs(onedict) return [{xi: xival, eta: etaval}] def sysode_linear_2eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func func = match_['func'] fc = match_['func_coeff'] eq = match_['eq'] r = dict() t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs # for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1) # and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2) r['a'] = -fc[0,x(t),0]/fc[0,x(t),1] r['c'] = -fc[1,x(t),0]/fc[1,y(t),1] r['b'] = -fc[0,y(t),0]/fc[0,x(t),1] r['d'] = -fc[1,y(t),0]/fc[1,y(t),1] forcing = [S.Zero,S.Zero] for i in range(2): for j in Add.make_args(eq[i]): if not j.has(x(t), y(t)): forcing[i] += j if not (forcing[0].has(t) or forcing[1].has(t)): r['k1'] = forcing[0] r['k2'] = forcing[1] else: raise NotImplementedError("Only homogeneous problems are supported" + " (and constant inhomogeneity)") if match_['type_of_equation'] == 'type6': sol = _linear_2eq_order1_type6(x, y, t, r, eq) if match_['type_of_equation'] == 'type7': sol = _linear_2eq_order1_type7(x, y, t, r, eq) return sol def _linear_2eq_order1_type6(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y This is solved by first multiplying the first equation by `-a` and adding it to the second equation to obtain .. math:: y' - a x' = -a h(t) (y - a x) Setting `U = y - ax` and integrating the equation we arrive at .. math:: y - ax = C_1 e^{-a \int h(t) \,dt} and on substituting the value of y in first equation give rise to first order ODEs. After solving for `x`, we can obtain `y` by substituting the value of `x` in second equation. """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) p = 0 q = 0 p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0]) p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0]) for n, i in enumerate([p1, p2]): for j in Mul.make_args(collect_const(i)): if not j.has(t): q = j if q!=0 and n==0: if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j: p = 1 s = j break if q!=0 and n==1: if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j: p = 2 s = j break if p == 1: equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t))) hint1 = classify_ode(equ)[1] sol1 = dsolve(equ, hint=hint1+'_Integral').rhs sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t)) elif p ==2: equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) hint1 = classify_ode(equ)[1] sol2 = dsolve(equ, hint=hint1+'_Integral').rhs sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def _linear_2eq_order1_type7(x, y, t, r, eq): r""" The equations of this type of ode are . .. math:: x' = f(t) x + g(t) y .. math:: y' = h(t) x + p(t) y Differentiating the first equation and substituting the value of `y` from second equation will give a second-order linear equation .. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0 This above equation can be easily integrated if following conditions are satisfied. 1. `fgp - g^{2} h + f g' - f' g = 0` 2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg` If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes a constant coefficient differential equation which is also solved by current solver. Otherwise if the above condition fails then, a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)` Then the general solution is expressed as .. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt .. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt] where C1 and C2 are arbitrary constants and .. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt} """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b'] e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t) m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t) m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t) if e1 == 0: sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif e2 == 0: sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t): sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t): sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs else: x0 = Function('x0')(t) # x0 and y0 being particular solutions y0 = Function('y0')(t) F = exp(Integral(r['a'],t)) P = exp(Integral(r['d'],t)) sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t) sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t)) return [Eq(x(t), sol1), Eq(y(t), sol2)] def sysode_nonlinear_2eq_order1(match_): func = match_['func'] eq = match_['eq'] fc = match_['func_coeff'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type5': sol = _nonlinear_2eq_order1_type5(func, t, eq) return sol x = func[0].func y = func[1].func for i in range(2): eqs = 0 for terms in Add.make_args(eq[i]): eqs += terms/fc[i,func[i],1] eq[i] = eqs if match_['type_of_equation'] == 'type1': sol = _nonlinear_2eq_order1_type1(x, y, t, eq) elif match_['type_of_equation'] == 'type2': sol = _nonlinear_2eq_order1_type2(x, y, t, eq) elif match_['type_of_equation'] == 'type3': sol = _nonlinear_2eq_order1_type3(x, y, t, eq) elif match_['type_of_equation'] == 'type4': sol = _nonlinear_2eq_order1_type4(x, y, t, eq) return sol def _nonlinear_2eq_order1_type1(x, y, t, eq): r""" Equations: .. math:: x' = x^n F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `n \neq 1` .. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}} if `n = 1` .. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy} where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - x(t)**n*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n!=1: phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n)) else: phi = C1*exp(Integral(1/g, v)) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type2(x, y, t, eq): r""" Equations: .. math:: x' = e^{\lambda x} F(x,y) .. math:: y' = g(y) F(x,y) Solution: .. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2 where if `\lambda \neq 0` .. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy) if `\lambda = 0` .. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy where `C_1` and `C_2` are arbitrary constants. """ C1, C2 = get_numbered_constants(eq, num=2) n = Wild('n', exclude=[x(t),y(t)]) f = Wild('f') u, v = symbols('u, v') r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f) g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v) F = r[f].subs(x(t),u).subs(y(t),v) n = r[n] if n: phi = -1/n*log(C1 - n*Integral(1/g, v)) else: phi = C1 + Integral(1/g, v) phi = phi.doit() sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v) sol = [] for sols in sol2: sol.append(Eq(x(t),phi.subs(v, sols))) sol.append(Eq(y(t), sols)) return sol def _nonlinear_2eq_order1_type3(x, y, t, eq): r""" Autonomous system of general form .. math:: x' = F(x,y) .. math:: y' = G(x,y) Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general solution of the first-order equation .. math:: F(x,y) y'_x = G(x,y) Then the general solution of the original system of equations has the form .. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1 """ C1, C2, C3, C4 = get_numbered_constants(eq, num=4) v = Function('v') u = Symbol('u') f = Wild('f') g = Wild('g') r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) F = r1[f].subs(x(t), u).subs(y(t), v(u)) G = r2[g].subs(x(t), u).subs(y(t), v(u)) sol2r = dsolve(Eq(diff(v(u), u), G/F)) if isinstance(sol2r, Equality): sol2r = [sol2r] for sol2s in sol2r: sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u) sol = [] for sols in sol1: sol.append(Eq(x(t), sols)) sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols))) return sol def _nonlinear_2eq_order1_type4(x, y, t, eq): r""" Equation: .. math:: x' = f_1(x) g_1(y) \phi(x,y,t) .. math:: y' = f_2(x) g_2(y) \phi(x,y,t) First integral: .. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C where `C` is an arbitrary constant. On solving the first integral for `x` (resp., `y` ) and on substituting the resulting expression into either equation of the original solution, one arrives at a first-order equation for determining `y` (resp., `x` ). """ C1, C2 = get_numbered_constants(eq, num=2) u, v = symbols('u, v') U, V = symbols('U, V', cls=Function) f = Wild('f') g = Wild('g') f1 = Wild('f1', exclude=[v,t]) f2 = Wild('f2', exclude=[v,t]) g1 = Wild('g1', exclude=[u,t]) g2 = Wild('g2', exclude=[u,t]) r1 = eq[0].match(diff(x(t),t) - f) r2 = eq[1].match(diff(y(t),t) - g) num, den = ( (r1[f].subs(x(t),u).subs(y(t),v))/ (r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom() R1 = num.match(f1*g1) R2 = den.match(f2*g2) phi = (r1[f].subs(x(t),u).subs(y(t),v))/num F1 = R1[f1]; F2 = R2[f2] G1 = R1[g1]; G2 = R2[g2] sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u) sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v) sol = [] for sols in sol1r: sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs)) for sols in sol2r: sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs)) return set(sol) def _nonlinear_2eq_order1_type5(func, t, eq): r""" Clairaut system of ODEs .. math:: x = t x' + F(x',y') .. math:: y = t y' + G(x',y') The following are solutions of the system `(i)` straight lines: .. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2) where `C_1` and `C_2` are arbitrary constants; `(ii)` envelopes of the above lines; `(iii)` continuously differentiable lines made up from segments of the lines `(i)` and `(ii)`. """ C1, C2 = get_numbered_constants(eq, num=2) f = Wild('f') g = Wild('g') def check_type(x, y): r1 = eq[0].match(t*diff(x(t),t) - x(t) + f) r2 = eq[1].match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t) r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t) if not (r1 and r2): r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f) r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g) if not (r1 and r2): r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t) r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t) return [r1, r2] for func_ in func: if isinstance(func_, list): x = func[0][0].func y = func[0][1].func [r1, r2] = check_type(x, y) if not (r1 and r2): [r1, r2] = check_type(y, x) x, y = y, x x1 = diff(x(t),t); y1 = diff(y(t),t) return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))} def sysode_nonlinear_3eq_order1(match_): x = match_['func'][0].func y = match_['func'][1].func z = match_['func'][2].func eq = match_['eq'] t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0] if match_['type_of_equation'] == 'type1': sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq) if match_['type_of_equation'] == 'type2': sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq) if match_['type_of_equation'] == 'type3': sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq) if match_['type_of_equation'] == 'type4': sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq) if match_['type_of_equation'] == 'type5': sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq) return sol def _nonlinear_3eq_order1_type1(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a separable first-order equation on `x`. Similarly doing that for other two equations, we will arrive at first order equation on `y` and `z` too. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t)) r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t))) r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) b = vals[0].subs(w, c) a = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type2(x, y, z, t, eq): r""" Equations: .. math:: a x' = (b - c) y z f(x, y, z, t) .. math:: b y' = (c - a) z x f(x, y, z, t) .. math:: c z' = (a - b) x y f(x, y, z, t) First Integrals: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 .. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2 where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and `z` and on substituting the resulting expressions into the first equation of the system, we arrives at a first-order differential equations on `x`. Similarly doing that for other two equations we will arrive at first order equation on `y` and `z`. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf """ C1, C2 = get_numbered_constants(eq, num=2) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) f = Wild('f') r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f) r = collect_const(r1[f]).match(p*f) r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t))) r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t))) n1, d1 = r[p].as_numer_denom() n2, d2 = r[q].as_numer_denom() n3, d3 = r[s].as_numer_denom() val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v]) vals = [val[v], val[u]] c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1]) a = vals[0].subs(w, c) b = vals[1].subs(w, c) y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b))) z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c))) z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c))) x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a))) x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a))) y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b))) sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f]) sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f]) sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f]) return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type3(x, y, z, t, eq): r""" Equations: .. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2 where `F_n = F_n(x, y, z, t)`. 1. First Integral: .. math:: a x + b y + c z = C_1, where C is an arbitrary constant. 2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)` Then, on eliminating `t` and `z` from the first two equation of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) - b F_3 (x, y, z)} where `z = \frac{1}{c} (C_1 - a x - b y)` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') fu, fv, fw = symbols('u, v, w', cls=Function) p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = (diff(x(t), t) - eq[0]).match(F2-F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w) z_xy = (C1-a*u-b*v)/c y_zx = (C1-a*u-c*w)/b x_yz = (C1-b*v-c*w)/a y_x = dsolve(diff(fv(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,fv(u))).rhs z_x = dsolve(diff(fw(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,fw(u))).rhs z_y = dsolve(diff(fw(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,fw(v))).rhs x_y = dsolve(diff(fu(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,fu(v))).rhs y_z = dsolve(diff(fv(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,fv(w))).rhs x_z = dsolve(diff(fu(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,fu(w))).rhs sol1 = dsolve(diff(fu(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,fu(t))).rhs sol2 = dsolve(diff(fv(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,fv(t))).rhs sol3 = dsolve(diff(fw(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,fw(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type4(x, y, z, t, eq): r""" Equations: .. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2 where `F_n = F_n (x, y, z, t)` 1. First integral: .. math:: a x^{2} + b y^{2} + c z^{2} = C_1 where `C` is an arbitrary constant. 2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on eliminating `t` and `z` from the first two equations of the system, one arrives at the first-order equation .. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)} {c z F_2 (x, y, z) - b y F_3 (x, y, z)} where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}` References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1)) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w) F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w) F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w) x_yz = sqrt((C1 - b*v**2 - c*w**2)/a) y_zx = sqrt((C1 - c*w**2 - a*u**2)/b) z_xy = sqrt((C1 - a*u**2 - b*v**2)/c) y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs return [sol1, sol2, sol3] def _nonlinear_3eq_order1_type5(x, y, z, t, eq): r""" .. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2) where `F_n = F_n (x, y, z, t)` and are arbitrary functions. First Integral: .. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1 where `C` is an arbitrary constant. If the function `F_n` is independent of `t`, then, by eliminating `t` and `z` from the first two equations of the system, one arrives at a first-order equation. References ========== -http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf """ C1 = get_numbered_constants(eq, num=1) u, v, w = symbols('u, v, w') fu, fv, fw = symbols('u, v, w', cls=Function) p = Wild('p', exclude=[x(t), y(t), z(t), t]) q = Wild('q', exclude=[x(t), y(t), z(t), t]) s = Wild('s', exclude=[x(t), y(t), z(t), t]) F1, F2, F3 = symbols('F1, F2, F3', cls=Wild) r1 = eq[0].match(diff(x(t), t) - x(t)*F2 + x(t)*F3) r = collect_const(r1[F2]).match(s*F2) r.update(collect_const(r1[F3]).match(q*F3)) if eq[1].has(r[F2]) and not eq[1].has(r[F3]): r[F2], r[F3] = r[F3], r[F2] r[s], r[q] = -r[q], -r[s] r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1))) a = r[p]; b = r[q]; c = r[s] F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w) F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w) F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w) x_yz = (C1*v**-b*w**-c)**-a y_zx = (C1*w**-c*u**-a)**-b z_xy = (C1*u**-a*v**-b)**-c y_x = dsolve(diff(fv(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, fv(u))).rhs z_x = dsolve(diff(fw(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, fw(u))).rhs z_y = dsolve(diff(fw(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, fw(v))).rhs x_y = dsolve(diff(fu(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, fu(v))).rhs y_z = dsolve(diff(fv(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, fv(w))).rhs x_z = dsolve(diff(fu(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, fu(w))).rhs sol1 = dsolve(diff(fu(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, fu(t))).rhs sol2 = dsolve(diff(fv(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, fv(t))).rhs sol3 = dsolve(diff(fw(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, fw(t))).rhs return [sol1, sol2, sol3] #This import is written at the bottom to avoid circular imports. from .single import (NthAlgebraic, Factorable, FirstLinear, AlmostLinear, Bernoulli, SingleODEProblem, SingleODESolver, RiccatiSpecial, SecondNonlinearAutonomousConserved, FirstExact, Liouville, Separable, SeparableReduced)
818cd04d8bcbadc09b61cc95d9209fcb97e6e45b45926f33a196c762c33181c6
# # This is the module for ODE solver classes for single ODEs. # import typing if typing.TYPE_CHECKING: from typing import ClassVar from typing import Dict, Type from typing import Iterator, List, Optional from sympy.core import Add, S, Pow from sympy.core.exprtools import factor_terms from sympy.core.expr import Expr from sympy.core.function import AppliedUndef, Derivative, Function, expand, Subs from sympy.core.numbers import Float, zoo from sympy.core.relational import Equality, Eq from sympy.core.symbol import Symbol, Dummy, Wild from sympy.core.mul import Mul from sympy.functions import exp, sqrt, tan, log from sympy.integrals import Integral from sympy.polys.polytools import cancel, factor from sympy.simplify import simplify, separatevars from sympy.simplify.radsimp import fraction from sympy.utilities import numbered_symbols from sympy.solvers.solvers import solve from sympy.solvers.deutils import ode_order, _preprocess class ODEMatchError(NotImplementedError): """Raised if a SingleODESolver is asked to solve an ODE it does not match""" pass def cached_property(func): '''Decorator to cache property method''' attrname = '_' + func.__name__ def propfunc(self): val = getattr(self, attrname, None) if val is None: val = func(self) setattr(self, attrname, val) return val return property(propfunc) class SingleODEProblem: """Represents an ordinary differential equation (ODE) This class is used internally in the by dsolve and related functions/classes so that properties of an ODE can be computed efficiently. Examples ======== This class is used internally by dsolve. To instantiate an instance directly first define an ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now you can create a SingleODEProblem instance and query its properties: >>> from sympy.solvers.ode.single import SingleODEProblem >>> problem = SingleODEProblem(f(x).diff(x), f(x), x) >>> problem.eq Derivative(f(x), x) >>> problem.func f(x) >>> problem.sym x """ # Instance attributes: eq = None # type: Expr func = None # type: AppliedUndef sym = None # type: Symbol _order = None # type: int _eq_expanded = None # type: Expr _eq_preprocessed = None # type: Expr def __init__(self, eq, func, sym, prep=True): assert isinstance(eq, Expr) assert isinstance(func, AppliedUndef) assert isinstance(sym, Symbol) assert isinstance(prep, bool) self.eq = eq self.func = func self.sym = sym self.prep = prep @cached_property def order(self) -> int: return ode_order(self.eq, self.func) @cached_property def eq_preprocessed(self) -> Expr: return self._get_eq_preprocessed() @cached_property def eq_expanded(self) -> Expr: return expand(self.eq_preprocessed) def _get_eq_preprocessed(self) -> Expr: if self.prep: process_eq, process_func = _preprocess(self.eq, self.func) if process_func != self.func: raise ValueError else: process_eq = self.eq return process_eq def get_numbered_constants(self, num=1, start=1, prefix='C') -> List[Symbol]: """ Returns a list of constants that do not occur in eq already. """ ncs = self.iter_numbered_constants(start, prefix) Cs = [next(ncs) for i in range(num)] return Cs def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]: """ Returns an iterator of constants that do not occur in eq already. """ atom_set = self.eq.free_symbols func_set = self.eq.atoms(Function) if func_set: atom_set |= {Symbol(str(f.func)) for f in func_set} return numbered_symbols(start=start, prefix=prefix, exclude=atom_set) @cached_property def is_autonomous(self): u = Dummy('u') x = self.sym syms = self.eq.subs(self.func, u).free_symbols return x not in syms # TODO: Add methods that can be used by many ODE solvers: # order # is_linear() # get_linear_coefficients() # eq_prepared (the ODE in prepared form) class SingleODESolver: """ Base class for Single ODE solvers. Subclasses should implement the _matches and _get_general_solution methods. This class is not intended to be instantiated directly but its subclasses are as part of dsolve. Examples ======== You can use a subclass of SingleODEProblem to solve a particular type of ODE. We first define a particular ODE problem: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> eq = f(x).diff(x, 2) Now we solve this problem using the NthAlgebraic solver which is a subclass of SingleODESolver: >>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem >>> problem = SingleODEProblem(eq, f(x), x) >>> solver = NthAlgebraic(problem) >>> solver.get_general_solution() [Eq(f(x), _C*x + _C)] The normal way to solve an ODE is to use dsolve (which would use NthAlgebraic and other solvers internally). When using dsolve a number of other things are done such as evaluating integrals, simplifying the solution and renumbering the constants: >>> from sympy import dsolve >>> dsolve(eq, hint='nth_algebraic') Eq(f(x), C1 + C2*x) """ # Subclasses should store the hint name (the argument to dsolve) in this # attribute hint = None # type: ClassVar[str] # Subclasses should define this to indicate if they support an _Integral # hint. has_integral = None # type: ClassVar[bool] # The ODE to be solved ode_problem = None # type: SingleODEProblem # Cache whether or not the equation has matched the method _matched = None # type: Optional[bool] # Subclasses should store in this attribute the list of order(s) of ODE # that subclass can solve or leave it to None if not specific to any order order = None # type: Optional[list] def __init__(self, ode_problem): self.ode_problem = ode_problem def matches(self) -> bool: if self.order is not None and self.ode_problem.order not in self.order: self._matched = False return self._matched if self._matched is None: self._matched = self._matches() return self._matched def get_general_solution(self, *, simplify: bool = True) -> List[Equality]: if not self.matches(): msg = "%s solver can not solve:\n%s" raise ODEMatchError(msg % (self.hint, self.ode_problem.eq)) return self._get_general_solution() def _matches(self) -> bool: msg = "Subclasses of SingleODESolver should implement matches." raise NotImplementedError(msg) def _get_general_solution(self, *, simplify: bool = True) -> List[Equality]: msg = "Subclasses of SingleODESolver should implement get_general_solution." raise NotImplementedError(msg) class SinglePatternODESolver(SingleODESolver): '''Superclass for ODE solvers based on pattern matching''' def wilds(self): prob = self.ode_problem f = prob.func.func x = prob.sym order = prob.order return self._wilds(f, x, order) def wilds_match(self): match = self._wilds_match return [match.get(w, S.Zero) for w in self.wilds()] def _matches(self): eq = self.ode_problem.eq_expanded f = self.ode_problem.func.func x = self.ode_problem.sym order = self.ode_problem.order df = f(x).diff(x, order) if order not in [1, 2]: return False pattern = self._equation(f(x), x, order) if not pattern.coeff(df).has(Wild): eq = expand(eq / eq.coeff(df)) eq = eq.collect([f(x).diff(x), f(x)], func = cancel) self._wilds_match = match = eq.match(pattern) if match is not None: return self._verify(f(x)) return False def _verify(self, fx) -> bool: return True def _wilds(self, f, x, order): msg = "Subclasses of SingleODESolver should implement _wilds" raise NotImplementedError(msg) def _equation(self, fx, x, order): msg = "Subclasses of SingleODESolver should implement _equation" raise NotImplementedError(msg) class NthAlgebraic(SingleODESolver): r""" Solves an `n`\th order ordinary differential equation using algebra and integrals. There is no general form for the kind of equation that this can solve. The the equation is solved algebraically treating differentiation as an invertible algebraic function. Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0) >>> dsolve(eq, f(x), hint='nth_algebraic') [Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)] Note that this solver can return algebraic solutions that do not have any integration constants (f(x) = 0 in the above example). """ hint = 'nth_algebraic' has_integral = True # nth_algebraic_Integral hint def _matches(self): r""" Matches any differential equation that nth_algebraic can solve. Uses `sympy.solve` but teaches it how to integrate derivatives. This involves calling `sympy.solve` and does most of the work of finding a solution (apart from evaluating the integrals). """ eq = self.ode_problem.eq func = self.ode_problem.func var = self.ode_problem.sym # Derivative that solve can handle: diffx = self._get_diffx(var) # Replace derivatives wrt the independent variable with diffx def replace(eq, var): def expand_diffx(*args): differand, diffs = args[0], args[1:] toreplace = differand for v, n in diffs: for _ in range(n): if v == var: toreplace = diffx(toreplace) else: toreplace = Derivative(toreplace, v) return toreplace return eq.replace(Derivative, expand_diffx) # Restore derivatives in solution afterwards def unreplace(eq, var): return eq.replace(diffx, lambda e: Derivative(e, var)) subs_eqn = replace(eq, var) try: # turn off simplification to protect Integrals that have # _t instead of fx in them and would otherwise factor # as t_*Integral(1, x) solns = solve(subs_eqn, func, simplify=False) except NotImplementedError: solns = [] solns = [simplify(unreplace(soln, var)) for soln in solns] solns = [Equality(func, soln) for soln in solns] self.solutions = solns return len(solns) != 0 def _get_general_solution(self, *, simplify: bool = True): return self.solutions # This needs to produce an invertible function but the inverse depends # which variable we are integrating with respect to. Since the class can # be stored in cached results we need to ensure that we always get the # same class back for each particular integration variable so we store these # classes in a global dict: _diffx_stored = {} # type: Dict[Symbol, Type[Function]] @staticmethod def _get_diffx(var): diffcls = NthAlgebraic._diffx_stored.get(var, None) if diffcls is None: # A class that behaves like Derivative wrt var but is "invertible". class diffx(Function): def inverse(self): # don't use integrate here because fx has been replaced by _t # in the equation; integrals will not be correct while solve # is at work. return lambda expr: Integral(expr, var) + Dummy('C') diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx) return diffcls class FirstExact(SinglePatternODESolver): r""" Solves 1st order exact ordinary differential equations. A 1st order differential equation is called exact if it is the total differential of a function. That is, the differential equation .. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0 is exact if there is some function `F(x, y)` such that `P(x, y) = \partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can be shown that a necessary and sufficient condition for a first order ODE to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`. Then, the solution will be as given below:: >>> from sympy import Function, Eq, Integral, symbols, pprint >>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1') >>> P, Q, F= map(Function, ['P', 'Q', 'F']) >>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) + ... Integral(Q(x0, t), (t, y0, y))), C1)) x y / / | | F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1 | | / / x0 y0 Where the first partials of `P` and `Q` exist and are continuous in a simply connected region. A note: SymPy currently has no way to represent inert substitution on an expression, so the hint ``1st_exact_Integral`` will return an integral with `dy`. This is supposed to represent the function that you are solving for. Examples ======== >>> from sympy import Function, dsolve, cos, sin >>> from sympy.abc import x >>> f = Function('f') >>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), ... f(x), hint='1st_exact') Eq(x*cos(f(x)) + f(x)**3/3, C1) References ========== - https://en.wikipedia.org/wiki/Exact_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 73 # indirect doctest """ hint = "1st_exact" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x).diff(x)]) Q = Wild('Q', exclude=[f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return P + Q*fx.diff(x) def _verify(self, fx) -> bool: P, Q = self.wilds() x = self.ode_problem.sym y = Dummy('y') m, n = self.wilds_match() m = m.subs(fx, y) n = n.subs(fx, y) numerator = cancel(m.diff(y) - n.diff(x)) if numerator.is_zero: # Is exact return True else: # The following few conditions try to convert a non-exact # differential equation into an exact one. # References: # 1. Differential equations with applications # and historical notes - George E. Simmons # 2. https://math.okstate.edu/people/binegar/2233-S99/2233-l12.pdf factor_n = cancel(numerator/n) factor_m = cancel(-numerator/m) if y not in factor_n.free_symbols: # If (dP/dy - dQ/dx) / Q = f(x) # then exp(integral(f(x))*equation becomes exact factor = factor_n integration_variable = x elif x not in factor_m.free_symbols: # If (dP/dy - dQ/dx) / -P = f(y) # then exp(integral(f(y))*equation becomes exact factor = factor_m integration_variable = y else: # Couldn't convert to exact return False factor = exp(Integral(factor, integration_variable)) m *= factor n *= factor self._wilds_match[P] = m.subs(y, fx) self._wilds_match[Q] = n.subs(y, fx) return True def _get_general_solution(self, *, simplify: bool = True): m, n = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) y = Dummy('y') m = m.subs(fx, y) n = n.subs(fx, y) gen_sol = Eq(Subs(Integral(m, x) + Integral(n - Integral(m, x).diff(y), y), y, fx), C1) return [gen_sol] class FirstLinear(SinglePatternODESolver): r""" Solves 1st order linear differential equations. These are differential equations of the form .. math:: dy/dx + P(x) y = Q(x)\text{.} These kinds of differential equations can be solved in a general way. The integrating factor `e^{\int P(x) \,dx}` will turn the equation into a separable equation. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint, diff, sin >>> from sympy.abc import x >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)) >>> pprint(genform) d P(x)*f(x) + --(f(x)) = Q(x) dx >>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral')) / / \ | | | | | / | / | | | | | | | | P(x) dx | - | P(x) dx | | | | | | | / | / f(x) = |C1 + | Q(x)*e dx|*e | | | \ / / Examples ======== >>> f = Function('f') >>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)), ... f(x), '1st_linear')) f(x) = x*(C1 - cos(x)) References ========== - https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 92 # indirect doctest """ hint = '1st_linear' has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x)]) Q = Wild('Q', exclude=[f(x), f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return fx.diff(x) + P*fx - Q def _get_general_solution(self, *, simplify: bool = True): P, Q = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)),x)) * exp(-Integral(P, x)))) return [gensol] class AlmostLinear(SinglePatternODESolver): r""" Solves an almost-linear differential equation. The general form of an almost linear differential equation is .. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x) Here `f(x)` is the function to be solved for (the dependent variable). The substitution `g(f(x)) = u(x)` leads to a linear differential equation for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving `g(f(x)) = u(x)`. See Also ======== :meth:`sympy.solvers.ode.single.FirstLinear` Examples ======== >>> from sympy import Function, pprint, sin, cos >>> from sympy.solvers.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = x*d + x*f(x) + 1 >>> dsolve(eq, f(x), hint='almost_linear') Eq(f(x), (C1 - Ei(x))*exp(-x)) >>> pprint(dsolve(eq, f(x), hint='almost_linear')) -x f(x) = (C1 - Ei(x))*e >>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1 >>> pprint(example) d sin(f(x)) + cos(f(x))*--(f(x)) + 1 dx >>> pprint(dsolve(example, f(x), hint='almost_linear')) / -x \ / -x \ [f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/] References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ hint = "almost_linear" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x).diff(x)]) Q = Wild('Q', exclude=[f(x).diff(x)]) return P, Q def _equation(self, fx, x, order): P, Q = self.wilds() return P*fx.diff(x) + Q def _verify(self, fx): a, b = self.wilds_match() c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b) # a, b and c are the function a(x), b(x) and c(x) respectively. # c(x) is obtained by separating out b as terms with and without fx i.e, l(y) # The following conditions checks if the given equation is an almost-linear differential equation using the fact that # a(x)*(l(y))' / l(y)' is independent of l(y) if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx): self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y) self.ax = a / self.ly.diff(fx) self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral self.bx = factor_terms(b) / self.ly return True return False def _get_general_solution(self, *, simplify: bool = True): x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)),x)) * exp(-Integral(self.bx/self.ax, x)))) return [gensol] class Bernoulli(SinglePatternODESolver): r""" Solves Bernoulli differential equations. These are equations of the form .. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.} The substitution `w = 1/y^{1-n}` will transform an equation of this form into one that is linear (see the docstring of :py:meth:`~sympy.solvers.ode.single.FirstLinear`). The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x, n >>> f, P, Q = map(Function, ['f', 'P', 'Q']) >>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n) >>> pprint(genform) d n P(x)*f(x) + --(f(x)) = Q(x)*f (x) dx >>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110) -1 ----- n - 1 // / / \ \ || | | | | || | / | / | / | || | | | | | | | || | (1 - n)* | P(x) dx | (1 - n)* | P(x) dx | (n - 1)* | P(x) dx| || | | | | | | | || | / | / | / | f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e | || | | | | \\ / / / / Note that the equation is separable when `n = 1` (see the docstring of :py:meth:`~sympy.solvers.ode.single.Separable`). >>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x), ... hint='separable_Integral')) f(x) / | / | 1 | | - dy = C1 + | (-P(x) + Q(x)) dx | y | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint, log >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2), ... f(x), hint='Bernoulli')) 1 f(x) = ----------------- C1*x + log(x) + 1 References ========== - https://en.wikipedia.org/wiki/Bernoulli_differential_equation - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 95 # indirect doctest """ hint = "Bernoulli" has_integral = True order = [1] def _wilds(self, f, x, order): P = Wild('P', exclude=[f(x)]) Q = Wild('Q', exclude=[f(x)]) n = Wild('n', exclude=[x, f(x), f(x).diff(x)]) return P, Q, n def _equation(self, fx, x, order): P, Q, n = self.wilds() return fx.diff(x) + P*fx - Q*fx**n def _get_general_solution(self, *, simplify: bool = True): P, Q, n = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) if n==1: gensol = Eq(log(fx), ( C1 + Integral((-P + Q),x) )) else: gensol = Eq(fx**(1-n), ( (C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x)) * exp(Integral(P, x)), x) ) * exp(-(1 - n)*Integral(P, x))) ) return [gensol] class Factorable(SingleODESolver): r""" Solves equations having a solvable factor. This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the list of solutions. Examples ======== >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x >>> f = Function('f') >>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x)) >>> pprint(dsolve(eq, f(x))) -x [f(x) = 2, f(x) = -2, f(x) = C1*e ] """ hint = "factorable" has_integral = False def _matches(self): eq = self.ode_problem.eq f = self.ode_problem.func.func x = self.ode_problem.sym order =self.ode_problem.order df = f(x).diff(x) self.eqs = [] eq = eq.collect(f(x), func = cancel) eq = fraction(factor(eq))[0] factors = Mul.make_args(factor(eq)) roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0] if len(roots)>1 or roots[0][1]>1: for base,expo in roots: if base.has(f(x)): self.eqs.append(base) if len(self.eqs)>0: return True roots = solve(eq, df) if len(roots)>0: self.eqs = [(df - root) for root in roots] if len(self.eqs)==1: if order>1: return False if self.eqs[0].has(Float): return False return fraction(factor(self.eqs[0]))[0]-eq!=0 return True return False def _get_general_solution(self, *, simplify: bool = True): func = self.ode_problem.func.func x = self.ode_problem.sym eqns = self.eqs sols = [] for eq in eqns: try: sol = dsolve(eq, func(x)) except NotImplementedError: continue else: if isinstance(sol, list): sols.extend(sol) else: sols.append(sol) if sols == []: raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by" + " the factorable group method") return sols class RiccatiSpecial(SinglePatternODESolver): r""" The general Riccati equation has the form .. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.} While it does not have a general solution [1], the "special" form, `dy/dx = a y^2 - b x^c`, does have solutions in many cases [2]. This routine returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained by using a suitable change of variables to reduce it to the special form and is valid when neither `a` nor `b` are zero and either `c` or `d` is zero. >>> from sympy.abc import x, a, b, c, d >>> from sympy.solvers.ode import dsolve, checkodesol >>> from sympy import pprint, Function >>> f = Function('f') >>> y = f(x) >>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2) >>> sol = dsolve(genform, y) >>> pprint(sol, wrap_line=False) / / __________________ \\ | __________________ | / 2 || | / 2 | \/ 4*b*d - (a + c) *log(x)|| -|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------|| \ \ 2*a // f(x) = ------------------------------------------------------------------------ 2*b*x >>> checkodesol(genform, sol, order=1)[0] True References ========== 1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati 2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf - http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf """ hint = "Riccati_special_minus2" has_integral = False order = [1] def _wilds(self, f, x, order): a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0]) b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0]) c = Wild('c', exclude=[x, f(x), f(x).diff(x)]) d = Wild('d', exclude=[x, f(x), f(x).diff(x)]) return a, b, c, d def _equation(self, fx, x, order): a, b, c, d = self.wilds() return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2 def _get_general_solution(self, *, simplify: bool = True): a, b, c, d = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym (C1,) = self.ode_problem.get_numbered_constants(num=1) mu = sqrt(4*d*b - (a - c)**2) gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x)) return [gensol] class SecondNonlinearAutonomousConserved(SinglePatternODESolver): r""" Gives solution for the autonomous second order nonlinear differential equation of the form .. math :: f''(x) = g(f(x)) The solution for this differential equation can be computed by multiplying by `f'(x)` and integrating on both sides, converting it into a first order differential equation. Examples ======== >>> from sympy import Function, symbols, dsolve >>> f, g = symbols('f g', cls=Function) >>> x = symbols('x') >>> eq = f(x).diff(x, 2) - g(f(x)) >>> dsolve(eq, simplify=False) [Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)] >>> from sympy import exp, log >>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x)) >>> dsolve(eq, simplify=False) [Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)] References ========== http://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf """ hint = "2nd_nonlinear_autonomous_conserved" has_integral = True order = [2] def _wilds(self, f, x, order): fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)]) return (fy,) def _equation(self, fx, x, order): fy = self.wilds()[0] return fx.diff(x, 2) + fy def _verify(self, fx): return self.ode_problem.is_autonomous def _get_general_solution(self, *, simplify: bool = True): g = self.wilds_match()[0] fx = self.ode_problem.func x = self.ode_problem.sym u = Dummy('u') g = g.subs(fx, u) C1, C2 = self.ode_problem.get_numbered_constants(num=2) inside = -2*Integral(g, u) + C1 lhs = Integral(1/sqrt(inside), (u, fx)) return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)] class Liouville(SinglePatternODESolver): r""" Solves 2nd order Liouville differential equations. The general form of a Liouville ODE is .. math:: \frac{d^2 y}{dx^2} + g(y) \left(\! \frac{dy}{dx}\!\right)^2 + h(x) \frac{dy}{dx}\text{.} The general solution is: >>> from sympy import Function, dsolve, Eq, pprint, diff >>> from sympy.abc import x >>> f, g, h = map(Function, ['f', 'g', 'h']) >>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 + ... h(x)*diff(f(x),x), 0) >>> pprint(genform) 2 2 /d \ d d g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0 \dx / dx 2 dx >>> pprint(dsolve(genform, f(x), hint='Liouville_Integral')) f(x) / / | | | / | / | | | | | - | h(x) dx | | g(y) dy | | | | | / | / C1 + C2* | e dx + | e dy = 0 | | / / Examples ======== >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) + ... diff(f(x), x)/x, f(x), hint='Liouville')) ________________ ________________ [f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ] References ========== - Goldstein and Braun, "Advanced Methods for the Solution of Differential Equations", pp. 98 - http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville # indirect doctest """ hint = "Liouville" has_integral = True order = [2] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) k = Wild('k', exclude=[f(x).diff(x)]) return d, e, k def _equation(self, fx, x, order): # Liouville ODE in the form # f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x) # See Goldstein and Braun, "Advanced Methods for the Solution of # Differential Equations", pg. 98 d, e, k = self.wilds() return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x) def _verify(self, fx): d, e, k = self.wilds_match() self.y = Dummy('y') x = self.ode_problem.sym self.g = simplify(e/d).subs(fx, self.y) self.h = simplify(k/d).subs(fx, self.y) if self.y in self.h.free_symbols or x in self.g.free_symbols: return False return True def _get_general_solution(self, *, simplify: bool = True): d, e, k = self.wilds_match() fx = self.ode_problem.func x = self.ode_problem.sym C1, C2 = self.ode_problem.get_numbered_constants(num=2) int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx)) gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0) return [gen_sol] class Separable(SinglePatternODESolver): r""" Solves separable 1st order differential equations. This is any differential equation that can be written as `P(y) \tfrac{dy}{dx} = Q(x)`. The solution can then just be found by rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`. This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back end, so if a separable equation is not caught by this solver, it is most likely the fault of that function. :py:meth:`~sympy.simplify.simplify.separatevars` is smart enough to do most expansion and factoring necessary to convert a separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The general solution is:: >>> from sympy import Function, dsolve, Eq, pprint >>> from sympy.abc import x >>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f']) >>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x))) >>> pprint(genform) d a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x)) dx >>> pprint(dsolve(genform, f(x), hint='separable_Integral')) f(x) / / | | | b(y) | c(x) | ---- dy = C1 + | ---- dx | d(y) | a(x) | | / / Examples ======== >>> from sympy import Function, dsolve, Eq >>> from sympy.abc import x >>> f = Function('f') >>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x), ... hint='separable', simplify=False)) / 2 \ 2 log\3*f (x) - 1/ x ---------------- = C1 + -- 6 2 References ========== - M. Tenenbaum & H. Pollard, "Ordinary Differential Equations", Dover 1963, pp. 52 # indirect doctest """ hint = "separable" has_integral = True order = [1] def _wilds(self, f, x, order): d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)]) e = Wild('e', exclude=[f(x).diff(x)]) return d, e def _equation(self, fx, x, order): d, e = self.wilds() return d + e*fx.diff(x) def _verify(self, fx): d, e = self.wilds_match() self.y = Dummy('y') x = self.ode_problem.sym d = separatevars(d.subs(fx, self.y)) e = separatevars(e.subs(fx, self.y)) # m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y' self.m1 = separatevars(d, dict=True, symbols=(x, self.y)) self.m2 = separatevars(e, dict=True, symbols=(x, self.y)) if self.m1 and self.m2: return True return False def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym return self.m1, self.m2, x, fx def _get_general_solution(self, *, simplify: bool = True): m1, m2, x, fx = self._get_match_object() (C1, ) = self.ode_problem.get_numbered_constants(num=1) int = Integral(m2['coeff']*m2[self.y]/m1[self.y], (self.y, None, fx)) gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/ m2[x], x) + C1) return [gen_sol] class SeparableReduced(Separable): r""" Solves a differential equation that can be reduced to the separable form. The general form of this equation is .. math:: y' + (y/x) H(x^n y) = 0\text{}. This can be solved by substituting `u(y) = x^n y`. The equation then reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} - \frac{1}{x} = 0`. The general solution is: >>> from sympy import Function, dsolve, pprint >>> from sympy.abc import x, n >>> f, g = map(Function, ['f', 'g']) >>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x)) >>> pprint(genform) / n \ d f(x)*g\x *f(x)/ --(f(x)) + --------------- dx x >>> pprint(dsolve(genform, hint='separable_reduced')) n x *f(x) / | | 1 | ------------ dy = C1 + log(x) | y*(n - g(y)) | / See Also ======== :meth:`sympy.solvers.ode.single.Separable` Examples ======== >>> from sympy import Function, pprint >>> from sympy.solvers.ode.ode import dsolve >>> from sympy.abc import x >>> f = Function('f') >>> d = f(x).diff(x) >>> eq = (x - x**2*f(x))*d - f(x) >>> dsolve(eq, hint='separable_reduced') [Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)] >>> pprint(dsolve(eq, hint='separable_reduced')) ___________ ___________ / 2 / 2 1 - \/ C1*x + 1 \/ C1*x + 1 + 1 [f(x) = ------------------, f(x) = ------------------] x x References ========== - Joel Moses, "Symbolic Integration - The Stormy Decade", Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558 """ hint = "separable_reduced" has_integral = True order = [1] def _degree(self, expr, x): # Made this function to calculate the degree of # x in an expression. If expr will be of form # x**p*y, (wheare p can be variables/rationals) then it # will return p. for val in expr: if val.has(x): if isinstance(val, Pow) and val.as_base_exp()[0] == x: return (val.as_base_exp()[1]) elif val == x: return (val.as_base_exp()[1]) else: return self._degree(val.args, x) return 0 def _powers(self, expr): # this function will return all the different relative power of x w.r.t f(x). # expr = x**p * f(x)**q then it will return {p/q}. pows = set() fx = self.ode_problem.func x = self.ode_problem.sym self.y = Dummy('y') if isinstance(expr, Add): exprs = expr.atoms(Add) elif isinstance(expr, Mul): exprs = expr.atoms(Mul) elif isinstance(expr, Pow): exprs = expr.atoms(Pow) else: exprs = {expr} for arg in exprs: if arg.has(x): _, u = arg.as_independent(x, fx) pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y) pows.add(pow) return pows def _verify(self, fx): num, den = self.wilds_match() x = self.ode_problem.sym factor = simplify(x/fx*num/den) # Try representing factor in terms of x^n*y # where n is lowest power of x in factor; # first remove terms like sqrt(2)*3 from factor.atoms(Mul) num, dem = factor.as_numer_denom() num = expand(num) dem = expand(dem) pows = self._powers(num) pows.update(self._powers(dem)) pows = list(pows) if(len(pows)==1) and pows[0]!=zoo: self.t = Dummy('t') self.r2 = {'t': self.t} num = num.subs(x**pows[0]*fx, self.t) dem = dem.subs(x**pows[0]*fx, self.t) test = num/dem free = test.free_symbols if len(free) == 1 and free.pop() == self.t: self.r2.update({'power' : pows[0], 'u' : test}) return True return False return False def _get_match_object(self): fx = self.ode_problem.func x = self.ode_problem.sym u = self.r2['u'].subs(self.r2['t'], self.y) ycoeff = 1/(self.y*(self.r2['power'] - u)) m1 = {self.y: 1, x: -1/x, 'coeff': 1} m2 = {self.y: ycoeff, x: 1, 'coeff': 1} return m1, m2, x, x**self.r2['power']*fx # Avoid circular import: from .ode import dsolve
6d19fb0e1ed7032885d6a28c49bcd6ca6ef4c9a7a38dcaa049535ae3b2839c98
from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo, powsimp, Rational) from sympy.core.function import _mexpand from sympy.core.compatibility import ordered from sympy.functions.elementary.trigonometric import sin from sympy.solvers.diophantine import diophantine from sympy.solvers.diophantine.diophantine import (diop_DN, diop_solve, diop_ternary_quadratic_normal, diop_general_pythagorean, diop_ternary_quadratic, diop_linear, diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers, descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length, reconstruct, partition, power_representation, prime_as_sum_of_two_squares, square_factor, sum_of_four_squares, sum_of_three_squares, transformation_to_DN, transformation_to_normal, classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer, check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares, _diop_ternary_quadratic_normal, _nint_or_floor, _odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet, GeneralPythagorean, BinaryQuadratic) from sympy.utilities import default_sort_key from sympy.testing.pytest import slow, raises, XFAIL from sympy.utilities.iterables import ( signed_permutations) a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols( "a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True) t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True) m1, m2, m3 = symbols('m1:4', integer=True) n1 = symbols('n1', integer=True) def diop_simplify(eq): return _mexpand(powsimp(_mexpand(eq))) def test_input_format(): raises(TypeError, lambda: diophantine(sin(x))) raises(TypeError, lambda: diophantine(x/pi - 3)) def test_nosols(): # diophantine should sympify eq so that these are equivalent assert diophantine(3) == set() assert diophantine(S(3)) == set() def test_univariate(): assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)} assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)} def test_classify_diop(): raises(TypeError, lambda: classify_diop(x**2/3 - 1)) raises(ValueError, lambda: classify_diop(1)) raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1)) raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90)) assert classify_diop(14*x**2 + 15*x - 42) == ( [x], {1: -42, x: 15, x**2: 14}, 'univariate') assert classify_diop(x*y + z) == ( [x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic') assert classify_diop(x*y + z + w + x**2) == ( [w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + x*z + x**2 + 1) == ( [x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z + w + 42) == ( [w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic') assert classify_diop(x*y + z*w) == ( [w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic') assert classify_diop(x*y**2 + 1) == ( [x, y], {x*y**2: 1, 1: 1}, 'cubic_thue') assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == ( [x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers') assert classify_diop(x**2 + y**2 + z**2) == ( [x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal') def test_linear(): assert diop_solve(x) == (0,) assert diop_solve(1*x) == (0,) assert diop_solve(3*x) == (0,) assert diop_solve(x + 1) == (-1,) assert diop_solve(2*x + 1) == (None,) assert diop_solve(2*x + 4) == (-2,) assert diop_solve(y + x) == (t_0, -t_0) assert diop_solve(y + x + 0) == (t_0, -t_0) assert diop_solve(y + x - 0) == (t_0, -t_0) assert diop_solve(0*x - y - 5) == (-5,) assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5) assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5) assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5) assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0) assert diop_solve(2*x + 4*y) == (2*t_0, -t_0) assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2) assert diop_solve(4*x + 6*y - 3) == (None, None) assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5) assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5) assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5) assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None) assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18) assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1) assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2) # to ignore constant factors, use diophantine raises(TypeError, lambda: diop_solve(x/2)) def test_quadratic_simple_hyperbolic_case(): # Simple Hyperbolic case: A = C = 0 and B != 0 assert diop_solve(3*x*y + 34*x - 12*y + 1) == \ {(-133, -11), (5, -57)} assert diop_solve(6*x*y + 2*x + 3*y + 1) == set() assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)} assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)} assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12), (-29, -69), (-27, 64), (-21, 7), (-9, 1), (105, -2)} assert diop_solve(6*x*y + 9*x + 2*y + 3) == set() assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)} assert diophantine(48*x*y) def test_quadratic_elliptical_case(): # Elliptical case: B**2 - 4AC < 0 assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)} assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set() assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)} assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)} assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \ {(-1, -1), (-1, 2), (1, -2), (1, 1)} def test_quadratic_parabolic_case(): # Parabolic case: B**2 - 4AC = 0 assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16) assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6) assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7) assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3) assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1) assert check_solutions(y**2 - 41*x + 40) def test_quadratic_perfect_square(): # B**2 - 4*A*C > 0 # B**2 - 4*A*C is a perfect square assert check_solutions(48*x*y) assert check_solutions(4*x**2 - 5*x*y + y**2 + 2) assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25) assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12) assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23) assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3) assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10) assert check_solutions(x**2 - y**2 - 2*x - 2*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3) def test_quadratic_non_perfect_square(): # B**2 - 4*A*C is not a perfect square # Used check_solutions() since the solutions are complex expressions involving # square roots and exponents assert check_solutions(x**2 - 2*x - 5*y**2) assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y) assert check_solutions(x**2 - x*y - y**2 - 3*y) assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y) assert BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2).solve() == {(-1, -1)} def test_issue_9106(): eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1) v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) def test_issue_18138(): eq = x**2 - x - y**2 v = (x, y) for sol in diophantine(eq): assert not diop_simplify(eq.xreplace(dict(zip(v, sol)))) @slow def test_quadratic_non_perfect_slow(): assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23) # This leads to very large numbers. # assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15) assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7) assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2) assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2) def test_DN(): # Most of the test cases were adapted from, # Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004. # https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf # others are verified using Wolfram Alpha. # Covers cases where D <= 0 or D > 0 and D is a square or N = 0 # Solutions are straightforward in these cases. assert diop_DN(3, 0) == [(0, 0)] assert diop_DN(-17, -5) == [] assert diop_DN(-19, 23) == [(2, 1)] assert diop_DN(-13, 17) == [(2, 1)] assert diop_DN(-15, 13) == [] assert diop_DN(0, 5) == [] assert diop_DN(0, 9) == [(3, t)] assert diop_DN(9, 0) == [(3*t, t)] assert diop_DN(16, 24) == [] assert diop_DN(9, 180) == [(18, 4)] assert diop_DN(9, -180) == [(12, 6)] assert diop_DN(7, 0) == [(0, 0)] # When equation is x**2 + y**2 = N # Solutions are interchangeable assert diop_DN(-1, 5) == [(2, 1), (1, 2)] assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)] # D > 0 and D is not a square # N = 1 assert diop_DN(13, 1) == [(649, 180)] assert diop_DN(980, 1) == [(51841, 1656)] assert diop_DN(981, 1) == [(158070671986249, 5046808151700)] assert diop_DN(986, 1) == [(49299, 1570)] assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)] assert diop_DN(17, 1) == [(33, 8)] assert diop_DN(19, 1) == [(170, 39)] # N = -1 assert diop_DN(13, -1) == [(18, 5)] assert diop_DN(991, -1) == [] assert diop_DN(41, -1) == [(32, 5)] assert diop_DN(290, -1) == [(17, 1)] assert diop_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_DN(32, -1) == [] # |N| > 1 # Some tests were created using calculator at # http://www.numbertheory.org/php/patz.html assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)] # Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions # So (-3, 1) and (393, 109) should be in the same equivalent class assert equivalent(-3, 1, 393, 109, 13, -4) == True assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)] assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222), (483790960, 38610722), (26277068347, 2097138361), (21950079635497, 1751807067011)} assert diop_DN(13, 25) == [(3245, 900)] assert diop_DN(192, 18) == [] assert diop_DN(23, 13) == [(-6, 1), (6, 1)] assert diop_DN(167, 2) == [(13, 1)] assert diop_DN(167, -2) == [] assert diop_DN(123, -2) == [(11, 1)] # One calculator returned [(11, 1), (-11, 1)] but both of these are in # the same equivalence class assert equivalent(11, 1, -11, 1, 123, -2) assert diop_DN(123, -23) == [(-10, 1), (10, 1)] assert diop_DN(0, 0, t) == [(0, t)] assert diop_DN(0, -1, t) == [] def test_bf_pell(): assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)] assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)] assert diop_bf_DN(167, -2) == [] assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)] assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)] assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)] assert diop_bf_DN(340, -4) == [(756, 41)] assert diop_bf_DN(-1, 0, t) == [(0, 0)] assert diop_bf_DN(0, 0, t) == [(0, t)] assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)] assert diop_bf_DN(3, 0, t) == [(0, 0)] assert diop_bf_DN(1, -2, t) == [] def test_length(): assert length(2, 1, 0) == 1 assert length(-2, 4, 5) == 3 assert length(-5, 4, 17) == 4 assert length(0, 4, 13) == 6 assert length(7, 13, 11) == 23 assert length(1, 6, 4) == 2 def is_pell_transformation_ok(eq): """ Test whether X*Y, X, or Y terms are present in the equation after transforming the equation using the transformation returned by transformation_to_pell(). If they are not present we are good. Moreover, coefficient of X**2 should be a divisor of coefficient of Y**2 and the constant term. """ A, B = transformation_to_DN(eq) u = (A*Matrix([X, Y]) + B)[0] v = (A*Matrix([X, Y]) + B)[1] simplified = diop_simplify(eq.subs(zip((x, y), (u, v)))) coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args]) for term in [X*Y, X, Y]: if term in coeff.keys(): return False for term in [X**2, Y**2, 1]: if term not in coeff.keys(): coeff[term] = 0 if coeff[X**2] != 0: return divisible(coeff[Y**2], coeff[X**2]) and \ divisible(coeff[1], coeff[X**2]) return True def test_transformation_to_pell(): assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14) assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23) assert is_pell_transformation_ok(x**2 - y**2 + 17) assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23) assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5) assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130) assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89) assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) def test_find_DN(): assert find_DN(x**2 - 2*x - y**2) == (1, 1) assert find_DN(x**2 - 3*y**2 - 5) == (3, 5) assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7) assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36) assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84) assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0) assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480) def test_ldescent(): # Equations which have solutions u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1), (4, 32), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = ldescent(a, b) assert a*x**2 + b*y**2 == w**2 assert ldescent(-1, -1) is None def test_diop_ternary_quadratic_normal(): assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(23*x**2 + 616*y**2 - z**2) assert check_solutions(5*x**2 + 4*y**2 - z**2) assert check_solutions(3*x**2 + 6*y**2 - 3*z**2) assert check_solutions(x**2 + 3*y**2 - z**2) assert check_solutions(4*x**2 + 5*y**2 - z**2) assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(16*x**2 + y**2 - 25*z**2) assert check_solutions(6*x**2 - y**2 + 10*z**2) assert check_solutions(213*x**2 + 12*y**2 - 9*z**2) assert check_solutions(34*x**2 - 3*y**2 - 301*z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def is_normal_transformation_ok(eq): A = transformation_to_normal(eq) X, Y, Z = A*Matrix([x, y, z]) simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z)))) coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args]) for term in [X*Y, Y*Z, X*Z]: if term in coeff.keys(): return False return True def test_transformation_to_normal(): assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2) assert is_normal_transformation_ok(x**2 + 23*y*z) assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y) assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z) assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z) assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z) assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2) assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z) assert is_normal_transformation_ok(2*x*z + 3*y*z) def test_diop_ternary_quadratic(): assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y) assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z) assert check_solutions(3*x**2 - x*y - y*z - x*z) assert check_solutions(x**2 - y*z - x*z) assert check_solutions(5*x**2 - 3*x*y - x*z) assert check_solutions(4*x**2 - 5*y**2 - x*z) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(8*x**2 - 12*y*z) assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z) assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z) assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z) assert check_solutions(x*y - 7*y*z + 13*x*z) assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None) assert diop_ternary_quadratic_normal(x**2 + y**2) is None raises(ValueError, lambda: _diop_ternary_quadratic_normal((x, y, z), {x*y: 1, x**2: 2, y**2: 3, z**2: 0})) eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2 assert diop_ternary_quadratic(eq) == (7, 2, 0) assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \ (1, 0, 2) assert diop_ternary_quadratic(x*y + 2*y*z) == \ (-2, 0, n1) eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2 assert parametrize_ternary_quadratic(eq) == \ (8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q) # this cannot be tested with diophantine because it will # factor into a product assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q) def test_square_factor(): assert square_factor(1) == square_factor(-1) == 1 assert square_factor(0) == 1 assert square_factor(5) == square_factor(-5) == 1 assert square_factor(4) == square_factor(-4) == 2 assert square_factor(12) == square_factor(-12) == 2 assert square_factor(6) == 1 assert square_factor(18) == 3 assert square_factor(52) == 2 assert square_factor(49) == 7 assert square_factor(392) == 14 assert square_factor(factorint(-12)) == 2 def test_parametrize_ternary_quadratic(): assert check_solutions(x**2 + y**2 - z**2) assert check_solutions(x**2 + 2*x*y + z**2) assert check_solutions(234*x**2 - 65601*y**2 - z**2) assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) assert check_solutions(x**2 - y**2 - z**2) assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y) assert check_solutions(8*x*y + z**2) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z) assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z) assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2) def test_no_square_ternary_quadratic(): assert check_solutions(2*x*y + y*z - 3*x*z) assert check_solutions(189*x*y - 345*y*z - 12*x*z) assert check_solutions(23*x*y + 34*y*z) assert check_solutions(x*y + y*z + z*x) assert check_solutions(23*x*y + 23*y*z + 23*x*z) def test_descent(): u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)]) for a, b in u: w, x, y = descent(a, b) assert a*x**2 + b*y**2 == w**2 # the docstring warns against bad input, so these are expected results # - can't both be negative raises(TypeError, lambda: descent(-1, -3)) # A can't be zero unless B != 1 raises(ZeroDivisionError, lambda: descent(0, 3)) # supposed to be square-free raises(TypeError, lambda: descent(4, 3)) def test_diophantine(): assert check_solutions((x - y)*(y - z)*(z - x)) assert check_solutions((x - y)*(x**2 + y**2 - z**2)) assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2)) assert check_solutions(x**2 - 3*y**2 - 1) assert check_solutions(y**2 + 7*x*y) assert check_solutions(x**2 - 3*x*y + y**2) assert check_solutions(z*(x**2 - y**2 - 15)) assert check_solutions(x*(2*y - 2*z + 5)) assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15)) assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z)) assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w)) # Following test case caused problems in parametric representation # But this can be solved by factoring out y. # No need to use methods for ternary quadratic equations. assert check_solutions(y**2 - 7*x*y + 4*y*z) assert check_solutions(x**2 - 2*x + 1) assert diophantine(x - y) == diophantine(Eq(x, y)) # 18196 eq = x**4 + y**4 - 97 assert diophantine(eq, permute=True) == diophantine(-eq, permute=True) assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)} eq = x**2 + y**2 + z**2 - 14 base_sol = {(1, 2, 3)} assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln assert diophantine(x**2 + x*Rational(15, 14) - 3) == set() # test issue 11049 eq = 92*x**2 - 99*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(9, 7, 51)} assert diophantine(eq) == {( 891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2, 5049*p**2 - 1386*p*q - 51*q**2)} eq = 2*x**2 + 2*y**2 - z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(1, 1, 2)} assert diophantine(eq) == {( 2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)} eq = 411*x**2+57*y**2-221*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(2021, 2645, 3066)} assert diophantine(eq) == \ {(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q - 584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)} eq = 573*x**2+267*y**2-984*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(49, 233, 127)} assert diophantine(eq) == \ {(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2, 11303*p**2 - 41474*p*q + 41656*q**2)} # this produces factors during reconstruction eq = x**2 + 3*y**2 - 12*z**2 coeff = eq.as_coefficients_dict() assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \ {(0, 2, 1)} assert diophantine(eq) == \ {(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)} # solvers have not been written for every type raises(NotImplementedError, lambda: diophantine(x*y**2 + 1)) # rational expressions assert diophantine(1/x) == set() assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)} assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \ {(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)} #test issue 18186 assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \ {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)} # issue 18122 assert check_solutions(x**2-y) assert check_solutions(y**2-x) assert diophantine((x**2-y), t) == {(t, t**2)} assert diophantine((y**2-x), t) == {(t**2, -t)} def test_general_pythagorean(): from sympy.abc import a, b, c, d, e assert check_solutions(a**2 + b**2 + c**2 - d**2) assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2) assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 ) assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2) assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2) assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2) assert GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve(parameters=[x, y, z]) == \ {(x**2 + y**2 - z**2, 2*x*z, 2*y*z, x**2 + y**2 + z**2)} def test_diop_general_sum_of_squares_quick(): for i in range(3, 10): assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i) assert diop_general_sum_of_squares(x**2 + y**2 - 2) is None assert diop_general_sum_of_squares(x**2 + y**2 + z**2 + 2) == set() eq = x**2 + y**2 + z**2 - (1 + 4 + 9) assert diop_general_sum_of_squares(eq) == \ {(1, 2, 3)} eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313 assert len(diop_general_sum_of_squares(eq, 3)) == 3 # issue 11016 var = symbols(':5') + (symbols('6', negative=True),) eq = Add(*[i**2 for i in var]) - 112 base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10), (0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6), (1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9), (0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8), (0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)} assert diophantine(eq) == base_soln assert len(diophantine(eq, permute=True)) == 196800 # handle negated squares with signsimp assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)} # diophantine handles simplification, so classify_diop should # not have to look for additional patterns that are removed # by diophantine eq = a**2 + b**2 + c**2 + d**2 - 4 raises(NotImplementedError, lambda: classify_diop(-eq)) def test_diop_partition(): for n in [8, 10]: for k in range(1, 8): for p in partition(n, k): assert len(p) == k assert [p for p in partition(3, 5)] == [] assert [list(p) for p in partition(3, 5, 1)] == [ [0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]] assert list(partition(0)) == [()] assert list(partition(1, 0)) == [()] assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]] def test_prime_as_sum_of_two_squares(): for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]: a, b = prime_as_sum_of_two_squares(i) assert a**2 + b**2 == i assert prime_as_sum_of_two_squares(7) is None ans = prime_as_sum_of_two_squares(800029) assert ans == (450, 773) and type(ans[0]) is int def test_sum_of_three_squares(): for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344, 800, 801, 802, 803, 804, 805, 806]: a, b, c = sum_of_three_squares(i) assert a**2 + b**2 + c**2 == i assert sum_of_three_squares(7) is None assert sum_of_three_squares((4**5)*15) is None assert sum_of_three_squares(25) == (5, 0, 0) assert sum_of_three_squares(4) == (0, 0, 2) def test_sum_of_four_squares(): from random import randint # this should never fail n = randint(1, 100000000000000) assert sum(i**2 for i in sum_of_four_squares(n)) == n assert sum_of_four_squares(0) == (0, 0, 0, 0) assert sum_of_four_squares(14) == (0, 1, 2, 3) assert sum_of_four_squares(15) == (1, 1, 2, 3) assert sum_of_four_squares(18) == (1, 2, 2, 3) assert sum_of_four_squares(19) == (0, 1, 3, 3) assert sum_of_four_squares(48) == (0, 4, 4, 4) def test_power_representation(): tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4), (32760, 2, 3)] for test in tests: n, p, k = test f = power_representation(n, p, k) while True: try: l = next(f) assert len(l) == k chk_sum = 0 for l_i in l: chk_sum = chk_sum + l_i**p assert chk_sum == n except StopIteration: break assert list(power_representation(20, 2, 4, True)) == \ [(1, 1, 3, 3), (0, 0, 2, 4)] raises(ValueError, lambda: list(power_representation(1.2, 2, 2))) raises(ValueError, lambda: list(power_representation(2, 0, 2))) raises(ValueError, lambda: list(power_representation(2, 2, 0))) assert list(power_representation(-1, 2, 2)) == [] assert list(power_representation(1, 1, 1)) == [(1,)] assert list(power_representation(3, 2, 1)) == [] assert list(power_representation(4, 2, 1)) == [(2,)] assert list(power_representation(3**4, 4, 6, zeros=True)) == \ [(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)] assert list(power_representation(3**4, 4, 5, zeros=False)) == [] assert list(power_representation(-2, 3, 2)) == [(-1, -1)] assert list(power_representation(-2, 4, 2)) == [] assert list(power_representation(0, 3, 2, True)) == [(0, 0)] assert list(power_representation(0, 3, 2, False)) == [] # when we are dealing with squares, do feasibility checks assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0 # there will be a recursion error if these aren't recognized big = 2**30 for i in [13, 10, 7, 5, 4, 2, 1]: assert list(sum_of_powers(big, 2, big - i)) == [] def test_assumptions(): """ Test whether diophantine respects the assumptions. """ #Test case taken from the below so question regarding assumptions in diophantine module #https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy m, n = symbols('m n', integer=True, positive=True) diof = diophantine(n**2 + m*n - 500) assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)} a, b = symbols('a b', integer=True, positive=False) diof = diophantine(a*b + 2*a + 3*b - 6) assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)} def check_solutions(eq): """ Determines whether solutions returned by diophantine() satisfy the original equation. Hope to generalize this so we can remove functions like check_ternay_quadratic, check_solutions_normal, check_solutions() """ s = diophantine(eq) factors = Mul.make_args(eq) var = list(eq.free_symbols) var.sort(key=default_sort_key) while s: solution = s.pop() for f in factors: if diop_simplify(f.subs(zip(var, solution))) == 0: break else: return False return True def test_diopcoverage(): eq = (2*x + y + 1)**2 assert diop_solve(eq) == {(t_0, -2*t_0 - 1)} eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18 assert diop_solve(eq) == {(t, -t - 3), (2*t - 3, -t)} assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)} assert diop_linear(x + y - 3) == (t_0, 3 - t_0) assert base_solution_linear(0, 1, 2, t=None) == (0, 0) ans = (3*t - 1, -2*t + 1) assert base_solution_linear(4, 8, 12, t) == ans assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans) assert cornacchia(1, 1, 20) is None assert cornacchia(1, 1, 5) == {(2, 1)} assert cornacchia(1, 2, 17) == {(3, 2)} raises(ValueError, lambda: reconstruct(4, 20, 1)) assert gaussian_reduce(4, 1, 3) == (1, 1) eq = -w**2 - x**2 - y**2 + z**2 assert diop_general_pythagorean(eq) == \ diop_general_pythagorean(-eq) == \ (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2) assert len(check_param(S(3) + x/3, S(4) + x/2, S(2), [x])) == 0 assert len(check_param(Rational(3, 2), S(4) + x, S(2), [x])) == 0 assert len(check_param(S(4) + x, Rational(3, 2), S(2), [x])) == 0 assert _nint_or_floor(16, 10) == 2 assert _odd(1) == (not _even(1)) == True assert _odd(0) == (not _even(0)) == False assert _remove_gcd(2, 4, 6) == (1, 2, 3) raises(TypeError, lambda: _remove_gcd((2, 4, 6))) assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \ (11, 1, 5) # it's ok if these pass some day when the solvers are implemented raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12)) raises(NotImplementedError, lambda: diophantine(x**3 + y**2)) assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \ {(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)} def test_holzer(): # if the input is good, don't let it diverge in holzer() # (but see test_fail_holzer below) assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13) # None in uv condition met; solution is not Holzer reduced # so this will hopefully change but is here for coverage assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2) raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23)) @XFAIL def test_fail_holzer(): eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2 a, b, c = 4, 79, 23 x, y, z = xyz = 26, 1, 11 X, Y, Z = ans = 2, 7, 13 assert eq(*xyz) == 0 assert eq(*ans) == 0 assert max(a*x**2, b*y**2, c*z**2) <= a*b*c assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c h = holzer(x, y, z, a, b, c) assert h == ans # it would be nice to get the smaller soln def test_issue_9539(): assert diophantine(6*w + 9*y + 20*x - z) == \ {(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)} def test_issue_8943(): assert diophantine( 3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \ {(0, 0, 0)} def test_diop_sum_of_even_powers(): eq = x**4 + y**4 + z**4 - 2673 assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)} assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)} raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2)) neg = symbols('neg', negative=True) eq = x**4 + y**4 + neg**4 - 2673 assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)} assert diophantine(x**4 + y**4 + 2) == set() assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set() def test_sum_of_squares_powers(): tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8), (1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9), (2, 3, 5, 6, 7), (3, 3, 4, 5, 8)} eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123 ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used assert len(ans) == 14 assert ans == tru raises(ValueError, lambda: list(sum_of_squares(10, -1))) assert list(sum_of_squares(-10, 2)) == [] assert list(sum_of_squares(2, 3)) == [] assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)] assert list(sum_of_squares(0, 3)) == [] assert list(sum_of_squares(4, 1)) == [(2,)] assert list(sum_of_squares(5, 1)) == [] assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)] assert list(sum_of_squares(11, 5, True)) == [ (1, 1, 1, 2, 2), (0, 0, 1, 1, 3)] assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)] assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [ 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 1, 3, 3, 3, 3, 4, 3, 3, 2, 2, 4, 4, 4, 4, 5] assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [ 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3] for i in range(30): s1 = set(sum_of_squares(i, 5, True)) assert not s1 or all(sum(j**2 for j in t) == i for t in s1) s2 = set(sum_of_squares(i, 5)) assert all(sum(j**2 for j in t) == i for t in s2) raises(ValueError, lambda: list(sum_of_powers(2, -1, 1))) raises(ValueError, lambda: list(sum_of_powers(2, 1, -1))) assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)] assert list(sum_of_powers(-2, 4, 2)) == [] assert list(sum_of_powers(2, 1, 1)) == [(2,)] assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)] assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)] assert list(sum_of_powers(6, 2, 2)) == [] assert list(sum_of_powers(3**5, 3, 1)) == [] assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6) assert list(sum_of_powers(2**1000, 5, 2)) == [] def test__can_do_sum_of_squares(): assert _can_do_sum_of_squares(3, -1) is False assert _can_do_sum_of_squares(-3, 1) is False assert _can_do_sum_of_squares(0, 1) assert _can_do_sum_of_squares(4, 1) assert _can_do_sum_of_squares(1, 2) assert _can_do_sum_of_squares(2, 2) assert _can_do_sum_of_squares(3, 2) is False def test_diophantine_permute_sign(): from sympy.abc import a, b, c, d, e eq = a**4 + b**4 - (2**4 + 3**4) base_sol = {(2, 3)} assert diophantine(eq) == base_sol complete_soln = set(signed_permutations(base_sol.pop())) assert diophantine(eq, permute=True) == complete_soln eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234 assert len(diophantine(eq)) == 35 assert len(diophantine(eq, permute=True)) == 62000 soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)} assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln @XFAIL def test_not_implemented(): eq = x**2 + y**4 - 1**2 - 3**4 assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)} def test_issue_9538(): eq = x - 3*y + 2 assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)} raises(TypeError, lambda: diophantine(eq, syms={y, x})) def test_ternary_quadratic(): # solution with 3 parameters s = diophantine(2*x**2 + y**2 - 2*z**2) p, q, r = ordered(S(s).free_symbols) assert s == {( p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)} # solution with Mul in solution s = diophantine(x**2 + 2*y**2 - 2*z**2) assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)} # solution with no Mul in solution s = diophantine(2*x**2 + 2*y**2 - z**2) assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2, 4*p**2 - 4*p*q + 2*q**2)} # reduced form when parametrized s = diophantine(3*x**2 + 72*y**2 - 27*z**2) assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)} assert parametrize_ternary_quadratic( 3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == ( 2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 - 2*p*q + 3*q**2) assert parametrize_ternary_quadratic( 124*x**2 - 30*y**2 - 7729*z**2) == ( -1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q - 695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2) def test_diophantine_solution_set(): s1 = DiophantineSolutionSet([], []) assert set(s1) == set() assert s1.symbols == () assert s1.parameters == () raises(ValueError, lambda: s1.add((x,))) assert list(s1.dict_iterator()) == [] s2 = DiophantineSolutionSet([x, y], [t, u]) assert s2.symbols == (x, y) assert s2.parameters == (t, u) raises(ValueError, lambda: s2.add((1,))) s2.add((3, 4)) assert set(s2) == {(3, 4)} s2.update((3, 4), (-1, u)) assert set(s2) == {(3, 4), (-1, u)} raises(ValueError, lambda: s1.update(s2)) assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}] s3 = DiophantineSolutionSet([x, y, z], [t, u]) assert len(s3.parameters) == 2 s3.add((t**2 + u, t - u, 1)) assert set(s3) == {(t**2 + u, t - u, 1)} assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)} assert s3(2) == {(u + 4, 2 - u, 1)} assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)} assert s3(7, 8) == {(57, -1, 1)} assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)} assert s3(5) == {(u + 25, 5 - u, 1)} assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)} assert s3(None, -3) == {(t**2 - 3, t + 3, 1)} assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)} assert s3(2, 8) == {(12, -6, 1)} assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)} assert s3(5, -3) == {(22, 8, 1)} raises(ValueError, lambda: s3.subs(x=1)) raises(ValueError, lambda: s3.subs(1, 2, 3)) raises(ValueError, lambda: s3.add(())) raises(ValueError, lambda: s3.add((1, 2, 3, 4))) raises(ValueError, lambda: s3.add((1, 2))) raises(ValueError, lambda: s3(1, 2, 3)) raises(TypeError, lambda: s3(t=1)) s4 = DiophantineSolutionSet([x, y], [t, u]) s4.add((t, 11*t)) s4.add((-t, 22*t)) assert s4(0, 0) == {(0, 0)} def test_quadratic_parameter_passing(): eq = -33*x*y + 3*y**2 solution = BinaryQuadratic(eq).solve(parameters=[t, u]) # test that parameters are passed all the way to the final solution assert solution == {(t, 11*t), (-t, 22*t)} assert solution(0, 0) == {(0, 0)}
16393c7b9af269d35047ea1daaff45fb0bf488158f00ba94241e0b4971e4b079
from sympy import (acosh, cos, Derivative, diff, Eq, exp, Function, I, Integral, log, O, pi, Rational, S, sin, sqrt, Subs, Symbol, tan, symbols, Poly, re, im, atan2, collect) from sympy.solvers.ode import (classify_ode, homogeneous_order, dsolve) from sympy.solvers.ode.subscheck import checkodesol from sympy.solvers.ode.ode import (_linear_coeff_match, _undetermined_coefficients_match, classify_sysode, constant_renumber, constantsimp, get_numbered_constants, solve_ics) from sympy.solvers.deutils import ode_order from sympy.testing.pytest import XFAIL, raises, slow C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11') u, x, y, z = symbols('u,x:z', real=True) f = Function('f') g = Function('g') h = Function('h') # Note: Examples which were specifically testing Single ODE solver are moved to test_single.py # and all the system of ode examples are moved to test_systems.py # Note: the tests below may fail (but still be correct) if ODE solver, # the integral engine, solve(), or even simplify() changes. Also, in # differently formatted solutions, the arbitrary constants might not be # equal. Using specific hints in tests can help to avoid this. # Tests of order higher than 1 should run the solutions through # constant_renumber because it will normalize it (constant_renumber causes # dsolve() to return different results on different machines) def test_get_numbered_constants(): with raises(ValueError): get_numbered_constants(None) def test_dsolve_all_hint(): eq = f(x).diff(x) output = dsolve(eq, hint='all') # Match the Dummy variables: sol1 = output['separable_Integral'] _y = sol1.lhs.args[1][0] sol1 = output['1st_homogeneous_coeff_subs_dep_div_indep_Integral'] _u1 = sol1.rhs.args[1].args[1][0] expected = {'Bernoulli_Integral': Eq(f(x), C1 + Integral(0, x)), '1st_homogeneous_coeff_best': Eq(f(x), C1), 'Bernoulli': Eq(f(x), C1), 'nth_algebraic': Eq(f(x), C1), 'nth_linear_euler_eq_homogeneous': Eq(f(x), C1), 'nth_linear_constant_coeff_homogeneous': Eq(f(x), C1), 'separable': Eq(f(x), C1), '1st_homogeneous_coeff_subs_indep_div_dep': Eq(f(x), C1), 'nth_algebraic_Integral': Eq(f(x), C1), '1st_linear': Eq(f(x), C1), '1st_linear_Integral': Eq(f(x), C1 + Integral(0, x)), '1st_exact': Eq(f(x), C1), '1st_exact_Integral': Eq(Subs(Integral(0, x) + Integral(1, _y), _y, f(x)), C1), 'lie_group': Eq(f(x), C1), '1st_homogeneous_coeff_subs_dep_div_indep': Eq(f(x), C1), '1st_homogeneous_coeff_subs_dep_div_indep_Integral': Eq(log(x), C1 + Integral(-1/_u1, (_u1, f(x)/x))), '1st_power_series': Eq(f(x), C1), 'separable_Integral': Eq(Integral(1, (_y, f(x))), C1 + Integral(0, x)), '1st_homogeneous_coeff_subs_indep_div_dep_Integral': Eq(f(x), C1), 'best': Eq(f(x), C1), 'best_hint': 'nth_algebraic', 'default': 'nth_algebraic', 'order': 1} assert output == expected assert dsolve(eq, hint='best') == Eq(f(x), C1) def test_dsolve_ics(): # Maybe this should just use one of the solutions instead of raising... with raises(NotImplementedError): dsolve(f(x).diff(x) - sqrt(f(x)), ics={f(1):1}) @slow def test_dsolve_options(): eq = x*f(x).diff(x) + f(x) a = dsolve(eq, hint='all') b = dsolve(eq, hint='all', simplify=False) c = dsolve(eq, hint='all_Integral') keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear', '1st_linear_Integral', 'Bernoulli', 'Bernoulli_Integral', 'almost_linear', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'order', 'separable', 'separable_Integral'] Integral_keys = ['1st_exact_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral', 'Bernoulli_Integral', 'almost_linear_Integral', 'best', 'best_hint', 'default', 'nth_linear_euler_eq_homogeneous', 'order', 'separable_Integral'] assert sorted(a.keys()) == keys assert a['order'] == ode_order(eq, f(x)) assert a['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best') == Eq(f(x), C1/x) assert a['default'] == 'separable' assert a['best_hint'] == 'separable' assert not a['1st_exact'].has(Integral) assert not a['separable'].has(Integral) assert not a['1st_homogeneous_coeff_best'].has(Integral) assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not a['1st_linear'].has(Integral) assert a['1st_linear_Integral'].has(Integral) assert a['1st_exact_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert a['separable_Integral'].has(Integral) assert sorted(b.keys()) == keys assert b['order'] == ode_order(eq, f(x)) assert b['best'] == Eq(f(x), C1/x) assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x) assert b['default'] == 'separable' assert b['best_hint'] == '1st_linear' assert a['separable'] != b['separable'] assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \ b['1st_homogeneous_coeff_subs_dep_div_indep'] assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \ b['1st_homogeneous_coeff_subs_indep_div_dep'] assert not b['1st_exact'].has(Integral) assert not b['separable'].has(Integral) assert not b['1st_homogeneous_coeff_best'].has(Integral) assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral) assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral) assert not b['1st_linear'].has(Integral) assert b['1st_linear_Integral'].has(Integral) assert b['1st_exact_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral) assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral) assert b['separable_Integral'].has(Integral) assert sorted(c.keys()) == Integral_keys raises(ValueError, lambda: dsolve(eq, hint='notarealhint')) raises(ValueError, lambda: dsolve(eq, hint='Liouville')) assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \ dsolve(f(x).diff(x) - 1/f(x)**2, hint='best') assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x), hint="1st_linear_Integral") == \ Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)* exp(Integral(1, x)), x))*exp(-Integral(1, x))) def test_classify_ode(): assert classify_ode(f(x).diff(x, 2), f(x)) == \ ( 'nth_algebraic', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'Liouville', '2nd_power_series_ordinary', 'nth_algebraic_Integral', 'Liouville_Integral', ) assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral') assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == ( 'nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') assert classify_ode(f(x).diff(x)**2, f(x)) == ('factorable', 'nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') # issue 4749: f(x) should be cleared from highest derivative before classifying a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x)) b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x)) c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x)) assert a == ('1st_exact', '1st_linear', 'Bernoulli', 'almost_linear', '1st_power_series', "lie_group", 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert b == ('factorable', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert c == ('1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_linear_Integral', 'Bernoulli_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') assert classify_ode( 2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x) ) == ('1st_exact', 'Bernoulli', 'almost_linear', 'lie_group', '1st_exact_Integral', 'Bernoulli_Integral', 'almost_linear_Integral') assert 'Riccati_special_minus2' in \ classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x)) raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff( y), f(x, y))) # issue 5176 k = Symbol('k') assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) + k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \ ('separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral') # preprocessing ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral') # w/o f(x) given assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans # w/ f(x) and prep=True assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x), prep=True) == ans assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_linear_euler_eq_homogeneous', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral') assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \ ('factorable', 'nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_power_series', 'lie_group', 'nth_algebraic_Integral', 'separable_Integral', '1st_exact_Integral', '1st_linear_Integral', 'Bernoulli_Integral') # test issue 13864 assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \ ('1st_power_series', 'lie_group') assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict) def test_classify_ode_ics(): # Dummy eq = f(x).diff(x, x) - f(x) # Not f(0) or f'(0) ics = {x: 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) ############################ # f(0) type (AppliedUndef) # ############################ # Wrong function ics = {g(0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(0, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(0): f(1)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(0): 1} classify_ode(eq, f(x), ics=ics) ##################### # f'(0) type (Subs) # ##################### # Wrong function ics = {g(x).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Wrong variable ics = {f(y).diff(y).subs(y, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, y).subs(x, 0): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, 0): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, 0): 1} classify_ode(eq, f(x), ics=ics) ########################### # f'(y) type (Derivative) # ########################### # Wrong function ics = {g(x).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Contains x ics = {f(y).diff(y).subs(y, x): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Too many args ics = {f(x, y).diff(x).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Derivative wrt wrong vars ics = {Derivative(f(x), x, z).subs(x, y): 1} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # point contains f # XXX: Should be NotImplementedError ics = {f(x).diff(x).subs(x, y): f(0)} raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics)) # Does not raise ics = {f(x).diff(x).subs(x, y): 1} classify_ode(eq, f(x), ics=ics) def test_classify_sysode(): # Here x is assumed to be x(t) and y as y(t) for simplicity. # Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively. k, l, m, n = symbols('k, l, m, n', Integer=True) k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True) P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function) P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function) x, y, z = symbols('x, y, z', cls=Function) t = symbols('t') x1 = diff(x(t),t) ; y1 = diff(y(t),t) ; eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t)))) sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \ [x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \ y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq6) == sol6 eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t))) sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \ (1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \ 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \ Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq7) == sol7 eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t))) sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \ [-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \ Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \ (1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2} assert classify_sysode(eq8) == sol8 eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5)) sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \ 'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \ -y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq11) == sol11 eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2)) sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \ (1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \ 'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \ Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}} assert classify_sysode(eq13) == sol13 def test_solve_ics(): # Basic tests that things work from dsolve. assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \ Eq(f(x), sqrt(2 * x + 2)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x)) assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1, f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x)) assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)], [f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)), Eq(g(x), exp(x)*sin(x))] # Test cases where dsolve returns two solutions. eq = (x**2*f(x)**2 - x).diff(x) assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x), -sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)] assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x), -sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)] eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert dsolve(eq, f(x), ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3)) assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1} assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \ {C2: 1} # Some more complicated tests Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)} K, r, f0 = symbols('K r f0') sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1))) assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol #Order dependent issues Refer to PR #16098 assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \ {Eq(f(x), 0), Eq(f(x), x ** 3 / 6)} # XXX: Ought to be ValueError raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1})) # Degenerate case. f'(0) is identically 0. raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0})) EI, q, L = symbols('EI q L') # eq = Eq(EI*diff(f(x), x, 4), q) sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))] funcs = [f(x)] constants = [C1, C2, C3, C4] # Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)), # and Subs ics1 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, f(L).diff(L, 2): 0, f(L).diff(L, 3): 0} ics2 = {f(0): 0, f(x).diff(x).subs(x, 0): 0, Subs(f(x).diff(x, 2), x, L): 0, Subs(f(x).diff(x, 3), x, L): 0} solved_constants1 = solve_ics(sols, funcs, constants, ics1) solved_constants2 = solve_ics(sols, funcs, constants, ics2) assert solved_constants1 == solved_constants2 == { C1: 0, C2: 0, C3: L**2*q/(4*EI), C4: -L*q/(6*EI)} def test_ode_order(): f = Function('f') g = Function('g') x = Symbol('x') assert ode_order(3*x*exp(f(x)), f(x)) == 0 assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1 assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2 assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3 assert ode_order(diff(f(x), x, x), g(x)) == 0 assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2 assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1 assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0 # issue 5835: ode_order has to also work for unevaluated derivatives # (ie, without using doit()). assert ode_order(Derivative(x*f(x), x), f(x)) == 1 assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2 assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0 assert ode_order(Derivative(f(x), x, x), g(x)) == 0 assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2 assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1 assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3 assert ode_order( x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3 def test_homogeneous_order(): assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0 assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1 assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/ (pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6) assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0 assert homogeneous_order(f(x), x, f(x)) == 1 assert homogeneous_order(f(x)**2, x, f(x)) == 2 assert homogeneous_order(x*y*z, x, y) == 2 assert homogeneous_order(x*y*z, x, y, z) == 3 assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2 assert homogeneous_order(f(x, y)**2, x, f(x), y) is None assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None assert homogeneous_order(f(y), f(x), x) is None assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0 assert homogeneous_order(log(1/y) + log(x**2), x, y) is None assert homogeneous_order(log(1/y) + log(x), x, y) == 0 assert homogeneous_order(log(x/y), x, y) == 0 assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0 a = Symbol('a') assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0 assert homogeneous_order(f(x).diff(x), x, y) is None assert homogeneous_order(-f(x).diff(x) + x, x, y) is None assert homogeneous_order(O(x), x, y) is None assert homogeneous_order(x + O(x**2), x, y) is None assert homogeneous_order(x**pi, x) == pi assert homogeneous_order(x**x, x) is None raises(ValueError, lambda: homogeneous_order(x*y)) @XFAIL def test_noncircularized_real_imaginary_parts(): # If this passes, lines numbered 3878-3882 (at the time of this commit) # of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous # should be removed. y = sqrt(1+x) i, r = im(y), re(y) assert not (i.has(atan2) and r.has(atan2)) def test_collect_respecting_exponentials(): # If this test passes, lines 1306-1311 (at the time of this commit) # of sympy/solvers/ode.py should be removed. sol = 1 + exp(x/2) assert sol == collect( sol, exp(x/3)) def test_undetermined_coefficients_match(): assert _undetermined_coefficients_match(g(x), x) == {'test': False} assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \ {'test': True, 'trialset': {cos(2*x + sqrt(5)), sin(2*x + sqrt(5))}} assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \ {'test': False} s = {cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)} assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': s} assert _undetermined_coefficients_match( sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s} assert _undetermined_coefficients_match( exp(2*x)*sin(x)*(x**2 + x + 1), x ) == { 'test': True, 'trialset': {exp(2*x)*sin(x), x**2*exp(2*x)*sin(x), cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x), x*exp(2*x)*sin(x)}} assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False} assert _undetermined_coefficients_match(log(x), x) == {'test': False} assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': {2**x, x*2**x, x**2*2**x}} assert _undetermined_coefficients_match(x**y, x) == {'test': False} assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \ {'test': True, 'trialset': {exp(1 + 3*x)}} assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \ {'test': True, 'trialset': {x*cos(x), x*sin(x), x**2*cos(x), x**2*sin(x), cos(x), sin(x)}} assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \ {'test': False} assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \ {'test': False} assert _undetermined_coefficients_match( x**2*sin(x)*exp(x) + x*sin(x) + x, x ) == { 'test': True, 'trialset': {x**2*cos(x)*exp(x), x, cos(x), S.One, exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x), x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)}} assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == { 'trialset': {x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)}, 'test': True, } assert _undetermined_coefficients_match(2**x*x, x) == \ {'test': True, 'trialset': {2**x, x*2**x}} assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \ {'test': True, 'trialset': {2**x*exp(2*x)}} assert _undetermined_coefficients_match(exp(-x)/x, x) == \ {'test': False} # Below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 assert _undetermined_coefficients_match(S(4), x) == \ {'test': True, 'trialset': {S.One}} assert _undetermined_coefficients_match(12*exp(x), x) == \ {'test': True, 'trialset': {exp(x)}} assert _undetermined_coefficients_match(exp(I*x), x) == \ {'test': True, 'trialset': {exp(I*x)}} assert _undetermined_coefficients_match(sin(x), x) == \ {'test': True, 'trialset': {cos(x), sin(x)}} assert _undetermined_coefficients_match(cos(x), x) == \ {'test': True, 'trialset': {cos(x), sin(x)}} assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \ {'test': True, 'trialset': {S.One, cos(x), sin(x), exp(x)}} assert _undetermined_coefficients_match(x**2, x) == \ {'test': True, 'trialset': {S.One, x, x**2}} assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \ {'test': True, 'trialset': {x*exp(x), exp(x), exp(-x)}} assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \ {'test': True, 'trialset': {exp(2*x)*sin(x), cos(x)*exp(2*x)}} assert _undetermined_coefficients_match(x - sin(x), x) == \ {'test': True, 'trialset': {S.One, x, cos(x), sin(x)}} assert _undetermined_coefficients_match(x**2 + 2*x, x) == \ {'test': True, 'trialset': {S.One, x, x**2}} assert _undetermined_coefficients_match(4*x*sin(x), x) == \ {'test': True, 'trialset': {x*cos(x), x*sin(x), cos(x), sin(x)}} assert _undetermined_coefficients_match(x*sin(2*x), x) == \ {'test': True, 'trialset': {x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)}} assert _undetermined_coefficients_match(x**2*exp(-x), x) == \ {'test': True, 'trialset': {x*exp(-x), x**2*exp(-x), exp(-x)}} assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \ {'test': True, 'trialset': {x*exp(-x), x**2*exp(-x), exp(-x)}} assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \ {'test': True, 'trialset': {S.One, x, x**2, exp(-2*x)}} assert _undetermined_coefficients_match(x*exp(-x), x) == \ {'test': True, 'trialset': {x*exp(-x), exp(-x)}} assert _undetermined_coefficients_match(x + exp(2*x), x) == \ {'test': True, 'trialset': {S.One, x, exp(2*x)}} assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \ {'test': True, 'trialset': {cos(x), sin(x), exp(-x)}} assert _undetermined_coefficients_match(exp(x), x) == \ {'test': True, 'trialset': {exp(x)}} # converted from sin(x)**2 assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \ {'test': True, 'trialset': {S.One, cos(2*x), sin(2*x)}} # converted from exp(2*x)*sin(x)**2 assert _undetermined_coefficients_match( exp(2*x)*(S.Half + cos(2*x)/2), x ) == { 'test': True, 'trialset': {exp(2*x)*sin(2*x), cos(2*x)*exp(2*x), exp(2*x)}} assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \ {'test': True, 'trialset': {S.One, x, cos(x), sin(x)}} # converted from sin(2*x)*sin(x) assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \ {'test': True, 'trialset': {cos(x), cos(3*x), sin(x), sin(3*x)}} assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False} assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False} def test_issue_4785(): from sympy.abc import A eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2 assert classify_ode(eq, f(x)) == ('1st_exact', '1st_linear', 'almost_linear', '1st_power_series', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', '1st_exact_Integral', '1st_linear_Integral', 'almost_linear_Integral', 'nth_linear_constant_coeff_variation_of_parameters_Integral') # issue 4864 eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x) assert classify_ode(eq, f(x)) == ('1st_exact', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', '1st_power_series', 'lie_group', '1st_exact_Integral', '1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_homogeneous_coeff_subs_dep_div_indep_Integral') def test_issue_4825(): raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x))) assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} # See also issue 3793, test Z13. raises(ValueError, lambda: dsolve(f(x).diff(x), f(y))) assert classify_ode(f(x).diff(x), f(y), dict=True) == \ {'order': 0, 'default': None, 'ordered_hints': ()} def test_constant_renumber_order_issue_5308(): from sympy.utilities.iterables import variations assert constant_renumber(C1*x + C2*y) == \ constant_renumber(C1*y + C2*x) == \ C1*x + C2*y e = C1*(C2 + x)*(C3 + y) for a, b, c in variations([C1, C2, C3], 3): assert constant_renumber(a*(b + x)*(c + y)) == e def test_constant_renumber(): e1, e2, x, y = symbols("e1:3 x y") exprs = [e2*x, e1*x + e2*y] assert constant_renumber(exprs[0]) == e2*x assert constant_renumber(exprs[0], variables=[x]) == C1*x assert constant_renumber(exprs[0], variables=[x], newconstants=[C2]) == C2*x assert constant_renumber(exprs, variables=[x, y]) == [C1*x, C1*y + C2*x] assert constant_renumber(exprs, variables=[x, y], newconstants=symbols("C3:5")) == [C3*x, C3*y + C4*x] def test_issue_5770(): k = Symbol("k", real=True) t = Symbol('t') w = Function('w') sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t)) assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6 assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), {C1, C2}) == \ C1*cos(x)*exp(x) assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), {C1, C2, C3}) == \ C1*cos(x) + C3*sin(x) assert constantsimp(exp(C1 + x), {C1}) == C1*exp(x) assert constantsimp(x + C1 + y, {C1, y}) == C1 + x assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), {C1}) == C1 + x def test_issue_5112_5430(): assert homogeneous_order(-log(x) + acosh(x), x) is None assert homogeneous_order(y - log(x), x, y) is None def test_issue_5095(): f = Function('f') raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf')) def test_homogeneous_function(): f = Function('f') eq1 = tan(x + f(x)) eq2 = sin((3*x)/(4*f(x))) eq3 = cos(x*f(x)*Rational(3, 4)) eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x)) eq5 = exp((2*x**2)/(3*f(x)**2)) eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2))) eq7 = sin((3*x)/(5*f(x) + x**2)) assert homogeneous_order(eq1, x, f(x)) == None assert homogeneous_order(eq2, x, f(x)) == 0 assert homogeneous_order(eq3, x, f(x)) == None assert homogeneous_order(eq4, x, f(x)) == 0 assert homogeneous_order(eq5, x, f(x)) == 0 assert homogeneous_order(eq6, x, f(x)) == 0 assert homogeneous_order(eq7, x, f(x)) == None def test_linear_coeff_match(): n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11) rat = n/d eq1 = sin(rat) + cos(rat.expand()) eq2 = rat eq3 = log(sin(rat)) ans = (4, Rational(-13, 3)) assert _linear_coeff_match(eq1, f(x)) == ans assert _linear_coeff_match(eq2, f(x)) == ans assert _linear_coeff_match(eq3, f(x)) == ans # no c eq4 = (3*x)/f(x) # not x and f(x) eq5 = (3*x + 2)/x # denom will be zero eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5) # not rational coefficient eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5) assert _linear_coeff_match(eq4, f(x)) is None assert _linear_coeff_match(eq5, f(x)) is None assert _linear_coeff_match(eq6, f(x)) is None assert _linear_coeff_match(eq7, f(x)) is None def test_constantsimp_take_problem(): c = exp(C1) + 2 assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2 def test_series(): C1 = Symbol("C1") eq = f(x).diff(x) - f(x) sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 + C1*x**5/120 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - x*f(x) sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6)) assert dsolve(eq, hint='1st_power_series') == sol assert checkodesol(eq, sol, order=1)[0] eq = f(x).diff(x) - sin(x*f(x)) sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3)) assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol # FIXME: The solution here should be O((x-2)**3) so is incorrect #assert checkodesol(eq, sol, order=1)[0] @slow def test_2nd_power_series_ordinary(): C1, C2 = symbols("C1 C2") eq = f(x).diff(x, 2) - x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary') == sol assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1) + C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2)) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol # FIXME: Solution should be O((x+2)**6) # assert checkodesol(eq, sol) == (True, 0) sol = Eq(f(x), C2*x + C1 + O(x**2)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol assert checkodesol(eq, sol) == (True, 0) eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x) assert classify_ode(eq) == ('2nd_power_series_ordinary',) sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1) + C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6)) assert dsolve(eq) == sol # FIXME: checkodesol fails for this solution... # assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + x*f(x) assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary') sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7)) assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol assert checkodesol(eq, sol) == (True, 0) def test_2nd_power_series_regular(): C1, C2, a = symbols("C1 C2 a") eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x) sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 + 1)*f(x) sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + ( x**2 - 2)*f(x) sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x + C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6)) assert dsolve(eq) == sol assert checkodesol(eq, sol) == (True, 0) eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x) sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) + C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6)) assert dsolve(eq, hint='2nd_power_series_regular') == sol assert checkodesol(eq, sol) == (True, 0) eq = x*f(x).diff(x, 2) + f(x).diff(x) - a*x*f(x) sol = Eq(f(x), C1*(a**2*x**4/64 + a*x**2/4 + 1) + O(x**6)) assert dsolve(eq, f(x), hint="2nd_power_series_regular") == sol assert checkodesol(eq, sol) == (True, 0) eq = f(x).diff(x, 2) + ((1 - x)/x)*f(x).diff(x) + (a/x)*f(x) sol = Eq(f(x), C1*(-a*x**5*(a - 4)*(a - 3)*(a - 2)*(a - 1)/14400 + \ a*x**4*(a - 3)*(a - 2)*(a - 1)/576 - a*x**3*(a - 2)*(a - 1)/36 + \ a*x**2*(a - 1)/4 - a*x + 1) + O(x**6)) assert dsolve(eq, f(x), hint="2nd_power_series_regular") == sol assert checkodesol(eq, sol) == (True, 0) def test_issue_15056(): t = Symbol('t') C3 = Symbol('C3') assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3 def test_issue_15913(): eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x) sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x) assert checkodesol(eq, sol) == (True, 0) sol = C1 + C2*exp(-x*y) eq = Derivative(y*f(x), x) + f(x).diff(x, 2) assert checkodesol(eq, sol, f(x)) == (True, 0) def test_issue_16146(): raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)])) raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)])) def test_dsolve_remove_redundant_solutions(): eq = (f(x)-2)*f(x).diff(x) sol = Eq(f(x), C1) assert dsolve(eq) == sol eq = (f(x)-sin(x))*(f(x).diff(x, 2)) sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))} assert set(dsolve(eq)) == sol eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3) sol = Eq(f(x), C1 + C2*x + C3*x**2) assert dsolve(eq) == sol def test_issue_13060(): A, B = symbols("A B", cls=Function) t = Symbol("t") eq = [Eq(Derivative(A(t), t), A(t)*B(t)), Eq(Derivative(B(t), t), A(t)*B(t))] sol = dsolve(eq) assert checkodesol(eq, sol) == (True, [0, 0])
c633005bca52cec9d86b9d71442753f94274152cb593cdbec7987de74a814c11
# # The main tests for the code in single.py are currently located in # sympy/solvers/tests/test_ode.py # r""" This File contains test functions for the individual hints used for solving ODEs. Examples of each solver will be returned by _get_examples_ode_sol_name_of_solver. Examples should have a key 'XFAIL' which stores the list of hints if they are expected to fail for that hint. Functions that are for internal use: 1) _ode_solver_test(ode_examples) - It takes a dictionary of examples returned by _get_examples method and tests them with their respective hints. 2) _test_particular_example(our_hint, example_name) - It tests the ODE example corresponding to the hint provided. 3) _test_all_hints(runxfail=False) - It is used to test all the examples with all the hints currently implemented. It calls _test_all_examples_for_one_hint() which outputs whether the given hint functions properly if it classifies the ODE example. If runxfail flag is set to True then it will only test the examples which are expected to fail. Everytime the ODE of a particular solver is added, _test_all_hints() is to be executed to find the possible failures of different solver hints. 4) _test_all_examples_for_one_hint(our_hint, all_examples) - It takes hint as argument and checks this hint against all the ODE examples and gives output as the number of ODEs matched, number of ODEs which were solved correctly, list of ODEs which gives incorrect solution and list of ODEs which raises exception. """ from sympy import (acos, acosh, asin, asinh, atan, cos, Derivative, Dummy, diff, cbrt, E, Eq, exp, hyper, I, im, Integral, integrate, LambertW, log, Mul, Ne, pi, Piecewise, Rational, re, rootof, S, sin, sinh, cosh, tan, tanh, sec, sqrt, symbols, Ei, erfi) from sympy.core import Function, Symbol from sympy.functions import airyai, airybi, besselj, bessely, lowergamma from sympy.integrals.risch import NonElementaryIntegral from sympy.solvers.ode import classify_ode, dsolve from sympy.solvers.ode.ode import allhints, _remove_redundant_solutions from sympy.solvers.ode.single import (FirstLinear, ODEMatchError, SingleODEProblem, SingleODESolver) from sympy.solvers.ode.subscheck import checkodesol from sympy.testing.pytest import raises, slow, ON_TRAVIS import traceback x = Symbol('x') u = Symbol('u') _u = Dummy('u') y = Symbol('y') f = Function('f') g = Function('g') C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C1:11') hint_message = """\ Hint did not match the example {example}. The ODE is: {eq}. The expected hint was {our_hint}\ """ expected_sol_message = """\ Different solution found from dsolve for example {example}. The ODE is: {eq} The expected solution was {sol} What dsolve returned is: {dsolve_sol}\ """ checkodesol_msg = """\ solution found is not correct for example {example}. The ODE is: {eq}\ """ dsol_incorrect_msg = """\ solution returned by dsolve is incorrect when using {hint}. The ODE is: {eq} The expected solution was {sol} what dsolve returned is: {dsolve_sol} You can test this with: eq = {eq} sol = dsolve(eq, hint='{hint}') print(sol) print(checkodesol(eq, sol)) """ exception_msg = """\ dsolve raised exception : {e} when using {hint} for the example {example} You can test this with: from sympy.solvers.ode.tests.test_single import _test_an_example _test_an_example('{hint}', example_name = '{example}') The ODE is: {eq} \ """ check_hint_msg = """\ Tested hint was : {hint} Total of {matched} examples matched with this hint. Out of which {solve} gave correct results. Examples which gave incorrect results are {unsolve}. Examples which raised exceptions are {exceptions} \ """ def _add_example_keys(func): def inner(): solver=func() examples=[] for example in solver['examples']: temp={ 'eq': solver['examples'][example]['eq'], 'sol': solver['examples'][example]['sol'], 'XFAIL': solver['examples'][example].get('XFAIL', []), 'func': solver['examples'][example].get('func',solver['func']), 'example_name': example, 'slow': solver['examples'][example].get('slow', False), 'simplify_flag':solver['examples'][example].get('simplify_flag',True), 'checkodesol_XFAIL': solver['examples'][example].get('checkodesol_XFAIL', False), 'dsolve_too_slow':solver['examples'][example].get('dsolve_too_slow',False), 'checkodesol_too_slow':solver['examples'][example].get('checkodesol_too_slow',False), 'hint': solver['hint'] } examples.append(temp) return examples return inner() def _ode_solver_test(ode_examples, run_slow_test=False): for example in ode_examples: if ((not run_slow_test) and example['slow']) or (run_slow_test and (not example['slow'])): continue result = _test_particular_example(example['hint'], example, solver_flag=True) if result['xpass_msg'] != "": print(result['xpass_msg']) def _test_all_hints(runxfail=False): all_hints = list(allhints)+["default"] all_examples = _get_all_examples() for our_hint in all_hints: if our_hint.endswith('_Integral') or 'series' in our_hint: continue _test_all_examples_for_one_hint(our_hint, all_examples, runxfail) def _test_dummy_sol(expected_sol,dsolve_sol): if type(dsolve_sol)==list: return any(expected_sol.dummy_eq(sub_dsol) for sub_dsol in dsolve_sol) else: return expected_sol.dummy_eq(dsolve_sol) def _test_an_example(our_hint, example_name): all_examples = _get_all_examples() for example in all_examples: if example['example_name'] == example_name: _test_particular_example(our_hint, example) def _test_particular_example(our_hint, ode_example, solver_flag=False): eq = ode_example['eq'] expected_sol = ode_example['sol'] example = ode_example['example_name'] xfail = our_hint in ode_example['XFAIL'] func = ode_example['func'] result = {'msg': '', 'xpass_msg': ''} simplify_flag=ode_example['simplify_flag'] checkodesol_XFAIL = ode_example['checkodesol_XFAIL'] dsolve_too_slow = ode_example['dsolve_too_slow'] checkodesol_too_slow = ode_example['checkodesol_too_slow'] xpass = True if solver_flag: if our_hint not in classify_ode(eq, func): message = hint_message.format(example=example, eq=eq, our_hint=our_hint) raise AssertionError(message) if our_hint in classify_ode(eq, func): result['match_list'] = example try: if not (dsolve_too_slow): dsolve_sol = dsolve(eq, func, simplify=simplify_flag,hint=our_hint) else: if len(expected_sol)==1: dsolve_sol = expected_sol[0] else: dsolve_sol = expected_sol except Exception as e: dsolve_sol = [] result['exception_list'] = example if not solver_flag: traceback.print_exc() result['msg'] = exception_msg.format(e=str(e), hint=our_hint, example=example, eq=eq) if solver_flag and not xfail: print(result['msg']) raise xpass = False if solver_flag and dsolve_sol!=[]: expect_sol_check = False if type(dsolve_sol)==list: for sub_sol in expected_sol: if sub_sol.has(Dummy): expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol) else: expect_sol_check = sub_sol not in dsolve_sol if expect_sol_check: break else: expect_sol_check = dsolve_sol not in expected_sol for sub_sol in expected_sol: if sub_sol.has(Dummy): expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol) if expect_sol_check: message = expected_sol_message.format(example=example, eq=eq, sol=expected_sol, dsolve_sol=dsolve_sol) raise AssertionError(message) expected_checkodesol = [(True, 0) for i in range(len(expected_sol))] if len(expected_sol) == 1: expected_checkodesol = (True, 0) if not (checkodesol_too_slow and ON_TRAVIS): if not checkodesol_XFAIL: if checkodesol(eq, dsolve_sol, func, solve_for_func=False) != expected_checkodesol: result['unsolve_list'] = example xpass = False message = dsol_incorrect_msg.format(hint=our_hint, eq=eq, sol=expected_sol,dsolve_sol=dsolve_sol) if solver_flag: message = checkodesol_msg.format(example=example, eq=eq) raise AssertionError(message) else: result['msg'] = 'AssertionError: ' + message if xpass and xfail: result['xpass_msg'] = example + "is now passing for the hint" + our_hint return result def _test_all_examples_for_one_hint(our_hint, all_examples=[], runxfail=None): if all_examples == []: all_examples = _get_all_examples() match_list, unsolve_list, exception_list = [], [], [] for ode_example in all_examples: xfail = our_hint in ode_example['XFAIL'] if runxfail and not xfail: continue if xfail: continue result = _test_particular_example(our_hint, ode_example) match_list += result.get('match_list',[]) unsolve_list += result.get('unsolve_list',[]) exception_list += result.get('exception_list',[]) if runxfail is not None: msg = result['msg'] if msg!='': print(result['msg']) # print(result.get('xpass_msg','')) if runxfail is None: match_count = len(match_list) solved = len(match_list)-len(unsolve_list)-len(exception_list) msg = check_hint_msg.format(hint=our_hint, matched=match_count, solve=solved, unsolve=unsolve_list, exceptions=exception_list) print(msg) def test_SingleODESolver(): # Test that not implemented methods give NotImplementedError # Subclasses should override these methods. problem = SingleODEProblem(f(x).diff(x), f(x), x) solver = SingleODESolver(problem) raises(NotImplementedError, lambda: solver.matches()) raises(NotImplementedError, lambda: solver.get_general_solution()) raises(NotImplementedError, lambda: solver._matches()) raises(NotImplementedError, lambda: solver._get_general_solution()) # This ODE can not be solved by the FirstLinear solver. Here we test that # it does not match and the asking for a general solution gives # ODEMatchError problem = SingleODEProblem(f(x).diff(x) + f(x)*f(x), f(x), x) solver = FirstLinear(problem) raises(ODEMatchError, lambda: solver.get_general_solution()) solver = FirstLinear(problem) assert solver.matches() is False #These are just test for order of ODE problem = SingleODEProblem(f(x).diff(x) + f(x), f(x), x) assert problem.order == 1 problem = SingleODEProblem(f(x).diff(x,4) + f(x).diff(x,2) - f(x).diff(x,3), f(x), x) assert problem.order == 4 problem = SingleODEProblem(f(x).diff(x, 3) + f(x).diff(x, 2) - f(x)**2, f(x), x) assert problem.is_autonomous == True problem = SingleODEProblem(f(x).diff(x, 3) + x*f(x).diff(x, 2) - f(x)**2, f(x), x) assert problem.is_autonomous == False def test_linear_coefficients(): _ode_solver_test(_get_examples_ode_sol_linear_coefficients) def test_1st_homogeneous_coeff_ode(): #These were marked as test_1st_homogeneous_coeff_corner_case eq1 = f(x).diff(x) - f(x)/x c1 = classify_ode(eq1, f(x)) eq2 = x*f(x).diff(x) - f(x) c2 = classify_ode(eq2, f(x)) sdi = "1st_homogeneous_coeff_subs_dep_div_indep" sid = "1st_homogeneous_coeff_subs_indep_div_dep" assert sid not in c1 and sdi not in c1 assert sid not in c2 and sdi not in c2 _ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep) _ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_best) @slow def test_slow_examples_1st_homogeneous_coeff_ode(): _ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep, run_slow_test=True) _ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_best, run_slow_test=True) def test_nth_linear_constant_coeff_homogeneous(): _ode_solver_test(_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous) @slow def test_slow_examples_nth_linear_constant_coeff_homogeneous(): _ode_solver_test(_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous, run_slow_test=True) def test_Airy_equation(): _ode_solver_test(_get_examples_ode_sol_2nd_linear_airy) def test_lie_group(): _ode_solver_test(_get_examples_ode_sol_lie_group) def test_separable_reduced(): df = f(x).diff(x) eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1)) assert classify_ode(eq) == ('separable_reduced', 'lie_group', 'separable_reduced_Integral') _ode_solver_test(_get_examples_ode_sol_separable_reduced) @slow def test_slow_examples_separable_reduced(): _ode_solver_test(_get_examples_ode_sol_separable_reduced, run_slow_test=True) def test_2nd_2F1_hypergeometric(): _ode_solver_test(_get_examples_ode_sol_2nd_2F1_hypergeometric) def test_2nd_2F1_hypergeometric_integral(): eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x) sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 - x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x - 1), x)/4)*hyper((S(1)/2, -1), (1,), x)) assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral') assert checkodesol(eq, sol) == (True, 0) def test_2nd_nonlinear_autonomous_conserved(): _ode_solver_test(_get_examples_ode_sol_2nd_nonlinear_autonomous_conserved) def test_2nd_nonlinear_autonomous_conserved_integral(): eq = f(x).diff(x, 2) + asin(f(x)) actual = [Eq(Integral(1/sqrt(C1 - 2*Integral(asin(_u), _u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*Integral(asin(_u), _u)), (_u, f(x))), C2 - x)] solved = dsolve(eq, hint='2nd_nonlinear_autonomous_conserved_Integral', simplify=False) for a,s in zip(actual, solved): assert a.dummy_eq(s) # checkodesol unable to simplify solutions with f(x) in an integral equation assert checkodesol(eq, [s.doit() for s in solved]) == [(True, 0), (True, 0)] def test_2nd_linear_bessel_equation(): _ode_solver_test(_get_examples_ode_sol_2nd_linear_bessel) def test_nth_algebraic(): eqn = f(x) + f(x)*f(x).diff(x) solns = [Eq(f(x), exp(x)), Eq(f(x), C1*exp(C2*x))] solns_final = _remove_redundant_solutions(eqn, solns, 2, x) assert solns_final == [Eq(f(x), C1*exp(C2*x))] _ode_solver_test(_get_examples_ode_sol_nth_algebraic) @slow def test_slow_examples_nth_linear_constant_coeff_var_of_parameters(): _ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters, run_slow_test=True) def test_nth_linear_constant_coeff_var_of_parameters(): _ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters) @slow def test_nth_linear_constant_coeff_variation_of_parameters__integral(): # solve_variation_of_parameters shouldn't attempt to simplify the # Wronskian if simplify=False. If wronskian() ever gets good enough # to simplify the result itself, this test might fail. our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral' eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x) sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True) sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False) assert sol_simp != sol_nsimp assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0) assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0) @slow def test_slow_examples_1st_exact(): _ode_solver_test(_get_examples_ode_sol_1st_exact, run_slow_test=True) def test_1st_exact(): _ode_solver_test(_get_examples_ode_sol_1st_exact) def test_1st_exact_integral(): eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x) sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral') assert checkodesol(eq, sol_1, order=1, solve_for_func=False) @slow def test_slow_examples_nth_order_reducible(): _ode_solver_test(_get_examples_ode_sol_nth_order_reducible, run_slow_test=True) @slow def test_slow_examples_nth_linear_constant_coeff_undetermined_coefficients(): _ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients, run_slow_test=True) @slow def test_slow_examples_separable(): _ode_solver_test(_get_examples_ode_sol_separable, run_slow_test=True) def test_nth_linear_constant_coeff_undetermined_coefficients(): #issue-https://github.com/sympy/sympy/issues/5787 # This test case is to show the classification of imaginary constants under # nth_linear_constant_coeff_undetermined_coefficients eq = Eq(diff(f(x), x), I*f(x) + S.Half - I) our_hint = 'nth_linear_constant_coeff_undetermined_coefficients' assert our_hint in classify_ode(eq) _ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients) def test_nth_order_reducible(): from sympy.solvers.ode.ode import _nth_order_reducible_match F = lambda eq: _nth_order_reducible_match(eq, f(x)) D = Derivative assert F(D(y*f(x), x, y) + D(f(x), x)) is None assert F(D(y*f(y), y, y) + D(f(y), y)) is None assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2) _ode_solver_test(_get_examples_ode_sol_nth_order_reducible) def test_separable(): _ode_solver_test(_get_examples_ode_sol_separable) def test_factorable(): assert integrate(-asin(f(2*x)+pi), x) == -Integral(asin(pi + f(2*x)), x) _ode_solver_test(_get_examples_ode_sol_factorable) def test_Riccati_special_minus2(): _ode_solver_test(_get_examples_ode_sol_riccati) def test_Bernoulli(): _ode_solver_test(_get_examples_ode_sol_bernoulli) def test_1st_linear(): _ode_solver_test(_get_examples_ode_sol_1st_linear) def test_almost_linear(): _ode_solver_test(_get_examples_ode_sol_almost_linear) def test_Liouville_ODE(): hint = 'Liouville' not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 - diff(f(x), x)**2/2, f(x)) not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 - x*diff(f(x), x)**2/2, f(x)) assert hint not in not_Liouville1 assert hint not in not_Liouville2 assert hint + '_Integral' not in not_Liouville1 assert hint + '_Integral' not in not_Liouville2 _ode_solver_test(_get_examples_ode_sol_liouville) def test_nth_order_linear_euler_eq_homogeneous(): x, t, a, b, c = symbols('x t a b c') y = Function('y') our_hint = "nth_linear_euler_eq_homogeneous" eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t) assert our_hint in classify_ode(eq) eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2) assert our_hint in classify_ode(eq) _ode_solver_test(_get_examples_ode_sol_euler_homogeneous) def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients(): x, t = symbols('x t') a, b, c, d = symbols('a b c d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients" eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x assert our_hint in classify_ode(eq, f(x)) eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x) assert our_hint in classify_ode(eq, f(x)) _ode_solver_test(_get_examples_ode_sol_euler_undetermined_coeff) def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters(): x, t = symbols('x, t') a, b, c, d = symbols('a, b, c, d', integer=True) our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters" eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2) assert our_hint in classify_ode(eq, f(x)) eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x)) assert our_hint in classify_ode(eq, f(x)) _ode_solver_test(_get_examples_ode_sol_euler_var_para) @_add_example_keys def _get_examples_ode_sol_euler_homogeneous(): r1, r2, r3, r4, r5 = [rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, n) for n in range(5)] return { 'hint': "nth_linear_euler_eq_homogeneous", 'func': f(x), 'examples':{ 'euler_hom_01': { 'eq': Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0), 'sol': [Eq(f(x), C1 + C2*x**Rational(5, 2))], }, 'euler_hom_02': { 'eq': Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0), 'sol': [Eq(f(x), C1*sqrt(x) + C2*x**3)] }, 'euler_hom_03': { 'eq': Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0), 'sol': [Eq(f(x), (C1 + C2*log(x))/x**2)] }, 'euler_hom_04': { 'eq': Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0), 'sol': [Eq(f(x), C1/x**2 + C2*x + C3*x**3)] }, 'euler_hom_05': { 'eq': Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0), 'sol': [Eq(f(x), x**5*(C1 + C2*log(x) + C3*log(x)**2))] }, 'euler_hom_06': { 'eq': x**2*diff(f(x), x, 2) + x*diff(f(x), x) - 9*f(x), 'sol': [Eq(f(x), C1*x**-3 + C2*x**3)] }, 'euler_hom_07': { 'eq': sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x), 'sol': [Eq(f(x), C1*sin(log(x)) + C2*cos(log(x)))], 'XFAIL': ['2nd_power_series_regular','nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients'] }, 'euler_hom_08': { 'eq': x**6 * f(x).diff(x, 6) - x*f(x).diff(x) + f(x), 'sol': [Eq(f(x), C1*x + C2*x**r1 + C3*x**r2 + C4*x**r3 + C5*x**r4 + C6*x**r5)], 'checkodesol_XFAIL':True }, #This example is from issue: https://github.com/sympy/sympy/issues/15237 #This example is from issue: # https://github.com/sympy/sympy/issues/15237 'euler_hom_09': { 'eq': Derivative(x*f(x), x, x, x), 'sol': [Eq(f(x), C1 + C2/x + C3*x)], }, } } @_add_example_keys def _get_examples_ode_sol_euler_undetermined_coeff(): return { 'hint': "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients", 'func': f(x), 'examples':{ 'euler_undet_01': { 'eq': Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1), 'sol': [Eq(f(x), C1 + C2*log(x) + log(x)**2/2)] }, 'euler_undet_02': { 'eq': Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3), 'sol': [Eq(f(x), x*(C1 + C2*x + Rational(1, 2)*x**2))] }, 'euler_undet_03': { 'eq': Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x), 'sol': [Eq(f(x), (C1 + C2*x**4 - log(x)**2/8 - log(x)/16)/x)] }, 'euler_undet_04': { 'eq': Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x)), 'sol': [Eq(f(x), C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256))] }, 'euler_undet_05': { 'eq': Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x)), 'sol': [Eq(f(x), C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36))] }, #Below examples were added for the issue: https://github.com/sympy/sympy/issues/5096 'euler_undet_06': { 'eq': 2*x**2*f(x).diff(x, 2) + f(x) + sqrt(2*x)*sin(log(2*x)/2), 'sol': [Eq(f(x), sqrt(x)*(C1*sin(log(x)/2) + C2*cos(log(x)/2) + sqrt(2)*log(x)*cos(log(2*x)/2)/2))] }, 'euler_undet_07': { 'eq': 2*x**2*f(x).diff(x, 2) + f(x) + sin(log(2*x)/2), 'sol': [Eq(f(x), C1*sqrt(x)*sin(log(x)/2) + C2*sqrt(x)*cos(log(x)/2) - 2*sin(log(2*x)/2)/5 - 4*cos(log(2*x)/2)/5)] }, } } @_add_example_keys def _get_examples_ode_sol_euler_var_para(): return { 'hint': "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters", 'func': f(x), 'examples':{ 'euler_var_01': { 'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4), 'sol': [Eq(f(x), x*(C1 + C2*x + x**3/6))] }, 'euler_var_02': { 'eq': Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x)), 'sol': [Eq(f(x), C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2))] }, 'euler_var_03': { 'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x)), 'sol': [Eq(f(x), x*(C1 + C2*x + x*exp(x) - 2*exp(x)))] }, 'euler_var_04': { 'eq': x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x), 'sol': [Eq(f(x), C1*x + C2*x**2 + log(x)/2 + Rational(3, 4))] }, 'euler_var_05': { 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x, 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))] }, 'euler_var_06': { 'eq': x**2 * f(x).diff(x, 2) + x * f(x).diff(x) + 4 * f(x) - 1/x, 'sol': [Eq(f(x), C1*sin(2*log(x)) + C2*cos(2*log(x)) + 1/(5*x))] }, } } @_add_example_keys def _get_examples_ode_sol_bernoulli(): # Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n return { 'hint': "Bernoulli", 'func': f(x), 'examples':{ 'bernoulli_01': { 'eq': Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0), 'sol': [Eq(f(x), 1/(C1*x + 1))], 'XFAIL': ['separable_reduced'] }, 'bernoulli_02': { 'eq': f(x).diff(x) - y*f(x), 'sol': [Eq(f(x), C1*exp(x*y))] }, 'bernoulli_03': { 'eq': f(x)*f(x).diff(x) - 1, 'sol': [Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x))] }, } } @_add_example_keys def _get_examples_ode_sol_riccati(): # Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2 return { 'hint': "Riccati_special_minus2", 'func': f(x), 'examples':{ 'riccati_01': { 'eq': 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), 'sol': [Eq(f(x), (-sqrt(3)*tan(C1 + sqrt(3)*log(x)/4) + 3)/(2*x))], }, }, } @_add_example_keys def _get_examples_ode_sol_1st_linear(): # Type: first order linear form f'(x)+p(x)f(x)=q(x) return { 'hint': "1st_linear", 'func': f(x), 'examples':{ 'linear_01': { 'eq': Eq(f(x).diff(x) + x*f(x), x**2), 'sol': [Eq(f(x), (C1 + x*exp(x**2/2)- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))], }, }, } @_add_example_keys def _get_examples_ode_sol_factorable(): """ some hints are marked as xfail for examples because they missed additional algebraic solution which could be found by Factorable hint. Fact_01 raise exception for nth_linear_constant_coeff_undetermined_coefficients""" y = Dummy('y') a0,a1,a2,a3,a4 = symbols('a0, a1, a2, a3, a4') return { 'hint': "factorable", 'func': f(x), 'examples':{ 'fact_01': { 'eq': f(x) + f(x)*f(x).diff(x), 'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)], 'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', 'lie_group', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters', 'nth_linear_constant_coeff_undetermined_coefficients'] }, 'fact_02': { 'eq': f(x)*(f(x).diff(x)+f(x)*x+2), 'sol': [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2))*exp(-x**2/2)), Eq(f(x), 0)], 'XFAIL': ['Bernoulli', '1st_linear', 'lie_group'] }, 'fact_03': { 'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x)), 'sol': [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)),Eq(f(x), C1*exp(-x**3/3))] }, 'fact_04': { 'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x)), 'sol': [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))] }, 'fact_05': { 'eq': (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4), 'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)] }, 'fact_06': { 'eq': (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x), 'sol': [ Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 + x)) - 1))), Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 - x)) - 1))), Eq(f(x), C1) ] }, 'fact_07': { 'eq': (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1), 'sol': [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)] }, 'fact_08': { 'eq': Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1, 'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x)] }, 'fact_09': { 'eq': f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x), x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x), x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x), x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1, 'sol': [ Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x) ] }, 'fact_10': { 'eq': x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x), (x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x), x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x), (x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2, 'sol': [ Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)), Eq(f(x), C1*besselj(sqrt(3), x) + C2*bessely(sqrt(3), x)) ] }, 'fact_11': { 'eq': (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x))), 'sol': [ Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 + x)) - 1))), Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 - x)) - 1))), Eq(f(x), log(C1/(1 - cos(C1*sqrt(-1/C1)*(C2 + x))))), Eq(f(x), log(C1/(1 - cos(C1*sqrt(-1/C1)*(C2 - x))))) ], 'dsolve_too_slow': True, }, #Below examples were added for the issue: https://github.com/sympy/sympy/issues/15889 'fact_12': { 'eq': exp(f(x).diff(x))-f(x)**2, 'sol': [Eq(NonElementaryIntegral(1/log(y**2), (y, f(x))), C1 + x)], 'XFAIL': ['lie_group'] #It shows not implemented error for lie_group. }, 'fact_13': { 'eq': f(x).diff(x)**2 - f(x)**3, 'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))], 'XFAIL': ['lie_group'] #It shows not implemented error for lie_group. }, 'fact_14': { 'eq': f(x).diff(x)**2 - f(x), 'sol': [Eq(f(x), C1**2/4 - C1*x/2 + x**2/4)] }, 'fact_15': { 'eq': f(x).diff(x)**2 - f(x)**2, 'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))] }, 'fact_16': { 'eq': f(x).diff(x)**2 - f(x)**3, 'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))], }, # kamke ode 1.1 'fact_17': { 'eq': f(x).diff(x)-(a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**(-1/2), 'sol': [Eq(f(x), C1 + Integral(1/sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4), x))], 'slow': True }, # This is from issue: https://github.com/sympy/sympy/issues/9446 'fact_18':{ 'eq': Eq(f(2 * x), sin(Derivative(f(x)))), 'sol': [Eq(f(x), C1 + pi*x - Integral(asin(f(2*x)), x)), Eq(f(x), C1 + Integral(asin(f(2*x)), x))], 'checkodesol_XFAIL':True }, # This is from issue: https://github.com/sympy/sympy/issues/7093 'fact_19': { 'eq': Derivative(f(x), x)**2 - x**3, 'sol': [Eq(f(x), C1 - 2*x*sqrt(x**3)/5), Eq(f(x), C1 + 2*x*sqrt(x**3)/5)], }, } } @_add_example_keys def _get_examples_ode_sol_almost_linear(): from sympy import Ei A = Symbol('A', positive=True) f = Function('f') d = f(x).diff(x) return { 'hint': "almost_linear", 'func': f(x), 'examples':{ 'almost_lin_01': { 'eq': x**2*f(x)**2*d + f(x)**3 + 1, 'sol': [Eq(f(x), (C1*exp(3/x) - 1)**Rational(1, 3)), Eq(f(x), (-1 - sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2), Eq(f(x), (-1 + sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2)], }, 'almost_lin_02': { 'eq': x*f(x)*d + 2*x*f(x)**2 + 1, 'sol': [Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))), Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x)))] }, 'almost_lin_03': { 'eq': x*d + x*f(x) + 1, 'sol': [Eq(f(x), (C1 - Ei(x))*exp(-x))] }, 'almost_lin_04': { 'eq': x*exp(f(x))*d + exp(f(x)) + 3*x, 'sol': [Eq(f(x), log(C1/x - x*Rational(3, 2)))], }, 'almost_lin_05': { 'eq': x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2, 'sol': [Eq(f(x), (C1 + Piecewise( (x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x))], }, } } @_add_example_keys def _get_examples_ode_sol_liouville(): n = Symbol('n') _y = Dummy('y') return { 'hint': "Liouville", 'func': f(x), 'examples':{ 'liouville_01': { 'eq': diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2, 'sol': [Eq(f(x), log(x/(C1 + C2*x)))], }, 'liouville_02': { 'eq': diff(x*exp(-f(x)), x, x), 'sol': [Eq(f(x), log(x/(C1 + C2*x)))] }, 'liouville_03': { 'eq': ((diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2)*exp(-f(x))/exp(f(x))).expand(), 'sol': [Eq(f(x), log(x/(C1 + C2*x)))] }, 'liouville_04': { 'eq': diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x), 'sol': [Eq(f(x), -sqrt(C1 + C2*log(x))), Eq(f(x), sqrt(C1 + C2*log(x)))], }, 'liouville_05': { 'eq': x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x), 'sol': [Eq(f(x), -sqrt(C1 + C2*exp(-x))), Eq(f(x), sqrt(C1 + C2*exp(-x)))], }, 'liouville_06': { 'eq': Eq((x*exp(f(x))).diff(x, x), 0), 'sol': [Eq(f(x), log(C1 + C2/x))], }, 'liouville_07': { 'eq': (diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2)*exp(-f(x))/exp(f(x)), 'sol': [Eq(f(x), log(x/(C1 + C2*x)))], }, 'liouville_08': { 'eq': x**2*diff(f(x),x) + (n*f(x) + f(x)**2)*diff(f(x),x)**2 + diff(f(x), (x, 2)), 'sol': [Eq(C1 + C2*lowergamma(Rational(1,3), x**3/3) + NonElementaryIntegral(exp(_y**3/3)*exp(_y**2*n/2), (_y, f(x))), 0)], }, } } @_add_example_keys def _get_examples_ode_sol_nth_algebraic(): M, m, r, t = symbols('M m r t') phi = Function('phi') k = Symbol('k') # This one needs a substitution f' = g. # 'algeb_12': { # 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x, # 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))], # }, return { 'hint': "nth_algebraic", 'func': f(x), 'examples':{ 'algeb_01': { 'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x), 'sol': [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)] }, 'algeb_02': { 'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1), 'sol': [Eq(f(x), C1 + C2*x)] }, 'algeb_03': { 'eq': f(x) * f(x).diff(x) * f(x).diff(x, x), 'sol': [Eq(f(x), C1 + C2*x)] }, 'algeb_04': { 'eq': Eq(-M * phi(t).diff(t), Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t)), 'sol': [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))], 'func': phi(t) }, 'algeb_05': { 'eq': (1 - sin(f(x))) * f(x).diff(x), 'sol': [Eq(f(x), C1)], 'XFAIL': ['separable'] #It raised exception. }, 'algeb_06': { 'eq': (diff(f(x)) - x)*(diff(f(x)) + x), 'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)] }, 'algeb_07': { 'eq': Eq(Derivative(f(x), x), Derivative(g(x), x)), 'sol': [Eq(f(x), C1 + g(x))], }, 'algeb_08': { 'eq': f(x).diff(x) - C1, #this example is from issue 15999 'sol': [Eq(f(x), C1*x + C2)], }, 'algeb_09': { 'eq': f(x)*f(x).diff(x), 'sol': [Eq(f(x), C1)], }, 'algeb_10': { 'eq': (diff(f(x)) - x)*(diff(f(x)) + x), 'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)], }, 'algeb_11': { 'eq': f(x) + f(x)*f(x).diff(x), 'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)], 'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best', '1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep', 'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients', 'nth_linear_constant_coeff_variation_of_parameters', 'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters'] #nth_linear_constant_coeff_undetermined_coefficients raises exception rest all of them misses a solution. }, 'algeb_12': { 'eq': Derivative(x*f(x), x, x, x), 'sol': [Eq(f(x), (C1 + C2*x + C3*x**2) / x)], 'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve. }, 'algeb_13': { 'eq': Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)), 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))], 'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve. }, # These are simple tests from the old ode module example 14-18 'algeb_14': { 'eq': Eq(f(x).diff(x), 0), 'sol': [Eq(f(x), C1)], }, 'algeb_15': { 'eq': Eq(3*f(x).diff(x) - 5, 0), 'sol': [Eq(f(x), C1 + x*Rational(5, 3))], }, 'algeb_16': { 'eq': Eq(3*f(x).diff(x), 5), 'sol': [Eq(f(x), C1 + x*Rational(5, 3))], }, # Type: 2nd order, constant coefficients (two complex roots) 'algeb_17': { 'eq': Eq(3*f(x).diff(x) - 1, 0), 'sol': [Eq(f(x), C1 + x/3)], }, 'algeb_18': { 'eq': Eq(x*f(x).diff(x) - 1, 0), 'sol': [Eq(f(x), C1 + log(x))], }, # https://github.com/sympy/sympy/issues/6989 'algeb_19': { 'eq': f(x).diff(x) - x*exp(-k*x), 'sol': [Eq(f(x), C1 + Piecewise(((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),(x**2/2, True)))], }, 'algeb_20': { 'eq': -f(x).diff(x) + x*exp(-k*x), 'sol': [Eq(f(x), C1 + Piecewise(((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),(x**2/2, True)))], }, # https://github.com/sympy/sympy/issues/10867 'algeb_21': { 'eq': Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3), 'sol': [Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)], 'func': g(x), }, # https://github.com/sympy/sympy/issues/13691 'algeb_22': { 'eq': f(x).diff(x) - C1*g(x).diff(x), 'sol': [Eq(f(x), C2 + C1*g(x))], 'func': f(x), }, # https://github.com/sympy/sympy/issues/4838 'algeb_23': { 'eq': f(x).diff(x) - 3*C1 - 3*x**2, 'sol': [Eq(f(x), C2 + 3*C1*x + x**3)], }, } } @_add_example_keys def _get_examples_ode_sol_nth_order_reducible(): return { 'hint': "nth_order_reducible", 'func': f(x), 'examples':{ 'reducible_01': { 'eq': Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0), 'sol': [Eq(f(x),C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))], 'slow': True, }, 'reducible_02': { 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x, 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))], 'slow': True, }, 'reducible_03': { 'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))], 'slow': True, }, 'reducible_04': { 'eq': f(x).diff(x, 2) + 2*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x))], }, 'reducible_05': { 'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))], 'slow': True, }, 'reducible_06': { 'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))], 'slow': True, }, 'reducible_07': { 'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3), 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))], 'slow': True, }, 'reducible_08': { 'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))], 'slow': True, }, 'reducible_09': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))], 'slow': True, }, 'reducible_10': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x))], 'slow': True, }, 'reducible_11': { 'eq': f(x).diff(x, 2) - f(x).diff(x)**3, 'sol': [Eq(f(x), C1 - sqrt(2)*sqrt(-1/(C2 + x))*(C2 + x)), Eq(f(x), C1 + sqrt(2)*sqrt(-1/(C2 + x))*(C2 + x))], 'slow': True, }, # Needs to be a way to know how to combine derivatives in the expression 'reducible_12': { 'eq': Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x), 'sol': [Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False))], # 2-arg Mul! 'slow': True, }, } } @_add_example_keys def _get_examples_ode_sol_nth_linear_undetermined_coefficients(): # examples 3-27 below are from Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 231 g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x t = symbols("t") u = symbols("u",cls=Function) R, L, C, E_0, alpha = symbols("R L C E_0 alpha",positive=True) omega = Symbol('omega') return { 'hint': "nth_linear_constant_coeff_undetermined_coefficients", 'func': f(x), 'examples':{ 'undet_01': { 'eq': c - x*g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)], 'slow': True, }, 'undet_02': { 'eq': c - g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)], 'slow': True, }, 'undet_03': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4, 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)], 'slow': True, }, 'undet_04': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))], 'slow': True, }, 'undet_05': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x), 'sol': [Eq(f(x), (S(3)/10 + I/10)*(C1*exp(-2*x) + C2*exp(-x) - I*exp(I*x)))], 'slow': True, }, 'undet_06': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - sin(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + sin(x)/10 - 3*cos(x)/10)], 'slow': True, }, 'undet_07': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - cos(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 3*sin(x)/10 + cos(x)/10)], 'slow': True, }, 'undet_08': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x)), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(x) + sin(x)/5 - 3*cos(x)/5 + 4)], 'slow': True, }, 'undet_09': { 'eq': f2 + f(x).diff(x) + f(x) - x**2, 'sol': [Eq(f(x), -2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))], 'slow': True, }, 'undet_10': { 'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x), 'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))], 'slow': True, }, 'undet_11': { 'eq': f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x), 'sol': [Eq(f(x), C1 + C2*exp(3*x) - 3*exp(2*x)*sin(x)/5 - exp(2*x)*cos(x)/5)], 'slow': True, }, 'undet_12': { 'eq': f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x), 'sol': [Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))], 'slow': True, }, 'undet_13': { 'eq': f2 + f(x).diff(x) - x**2 - 2*x, 'sol': [Eq(f(x), C1 + x**3/3 + C2*exp(-x))], 'slow': True, }, 'undet_14': { 'eq': f2 + f(x).diff(x) - x - sin(2*x), 'sol': [Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))], 'slow': True, }, 'undet_15': { 'eq': f2 + f(x) - 4*x*sin(x), 'sol': [Eq(f(x), (C1 - x**2)*cos(x) + (C2 + x)*sin(x))], 'slow': True, }, 'undet_16': { 'eq': f2 + 4*f(x) - x*sin(2*x), 'sol': [Eq(f(x), (C1 - x**2/8)*cos(2*x) + (C2 + x/16)*sin(2*x))], 'slow': True, }, 'undet_17': { 'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x), 'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))], 'slow': True, }, 'undet_18': { 'eq': f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \ x**2*exp(-x), 'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 - x**3/60 + x/3)))*exp(-x))], 'slow': True, }, 'undet_19': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2, 'sol': [Eq(f(x), C2*exp(-x) + x**2/2 - x*Rational(3,2) + (C1 - x)*exp(-2*x) + Rational(7,4))], 'slow': True, }, 'undet_20': { 'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x), 'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)], 'slow': True, }, 'undet_21': { 'eq': f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x), 'sol': [Eq(f(x), Rational(-1, 36) - x/6 + C2*exp(-3*x) + (C1 + x/5)*exp(2*x))], 'slow': True, }, 'undet_22': { 'eq': f2 + f(x) - sin(x) - exp(-x), 'sol': [Eq(f(x), C2*sin(x) + (C1 - x/2)*cos(x) + exp(-x)/2)], 'slow': True, }, 'undet_23': { 'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x), 'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))], 'slow': True, }, 'undet_24': { 'eq': f2 + f(x) - S.Half - cos(2*x)/2, 'sol': [Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x))], 'slow': True, }, 'undet_25': { 'eq': f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2), 'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + (-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)], 'slow': True, }, #Note: 'undet_26' is referred in 'undet_37' 'undet_26': { 'eq': (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - sin(x) - cos(x)), 'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8))*sin(x) + (C4 + x*(C5 + x/8))*cos(x))], 'slow': True, }, 'undet_27': { 'eq': f2 + f(x) - cos(x)/2 + cos(3*x)/2, 'sol': [Eq(f(x), cos(3*x)/16 + C2*cos(x) + (C1 + x/4)*sin(x))], 'slow': True, }, 'undet_28': { 'eq': f(x).diff(x) - 1, 'sol': [Eq(f(x), C1 + x)], 'slow': True, }, # https://github.com/sympy/sympy/issues/19358 'undet_29': { 'eq': f2 + f(x).diff(x) + exp(x-C1), 'sol': [Eq(f(x), C2 + C3*exp(-x) - exp(-C1 + x)/2)], 'slow': True, }, # https://github.com/sympy/sympy/issues/18408 'undet_30': { 'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x), 'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + x*sinh(x)/2)], }, 'undet_31': { 'eq': f(x).diff(x, 2) - 49*f(x) - sinh(3*x), 'sol': [Eq(f(x), C1*exp(-7*x) + C2*exp(7*x) - sinh(3*x)/40)], }, 'undet_32': { 'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x) - exp(x), 'sol': [Eq(f(x), C1 + C3*exp(-x) + x*sinh(x)/2 + (C2 + x/2)*exp(x))], }, # https://github.com/sympy/sympy/issues/5096 'undet_33': { 'eq': f(x).diff(x, x) + f(x) - x*sin(x - 2), 'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x**2*cos(x - 2)/4 + x*sin(x - 2)/4)], }, 'undet_34': { 'eq': f(x).diff(x, 2) + f(x) - x**4*sin(x-1), 'sol': [ Eq(f(x), C1*sin(x) + C2*cos(x) - x**5*cos(x - 1)/10 + x**4*sin(x - 1)/4 + x**3*cos(x - 1)/2 - 3*x**2*sin(x - 1)/4 - 3*x*cos(x - 1)/4)], }, 'undet_35': { 'eq': f(x).diff(x, 2) - f(x) - exp(x - 1), 'sol': [Eq(f(x), C2*exp(-x) + (C1 + x*exp(-1)/2)*exp(x))], }, 'undet_36': { 'eq': f(x).diff(x, 2)+f(x)-(sin(x-2)+1), 'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x*cos(x - 2)/2 + 1)], }, # Equivalent to example_name 'undet_26'. # This previously failed because the algorithm for undetermined coefficients # didn't know to multiply exp(I*x) by sufficient x because it is linearly # dependent on sin(x) and cos(x). 'undet_37': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x), 'sol': [Eq(f(x), C1 + x**2*(I*exp(I*x)/8 + 1) + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))], }, # https://github.com/sympy/sympy/issues/12623 'undet_38': { 'eq': Eq( u(t).diff(t,t) + R /L*u(t).diff(t) + 1/(L*C)*u(t), alpha), 'sol': [Eq(u(t), C*L*alpha + C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)))], 'func': u(t) }, 'undet_39': { 'eq': Eq( L*C*u(t).diff(t,t) + R*C*u(t).diff(t) + u(t), E_0*exp(I*omega*t) ), 'sol': [Eq(u(t), C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) - E_0*exp(I*omega*t)/(C*L*omega**2 - I*C*R*omega - 1))], 'func': u(t), }, # https://github.com/sympy/sympy/issues/6879 'undet_40': { 'eq': Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x)), 'sol': [Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)], }, } } @_add_example_keys def _get_examples_ode_sol_separable(): # test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and # Pollard, pg. 55 t,a = symbols('a,t') m = 96 g = 9.8 k = .2 f1 = g * m v = Function('v') return { 'hint': "separable", 'func': f(x), 'examples':{ 'separable_01': { 'eq': f(x).diff(x) - f(x), 'sol': [Eq(f(x), C1*exp(x))], }, 'separable_02': { 'eq': x*f(x).diff(x) - f(x), 'sol': [Eq(f(x), C1*x)], }, 'separable_03': { 'eq': f(x).diff(x) + sin(x), 'sol': [Eq(f(x), C1 + cos(x))], }, 'separable_04': { 'eq': f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x), 'sol': [Eq(f(x), tan(C1 + atan(x)))], }, 'separable_05': { 'eq': f(x).diff(x)/tan(x) - f(x) - 2, 'sol': [Eq(f(x), C1/cos(x) - 2)], }, 'separable_06': { 'eq': f(x).diff(x) * (1 - sin(f(x))) - 1, 'sol': [Eq(-x + f(x) + cos(f(x)), C1)], }, 'separable_07': { 'eq': f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x), 'sol': [ Eq(f(x), (-x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1)/2), Eq(f(x), -((x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1))/2) ], 'slow': True, }, 'separable_08': { 'eq': f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x), 'sol': [Eq(f(x), -sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1)), Eq(f(x), sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1))], 'slow': True, }, 'separable_09': { 'eq': x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2), 'sol': [Eq(f(x), sinh(C1 - log(log(x))))], #One more solution is f(x)=I 'slow': True, 'checkodesol_XFAIL': True, }, 'separable_10': { 'eq': exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x), 'sol': [Eq(E*exp(x) + log(cos(f(x)) - 1)/2 - log(cos(f(x)) + 1)/2 + cos(f(x)), C1)], 'slow': True, }, 'separable_11': { 'eq': (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) - a**2*sin(f(x))*f(x).diff(x)), 'sol': [ Eq(f(x), -acos(C1*sqrt(-a**2 + x**2)) + 2*pi), Eq(f(x), acos(C1*sqrt(-a**2 + x**2))) ], 'slow': True, }, 'separable_12': { 'eq': f(x).diff(x) - f(x)*tan(x), 'sol': [Eq(f(x), C1/cos(x))], }, 'separable_13': { 'eq': (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)), 'sol': [ Eq(f(x), pi - asin(C1*(x**2 - 2*x + 1)*exp(2*x))), Eq(f(x), asin(C1*(x**2 - 2*x + 1)*exp(2*x))) ], }, 'separable_14': { 'eq': f(x).diff(x) - f(x)*log(f(x))/tan(x), 'sol': [Eq(f(x), exp(C1*sin(x)))], }, 'separable_15': { 'eq': x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x)), 'sol': [Eq(f(x), tan(C1/x))], #Two more solutions are f(x)=0 and f(x)=I 'slow': True, 'checkodesol_XFAIL': True, }, 'separable_16': { 'eq': f(x).diff(x) + x*(f(x) + 1), 'sol': [Eq(f(x), -1 + C1*exp(-x**2/2))], }, 'separable_17': { 'eq': exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x), 'sol': [ Eq(f(x), -sqrt(log(1/(C1 + x**2 + 2*x)))), Eq(f(x), sqrt(log(1/(C1 + x**2 + 2*x)))) ], }, 'separable_18': { 'eq': f(x).diff(x) + f(x), 'sol': [Eq(f(x), C1*exp(-x))], }, 'separable_19': { 'eq': sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x), 'sol': [Eq(f(x), pi - acos(C1/cos(x)**2)/2), Eq(f(x), acos(C1/cos(x)**2)/2)], }, 'separable_20': { 'eq': (1 - x)*f(x).diff(x) - x*(f(x) + 1), 'sol': [Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))], }, 'separable_21': { 'eq': f(x)*diff(f(x), x) + x - 3*x*f(x)**2, 'sol': [Eq(f(x), -sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3), Eq(f(x), sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3)], }, 'separable_22': { 'eq': f(x).diff(x) - exp(x + f(x)), 'sol': [Eq(f(x), log(-1/(C1 + exp(x))))], 'XFAIL': ['lie_group'] #It shows 'NoneType' object is not subscriptable for lie_group. }, # https://github.com/sympy/sympy/issues/7081 'separable_23': { 'eq': x*(f(x).diff(x)) + 1 - f(x)**2, 'sol': [Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2))], }, # https://github.com/sympy/sympy/issues/10379 'separable_24': { 'eq': f(t).diff(t)-(1-51.05*y*f(t)), 'sol': [Eq(f(t), (0.019588638589618023*exp(y*(C1 - 51.049999999999997*t)) + 0.019588638589618023)/y)], 'func': f(t), }, # https://github.com/sympy/sympy/issues/15999 'separable_25': { 'eq': f(x).diff(x) - C1*f(x), 'sol': [Eq(f(x), C2*exp(C1*x))], }, 'separable_26': { 'eq': f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 'sol': [Eq(v(t), -68.585712797928991/tanh(C1 - 0.14288690166235204*t))], 'func': v(t), 'checkodesol_XFAIL': True, } } } @_add_example_keys def _get_examples_ode_sol_1st_exact(): # Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0, # where dp/df == dq/dx ''' Example 7 is an exact equation that fails under the exact engine. It is caught by first order homogeneous albeit with a much contorted solution. The exact engine fails because of a poorly simplified integral of q(0,y)dy, where q is the function multiplying f'. The solutions should be Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is equivalent, but it is so complex that checkodesol fails, and takes a long time to do so. ''' return { 'hint': "1st_exact", 'func': f(x), 'examples':{ '1st_exact_01': { 'eq': sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x), 'sol': [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))], 'slow': True, }, '1st_exact_02': { 'eq': (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x), 'sol': [Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))], 'XFAIL': ['lie_group'], #It shows dsolve raises an exception: List index out of range for lie_group 'slow': True, 'checkodesol_XFAIL':True }, '1st_exact_03': { 'eq': 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x), 'sol': [Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)], 'XFAIL': ['lie_group'], #It goes into infinite loop for lie_group. 'slow': True, }, '1st_exact_04': { 'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), 'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)], 'slow': True, }, '1st_exact_05': { 'eq': 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), 'sol': [Eq(x**2*f(x) + f(x)**3/3, C1)], 'slow': True, 'simplify_flag':False }, # This was from issue: https://github.com/sympy/sympy/issues/11290 '1st_exact_06': { 'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x), 'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)], 'simplify_flag':False }, '1st_exact_07': { 'eq': x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) - sqrt(x**2 + f(x)**2)))*f(x).diff(x), 'sol': [Eq(log(x), C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)* log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) + 9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) + 9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/ (x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))], 'slow': True, 'dsolve_too_slow':True }, # Type: a(x)f'(x)+b(x)*f(x)+c(x)=0 '1st_exact_08': { 'eq': Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0), 'sol': [Eq(f(x), (C1 - cos(x))/x**3)], }, # these examples are from test_exact_enhancement '1st_exact_09': { 'eq': f(x)/x**2 + ((f(x)*x - 1)/x)*f(x).diff(x), 'sol': [Eq(f(x), (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)], }, '1st_exact_10': { 'eq': (x*f(x) - 1) + f(x).diff(x)*(x**2 - x*f(x)), 'sol': [Eq(f(x), x - sqrt(C1 + x**2 - 2*log(x))), Eq(f(x), x + sqrt(C1 + x**2 - 2*log(x)))], }, '1st_exact_11': { 'eq': (x + 2)*sin(f(x)) + f(x).diff(x)*x*cos(f(x)), 'sol': [Eq(f(x), -asin(C1*exp(-x)/x**2) + pi), Eq(f(x), asin(C1*exp(-x)/x**2))], }, } } @_add_example_keys def _get_examples_ode_sol_nth_linear_var_of_parameters(): g = exp(-x) f2 = f(x).diff(x, 2) c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x return { 'hint': "nth_linear_constant_coeff_variation_of_parameters", 'func': f(x), 'examples':{ 'var_of_parameters_01': { 'eq': c - x*g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)], 'slow': True, }, 'var_of_parameters_02': { 'eq': c - g, 'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)], 'slow': True, }, 'var_of_parameters_03': { 'eq': f(x).diff(x) - 1, 'sol': [Eq(f(x), C1 + x)], 'slow': True, }, 'var_of_parameters_04': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4, 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)], 'slow': True, }, 'var_of_parameters_05': { 'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x), 'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))], 'slow': True, }, 'var_of_parameters_06': { 'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x), 'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))], 'slow': True, }, 'var_of_parameters_07': { 'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x), 'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))], 'slow': True, }, 'var_of_parameters_08': { 'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x), 'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)], 'slow': True, }, 'var_of_parameters_09': { 'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x), 'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))], 'slow': True, }, 'var_of_parameters_10': { 'eq': f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x, 'sol': [Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))], 'slow': True, }, 'var_of_parameters_11': { 'eq': f2 + f(x) - 1/sin(x)*1/cos(x), 'sol': [Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2 )*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))], 'slow': True, }, 'var_of_parameters_12': { 'eq': f(x).diff(x, 4) - 1/x, 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + x**3*(C4 + log(x)/6))], 'slow': True, }, # These were from issue: https://github.com/sympy/sympy/issues/15996 'var_of_parameters_13': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x), 'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8 + 3*exp(I*x)/2 + 3*exp(-I*x)/2) + 5*exp(2*I*x)/16 + 2*I*exp(I*x) - 2*I*exp(-I*x))*sin(x) + (C4 + x*(C5 + I*x/8 + 3*I*exp(I*x)/2 - 3*I*exp(-I*x)/2) + 5*I*exp(2*I*x)/16 - 2*exp(I*x) - 2*exp(-I*x))*cos(x) - I*exp(I*x))], }, 'var_of_parameters_14': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - exp(I*x), 'sol': [Eq(f(x), C1 + (C2 + x*(C3 - x/8) + 5*exp(2*I*x)/16)*sin(x) + (C4 + x*(C5 + I*x/8) + 5*I*exp(2*I*x)/16)*cos(x) - I*exp(I*x))], }, # https://github.com/sympy/sympy/issues/14395 'var_of_parameters_15': { 'eq': Derivative(f(x), x, x) + 9*f(x) - sec(x), 'sol': [Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x)) - 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))], 'slow': True, }, } } @_add_example_keys def _get_examples_ode_sol_2nd_linear_bessel(): return { 'hint': "2nd_linear_bessel", 'func': f(x), 'examples':{ '2nd_lin_bessel_01': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x), 'sol': [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x))], }, '2nd_lin_bessel_02': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x), 'sol': [Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x))], }, '2nd_lin_bessel_03': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x), 'sol': [Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x))], }, '2nd_lin_bessel_04': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x), 'sol': [Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x))], }, '2nd_lin_bessel_05': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x), 'sol': [Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2))], }, '2nd_lin_bessel_06': { 'eq': x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x), 'sol': [Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x))], }, '2nd_lin_bessel_07': { 'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x), 'sol': [Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))], }, '2nd_lin_bessel_08': { 'eq': x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x), 'sol': [Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x))))], }, '2nd_lin_bessel_09': { 'eq': x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x), 'sol': [Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2)))], }, '2nd_lin_bessel_10': { 'eq': (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x), 'sol': [Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4)))], }, # https://github.com/sympy/sympy/issues/4414 '2nd_lin_bessel_11': { 'eq': f(x).diff(x, x) + 2/x*f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))/sqrt(x))], }, } } @_add_example_keys def _get_examples_ode_sol_2nd_2F1_hypergeometric(): return { 'hint': "2nd_hypergeometric", 'func': f(x), 'examples':{ '2nd_2F1_hyper_01': { 'eq': x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x), 'sol': [Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x))], }, '2nd_2F1_hyper_02': { 'eq': x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) + C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2))], }, '2nd_2F1_hyper_03': { 'eq': x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) + C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2))], }, '2nd_2F1_hyper_04': { 'eq': -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) + x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2)), 'sol': [Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) + C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84))], 'checkodesol_XFAIL':True, }, } } @_add_example_keys def _get_examples_ode_sol_2nd_nonlinear_autonomous_conserved(): return { 'hint': "2nd_nonlinear_autonomous_conserved", 'func': f(x), 'examples': { '2nd_nonlinear_autonomous_conserved_01': { 'eq': f(x).diff(x, 2) + exp(f(x)) + log(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 - 2*_u*log(_u) + 2*_u - 2*exp(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*_u*log(_u) + 2*_u - 2*exp(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_02': { 'eq': f(x).diff(x, 2) + cbrt(f(x)) + 1/f(x), 'sol': [ Eq(sqrt(2)*Integral(1/sqrt(2*C1 - 3*_u**Rational(4, 3) - 4*log(_u)), (_u, f(x))), C2 + x), Eq(sqrt(2)*Integral(1/sqrt(2*C1 - 3*_u**Rational(4, 3) - 4*log(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_03': { 'eq': f(x).diff(x, 2) + sin(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 + 2*cos(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 + 2*cos(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_04': { 'eq': f(x).diff(x, 2) + cosh(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 - 2*sinh(_u)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*sinh(_u)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, }, '2nd_nonlinear_autonomous_conserved_05': { 'eq': f(x).diff(x, 2) + asin(f(x)), 'sol': [ Eq(Integral(1/sqrt(C1 - 2*_u*asin(_u) - 2*sqrt(1 - _u**2)), (_u, f(x))), C2 + x), Eq(Integral(1/sqrt(C1 - 2*_u*asin(_u) - 2*sqrt(1 - _u**2)), (_u, f(x))), C2 - x) ], 'simplify_flag': False, 'XFAIL': ['2nd_nonlinear_autonomous_conserved_Integral'] } } } @_add_example_keys def _get_examples_ode_sol_separable_reduced(): df = f(x).diff(x) return { 'hint': "separable_reduced", 'func': f(x), 'examples':{ 'separable_reduced_01': { 'eq': x* df + f(x)* (1 / (x**2*f(x) - 1)), 'sol': [Eq(log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6, C1 + log(x))], 'simplify_flag': False, 'XFAIL': ['lie_group'], #It hangs. }, #Note: 'separable_reduced_02' is referred in 'separable_reduced_11' 'separable_reduced_02': { 'eq': f(x).diff(x) + (f(x) / (x**4*f(x) - x)), 'sol': [Eq(log(x**3*f(x))/4 + log(x**3*f(x) - Rational(4,3))/12, C1 + log(x))], 'simplify_flag': False, 'checkodesol_XFAIL':True, #It hangs for this. }, 'separable_reduced_03': { 'eq': x*df + f(x)*(x**2*f(x)), 'sol': [Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))], 'simplify_flag': False, }, 'separable_reduced_04': { 'eq': Eq(f(x).diff(x) + f(x)/x * (1 + (x**(S(2)/3)*f(x))**2), 0), 'sol': [Eq(-3*log(x**(S(2)/3)*f(x)) + 3*log(3*x**(S(4)/3)*f(x)**2 + 1)/2, C1 + log(x))], 'simplify_flag': False, }, 'separable_reduced_05': { 'eq': Eq(f(x).diff(x) + f(x)/x * (1 + (x*f(x))**2), 0), 'sol': [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x)),\ Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x))], }, 'separable_reduced_06': { 'eq': Eq(f(x).diff(x) + (x**4*f(x)**2 + x**2*f(x))*f(x)/(x*(x**6*f(x)**3 + x**4*f(x)**2)), 0), 'sol': [Eq(f(x), C1 + 1/(2*x**2))], }, 'separable_reduced_07': { 'eq': Eq(f(x).diff(x) + (f(x)**2)*f(x)/(x), 0), 'sol': [ Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/2), Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/2) ], }, 'separable_reduced_08': { 'eq': Eq(f(x).diff(x) + (f(x)+3)*f(x)/(x*(f(x)+2)), 0), 'sol': [Eq(-log(f(x) + 3)/3 - 2*log(f(x))/3, C1 + log(x))], 'simplify_flag': False, 'XFAIL': ['lie_group'], #It hangs. }, 'separable_reduced_09': { 'eq': Eq(f(x).diff(x) + (f(x)+3)*f(x)/x, 0), 'sol': [Eq(f(x), 3/(C1*x**3 - 1))], }, 'separable_reduced_10': { 'eq': Eq(f(x).diff(x) + (f(x)**2+f(x))*f(x)/(x), 0), 'sol': [Eq(- log(x) - log(f(x) + 1) + log(f(x)) + 1/f(x), C1)], 'XFAIL': ['lie_group'],#No algorithms are implemented to solve equation -C1 + x*(_y + 1)*exp(-1/_y)/_y }, # Equivalent to example_name 'separable_reduced_02'. Only difference is testing with simplify=True 'separable_reduced_11': { 'eq': f(x).diff(x) + (f(x) / (x**4*f(x) - x)), 'sol': [Eq(f(x), -sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 - sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 - 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)), Eq(f(x), -sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 + sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 - 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)), Eq(f(x), sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 - sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 + 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)), Eq(f(x), sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6 + sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 + 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3))], 'checkodesol_XFAIL':True, #It hangs for this. 'slow': True, }, #These were from issue: https://github.com/sympy/sympy/issues/6247 'separable_reduced_12': { 'eq': x**2*f(x)**2 + x*Derivative(f(x), x), 'sol': [Eq(f(x), 2*C1/(C1*x**2 - 1))], }, } } @_add_example_keys def _get_examples_ode_sol_lie_group(): a, b, c = symbols("a b c") return { 'hint': "lie_group", 'func': f(x), 'examples':{ #Example 1-4 and 19-20 were from issue: https://github.com/sympy/sympy/issues/17322 'lie_group_01': { 'eq': x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x, 'sol': [], 'dsolve_too_slow': True, 'checkodesol_too_slow': True, }, 'lie_group_02': { 'eq': x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x, 'sol': [], 'dsolve_too_slow': True, }, 'lie_group_03': { 'eq': Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0), 'sol': [], 'dsolve_too_slow': True, }, 'lie_group_04': { 'eq': f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x), 'sol': [], 'XFAIL': ['lie_group'], }, 'lie_group_05': { 'eq': f(x).diff(x)**2, 'sol': [Eq(f(x), C1)], 'XFAIL': ['factorable'], #It raises Not Implemented error }, 'lie_group_06': { 'eq': Eq(f(x).diff(x), x**2*f(x)), 'sol': [Eq(f(x), C1*exp(x**3)**Rational(1, 3))], }, 'lie_group_07': { 'eq': f(x).diff(x) + a*f(x) - c*exp(b*x), 'sol': [Eq(f(x), Piecewise(((-C1*(a + b) + c*exp(x*(a + b)))*exp(-a*x)/(a + b),\ Ne(a, -b)), ((-C1 + c*x)*exp(-a*x), True)))], }, 'lie_group_08': { 'eq': f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), 'sol': [Eq(f(x), (C1 + x**2/2)*exp(-x**2))], }, 'lie_group_09': { 'eq': (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x)), 'sol': [Eq(f(x), log(C1/(2*x + 1) + 2))], }, 'lie_group_10': { 'eq': x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x)), 'sol': [Eq(f(x), -((C1 + exp(x))*exp(-1/x)))], 'XFAIL': ['factorable'], #It raises Recursion Error (maixmum depth exceeded) }, 'lie_group_11': { 'eq': x**2*f(x)**2 + x*Derivative(f(x), x), 'sol': [Eq(f(x), 2/(C1 + x**2))], }, 'lie_group_12': { 'eq': diff(f(x),x) + 2*x*f(x) - x*exp(-x**2), 'sol': [Eq(f(x), exp(-x**2)*(C1 + x**2/2))], }, 'lie_group_13': { 'eq': diff(f(x),x) + f(x)*cos(x) - exp(2*x), 'sol': [Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x)))], }, 'lie_group_14': { 'eq': diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2, 'sol': [Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1)], }, 'lie_group_15': { 'eq': x*diff(f(x),x) + f(x) - x*sin(x), 'sol': [Eq(f(x), (C1 - x*cos(x) + sin(x))/x)], }, 'lie_group_16': { 'eq': x*diff(f(x),x) - f(x) - x/log(x), 'sol': [Eq(f(x), x*(C1 + log(log(x))))], }, 'lie_group_17': { 'eq': (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)), 'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))], }, 'lie_group_18': { 'eq': f(x).diff(x) * (f(x).diff(x) - f(x)), 'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1)], }, 'lie_group_19': { 'eq': (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)), 'sol': [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))], }, 'lie_group_20': { 'eq': f(x).diff(x)*(f(x).diff(x)+f(x)), 'sol': [Eq(f(x), C1), Eq(f(x), C1*exp(-x))], }, } } @_add_example_keys def _get_examples_ode_sol_2nd_linear_airy(): return { 'hint': "2nd_linear_airy", 'func': f(x), 'examples':{ '2nd_lin_airy_01': { 'eq': f(x).diff(x, 2) - x*f(x), 'sol': [Eq(f(x), C1*airyai(x) + C2*airybi(x))], }, '2nd_lin_airy_02': { 'eq': f(x).diff(x, 2) + 2*x*f(x), 'sol': [Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x))], }, } } @_add_example_keys def _get_examples_ode_sol_nth_linear_constant_coeff_homogeneous(): # From Exercise 20, in Ordinary Differential Equations, # Tenenbaum and Pollard, pg. 220 a = Symbol('a', positive=True) k = Symbol('k', real=True) r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)] r6, r7, r8, r9, r10 = [rootof(x**5 - 3*x + 1, n) for n in range(5)] r11, r12, r13, r14, r15 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)] r16, r17, r18, r19, r20 = [rootof(x**5 - x**4 + 10, n) for n in range(5)] r21, r22, r23, r24, r25 = [rootof(x**5 - x + 1, n) for n in range(5)] E = exp(1) return { 'hint': "nth_linear_constant_coeff_homogeneous", 'func': f(x), 'examples':{ 'lin_const_coeff_hom_01': { 'eq': f(x).diff(x, 2) + 2*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x))], }, 'lin_const_coeff_hom_02': { 'eq': f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x), 'sol': [Eq(f(x), (C1 + C2*exp(x))*exp(x))], }, 'lin_const_coeff_hom_03': { 'eq': f(x).diff(x, 2) - f(x), 'sol': [Eq(f(x), C1*exp(-x) + C2*exp(x))], }, 'lin_const_coeff_hom_04': { 'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_05': { 'eq': 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x), 'sol': [Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3)))], 'slow': True, }, 'lin_const_coeff_hom_06': { 'eq': Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0), 'sol': [Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))], 'slow': True, }, 'lin_const_coeff_hom_07': { 'eq': diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x), 'sol': [Eq(f(x), C1*exp(3*x) + C2*exp(x*(-2 - sqrt(2))) + C3*exp(x*(-2 + sqrt(2))))], 'slow': True, }, 'lin_const_coeff_hom_08': { 'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \ 4*f(x).diff(x), 'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_09': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \ 4*f(x).diff(x) - 2*f(x), 'sol': [Eq(f(x), C3*exp(-x) + C4*exp(x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))], 'slow': True, }, 'lin_const_coeff_hom_10': { 'eq': f(x).diff(x, 4) - a**2*f(x), 'sol': [Eq(f(x), C1*exp(-sqrt(a)*x) + C2*exp(sqrt(a)*x) + C3*sin(sqrt(a)*x) + C4*cos(sqrt(a)*x))], 'slow': True, }, 'lin_const_coeff_hom_11': { 'eq': f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x), 'sol': [Eq(f(x), C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))], 'slow': True, }, 'lin_const_coeff_hom_12': { 'eq': f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x), 'sol': [Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))], 'slow': True, }, 'lin_const_coeff_hom_13': { 'eq': f(x).diff(x, 4), 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)], 'slow': True, }, 'lin_const_coeff_hom_14': { 'eq': f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-2*x))], 'slow': True, }, 'lin_const_coeff_hom_15': { 'eq': 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))], 'slow': True, }, 'lin_const_coeff_hom_16': { 'eq': f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x), 'sol': [Eq(f(x), (C1 + x*(C2 + C3*x))*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_17': { 'eq': f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(a*x))], 'slow': True, }, 'lin_const_coeff_hom_18': { 'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3), 'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))], 'slow': True, }, 'lin_const_coeff_hom_19': { 'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))], 'slow': True, }, 'lin_const_coeff_hom_20': { 'eq': f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \ 12*f(x).diff(x) + 36*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_21': { 'eq': 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x), 'sol': [Eq(f(x), C1*exp(-x) + C2*exp(-x/3) + C3*exp(x/2) + C4*exp(x*Rational(5, 6)))], 'slow': True, }, 'lin_const_coeff_hom_22': { 'eq': f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_23': { 'eq': f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x), 'sol': [Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))], 'slow': True, }, 'lin_const_coeff_hom_24': { 'eq': f(x).diff(x, 2) - f(x).diff(x) + f(x), 'sol': [Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))], 'slow': True, }, 'lin_const_coeff_hom_25': { 'eq': f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x), 'sol': [Eq(f(x), C1*sin(sqrt(2)*x) + C2*sin(sqrt(3)*x) + C3*cos(sqrt(2)*x) + C4*cos(sqrt(3)*x))], 'slow': True, }, 'lin_const_coeff_hom_26': { 'eq': f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x), 'sol': [Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))], 'slow': True, }, 'lin_const_coeff_hom_27': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x), 'sol': [Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))], 'slow': True, }, 'lin_const_coeff_hom_28': { 'eq': f(x).diff(x, 3) + 8*f(x), 'sol': [Eq(f(x), (C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))], 'slow': True, }, 'lin_const_coeff_hom_29': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2), 'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))], 'slow': True, }, 'lin_const_coeff_hom_30': { 'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x), 'sol': [Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))], 'slow': True, }, 'lin_const_coeff_hom_31': { 'eq': f(x).diff(x, 4) + f(x).diff(x, 2) + f(x), 'sol': [Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))*exp(-x/2) + (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*exp(x/2))], 'slow': True, }, 'lin_const_coeff_hom_32': { 'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x), 'sol': [Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2)) + C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))], 'slow': True, }, # One real root, two complex conjugate pairs 'lin_const_coeff_hom_33': { 'eq': f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x), 'sol': [Eq(f(x), C5*exp(r1*x) + exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x)) + exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x)))], 'checkodesol_XFAIL':True, #It Hangs }, # Three real roots, one complex conjugate pair 'lin_const_coeff_hom_34': { 'eq': f(x).diff(x,5) - 3*f(x).diff(x) + f(x), 'sol': [Eq(f(x), C3*exp(r6*x) + C4*exp(r7*x) + C5*exp(r8*x) + exp(re(r9)*x) * (C1*sin(im(r9)*x) + C2*cos(im(r9)*x)))], 'checkodesol_XFAIL':True, #It Hangs }, # Five distinct real roots 'lin_const_coeff_hom_35': { 'eq': f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x), 'sol': [Eq(f(x), C1*exp(r11*x) + C2*exp(r12*x) + C3*exp(r13*x) + C4*exp(r14*x) + C5*exp(r15*x))], 'checkodesol_XFAIL':True, #It Hangs }, # Rational root and unsolvable quintic 'lin_const_coeff_hom_36': { 'eq': f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x), 'sol': [Eq(f(x), C5*exp(5*x) + C6*exp(x*r16) + exp(re(r17)*x) * (C1*sin(im(r17)*x) + C2*cos(im(r17)*x)) + exp(re(r19)*x) * (C3*sin(im(r19)*x) + C4*cos(im(r19)*x)))], 'checkodesol_XFAIL':True, #It Hangs }, # Five double roots (this is (x**5 - x + 1)**2) 'lin_const_coeff_hom_37': { 'eq': f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x), 'sol': [Eq(f(x), (C1 + C2*x)*exp(x*r21) + (C10*sin(x*im(r24)) + C7*x*sin(x*im(r24)) + ( C8 + C9*x)*cos(x*im(r24)))*exp(x*re(r24)) + (C3*x*sin(x*im(r22)) + C6*sin(x*im(r22) ) + (C4 + C5*x)*cos(x*im(r22)))*exp(x*re(r22)))], 'checkodesol_XFAIL':True, #It Hangs }, 'lin_const_coeff_hom_38': { 'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))], }, 'lin_const_coeff_hom_39': { 'eq': Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))], }, 'lin_const_coeff_hom_40': { 'eq': Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))], }, 'lin_const_coeff_hom_41': { 'eq': Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0), 'sol': [Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))], }, 'lin_const_coeff_hom_42': { 'eq': f(x).diff(x, x) + y*f(x), 'sol': [Eq(f(x), C1*exp(-x*sqrt(-y)) + C2*exp(x*sqrt(-y)))], }, 'lin_const_coeff_hom_43': { 'eq': Eq(9*f(x).diff(x, x) + f(x), 0), 'sol': [Eq(f(x), C1*sin(x/3) + C2*cos(x/3))], }, 'lin_const_coeff_hom_44': { 'eq': Eq(9*f(x).diff(x, x), f(x)), 'sol': [Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))], }, 'lin_const_coeff_hom_45': { 'eq': Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0), 'sol': [Eq(f(x), (C1 + C2*exp(x))*exp(x))], }, 'lin_const_coeff_hom_46': { 'eq': Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0), 'sol': [Eq(f(x), (C1 + C2*x)*exp(2*x))], }, # Type: 2nd order, constant coefficients (two real equal roots) 'lin_const_coeff_hom_47': { 'eq': Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0), 'sol': [Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))], }, #These were from issue: https://github.com/sympy/sympy/issues/6247 'lin_const_coeff_hom_48': { 'eq': f(x).diff(x, x) + 4*f(x), 'sol': [Eq(f(x), C1*sin(2*x) + C2*cos(2*x))], }, } } @_add_example_keys def _get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep(): return { 'hint': "1st_homogeneous_coeff_subs_dep_div_indep", 'func': f(x), 'examples':{ 'dep_div_indep_01': { 'eq': f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x), 'sol': [Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))], 'slow': True }, #indep_div_dep actually has a simpler solution for example 2 but it runs too slow. 'dep_div_indep_02': { 'eq': x*f(x).diff(x) - f(x) - x*sin(f(x)/x), 'sol': [Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)], 'simplify_flag':False, }, 'dep_div_indep_03': { 'eq': x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x), 'sol': [Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)], 'slow': True }, 'dep_div_indep_04': { 'eq': f(x).diff(x) - f(x)/x + 1/sin(f(x)/x), 'sol': [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))], 'slow': True }, # previous code was testing with these other solution: # example5_solb = Eq(f(x), log(log(C1/x)**(-x))) 'dep_div_indep_05': { 'eq': x*exp(f(x)/x) + f(x) - x*f(x).diff(x), 'sol': [Eq(f(x), log((1/(C1 - log(x)))**x))], 'checkodesol_XFAIL':True, #(because of **x?) }, } } @_add_example_keys def _get_examples_ode_sol_linear_coefficients(): return { 'hint': "linear_coefficients", 'func': f(x), 'examples':{ 'linear_coeff_01': { 'eq': f(x).diff(x) + (3 + 2*f(x))/(x + 3), 'sol': [Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2))], }, } } @_add_example_keys def _get_examples_ode_sol_1st_homogeneous_coeff_best(): return { 'hint': "1st_homogeneous_coeff_best", 'func': f(x), 'examples':{ # previous code was testing this with other solution: # example1_solb = Eq(-f(x)/(1 + log(x/f(x))), C1) '1st_homogeneous_coeff_best_01': { 'eq': f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x), 'sol': [Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))], 'checkodesol_XFAIL':True, #(because of LambertW?) }, '1st_homogeneous_coeff_best_02': { 'eq': 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x), 'sol': [Eq(log(f(x)), C1 - 2*exp(x/f(x)))], }, # previous code was testing this with other solution: # example3_solb = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0) '1st_homogeneous_coeff_best_03': { 'eq': 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x), 'sol': [Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)], 'checkodesol_XFAIL':True, #(because of LambertW?) }, '1st_homogeneous_coeff_best_04': { 'eq': (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x), 'sol': [Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))], 'slow': True, }, '1st_homogeneous_coeff_best_05': { 'eq': x + f(x) - (x - f(x))*f(x).diff(x), 'sol': [Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))], }, '1st_homogeneous_coeff_best_06': { 'eq': x*f(x).diff(x) - f(x) - x*sin(f(x)/x), 'sol': [Eq(f(x), 2*x*atan(C1*x))], }, '1st_homogeneous_coeff_best_07': { 'eq': x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x), 'sol': [Eq(f(x), -sqrt(x*(C1 + x))), Eq(f(x), sqrt(x*(C1 + x)))], }, '1st_homogeneous_coeff_best_08': { 'eq': f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x), 'sol': [Eq(log(x), C1 - log(f(x)/x) + acosh(f(x)/x))], }, } } def _get_all_examples(): all_examples = _get_examples_ode_sol_euler_homogeneous + \ _get_examples_ode_sol_euler_undetermined_coeff + \ _get_examples_ode_sol_euler_var_para + \ _get_examples_ode_sol_factorable + \ _get_examples_ode_sol_bernoulli + \ _get_examples_ode_sol_nth_algebraic + \ _get_examples_ode_sol_riccati + \ _get_examples_ode_sol_1st_linear + \ _get_examples_ode_sol_1st_exact + \ _get_examples_ode_sol_almost_linear + \ _get_examples_ode_sol_nth_order_reducible + \ _get_examples_ode_sol_nth_linear_undetermined_coefficients + \ _get_examples_ode_sol_liouville + \ _get_examples_ode_sol_separable + \ _get_examples_ode_sol_nth_linear_var_of_parameters + \ _get_examples_ode_sol_2nd_linear_bessel + \ _get_examples_ode_sol_2nd_2F1_hypergeometric + \ _get_examples_ode_sol_2nd_nonlinear_autonomous_conserved + \ _get_examples_ode_sol_separable_reduced + \ _get_examples_ode_sol_lie_group + \ _get_examples_ode_sol_2nd_linear_airy + \ _get_examples_ode_sol_nth_linear_constant_coeff_homogeneous +\ _get_examples_ode_sol_1st_homogeneous_coeff_best +\ _get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep +\ _get_examples_ode_sol_linear_coefficients return all_examples
af66ed7c824911240528a81f9d8bfc50a158d5436b10831d209fabc91bce6f92
from sympy import (Symbol, S, exp, log, sqrt, oo, E, zoo, pi, tan, sin, cos, cot, sec, csc, Abs, symbols, I, re, simplify, expint, Rational, Piecewise) from sympy.calculus.util import (function_range, continuous_domain, not_empty_in, periodicity, lcim, AccumBounds, is_convex, stationary_points, minimum, maximum) from sympy.core import Add, Mul, Pow from sympy.core.expr import unchanged from sympy.sets.sets import (Interval, FiniteSet, EmptySet, Complement, Union) from sympy.testing.pytest import raises, _both_exp_pow, XFAIL from sympy.abc import x a = Symbol('a', real=True) B = AccumBounds def test_function_range(): x, y, a, b = symbols('x y a b') assert function_range(sin(x), x, Interval(-pi/2, pi/2) ) == Interval(-1, 1) assert function_range(sin(x), x, Interval(0, pi) ) == Interval(0, 1) assert function_range(tan(x), x, Interval(0, pi) ) == Interval(-oo, oo) assert function_range(tan(x), x, Interval(pi/2, pi) ) == Interval(-oo, 0) assert function_range((x + 3)/(x - 2), x, Interval(-5, 5) ) == Union(Interval(-oo, Rational(2, 7)), Interval(Rational(8, 3), oo)) assert function_range(1/(x**2), x, Interval(-1, 1) ) == Interval(1, oo) assert function_range(exp(x), x, Interval(-1, 1) ) == Interval(exp(-1), exp(1)) assert function_range(log(x) - x, x, S.Reals ) == Interval(-oo, -1) assert function_range(sqrt(3*x - 1), x, Interval(0, 2) ) == Interval(0, sqrt(5)) assert function_range(x*(x - 1) - (x**2 - x), x, S.Reals ) == FiniteSet(0) assert function_range(x*(x - 1) - (x**2 - x) + y, x, S.Reals ) == FiniteSet(y) assert function_range(sin(x), x, Union(Interval(-5, -3), FiniteSet(4)) ) == Union(Interval(-sin(3), 1), FiniteSet(sin(4))) assert function_range(cos(x), x, Interval(-oo, -4) ) == Interval(-1, 1) assert function_range(cos(x), x, S.EmptySet) == S.EmptySet assert function_range(x/sqrt(x**2+1), x, S.Reals) == Interval.open(-1,1) raises(NotImplementedError, lambda : function_range( exp(x)*(sin(x) - cos(x))/2 - x, x, S.Reals)) raises(NotImplementedError, lambda : function_range( sin(x) + x, x, S.Reals)) # issue 13273 raises(NotImplementedError, lambda : function_range( log(x), x, S.Integers)) raises(NotImplementedError, lambda : function_range( sin(x)/2, x, S.Naturals)) def test_continuous_domain(): x = Symbol('x') assert continuous_domain(sin(x), x, Interval(0, 2*pi)) == Interval(0, 2*pi) assert continuous_domain(tan(x), x, Interval(0, 2*pi)) == \ Union(Interval(0, pi/2, False, True), Interval(pi/2, pi*Rational(3, 2), True, True), Interval(pi*Rational(3, 2), 2*pi, True, False)) assert continuous_domain((x - 1)/((x - 1)**2), x, S.Reals) == \ Union(Interval(-oo, 1, True, True), Interval(1, oo, True, True)) assert continuous_domain(log(x) + log(4*x - 1), x, S.Reals) == \ Interval(Rational(1, 4), oo, True, True) assert continuous_domain(1/sqrt(x - 3), x, S.Reals) == Interval(3, oo, True, True) assert continuous_domain(1/x - 2, x, S.Reals) == \ Union(Interval.open(-oo, 0), Interval.open(0, oo)) assert continuous_domain(1/(x**2 - 4) + 2, x, S.Reals) == \ Union(Interval.open(-oo, -2), Interval.open(-2, 2), Interval.open(2, oo)) domain = continuous_domain(log(tan(x)**2 + 1), x, S.Reals) assert not domain.contains(3*pi/2) assert domain.contains(5) d = Symbol('d', even=True, zero=False) assert continuous_domain(x**(1/d), x, S.Reals) == Interval(0, oo) def test_not_empty_in(): assert not_empty_in(FiniteSet(x, 2*x).intersect(Interval(1, 2, True, False)), x) == \ Interval(S.Half, 2, True, False) assert not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) == \ Union(Interval(-sqrt(2), -1), Interval(1, 2)) assert not_empty_in(FiniteSet(x**2 + x, x).intersect(Interval(2, 4)), x) == \ Union(Interval(-sqrt(17)/2 - S.Half, -2), Interval(1, Rational(-1, 2) + sqrt(17)/2), Interval(2, 4)) assert not_empty_in(FiniteSet(x/(x - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet(a/(a - 1)).intersect(S.Reals), a) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet((x**2 - 3*x + 2)/(x - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(1)) assert not_empty_in(FiniteSet(3, 4, x/(x - 1)).intersect(Interval(2, 3)), x) == \ Interval(-oo, oo) assert not_empty_in(FiniteSet(4, x/(x - 1)).intersect(Interval(2, 3)), x) == \ Interval(S(3)/2, 2) assert not_empty_in(FiniteSet(x/(x**2 - 1)).intersect(S.Reals), x) == \ Complement(S.Reals, FiniteSet(-1, 1)) assert not_empty_in(FiniteSet(x, x**2).intersect(Union(Interval(1, 3, True, True), Interval(4, 5))), x) == \ Union(Interval(-sqrt(5), -2), Interval(-sqrt(3), -1, True, True), Interval(1, 3, True, True), Interval(4, 5)) assert not_empty_in(FiniteSet(1).intersect(Interval(3, 4)), x) == S.EmptySet assert not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) == \ Union(Interval(-2, -1, True, False), Interval(2, oo)) raises(ValueError, lambda: not_empty_in(x)) raises(ValueError, lambda: not_empty_in(Interval(0, 1), x)) raises(NotImplementedError, lambda: not_empty_in(FiniteSet(x).intersect(S.Reals), x, a)) @_both_exp_pow def test_periodicity(): x = Symbol('x') y = Symbol('y') z = Symbol('z', real=True) assert periodicity(sin(2*x), x) == pi assert periodicity((-2)*tan(4*x), x) == pi/4 assert periodicity(sin(x)**2, x) == 2*pi assert periodicity(3**tan(3*x), x) == pi/3 assert periodicity(tan(x)*cos(x), x) == 2*pi assert periodicity(sin(x)**(tan(x)), x) == 2*pi assert periodicity(tan(x)*sec(x), x) == 2*pi assert periodicity(sin(2*x)*cos(2*x) - y, x) == pi/2 assert periodicity(tan(x) + cot(x), x) == pi assert periodicity(sin(x) - cos(2*x), x) == 2*pi assert periodicity(sin(x) - 1, x) == 2*pi assert periodicity(sin(4*x) + sin(x)*cos(x), x) == pi assert periodicity(exp(sin(x)), x) == 2*pi assert periodicity(log(cot(2*x)) - sin(cos(2*x)), x) == pi assert periodicity(sin(2*x)*exp(tan(x) - csc(2*x)), x) == pi assert periodicity(cos(sec(x) - csc(2*x)), x) == 2*pi assert periodicity(tan(sin(2*x)), x) == pi assert periodicity(2*tan(x)**2, x) == pi assert periodicity(sin(x%4), x) == 4 assert periodicity(sin(x)%4, x) == 2*pi assert periodicity(tan((3*x-2)%4), x) == Rational(4, 3) assert periodicity((sqrt(2)*(x+1)+x) % 3, x) == 3 / (sqrt(2)+1) assert periodicity((x**2+1) % x, x) is None assert periodicity(sin(re(x)), x) == 2*pi assert periodicity(sin(x)**2 + cos(x)**2, x) is S.Zero assert periodicity(tan(x), y) is S.Zero assert periodicity(sin(x) + I*cos(x), x) == 2*pi assert periodicity(x - sin(2*y), y) == pi assert periodicity(exp(x), x) is None assert periodicity(exp(I*x), x) == 2*pi assert periodicity(exp(I*z), z) == 2*pi assert periodicity(exp(z), z) is None assert periodicity(exp(log(sin(z) + I*cos(2*z)), evaluate=False), z) == 2*pi assert periodicity(exp(log(sin(2*z) + I*cos(z)), evaluate=False), z) == 2*pi assert periodicity(exp(sin(z)), z) == 2*pi assert periodicity(exp(2*I*z), z) == pi assert periodicity(exp(z + I*sin(z)), z) is None assert periodicity(exp(cos(z/2) + sin(z)), z) == 4*pi assert periodicity(log(x), x) is None assert periodicity(exp(x)**sin(x), x) is None assert periodicity(sin(x)**y, y) is None assert periodicity(Abs(sin(Abs(sin(x)))), x) == pi assert all(periodicity(Abs(f(x)), x) == pi for f in ( cos, sin, sec, csc, tan, cot)) assert periodicity(Abs(sin(tan(x))), x) == pi assert periodicity(Abs(sin(sin(x) + tan(x))), x) == 2*pi assert periodicity(sin(x) > S.Half, x) == 2*pi assert periodicity(x > 2, x) is None assert periodicity(x**3 - x**2 + 1, x) is None assert periodicity(Abs(x), x) is None assert periodicity(Abs(x**2 - 1), x) is None assert periodicity((x**2 + 4)%2, x) is None assert periodicity((E**x)%3, x) is None assert periodicity(sin(expint(1, x))/expint(1, x), x) is None # returning `None` for any Piecewise p = Piecewise((0, x < -1), (x**2, x <= 1), (log(x), True)) assert periodicity(p, x) is None def test_periodicity_check(): x = Symbol('x') y = Symbol('y') assert periodicity(tan(x), x, check=True) == pi assert periodicity(sin(x) + cos(x), x, check=True) == 2*pi assert periodicity(sec(x), x) == 2*pi assert periodicity(sin(x*y), x) == 2*pi/abs(y) assert periodicity(Abs(sec(sec(x))), x) == pi def test_lcim(): from sympy import pi assert lcim([S.Half, S(2), S(3)]) == 6 assert lcim([pi/2, pi/4, pi]) == pi assert lcim([2*pi, pi/2]) == 2*pi assert lcim([S.One, 2*pi]) is None assert lcim([S(2) + 2*E, E/3 + Rational(1, 3), S.One + E]) == S(2) + 2*E def test_is_convex(): assert is_convex(1/x, x, domain=Interval(0, oo)) == True assert is_convex(1/x, x, domain=Interval(-oo, 0)) == False assert is_convex(x**2, x, domain=Interval(0, oo)) == True assert is_convex(log(x), x) == False raises(NotImplementedError, lambda: is_convex(log(x), x, a)) def test_stationary_points(): x, y = symbols('x y') assert stationary_points(sin(x), x, Interval(-pi/2, pi/2) ) == {-pi/2, pi/2} assert stationary_points(sin(x), x, Interval.Ropen(0, pi/4) ) == EmptySet() assert stationary_points(tan(x), x, ) == EmptySet() assert stationary_points(sin(x)*cos(x), x, Interval(0, pi) ) == {pi/4, pi*Rational(3, 4)} assert stationary_points(sec(x), x, Interval(0, pi) ) == {0, pi} assert stationary_points((x+3)*(x-2), x ) == FiniteSet(Rational(-1, 2)) assert stationary_points((x + 3)/(x - 2), x, Interval(-5, 5) ) == EmptySet() assert stationary_points((x**2+3)/(x-2), x ) == {2 - sqrt(7), 2 + sqrt(7)} assert stationary_points((x**2+3)/(x-2), x, Interval(0, 5) ) == {2 + sqrt(7)} assert stationary_points(x**4 + x**3 - 5*x**2, x, S.Reals ) == FiniteSet(-2, 0, Rational(5, 4)) assert stationary_points(exp(x), x ) == EmptySet() assert stationary_points(log(x) - x, x, S.Reals ) == {1} assert stationary_points(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) == {0, -pi, pi} assert stationary_points(y, x, S.Reals ) == S.Reals assert stationary_points(y, x, S.EmptySet) == S.EmptySet def test_maximum(): x, y = symbols('x y') assert maximum(sin(x), x) is S.One assert maximum(sin(x), x, Interval(0, 1)) == sin(1) assert maximum(tan(x), x) is oo assert maximum(tan(x), x, Interval(-pi/4, pi/4)) is S.One assert maximum(sin(x)*cos(x), x, S.Reals) == S.Half assert simplify(maximum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8))) ) == sqrt(2)/4 assert maximum((x+3)*(x-2), x) is oo assert maximum((x+3)*(x-2), x, Interval(-5, 0)) == S(14) assert maximum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(2, 7) assert simplify(maximum(-x**4-x**3+x**2+10, x) ) == 41*sqrt(41)/512 + Rational(5419, 512) assert maximum(exp(x), x, Interval(-oo, 2)) == exp(2) assert maximum(log(x) - x, x, S.Reals) is S.NegativeOne assert maximum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) is S.One assert maximum(cos(x)-sin(x), x, S.Reals) == sqrt(2) assert maximum(y, x, S.Reals) == y assert maximum(abs(a**3 + a), a, Interval(0, 2)) == 10 assert maximum(abs(60*a**3 + 24*a), a, Interval(0, 2)) == 528 assert maximum(abs(12*a*(5*a**2 + 2)), a, Interval(0, 2)) == 528 assert maximum(x/sqrt(x**2+1), x, S.Reals) == 1 raises(ValueError, lambda : maximum(sin(x), x, S.EmptySet)) raises(ValueError, lambda : maximum(log(cos(x)), x, S.EmptySet)) raises(ValueError, lambda : maximum(1/(x**2 + y**2 + 1), x, S.EmptySet)) raises(ValueError, lambda : maximum(sin(x), sin(x))) raises(ValueError, lambda : maximum(sin(x), x*y, S.EmptySet)) raises(ValueError, lambda : maximum(sin(x), S.One)) def test_minimum(): x, y = symbols('x y') assert minimum(sin(x), x) is S.NegativeOne assert minimum(sin(x), x, Interval(1, 4)) == sin(4) assert minimum(tan(x), x) is -oo assert minimum(tan(x), x, Interval(-pi/4, pi/4)) is S.NegativeOne assert minimum(sin(x)*cos(x), x, S.Reals) == Rational(-1, 2) assert simplify(minimum(sin(x)*cos(x), x, Interval(pi*Rational(3, 8), pi*Rational(5, 8))) ) == -sqrt(2)/4 assert minimum((x+3)*(x-2), x) == Rational(-25, 4) assert minimum((x+3)/(x-2), x, Interval(-5, 0)) == Rational(-3, 2) assert minimum(x**4-x**3+x**2+10, x) == S(10) assert minimum(exp(x), x, Interval(-2, oo)) == exp(-2) assert minimum(log(x) - x, x, S.Reals) is -oo assert minimum(cos(x), x, Union(Interval(0, 5), Interval(-6, -3)) ) is S.NegativeOne assert minimum(cos(x)-sin(x), x, S.Reals) == -sqrt(2) assert minimum(y, x, S.Reals) == y assert minimum(x/sqrt(x**2+1), x, S.Reals) == -1 raises(ValueError, lambda : minimum(sin(x), x, S.EmptySet)) raises(ValueError, lambda : minimum(log(cos(x)), x, S.EmptySet)) raises(ValueError, lambda : minimum(1/(x**2 + y**2 + 1), x, S.EmptySet)) raises(ValueError, lambda : minimum(sin(x), sin(x))) raises(ValueError, lambda : minimum(sin(x), x*y, S.EmptySet)) raises(ValueError, lambda : minimum(sin(x), S.One)) def test_issue_19869(): t = symbols('t') assert (maximum(sqrt(3)*(t - 1)/(3*sqrt(t**2 + 1)), t) ) == sqrt(3)/3 def test_AccumBounds(): assert B(1, 2).args == (1, 2) assert B(1, 2).delta is S.One assert B(1, 2).mid == Rational(3, 2) assert B(1, 3).is_real == True assert B(1, 1) is S.One assert B(1, 2) + 1 == B(2, 3) assert 1 + B(1, 2) == B(2, 3) assert B(1, 2) + B(2, 3) == B(3, 5) assert -B(1, 2) == B(-2, -1) assert B(1, 2) - 1 == B(0, 1) assert 1 - B(1, 2) == B(-1, 0) assert B(2, 3) - B(1, 2) == B(0, 2) assert x + B(1, 2) == Add(B(1, 2), x) assert a + B(1, 2) == B(1 + a, 2 + a) assert B(1, 2) - x == Add(B(1, 2), -x) assert B(-oo, 1) + oo == B(-oo, oo) assert B(1, oo) + oo is oo assert B(1, oo) - oo == B(-oo, oo) assert (-oo - B(-1, oo)) is -oo assert B(-oo, 1) - oo is -oo assert B(1, oo) - oo == B(-oo, oo) assert B(-oo, 1) - (-oo) == B(-oo, oo) assert (oo - B(1, oo)) == B(-oo, oo) assert (-oo - B(1, oo)) is -oo assert B(1, 2)/2 == B(S.Half, 1) assert 2/B(2, 3) == B(Rational(2, 3), 1) assert 1/B(-1, 1) == B(-oo, oo) assert abs(B(1, 2)) == B(1, 2) assert abs(B(-2, -1)) == B(1, 2) assert abs(B(-2, 1)) == B(0, 2) assert abs(B(-1, 2)) == B(0, 2) c = Symbol('c') raises(ValueError, lambda: B(0, c)) raises(ValueError, lambda: B(1, -1)) r = Symbol('r', real=True) raises(ValueError, lambda: B(r, r - 1)) def test_AccumBounds_mul(): assert B(1, 2)*2 == B(2, 4) assert 2*B(1, 2) == B(2, 4) assert B(1, 2)*B(2, 3) == B(2, 6) assert B(0, 2)*B(2, oo) == B(0, oo) l, r = B(-oo, oo), B(-a, a) assert l*r == B(-oo, oo) assert r*l == B(-oo, oo) l, r = B(1, oo), B(-3, -2) assert l*r == B(-oo, -2) assert r*l == B(-oo, -2) assert B(1, 2)*0 == 0 assert B(1, oo)*0 == B(0, oo) assert B(-oo, 1)*0 == B(-oo, 0) assert B(-oo, oo)*0 == B(-oo, oo) assert B(1, 2)*x == Mul(B(1, 2), x, evaluate=False) assert B(0, 2)*oo == B(0, oo) assert B(-2, 0)*oo == B(-oo, 0) assert B(0, 2)*(-oo) == B(-oo, 0) assert B(-2, 0)*(-oo) == B(0, oo) assert B(-1, 1)*oo == B(-oo, oo) assert B(-1, 1)*(-oo) == B(-oo, oo) assert B(-oo, oo)*oo == B(-oo, oo) def test_AccumBounds_div(): assert B(-1, 3)/B(3, 4) == B(Rational(-1, 3), 1) assert B(-2, 4)/B(-3, 4) == B(-oo, oo) assert B(-3, -2)/B(-4, 0) == B(S.Half, oo) # these two tests can have a better answer # after Union of B is improved assert B(-3, -2)/B(-2, 1) == B(-oo, oo) assert B(2, 3)/B(-2, 2) == B(-oo, oo) assert B(-3, -2)/B(0, 4) == B(-oo, Rational(-1, 2)) assert B(2, 4)/B(-3, 0) == B(-oo, Rational(-2, 3)) assert B(2, 4)/B(0, 3) == B(Rational(2, 3), oo) assert B(0, 1)/B(0, 1) == B(0, oo) assert B(-1, 0)/B(0, 1) == B(-oo, 0) assert B(-1, 2)/B(-2, 2) == B(-oo, oo) assert 1/B(-1, 2) == B(-oo, oo) assert 1/B(0, 2) == B(S.Half, oo) assert (-1)/B(0, 2) == B(-oo, Rational(-1, 2)) assert 1/B(-oo, 0) == B(-oo, 0) assert 1/B(-1, 0) == B(-oo, -1) assert (-2)/B(-oo, 0) == B(0, oo) assert 1/B(-oo, -1) == B(-1, 0) assert B(1, 2)/a == Mul(B(1, 2), 1/a, evaluate=False) assert B(1, 2)/0 == B(1, 2)*zoo assert B(1, oo)/oo == B(0, oo) assert B(1, oo)/(-oo) == B(-oo, 0) assert B(-oo, -1)/oo == B(-oo, 0) assert B(-oo, -1)/(-oo) == B(0, oo) assert B(-oo, oo)/oo == B(-oo, oo) assert B(-oo, oo)/(-oo) == B(-oo, oo) assert B(-1, oo)/oo == B(0, oo) assert B(-1, oo)/(-oo) == B(-oo, 0) assert B(-oo, 1)/oo == B(-oo, 0) assert B(-oo, 1)/(-oo) == B(0, oo) def test_issue_18795(): r = Symbol('r', real=True) a = B(-1,1) c = B(7, oo) b = B(-oo, oo) assert c - tan(r) == B(7-tan(r), oo) assert b + tan(r) == B(-oo, oo) assert (a + r)/a == B(-oo, oo)*B(r - 1, r + 1) assert (b + a)/a == B(-oo, oo) def test_AccumBounds_func(): assert (x**2 + 2*x + 1).subs(x, B(-1, 1)) == B(-1, 4) assert exp(B(0, 1)) == B(1, E) assert exp(B(-oo, oo)) == B(0, oo) assert log(B(3, 6)) == B(log(3), log(6)) @XFAIL def test_AccumBounds_powf(): nn = Symbol('nn', nonnegative=True) assert B(1 + nn, 2 + nn)**B(1, 2) == B(1 + nn, (2 + nn)**2) i = Symbol('i', integer=True, negative=True) assert B(1, 2)**i == B(2**i, 1) def test_AccumBounds_pow(): assert B(0, 2)**2 == B(0, 4) assert B(-1, 1)**2 == B(0, 1) assert B(1, 2)**2 == B(1, 4) assert B(-1, 2)**3 == B(-1, 8) assert B(-1, 1)**0 == 1 assert B(1, 2)**Rational(5, 2) == B(1, 4*sqrt(2)) assert B(0, 2)**S.Half == B(0, sqrt(2)) neg = Symbol('neg', negative=True) unchanged(Pow, B(neg, 1), S.Half) nn = Symbol('nn', nonnegative=True) assert B(nn, nn + 1)**S.Half == B(sqrt(nn), sqrt(nn + 1)) assert B(nn, nn + 1)**nn == B(nn**nn, (nn + 1)**nn) unchanged(Pow, B(nn, nn + 1), x) i = Symbol('i', integer=True) unchanged(Pow, B(1, 2), i) i = Symbol('i', integer=True, nonnegative=True) assert B(1, 2)**i == B(1, 2**i) assert B(0, 1)**i == B(0**i, 1) assert B(1, 5)**(-2) == B(Rational(1, 25), 1) assert B(-1, 3)**(-2) == B(0, oo) assert B(0, 2)**(-3) == B(Rational(1, 8), oo) assert B(-2, 0)**(-3) == B(-oo, -Rational(1, 8)) assert B(0, 2)**(-2) == B(Rational(1, 4), oo) assert B(-1, 2)**(-3) == B(-oo, oo) assert B(-3, -2)**(-3) == B(Rational(-1, 8), Rational(-1, 27)) assert B(-3, -2)**(-2) == B(Rational(1, 9), Rational(1, 4)) assert B(0, oo)**S.Half == B(0, oo) assert B(-oo, 0)**(-2) == B(0, oo) assert B(-2, 0)**(-2) == B(Rational(1, 4), oo) assert B(Rational(1, 3), S.Half)**oo is S.Zero assert B(0, S.Half)**oo is S.Zero assert B(S.Half, 1)**oo == B(0, oo) assert B(0, 1)**oo == B(0, oo) assert B(2, 3)**oo is oo assert B(1, 2)**oo == B(0, oo) assert B(S.Half, 3)**oo == B(0, oo) assert B(Rational(-1, 3), Rational(-1, 4))**oo is S.Zero assert B(-1, Rational(-1, 2))**oo is S.NaN assert B(-3, -2)**oo is zoo assert B(-2, -1)**oo is S.NaN assert B(-2, Rational(-1, 2))**oo is S.NaN assert B(Rational(-1, 2), S.Half)**oo is S.Zero assert B(Rational(-1, 2), 1)**oo == B(0, oo) assert B(Rational(-2, 3), 2)**oo == B(0, oo) assert B(-1, 1)**oo == B(-oo, oo) assert B(-1, S.Half)**oo == B(-oo, oo) assert B(-1, 2)**oo == B(-oo, oo) assert B(-2, S.Half)**oo == B(-oo, oo) assert B(1, 2)**x == Pow(B(1, 2), x, evaluate=False) assert B(2, 3)**(-oo) is S.Zero assert B(0, 2)**(-oo) == B(0, oo) assert B(-1, 2)**(-oo) == B(-oo, oo) assert (tan(x)**sin(2*x)).subs(x, B(0, pi/2)) == \ Pow(B(-oo, oo), B(0, 1)) def test_AccumBounds_exponent(): # base is 0 z = 0**B(a, a + S.Half) assert z.subs(a, 0) == B(0, 1) assert z.subs(a, 1) == 0 p = z.subs(a, -1) assert p.is_Pow and p.args == (0, B(-1, -S.Half)) # base > 0 # when base is 1 the type of bounds does not matter assert 1**B(a, a + 1) == 1 # otherwise we need to know if 0 is in the bounds assert S.Half**B(-2, 2) == B(S(1)/4, 4) assert 2**B(-2, 2) == B(S(1)/4, 4) # +eps may introduce +oo # if there is a negative integer exponent assert B(0, 1)**B(S(1)/2, 1) == B(0, 1) assert B(0, 1)**B(0, 1) == B(0, 1) # positive bases have positive bounds assert B(2, 3)**B(-3, -2) == B(S(1)/27, S(1)/4) assert B(2, 3)**B(-3, 2) == B(S(1)/27, 9) # bounds generating imaginary parts unevaluated unchanged(Pow, B(-1, 1), B(1, 2)) assert B(0, S(1)/2)**B(1, oo) == B(0, S(1)/2) assert B(0, 1)**B(1, oo) == B(0, oo) assert B(0, 2)**B(1, oo) == B(0, oo) assert B(0, oo)**B(1, oo) == B(0, oo) assert B(S(1)/2, 1)**B(1, oo) == B(0, oo) assert B(S(1)/2, 1)**B(-oo, -1) == B(0, oo) assert B(S(1)/2, 1)**B(-oo, oo) == B(0, oo) assert B(S(1)/2, 2)**B(1, oo) == B(0, oo) assert B(S(1)/2, 2)**B(-oo, -1) == B(0, oo) assert B(S(1)/2, 2)**B(-oo, oo) == B(0, oo) assert B(S(1)/2, oo)**B(1, oo) == B(0, oo) assert B(S(1)/2, oo)**B(-oo, -1) == B(0, oo) assert B(S(1)/2, oo)**B(-oo, oo) == B(0, oo) assert B(1, 2)**B(1, oo) == B(0, oo) assert B(1, 2)**B(-oo, -1) == B(0, oo) assert B(1, 2)**B(-oo, oo) == B(0, oo) assert B(1, oo)**B(1, oo) == B(0, oo) assert B(1, oo)**B(-oo, -1) == B(0, oo) assert B(1, oo)**B(-oo, oo) == B(0, oo) assert B(2, oo)**B(1, oo) == B(2, oo) assert B(2, oo)**B(-oo, -1) == B(0, S(1)/2) assert B(2, oo)**B(-oo, oo) == B(0, oo) def test_comparison_AccumBounds(): assert (B(1, 3) < 4) == S.true assert (B(1, 3) < -1) == S.false assert (B(1, 3) < 2).rel_op == '<' assert (B(1, 3) <= 2).rel_op == '<=' assert (B(1, 3) > 4) == S.false assert (B(1, 3) > -1) == S.true assert (B(1, 3) > 2).rel_op == '>' assert (B(1, 3) >= 2).rel_op == '>=' assert (B(1, 3) < B(4, 6)) == S.true assert (B(1, 3) < B(2, 4)).rel_op == '<' assert (B(1, 3) < B(-2, 0)) == S.false assert (B(1, 3) <= B(4, 6)) == S.true assert (B(1, 3) <= B(-2, 0)) == S.false assert (B(1, 3) > B(4, 6)) == S.false assert (B(1, 3) > B(-2, 0)) == S.true assert (B(1, 3) >= B(4, 6)) == S.false assert (B(1, 3) >= B(-2, 0)) == S.true # issue 13499 assert (cos(x) > 0).subs(x, oo) == (B(-1, 1) > 0) c = Symbol('c') raises(TypeError, lambda: (B(0, 1) < c)) raises(TypeError, lambda: (B(0, 1) <= c)) raises(TypeError, lambda: (B(0, 1) > c)) raises(TypeError, lambda: (B(0, 1) >= c)) def test_contains_AccumBounds(): assert (1 in B(1, 2)) == S.true raises(TypeError, lambda: a in B(1, 2)) assert 0 in B(-1, 0) raises(TypeError, lambda: (cos(1)**2 + sin(1)**2 - 1) in B(-1, 0)) assert (-oo in B(1, oo)) == S.true assert (oo in B(-oo, 0)) == S.true # issue 13159 assert Mul(0, B(-1, 1)) == Mul(B(-1, 1), 0) == 0 import itertools for perm in itertools.permutations([0, B(-1, 1), x]): assert Mul(*perm) == 0 def test_intersection_AccumBounds(): assert B(0, 3).intersection(B(1, 2)) == B(1, 2) assert B(0, 3).intersection(B(1, 4)) == B(1, 3) assert B(0, 3).intersection(B(-1, 2)) == B(0, 2) assert B(0, 3).intersection(B(-1, 4)) == B(0, 3) assert B(0, 1).intersection(B(2, 3)) == S.EmptySet raises(TypeError, lambda: B(0, 3).intersection(1)) def test_union_AccumBounds(): assert B(0, 3).union(B(1, 2)) == B(0, 3) assert B(0, 3).union(B(1, 4)) == B(0, 4) assert B(0, 3).union(B(-1, 2)) == B(-1, 3) assert B(0, 3).union(B(-1, 4)) == B(-1, 4) raises(TypeError, lambda: B(0, 3).union(1)) def test_issue_16469(): x = Symbol("x", real=True) f = abs(x) assert function_range(f, x, S.Reals) == Interval(0, oo, False, True) @_both_exp_pow def test_issue_18747(): assert periodicity(exp(pi*I*(x/4+S.Half/2)), x) == 8
ce601f3c5eb6976e4e3b1d6afa6fbabfb86449d77e6d26c4d275658973b4694b
import inspect import copy import pickle from sympy.physics.units import meter from sympy.testing.pytest import XFAIL, raises from sympy.core.basic import Atom, Basic from sympy.core.core import BasicMeta from sympy.core.singleton import SingletonRegistry from sympy.core.symbol import Str, Dummy, Symbol, Wild from sympy.core.numbers import (E, I, pi, oo, zoo, nan, Integer, Rational, Float) from sympy.core.relational import (Equality, GreaterThan, LessThan, Relational, StrictGreaterThan, StrictLessThan, Unequality) from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.function import Derivative, Function, FunctionClass, Lambda, \ WildFunction from sympy.sets.sets import Interval from sympy.core.multidimensional import vectorize from sympy.core.compatibility import HAS_GMPY from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy import symbols, S from sympy.external import import_module cloudpickle = import_module('cloudpickle') excluded_attrs = { '_assumptions', # This is a local cache that isn't automatically filled on creation '_mhash', # Cached after __hash__ is called but set to None after creation 'is_EmptySet', # Deprecated from SymPy 1.5. This can be removed when is_EmptySet is removed. 'expr_free_symbols', # Deprecated from SymPy 1.9. This can be removed when exr_free_symbols is removed. } def check(a, exclude=[], check_attr=True): """ Check that pickling and copying round-trips. """ # Pickling with protocols 0 and 1 is disabled for Basic instances: if isinstance(a, Basic): for protocol in [0, 1]: raises(NotImplementedError, lambda: pickle.dumps(a, protocol)) protocols = [2, copy.copy, copy.deepcopy, 3, 4] if cloudpickle: protocols.extend([cloudpickle]) for protocol in protocols: if protocol in exclude: continue if callable(protocol): if isinstance(a, BasicMeta): # Classes can't be copied, but that's okay. continue b = protocol(a) elif inspect.ismodule(protocol): b = protocol.loads(protocol.dumps(a)) else: b = pickle.loads(pickle.dumps(a, protocol)) d1 = dir(a) d2 = dir(b) assert set(d1) == set(d2) if not check_attr: continue def c(a, b, d): for i in d: if i in excluded_attrs: continue if not hasattr(a, i): continue attr = getattr(a, i) if not hasattr(attr, "__call__"): assert hasattr(b, i), i assert getattr(b, i) == attr, "%s != %s, protocol: %s" % (getattr(b, i), attr, protocol) c(a, b, d1) c(b, a, d2) #================== core ========================= def test_core_basic(): for c in (Atom, Atom(), Basic, Basic(), # XXX: dynamically created types are not picklable # BasicMeta, BasicMeta("test", (), {}), SingletonRegistry, S): check(c) def test_core_Str(): check(Str('x')) def test_core_symbol(): # make the Symbol a unique name that doesn't class with any other # testing variable in this file since after this test the symbol # having the same name will be cached as noncommutative for c in (Dummy, Dummy("x", commutative=False), Symbol, Symbol("_issue_3130", commutative=False), Wild, Wild("x")): check(c) def test_core_numbers(): for c in (Integer(2), Rational(2, 3), Float("1.2")): check(c) def test_core_float_copy(): # See gh-7457 y = Symbol("x") + 1.0 check(y) # does not raise TypeError ("argument is not an mpz") def test_core_relational(): x = Symbol("x") y = Symbol("y") for c in (Equality, Equality(x, y), GreaterThan, GreaterThan(x, y), LessThan, LessThan(x, y), Relational, Relational(x, y), StrictGreaterThan, StrictGreaterThan(x, y), StrictLessThan, StrictLessThan(x, y), Unequality, Unequality(x, y)): check(c) def test_core_add(): x = Symbol("x") for c in (Add, Add(x, 4)): check(c) def test_core_mul(): x = Symbol("x") for c in (Mul, Mul(x, 4)): check(c) def test_core_power(): x = Symbol("x") for c in (Pow, Pow(x, 4)): check(c) def test_core_function(): x = Symbol("x") for f in (Derivative, Derivative(x), Function, FunctionClass, Lambda, WildFunction): check(f) def test_core_undefinedfunctions(): f = Function("f") # Full XFAILed test below exclude = list(range(5)) # https://github.com/cloudpipe/cloudpickle/issues/65 # https://github.com/cloudpipe/cloudpickle/issues/190 exclude.append(cloudpickle) check(f, exclude=exclude) @XFAIL def test_core_undefinedfunctions_fail(): # This fails because f is assumed to be a class at sympy.basic.function.f f = Function("f") check(f) def test_core_interval(): for c in (Interval, Interval(0, 2)): check(c) def test_core_multidimensional(): for c in (vectorize, vectorize(0)): check(c) def test_Singletons(): protocols = [0, 1, 2, 3, 4] copiers = [copy.copy, copy.deepcopy] copiers += [lambda x: pickle.loads(pickle.dumps(x, proto)) for proto in protocols] if cloudpickle: copiers += [lambda x: cloudpickle.loads(cloudpickle.dumps(x))] for obj in (Integer(-1), Integer(0), Integer(1), Rational(1, 2), pi, E, I, oo, -oo, zoo, nan, S.GoldenRatio, S.TribonacciConstant, S.EulerGamma, S.Catalan, S.EmptySet, S.IdentityFunction): for func in copiers: assert func(obj) is obj #================== functions =================== from sympy.functions import (Piecewise, lowergamma, acosh, chebyshevu, chebyshevt, ln, chebyshevt_root, legendre, Heaviside, bernoulli, coth, tanh, assoc_legendre, sign, arg, asin, DiracDelta, re, rf, Abs, uppergamma, binomial, sinh, cos, cot, acos, acot, gamma, bell, hermite, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh, dirichlet_eta, Eijk, loggamma, erf, ceiling, im, fibonacci, tribonacci, conjugate, tan, chebyshevu_root, floor, atanh, sqrt, sin, atan, ff, lucas, atan2, polygamma, exp) def test_functions(): one_var = (acosh, ln, Heaviside, factorial, bernoulli, coth, tanh, sign, arg, asin, DiracDelta, re, Abs, sinh, cos, cot, acos, acot, gamma, bell, harmonic, LambertW, zeta, log, factorial, asinh, acoth, cosh, dirichlet_eta, loggamma, erf, ceiling, im, fibonacci, tribonacci, conjugate, tan, floor, atanh, sin, atan, lucas, exp) two_var = (rf, ff, lowergamma, chebyshevu, chebyshevt, binomial, atan2, polygamma, hermite, legendre, uppergamma) x, y, z = symbols("x,y,z") others = (chebyshevt_root, chebyshevu_root, Eijk(x, y, z), Piecewise( (0, x < -1), (x**2, x <= 1), (x**3, True)), assoc_legendre) for cls in one_var: check(cls) c = cls(x) check(c) for cls in two_var: check(cls) c = cls(x, y) check(c) for cls in others: check(cls) #================== geometry ==================== from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point from sympy.geometry.ellipse import Circle, Ellipse from sympy.geometry.line import Line, LinearEntity, Ray, Segment from sympy.geometry.polygon import Polygon, RegularPolygon, Triangle def test_geometry(): p1 = Point(1, 2) p2 = Point(2, 3) p3 = Point(0, 0) p4 = Point(0, 1) for c in ( GeometryEntity, GeometryEntity(), Point, p1, Circle, Circle(p1, 2), Ellipse, Ellipse(p1, 3, 4), Line, Line(p1, p2), LinearEntity, LinearEntity(p1, p2), Ray, Ray(p1, p2), Segment, Segment(p1, p2), Polygon, Polygon(p1, p2, p3, p4), RegularPolygon, RegularPolygon(p1, 4, 5), Triangle, Triangle(p1, p2, p3)): check(c, check_attr=False) #================== integrals ==================== from sympy.integrals.integrals import Integral def test_integrals(): x = Symbol("x") for c in (Integral, Integral(x)): check(c) #==================== logic ===================== from sympy.core.logic import Logic def test_logic(): for c in (Logic, Logic(1)): check(c) #================== matrices ==================== from sympy.matrices import Matrix, SparseMatrix def test_matrices(): for c in (Matrix, Matrix([1, 2, 3]), SparseMatrix, SparseMatrix([[1, 2], [3, 4]])): check(c) #================== ntheory ===================== from sympy.ntheory.generate import Sieve def test_ntheory(): for c in (Sieve, Sieve()): check(c) #================== physics ===================== from sympy.physics.paulialgebra import Pauli from sympy.physics.units import Unit def test_physics(): for c in (Unit, meter, Pauli, Pauli(1)): check(c) #================== plotting ==================== # XXX: These tests are not complete, so XFAIL them @XFAIL def test_plotting(): from sympy.plotting.pygletplot.color_scheme import ColorGradient, ColorScheme from sympy.plotting.pygletplot.managed_window import ManagedWindow from sympy.plotting.plot import Plot, ScreenShot from sympy.plotting.pygletplot.plot_axes import PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate from sympy.plotting.pygletplot.plot_camera import PlotCamera from sympy.plotting.pygletplot.plot_controller import PlotController from sympy.plotting.pygletplot.plot_curve import PlotCurve from sympy.plotting.pygletplot.plot_interval import PlotInterval from sympy.plotting.pygletplot.plot_mode import PlotMode from sympy.plotting.pygletplot.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \ ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical from sympy.plotting.pygletplot.plot_object import PlotObject from sympy.plotting.pygletplot.plot_surface import PlotSurface from sympy.plotting.pygletplot.plot_window import PlotWindow for c in ( ColorGradient, ColorGradient(0.2, 0.4), ColorScheme, ManagedWindow, ManagedWindow, Plot, ScreenShot, PlotAxes, PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate, PlotCamera, PlotController, PlotCurve, PlotInterval, PlotMode, Cartesian2D, Cartesian3D, Cylindrical, ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical, PlotObject, PlotSurface, PlotWindow): check(c) @XFAIL def test_plotting2(): #from sympy.plotting.color_scheme import ColorGradient from sympy.plotting.pygletplot.color_scheme import ColorScheme #from sympy.plotting.managed_window import ManagedWindow from sympy.plotting.plot import Plot #from sympy.plotting.plot import ScreenShot from sympy.plotting.pygletplot.plot_axes import PlotAxes #from sympy.plotting.plot_axes import PlotAxesBase, PlotAxesFrame, PlotAxesOrdinate #from sympy.plotting.plot_camera import PlotCamera #from sympy.plotting.plot_controller import PlotController #from sympy.plotting.plot_curve import PlotCurve #from sympy.plotting.plot_interval import PlotInterval #from sympy.plotting.plot_mode import PlotMode #from sympy.plotting.plot_modes import Cartesian2D, Cartesian3D, Cylindrical, \ # ParametricCurve2D, ParametricCurve3D, ParametricSurface, Polar, Spherical #from sympy.plotting.plot_object import PlotObject #from sympy.plotting.plot_surface import PlotSurface # from sympy.plotting.plot_window import PlotWindow check(ColorScheme("rainbow")) check(Plot(1, visible=False)) check(PlotAxes()) #================== polys ======================= from sympy import Poly, ZZ, QQ, lex def test_pickling_polys_polytools(): from sympy.polys.polytools import PurePoly # from sympy.polys.polytools import GroebnerBasis x = Symbol('x') for c in (Poly, Poly(x, x)): check(c) for c in (PurePoly, PurePoly(x)): check(c) # TODO: fix pickling of Options class (see GroebnerBasis._options) # for c in (GroebnerBasis, GroebnerBasis([x**2 - 1], x, order=lex)): # check(c) def test_pickling_polys_polyclasses(): from sympy.polys.polyclasses import DMP, DMF, ANP for c in (DMP, DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)]], ZZ)): check(c) for c in (DMF, DMF(([ZZ(1), ZZ(2)], [ZZ(1), ZZ(3)]), ZZ)): check(c) for c in (ANP, ANP([QQ(1), QQ(2)], [QQ(1), QQ(2), QQ(3)], QQ)): check(c) @XFAIL def test_pickling_polys_rings(): # NOTE: can't use protocols < 2 because we have to execute __new__ to # make sure caching of rings works properly. from sympy.polys.rings import PolyRing ring = PolyRing("x,y,z", ZZ, lex) for c in (PolyRing, ring): check(c, exclude=[0, 1]) for c in (ring.dtype, ring.one): check(c, exclude=[0, 1], check_attr=False) # TODO: Py3k def test_pickling_polys_fields(): pass # NOTE: can't use protocols < 2 because we have to execute __new__ to # make sure caching of fields works properly. # from sympy.polys.fields import FracField # field = FracField("x,y,z", ZZ, lex) # TODO: AssertionError: assert id(obj) not in self.memo # for c in (FracField, field): # check(c, exclude=[0, 1]) # TODO: AssertionError: assert id(obj) not in self.memo # for c in (field.dtype, field.one): # check(c, exclude=[0, 1]) def test_pickling_polys_elements(): from sympy.polys.domains.pythonrational import PythonRational #from sympy.polys.domains.pythonfinitefield import PythonFiniteField #from sympy.polys.domains.mpelements import MPContext for c in (PythonRational, PythonRational(1, 7)): check(c) #gf = PythonFiniteField(17) # TODO: fix pickling of ModularInteger # for c in (gf.dtype, gf(5)): # check(c) #mp = MPContext() # TODO: fix pickling of RealElement # for c in (mp.mpf, mp.mpf(1.0)): # check(c) # TODO: fix pickling of ComplexElement # for c in (mp.mpc, mp.mpc(1.0, -1.5)): # check(c) def test_pickling_polys_domains(): # from sympy.polys.domains.pythonfinitefield import PythonFiniteField from sympy.polys.domains.pythonintegerring import PythonIntegerRing from sympy.polys.domains.pythonrationalfield import PythonRationalField # TODO: fix pickling of ModularInteger # for c in (PythonFiniteField, PythonFiniteField(17)): # check(c) for c in (PythonIntegerRing, PythonIntegerRing()): check(c, check_attr=False) for c in (PythonRationalField, PythonRationalField()): check(c, check_attr=False) if HAS_GMPY: # from sympy.polys.domains.gmpyfinitefield import GMPYFiniteField from sympy.polys.domains.gmpyintegerring import GMPYIntegerRing from sympy.polys.domains.gmpyrationalfield import GMPYRationalField # TODO: fix pickling of ModularInteger # for c in (GMPYFiniteField, GMPYFiniteField(17)): # check(c) for c in (GMPYIntegerRing, GMPYIntegerRing()): check(c, check_attr=False) for c in (GMPYRationalField, GMPYRationalField()): check(c, check_attr=False) #from sympy.polys.domains.realfield import RealField #from sympy.polys.domains.complexfield import ComplexField from sympy.polys.domains.algebraicfield import AlgebraicField #from sympy.polys.domains.polynomialring import PolynomialRing #from sympy.polys.domains.fractionfield import FractionField from sympy.polys.domains.expressiondomain import ExpressionDomain # TODO: fix pickling of RealElement # for c in (RealField, RealField(100)): # check(c) # TODO: fix pickling of ComplexElement # for c in (ComplexField, ComplexField(100)): # check(c) for c in (AlgebraicField, AlgebraicField(QQ, sqrt(3))): check(c, check_attr=False) # TODO: AssertionError # for c in (PolynomialRing, PolynomialRing(ZZ, "x,y,z")): # check(c) # TODO: AttributeError: 'PolyElement' object has no attribute 'ring' # for c in (FractionField, FractionField(ZZ, "x,y,z")): # check(c) for c in (ExpressionDomain, ExpressionDomain()): check(c, check_attr=False) def test_pickling_polys_numberfields(): from sympy.polys.numberfields import AlgebraicNumber for c in (AlgebraicNumber, AlgebraicNumber(sqrt(3))): check(c, check_attr=False) def test_pickling_polys_orderings(): from sympy.polys.orderings import (LexOrder, GradedLexOrder, ReversedGradedLexOrder, InverseOrder) # from sympy.polys.orderings import ProductOrder for c in (LexOrder, LexOrder()): check(c) for c in (GradedLexOrder, GradedLexOrder()): check(c) for c in (ReversedGradedLexOrder, ReversedGradedLexOrder()): check(c) # TODO: Argh, Python is so naive. No lambdas nor inner function support in # pickling module. Maybe someone could figure out what to do with this. # # for c in (ProductOrder, ProductOrder((LexOrder(), lambda m: m[:2]), # (GradedLexOrder(), lambda m: m[2:]))): # check(c) for c in (InverseOrder, InverseOrder(LexOrder())): check(c) def test_pickling_polys_monomials(): from sympy.polys.monomials import MonomialOps, Monomial x, y, z = symbols("x,y,z") for c in (MonomialOps, MonomialOps(3)): check(c) for c in (Monomial, Monomial((1, 2, 3), (x, y, z))): check(c) def test_pickling_polys_errors(): from sympy.polys.polyerrors import (HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, UnivariatePolynomialError, MultivariatePolynomialError, OptionError, FlagError) # from sympy.polys.polyerrors import (ExactQuotientFailed, # OperationNotSupported, ComputationFailed, PolificationFailed) # x = Symbol('x') # TODO: TypeError: __init__() takes at least 3 arguments (1 given) # for c in (ExactQuotientFailed, ExactQuotientFailed(x, 3*x, ZZ)): # check(c) # TODO: TypeError: can't pickle instancemethod objects # for c in (OperationNotSupported, OperationNotSupported(Poly(x), Poly.gcd)): # check(c) for c in (HeuristicGCDFailed, HeuristicGCDFailed()): check(c) for c in (HomomorphismFailed, HomomorphismFailed()): check(c) for c in (IsomorphismFailed, IsomorphismFailed()): check(c) for c in (ExtraneousFactors, ExtraneousFactors()): check(c) for c in (EvaluationFailed, EvaluationFailed()): check(c) for c in (RefinementFailed, RefinementFailed()): check(c) for c in (CoercionFailed, CoercionFailed()): check(c) for c in (NotInvertible, NotInvertible()): check(c) for c in (NotReversible, NotReversible()): check(c) for c in (NotAlgebraic, NotAlgebraic()): check(c) for c in (DomainError, DomainError()): check(c) for c in (PolynomialError, PolynomialError()): check(c) for c in (UnificationFailed, UnificationFailed()): check(c) for c in (GeneratorsError, GeneratorsError()): check(c) for c in (GeneratorsNeeded, GeneratorsNeeded()): check(c) # TODO: PicklingError: Can't pickle <function <lambda> at 0x38578c0>: it's not found as __main__.<lambda> # for c in (ComputationFailed, ComputationFailed(lambda t: t, 3, None)): # check(c) for c in (UnivariatePolynomialError, UnivariatePolynomialError()): check(c) for c in (MultivariatePolynomialError, MultivariatePolynomialError()): check(c) # TODO: TypeError: __init__() takes at least 3 arguments (1 given) # for c in (PolificationFailed, PolificationFailed({}, x, x, False)): # check(c) for c in (OptionError, OptionError()): check(c) for c in (FlagError, FlagError()): check(c) #def test_pickling_polys_options(): #from sympy.polys.polyoptions import Options # TODO: fix pickling of `symbols' flag # for c in (Options, Options((), dict(domain='ZZ', polys=False))): # check(c) # TODO: def test_pickling_polys_rootisolation(): # RealInterval # ComplexInterval def test_pickling_polys_rootoftools(): from sympy.polys.rootoftools import CRootOf, RootSum x = Symbol('x') f = x**3 + x + 3 for c in (CRootOf, CRootOf(f, 0)): check(c) for c in (RootSum, RootSum(f, exp)): check(c) #================== printing ==================== from sympy.printing.latex import LatexPrinter from sympy.printing.mathml import MathMLContentPrinter, MathMLPresentationPrinter from sympy.printing.pretty.pretty import PrettyPrinter from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.printer import Printer from sympy.printing.python import PythonPrinter def test_printing(): for c in (LatexPrinter, LatexPrinter(), MathMLContentPrinter, MathMLPresentationPrinter, PrettyPrinter, prettyForm, stringPict, stringPict("a"), Printer, Printer(), PythonPrinter, PythonPrinter()): check(c) @XFAIL def test_printing1(): check(MathMLContentPrinter()) @XFAIL def test_printing2(): check(MathMLPresentationPrinter()) @XFAIL def test_printing3(): check(PrettyPrinter()) #================== series ====================== from sympy.series.limits import Limit from sympy.series.order import Order def test_series(): e = Symbol("e") x = Symbol("x") for c in (Limit, Limit(e, x, 1), Order, Order(e)): check(c) #================== concrete ================== from sympy.concrete.products import Product from sympy.concrete.summations import Sum def test_concrete(): x = Symbol("x") for c in (Product, Product(x, (x, 2, 4)), Sum, Sum(x, (x, 2, 4))): check(c) def test_deprecation_warning(): w = SymPyDeprecationWarning('value', 'feature', issue=12345, deprecated_since_version='1.0') check(w) def test_issue_18438(): assert pickle.loads(pickle.dumps(S.Half)) == 1/2
77b67b4162fcfb9c31ad6971e29651d35ffed79f96cace157d5dff85c673f4d1
from itertools import product import math import inspect import mpmath from sympy.testing.pytest import raises from sympy import ( symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational, Float, Lambda, Piecewise, exp, E, Integral, oo, I, Abs, Function, true, false, And, Or, Not, ITE, Min, Max, floor, diff, IndexedBase, Sum, DotProduct, Eq, Dummy, sinc, erf, erfc, factorial, gamma, loggamma, digamma, RisingFactorial, besselj, bessely, besseli, besselk, S, beta, betainc, betainc_regularized, fresnelc, fresnels) from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, log10, hypot from sympy.codegen.numpy_nodes import logaddexp, logaddexp2 from sympy.codegen.scipy_nodes import cosm1 from sympy.functions.elementary.complexes import re, im, arg from sympy.functions.special.polynomials import \ chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \ assoc_legendre, assoc_laguerre, jacobi from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix from sympy.printing.lambdarepr import LambdaPrinter from sympy.printing.numpy import NumPyPrinter from sympy.utilities.lambdify import implemented_function, lambdastr from sympy.testing.pytest import skip from sympy.utilities.decorator import conserve_mpmath_dps from sympy.external import import_module from sympy.functions.special.gamma_functions import uppergamma, lowergamma import sympy MutableDenseMatrix = Matrix numpy = import_module('numpy') scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) numexpr = import_module('numexpr') tensorflow = import_module('tensorflow') cupy = import_module('cupy') if tensorflow: # Hide Tensorflow warnings import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' w, x, y, z = symbols('w,x,y,z') #================== Test different arguments ======================= def test_no_args(): f = lambdify([], 1) raises(TypeError, lambda: f(-1)) assert f() == 1 def test_single_arg(): f = lambdify(x, 2*x) assert f(1) == 2 def test_list_args(): f = lambdify([x, y], x + y) assert f(1, 2) == 3 def test_nested_args(): f1 = lambdify([[w, x]], [w, x]) assert f1([91, 2]) == [91, 2] raises(TypeError, lambda: f1(1, 2)) f2 = lambdify([(w, x), (y, z)], [w, x, y, z]) assert f2((18, 12), (73, 4)) == [18, 12, 73, 4] raises(TypeError, lambda: f2(3, 4)) f3 = lambdify([w, [[[x]], y], z], [w, x, y, z]) assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44] def test_str_args(): f = lambdify('x,y,z', 'z,y,x') assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_own_namespace_1(): myfunc = lambda x: 1 f = lambdify(x, sin(x), {"sin": myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_namespace_2(): def myfunc(x): return 1 f = lambdify(x, sin(x), {'sin': myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_module(): f = lambdify(x, sin(x), math) assert f(0) == 0.0 def test_bad_args(): # no vargs given raises(TypeError, lambda: lambdify(1)) # same with vector exprs raises(TypeError, lambda: lambdify([1, 2])) def test_atoms(): # Non-Symbol atoms should not be pulled out from the expression namespace f = lambdify(x, pi + x, {"pi": 3.14}) assert f(0) == 3.14 f = lambdify(x, I + x, {"I": 1j}) assert f(1) == 1 + 1j #================== Test different modules ========================= # high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted @conserve_mpmath_dps def test_sympy_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "sympy") assert f(x) == sin(x) prec = 1e-15 assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec # arctan is in numpy module and should not be available # The arctan below gives NameError. What is this supposed to test? # raises(NameError, lambda: lambdify(x, arctan(x), "sympy")) @conserve_mpmath_dps def test_math_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "math") prec = 1e-15 assert -prec < f(0.2) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a python math function @conserve_mpmath_dps def test_mpmath_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a mpmath function @conserve_mpmath_dps def test_number_precision(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin02, "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(0) - sin02 < prec @conserve_mpmath_dps def test_mpmath_precision(): mpmath.mp.dps = 100 assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100)) #================== Test Translations ============================== # We can only check if all translated functions are valid. It has to be checked # by hand if they are complete. def test_math_transl(): from sympy.utilities.lambdify import MATH_TRANSLATIONS for sym, mat in MATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert mat in math.__dict__ def test_mpmath_transl(): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS for sym, mat in MPMATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ or sym == 'Matrix' assert mat in mpmath.__dict__ def test_numpy_transl(): if not numpy: skip("numpy not installed.") from sympy.utilities.lambdify import NUMPY_TRANSLATIONS for sym, nump in NUMPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert nump in numpy.__dict__ def test_scipy_transl(): if not scipy: skip("scipy not installed.") from sympy.utilities.lambdify import SCIPY_TRANSLATIONS for sym, scip in SCIPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert scip in scipy.__dict__ or scip in scipy.special.__dict__ def test_numpy_translation_abs(): if not numpy: skip("numpy not installed.") f = lambdify(x, Abs(x), "numpy") assert f(-1) == 1 assert f(1) == 1 def test_numexpr_printer(): if not numexpr: skip("numexpr not installed.") # if translation/printing is done incorrectly then evaluating # a lambdified numexpr expression will throw an exception from sympy.printing.lambdarepr import NumExprPrinter blacklist = ('where', 'complex', 'contains') arg_tuple = (x, y, z) # some functions take more than one argument for sym in NumExprPrinter._numexpr_functions.keys(): if sym in blacklist: continue ssym = S(sym) if hasattr(ssym, '_nargs'): nargs = ssym._nargs[0] else: nargs = 1 args = arg_tuple[:nargs] f = lambdify(args, ssym(*args), modules='numexpr') assert f(*(1, )*nargs) is not None def test_issue_9334(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") expr = S('b*a - sqrt(a**2)') a, b = sorted(expr.free_symbols, key=lambda s: s.name) func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False) foo, bar = numpy.random.random((2, 4)) func_numexpr(foo, bar) def test_issue_12984(): import warnings if not numexpr: skip("numexpr not installed.") func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr) assert func_numexpr(1, 24, 42) == 24 with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) assert str(func_numexpr(-1, 24, 42)) == 'nan' #================== Test some functions ============================ def test_exponentiation(): f = lambdify(x, x**2) assert f(-1) == 1 assert f(0) == 0 assert f(1) == 1 assert f(-2) == 4 assert f(2) == 4 assert f(2.5) == 6.25 def test_sqrt(): f = lambdify(x, sqrt(x)) assert f(0) == 0.0 assert f(1) == 1.0 assert f(4) == 2.0 assert abs(f(2) - 1.414) < 0.001 assert f(6.25) == 2.5 def test_trig(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) prec = 1e-11 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec d = f(3.14159) prec = 1e-5 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec def test_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(y, Integral(f(x), (x, y, oo))) d = l(-oo) assert 1.77245385 < d < 1.772453851 def test_double_integral(): # example from http://mpmath.org/doc/current/calculus/integration.html i = Integral(1/(1 - x**2*y**2), (x, 0, 1), (y, 0, z)) l = lambdify([z], i) d = l(1) assert 1.23370055 < d < 1.233700551 #================== Test vectors =================================== def test_vector_simple(): f = lambdify((x, y, z), (z, y, x)) assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_vector_discontinuous(): f = lambdify(x, (-1/x, 1/x)) raises(ZeroDivisionError, lambda: f(0)) assert f(1) == (-1.0, 1.0) assert f(2) == (-0.5, 0.5) assert f(-2) == (0.5, -0.5) def test_trig_symbolic(): f = lambdify([x], [cos(x), sin(x)], 'math') d = f(pi) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_trig_float(): f = lambdify([x], [cos(x), sin(x)]) d = f(3.14159) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_docs(): f = lambdify(x, x**2) assert f(2) == 4 f = lambdify([x, y, z], [z, y, x]) assert f(1, 2, 3) == [3, 2, 1] f = lambdify(x, sqrt(x)) assert f(4) == 2.0 f = lambdify((x, y), sin(x*y)**2) assert f(0, 5) == 0 def test_math(): f = lambdify((x, y), sin(x), modules="math") assert f(0, 5) == 0 def test_sin(): f = lambdify(x, sin(x)**2) assert isinstance(f(2), float) f = lambdify(x, sin(x)**2, modules="math") assert isinstance(f(2), float) def test_matrix(): A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol = Matrix([[1, 2], [sin(3) + 4, 1]]) f = lambdify((x, y, z), A, modules="sympy") assert f(1, 2, 3) == sol f = lambdify((x, y, z), (A, [A]), modules="sympy") assert f(1, 2, 3) == (sol, [sol]) J = Matrix((x, x + y)).jacobian((x, y)) v = Matrix((x, y)) sol = Matrix([[1, 0], [1, 1]]) assert lambdify(v, J, modules='sympy')(1, 2) == sol assert lambdify(v.T, J, modules='sympy')(1, 2) == sol def test_numpy_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) #Lambdify array first, to ensure return to array as default f = lambdify((x, y, z), A, ['numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) #Check that the types are arrays and matrices assert isinstance(f(1, 2, 3), numpy.ndarray) # gh-15071 class dot(Function): pass x_dot_mtx = dot(x, Matrix([[2], [1], [0]])) f_dot1 = lambdify(x, x_dot_mtx) inp = numpy.zeros((17, 3)) assert numpy.all(f_dot1(inp) == 0) strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False) p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw)) f_dot2 = lambdify(x, x_dot_mtx, printer=p2) assert numpy.all(f_dot2(inp) == 0) p3 = NumPyPrinter(strict_kw) # The line below should probably fail upon construction (before calling with "(inp)"): raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp)) def test_numpy_transpose(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A.T, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]])) def test_numpy_dotproduct(): if not numpy: skip("numpy not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ numpy.array([14]) def test_numpy_inverse(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A**-1, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]])) def test_numpy_old_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) assert isinstance(f(1, 2, 3), numpy.matrix) def test_scipy_sparse_matrix(): if not scipy: skip("scipy not installed.") A = SparseMatrix([[x, 0], [0, y]]) f = lambdify((x, y), A, modules="scipy") B = f(1, 2) assert isinstance(B, scipy.sparse.coo_matrix) def test_python_div_zero_issue_11306(): if not numpy: skip("numpy not installed.") p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True)) f = lambdify([x, y], p, modules='numpy') numpy.seterr(divide='ignore') assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0 assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf' numpy.seterr(divide='warn') def test_issue9474(): mods = [None, 'math'] if numpy: mods.append('numpy') if mpmath: mods.append('mpmath') for mod in mods: f = lambdify(x, S.One/x, modules=mod) assert f(2) == 0.5 f = lambdify(x, floor(S.One/x), modules=mod) assert f(2) == 0 for absfunc, modules in product([Abs, abs], mods): f = lambdify(x, absfunc(x), modules=modules) assert f(-1) == 1 assert f(1) == 1 assert f(3+4j) == 5 def test_issue_9871(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") r = sqrt(x**2 + y**2) expr = diff(1/r, x) xn = yn = numpy.linspace(1, 10, 16) # expr(xn, xn) = -xn/(sqrt(2)*xn)^3 fv_exact = -numpy.sqrt(2.)**-3 * xn**-2 fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn) fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn) numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10) numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10) def test_numpy_piecewise(): if not numpy: skip("numpy not installed.") pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True)) f = lambdify(x, pieces, modules="numpy") numpy.testing.assert_array_equal(f(numpy.arange(10)), numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])) # If we evaluate somewhere all conditions are False, we should get back NaN nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0))) numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])), numpy.array([1, numpy.nan, 1])) def test_numpy_logical_ops(): if not numpy: skip("numpy not installed.") and_func = lambdify((x, y), And(x, y), modules="numpy") and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy") or_func = lambdify((x, y), Or(x, y), modules="numpy") or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy") not_func = lambdify((x), Not(x), modules="numpy") arr1 = numpy.array([True, True]) arr2 = numpy.array([False, True]) arr3 = numpy.array([True, False]) numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True])) numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False])) numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True])) numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True])) numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False])) def test_numpy_matmul(): if not numpy: skip("numpy not installed.") xmat = Matrix([[x, y], [z, 1+z]]) ymat = Matrix([[x**2], [Abs(x)]]) mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy") numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]])) numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]])) # Multiple matrices chained together in multiplication f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy") numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25], [159, 251]])) def test_numpy_numexpr(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b, c = numpy.random.randn(3, 128, 128) # ensure that numpy and numexpr return same value for complicated expression expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \ Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2) npfunc = lambdify((x, y, z), expr, modules='numpy') nefunc = lambdify((x, y, z), expr, modules='numexpr') assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c)) def test_numexpr_userfunctions(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b = numpy.random.randn(2, 10) uf = type('uf', (Function, ), {'eval' : classmethod(lambda x, y : y**2+1)}) func = lambdify(x, 1-uf(x), modules='numexpr') assert numpy.allclose(func(a), -(a**2)) uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1) func = lambdify((x, y), uf(x, y), modules='numexpr') assert numpy.allclose(func(a, b), 2*a*b+1) def test_tensorflow_basic_math(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.constant(0, dtype=tensorflow.float32) assert func(a).eval(session=s) == 0.5 def test_tensorflow_placeholders(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_variables(): if not tensorflow: skip("tensorflow not installed.") expr = Max(sin(x), Abs(1/(x+2))) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: a = tensorflow.Variable(0, dtype=tensorflow.float32) s.run(a.initializer) assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5 def test_tensorflow_logical_operations(): if not tensorflow: skip("tensorflow not installed.") expr = Not(And(Or(x, y), y)) func = lambdify([x, y], expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(False, True).eval(session=s) == False def test_tensorflow_piecewise(): if not tensorflow: skip("tensorflow not installed.") expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0)) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-1).eval(session=s) == -1 assert func(0).eval(session=s) == 0 assert func(1).eval(session=s) == 1 def test_tensorflow_multi_max(): if not tensorflow: skip("tensorflow not installed.") expr = Max(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == 4 def test_tensorflow_multi_min(): if not tensorflow: skip("tensorflow not installed.") expr = Min(x, -x, x**2) func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(-2).eval(session=s) == -2 def test_tensorflow_relational(): if not tensorflow: skip("tensorflow not installed.") expr = x >= 0 func = lambdify(x, expr, modules="tensorflow") with tensorflow.compat.v1.Session() as s: assert func(1).eval(session=s) == True def test_tensorflow_complexes(): if not tensorflow: skip("tensorflow not installed") func1 = lambdify(x, re(x), modules="tensorflow") func2 = lambdify(x, im(x), modules="tensorflow") func3 = lambdify(x, Abs(x), modules="tensorflow") func4 = lambdify(x, arg(x), modules="tensorflow") with tensorflow.compat.v1.Session() as s: # For versions before # https://github.com/tensorflow/tensorflow/issues/30029 # resolved, using python numeric types may not work a = tensorflow.constant(1+2j) assert func1(a).eval(session=s) == 1 assert func2(a).eval(session=s) == 2 tensorflow_result = func3(a).eval(session=s) sympy_result = Abs(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 tensorflow_result = func4(a).eval(session=s) sympy_result = arg(1 + 2j).evalf() assert abs(tensorflow_result-sympy_result) < 10**-6 def test_tensorflow_array_arg(): # Test for issue 14655 (tensorflow part) if not tensorflow: skip("tensorflow not installed.") f = lambdify([[x, y]], x*x + y, 'tensorflow') with tensorflow.compat.v1.Session() as s: fcall = f(tensorflow.constant([2.0, 1.0])) assert fcall.eval(session=s) == 5.0 #================== Test symbolic ================================== def test_sym_single_arg(): f = lambdify(x, x * y) assert f(z) == z * y def test_sym_list_args(): f = lambdify([x, y], x + y + z) assert f(1, 2) == 3 + z def test_sym_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(y) == Integral(exp(-y**2), (y, -oo, oo)) assert l(y).doit() == sqrt(pi) def test_namespace_order(): # lambdify had a bug, such that module dictionaries or cached module # dictionaries would pull earlier namespaces into themselves. # Because the module dictionaries form the namespace of the # generated lambda, this meant that the behavior of a previously # generated lambda function could change as a result of later calls # to lambdify. n1 = {'f': lambda x: 'first f'} n2 = {'f': lambda x: 'second f', 'g': lambda x: 'function g'} f = sympy.Function('f') g = sympy.Function('g') if1 = lambdify(x, f(x), modules=(n1, "sympy")) assert if1(1) == 'first f' if2 = lambdify(x, g(x), modules=(n2, "sympy")) # previously gave 'second f' assert if1(1) == 'first f' assert if2(1) == 'function g' def test_namespace_type(): # lambdify had a bug where it would reject modules of type unicode # on Python 2. x = sympy.Symbol('x') lambdify(x, x, modules='math') def test_imps(): # Here we check if the default returned functions are anonymous - in # the sense that we can have more than one function with the same name f = implemented_function('f', lambda x: 2*x) g = implemented_function('f', lambda x: math.sqrt(x)) l1 = lambdify(x, f(x)) l2 = lambdify(x, g(x)) assert str(f(x)) == str(g(x)) assert l1(3) == 6 assert l2(3) == math.sqrt(3) # check that we can pass in a Function as input func = sympy.Function('myfunc') assert not hasattr(func, '_imp_') my_f = implemented_function(func, lambda x: 2*x) assert hasattr(my_f, '_imp_') # Error for functions with same name and different implementation f2 = implemented_function("f", lambda x: x + 101) raises(ValueError, lambda: lambdify(x, f(f2(x)))) def test_imps_errors(): # Test errors that implemented functions can return, and still be able to # form expressions. # See: https://github.com/sympy/sympy/issues/10810 # # XXX: Removed AttributeError here. This test was added due to issue 10810 # but that issue was about ValueError. It doesn't seem reasonable to # "support" catching AttributeError in the same context... for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)): def myfunc(a): if a == 0: raise error_class return 1 f = implemented_function('f', myfunc) expr = f(val) assert expr == f(val) def test_imps_wrong_args(): raises(ValueError, lambda: implemented_function(sin, lambda x: x)) def test_lambdify_imps(): # Test lambdify with implemented functions # first test basic (sympy) lambdify f = sympy.cos assert lambdify(x, f(x))(0) == 1 assert lambdify(x, 1 + f(x))(0) == 2 assert lambdify((x, y), y + f(x))(0, 1) == 2 # make an implemented function and test f = implemented_function("f", lambda x: x + 100) assert lambdify(x, f(x))(0) == 100 assert lambdify(x, 1 + f(x))(0) == 101 assert lambdify((x, y), y + f(x))(0, 1) == 101 # Can also handle tuples, lists, dicts as expressions lam = lambdify(x, (f(x), x)) assert lam(3) == (103, 3) lam = lambdify(x, [f(x), x]) assert lam(3) == [103, 3] lam = lambdify(x, [f(x), (f(x), x)]) assert lam(3) == [103, (103, 3)] lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {x: f(x)}) assert lam(3) == {3: 103} # Check that imp preferred to other namespaces by default d = {'f': lambda x: x + 99} lam = lambdify(x, f(x), d) assert lam(3) == 103 # Unless flag passed lam = lambdify(x, f(x), d, use_imps=False) assert lam(3) == 102 def test_dummification(): t = symbols('t') F = Function('F') G = Function('G') #"\alpha" is not a valid python variable name #lambdify should sub in a dummy for it, and return #without a syntax error alpha = symbols(r'\alpha') some_expr = 2 * F(t)**2 / G(t) lam = lambdify((F(t), G(t)), some_expr) assert lam(3, 9) == 2 lam = lambdify(sin(t), 2 * sin(t)**2) assert lam(F(t)) == 2 * F(t)**2 #Test that \alpha was properly dummified lam = lambdify((alpha, t), 2*alpha + t) assert lam(2, 1) == 5 raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5)) def test_curly_matrix_symbol(): # Issue #15009 curlyv = sympy.MatrixSymbol("{v}", 2, 1) lam = lambdify(curlyv, curlyv) assert lam(1)==1 lam = lambdify(curlyv, curlyv, dummify=True) assert lam(1)==1 def test_python_keywords(): # Test for issue 7452. The automatic dummification should ensure use of # Python reserved keywords as symbol names will create valid lambda # functions. This is an additional regression test. python_if = symbols('if') expr = python_if / 2 f = lambdify(python_if, expr) assert f(4.0) == 2.0 def test_lambdify_docstring(): func = lambdify((w, x, y, z), w + x + y + z) ref = ( "Created with lambdify. Signature:\n\n" "func(w, x, y, z)\n\n" "Expression:\n\n" "w + x + y + z" ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref syms = symbols('a1:26') func = lambdify(syms, sum(syms)) ref = ( "Created with lambdify. Signature:\n\n" "func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n" " a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n" "Expression:\n\n" "a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..." ).splitlines() assert func.__doc__.splitlines()[:len(ref)] == ref #================== Test special printers ========================== def test_special_printers(): from sympy.polys.numberfields import IntervalPrinter def intervalrepr(expr): return IntervalPrinter().doprint(expr) expr = sqrt(sqrt(2) + sqrt(3)) + S.Half func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr) func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter) func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter()) mpi = type(mpmath.mpi(1, 2)) assert isinstance(func0(), mpi) assert isinstance(func1(), mpi) assert isinstance(func2(), mpi) # To check Is lambdify loggamma works for mpmath or not exp1 = lambdify(x, loggamma(x), 'mpmath')(5) exp2 = lambdify(x, loggamma(x), 'mpmath')(1.8) exp3 = lambdify(x, loggamma(x), 'mpmath')(15) exp_ls = [exp1, exp2, exp3] sol1 = mpmath.loggamma(5) sol2 = mpmath.loggamma(1.8) sol3 = mpmath.loggamma(15) sol_ls = [sol1, sol2, sol3] assert exp_ls == sol_ls def test_true_false(): # We want exact is comparison here, not just == assert lambdify([], true)() is True assert lambdify([], false)() is False def test_issue_2790(): assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3 assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10 assert lambdify(x, x + 1, dummify=False)(1) == 2 def test_issue_12092(): f = implemented_function('f', lambda x: x**2) assert f(f(2)).evalf() == Float(16) def test_issue_14911(): class Variable(sympy.Symbol): def _sympystr(self, printer): return printer.doprint(self.name) _lambdacode = _sympystr _numpycode = _sympystr x = Variable('x') y = 2 * x code = LambdaPrinter().doprint(y) assert code.replace(' ', '') == '2*x' def test_ITE(): assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5 assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3 def test_Min_Max(): # see gh-10375 assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1 assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3 def test_Indexed(): # Issue #10934 if not numpy: skip("numpy not installed") a = IndexedBase('a') i, j = symbols('i j') b = numpy.array([[1, 2], [3, 4]]) assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10 def test_issue_12173(): #test for issue 12173 expr1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2) expr2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2) assert expr1 == uppergamma(1, 2).evalf() assert expr2 == lowergamma(1, 2).evalf() def test_issue_13642(): if not numpy: skip("numpy not installed") f = lambdify(x, sinc(x)) assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_sinc_mpmath(): f = lambdify(x, sinc(x), "mpmath") assert Abs(f(1) - sinc(1)).n() < 1e-15 def test_lambdify_dummy_arg(): d1 = Dummy() f1 = lambdify(d1, d1 + 1, dummify=False) assert f1(2) == 3 f1b = lambdify(d1, d1 + 1) assert f1b(2) == 3 d2 = Dummy('x') f2 = lambdify(d2, d2 + 1) assert f2(2) == 3 f3 = lambdify([[d2]], d2 + 1) assert f3([2]) == 3 def test_lambdify_mixed_symbol_dummy_args(): d = Dummy() # Contrived example of name clash dsym = symbols(str(d)) f = lambdify([d, dsym], d - dsym) assert f(4, 1) == 3 def test_numpy_array_arg(): # Test for issue 14655 (numpy part) if not numpy: skip("numpy not installed") f = lambdify([[x, y]], x*x + y, 'numpy') assert f(numpy.array([2.0, 1.0])) == 5 def test_scipy_fns(): if not scipy: skip("scipy not installed") single_arg_sympy_fns = [erf, erfc, factorial, gamma, loggamma, digamma] single_arg_scipy_fns = [scipy.special.erf, scipy.special.erfc, scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln, scipy.special.psi] numpy.random.seed(0) for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns): f = lambdify(x, sympy_fn(x), modules="scipy") for i in range(20): tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy thinks that factorial(z) is 0 when re(z) < 0 and # does not support complex numbers. # SymPy does not think so. if sympy_fn == factorial: tv = numpy.abs(tv) # SciPy supports gammaln for real arguments only, # and there is also a branch cut along the negative real axis if sympy_fn == loggamma: tv = numpy.abs(tv) # SymPy's digamma evaluates as polygamma(0, z) # which SciPy supports for real arguments only if sympy_fn == digamma: tv = numpy.real(tv) sympy_result = sympy_fn(tv).evalf() assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result)) double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli, besselk] double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv, scipy.special.yv, scipy.special.iv, scipy.special.kv] for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns): f = lambdify((x, y), sympy_fn(x, y), modules="scipy") for i in range(20): # SciPy supports only real orders of Bessel functions tv1 = numpy.random.uniform(-10, 10) tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports poch for real arguments only if sympy_fn == RisingFactorial: tv2 = numpy.real(tv2) sympy_result = sympy_fn(tv1, tv2).evalf() assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result)) assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result)) def test_scipy_polys(): if not scipy: skip("scipy not installed") numpy.random.seed(0) params = symbols('n k a b') # list polynomials with the number of parameters polys = [ (chebyshevt, 1), (chebyshevu, 1), (legendre, 1), (hermite, 1), (laguerre, 1), (gegenbauer, 2), (assoc_legendre, 2), (assoc_laguerre, 2), (jacobi, 3) ] msg = \ "The random test of the function {func} with the arguments " \ "{args} had failed because the SymPy result {sympy_result} " \ "and SciPy result {scipy_result} had failed to converge " \ "within the tolerance {tol} " \ "(Actual absolute difference : {diff})" for sympy_fn, num_params in polys: args = params[:num_params] + (x,) f = lambdify(args, sympy_fn(*args)) for _ in range(10): tn = numpy.random.randint(3, 10) tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1)) tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5) # SciPy supports hermite for real arguments only if sympy_fn == hermite: tv = numpy.real(tv) # assoc_legendre needs x in (-1, 1) and integer param at most n if sympy_fn == assoc_legendre: tv = numpy.random.uniform(-1, 1) tparams = tuple(numpy.random.randint(1, tn, size=1)) vals = (tn,) + tparams + (tv,) scipy_result = f(*vals) sympy_result = sympy_fn(*vals).evalf() atol = 1e-9*(1 + abs(sympy_result)) diff = abs(scipy_result - sympy_result) try: assert diff < atol except TypeError: raise AssertionError( msg.format( func=repr(sympy_fn), args=repr(vals), sympy_result=repr(sympy_result), scipy_result=repr(scipy_result), diff=diff, tol=atol) ) def test_lambdify_inspect(): f = lambdify(x, x**2) # Test that inspect.getsource works but don't hard-code implementation # details assert 'x**2' in inspect.getsource(f) def test_issue_14941(): x, y = Dummy(), Dummy() # test dict f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy') assert f1(2, 3) == {2: 3, 3: 3} # test tuple f2 = lambdify([x, y], (y, x), 'sympy') assert f2(2, 3) == (3, 2) # test list f3 = lambdify([x, y], [y, x], 'sympy') assert f3(2, 3) == [3, 2] def test_lambdify_Derivative_arg_issue_16468(): f = Function('f')(x) fx = f.diff() assert lambdify((f, fx), f + fx)(10, 5) == 15 assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2 raises(SyntaxError, lambda: eval(lambdastr((f, fx), f/fx, dummify=False))) assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2 assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half assert lambdify(fx, 1 + fx)(41) == 42 assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42 def test_imag_real(): f_re = lambdify([z], sympy.re(z)) val = 3+2j assert f_re(val) == val.real f_im = lambdify([z], sympy.im(z)) # see #15400 assert f_im(val) == val.imag def test_MatrixSymbol_issue_15578(): if not numpy: skip("numpy not installed") A = MatrixSymbol('A', 2, 2) A0 = numpy.array([[1, 2], [3, 4]]) f = lambdify(A, A**(-1)) assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]])) g = lambdify(A, A**3) assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]])) def test_issue_15654(): if not scipy: skip("scipy not installed") from sympy.abc import n, l, r, Z from sympy.physics import hydrogen nv, lv, rv, Zv = 1, 0, 3, 1 sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf() f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z)) scipy_value = f(nv, lv, rv, Zv) assert abs(sympy_value - scipy_value) < 1e-15 def test_issue_15827(): if not numpy: skip("numpy not installed") A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 2, 3) C = MatrixSymbol("C", 3, 4) D = MatrixSymbol("D", 4, 5) k=symbols("k") f = lambdify(A, (2*k)*A) g = lambdify(A, (2+k)*A) h = lambdify(A, 2*A) i = lambdify((B, C, D), 2*B*C*D) assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object)) assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \ [k + 2, 2*k + 4, 3*k + 6]], dtype=object)) assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \ numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]])) assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \ numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \ [ 120, 240, 360, 480, 600]])) def test_issue_16930(): if not scipy: skip("scipy not installed") x = symbols("x") f = lambda x: S.GoldenRatio * x**2 f_ = lambdify(x, f(x), modules='scipy') assert f_(1) == scipy.constants.golden_ratio def test_issue_17898(): if not scipy: skip("scipy not installed") x = symbols("x") f_ = lambdify([x], sympy.LambertW(x,-1), modules='scipy') assert f_(0.1) == mpmath.lambertw(0.1, -1) def test_issue_13167_21411(): if not numpy: skip("numpy not installed") f1 = lambdify(x, sympy.Heaviside(x)) f2 = lambdify(x, sympy.Heaviside(x, 1)) res1 = f1([-1, 0, 1]) res2 = f2([-1, 0, 1]) assert Abs(res1[0]).n() < 1e-15 # First functionality: only one argument passed assert Abs(res1[1] - 1/2).n() < 1e-15 assert Abs(res1[2] - 1).n() < 1e-15 assert Abs(res2[0]).n() < 1e-15 # Second functionality: two arguments passed assert Abs(res2[1] - 1).n() < 1e-15 assert Abs(res2[2] - 1).n() < 1e-15 def test_single_e(): f = lambdify(x, E) assert f(23) == exp(1.0) def test_issue_16536(): if not scipy: skip("scipy not installed") a = symbols('a') f1 = lowergamma(a, x) F = lambdify((a, x), f1, modules='scipy') assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10 f2 = uppergamma(a, x) F = lambdify((a, x), f2, modules='scipy') assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10 def test_fresnel_integrals_scipy(): if not scipy: skip("scipy not installed") f1 = fresnelc(x) f2 = fresnels(x) F1 = lambdify(x, f1, modules='scipy') F2 = lambdify(x, f2, modules='scipy') assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10 assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10 def test_beta_scipy(): if not scipy: skip("scipy not installed") f = beta(x, y) F = lambdify((x, y), f, modules='scipy') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10 def test_beta_math(): f = beta(x, y) F = lambdify((x, y), f, modules='math') assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10 def test_betainc_scipy(): if not scipy: skip("scipy not installed") f = betainc(w, x, y, z) F = lambdify((w, x, y, z), f, modules='scipy') assert abs(betainc(1.4, 3.1, 0.1, 0.5) - F(1.4, 3.1, 0.1, 0.5)) <= 1e-10 def test_betainc_regularized_scipy(): if not scipy: skip("scipy not installed") f = betainc_regularized(w, x, y, z) F = lambdify((w, x, y, z), f, modules='scipy') assert abs(betainc_regularized(0.2, 3.5, 0.1, 1) - F(0.2, 3.5, 0.1, 1)) <= 1e-10 def test_numpy_special_math(): if not numpy: skip("numpy not installed") funcs = [expm1, log1p, exp2, log2, log10, hypot, logaddexp, logaddexp2] for func in funcs: if 2 in func.nargs: expr = func(x, y) args = (x, y) num_args = (0.3, 0.4) elif 1 in func.nargs: expr = func(x) args = (x,) num_args = (0.3,) else: raise NotImplementedError("Need to handle other than unary & binary functions in test") f = lambdify(args, expr) result = f(*num_args) reference = expr.subs(dict(zip(args, num_args))).evalf() assert numpy.allclose(result, float(reference)) lae2 = lambdify((x, y), logaddexp2(log2(x), log2(y))) assert abs(2.0**lae2(1e-50, 2.5e-50) - 3.5e-50) < 1e-62 # from NumPy's docstring def test_scipy_special_math(): if not scipy: skip("scipy not installed") cm1 = lambdify((x,), cosm1(x), modules='scipy') assert abs(cm1(1e-20) + 5e-41) < 1e-200 def test_cupy_array_arg(): if not cupy: skip("CuPy not installed") f = lambdify([[x, y]], x*x + y, 'cupy') result = f(cupy.array([2.0, 1.0])) assert result == 5 assert "cupy" in str(type(result)) def test_cupy_array_arg_using_numpy(): # numpy functions can be run on cupy arrays # unclear if we can "officialy" support this, # depends on numpy __array_function__ support if not cupy: skip("CuPy not installed") f = lambdify([[x, y]], x*x + y, 'numpy') result = f(cupy.array([2.0, 1.0])) assert result == 5 assert "cupy" in str(type(result)) def test_cupy_dotproduct(): if not cupy: skip("CuPy not installed") A = Matrix([x, y, z]) f1 = lambdify([x, y, z], DotProduct(A, A), modules='cupy') f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='cupy') f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='cupy') f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='cupy') assert f1(1, 2, 3) == \ f2(1, 2, 3) == \ f3(1, 2, 3) == \ f4(1, 2, 3) == \ cupy.array([14])
6d056d75b3d4bfa643e80318c74eb0384665ddaaa60085270724d044cb1f9c11
import itertools from sympy.core import S from sympy.core.containers import Tuple from sympy.core.function import _coeff_isneg from sympy.core.mul import Mul from sympy.core.numbers import Number, Rational from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from sympy.printing.conventions import requires_partial from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional from sympy.printing.printer import Printer, print_function from sympy.printing.str import sstr from sympy.utilities import default_sort_key from sympy.utilities.iterables import has_variety from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \ xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \ pretty_try_use_unicode, annotated # rename for usage from outside pprint_use_unicode = pretty_use_unicode pprint_try_use_unicode = pretty_try_use_unicode class PrettyPrinter(Printer): """Printer, which converts an expression into 2D ASCII-art figure.""" printmethod = "_pretty" _default_settings = { "order": None, "full_prec": "auto", "use_unicode": None, "wrap_line": True, "num_columns": None, "use_unicode_sqrt_char": True, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "perm_cyclic": True } def __init__(self, settings=None): Printer.__init__(self, settings) if not isinstance(self._settings['imaginary_unit'], str): raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit'])) elif self._settings['imaginary_unit'] not in ["i", "j"]: raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit'])) def emptyPrinter(self, expr): return prettyForm(str(expr)) @property def _use_unicode(self): if self._settings['use_unicode']: return True else: return pretty_use_unicode() def doprint(self, expr): return self._print(expr).render(**self._settings) # empty op so _print(stringPict) returns the same def _print_stringPict(self, e): return e def _print_basestring(self, e): return prettyForm(e) def _print_atan2(self, e): pform = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm(*pform.left('atan2')) return pform def _print_Symbol(self, e, bold_name=False): symb = pretty_symbol(e.name, bold_name) return prettyForm(symb) _print_RandomSymbol = _print_Symbol def _print_MatrixSymbol(self, e): return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold") def _print_Float(self, e): # we will use StrPrinter's Float printer, but we need to handle the # full_prec ourselves, according to the self._print_level full_prec = self._settings["full_prec"] if full_prec == "auto": full_prec = self._print_level == 1 return prettyForm(sstr(e, full_prec=full_prec)) def _print_Cross(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Curl(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Divergence(self, e): vec = e._expr pform = self._print(vec) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Dot(self, e): vec1 = e._expr1 vec2 = e._expr2 pform = self._print(vec2) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR')))) pform = prettyForm(*pform.left(')')) pform = prettyForm(*pform.left(self._print(vec1))) pform = prettyForm(*pform.left('(')) return pform def _print_Gradient(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('NABLA')))) return pform def _print_Laplacian(self, e): func = e._expr pform = self._print(func) pform = prettyForm(*pform.left('(')) pform = prettyForm(*pform.right(')')) pform = prettyForm(*pform.left(self._print(U('INCREMENT')))) return pform def _print_Atom(self, e): try: # print atoms like Exp1 or Pi return prettyForm(pretty_atom(e.__class__.__name__, printer=self)) except KeyError: return self.emptyPrinter(e) # Infinity inherits from Number, so we have to override _print_XXX order _print_Infinity = _print_Atom _print_NegativeInfinity = _print_Atom _print_EmptySet = _print_Atom _print_Naturals = _print_Atom _print_Naturals0 = _print_Atom _print_Integers = _print_Atom _print_Rationals = _print_Atom _print_Complexes = _print_Atom _print_EmptySequence = _print_Atom def _print_Reals(self, e): if self._use_unicode: return self._print_Atom(e) else: inf_list = ['-oo', 'oo'] return self._print_seq(inf_list, '(', ')') def _print_subfactorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('!')) return pform def _print_factorial(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!')) return pform def _print_factorial2(self, e): x = e.args[0] pform = self._print(x) # Add parentheses if needed if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol): pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right('!!')) return pform def _print_binomial(self, e): n, k = e.args n_pform = self._print(n) k_pform = self._print(k) bar = ' '*max(n_pform.width(), k_pform.width()) pform = prettyForm(*k_pform.above(bar)) pform = prettyForm(*pform.above(n_pform)) pform = prettyForm(*pform.parens('(', ')')) pform.baseline = (pform.baseline + 1)//2 return pform def _print_Relational(self, e): op = prettyForm(' ' + xsym(e.rel_op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Not(self, e): from sympy import Equivalent, Implies if self._use_unicode: arg = e.args[0] pform = self._print(arg) if isinstance(arg, Equivalent): return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}") if isinstance(arg, Implies): return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}") if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{NOT SIGN}")) else: return self._print_Function(e) def __print_Boolean(self, e, char, sort=True): args = e.args if sort: args = sorted(e.args, key=default_sort_key) arg = args[0] pform = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform = prettyForm(*pform.parens()) for arg in args[1:]: pform_arg = self._print(arg) if arg.is_Boolean and not arg.is_Not: pform_arg = prettyForm(*pform_arg.parens()) pform = prettyForm(*pform.right(' %s ' % char)) pform = prettyForm(*pform.right(pform_arg)) return pform def _print_And(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL AND}") else: return self._print_Function(e, sort=True) def _print_Or(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{LOGICAL OR}") else: return self._print_Function(e, sort=True) def _print_Xor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{XOR}") else: return self._print_Function(e, sort=True) def _print_Nand(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NAND}") else: return self._print_Function(e, sort=True) def _print_Nor(self, e): if self._use_unicode: return self.__print_Boolean(e, "\N{NOR}") else: return self._print_Function(e, sort=True) def _print_Implies(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False) else: return self._print_Function(e) def _print_Equivalent(self, e, altchar=None): if self._use_unicode: return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}") else: return self._print_Function(e, sort=True) def _print_conjugate(self, e): pform = self._print(e.args[0]) return prettyForm( *pform.above( hobj('_', pform.width())) ) def _print_Abs(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('|', '|')) return pform _print_Determinant = _print_Abs def _print_floor(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lfloor', 'rfloor')) return pform else: return self._print_Function(e) def _print_ceiling(self, e): if self._use_unicode: pform = self._print(e.args[0]) pform = prettyForm(*pform.parens('lceil', 'rceil')) return pform else: return self._print_Function(e) def _print_Derivative(self, deriv): if requires_partial(deriv.expr) and self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None count_total_deriv = 0 for sym, num in reversed(deriv.variable_count): s = self._print(sym) ds = prettyForm(*s.left(deriv_symbol)) count_total_deriv += num if (not num.is_Integer) or (num > 1): ds = ds**prettyForm(str(num)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if (count_total_deriv > 1) != False: pform = pform**prettyForm(str(count_total_deriv)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Cycle(self, dc): from sympy.combinatorics.permutations import Permutation, Cycle # for Empty Cycle if dc == Cycle(): cyc = stringPict('') return prettyForm(*cyc.parens()) dc_list = Permutation(dc.list()).cyclic_form # for Identity Cycle if dc_list == []: cyc = self._print(dc.size - 1) return prettyForm(*cyc.parens()) cyc = stringPict('') for i in dc_list: l = self._print(str(tuple(i)).replace(',', '')) cyc = prettyForm(*cyc.right(l)) return cyc def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(Cycle(expr)) lower = expr.array_form upper = list(range(len(lower))) result = stringPict('') first = True for u, l in zip(upper, lower): s1 = self._print(u) s2 = self._print(l) col = prettyForm(*s1.below(s2)) if first: first = False else: col = prettyForm(*col.left(" ")) result = prettyForm(*result.right(col)) return prettyForm(*result.parens()) def _print_Integral(self, integral): f = integral.function # Add parentheses if arg involves addition of terms and # create a pretty form for the argument prettyF = self._print(f) # XXX generalize parens if f.is_Add: prettyF = prettyForm(*prettyF.parens()) # dx dy dz ... arg = prettyF for x in integral.limits: prettyArg = self._print(x[0]) # XXX qparens (parens if needs-parens) if prettyArg.width() > 1: prettyArg = prettyForm(*prettyArg.parens()) arg = prettyForm(*arg.right(' d', prettyArg)) # \int \int \int ... firstterm = True s = None for lim in integral.limits: x = lim[0] # Create bar based on the height of the argument h = arg.height() H = h + 2 # XXX hack! ascii_mode = not self._use_unicode if ascii_mode: H += 2 vint = vobj('int', H) # Construct the pretty form with the integral sign and the argument pform = prettyForm(vint) pform.baseline = arg.baseline + ( H - h)//2 # covering the whole argument if len(lim) > 1: # Create pretty forms for endpoints, if definite integral. # Do not print empty endpoints. if len(lim) == 2: prettyA = prettyForm("") prettyB = self._print(lim[1]) if len(lim) == 3: prettyA = self._print(lim[1]) prettyB = self._print(lim[2]) if ascii_mode: # XXX hack # Add spacing so that endpoint can more easily be # identified with the correct integral sign spc = max(1, 3 - prettyB.width()) prettyB = prettyForm(*prettyB.left(' ' * spc)) spc = max(1, 4 - prettyA.width()) prettyA = prettyForm(*prettyA.right(' ' * spc)) pform = prettyForm(*pform.above(prettyB)) pform = prettyForm(*pform.below(prettyA)) if not ascii_mode: # XXX hack pform = prettyForm(*pform.right(' ')) if firstterm: s = pform # first term firstterm = False else: s = prettyForm(*s.left(pform)) pform = prettyForm(*arg.left(s)) pform.binding = prettyForm.MUL return pform def _print_Product(self, expr): func = expr.term pretty_func = self._print(func) horizontal_chr = xobj('_', 1) corner_chr = xobj('_', 1) vertical_chr = xobj('|', 1) if self._use_unicode: # use unicode corners horizontal_chr = xobj('-', 1) corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}' func_height = pretty_func.height() first = True max_upper = 0 sign_height = 0 for lim in expr.limits: pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim) width = (func_height + 2) * 5 // 3 - 2 sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr] for _ in range(func_height + 1): sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ') pretty_sign = stringPict('') pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines)) max_upper = max(max_upper, pretty_upper.height()) if first: sign_height = pretty_sign.height() pretty_sign = prettyForm(*pretty_sign.above(pretty_upper)) pretty_sign = prettyForm(*pretty_sign.below(pretty_lower)) if first: pretty_func.baseline = 0 first = False height = pretty_sign.height() padding = stringPict('') padding = prettyForm(*padding.stack(*[' ']*(height - 1))) pretty_sign = prettyForm(*pretty_sign.right(padding)) pretty_func = prettyForm(*pretty_sign.right(pretty_func)) pretty_func.baseline = max_upper + sign_height//2 pretty_func.binding = prettyForm.MUL return pretty_func def __print_SumProduct_Limits(self, lim): def print_start(lhs, rhs): op = prettyForm(' ' + xsym("==") + ' ') l = self._print(lhs) r = self._print(rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform prettyUpper = self._print(lim[2]) prettyLower = print_start(lim[0], lim[1]) return prettyLower, prettyUpper def _print_Sum(self, expr): ascii_mode = not self._use_unicode def asum(hrequired, lower, upper, use_ascii): def adjust(s, wid=None, how='<^>'): if not wid or len(s) > wid: return s need = wid - len(s) if how == '<^>' or how == "<" or how not in list('<^>'): return s + ' '*need half = need//2 lead = ' '*half if how == ">": return " "*need + s return lead + s + ' '*(need - len(lead)) h = max(hrequired, 2) d = h//2 w = d + 1 more = hrequired % 2 lines = [] if use_ascii: lines.append("_"*(w) + ' ') lines.append(r"\%s`" % (' '*(w - 1))) for i in range(1, d): lines.append('%s\\%s' % (' '*i, ' '*(w - i))) if more: lines.append('%s)%s' % (' '*(d), ' '*(w - d))) for i in reversed(range(1, d)): lines.append('%s/%s' % (' '*i, ' '*(w - i))) lines.append("/" + "_"*(w - 1) + ',') return d, h + more, lines, more else: w = w + more d = d + more vsum = vobj('sum', 4) lines.append("_"*(w)) for i in range(0, d): lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1))) for i in reversed(range(0, d)): lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1))) lines.append(vsum[8]*(w)) return d, h + 2*more, lines, more f = expr.function prettyF = self._print(f) if f.is_Add: # add parens prettyF = prettyForm(*prettyF.parens()) H = prettyF.height() + 2 # \sum \sum \sum ... first = True max_upper = 0 sign_height = 0 for lim in expr.limits: prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim) max_upper = max(max_upper, prettyUpper.height()) # Create sum sign based on the height of the argument d, h, slines, adjustment = asum( H, prettyLower.width(), prettyUpper.width(), ascii_mode) prettySign = stringPict('') prettySign = prettyForm(*prettySign.stack(*slines)) if first: sign_height = prettySign.height() prettySign = prettyForm(*prettySign.above(prettyUpper)) prettySign = prettyForm(*prettySign.below(prettyLower)) if first: # change F baseline so it centers on the sign prettyF.baseline -= d - (prettyF.height()//2 - prettyF.baseline) first = False # put padding to the right pad = stringPict('') pad = prettyForm(*pad.stack(*[' ']*h)) prettySign = prettyForm(*prettySign.right(pad)) # put the present prettyF to the right prettyF = prettyForm(*prettySign.right(prettyF)) # adjust baseline of ascii mode sigma with an odd height so that it is # exactly through the center ascii_adjustment = ascii_mode if not adjustment else 0 prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment prettyF.binding = prettyForm.MUL return prettyF def _print_Limit(self, l): e, z, z0, dir = l.args E = self._print(e) if precedence(e) <= PRECEDENCE["Mul"]: E = prettyForm(*E.parens('(', ')')) Lim = prettyForm('lim') LimArg = self._print(z) if self._use_unicode: LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}')) else: LimArg = prettyForm(*LimArg.right('->')) LimArg = prettyForm(*LimArg.right(self._print(z0))) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): dir = "" else: if self._use_unicode: dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}' LimArg = prettyForm(*LimArg.right(self._print(dir))) Lim = prettyForm(*Lim.below(LimArg)) Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL) return Lim def _print_matrix_contents(self, e): """ This method factors out what is essentially grid printing. """ M = e # matrix Ms = {} # i,j -> pretty(M[i,j]) for i in range(M.rows): for j in range(M.cols): Ms[i, j] = self._print(M[i, j]) # h- and v- spacers hsep = 2 vsep = 1 # max width for columns maxw = [-1] * M.cols for j in range(M.cols): maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0]) # drawing result D = None for i in range(M.rows): D_row = None for j in range(M.cols): s = Ms[i, j] # reshape s to maxw # XXX this should be generalized, and go to stringPict.reshape ? assert s.width() <= maxw[j] # hcenter it, +0.5 to the right 2 # ( it's better to align formula starts for say 0 and r ) # XXX this is not good in all cases -- maybe introduce vbaseline? wdelta = maxw[j] - s.width() wleft = wdelta // 2 wright = wdelta - wleft s = prettyForm(*s.right(' '*wright)) s = prettyForm(*s.left(' '*wleft)) # we don't need vcenter cells -- this is automatically done in # a pretty way because when their baselines are taking into # account in .right() if D_row is None: D_row = s # first box in a row continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(s)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) if D is None: D = prettyForm('') # Empty Matrix return D def _print_MatrixBase(self, e): D = self._print_matrix_contents(e) D.baseline = D.height()//2 D = prettyForm(*D.parens('[', ']')) return D def _print_TensorProduct(self, expr): # This should somehow share the code with _print_WedgeProduct: circled_times = "\u2297" return self._print_seq(expr.args, None, None, circled_times, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_WedgeProduct(self, expr): # This should somehow share the code with _print_TensorProduct: wedge_symbol = "\u2227" return self._print_seq(expr.args, None, None, wedge_symbol, parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"]) def _print_Trace(self, e): D = self._print(e.arg) D = prettyForm(*D.parens('(',')')) D.baseline = D.height()//2 D = prettyForm(*D.left('\n'*(0) + 'tr')) return D def _print_MatrixElement(self, expr): from sympy.matrices import MatrixSymbol from sympy import Symbol if (isinstance(expr.parent, MatrixSymbol) and expr.i.is_number and expr.j.is_number): return self._print( Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j))) else: prettyFunc = self._print(expr.parent) prettyFunc = prettyForm(*prettyFunc.parens()) prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', ' ).parens(left='[', right=']')[0] pform = prettyForm(binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyIndices)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyIndices return pform def _print_MatrixSlice(self, m): # XXX works only for applied functions from sympy.matrices import MatrixSymbol prettyFunc = self._print(m.parent) if not isinstance(m.parent, MatrixSymbol): prettyFunc = prettyForm(*prettyFunc.parens()) def ppslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = '' if x[1] == dim: x[1] = '' return prettyForm(*self._print_seq(x, delimiter=':')) prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows), ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0] pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_Transpose(self, expr): pform = self._print(expr.arg) from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(prettyForm('T')) return pform def _print_Adjoint(self, expr): pform = self._print(expr.arg) if self._use_unicode: dag = prettyForm('\N{DAGGER}') else: dag = prettyForm('+') from sympy.matrices import MatrixSymbol if not isinstance(expr.arg, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**dag return pform def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): return self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_MatAdd(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: coeff = item.as_coeff_mmul()[0] if _coeff_isneg(S(coeff)): s = prettyForm(*stringPict.next(s, ' ')) pform = self._print(item) else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_MatMul(self, expr): args = list(expr.args) from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct for i, a in enumerate(args): if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct)) and len(expr.args) > 1): args[i] = prettyForm(*self._print(a).parens()) else: args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_Identity(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}') else: return prettyForm('I') def _print_ZeroMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}') else: return prettyForm('0') def _print_OneMatrix(self, expr): if self._use_unicode: return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}') else: return prettyForm('1') def _print_DotProduct(self, expr): args = list(expr.args) for i, a in enumerate(args): args[i] = self._print(a) return prettyForm.__mul__(*args) def _print_MatPow(self, expr): pform = self._print(expr.base) from sympy.matrices import MatrixSymbol if not isinstance(expr.base, MatrixSymbol): pform = prettyForm(*pform.parens()) pform = pform**(self._print(expr.exp)) return pform def _print_HadamardProduct(self, expr): from sympy import MatAdd, MatMul, HadamardProduct if self._use_unicode: delim = pretty_atom('Ring') else: delim = '.*' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct))) def _print_HadamardPower(self, expr): # from sympy import MatAdd, MatMul if self._use_unicode: circ = pretty_atom('Ring') else: circ = self._print('.') pretty_base = self._print(expr.base) pretty_exp = self._print(expr.exp) if precedence(expr.exp) < PRECEDENCE["Mul"]: pretty_exp = prettyForm(*pretty_exp.parens()) pretty_circ_exp = prettyForm( binding=prettyForm.LINE, *stringPict.next(circ, pretty_exp) ) return pretty_base**pretty_circ_exp def _print_KroneckerProduct(self, expr): from sympy import MatAdd, MatMul if self._use_unicode: delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} ' else: delim = ' x ' return self._print_seq(expr.args, None, None, delim, parenthesize=lambda x: isinstance(x, (MatAdd, MatMul))) def _print_FunctionMatrix(self, X): D = self._print(X.lamda.expr) D = prettyForm(*D.parens('[', ']')) return D def _print_TransferFunction(self, expr): if not expr.num == 1: num, den = expr.num, expr.den res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False) return self._print_Mul(res) else: return self._print(1)/self._print(expr.den) def _print_Series(self, expr): args = list(expr.args) for i, a in enumerate(expr.args): args[i] = prettyForm(*self._print(a).parens()) return prettyForm.__mul__(*args) def _print_Parallel(self, expr): s = None for item in expr.args: pform = self._print(item) if s is None: s = pform # First element else: s = prettyForm(*stringPict.next(s, ' + ')) s = prettyForm(*stringPict.next(s, pform)) return s def _print_Feedback(self, expr): from sympy.physics.control import TransferFunction, Parallel, Series num, tf = expr.num, TransferFunction(1, 1, expr.num.var) num_arg_list = list(num.args) if isinstance(num, Series) else [num] den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den] if isinstance(num, Series) and isinstance(expr.den, Series): den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) elif isinstance(num, Series) and isinstance(expr.den, TransferFunction): if expr.den == tf: den = Parallel(tf, Series(*num_arg_list)) else: den = Parallel(tf, Series(*num_arg_list, expr.den)) elif isinstance(num, TransferFunction) and isinstance(expr.den, Series): if num == tf: den = Parallel(tf, Series(*den_arg_list)) else: den = Parallel(tf, Series(num, *den_arg_list)) else: if num == tf: den = Parallel(tf, *den_arg_list) elif expr.den == tf: den = Parallel(tf, *num_arg_list) else: den = Parallel(tf, Series(*num_arg_list, *den_arg_list)) return self._print(num)/self._print(den) def _print_BasisDependent(self, expr): from sympy.vector import Vector if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented") if expr == expr.zero: return prettyForm(expr.zero._pretty_form) o1 = [] vectstrs = [] if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key = lambda x: x[0].__str__()) for k, v in inneritems: #if the coef of the basis vector is 1 #we skip the 1 if v == 1: o1.append("" + k._pretty_form) #Same for -1 elif v == -1: o1.append("(-1) " + k._pretty_form) #For a general expr else: #We always wrap the measure numbers in #parentheses arg_str = self._print( v).parens()[0] o1.append(arg_str + ' ' + k._pretty_form) vectstrs.append(k._pretty_form) #outstr = u("").join(o1) if o1[0].startswith(" + "): o1[0] = o1[0][3:] elif o1[0].startswith(" "): o1[0] = o1[0][1:] #Fixing the newlines lengths = [] strs = [''] flag = [] for i, partstr in enumerate(o1): flag.append(0) # XXX: What is this hack? if '\n' in partstr: tempstr = partstr tempstr = tempstr.replace(vectstrs[i], '') if '\N{right parenthesis extension}' in tempstr: # If scalar is a fraction for paren in range(len(tempstr)): flag[i] = 1 if tempstr[paren] == '\N{right parenthesis extension}': tempstr = tempstr[:paren] + '\N{right parenthesis extension}'\ + ' ' + vectstrs[i] + tempstr[paren + 1:] break elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr: flag[i] = 1 tempstr = tempstr.replace('\N{RIGHT PARENTHESIS LOWER HOOK}', '\N{RIGHT PARENTHESIS LOWER HOOK}' + ' ' + vectstrs[i]) else: tempstr = tempstr.replace('\N{RIGHT PARENTHESIS UPPER HOOK}', '\N{RIGHT PARENTHESIS UPPER HOOK}' + ' ' + vectstrs[i]) o1[i] = tempstr o1 = [x.split('\n') for x in o1] n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form if 1 in flag: # If there was a fractional scalar for i, parts in enumerate(o1): if len(parts) == 1: # If part has no newline parts.insert(0, ' ' * (len(parts[0]))) flag[i] = 1 for i, parts in enumerate(o1): lengths.append(len(parts[flag[i]])) for j in range(n_newlines): if j+1 <= len(parts): if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) if j == flag[i]: strs[flag[i]] += parts[flag[i]] + ' + ' else: strs[j] += parts[j] + ' '*(lengths[-1] - len(parts[j])+ 3) else: if j >= len(strs): strs.append(' ' * (sum(lengths[:-1]) + 3*(len(lengths)-1))) strs[j] += ' '*(lengths[-1]+3) return prettyForm('\n'.join([s[:-3] for s in strs])) def _print_NDimArray(self, expr): from sympy import ImmutableMatrix if expr.rank() == 0: return self._print(expr[()]) level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] # leave eventual matrix elements unflattened mat = lambda x: ImmutableMatrix(x, evaluate=False) for outer_i in itertools.product(*shape_ranges): level_str[-1].append(expr[outer_i]) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append(level_str[back_outer_i+1]) else: level_str[back_outer_i].append(mat( level_str[back_outer_i+1])) if len(level_str[back_outer_i + 1]) == 1: level_str[back_outer_i][-1] = mat( [[level_str[back_outer_i][-1]]]) even = not even level_str[back_outer_i+1] = [] out_expr = level_str[0][0] if expr.rank() % 2 == 1: out_expr = mat([out_expr]) return self._print(out_expr) def _printer_tensor_indices(self, name, indices, index_map={}): center = stringPict(name) top = stringPict(" "*center.width()) bot = stringPict(" "*center.width()) last_valence = None prev_map = None for i, index in enumerate(indices): indpic = self._print(index.args[0]) if ((index in index_map) or prev_map) and last_valence == index.is_up: if index.is_up: top = prettyForm(*stringPict.next(top, ",")) else: bot = prettyForm(*stringPict.next(bot, ",")) if index in index_map: indpic = prettyForm(*stringPict.next(indpic, "=")) indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index]))) prev_map = True else: prev_map = False if index.is_up: top = stringPict(*top.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) bot = stringPict(*bot.right(" "*indpic.width())) else: bot = stringPict(*bot.right(indpic)) center = stringPict(*center.right(" "*indpic.width())) top = stringPict(*top.right(" "*indpic.width())) last_valence = index.is_up pict = prettyForm(*center.above(top)) pict = prettyForm(*pict.below(bot)) return pict def _print_Tensor(self, expr): name = expr.args[0].name indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].name indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): sign, args = expr._get_args_for_traditional_printer() args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in args ] pform = prettyForm.__mul__(*args) if sign: return prettyForm(*pform.left(sign)) else: return pform def _print_TensAdd(self, expr): args = [ prettyForm(*self._print(i).parens()) if precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i) for i in expr.args ] return prettyForm.__add__(*args) def _print_TensorIndex(self, expr): sym = expr.args[0] if not expr.is_up: sym = -sym return self._print(sym) def _print_PartialDerivative(self, deriv): if self._use_unicode: deriv_symbol = U('PARTIAL DIFFERENTIAL') else: deriv_symbol = r'd' x = None for variable in reversed(deriv.variables): s = self._print(variable) ds = prettyForm(*s.left(deriv_symbol)) if x is None: x = ds else: x = prettyForm(*x.right(' ')) x = prettyForm(*x.right(ds)) f = prettyForm( binding=prettyForm.FUNC, *self._print(deriv.expr).parens()) pform = prettyForm(deriv_symbol) if len(deriv.variables) > 1: pform = pform**self._print(len(deriv.variables)) pform = prettyForm(*pform.below(stringPict.LINE, x)) pform.baseline = pform.baseline + 1 pform = prettyForm(*stringPict.next(pform, f)) pform.binding = prettyForm.MUL return pform def _print_Piecewise(self, pexpr): P = {} for n, ec in enumerate(pexpr.args): P[n, 0] = self._print(ec.expr) if ec.cond == True: P[n, 1] = prettyForm('otherwise') else: P[n, 1] = prettyForm( *prettyForm('for ').right(self._print(ec.cond))) hsep = 2 vsep = 1 len_args = len(pexpr.args) # max widths maxw = [max([P[i, j].width() for i in range(len_args)]) for j in range(2)] # FIXME: Refactor this code and matrix into some tabular environment. # drawing result D = None for i in range(len_args): D_row = None for j in range(2): p = P[i, j] assert p.width() <= maxw[j] wdelta = maxw[j] - p.width() wleft = wdelta // 2 wright = wdelta - wleft p = prettyForm(*p.right(' '*wright)) p = prettyForm(*p.left(' '*wleft)) if D_row is None: D_row = p continue D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer D_row = prettyForm(*D_row.right(p)) if D is None: D = D_row # first row in a picture continue # v-spacer for _ in range(vsep): D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) D = prettyForm(*D.parens('{', '')) D.baseline = D.height()//2 D.binding = prettyForm.OPEN return D def _print_ITE(self, ite): from sympy.functions.elementary.piecewise import Piecewise return self._print(ite.rewrite(Piecewise)) def _hprint_vec(self, v): D = None for a in v: p = a if D is None: D = p else: D = prettyForm(*D.right(', ')) D = prettyForm(*D.right(p)) if D is None: D = stringPict(' ') return D def _hprint_vseparator(self, p1, p2, left=None, right=None, delimiter='', ifascii_nougly=False): if ifascii_nougly and not self._use_unicode: return self._print_seq((p1, '|', p2), left=left, right=right, delimiter=delimiter, ifascii_nougly=True) tmp = self._print_seq((p1, p2,), left=left, right=right, delimiter=delimiter) sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline) return self._print_seq((p1, sep, p2), left=left, right=right, delimiter=delimiter) def _print_hyper(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment ap = [self._print(a) for a in e.ap] bq = [self._print(b) for b in e.bq] P = self._print(e.argument) P.baseline = P.height()//2 # Drawing result - first create the ap, bq vectors D = None for v in [ap, bq]: D_row = self._hprint_vec(v) if D is None: D = D_row # first row in a picture else: D = prettyForm(*D.below(' ')) D = prettyForm(*D.below(D_row)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the F symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('F') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) add = (sz + 1)//2 F = prettyForm(*F.left(self._print(len(e.ap)))) F = prettyForm(*F.right(self._print(len(e.bq)))) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_meijerg(self, e): # FIXME refactor Matrix, Piecewise, and this into a tabular environment v = {} v[(0, 0)] = [self._print(a) for a in e.an] v[(0, 1)] = [self._print(a) for a in e.aother] v[(1, 0)] = [self._print(b) for b in e.bm] v[(1, 1)] = [self._print(b) for b in e.bother] P = self._print(e.argument) P.baseline = P.height()//2 vp = {} for idx in v: vp[idx] = self._hprint_vec(v[idx]) for i in range(2): maxw = max(vp[(0, i)].width(), vp[(1, i)].width()) for j in range(2): s = vp[(j, i)] left = (maxw - s.width()) // 2 right = maxw - left - s.width() s = prettyForm(*s.left(' ' * left)) s = prettyForm(*s.right(' ' * right)) vp[(j, i)] = s D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)])) D1 = prettyForm(*D1.below(' ')) D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)])) D = prettyForm(*D1.below(D2)) # make sure that the argument `z' is centred vertically D.baseline = D.height()//2 # insert horizontal separator P = prettyForm(*P.left(' ')) D = prettyForm(*D.right(' ')) # insert separating `|` D = self._hprint_vseparator(D, P) # add parens D = prettyForm(*D.parens('(', ')')) # create the G symbol above = D.height()//2 - 1 below = D.height() - above - 1 sz, t, b, add, img = annotated('G') F = prettyForm('\n' * (above - t) + img + '\n' * (below - b), baseline=above + sz) pp = self._print(len(e.ap)) pq = self._print(len(e.bq)) pm = self._print(len(e.bm)) pn = self._print(len(e.an)) def adjust(p1, p2): diff = p1.width() - p2.width() if diff == 0: return p1, p2 elif diff > 0: return p1, prettyForm(*p2.left(' '*diff)) else: return prettyForm(*p1.left(' '*-diff)), p2 pp, pm = adjust(pp, pm) pq, pn = adjust(pq, pn) pu = prettyForm(*pm.right(', ', pn)) pl = prettyForm(*pp.right(', ', pq)) ht = F.baseline - above - 2 if ht > 0: pu = prettyForm(*pu.below('\n'*ht)) p = prettyForm(*pu.below(pl)) F.baseline = above F = prettyForm(*F.right(p)) F.baseline = above + add D = prettyForm(*F.right(' ', D)) return D def _print_ExpBase(self, e): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? base = prettyForm(pretty_atom('Exp1', 'e')) return base ** self._print(e.args[0]) def _print_Exp1(self, e): return prettyForm(pretty_atom('Exp1', 'e')) def _print_Function(self, e, sort=False, func_name=None): # optional argument func_name for supplying custom names # XXX works only for applied functions return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name) def _print_mathieuc(self, e): return self._print_Function(e, func_name='C') def _print_mathieus(self, e): return self._print_Function(e, func_name='S') def _print_mathieucprime(self, e): return self._print_Function(e, func_name="C'") def _print_mathieusprime(self, e): return self._print_Function(e, func_name="S'") def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False): if sort: args = sorted(args, key=default_sort_key) if not func_name and hasattr(func, "__name__"): func_name = func.__name__ if func_name: prettyFunc = self._print(Symbol(func_name)) else: prettyFunc = prettyForm(*self._print(func).parens()) if elementwise: if self._use_unicode: circ = pretty_atom('Modifier Letter Low Ring') else: circ = '.' circ = self._print(circ) prettyFunc = prettyForm( binding=prettyForm.LINE, *stringPict.next(prettyFunc, circ) ) prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_ElementwiseApplyFunction(self, e): func = e.function arg = e.expr args = [arg] return self._helper_print_function(func, args, delimiter="", elementwise=True) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.zeta_functions import lerchphi from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: [greek_unicode['delta'], 'delta'], gamma: [greek_unicode['Gamma'], 'Gamma'], lerchphi: [greek_unicode['Phi'], 'lerchphi'], lowergamma: [greek_unicode['gamma'], 'gamma'], beta: [greek_unicode['Beta'], 'B'], DiracDelta: [greek_unicode['delta'], 'delta'], Chi: ['Chi', 'Chi']} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: if self._use_unicode: return prettyForm(self._special_function_classes[cls][0]) else: return prettyForm(self._special_function_classes[cls][1]) func_name = expr.__name__ return prettyForm(pretty_symbol(func_name)) def _print_GeometryEntity(self, expr): # GeometryEntity is based on Tuple but should not print like a Tuple return self.emptyPrinter(expr) def _print_lerchphi(self, e): func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi' return self._print_Function(e, func_name=func_name) def _print_dirichlet_eta(self, e): func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta' return self._print_Function(e, func_name=func_name) def _print_Heaviside(self, e): func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside' if e.args[1]==1/2: pform = prettyForm(*self._print(e.args[0]).parens()) pform = prettyForm(*pform.left(func_name)) return pform else: return self._print_Function(e, func_name=func_name) def _print_fresnels(self, e): return self._print_Function(e, func_name="S") def _print_fresnelc(self, e): return self._print_Function(e, func_name="C") def _print_airyai(self, e): return self._print_Function(e, func_name="Ai") def _print_airybi(self, e): return self._print_Function(e, func_name="Bi") def _print_airyaiprime(self, e): return self._print_Function(e, func_name="Ai'") def _print_airybiprime(self, e): return self._print_Function(e, func_name="Bi'") def _print_LambertW(self, e): return self._print_Function(e, func_name="W") def _print_Lambda(self, e): expr = e.expr sig = e.signature if self._use_unicode: arrow = " \N{RIGHTWARDS ARROW FROM BAR} " else: arrow = " -> " if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] var_form = self._print(sig) return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8) def _print_Order(self, expr): pform = self._print(expr.expr) if (expr.point and any(p != S.Zero for p in expr.point)) or \ len(expr.variables) > 1: pform = prettyForm(*pform.right("; ")) if len(expr.variables) > 1: pform = prettyForm(*pform.right(self._print(expr.variables))) elif len(expr.variables): pform = prettyForm(*pform.right(self._print(expr.variables[0]))) if self._use_unicode: pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} ")) else: pform = prettyForm(*pform.right(" -> ")) if len(expr.point) > 1: pform = prettyForm(*pform.right(self._print(expr.point))) else: pform = prettyForm(*pform.right(self._print(expr.point[0]))) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left("O")) return pform def _print_SingularityFunction(self, e): if self._use_unicode: shift = self._print(e.args[0]-e.args[1]) n = self._print(e.args[2]) base = prettyForm("<") base = prettyForm(*base.right(shift)) base = prettyForm(*base.right(">")) pform = base**n return pform else: n = self._print(e.args[2]) shift = self._print(e.args[0]-e.args[1]) base = self._print_seq(shift, "<", ">", ' ') return base**n def _print_beta(self, e): func_name = greek_unicode['Beta'] if self._use_unicode else 'B' return self._print_Function(e, func_name=func_name) def _print_betainc(self, e): func_name = "B'" return self._print_Function(e, func_name=func_name) def _print_betainc_regularized(self, e): func_name = 'I' return self._print_Function(e, func_name=func_name) def _print_gamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_uppergamma(self, e): func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma' return self._print_Function(e, func_name=func_name) def _print_lowergamma(self, e): func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma' return self._print_Function(e, func_name=func_name) def _print_DiracDelta(self, e): if self._use_unicode: if len(e.args) == 2: a = prettyForm(greek_unicode['delta']) b = self._print(e.args[1]) b = prettyForm(*b.parens()) c = self._print(e.args[0]) c = prettyForm(*c.parens()) pform = a**b pform = prettyForm(*pform.right(' ')) pform = prettyForm(*pform.right(c)) return pform pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(greek_unicode['delta'])) return pform else: return self._print_Function(e) def _print_expint(self, e): from sympy import Function if e.args[0].is_Integer and self._use_unicode: return self._print_Function(Function('E_%s' % e.args[0])(e.args[1])) return self._print_Function(e) def _print_Chi(self, e): # This needs a special case since otherwise it comes out as greek # letter chi... prettyFunc = prettyForm("Chi") prettyArgs = prettyForm(*self._print_seq(e.args).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) # store pform parts so it can be reassembled e.g. when powered pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_elliptic_e(self, e): pforma0 = self._print(e.args[0]) if len(e.args) == 1: pform = pforma0 else: pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('E')) return pform def _print_elliptic_k(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('K')) return pform def _print_elliptic_f(self, e): pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) pform = self._hprint_vseparator(pforma0, pforma1) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left('F')) return pform def _print_elliptic_pi(self, e): name = greek_unicode['Pi'] if self._use_unicode else 'Pi' pforma0 = self._print(e.args[0]) pforma1 = self._print(e.args[1]) if len(e.args) == 2: pform = self._hprint_vseparator(pforma0, pforma1) else: pforma2 = self._print(e.args[2]) pforma = self._hprint_vseparator(pforma1, pforma2, ifascii_nougly=False) pforma = prettyForm(*pforma.left('; ')) pform = prettyForm(*pforma.left(pforma0)) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(name)) return pform def _print_GoldenRatio(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('phi')) return self._print(Symbol("GoldenRatio")) def _print_EulerGamma(self, expr): if self._use_unicode: return prettyForm(pretty_symbol('gamma')) return self._print(Symbol("EulerGamma")) def _print_Mod(self, expr): pform = self._print(expr.args[0]) if pform.binding > prettyForm.MUL: pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.right(' mod ')) pform = prettyForm(*pform.right(self._print(expr.args[1]))) pform.binding = prettyForm.OPEN return pform def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) pforms, indices = [], [] def pretty_negative(pform, index): """Prepend a minus sign to a pretty form. """ #TODO: Move this code to prettyForm if index == 0: if pform.height() > 1: pform_neg = '- ' else: pform_neg = '-' else: pform_neg = ' - ' if (pform.binding > prettyForm.NEG or pform.binding == prettyForm.ADD): p = stringPict(*pform.parens()) else: p = pform p = stringPict.next(pform_neg, p) # Lower the binding to NEG, even if it was higher. Otherwise, it # will print as a + ( - (b)), instead of a - (b). return prettyForm(binding=prettyForm.NEG, *p) for i, term in enumerate(terms): if term.is_Mul and _coeff_isneg(term): coeff, other = term.as_coeff_mul(rational=False) if coeff == -1: negterm = Mul(*other, evaluate=False) else: negterm = Mul(-coeff, *other, evaluate=False) pform = self._print(negterm) pforms.append(pretty_negative(pform, i)) elif term.is_Rational and term.q > 1: pforms.append(None) indices.append(i) elif term.is_Number and term < 0: pform = self._print(-term) pforms.append(pretty_negative(pform, i)) elif term.is_Relational: pforms.append(prettyForm(*self._print(term).parens())) else: pforms.append(self._print(term)) if indices: large = True for pform in pforms: if pform is not None and pform.height() > 1: break else: large = False for i in indices: term, negative = terms[i], False if term < 0: term, negative = -term, True if large: pform = prettyForm(str(term.p))/prettyForm(str(term.q)) else: pform = self._print(term) if negative: pform = pretty_negative(pform, i) pforms[i] = pform return prettyForm.__add__(*pforms) def _print_Mul(self, product): from sympy.physics.units import Quantity # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. args = product.args if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): strargs = list(map(self._print, args)) # XXX: This is a hack to work around the fact that # prettyForm.__mul__ absorbs a leading -1 in the args. Probably it # would be better to fix this in prettyForm.__mul__ instead. negone = strargs[0] == '-1' if negone: strargs[0] = prettyForm('1', 0, 0) obj = prettyForm.__mul__(*strargs) if negone: obj = prettyForm('-' + obj.s, obj.baseline, obj.binding) return obj a = [] # items in the numerator b = [] # items that are in the denominator (if any) if self.order not in ('old', 'none'): args = product.as_ordered_factors() else: args = list(product.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) # Gather terms for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: b.append(Pow(item.base, -item.exp)) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append( Rational(item.p) ) if item.q != 1: b.append( Rational(item.q) ) else: a.append(item) from sympy import Integral, Piecewise, Product, Sum # Convert to pretty forms. Add parens to Add instances if there # is more than one term in the numer/denom for i in range(0, len(a)): if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and isinstance(a[i], (Integral, Piecewise, Product, Sum))): a[i] = prettyForm(*self._print(a[i]).parens()) elif a[i].is_Relational: a[i] = prettyForm(*self._print(a[i]).parens()) else: a[i] = self._print(a[i]) for i in range(0, len(b)): if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and isinstance(b[i], (Integral, Piecewise, Product, Sum))): b[i] = prettyForm(*self._print(b[i]).parens()) else: b[i] = self._print(b[i]) # Construct a pretty form if len(b) == 0: return prettyForm.__mul__(*a) else: if len(a) == 0: a.append( self._print(S.One) ) return prettyForm.__mul__(*a)/prettyForm.__mul__(*b) # A helper function for _print_Pow to print x**(1/n) def _print_nth_root(self, base, root): bpretty = self._print(base) # In very simple cases, use a single-char root sign if (self._settings['use_unicode_sqrt_char'] and self._use_unicode and root == 2 and bpretty.height() == 1 and (bpretty.width() == 1 or (base.is_Integer and base.is_nonnegative))): return prettyForm(*bpretty.left('\N{SQUARE ROOT}')) # Construct root sign, start with the \/ shape _zZ = xobj('/', 1) rootsign = xobj('\\', 1) + _zZ # Constructing the number to put on root rpretty = self._print(root) # roots look bad if they are not a single line if rpretty.height() != 1: return self._print(base)**self._print(1/root) # If power is half, no number should appear on top of root sign exp = '' if root == 2 else str(rpretty).ljust(2) if len(exp) > 2: rootsign = ' '*(len(exp) - 2) + rootsign # Stack the exponent rootsign = stringPict(exp + '\n' + rootsign) rootsign.baseline = 0 # Diagonal: length is one less than height of base linelength = bpretty.height() - 1 diagonal = stringPict('\n'.join( ' '*(linelength - i - 1) + _zZ + ' '*i for i in range(linelength) )) # Put baseline just below lowest line: next to exp diagonal.baseline = linelength - 1 # Make the root symbol rootsign = prettyForm(*rootsign.right(diagonal)) # Det the baseline to match contents to fix the height # but if the height of bpretty is one, the rootsign must be one higher rootsign.baseline = max(1, bpretty.baseline) #build result s = prettyForm(hobj('_', 2 + bpretty.width())) s = prettyForm(*bpretty.above(s)) s = prettyForm(*s.left(rootsign)) return s def _print_Pow(self, power): from sympy.simplify.simplify import fraction b, e = power.as_base_exp() if power.is_commutative: if e is S.NegativeOne: return prettyForm("1")/self._print(b) n, d = fraction(e) if n is S.One and d.is_Atom and not e.is_Integer and (e.is_Rational or d.is_Symbol) \ and self._settings['root_notation']: return self._print_nth_root(b, d) if e.is_Rational and e < 0: return prettyForm("1")/self._print(Pow(b, -e, evaluate=False)) if b.is_Relational: return prettyForm(*self._print(b).parens()).__pow__(self._print(e)) return self._print(b)**self._print(e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def __print_numer_denom(self, p, q): if q == 1: if p < 0: return prettyForm(str(p), binding=prettyForm.NEG) else: return prettyForm(str(p)) elif abs(p) >= 10 and abs(q) >= 10: # If more than one digit in numer and denom, print larger fraction if p < 0: return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q)) # Old printing method: #pform = prettyForm(str(-p))/prettyForm(str(q)) #return prettyForm(binding=prettyForm.NEG, *pform.left('- ')) else: return prettyForm(str(p))/prettyForm(str(q)) else: return None def _print_Rational(self, expr): result = self.__print_numer_denom(expr.p, expr.q) if result is not None: return result else: return self.emptyPrinter(expr) def _print_Fraction(self, expr): result = self.__print_numer_denom(expr.numerator, expr.denominator) if result is not None: return result else: return self.emptyPrinter(expr) def _print_ProductSet(self, p): if len(p.sets) >= 1 and not has_variety(p.sets): return self._print(p.sets[0]) ** self._print(len(p.sets)) else: prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x' return self._print_seq(p.sets, None, None, ' %s ' % prod_char, parenthesize=lambda set: set.is_Union or set.is_Intersection or set.is_ProductSet) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_seq(items, '{', '}', ', ' ) def _print_Range(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif len(s) > 4: it = iter(s) printset = next(it), next(it), dots, s[-1] else: printset = tuple(s) return self._print_seq(printset, '{', '}', ', ' ) def _print_Interval(self, i): if i.start == i.end: return self._print_seq(i.args[:1], '{', '}') else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return self._print_seq(i.args[:2], left, right) def _print_AccumulationBounds(self, i): left = '<' right = '>' return self._print_seq(i.args[:2], left, right) def _print_Intersection(self, u): delimiter = ' %s ' % pretty_atom('Intersection', 'n') return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Union or set.is_Complement) def _print_Union(self, u): union_delimiter = ' %s ' % pretty_atom('Union', 'U') return self._print_seq(u.args, None, None, union_delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Complement) def _print_SymmetricDifference(self, u): if not self._use_unicode: raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented") sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference') return self._print_seq(u.args, None, None, sym_delimeter) def _print_Complement(self, u): delimiter = r' \ ' return self._print_seq(u.args, None, None, delimiter, parenthesize=lambda set: set.is_ProductSet or set.is_Intersection or set.is_Union) def _print_ImageSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' fun = ts.lamda sets = ts.base_sets signature = fun.signature expr = self._print(fun.expr) # TODO: the stuff to the left of the | and the stuff to the right of # the | should have independent baselines, that way something like # ImageSet(Lambda(x, 1/x**2), S.Naturals) prints the "x in N" part # centered on the right instead of aligned with the fraction bar on # the left. The same also applies to ConditionSet and ComplexRegion if len(signature) == 1: S = self._print_seq((signature[0], inn, sets[0]), delimiter=' ') return self._hprint_vseparator(expr, S, left='{', right='}', ifascii_nougly=True, delimiter=' ') else: pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, ' ', inn, ' ', setv, ", ")) S = self._print_seq(pargs[:-1], delimiter='') return self._hprint_vseparator(expr, S, left='{', right='}', ifascii_nougly=True, delimiter=' ') def _print_ConditionSet(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" # using _and because and is a keyword and it is bad practice to # overwrite them _and = "\N{LOGICAL AND}" else: inn = 'in' _and = 'and' variables = self._print_seq(Tuple(ts.sym)) as_expr = getattr(ts.condition, 'as_expr', None) if as_expr is not None: cond = self._print(ts.condition.as_expr()) else: cond = self._print(ts.condition) if self._use_unicode: cond = self._print(cond) cond = prettyForm(*cond.parens()) if ts.base_set is S.UniversalSet: return self._hprint_vseparator(variables, cond, left="{", right="}", ifascii_nougly=True, delimiter=' ') base = self._print(ts.base_set) C = self._print_seq((variables, inn, base, _and, cond), delimiter=' ') return self._hprint_vseparator(variables, C, left="{", right="}", ifascii_nougly=True, delimiter=' ') def _print_ComplexRegion(self, ts): if self._use_unicode: inn = "\N{SMALL ELEMENT OF}" else: inn = 'in' variables = self._print_seq(ts.variables) expr = self._print(ts.expr) prodsets = self._print(ts.sets) C = self._print_seq((variables, inn, prodsets), delimiter=' ') return self._hprint_vseparator(expr, C, left="{", right="}", ifascii_nougly=True, delimiter=' ') def _print_Contains(self, e): var, set = e.args if self._use_unicode: el = " \N{ELEMENT OF} " return prettyForm(*stringPict.next(self._print(var), el, self._print(set)), binding=8) else: return prettyForm(sstr(e)) def _print_FourierSeries(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' return self._print_Add(s.truncate()) + self._print(dots) def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_SetExpr(self, se): pretty_set = prettyForm(*self._print(se.set).parens()) pretty_name = self._print(Symbol("SetExpr")) return prettyForm(*pretty_name.right(pretty_set)) def _print_SeqFormula(self, s): if self._use_unicode: dots = "\N{HORIZONTAL ELLIPSIS}" else: dots = '...' if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented") if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) printset = tuple(printset) else: printset = tuple(s) return self._print_list(printset) _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_seq(self, seq, left=None, right=None, delimiter=', ', parenthesize=lambda x: False, ifascii_nougly=True): try: pforms = [] for item in seq: pform = self._print(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if pforms: pforms.append(delimiter) pforms.append(pform) if not pforms: s = stringPict('') else: s = prettyForm(*stringPict.next(*pforms)) # XXX: Under the tests from #15686 the above raises: # AttributeError: 'Fake' object has no attribute 'baseline' # This is caught below but that is not the right way to # fix it. except AttributeError: s = None for item in seq: pform = self.doprint(item) if parenthesize(item): pform = prettyForm(*pform.parens()) if s is None: # first element s = pform else : s = prettyForm(*stringPict.next(s, delimiter)) s = prettyForm(*stringPict.next(s, pform)) if s is None: s = stringPict('') s = prettyForm(*s.parens(left, right, ifascii_nougly=ifascii_nougly)) return s def join(self, delimiter, args): pform = None for arg in args: if pform is None: pform = arg else: pform = prettyForm(*pform.right(delimiter)) pform = prettyForm(*pform.right(arg)) if pform is None: return prettyForm("") else: return pform def _print_list(self, l): return self._print_seq(l, '[', ']') def _print_tuple(self, t): if len(t) == 1: ptuple = prettyForm(*stringPict.next(self._print(t[0]), ',')) return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True)) else: return self._print_seq(t, '(', ')') def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for k in keys: K = self._print(k) V = self._print(d[k]) s = prettyForm(*stringPict.next(K, ': ', V)) items.append(s) return self._print_seq(items, '{', '}') def _print_Dict(self, d): return self._print_dict(d) def _print_set(self, s): if not s: return prettyForm('set()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) return pretty def _print_frozenset(self, s): if not s: return prettyForm('frozenset()') items = sorted(s, key=default_sort_key) pretty = self._print_seq(items) pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True)) pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True)) pretty = prettyForm(*stringPict.next(type(s).__name__, pretty)) return pretty def _print_UniversalSet(self, s): if self._use_unicode: return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}") else: return prettyForm('UniversalSet') def _print_PolyRing(self, ring): return prettyForm(sstr(ring)) def _print_FracField(self, field): return prettyForm(sstr(field)) def _print_FreeGroupElement(self, elm): return prettyForm(str(elm)) def _print_PolyElement(self, poly): return prettyForm(sstr(poly)) def _print_FracElement(self, frac): return prettyForm(sstr(frac)) def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_ComplexRootOf(self, expr): args = [self._print_Add(expr.expr, order='lex'), expr.index] pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('CRootOf')) return pform def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) pform = prettyForm(*self._print_seq(args).parens()) pform = prettyForm(*pform.left('RootSum')) return pform def _print_FiniteField(self, expr): if self._use_unicode: form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d' else: form = 'GF(%d)' return prettyForm(pretty_symbol(form % expr.mod)) def _print_IntegerRing(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}') else: return prettyForm('ZZ') def _print_RationalField(self, expr): if self._use_unicode: return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}') else: return prettyForm('QQ') def _print_RealField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL R}' else: prefix = 'RR' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_ComplexField(self, domain): if self._use_unicode: prefix = '\N{DOUBLE-STRUCK CAPITAL C}' else: prefix = 'CC' if domain.has_default_precision: return prettyForm(prefix) else: return self._print(pretty_symbol(prefix + "_" + str(domain.precision))) def _print_PolynomialRing(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_FractionField(self, expr): args = list(expr.symbols) if not expr.order.is_default: order = prettyForm(*prettyForm("order=").right(self._print(expr.order))) args.append(order) pform = self._print_seq(args, '(', ')') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_PolynomialRingBase(self, expr): g = expr.symbols if str(expr.order) != str(expr.default_order): g = g + ("order=" + str(expr.order),) pform = self._print_seq(g, '[', ']') pform = prettyForm(*pform.left(self._print(expr.domain))) return pform def _print_GroebnerBasis(self, basis): exprs = [ self._print_Add(arg, order=basis.order) for arg in basis.exprs ] exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]")) gens = [ self._print(gen) for gen in basis.gens ] domain = prettyForm( *prettyForm("domain=").right(self._print(basis.domain))) order = prettyForm( *prettyForm("order=").right(self._print(basis.order))) pform = self.join(", ", [exprs] + gens + [domain, order]) pform = prettyForm(*pform.parens()) pform = prettyForm(*pform.left(basis.__class__.__name__)) return pform def _print_Subs(self, e): pform = self._print(e.expr) pform = prettyForm(*pform.parens()) h = pform.height() if pform.height() > 1 else 2 rvert = stringPict(vobj('|', h), baseline=pform.baseline) pform = prettyForm(*pform.right(rvert)) b = pform.baseline pform.baseline = pform.height() - 1 pform = prettyForm(*pform.right(self._print_seq([ self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])), delimiter='') for v in zip(e.variables, e.point) ]))) pform.baseline = b return pform def _print_number_function(self, e, name): # Print name_arg[0] for one argument or name_arg[0](arg[1]) # for more than one argument pform = prettyForm(name) arg = self._print(e.args[0]) pform_arg = prettyForm(" "*arg.width()) pform_arg = prettyForm(*pform_arg.below(arg)) pform = prettyForm(*pform.right(pform_arg)) if len(e.args) == 1: return pform m, x = e.args # TODO: copy-pasted from _print_Function: can we do better? prettyFunc = pform prettyArgs = prettyForm(*self._print_seq([x]).parens()) pform = prettyForm( binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs)) pform.prettyFunc = prettyFunc pform.prettyArgs = prettyArgs return pform def _print_euler(self, e): return self._print_number_function(e, "E") def _print_catalan(self, e): return self._print_number_function(e, "C") def _print_bernoulli(self, e): return self._print_number_function(e, "B") _print_bell = _print_bernoulli def _print_lucas(self, e): return self._print_number_function(e, "L") def _print_fibonacci(self, e): return self._print_number_function(e, "F") def _print_tribonacci(self, e): return self._print_number_function(e, "T") def _print_stieltjes(self, e): if self._use_unicode: return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}') else: return self._print_number_function(e, "stieltjes") def _print_KroneckerDelta(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.right(prettyForm(','))) pform = prettyForm(*pform.right(self._print(e.args[1]))) if self._use_unicode: a = stringPict(pretty_symbol('delta')) else: a = stringPict('d') b = pform top = stringPict(*b.left(' '*a.width())) bot = stringPict(*a.right(' '*b.width())) return prettyForm(binding=prettyForm.POW, *bot.below(top)) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.as_boolean()))) return pform elif hasattr(d, 'set'): pform = self._print('Domain: ') pform = prettyForm(*pform.right(self._print(d.symbols))) pform = prettyForm(*pform.right(self._print(' in '))) pform = prettyForm(*pform.right(self._print(d.set))) return pform elif hasattr(d, 'symbols'): pform = self._print('Domain on ') pform = prettyForm(*pform.right(self._print(d.symbols))) return pform else: return self._print(None) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(pretty_symbol(object.name)) def _print_Morphism(self, morphism): arrow = xsym("-->") domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) tail = domain.right(arrow, codomain)[0] return prettyForm(tail) def _print_NamedMorphism(self, morphism): pretty_name = self._print(pretty_symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(":", pretty_morphism)[0]) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism( NamedMorphism(morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): circle = xsym(".") # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [pretty_symbol(component.name) for component in morphism.components] component_names_list.reverse() component_names = circle.join(component_names_list) + ":" pretty_name = self._print(component_names) pretty_morphism = self._print_Morphism(morphism) return prettyForm(pretty_name.right(pretty_morphism)[0]) def _print_Category(self, category): return self._print(pretty_symbol(category.name)) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) pretty_result = self._print(diagram.premises) if diagram.conclusions: results_arrow = " %s " % xsym("==>") pretty_conclusions = self._print(diagram.conclusions)[0] pretty_result = pretty_result.right( results_arrow, pretty_conclusions) return prettyForm(pretty_result[0]) def _print_DiagramGrid(self, grid): from sympy.matrices import Matrix from sympy import Symbol matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ") for j in range(grid.width)] for i in range(grid.height)]) return self._print_matrix_contents(matrix) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return self._print_seq(m, '[', ']') def _print_SubModule(self, M): return self._print_seq(M.gens, '<', '>') def _print_FreeModule(self, M): return self._print(M.ring)**self._print(M.rank) def _print_ModuleImplementedIdeal(self, M): return self._print_seq([x for [x] in M._module.gens], '<', '>') def _print_QuotientRing(self, R): return self._print(R.ring) / self._print(R.base_ideal) def _print_QuotientRingElement(self, R): return self._print(R.data) + self._print(R.ring.base_ideal) def _print_QuotientModuleElement(self, m): return self._print(m.data) + self._print(m.module.killed_module) def _print_QuotientModule(self, M): return self._print(M.base) / self._print(M.killed_module) def _print_MatrixHomomorphism(self, h): matrix = self._print(h._sympy_matrix()) matrix.baseline = matrix.height() // 2 pform = prettyForm(*matrix.right(' : ', self._print(h.domain), ' %s> ' % hobj('-', 2), self._print(h.codomain))) return pform def _print_Manifold(self, manifold): return self._print(manifold.name) def _print_Patch(self, patch): return self._print(patch.name) def _print_CoordSystem(self, coords): return self._print(coords.name) def _print_BaseScalarField(self, field): string = field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(string)) def _print_BaseVectorField(self, field): s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name return self._print(pretty_symbol(s)) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys.symbols[field._index].name return self._print('\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string)) else: pform = self._print(field) pform = prettyForm(*pform.parens()) return prettyForm(*pform.left("\N{DOUBLE-STRUCK ITALIC SMALL D}")) def _print_Tr(self, p): #TODO: Handle indices pform = self._print(p.args[0]) pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__))) pform = prettyForm(*pform.right(')')) return pform def _print_primenu(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['nu'])) else: pform = prettyForm(*pform.left('nu')) return pform def _print_primeomega(self, e): pform = self._print(e.args[0]) pform = prettyForm(*pform.parens()) if self._use_unicode: pform = prettyForm(*pform.left(greek_unicode['Omega'])) else: pform = prettyForm(*pform.left('Omega')) return pform def _print_Quantity(self, e): if e.name.name == 'degree': pform = self._print("\N{DEGREE SIGN}") return pform else: return self.emptyPrinter(e) def _print_AssignmentBase(self, e): op = prettyForm(' ' + xsym(e.op) + ' ') l = self._print(e.lhs) r = self._print(e.rhs) pform = prettyForm(*stringPict.next(l, op, r)) return pform def _print_Str(self, s): return self._print(s.name) @print_function(PrettyPrinter) def pretty(expr, **settings): """Returns a string containing the prettified form of expr. For information on keyword arguments see pretty_print function. """ pp = PrettyPrinter(settings) # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def pretty_print(expr, **kwargs): """Prints expr in pretty form. pprint is just a shortcut for this function. Parameters ========== expr : expression The expression to print. wrap_line : bool, optional (default=True) Line wrapping enabled/disabled. num_columns : int or None, optional (default=None) Number of columns before line breaking (default to None which reads the terminal width), useful when using SymPy without terminal. use_unicode : bool or None, optional (default=None) Use unicode characters, such as the Greek letter pi instead of the string pi. full_prec : bool or string, optional (default="auto") Use full precision. order : bool or string, optional (default=None) Set to 'none' for long expressions if slow; default is None. use_unicode_sqrt_char : bool, optional (default=True) Use compact single-character square root symbol (when unambiguous). root_notation : bool, optional (default=True) Set to 'False' for printing exponents of the form 1/n in fractional form. By default exponent is printed in root form. mat_symbol_style : string, optional (default="plain") Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face. By default the standard face is used. imaginary_unit : string, optional (default="i") Letter to use for imaginary unit when use_unicode is True. Can be "i" (default) or "j". """ print(pretty(expr, **kwargs)) pprint = pretty_print def pager_print(expr, **settings): """Prints expr using the pager, in pretty form. This invokes a pager command using pydoc. Lines are not wrapped automatically. This routine is meant to be used with a pager that allows sideways scrolling, like ``less -S``. Parameters are the same as for ``pretty_print``. If you wish to wrap lines, pass ``num_columns=None`` to auto-detect the width of the terminal. """ from pydoc import pager from locale import getpreferredencoding if 'num_columns' not in settings: settings['num_columns'] = 500000 # disable line wrap pager(pretty(expr, **settings).encode(getpreferredencoding()))