hash
stringlengths
64
64
content
stringlengths
0
1.51M
cff77fcba778e9e2f5e29dd63da171cc1db37c5fd824d175578485eb5d951491
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'd F Y' TIME_FORMAT = 'g.i.A' # DATETIME_FORMAT = YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'Y-m-d' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' # NUMBER_GROUPING =
164440b871c6be17824cee54f86e4367cbea085da943a019d9ca4a90533c7cc3
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j F Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'Y-m-d' SHORT_DATETIME_FORMAT = 'Y-m-d H:i' FIRST_DAY_OF_WEEK = 1 # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # Kept ISO formats as they are in first position DATE_INPUT_FORMATS = [ '%Y-%m-%d', # '2006-10-25' '%m/%d/%Y', # '10/25/2006' '%m/%d/%y', # '10/25/06' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%m/%d/%Y %H:%M:%S', # '10/25/2006 14:30:59' '%m/%d/%Y %H:%M:%S.%f', # '10/25/2006 14:30:59.000200' '%m/%d/%Y %H:%M', # '10/25/2006 14:30' '%m/%d/%Y', # '10/25/2006' '%m/%d/%y %H:%M:%S', # '10/25/06 14:30:59' '%m/%d/%y %H:%M:%S.%f', # '10/25/06 14:30:59.000200' '%m/%d/%y %H:%M', # '10/25/06 14:30' '%m/%d/%y', # '10/25/06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
f8ec538474005b0095adf54b0c092cb424147da007a5b26144f425a993bfc06a
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. F Y' TIME_FORMAT = 'H:i' # DATETIME_FORMAT = YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'j.n.Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
d4eeb7bcc0efe4c1bdba6e00bcc444280a2a94e6720b8e96304586f6af0f312f
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F, Y' TIME_FORMAT = 'g:i A' # DATETIME_FORMAT = YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j M, Y' # SHORT_DATETIME_FORMAT = FIRST_DAY_OF_WEEK = 6 # Saturday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', # 25/10/2016 '%d/%m/%y', # 25/10/16 '%d-%m-%Y', # 25-10-2016 '%d-%m-%y', # 25-10-16 ] TIME_INPUT_FORMATS = [ '%H:%M:%S', # 14:30:59 '%H:%M', # 14:30 ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', # 25/10/2006 14:30:59 '%d/%m/%Y %H:%M', # 25/10/2006 14:30 ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' # NUMBER_GROUPING =
acf58889b3e0f1bf30ecdc01cbbae885b14415cc533eb92b4a3bff30fd826016
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'j \d\e F \d\e Y' TIME_FORMAT = 'G:i' DATETIME_FORMAT = r'j \d\e F \d\e Y \a \l\e\s G:i' YEAR_MONTH_FORMAT = r'F \d\e\l Y' MONTH_DAY_FORMAT = r'j \d\e F' SHORT_DATE_FORMAT = 'd/m/Y' SHORT_DATETIME_FORMAT = 'd/m/Y G:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ # '31/12/2009', '31/12/09' '%d/%m/%Y', '%d/%m/%y' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', '%d/%m/%Y %H:%M:%S.%f', '%d/%m/%Y %H:%M', '%d/%m/%y %H:%M:%S', '%d/%m/%y %H:%M:%S.%f', '%d/%m/%y %H:%M', ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
58aa7c177222212ae0c5722d4a9201d5cd1af31158f02b04cea5cc41161bb0f4
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' # '25 Hydref 2006' TIME_FORMAT = 'P' # '2:30 y.b.' DATETIME_FORMAT = 'j F Y, P' # '25 Hydref 2006, 2:30 y.b.' YEAR_MONTH_FORMAT = 'F Y' # 'Hydref 2006' MONTH_DAY_FORMAT = 'j F' # '25 Hydref' SHORT_DATE_FORMAT = 'd/m/Y' # '25/10/2006' SHORT_DATETIME_FORMAT = 'd/m/Y P' # '25/10/2006 2:30 y.b.' FIRST_DAY_OF_WEEK = 1 # 'Dydd Llun' # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', # '25/10/2006', '25/10/06' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%d/%m/%Y %H:%M:%S', # '25/10/2006 14:30:59' '%d/%m/%Y %H:%M:%S.%f', # '25/10/2006 14:30:59.000200' '%d/%m/%Y %H:%M', # '25/10/2006 14:30' '%d/%m/%Y', # '25/10/2006' '%d/%m/%y %H:%M:%S', # '25/10/06 14:30:59' '%d/%m/%y %H:%M:%S.%f', # '25/10/06 14:30:59.000200' '%d/%m/%y %H:%M', # '25/10/06 14:30' '%d/%m/%y', # '25/10/06' ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
3bce2cc044e6bd5df2c4089f465e624c00f283e8af639adc5efb50cf6078aeb2
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'Y年n月j日' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'Y年n月j日G:i' YEAR_MONTH_FORMAT = 'Y年n月' MONTH_DAY_FORMAT = 'n月j日' SHORT_DATE_FORMAT = 'Y/m/d' SHORT_DATETIME_FORMAT = 'Y/m/d G:i' # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' # NUMBER_GROUPING =
bb04a9aa6185e8fcb2ddc9d8120c8d1f99bab6da17342fe9a1fa5b8eaa003bf2
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j N Y' DATETIME_FORMAT = "j N Y, G.i" TIME_FORMAT = 'G.i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd-m-Y' SHORT_DATETIME_FORMAT = 'd-m-Y G.i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d-%m-%y', '%d/%m/%y', # '25-10-09', 25/10/09' '%d-%m-%Y', '%d/%m/%Y', # '25-10-2009', 25/10/2009' '%d %b %Y', # '25 Oct 2006', '%d %B %Y', # '25 October 2006' ] TIME_INPUT_FORMATS = [ '%H.%M.%S', # '14.30.59' '%H.%M', # '14.30' ] DATETIME_INPUT_FORMATS = [ '%d-%m-%Y %H.%M.%S', # '25-10-2009 14.30.59' '%d-%m-%Y %H.%M.%S.%f', # '25-10-2009 14.30.59.000200' '%d-%m-%Y %H.%M', # '25-10-2009 14.30' '%d-%m-%Y', # '25-10-2009' '%d-%m-%y %H.%M.%S', # '25-10-09' 14.30.59' '%d-%m-%y %H.%M.%S.%f', # '25-10-09' 14.30.59.000200' '%d-%m-%y %H.%M', # '25-10-09' 14.30' '%d-%m-%y', # '25-10-09'' '%m/%d/%y %H.%M.%S', # '10/25/06 14.30.59' '%m/%d/%y %H.%M.%S.%f', # '10/25/06 14.30.59.000200' '%m/%d/%y %H.%M', # '10/25/06 14.30' '%m/%d/%y', # '10/25/06' '%m/%d/%Y %H.%M.%S', # '25/10/2009 14.30.59' '%m/%d/%Y %H.%M.%S.%f', # '25/10/2009 14.30.59.000200' '%m/%d/%Y %H.%M', # '25/10/2009 14.30' '%m/%d/%Y', # '10/25/2009' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
4e755233a89478032ac9f0cd2e78c62b0062ce2540ee0c2fa241119b9e3d673c
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j M Y' # '25 Oct 2006' TIME_FORMAT = 'P' # '2:30 p.m.' DATETIME_FORMAT = 'j M Y, P' # '25 Oct 2006, 2:30 p.m.' YEAR_MONTH_FORMAT = 'F Y' # 'October 2006' MONTH_DAY_FORMAT = 'j F' # '25 October' SHORT_DATE_FORMAT = 'd/m/Y' # '25/10/2006' SHORT_DATETIME_FORMAT = 'd/m/Y P' # '25/10/2006 2:30 p.m.' FIRST_DAY_OF_WEEK = 0 # Sunday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', # '25/10/2006', '25/10/06' # '%b %d %Y', '%b %d, %Y', # 'Oct 25 2006', 'Oct 25, 2006' # '%d %b %Y', '%d %b, %Y', # '25 Oct 2006', '25 Oct, 2006' # '%B %d %Y', '%B %d, %Y', # 'October 25 2006', 'October 25, 2006' # '%d %B %Y', '%d %B, %Y', # '25 October 2006', '25 October, 2006' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%d/%m/%Y %H:%M:%S', # '25/10/2006 14:30:59' '%d/%m/%Y %H:%M:%S.%f', # '25/10/2006 14:30:59.000200' '%d/%m/%Y %H:%M', # '25/10/2006 14:30' '%d/%m/%Y', # '25/10/2006' '%d/%m/%y %H:%M:%S', # '25/10/06 14:30:59' '%d/%m/%y %H:%M:%S.%f', # '25/10/06 14:30:59.000200' '%d/%m/%y %H:%M', # '25/10/06 14:30' '%d/%m/%y', # '25/10/06' ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
d1617f2126d848dd0db4fb8e935b05b1821308f6f7206da311a0315525cb6aa5
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'd/m/Y' TIME_FORMAT = 'P' DATETIME_FORMAT = 'd/m/Y P' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd/m/Y' SHORT_DATETIME_FORMAT = 'd/m/Y P' FIRST_DAY_OF_WEEK = 0 # Sunday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', '%Y-%m-%d', # '25/10/2006', '25/10/06', '2006-10-25', ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', # '25/10/2006 14:30:59' '%d/%m/%Y %H:%M:%S.%f', # '25/10/2006 14:30:59.000200' '%d/%m/%Y %H:%M', # '25/10/2006 14:30' '%d/%m/%Y', # '25/10/2006' '%d/%m/%y %H:%M:%S', # '25/10/06 14:30:59' '%d/%m/%y %H:%M:%S.%f', # '25/10/06 14:30:59.000200' '%d/%m/%y %H:%M', # '25/10/06 14:30' '%d/%m/%y', # '25/10/06' '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
64b98a58580ac2b1de0de4cee9f3f244b8e0c645374022b77f42f19d884bbea8
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'Y \m. E j \d.' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'Y \m. E j \d., H:i' YEAR_MONTH_FORMAT = r'Y \m. F' MONTH_DAY_FORMAT = r'E j \d.' SHORT_DATE_FORMAT = 'Y-m-d' SHORT_DATETIME_FORMAT = 'Y-m-d H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%Y-%m-%d', '%d.%m.%Y', '%d.%m.%y', # '2006-10-25', '25.10.2006', '25.10.06' ] TIME_INPUT_FORMATS = [ '%H:%M:%S', # '14:30:59' '%H:%M:%S.%f', # '14:30:59.000200' '%H:%M', # '14:30' '%H.%M.%S', # '14.30.59' '%H.%M.%S.%f', # '14.30.59.000200' '%H.%M', # '14.30' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' '%d.%m.%y %H:%M:%S', # '25.10.06 14:30:59' '%d.%m.%y %H:%M:%S.%f', # '25.10.06 14:30:59.000200' '%d.%m.%y %H:%M', # '25.10.06 14:30' '%d.%m.%y %H.%M.%S', # '25.10.06 14.30.59' '%d.%m.%y %H.%M.%S.%f', # '25.10.06 14.30.59.000200' '%d.%m.%y %H.%M', # '25.10.06 14.30' '%d.%m.%y', # '25.10.06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
998296ba691f1849460cbf761b49cefe5a01a1238e14ab3492db08dfefa794b4
# This file is distributed under the same license as the Django package. # DATE_FORMAT = r'j \d\e F \d\e Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'j \d\e F \d\e Y \a \l\a\s H:i' YEAR_MONTH_FORMAT = r'F \d\e Y' MONTH_DAY_FORMAT = r'j \d\e F' SHORT_DATE_FORMAT = 'd/m/Y' SHORT_DATETIME_FORMAT = 'd/m/Y H:i' FIRST_DAY_OF_WEEK = 0 # Sunday DATE_INPUT_FORMATS = [ # '31/12/2009', '31/12/09' '%d/%m/%Y', '%d/%m/%y' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', '%d/%m/%Y %H:%M:%S.%f', '%d/%m/%Y %H:%M', '%d/%m/%y %H:%M:%S', '%d/%m/%y %H:%M:%S.%f', '%d/%m/%y %H:%M', ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
cbb5d63e1b8ebfb4240c1bf1e2a9307a19aa469ab02f39fbe455a7fb6e66bdc7
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. F Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j. F Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'd.m.Y' SHORT_DATETIME_FORMAT = 'd.m.Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # Kept ISO formats as they are in first position DATE_INPUT_FORMATS = [ '%Y-%m-%d', '%d.%m.%Y', '%d.%m.%y', # '2006-10-25', '25.10.2006', '25.10.06' # '%d. %b %Y', '%d %b %Y', # '25. okt 2006', '25 okt 2006' # '%d. %b. %Y', '%d %b. %Y', # '25. okt. 2006', '25 okt. 2006' # '%d. %B %Y', '%d %B %Y', # '25. oktober 2006', '25 oktober 2006' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' '%d.%m.%y %H:%M:%S', # '25.10.06 14:30:59' '%d.%m.%y %H:%M:%S.%f', # '25.10.06 14:30:59.000200' '%d.%m.%y %H:%M', # '25.10.06 14:30' '%d.%m.%y', # '25.10.06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
fb01e9f871546ad9931201a243b7a408c14c07c8e90100f8502e269a18d14cbf
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date # DATE_FORMAT = # TIME_FORMAT = # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = # MONTH_DAY_FORMAT = # SHORT_DATE_FORMAT = # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = # DECIMAL_SEPARATOR = # THOUSAND_SEPARATOR = # NUMBER_GROUPING =
be11c5378964cce4004515e182de6cf0cec84d32d930c2d5c1b8dbcbe63f5049
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'j N Y' TIME_FORMAT = r'H:i' DATETIME_FORMAT = r'j N Y H:i' YEAR_MONTH_FORMAT = r'F Y' MONTH_DAY_FORMAT = r'j \d\e F' SHORT_DATE_FORMAT = r'd/m/Y' SHORT_DATETIME_FORMAT = r'd/m/Y H:i' FIRST_DAY_OF_WEEK = 0 # 0: Sunday, 1: Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', # '31/12/2009' '%d/%m/%y', # '31/12/09' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', '%d/%m/%Y %H:%M:%S.%f', '%d/%m/%Y %H:%M', '%d/%m/%y %H:%M:%S', '%d/%m/%y %H:%M:%S.%f', '%d/%m/%y %H:%M', ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
c64b3fe138d84d21b2cfd70861a13c38cdf06ee78fde8a0cd904eca8d3ce305f
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'j \d\e F \d\e Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'j \d\e F \d\e Y \a \l\a\s H:i' YEAR_MONTH_FORMAT = r'F \d\e Y' MONTH_DAY_FORMAT = r'j \d\e F' SHORT_DATE_FORMAT = 'd/m/Y' SHORT_DATETIME_FORMAT = 'd/m/Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ # '31/12/2009', '31/12/09' '%d/%m/%Y', '%d/%m/%y' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', '%d/%m/%Y %H:%M:%S.%f', '%d/%m/%Y %H:%M', '%d/%m/%y %H:%M:%S', '%d/%m/%y %H:%M:%S.%f', '%d/%m/%y %H:%M', ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
acd781329bfaa7e7894b3759bd3c86b830c3226df163b14ab04a5ec85674e69d
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'j\-\a \d\e F Y' # '26-a de julio 1887' TIME_FORMAT = 'H:i' # '18:59' DATETIME_FORMAT = r'j\-\a \d\e F Y\, \j\e H:i' # '26-a de julio 1887, je 18:59' YEAR_MONTH_FORMAT = r'F \d\e Y' # 'julio de 1887' MONTH_DAY_FORMAT = r'j\-\a \d\e F' # '26-a de julio' SHORT_DATE_FORMAT = 'Y-m-d' # '1887-07-26' SHORT_DATETIME_FORMAT = 'Y-m-d H:i' # '1887-07-26 18:59' FIRST_DAY_OF_WEEK = 1 # Monday (lundo) # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%Y-%m-%d', # '1887-07-26' '%y-%m-%d', # '87-07-26' '%Y %m %d', # '1887 07 26' '%d-a de %b %Y', # '26-a de jul 1887' '%d %b %Y', # '26 jul 1887' '%d-a de %B %Y', # '26-a de julio 1887' '%d %B %Y', # '26 julio 1887' '%d %m %Y', # '26 07 1887' ] TIME_INPUT_FORMATS = [ '%H:%M:%S', # '18:59:00' '%H:%M', # '18:59' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '1887-07-26 18:59:00' '%Y-%m-%d %H:%M', # '1887-07-26 18:59' '%Y-%m-%d', # '1887-07-26' '%Y.%m.%d %H:%M:%S', # '1887.07.26 18:59:00' '%Y.%m.%d %H:%M', # '1887.07.26 18:59' '%Y.%m.%d', # '1887.07.26' '%d/%m/%Y %H:%M:%S', # '26/07/1887 18:59:00' '%d/%m/%Y %H:%M', # '26/07/1887 18:59' '%d/%m/%Y', # '26/07/1887' '%y-%m-%d %H:%M:%S', # '87-07-26 18:59:00' '%y-%m-%d %H:%M', # '87-07-26 18:59' '%y-%m-%d', # '87-07-26' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
b656da110f7de0fe818fe5258976a0316e18bb50ff9de1aca4339a40b2f91e55
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. E Y' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'j. E Y G:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'd.m.Y' SHORT_DATETIME_FORMAT = 'd.m.Y G:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', '%d.%m.%y', # '05.01.2006', '05.01.06' '%d. %m. %Y', '%d. %m. %y', # '5. 1. 2006', '5. 1. 06' # '%d. %B %Y', '%d. %b. %Y', # '25. October 2006', '25. Oct. 2006' ] # Kept ISO formats as one is in first position TIME_INPUT_FORMATS = [ '%H:%M:%S', # '04:30:59' '%H.%M', # '04.30' '%H:%M', # '04:30' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '05.01.2006 04:30:59' '%d.%m.%Y %H:%M:%S.%f', # '05.01.2006 04:30:59.000200' '%d.%m.%Y %H.%M', # '05.01.2006 04.30' '%d.%m.%Y %H:%M', # '05.01.2006 04:30' '%d.%m.%Y', # '05.01.2006' '%d. %m. %Y %H:%M:%S', # '05. 01. 2006 04:30:59' '%d. %m. %Y %H:%M:%S.%f', # '05. 01. 2006 04:30:59.000200' '%d. %m. %Y %H.%M', # '05. 01. 2006 04.30' '%d. %m. %Y %H:%M', # '05. 01. 2006 04:30' '%d. %m. %Y', # '05. 01. 2006' '%Y-%m-%d %H.%M', # '2006-01-05 04.30' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
558430e49a452b818a381f4b85571448ba6b53bffae903f5241bb65d6b2ce0bd
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. E Y.' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j. E Y. H:i' YEAR_MONTH_FORMAT = 'F Y.' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'j.m.Y.' SHORT_DATETIME_FORMAT = 'j.m.Y. H:i' FIRST_DAY_OF_WEEK = 1 # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # Kept ISO formats as they are in first position DATE_INPUT_FORMATS = [ '%Y-%m-%d', # '2006-10-25' '%d.%m.%Y.', '%d.%m.%y.', # '25.10.2006.', '25.10.06.' '%d. %m. %Y.', '%d. %m. %y.', # '25. 10. 2006.', '25. 10. 06.' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%d.%m.%Y. %H:%M:%S', # '25.10.2006. 14:30:59' '%d.%m.%Y. %H:%M:%S.%f', # '25.10.2006. 14:30:59.000200' '%d.%m.%Y. %H:%M', # '25.10.2006. 14:30' '%d.%m.%Y.', # '25.10.2006.' '%d.%m.%y. %H:%M:%S', # '25.10.06. 14:30:59' '%d.%m.%y. %H:%M:%S.%f', # '25.10.06. 14:30:59.000200' '%d.%m.%y. %H:%M', # '25.10.06. 14:30' '%d.%m.%y.', # '25.10.06.' '%d. %m. %Y. %H:%M:%S', # '25. 10. 2006. 14:30:59' '%d. %m. %Y. %H:%M:%S.%f', # '25. 10. 2006. 14:30:59.000200' '%d. %m. %Y. %H:%M', # '25. 10. 2006. 14:30' '%d. %m. %Y.', # '25. 10. 2006.' '%d. %m. %y. %H:%M:%S', # '25. 10. 06. 14:30:59' '%d. %m. %y. %H:%M:%S.%f', # '25. 10. 06. 14:30:59.000200' '%d. %m. %y. %H:%M', # '25. 10. 06. 14:30' '%d. %m. %y.', # '25. 10. 06.' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
f0a09256d9373785acae5c7a8460e3f0f6d557ab18b218257f22eda426c5af14
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'\N\gà\y d \t\há\n\g n \nă\m Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'H:i \N\gà\y d \t\há\n\g n \nă\m Y' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd-m-Y' SHORT_DATETIME_FORMAT = 'H:i d-m-Y' # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' # NUMBER_GROUPING =
40c7c7a0459ca51ffcc8b684ebac3952398f8ed813014ed8962f091e04b11912
# This file is distributed under the same license as the Django package. # DATE_FORMAT = r'j \d\e F \d\e Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'j \d\e F \d\e Y \a \l\a\s H:i' YEAR_MONTH_FORMAT = r'F \d\e Y' MONTH_DAY_FORMAT = r'j \d\e F' SHORT_DATE_FORMAT = 'd/m/Y' SHORT_DATETIME_FORMAT = 'd/m/Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday: ISO 8601 DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', # '25/10/2006', '25/10/06' '%Y%m%d', # '20061025' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', '%d/%m/%Y %H:%M:%S.%f', '%d/%m/%Y %H:%M', '%d/%m/%y %H:%M:%S', '%d/%m/%y %H:%M:%S.%f', '%d/%m/%y %H:%M', ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
8ae05a8f2e9b805fb65748f9c598eff7cdf64e82e750cc91bf35432b8bea3bbe
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. N Y.' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'j. N. Y. G:i T' YEAR_MONTH_FORMAT = 'F Y.' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'Y M j' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' # NUMBER_GROUPING =
8322cea64eeed5eecb341a100c72ece24230d38cbbbe61a81bdbf56aaecd8e61
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F, Y' TIME_FORMAT = 'g:i A' # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j M, Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = # DECIMAL_SEPARATOR = # THOUSAND_SEPARATOR = # NUMBER_GROUPING =
0c9545a9ba96eddaba18fce1fcc49142f40089c06d554c111d7f1148b82aa458
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'd F Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j. F Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'j.m.Y' SHORT_DATETIME_FORMAT = 'j.m.Y H:i' FIRST_DAY_OF_WEEK = 1 # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', '%d.%m.%y', # '25.10.2006', '25.10.06' '%d. %m. %Y', '%d. %m. %y', # '25. 10. 2006', '25. 10. 06' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' '%d.%m.%y %H:%M:%S', # '25.10.06 14:30:59' '%d.%m.%y %H:%M:%S.%f', # '25.10.06 14:30:59.000200' '%d.%m.%y %H:%M', # '25.10.06 14:30' '%d.%m.%y', # '25.10.06' '%d. %m. %Y %H:%M:%S', # '25. 10. 2006 14:30:59' '%d. %m. %Y %H:%M:%S.%f', # '25. 10. 2006 14:30:59.000200' '%d. %m. %Y %H:%M', # '25. 10. 2006 14:30' '%d. %m. %Y', # '25. 10. 2006' '%d. %m. %y %H:%M:%S', # '25. 10. 06 14:30:59' '%d. %m. %y %H:%M:%S.%f', # '25. 10. 06 14:30:59.000200' '%d. %m. %y %H:%M', # '25. 10. 06 14:30' '%d. %m. %y', # '25. 10. 06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
a352ba7dbf00c09e621ea4b15a2ac7fea2e1169e78bd1990d1c5037844091598
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'H:i' # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j M Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' # NUMBER_GROUPING =
97f9744df438a57182dc79a18732b261a812ea2f4225368e71466f4f8cd4e0f6
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j E Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j E Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd-m-Y' SHORT_DATETIME_FORMAT = 'd-m-Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', '%d.%m.%y', # '25.10.2006', '25.10.06' '%y-%m-%d', # '06-10-25' # '%d. %B %Y', '%d. %b. %Y', # '25. October 2006', '25. Oct. 2006' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = ' ' NUMBER_GROUPING = 3
d95d29612cd7aafd5c6e46000109e4ff727c7729e85f42e66ba27a3376cb9c18
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. F Y' TIME_FORMAT = 'G:i' # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'd.m.Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = ' ' # Non-breaking space # NUMBER_GROUPING =
2bd25b909b97766afccf528000206f0f16bc98824843cf837c72e5be391f9b7f
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'd F Y' TIME_FORMAT = 'H:i' # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd.m.Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = ' ' # Non-breaking space # NUMBER_GROUPING =
6b5df734fc3baf2d96606b3b6f75fb3c6042f861d4b4dd92e737232e9f424c9c
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'g:i A' # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j M Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = # DECIMAL_SEPARATOR = # THOUSAND_SEPARATOR = # NUMBER_GROUPING =
92f4ec29268aee80d62ba6be49e3b75777bfffae128ed0c1316a2ad28b950c9e
# This file is distributed under the same license as the Django package. # DATE_FORMAT = r'j \d\e F \d\e Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'j \d\e F \d\e Y \a \l\a\s H:i' YEAR_MONTH_FORMAT = r'F \d\e Y' MONTH_DAY_FORMAT = r'j \d\e F' SHORT_DATE_FORMAT = 'd/m/Y' SHORT_DATETIME_FORMAT = 'd/m/Y H:i' FIRST_DAY_OF_WEEK = 1 DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', # '25/10/2006', '25/10/06' '%Y%m%d', # '20061025' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', '%d/%m/%Y %H:%M:%S.%f', '%d/%m/%Y %H:%M', '%d/%m/%y %H:%M:%S', '%d/%m/%y %H:%M:%S.%f', '%d/%m/%y %H:%M', ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
e7ee47b78d26824d1ca2f620368a99362d325f595d8c2e55206b192dbe8217d1
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'Y년 n월 j일' TIME_FORMAT = 'A g:i' DATETIME_FORMAT = 'Y년 n월 j일 g:i A' YEAR_MONTH_FORMAT = 'Y년 n월' MONTH_DAY_FORMAT = 'n월 j일' SHORT_DATE_FORMAT = 'Y-n-j.' SHORT_DATETIME_FORMAT = 'Y-n-j H:i' # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # Kept ISO formats as they are in first position DATE_INPUT_FORMATS = [ '%Y-%m-%d', '%m/%d/%Y', '%m/%d/%y', # '2006-10-25', '10/25/2006', '10/25/06' # '%b %d %Y', '%b %d, %Y', # 'Oct 25 2006', 'Oct 25, 2006' # '%d %b %Y', '%d %b, %Y', # '25 Oct 2006', '25 Oct, 2006' # '%B %d %Y', '%B %d, %Y', # 'October 25 2006', 'October 25, 2006' # '%d %B %Y', '%d %B, %Y', # '25 October 2006', '25 October, 2006' '%Y년 %m월 %d일', # '2006년 10월 25일', with localized suffix. ] TIME_INPUT_FORMATS = [ '%H:%M:%S', # '14:30:59' '%H:%M:%S.%f', # '14:30:59.000200' '%H:%M', # '14:30' '%H시 %M분 %S초', # '14시 30분 59초' '%H시 %M분', # '14시 30분' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%Y-%m-%d', # '2006-10-25' '%m/%d/%Y %H:%M:%S', # '10/25/2006 14:30:59' '%m/%d/%Y %H:%M:%S.%f', # '10/25/2006 14:30:59.000200' '%m/%d/%Y %H:%M', # '10/25/2006 14:30' '%m/%d/%Y', # '10/25/2006' '%m/%d/%y %H:%M:%S', # '10/25/06 14:30:59' '%m/%d/%y %H:%M:%S.%f', # '10/25/06 14:30:59.000200' '%m/%d/%y %H:%M', # '10/25/06 14:30' '%m/%d/%y', # '10/25/06' '%Y년 %m월 %d일 %H시 %M분 %S초', # '2006년 10월 25일 14시 30분 59초' '%Y년 %m월 %d일 %H시 %M분', # '2006년 10월 25일 14시 30분' ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
4b704ad856ce75975452c3e9f081cc6f81a90e6fdcb48204d73e195f72fb1752
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j F Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j N Y' SHORT_DATETIME_FORMAT = 'j N Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', '%d/%m/%y', # '25/10/2006', '25/10/06' '%d.%m.%Y', '%d.%m.%y', # Swiss [fr_CH), '25.10.2006', '25.10.06' # '%d %B %Y', '%d %b %Y', # '25 octobre 2006', '25 oct. 2006' ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', # '25/10/2006 14:30:59' '%d/%m/%Y %H:%M:%S.%f', # '25/10/2006 14:30:59.000200' '%d/%m/%Y %H:%M', # '25/10/2006 14:30' '%d/%m/%Y', # '25/10/2006' '%d.%m.%Y %H:%M:%S', # Swiss [fr_CH), '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # Swiss (fr_CH), '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # Swiss (fr_CH), '25.10.2006 14:30' '%d.%m.%Y', # Swiss (fr_CH), '25.10.2006' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
4c23f4ac2692eef1658527ce2176da07143a2de25f3ac492a4dc2e7ddec56548
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'j F Y, G:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'j M Y' SHORT_DATETIME_FORMAT = 'j M Y, G:i' FIRST_DAY_OF_WEEK = 0 # Sunday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d/%m/%Y', # 25/10/2006 '%d %b %Y', # 25 ต.ค. 2006 '%d %B %Y', # 25 ตุลาคม 2006 ] TIME_INPUT_FORMATS = [ '%H:%M:%S', # 14:30:59 '%H:%M:%S.%f', # 14:30:59.000200 '%H:%M', # 14:30 ] DATETIME_INPUT_FORMATS = [ '%d/%m/%Y %H:%M:%S', # 25/10/2006 14:30:59 '%d/%m/%Y %H:%M:%S.%f', # 25/10/2006 14:30:59.000200 '%d/%m/%Y %H:%M', # 25/10/2006 14:30 ] DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' NUMBER_GROUPING = 3
438dbe5d9e5a5ad7e82a12ae7f4ef5e3c22bebe52b8da58d35e03c7ab06d9421
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = r'Y. \g\a\d\a j. F' TIME_FORMAT = 'H:i' DATETIME_FORMAT = r'Y. \g\a\d\a j. F, H:i' YEAR_MONTH_FORMAT = r'Y. \g. F' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = r'j.m.Y' SHORT_DATETIME_FORMAT = 'j.m.Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # Kept ISO formats as they are in first position DATE_INPUT_FORMATS = [ '%Y-%m-%d', '%d.%m.%Y', '%d.%m.%y', # '2006-10-25', '25.10.2006', '25.10.06' ] TIME_INPUT_FORMATS = [ '%H:%M:%S', # '14:30:59' '%H:%M:%S.%f', # '14:30:59.000200' '%H:%M', # '14:30' '%H.%M.%S', # '14.30.59' '%H.%M.%S.%f', # '14.30.59.000200' '%H.%M', # '14.30' ] DATETIME_INPUT_FORMATS = [ '%Y-%m-%d %H:%M:%S', # '2006-10-25 14:30:59' '%Y-%m-%d %H:%M:%S.%f', # '2006-10-25 14:30:59.000200' '%Y-%m-%d %H:%M', # '2006-10-25 14:30' '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' '%d.%m.%y %H:%M:%S', # '25.10.06 14:30:59' '%d.%m.%y %H:%M:%S.%f', # '25.10.06 14:30:59.000200' '%d.%m.%y %H:%M', # '25.10.06 14:30' '%d.%m.%y %H.%M.%S', # '25.10.06 14.30.59' '%d.%m.%y %H.%M.%S.%f', # '25.10.06 14.30.59.000200' '%d.%m.%y %H.%M', # '25.10.06 14.30' '%d.%m.%y', # '25.10.06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = ' ' # Non-breaking space NUMBER_GROUPING = 3
61068bf18dc7d0038fbc9cf1c220d7c2daab6d8d04c87346b5f32ee011a16b46
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j. F Y' TIME_FORMAT = 'H:i' DATETIME_FORMAT = 'j. F Y H:i' YEAR_MONTH_FORMAT = 'F Y' MONTH_DAY_FORMAT = 'j. F' SHORT_DATE_FORMAT = 'd.m.Y' SHORT_DATETIME_FORMAT = 'd.m.Y H:i' FIRST_DAY_OF_WEEK = 1 # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', # '25.10.2006' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '.' NUMBER_GROUPING = 3
cb43b91780b7d708093173dd56b42f36a60a572afcf99d617f9a3437d3f78bb3
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j F Y' TIME_FORMAT = 'g:i A' # DATETIME_FORMAT = # YEAR_MONTH_FORMAT = MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd-m-Y' # SHORT_DATETIME_FORMAT = # FIRST_DAY_OF_WEEK = # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior # DATE_INPUT_FORMATS = # TIME_INPUT_FORMATS = # DATETIME_INPUT_FORMATS = DECIMAL_SEPARATOR = '.' THOUSAND_SEPARATOR = ',' # NUMBER_GROUPING =
c47d76ebdf6237fd5207f49e0482dc3193534b9d4fa95cd998d7e84ceffd2b90
# This file is distributed under the same license as the Django package. # # The *_FORMAT strings use the Django date format syntax, # see http://docs.djangoproject.com/en/dev/ref/templates/builtins/#date DATE_FORMAT = 'j E Y г.' TIME_FORMAT = 'G:i' DATETIME_FORMAT = 'j E Y г. G:i' YEAR_MONTH_FORMAT = 'F Y г.' MONTH_DAY_FORMAT = 'j F' SHORT_DATE_FORMAT = 'd.m.Y' SHORT_DATETIME_FORMAT = 'd.m.Y H:i' FIRST_DAY_OF_WEEK = 1 # Monday # The *_INPUT_FORMATS strings use the Python strftime format syntax, # see http://docs.python.org/library/datetime.html#strftime-strptime-behavior DATE_INPUT_FORMATS = [ '%d.%m.%Y', # '25.10.2006' '%d.%m.%y', # '25.10.06' ] DATETIME_INPUT_FORMATS = [ '%d.%m.%Y %H:%M:%S', # '25.10.2006 14:30:59' '%d.%m.%Y %H:%M:%S.%f', # '25.10.2006 14:30:59.000200' '%d.%m.%Y %H:%M', # '25.10.2006 14:30' '%d.%m.%Y', # '25.10.2006' '%d.%m.%y %H:%M:%S', # '25.10.06 14:30:59' '%d.%m.%y %H:%M:%S.%f', # '25.10.06 14:30:59.000200' '%d.%m.%y %H:%M', # '25.10.06 14:30' '%d.%m.%y', # '25.10.06' ] DECIMAL_SEPARATOR = ',' THOUSAND_SEPARATOR = '\xa0' # non-breaking space NUMBER_GROUPING = 3
c36e892478a571c0130c9ade9f4dc4c0e52836f3d0b46438a8734f6ae52a1ca9
"""Translation helper functions.""" import functools import gettext as gettext_module import os import re import sys import warnings from collections import OrderedDict from threading import local from django.apps import apps from django.conf import settings from django.conf.locale import LANG_INFO from django.core.exceptions import AppRegistryNotReady from django.core.signals import setting_changed from django.dispatch import receiver from django.utils.safestring import SafeData, mark_safe from . import LANGUAGE_SESSION_KEY, to_language, to_locale # Translations are cached in a dictionary for every language. # The active translations are stored by threadid to make them thread local. _translations = {} _active = local() # The default translation is based on the settings file. _default = None # magic gettext number to separate context from message CONTEXT_SEPARATOR = "\x04" # Format of Accept-Language header values. From RFC 2616, section 14.4 and 3.9 # and RFC 3066, section 2.1 accept_language_re = re.compile(r''' ([A-Za-z]{1,8}(?:-[A-Za-z0-9]{1,8})*|\*) # "en", "en-au", "x-y-z", "es-419", "*" (?:\s*;\s*q=(0(?:\.\d{,3})?|1(?:\.0{,3})?))? # Optional "q=1.00", "q=0.8" (?:\s*,\s*|$) # Multiple accepts per header. ''', re.VERBOSE) language_code_re = re.compile( r'^[a-z]{1,8}(?:-[a-z0-9]{1,8})*(?:@[a-z0-9]{1,20})?$', re.IGNORECASE ) language_code_prefix_re = re.compile(r'^/(\w+([@-]\w+)?)(/|$)') @receiver(setting_changed) def reset_cache(**kwargs): """ Reset global state when LANGUAGES setting has been changed, as some languages should no longer be accepted. """ if kwargs['setting'] in ('LANGUAGES', 'LANGUAGE_CODE'): check_for_language.cache_clear() get_languages.cache_clear() get_supported_language_variant.cache_clear() class DjangoTranslation(gettext_module.GNUTranslations): """ Set up the GNUTranslations context with regard to output charset. This translation object will be constructed out of multiple GNUTranslations objects by merging their catalogs. It will construct an object for the requested language and add a fallback to the default language, if it's different from the requested language. """ domain = 'django' def __init__(self, language, domain=None, localedirs=None): """Create a GNUTranslations() using many locale directories""" gettext_module.GNUTranslations.__init__(self) if domain is not None: self.domain = domain self.__language = language self.__to_language = to_language(language) self.__locale = to_locale(language) self._catalog = None # If a language doesn't have a catalog, use the Germanic default for # pluralization: anything except one is pluralized. self.plural = lambda n: int(n != 1) if self.domain == 'django': if localedirs is not None: # A module-level cache is used for caching 'django' translations warnings.warn("localedirs is ignored when domain is 'django'.", RuntimeWarning) localedirs = None self._init_translation_catalog() if localedirs: for localedir in localedirs: translation = self._new_gnu_trans(localedir) self.merge(translation) else: self._add_installed_apps_translations() self._add_local_translations() if self.__language == settings.LANGUAGE_CODE and self.domain == 'django' and self._catalog is None: # default lang should have at least one translation file available. raise IOError("No translation files found for default language %s." % settings.LANGUAGE_CODE) self._add_fallback(localedirs) if self._catalog is None: # No catalogs found for this language, set an empty catalog. self._catalog = {} def __repr__(self): return "<DjangoTranslation lang:%s>" % self.__language def _new_gnu_trans(self, localedir, use_null_fallback=True): """ Return a mergeable gettext.GNUTranslations instance. A convenience wrapper. By default gettext uses 'fallback=False'. Using param `use_null_fallback` to avoid confusion with any other references to 'fallback'. """ return gettext_module.translation( domain=self.domain, localedir=localedir, languages=[self.__locale], codeset='utf-8', fallback=use_null_fallback, ) def _init_translation_catalog(self): """Create a base catalog using global django translations.""" settingsfile = sys.modules[settings.__module__].__file__ localedir = os.path.join(os.path.dirname(settingsfile), 'locale') translation = self._new_gnu_trans(localedir) self.merge(translation) def _add_installed_apps_translations(self): """Merge translations from each installed app.""" try: app_configs = reversed(list(apps.get_app_configs())) except AppRegistryNotReady: raise AppRegistryNotReady( "The translation infrastructure cannot be initialized before the " "apps registry is ready. Check that you don't make non-lazy " "gettext calls at import time.") for app_config in app_configs: localedir = os.path.join(app_config.path, 'locale') if os.path.exists(localedir): translation = self._new_gnu_trans(localedir) self.merge(translation) def _add_local_translations(self): """Merge translations defined in LOCALE_PATHS.""" for localedir in reversed(settings.LOCALE_PATHS): translation = self._new_gnu_trans(localedir) self.merge(translation) def _add_fallback(self, localedirs=None): """Set the GNUTranslations() fallback with the default language.""" # Don't set a fallback for the default language or any English variant # (as it's empty, so it'll ALWAYS fall back to the default language) if self.__language == settings.LANGUAGE_CODE or self.__language.startswith('en'): return if self.domain == 'django': # Get from cache default_translation = translation(settings.LANGUAGE_CODE) else: default_translation = DjangoTranslation( settings.LANGUAGE_CODE, domain=self.domain, localedirs=localedirs ) self.add_fallback(default_translation) def merge(self, other): """Merge another translation into this catalog.""" if not getattr(other, '_catalog', None): return # NullTranslations() has no _catalog if self._catalog is None: # Take plural and _info from first catalog found (generally Django's). self.plural = other.plural self._info = other._info.copy() self._catalog = other._catalog.copy() else: self._catalog.update(other._catalog) if other._fallback: self.add_fallback(other._fallback) def language(self): """Return the translation language.""" return self.__language def to_language(self): """Return the translation language name.""" return self.__to_language def translation(language): """ Return a translation object in the default 'django' domain. """ global _translations if language not in _translations: _translations[language] = DjangoTranslation(language) return _translations[language] def activate(language): """ Fetch the translation object for a given language and install it as the current translation object for the current thread. """ if not language: return _active.value = translation(language) def deactivate(): """ Uninstall the active translation object so that further _() calls resolve to the default translation object. """ if hasattr(_active, "value"): del _active.value def deactivate_all(): """ Make the active translation object a NullTranslations() instance. This is useful when we want delayed translations to appear as the original string for some reason. """ _active.value = gettext_module.NullTranslations() _active.value.to_language = lambda *args: None def get_language(): """Return the currently selected language.""" t = getattr(_active, "value", None) if t is not None: try: return t.to_language() except AttributeError: pass # If we don't have a real translation object, assume it's the default language. return settings.LANGUAGE_CODE def get_language_bidi(): """ Return selected language's BiDi layout. * False = left-to-right layout * True = right-to-left layout """ lang = get_language() if lang is None: return False else: base_lang = get_language().split('-')[0] return base_lang in settings.LANGUAGES_BIDI def catalog(): """ Return the current active catalog for further processing. This can be used if you need to modify the catalog or want to access the whole message catalog instead of just translating one string. """ global _default t = getattr(_active, "value", None) if t is not None: return t if _default is None: _default = translation(settings.LANGUAGE_CODE) return _default def gettext(message): """ Translate the 'message' string. It uses the current thread to find the translation object to use. If no current translation is activated, the message will be run through the default translation object. """ global _default eol_message = message.replace('\r\n', '\n').replace('\r', '\n') if eol_message: _default = _default or translation(settings.LANGUAGE_CODE) translation_object = getattr(_active, "value", _default) result = translation_object.gettext(eol_message) else: # Return an empty value of the corresponding type if an empty message # is given, instead of metadata, which is the default gettext behavior. result = type(message)('') if isinstance(message, SafeData): return mark_safe(result) return result def pgettext(context, message): msg_with_ctxt = "%s%s%s" % (context, CONTEXT_SEPARATOR, message) result = gettext(msg_with_ctxt) if CONTEXT_SEPARATOR in result: # Translation not found result = message elif isinstance(message, SafeData): result = mark_safe(result) return result def gettext_noop(message): """ Mark strings for translation but don't translate them now. This can be used to store strings in global variables that should stay in the base language (because they might be used externally) and will be translated later. """ return message def do_ntranslate(singular, plural, number, translation_function): global _default t = getattr(_active, "value", None) if t is not None: return getattr(t, translation_function)(singular, plural, number) if _default is None: _default = translation(settings.LANGUAGE_CODE) return getattr(_default, translation_function)(singular, plural, number) def ngettext(singular, plural, number): """ Return a string of the translation of either the singular or plural, based on the number. """ return do_ntranslate(singular, plural, number, 'ngettext') def npgettext(context, singular, plural, number): msgs_with_ctxt = ("%s%s%s" % (context, CONTEXT_SEPARATOR, singular), "%s%s%s" % (context, CONTEXT_SEPARATOR, plural), number) result = ngettext(*msgs_with_ctxt) if CONTEXT_SEPARATOR in result: # Translation not found result = ngettext(singular, plural, number) return result def all_locale_paths(): """ Return a list of paths to user-provides languages files. """ globalpath = os.path.join( os.path.dirname(sys.modules[settings.__module__].__file__), 'locale') app_paths = [] for app_config in apps.get_app_configs(): locale_path = os.path.join(app_config.path, 'locale') if os.path.exists(locale_path): app_paths.append(locale_path) return [globalpath] + list(settings.LOCALE_PATHS) + app_paths @functools.lru_cache(maxsize=1000) def check_for_language(lang_code): """ Check whether there is a global language file for the given language code. This is used to decide whether a user-provided language is available. lru_cache should have a maxsize to prevent from memory exhaustion attacks, as the provided language codes are taken from the HTTP request. See also <https://www.djangoproject.com/weblog/2007/oct/26/security-fix/>. """ # First, a quick check to make sure lang_code is well-formed (#21458) if lang_code is None or not language_code_re.search(lang_code): return False return any( gettext_module.find('django', path, [to_locale(lang_code)]) is not None for path in all_locale_paths() ) @functools.lru_cache() def get_languages(): """ Cache of settings.LANGUAGES in an OrderedDict for easy lookups by key. """ return OrderedDict(settings.LANGUAGES) @functools.lru_cache(maxsize=1000) def get_supported_language_variant(lang_code, strict=False): """ Return the language code that's listed in supported languages, possibly selecting a more generic variant. Raise LookupError if nothing is found. If `strict` is False (the default), look for a country-specific variant when neither the language code nor its generic variant is found. lru_cache should have a maxsize to prevent from memory exhaustion attacks, as the provided language codes are taken from the HTTP request. See also <https://www.djangoproject.com/weblog/2007/oct/26/security-fix/>. """ if lang_code: # If 'fr-ca' is not supported, try special fallback or language-only 'fr'. possible_lang_codes = [lang_code] try: possible_lang_codes.extend(LANG_INFO[lang_code]['fallback']) except KeyError: pass generic_lang_code = lang_code.split('-')[0] possible_lang_codes.append(generic_lang_code) supported_lang_codes = get_languages() for code in possible_lang_codes: if code in supported_lang_codes and check_for_language(code): return code if not strict: # if fr-fr is not supported, try fr-ca. for supported_code in supported_lang_codes: if supported_code.startswith(generic_lang_code + '-'): return supported_code raise LookupError(lang_code) def get_language_from_path(path, strict=False): """ Return the language code if there's a valid language code found in `path`. If `strict` is False (the default), look for a country-specific variant when neither the language code nor its generic variant is found. """ regex_match = language_code_prefix_re.match(path) if not regex_match: return None lang_code = regex_match.group(1) try: return get_supported_language_variant(lang_code, strict=strict) except LookupError: return None def get_language_from_request(request, check_path=False): """ Analyze the request to find what language the user wants the system to show. Only languages listed in settings.LANGUAGES are taken into account. If the user requests a sublanguage where we have a main language, we send out the main language. If check_path is True, the URL path prefix will be checked for a language code, otherwise this is skipped for backwards compatibility. """ if check_path: lang_code = get_language_from_path(request.path_info) if lang_code is not None: return lang_code supported_lang_codes = get_languages() if hasattr(request, 'session'): lang_code = request.session.get(LANGUAGE_SESSION_KEY) if lang_code in supported_lang_codes and lang_code is not None and check_for_language(lang_code): return lang_code lang_code = request.COOKIES.get(settings.LANGUAGE_COOKIE_NAME) try: return get_supported_language_variant(lang_code) except LookupError: pass accept = request.META.get('HTTP_ACCEPT_LANGUAGE', '') for accept_lang, unused in parse_accept_lang_header(accept): if accept_lang == '*': break if not language_code_re.search(accept_lang): continue try: return get_supported_language_variant(accept_lang) except LookupError: continue try: return get_supported_language_variant(settings.LANGUAGE_CODE) except LookupError: return settings.LANGUAGE_CODE @functools.lru_cache(maxsize=1000) def parse_accept_lang_header(lang_string): """ Parse the lang_string, which is the body of an HTTP Accept-Language header, and return a tuple of (lang, q-value), ordered by 'q' values. Return an empty tuple if there are any format errors in lang_string. """ result = [] pieces = accept_language_re.split(lang_string.lower()) if pieces[-1]: return () for i in range(0, len(pieces) - 1, 3): first, lang, priority = pieces[i:i + 3] if first: return () if priority: priority = float(priority) else: priority = 1.0 result.append((lang, priority)) result.sort(key=lambda k: k[1], reverse=True) return tuple(result)
11a1be74fadbd1b4240c9cfee435f9d8bc98fb0793d95c7295a8ad5ba6d486d9
""" Internationalization support. """ import re from contextlib import ContextDecorator from django.utils.functional import lazy __all__ = [ 'activate', 'deactivate', 'override', 'deactivate_all', 'get_language', 'get_language_from_request', 'get_language_info', 'get_language_bidi', 'check_for_language', 'to_language', 'to_locale', 'templatize', 'gettext', 'gettext_lazy', 'gettext_noop', 'ugettext', 'ugettext_lazy', 'ugettext_noop', 'ngettext', 'ngettext_lazy', 'ungettext', 'ungettext_lazy', 'pgettext', 'pgettext_lazy', 'npgettext', 'npgettext_lazy', 'LANGUAGE_SESSION_KEY', ] LANGUAGE_SESSION_KEY = '_language' class TranslatorCommentWarning(SyntaxWarning): pass # Here be dragons, so a short explanation of the logic won't hurt: # We are trying to solve two problems: (1) access settings, in particular # settings.USE_I18N, as late as possible, so that modules can be imported # without having to first configure Django, and (2) if some other code creates # a reference to one of these functions, don't break that reference when we # replace the functions with their real counterparts (once we do access the # settings). class Trans: """ The purpose of this class is to store the actual translation function upon receiving the first call to that function. After this is done, changes to USE_I18N will have no effect to which function is served upon request. If your tests rely on changing USE_I18N, you can delete all the functions from _trans.__dict__. Note that storing the function with setattr will have a noticeable performance effect, as access to the function goes the normal path, instead of using __getattr__. """ def __getattr__(self, real_name): from django.conf import settings if settings.USE_I18N: from django.utils.translation import trans_real as trans else: from django.utils.translation import trans_null as trans setattr(self, real_name, getattr(trans, real_name)) return getattr(trans, real_name) _trans = Trans() # The Trans class is no more needed, so remove it from the namespace. del Trans def gettext_noop(message): return _trans.gettext_noop(message) ugettext_noop = gettext_noop def gettext(message): return _trans.gettext(message) # An alias since Django 2.0 ugettext = gettext def ngettext(singular, plural, number): return _trans.ngettext(singular, plural, number) # An alias since Django 2.0 ungettext = ngettext def pgettext(context, message): return _trans.pgettext(context, message) def npgettext(context, singular, plural, number): return _trans.npgettext(context, singular, plural, number) gettext_lazy = ugettext_lazy = lazy(gettext, str) pgettext_lazy = lazy(pgettext, str) def lazy_number(func, resultclass, number=None, **kwargs): if isinstance(number, int): kwargs['number'] = number proxy = lazy(func, resultclass)(**kwargs) else: original_kwargs = kwargs.copy() class NumberAwareString(resultclass): def __bool__(self): return bool(kwargs['singular']) def __mod__(self, rhs): if isinstance(rhs, dict) and number: try: number_value = rhs[number] except KeyError: raise KeyError( "Your dictionary lacks key '%s\'. Please provide " "it, because it is required to determine whether " "string is singular or plural." % number ) else: number_value = rhs kwargs['number'] = number_value translated = func(**kwargs) try: translated = translated % rhs except TypeError: # String doesn't contain a placeholder for the number. pass return translated proxy = lazy(lambda **kwargs: NumberAwareString(), NumberAwareString)(**kwargs) proxy.__reduce__ = lambda: (_lazy_number_unpickle, (func, resultclass, number, original_kwargs)) return proxy def _lazy_number_unpickle(func, resultclass, number, kwargs): return lazy_number(func, resultclass, number=number, **kwargs) def ngettext_lazy(singular, plural, number=None): return lazy_number(ngettext, str, singular=singular, plural=plural, number=number) # An alias since Django 2.0 ungettext_lazy = ngettext_lazy def npgettext_lazy(context, singular, plural, number=None): return lazy_number(npgettext, str, context=context, singular=singular, plural=plural, number=number) def activate(language): return _trans.activate(language) def deactivate(): return _trans.deactivate() class override(ContextDecorator): def __init__(self, language, deactivate=False): self.language = language self.deactivate = deactivate def __enter__(self): self.old_language = get_language() if self.language is not None: activate(self.language) else: deactivate_all() def __exit__(self, exc_type, exc_value, traceback): if self.old_language is None: deactivate_all() elif self.deactivate: deactivate() else: activate(self.old_language) def get_language(): return _trans.get_language() def get_language_bidi(): return _trans.get_language_bidi() def check_for_language(lang_code): return _trans.check_for_language(lang_code) def to_language(locale): """Turn a locale name (en_US) into a language name (en-us).""" p = locale.find('_') if p >= 0: return locale[:p].lower() + '-' + locale[p + 1:].lower() else: return locale.lower() def to_locale(language): """Turn a language name (en-us) into a locale name (en_US).""" language = language.lower() parts = language.split('-') try: country = parts[1] except IndexError: return language # A language with > 2 characters after the dash only has its first # character after the dash capitalized; e.g. sr-latn becomes sr_Latn. # A language with 2 characters after the dash has both characters # capitalized; e.g. en-us becomes en_US. parts[1] = country.title() if len(country) > 2 else country.upper() return parts[0] + '_' + '-'.join(parts[1:]) def get_language_from_request(request, check_path=False): return _trans.get_language_from_request(request, check_path) def get_language_from_path(path): return _trans.get_language_from_path(path) def get_supported_language_variant(lang_code, *, strict=False): return _trans.get_supported_language_variant(lang_code, strict) def templatize(src, **kwargs): from .template import templatize return templatize(src, **kwargs) def deactivate_all(): return _trans.deactivate_all() def get_language_info(lang_code): from django.conf.locale import LANG_INFO try: lang_info = LANG_INFO[lang_code] if 'fallback' in lang_info and 'name' not in lang_info: info = get_language_info(lang_info['fallback'][0]) else: info = lang_info except KeyError: if '-' not in lang_code: raise KeyError("Unknown language code %s." % lang_code) generic_lang_code = lang_code.split('-')[0] try: info = LANG_INFO[generic_lang_code] except KeyError: raise KeyError("Unknown language code %s and %s." % (lang_code, generic_lang_code)) if info: info['name_translated'] = gettext_lazy(info['name']) return info trim_whitespace_re = re.compile(r'\s*\n\s*') def trim_whitespace(s): return trim_whitespace_re.sub(' ', s.strip())
601e05fbe6d88d3660a3b305621105c57408c4b9591c4b46775eb15b00d58add
import re import warnings from io import StringIO from django.template.base import TRANSLATOR_COMMENT_MARK, Lexer, TokenType from . import TranslatorCommentWarning, trim_whitespace dot_re = re.compile(r'\S') def blankout(src, char): """ Change every non-whitespace character to the given char. Used in the templatize function. """ return dot_re.sub(char, src) context_re = re.compile(r"""^\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?'))\s*""") inline_re = re.compile( # Match the trans 'some text' part r"""^\s*trans\s+((?:"[^"]*?")|(?:'[^']*?'))""" # Match and ignore optional filters r"""(?:\s*\|\s*[^\s:]+(?::(?:[^\s'":]+|(?:"[^"]*?")|(?:'[^']*?')))?)*""" # Match the optional context part r"""(\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?')))?\s*""" ) block_re = re.compile(r"""^\s*blocktrans(\s+.*context\s+((?:"[^"]*?")|(?:'[^']*?')))?(?:\s+|$)""") endblock_re = re.compile(r"""^\s*endblocktrans$""") plural_re = re.compile(r"""^\s*plural$""") constant_re = re.compile(r"""_\(((?:".*?")|(?:'.*?'))\)""") def templatize(src, origin=None): """ Turn a Django template into something that is understood by xgettext. It does so by translating the Django translation tags into standard gettext function invocations. """ out = StringIO('') message_context = None intrans = False inplural = False trimmed = False singular = [] plural = [] incomment = False comment = [] lineno_comment_map = {} comment_lineno_cache = None # Adding the u prefix allows gettext to recognize the string (#26093). raw_prefix = 'u' def join_tokens(tokens, trim=False): message = ''.join(tokens) if trim: message = trim_whitespace(message) return message for t in Lexer(src).tokenize(): if incomment: if t.token_type == TokenType.BLOCK and t.contents == 'endcomment': content = ''.join(comment) translators_comment_start = None for lineno, line in enumerate(content.splitlines(True)): if line.lstrip().startswith(TRANSLATOR_COMMENT_MARK): translators_comment_start = lineno for lineno, line in enumerate(content.splitlines(True)): if translators_comment_start is not None and lineno >= translators_comment_start: out.write(' # %s' % line) else: out.write(' #\n') incomment = False comment = [] else: comment.append(t.contents) elif intrans: if t.token_type == TokenType.BLOCK: endbmatch = endblock_re.match(t.contents) pluralmatch = plural_re.match(t.contents) if endbmatch: if inplural: if message_context: out.write(' npgettext({p}{!r}, {p}{!r}, {p}{!r},count) '.format( message_context, join_tokens(singular, trimmed), join_tokens(plural, trimmed), p=raw_prefix, )) else: out.write(' ngettext({p}{!r}, {p}{!r}, count) '.format( join_tokens(singular, trimmed), join_tokens(plural, trimmed), p=raw_prefix, )) for part in singular: out.write(blankout(part, 'S')) for part in plural: out.write(blankout(part, 'P')) else: if message_context: out.write(' pgettext({p}{!r}, {p}{!r}) '.format( message_context, join_tokens(singular, trimmed), p=raw_prefix, )) else: out.write(' gettext({p}{!r}) '.format( join_tokens(singular, trimmed), p=raw_prefix, )) for part in singular: out.write(blankout(part, 'S')) message_context = None intrans = False inplural = False singular = [] plural = [] elif pluralmatch: inplural = True else: filemsg = '' if origin: filemsg = 'file %s, ' % origin raise SyntaxError( "Translation blocks must not include other block tags: " "%s (%sline %d)" % (t.contents, filemsg, t.lineno) ) elif t.token_type == TokenType.VAR: if inplural: plural.append('%%(%s)s' % t.contents) else: singular.append('%%(%s)s' % t.contents) elif t.token_type == TokenType.TEXT: contents = t.contents.replace('%', '%%') if inplural: plural.append(contents) else: singular.append(contents) else: # Handle comment tokens (`{# ... #}`) plus other constructs on # the same line: if comment_lineno_cache is not None: cur_lineno = t.lineno + t.contents.count('\n') if comment_lineno_cache == cur_lineno: if t.token_type != TokenType.COMMENT: for c in lineno_comment_map[comment_lineno_cache]: filemsg = '' if origin: filemsg = 'file %s, ' % origin warn_msg = ( "The translator-targeted comment '%s' " "(%sline %d) was ignored, because it wasn't " "the last item on the line." ) % (c, filemsg, comment_lineno_cache) warnings.warn(warn_msg, TranslatorCommentWarning) lineno_comment_map[comment_lineno_cache] = [] else: out.write('# %s' % ' | '.join(lineno_comment_map[comment_lineno_cache])) comment_lineno_cache = None if t.token_type == TokenType.BLOCK: imatch = inline_re.match(t.contents) bmatch = block_re.match(t.contents) cmatches = constant_re.findall(t.contents) if imatch: g = imatch.group(1) if g[0] == '"': g = g.strip('"') elif g[0] == "'": g = g.strip("'") g = g.replace('%', '%%') if imatch.group(2): # A context is provided context_match = context_re.match(imatch.group(2)) message_context = context_match.group(1) if message_context[0] == '"': message_context = message_context.strip('"') elif message_context[0] == "'": message_context = message_context.strip("'") out.write(' pgettext({p}{!r}, {p}{!r}) '.format( message_context, g, p=raw_prefix )) message_context = None else: out.write(' gettext({p}{!r}) '.format(g, p=raw_prefix)) elif bmatch: for fmatch in constant_re.findall(t.contents): out.write(' _(%s) ' % fmatch) if bmatch.group(1): # A context is provided context_match = context_re.match(bmatch.group(1)) message_context = context_match.group(1) if message_context[0] == '"': message_context = message_context.strip('"') elif message_context[0] == "'": message_context = message_context.strip("'") intrans = True inplural = False trimmed = 'trimmed' in t.split_contents() singular = [] plural = [] elif cmatches: for cmatch in cmatches: out.write(' _(%s) ' % cmatch) elif t.contents == 'comment': incomment = True else: out.write(blankout(t.contents, 'B')) elif t.token_type == TokenType.VAR: parts = t.contents.split('|') cmatch = constant_re.match(parts[0]) if cmatch: out.write(' _(%s) ' % cmatch.group(1)) for p in parts[1:]: if p.find(':_(') >= 0: out.write(' %s ' % p.split(':', 1)[1]) else: out.write(blankout(p, 'F')) elif t.token_type == TokenType.COMMENT: if t.contents.lstrip().startswith(TRANSLATOR_COMMENT_MARK): lineno_comment_map.setdefault(t.lineno, []).append(t.contents) comment_lineno_cache = t.lineno else: out.write(blankout(t.contents, 'X')) return out.getvalue()
ca9f366c7b79a2aa8bf796793c5a1809978434eba5c73a7e22a326916cf497d6
# These are versions of the functions in django.utils.translation.trans_real # that don't actually do anything. This is purely for performance, so that # settings.USE_I18N = False can use this module rather than trans_real.py. from django.conf import settings def gettext(message): return message gettext_noop = gettext_lazy = _ = gettext def ngettext(singular, plural, number): if number == 1: return singular return plural ngettext_lazy = ngettext def pgettext(context, message): return gettext(message) def npgettext(context, singular, plural, number): return ngettext(singular, plural, number) def activate(x): return None def deactivate(): return None deactivate_all = deactivate def get_language(): return settings.LANGUAGE_CODE def get_language_bidi(): return settings.LANGUAGE_CODE in settings.LANGUAGES_BIDI def check_for_language(x): return True def get_language_from_request(request, check_path=False): return settings.LANGUAGE_CODE def get_language_from_path(request): return None def get_supported_language_variant(lang_code, strict=False): if lang_code == settings.LANGUAGE_CODE: return lang_code else: raise LookupError(lang_code)
c376bce04017597d76c3b1750b2c4843f945893c31152ef17f7ac211c9d4ab27
""" Wrapper for loading templates from "templates" directories in INSTALLED_APPS packages. """ from django.template.utils import get_app_template_dirs from .filesystem import Loader as FilesystemLoader class Loader(FilesystemLoader): def get_dirs(self): return get_app_template_dirs('templates')
92f8e637e507c5d77a3f08247b1c3b2072f461e2508175dbbb3fed763e5c88a7
from django.template import Template, TemplateDoesNotExist class Loader: def __init__(self, engine): self.engine = engine def get_template(self, template_name, skip=None): """ Call self.get_template_sources() and return a Template object for the first template matching template_name. If skip is provided, ignore template origins in skip. This is used to avoid recursion during template extending. """ tried = [] for origin in self.get_template_sources(template_name): if skip is not None and origin in skip: tried.append((origin, 'Skipped')) continue try: contents = self.get_contents(origin) except TemplateDoesNotExist: tried.append((origin, 'Source does not exist')) continue else: return Template( contents, origin, origin.template_name, self.engine, ) raise TemplateDoesNotExist(template_name, tried=tried) def get_template_sources(self, template_name): """ An iterator that yields possible matching template paths for a template name. """ raise NotImplementedError( 'subclasses of Loader must provide a get_template_sources() method' ) def reset(self): """ Reset any state maintained by the loader instance (e.g. cached templates or cached loader modules). """ pass
3964e723059b563f9377956b3a42b0d46ffaa48bb3d559e1e4279d64de609725
""" Wrapper for loading templates from the filesystem. """ from django.core.exceptions import SuspiciousFileOperation from django.template import Origin, TemplateDoesNotExist from django.utils._os import safe_join from .base import Loader as BaseLoader class Loader(BaseLoader): def __init__(self, engine, dirs=None): super().__init__(engine) self.dirs = dirs def get_dirs(self): return self.dirs if self.dirs is not None else self.engine.dirs def get_contents(self, origin): try: with open(origin.name, encoding=self.engine.file_charset) as fp: return fp.read() except FileNotFoundError: raise TemplateDoesNotExist(origin) def get_template_sources(self, template_name): """ Return an Origin object pointing to an absolute path in each directory in template_dirs. For security reasons, if a path doesn't lie inside one of the template_dirs it is excluded from the result set. """ for template_dir in self.get_dirs(): try: name = safe_join(template_dir, template_name) except SuspiciousFileOperation: # The joined path was located outside of this template_dir # (it might be inside another one, so this isn't fatal). continue yield Origin( name=name, template_name=template_name, loader=self, )
b5b91211a30ec97f58b36f68a53a48f16ba2e7d6de3b6e4524e1c79b630fe95a
""" Wrapper class that takes a list of template loaders as an argument and attempts to load templates from them in order, caching the result. """ import hashlib from django.template import TemplateDoesNotExist from django.template.backends.django import copy_exception from .base import Loader as BaseLoader class Loader(BaseLoader): def __init__(self, engine, loaders): self.template_cache = {} self.get_template_cache = {} self.loaders = engine.get_template_loaders(loaders) super().__init__(engine) def get_contents(self, origin): return origin.loader.get_contents(origin) def get_template(self, template_name, skip=None): """ Perform the caching that gives this loader its name. Often many of the templates attempted will be missing, so memory use is of concern here. To keep it in check, caching behavior is a little complicated when a template is not found. See ticket #26306 for more details. With template debugging disabled, cache the TemplateDoesNotExist class for every missing template and raise a new instance of it after fetching it from the cache. With template debugging enabled, a unique TemplateDoesNotExist object is cached for each missing template to preserve debug data. When raising an exception, Python sets __traceback__, __context__, and __cause__ attributes on it. Those attributes can contain references to all sorts of objects up the call chain and caching them creates a memory leak. Thus, unraised copies of the exceptions are cached and copies of those copies are raised after they're fetched from the cache. """ key = self.cache_key(template_name, skip) cached = self.get_template_cache.get(key) if cached: if isinstance(cached, type) and issubclass(cached, TemplateDoesNotExist): raise cached(template_name) elif isinstance(cached, TemplateDoesNotExist): raise copy_exception(cached) return cached try: template = super().get_template(template_name, skip) except TemplateDoesNotExist as e: self.get_template_cache[key] = copy_exception(e) if self.engine.debug else TemplateDoesNotExist raise else: self.get_template_cache[key] = template return template def get_template_sources(self, template_name): for loader in self.loaders: yield from loader.get_template_sources(template_name) def cache_key(self, template_name, skip=None): """ Generate a cache key for the template name, dirs, and skip. If skip is provided, only origins that match template_name are included in the cache key. This ensures each template is only parsed and cached once if contained in different extend chains like: x -> a -> a y -> a -> a z -> a -> a """ dirs_prefix = '' skip_prefix = '' if skip: matching = [origin.name for origin in skip if origin.template_name == template_name] if matching: skip_prefix = self.generate_hash(matching) return '-'.join(s for s in (str(template_name), skip_prefix, dirs_prefix) if s) def generate_hash(self, values): return hashlib.sha1('|'.join(values).encode()).hexdigest() def reset(self): "Empty the template cache." self.template_cache.clear() self.get_template_cache.clear()
f1c05823cc0f38e9c8c7fdefedf0b98decc0ffaa492ea82a39b78bc075d024aa
""" Wrapper for loading templates from a plain Python dict. """ from django.template import Origin, TemplateDoesNotExist from .base import Loader as BaseLoader class Loader(BaseLoader): def __init__(self, engine, templates_dict): self.templates_dict = templates_dict super().__init__(engine) def get_contents(self, origin): try: return self.templates_dict[origin.name] except KeyError: raise TemplateDoesNotExist(origin) def get_template_sources(self, template_name): yield Origin( name=template_name, template_name=template_name, loader=self, )
3fc76f3a6429a49f18319e7f5f2389183ceca5b40c34657cd86c4be48c2b3053
from django.core.exceptions import ( ImproperlyConfigured, SuspiciousFileOperation, ) from django.template.utils import get_app_template_dirs from django.utils._os import safe_join from django.utils.functional import cached_property class BaseEngine: # Core methods: engines have to provide their own implementation # (except for from_string which is optional). def __init__(self, params): """ Initialize the template engine. `params` is a dict of configuration settings. """ params = params.copy() self.name = params.pop('NAME') self.dirs = list(params.pop('DIRS')) self.app_dirs = params.pop('APP_DIRS') if params: raise ImproperlyConfigured( "Unknown parameters: {}".format(", ".join(params))) @property def app_dirname(self): raise ImproperlyConfigured( "{} doesn't support loading templates from installed " "applications.".format(self.__class__.__name__)) def from_string(self, template_code): """ Create and return a template for the given source code. This method is optional. """ raise NotImplementedError( "subclasses of BaseEngine should provide " "a from_string() method") def get_template(self, template_name): """ Load and return a template for the given name. Raise TemplateDoesNotExist if no such template exists. """ raise NotImplementedError( "subclasses of BaseEngine must provide " "a get_template() method") # Utility methods: they are provided to minimize code duplication and # security issues in third-party backends. @cached_property def template_dirs(self): """ Return a list of directories to search for templates. """ # Immutable return value because it's cached and shared by callers. template_dirs = tuple(self.dirs) if self.app_dirs: template_dirs += get_app_template_dirs(self.app_dirname) return template_dirs def iter_template_filenames(self, template_name): """ Iterate over candidate files for template_name. Ignore files that don't lie inside configured template dirs to avoid directory traversal attacks. """ for template_dir in self.template_dirs: try: yield safe_join(template_dir, template_name) except SuspiciousFileOperation: # The joined path was located outside of this template_dir # (it might be inside another one, so this isn't fatal). pass
e48c71d3ca227e78e9205a1dd6df4844927f4be5021a4ffe087ea84ee219a971
from django.middleware.csrf import get_token from django.utils.functional import lazy from django.utils.html import format_html from django.utils.safestring import SafeText def csrf_input(request): return format_html( '<input type="hidden" name="csrfmiddlewaretoken" value="{}">', get_token(request)) csrf_input_lazy = lazy(csrf_input, SafeText, str) csrf_token_lazy = lazy(get_token, str)
365df5dd2c57d6bc44d45fb90070a58e07a3ad8a580b1f905c9a4d5244165d1e
import string from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.template import Origin, TemplateDoesNotExist from django.utils.html import conditional_escape from .base import BaseEngine from .utils import csrf_input_lazy, csrf_token_lazy class TemplateStrings(BaseEngine): app_dirname = 'template_strings' def __init__(self, params): params = params.copy() options = params.pop('OPTIONS').copy() if options: raise ImproperlyConfigured( "Unknown options: {}".format(", ".join(options))) super().__init__(params) def from_string(self, template_code): return Template(template_code) def get_template(self, template_name): tried = [] for template_file in self.iter_template_filenames(template_name): try: with open(template_file, encoding=settings.FILE_CHARSET) as fp: template_code = fp.read() except FileNotFoundError: tried.append(( Origin(template_file, template_name, self), 'Source does not exist', )) else: return Template(template_code) raise TemplateDoesNotExist(template_name, tried=tried, backend=self) class Template(string.Template): def render(self, context=None, request=None): if context is None: context = {} else: context = {k: conditional_escape(v) for k, v in context.items()} if request is not None: context['csrf_input'] = csrf_input_lazy(request) context['csrf_token'] = csrf_token_lazy(request) return self.safe_substitute(context)
6f1f03700d8faaacc399c81e818d75a66e448660ff8164d32dab86a3dd6298be
import jinja2 from django.conf import settings from django.template import TemplateDoesNotExist, TemplateSyntaxError from django.utils.functional import cached_property from django.utils.module_loading import import_string from .base import BaseEngine class Jinja2(BaseEngine): app_dirname = 'jinja2' def __init__(self, params): params = params.copy() options = params.pop('OPTIONS').copy() super().__init__(params) self.context_processors = options.pop('context_processors', []) environment = options.pop('environment', 'jinja2.Environment') environment_cls = import_string(environment) if 'loader' not in options: options['loader'] = jinja2.FileSystemLoader(self.template_dirs) options.setdefault('autoescape', True) options.setdefault('auto_reload', settings.DEBUG) options.setdefault('undefined', jinja2.DebugUndefined if settings.DEBUG else jinja2.Undefined) self.env = environment_cls(**options) def from_string(self, template_code): return Template(self.env.from_string(template_code), self) def get_template(self, template_name): try: return Template(self.env.get_template(template_name), self) except jinja2.TemplateNotFound as exc: raise TemplateDoesNotExist(exc.name, backend=self) from exc except jinja2.TemplateSyntaxError as exc: new = TemplateSyntaxError(exc.args) new.template_debug = get_exception_info(exc) raise new from exc @cached_property def template_context_processors(self): return [import_string(path) for path in self.context_processors] class Template: def __init__(self, template, backend): self.template = template self.backend = backend self.origin = Origin( name=template.filename, template_name=template.name, ) def render(self, context=None, request=None): from .utils import csrf_input_lazy, csrf_token_lazy if context is None: context = {} if request is not None: context['request'] = request context['csrf_input'] = csrf_input_lazy(request) context['csrf_token'] = csrf_token_lazy(request) for context_processor in self.backend.template_context_processors: context.update(context_processor(request)) return self.template.render(context) class Origin: """ A container to hold debug information as described in the template API documentation. """ def __init__(self, name, template_name): self.name = name self.template_name = template_name def get_exception_info(exception): """ Format exception information for display on the debug page using the structure described in the template API documentation. """ context_lines = 10 lineno = exception.lineno lines = list(enumerate(exception.source.strip().split("\n"), start=1)) during = lines[lineno - 1][1] total = len(lines) top = max(0, lineno - context_lines - 1) bottom = min(total, lineno + context_lines) return { 'name': exception.filename, 'message': exception.message, 'source_lines': lines[top:bottom], 'line': lineno, 'before': '', 'during': during, 'after': '', 'total': total, 'top': top, 'bottom': bottom, }
ff0df9d2d98700c48b3b0f9bda8f6b4745a7e985f740c9291e4929bdba3f1302
from importlib import import_module from pkgutil import walk_packages from django.apps import apps from django.conf import settings from django.template import TemplateDoesNotExist from django.template.context import make_context from django.template.engine import Engine from django.template.library import InvalidTemplateLibrary from .base import BaseEngine class DjangoTemplates(BaseEngine): app_dirname = 'templates' def __init__(self, params): params = params.copy() options = params.pop('OPTIONS').copy() options.setdefault('autoescape', True) options.setdefault('debug', settings.DEBUG) options.setdefault('file_charset', settings.FILE_CHARSET) libraries = options.get('libraries', {}) options['libraries'] = self.get_templatetag_libraries(libraries) super().__init__(params) self.engine = Engine(self.dirs, self.app_dirs, **options) def from_string(self, template_code): return Template(self.engine.from_string(template_code), self) def get_template(self, template_name): try: return Template(self.engine.get_template(template_name), self) except TemplateDoesNotExist as exc: reraise(exc, self) def get_templatetag_libraries(self, custom_libraries): """ Return a collation of template tag libraries from installed applications and the supplied custom_libraries argument. """ libraries = get_installed_libraries() libraries.update(custom_libraries) return libraries class Template: def __init__(self, template, backend): self.template = template self.backend = backend @property def origin(self): return self.template.origin def render(self, context=None, request=None): context = make_context(context, request, autoescape=self.backend.engine.autoescape) try: return self.template.render(context) except TemplateDoesNotExist as exc: reraise(exc, self.backend) def copy_exception(exc, backend=None): """ Create a new TemplateDoesNotExist. Preserve its declared attributes and template debug data but discard __traceback__, __context__, and __cause__ to make this object suitable for keeping around (in a cache, for example). """ backend = backend or exc.backend new = exc.__class__(*exc.args, tried=exc.tried, backend=backend, chain=exc.chain) if hasattr(exc, 'template_debug'): new.template_debug = exc.template_debug return new def reraise(exc, backend): """ Reraise TemplateDoesNotExist while maintaining template debug information. """ new = copy_exception(exc, backend) raise new from exc def get_installed_libraries(): """ Return the built-in template tag libraries and those from installed applications. Libraries are stored in a dictionary where keys are the individual module names, not the full module paths. Example: django.templatetags.i18n is stored as i18n. """ libraries = {} candidates = ['django.templatetags'] candidates.extend( '%s.templatetags' % app_config.name for app_config in apps.get_app_configs()) for candidate in candidates: try: pkg = import_module(candidate) except ImportError: # No templatetags package defined. This is safe to ignore. continue if hasattr(pkg, '__path__'): for name in get_package_libraries(pkg): libraries[name[len(candidate) + 1:]] = name return libraries def get_package_libraries(pkg): """ Recursively yield template tag libraries defined in submodules of a package. """ for entry in walk_packages(pkg.__path__, pkg.__name__ + '.'): try: module = import_module(entry[1]) except ImportError as e: raise InvalidTemplateLibrary( "Invalid template library specified. ImportError raised when " "trying to load '%s': %s" % (entry[1], e) ) if hasattr(module, 'register'): yield entry[1]
29f1569a594d5b478a225a827ec10dba93c13c71d7b1c61b2448bcdbb9f14642
from django.apps.registry import apps as global_apps from django.db import migrations, router from .exceptions import InvalidMigrationPlan from .loader import MigrationLoader from .recorder import MigrationRecorder from .state import ProjectState class MigrationExecutor: """ End-to-end migration execution - load migrations and run them up or down to a specified set of targets. """ def __init__(self, connection, progress_callback=None): self.connection = connection self.loader = MigrationLoader(self.connection) self.recorder = MigrationRecorder(self.connection) self.progress_callback = progress_callback def migration_plan(self, targets, clean_start=False): """ Given a set of targets, return a list of (Migration instance, backwards?). """ plan = [] if clean_start: applied = set() else: applied = set(self.loader.applied_migrations) for target in targets: # If the target is (app_label, None), that means unmigrate everything if target[1] is None: for root in self.loader.graph.root_nodes(): if root[0] == target[0]: for migration in self.loader.graph.backwards_plan(root): if migration in applied: plan.append((self.loader.graph.nodes[migration], True)) applied.remove(migration) # If the migration is already applied, do backwards mode, # otherwise do forwards mode. elif target in applied: # Don't migrate backwards all the way to the target node (that # may roll back dependencies in other apps that don't need to # be rolled back); instead roll back through target's immediate # child(ren) in the same app, and no further. next_in_app = sorted( n for n in self.loader.graph.node_map[target].children if n[0] == target[0] ) for node in next_in_app: for migration in self.loader.graph.backwards_plan(node): if migration in applied: plan.append((self.loader.graph.nodes[migration], True)) applied.remove(migration) else: for migration in self.loader.graph.forwards_plan(target): if migration not in applied: plan.append((self.loader.graph.nodes[migration], False)) applied.add(migration) return plan def _create_project_state(self, with_applied_migrations=False): """ Create a project state including all the applications without migrations and applied migrations if with_applied_migrations=True. """ state = ProjectState(real_apps=list(self.loader.unmigrated_apps)) if with_applied_migrations: # Create the forwards plan Django would follow on an empty database full_plan = self.migration_plan(self.loader.graph.leaf_nodes(), clean_start=True) applied_migrations = { self.loader.graph.nodes[key] for key in self.loader.applied_migrations if key in self.loader.graph.nodes } for migration, _ in full_plan: if migration in applied_migrations: migration.mutate_state(state, preserve=False) return state def migrate(self, targets, plan=None, state=None, fake=False, fake_initial=False): """ Migrate the database up to the given targets. Django first needs to create all project states before a migration is (un)applied and in a second step run all the database operations. """ # The django_migrations table must be present to record applied # migrations. self.recorder.ensure_schema() if plan is None: plan = self.migration_plan(targets) # Create the forwards plan Django would follow on an empty database full_plan = self.migration_plan(self.loader.graph.leaf_nodes(), clean_start=True) all_forwards = all(not backwards for mig, backwards in plan) all_backwards = all(backwards for mig, backwards in plan) if not plan: if state is None: # The resulting state should include applied migrations. state = self._create_project_state(with_applied_migrations=True) elif all_forwards == all_backwards: # This should only happen if there's a mixed plan raise InvalidMigrationPlan( "Migration plans with both forwards and backwards migrations " "are not supported. Please split your migration process into " "separate plans of only forwards OR backwards migrations.", plan ) elif all_forwards: if state is None: # The resulting state should still include applied migrations. state = self._create_project_state(with_applied_migrations=True) state = self._migrate_all_forwards(state, plan, full_plan, fake=fake, fake_initial=fake_initial) else: # No need to check for `elif all_backwards` here, as that condition # would always evaluate to true. state = self._migrate_all_backwards(plan, full_plan, fake=fake) self.check_replacements() return state def _migrate_all_forwards(self, state, plan, full_plan, fake, fake_initial): """ Take a list of 2-tuples of the form (migration instance, False) and apply them in the order they occur in the full_plan. """ migrations_to_run = {m[0] for m in plan} for migration, _ in full_plan: if not migrations_to_run: # We remove every migration that we applied from these sets so # that we can bail out once the last migration has been applied # and don't always run until the very end of the migration # process. break if migration in migrations_to_run: if 'apps' not in state.__dict__: if self.progress_callback: self.progress_callback("render_start") state.apps # Render all -- performance critical if self.progress_callback: self.progress_callback("render_success") state = self.apply_migration(state, migration, fake=fake, fake_initial=fake_initial) migrations_to_run.remove(migration) return state def _migrate_all_backwards(self, plan, full_plan, fake): """ Take a list of 2-tuples of the form (migration instance, True) and unapply them in reverse order they occur in the full_plan. Since unapplying a migration requires the project state prior to that migration, Django will compute the migration states before each of them in a first run over the plan and then unapply them in a second run over the plan. """ migrations_to_run = {m[0] for m in plan} # Holds all migration states prior to the migrations being unapplied states = {} state = self._create_project_state() applied_migrations = { self.loader.graph.nodes[key] for key in self.loader.applied_migrations if key in self.loader.graph.nodes } if self.progress_callback: self.progress_callback("render_start") for migration, _ in full_plan: if not migrations_to_run: # We remove every migration that we applied from this set so # that we can bail out once the last migration has been applied # and don't always run until the very end of the migration # process. break if migration in migrations_to_run: if 'apps' not in state.__dict__: state.apps # Render all -- performance critical # The state before this migration states[migration] = state # The old state keeps as-is, we continue with the new state state = migration.mutate_state(state, preserve=True) migrations_to_run.remove(migration) elif migration in applied_migrations: # Only mutate the state if the migration is actually applied # to make sure the resulting state doesn't include changes # from unrelated migrations. migration.mutate_state(state, preserve=False) if self.progress_callback: self.progress_callback("render_success") for migration, _ in plan: self.unapply_migration(states[migration], migration, fake=fake) applied_migrations.remove(migration) # Generate the post migration state by starting from the state before # the last migration is unapplied and mutating it to include all the # remaining applied migrations. last_unapplied_migration = plan[-1][0] state = states[last_unapplied_migration] for index, (migration, _) in enumerate(full_plan): if migration == last_unapplied_migration: for migration, _ in full_plan[index:]: if migration in applied_migrations: migration.mutate_state(state, preserve=False) break return state def collect_sql(self, plan): """ Take a migration plan and return a list of collected SQL statements that represent the best-efforts version of that plan. """ statements = [] state = None for migration, backwards in plan: with self.connection.schema_editor(collect_sql=True, atomic=migration.atomic) as schema_editor: if state is None: state = self.loader.project_state((migration.app_label, migration.name), at_end=False) if not backwards: state = migration.apply(state, schema_editor, collect_sql=True) else: state = migration.unapply(state, schema_editor, collect_sql=True) statements.extend(schema_editor.collected_sql) return statements def apply_migration(self, state, migration, fake=False, fake_initial=False): """Run a migration forwards.""" if self.progress_callback: self.progress_callback("apply_start", migration, fake) if not fake: if fake_initial: # Test to see if this is an already-applied initial migration applied, state = self.detect_soft_applied(state, migration) if applied: fake = True if not fake: # Alright, do it normally with self.connection.schema_editor(atomic=migration.atomic) as schema_editor: state = migration.apply(state, schema_editor) # For replacement migrations, record individual statuses if migration.replaces: for app_label, name in migration.replaces: self.recorder.record_applied(app_label, name) else: self.recorder.record_applied(migration.app_label, migration.name) # Report progress if self.progress_callback: self.progress_callback("apply_success", migration, fake) return state def unapply_migration(self, state, migration, fake=False): """Run a migration backwards.""" if self.progress_callback: self.progress_callback("unapply_start", migration, fake) if not fake: with self.connection.schema_editor(atomic=migration.atomic) as schema_editor: state = migration.unapply(state, schema_editor) # For replacement migrations, record individual statuses if migration.replaces: for app_label, name in migration.replaces: self.recorder.record_unapplied(app_label, name) else: self.recorder.record_unapplied(migration.app_label, migration.name) # Report progress if self.progress_callback: self.progress_callback("unapply_success", migration, fake) return state def check_replacements(self): """ Mark replacement migrations applied if their replaced set all are. Do this unconditionally on every migrate, rather than just when migrations are applied or unapplied, to correctly handle the case when a new squash migration is pushed to a deployment that already had all its replaced migrations applied. In this case no new migration will be applied, but the applied state of the squashed migration must be maintained. """ applied = self.recorder.applied_migrations() for key, migration in self.loader.replacements.items(): all_applied = all(m in applied for m in migration.replaces) if all_applied and key not in applied: self.recorder.record_applied(*key) def detect_soft_applied(self, project_state, migration): """ Test whether a migration has been implicitly applied - that the tables or columns it would create exist. This is intended only for use on initial migrations (as it only looks for CreateModel and AddField). """ def should_skip_detecting_model(migration, model): """ No need to detect tables for proxy models, unmanaged models, or models that can't be migrated on the current database. """ return ( model._meta.proxy or not model._meta.managed or not router.allow_migrate( self.connection.alias, migration.app_label, model_name=model._meta.model_name, ) ) if migration.initial is None: # Bail if the migration isn't the first one in its app if any(app == migration.app_label for app, name in migration.dependencies): return False, project_state elif migration.initial is False: # Bail if it's NOT an initial migration return False, project_state if project_state is None: after_state = self.loader.project_state((migration.app_label, migration.name), at_end=True) else: after_state = migration.mutate_state(project_state) apps = after_state.apps found_create_model_migration = False found_add_field_migration = False with self.connection.cursor() as cursor: existing_table_names = self.connection.introspection.table_names(cursor) # Make sure all create model and add field operations are done for operation in migration.operations: if isinstance(operation, migrations.CreateModel): model = apps.get_model(migration.app_label, operation.name) if model._meta.swapped: # We have to fetch the model to test with from the # main app cache, as it's not a direct dependency. model = global_apps.get_model(model._meta.swapped) if should_skip_detecting_model(migration, model): continue if model._meta.db_table not in existing_table_names: return False, project_state found_create_model_migration = True elif isinstance(operation, migrations.AddField): model = apps.get_model(migration.app_label, operation.model_name) if model._meta.swapped: # We have to fetch the model to test with from the # main app cache, as it's not a direct dependency. model = global_apps.get_model(model._meta.swapped) if should_skip_detecting_model(migration, model): continue table = model._meta.db_table field = model._meta.get_field(operation.name) # Handle implicit many-to-many tables created by AddField. if field.many_to_many: if field.remote_field.through._meta.db_table not in existing_table_names: return False, project_state else: found_add_field_migration = True continue column_names = [ column.name for column in self.connection.introspection.get_table_description(self.connection.cursor(), table) ] if field.column not in column_names: return False, project_state found_add_field_migration = True # If we get this far and we found at least one CreateModel or AddField migration, # the migration is considered implicitly applied. return (found_create_model_migration or found_add_field_migration), after_state
84c3dd431dafa79216b149e003dc6b1a25d082aaa3335d4f9d007f98af71a48d
def topological_sort_as_sets(dependency_graph): """ Variation of Kahn's algorithm (1962) that returns sets. Take a dependency graph as a dictionary of node => dependencies. Yield sets of items in topological order, where the first set contains all nodes without dependencies, and each following set contains all nodes that may depend on the nodes only in the previously yielded sets. """ todo = dependency_graph.copy() while todo: current = {node for node, deps in todo.items() if not deps} if not current: raise ValueError('Cyclic dependency in graph: {}'.format( ', '.join(repr(x) for x in todo.items()))) yield current # remove current from todo's nodes & dependencies todo = {node: (dependencies - current) for node, dependencies in todo.items() if node not in current} def stable_topological_sort(l, dependency_graph): result = [] for layer in topological_sort_as_sets(dependency_graph): for node in l: if node in layer: result.append(node) return result
188ad83a71af46255fba40143b4094e233120df4086e22b2f6f2f4d259a6ce18
import copy from collections import OrderedDict from contextlib import contextmanager from django.apps import AppConfig from django.apps.registry import Apps, apps as global_apps from django.conf import settings from django.db import models from django.db.models.fields.proxy import OrderWrt from django.db.models.fields.related import RECURSIVE_RELATIONSHIP_CONSTANT from django.db.models.options import DEFAULT_NAMES, normalize_together from django.db.models.utils import make_model_tuple from django.utils.functional import cached_property from django.utils.module_loading import import_string from django.utils.version import get_docs_version from .exceptions import InvalidBasesError def _get_app_label_and_model_name(model, app_label=''): if isinstance(model, str): split = model.split('.', 1) return tuple(split) if len(split) == 2 else (app_label, split[0]) else: return model._meta.app_label, model._meta.model_name def _get_related_models(m): """Return all models that have a direct relationship to the given model.""" related_models = [ subclass for subclass in m.__subclasses__() if issubclass(subclass, models.Model) ] related_fields_models = set() for f in m._meta.get_fields(include_parents=True, include_hidden=True): if f.is_relation and f.related_model is not None and not isinstance(f.related_model, str): related_fields_models.add(f.model) related_models.append(f.related_model) # Reverse accessors of foreign keys to proxy models are attached to their # concrete proxied model. opts = m._meta if opts.proxy and m in related_fields_models: related_models.append(opts.concrete_model) return related_models def get_related_models_tuples(model): """ Return a list of typical (app_label, model_name) tuples for all related models for the given model. """ return { (rel_mod._meta.app_label, rel_mod._meta.model_name) for rel_mod in _get_related_models(model) } def get_related_models_recursive(model): """ Return all models that have a direct or indirect relationship to the given model. Relationships are either defined by explicit relational fields, like ForeignKey, ManyToManyField or OneToOneField, or by inheriting from another model (a superclass is related to its subclasses, but not vice versa). Note, however, that a model inheriting from a concrete model is also related to its superclass through the implicit *_ptr OneToOneField on the subclass. """ seen = set() queue = _get_related_models(model) for rel_mod in queue: rel_app_label, rel_model_name = rel_mod._meta.app_label, rel_mod._meta.model_name if (rel_app_label, rel_model_name) in seen: continue seen.add((rel_app_label, rel_model_name)) queue.extend(_get_related_models(rel_mod)) return seen - {(model._meta.app_label, model._meta.model_name)} class ProjectState: """ Represent the entire project's overall state. This is the item that is passed around - do it here rather than at the app level so that cross-app FKs/etc. resolve properly. """ def __init__(self, models=None, real_apps=None): self.models = models or {} # Apps to include from main registry, usually unmigrated ones self.real_apps = real_apps or [] self.is_delayed = False def add_model(self, model_state): app_label, model_name = model_state.app_label, model_state.name_lower self.models[(app_label, model_name)] = model_state if 'apps' in self.__dict__: # hasattr would cache the property self.reload_model(app_label, model_name) def remove_model(self, app_label, model_name): del self.models[app_label, model_name] if 'apps' in self.__dict__: # hasattr would cache the property self.apps.unregister_model(app_label, model_name) # Need to do this explicitly since unregister_model() doesn't clear # the cache automatically (#24513) self.apps.clear_cache() def _find_reload_model(self, app_label, model_name, delay=False): if delay: self.is_delayed = True related_models = set() try: old_model = self.apps.get_model(app_label, model_name) except LookupError: pass else: # Get all relations to and from the old model before reloading, # as _meta.apps may change if delay: related_models = get_related_models_tuples(old_model) else: related_models = get_related_models_recursive(old_model) # Get all outgoing references from the model to be rendered model_state = self.models[(app_label, model_name)] # Directly related models are the models pointed to by ForeignKeys, # OneToOneFields, and ManyToManyFields. direct_related_models = set() for name, field in model_state.fields: if field.is_relation: if field.remote_field.model == RECURSIVE_RELATIONSHIP_CONSTANT: continue rel_app_label, rel_model_name = _get_app_label_and_model_name(field.related_model, app_label) direct_related_models.add((rel_app_label, rel_model_name.lower())) # For all direct related models recursively get all related models. related_models.update(direct_related_models) for rel_app_label, rel_model_name in direct_related_models: try: rel_model = self.apps.get_model(rel_app_label, rel_model_name) except LookupError: pass else: if delay: related_models.update(get_related_models_tuples(rel_model)) else: related_models.update(get_related_models_recursive(rel_model)) # Include the model itself related_models.add((app_label, model_name)) return related_models def reload_model(self, app_label, model_name, delay=False): if 'apps' in self.__dict__: # hasattr would cache the property related_models = self._find_reload_model(app_label, model_name, delay) self._reload(related_models) def reload_models(self, models, delay=True): if 'apps' in self.__dict__: # hasattr would cache the property related_models = set() for app_label, model_name in models: related_models.update(self._find_reload_model(app_label, model_name, delay)) self._reload(related_models) def _reload(self, related_models): # Unregister all related models with self.apps.bulk_update(): for rel_app_label, rel_model_name in related_models: self.apps.unregister_model(rel_app_label, rel_model_name) states_to_be_rendered = [] # Gather all models states of those models that will be rerendered. # This includes: # 1. All related models of unmigrated apps for model_state in self.apps.real_models: if (model_state.app_label, model_state.name_lower) in related_models: states_to_be_rendered.append(model_state) # 2. All related models of migrated apps for rel_app_label, rel_model_name in related_models: try: model_state = self.models[rel_app_label, rel_model_name] except KeyError: pass else: states_to_be_rendered.append(model_state) # Render all models self.apps.render_multiple(states_to_be_rendered) def clone(self): """Return an exact copy of this ProjectState.""" new_state = ProjectState( models={k: v.clone() for k, v in self.models.items()}, real_apps=self.real_apps, ) if 'apps' in self.__dict__: new_state.apps = self.apps.clone() new_state.is_delayed = self.is_delayed return new_state def clear_delayed_apps_cache(self): if self.is_delayed and 'apps' in self.__dict__: del self.__dict__['apps'] @cached_property def apps(self): return StateApps(self.real_apps, self.models) @property def concrete_apps(self): self.apps = StateApps(self.real_apps, self.models, ignore_swappable=True) return self.apps @classmethod def from_apps(cls, apps): """Take an Apps and return a ProjectState matching it.""" app_models = {} for model in apps.get_models(include_swapped=True): model_state = ModelState.from_model(model) app_models[(model_state.app_label, model_state.name_lower)] = model_state return cls(app_models) def __eq__(self, other): return self.models == other.models and set(self.real_apps) == set(other.real_apps) class AppConfigStub(AppConfig): """Stub of an AppConfig. Only provides a label and a dict of models.""" # Not used, but required by AppConfig.__init__ path = '' def __init__(self, label): self.label = label # App-label and app-name are not the same thing, so technically passing # in the label here is wrong. In practice, migrations don't care about # the app name, but we need something unique, and the label works fine. super().__init__(label, None) def import_models(self): self.models = self.apps.all_models[self.label] class StateApps(Apps): """ Subclass of the global Apps registry class to better handle dynamic model additions and removals. """ def __init__(self, real_apps, models, ignore_swappable=False): # Any apps in self.real_apps should have all their models included # in the render. We don't use the original model instances as there # are some variables that refer to the Apps object. # FKs/M2Ms from real apps are also not included as they just # mess things up with partial states (due to lack of dependencies) self.real_models = [] for app_label in real_apps: app = global_apps.get_app_config(app_label) for model in app.get_models(): self.real_models.append(ModelState.from_model(model, exclude_rels=True)) # Populate the app registry with a stub for each application. app_labels = {model_state.app_label for model_state in models.values()} app_configs = [AppConfigStub(label) for label in sorted(real_apps + list(app_labels))] super().__init__(app_configs) # The lock gets in the way of copying as implemented in clone(), which # is called whenever Django duplicates a StateApps before updating it. self._lock = None self.render_multiple(list(models.values()) + self.real_models) # There shouldn't be any operations pending at this point. from django.core.checks.model_checks import _check_lazy_references ignore = {make_model_tuple(settings.AUTH_USER_MODEL)} if ignore_swappable else set() errors = _check_lazy_references(self, ignore=ignore) if errors: raise ValueError("\n".join(error.msg for error in errors)) @contextmanager def bulk_update(self): # Avoid clearing each model's cache for each change. Instead, clear # all caches when we're finished updating the model instances. ready = self.ready self.ready = False try: yield finally: self.ready = ready self.clear_cache() def render_multiple(self, model_states): # We keep trying to render the models in a loop, ignoring invalid # base errors, until the size of the unrendered models doesn't # decrease by at least one, meaning there's a base dependency loop/ # missing base. if not model_states: return # Prevent that all model caches are expired for each render. with self.bulk_update(): unrendered_models = model_states while unrendered_models: new_unrendered_models = [] for model in unrendered_models: try: model.render(self) except InvalidBasesError: new_unrendered_models.append(model) if len(new_unrendered_models) == len(unrendered_models): raise InvalidBasesError( "Cannot resolve bases for %r\nThis can happen if you are inheriting models from an " "app with migrations (e.g. contrib.auth)\n in an app with no migrations; see " "https://docs.djangoproject.com/en/%s/topics/migrations/#dependencies " "for more" % (new_unrendered_models, get_docs_version()) ) unrendered_models = new_unrendered_models def clone(self): """Return a clone of this registry.""" clone = StateApps([], {}) clone.all_models = copy.deepcopy(self.all_models) clone.app_configs = copy.deepcopy(self.app_configs) # Set the pointer to the correct app registry. for app_config in clone.app_configs.values(): app_config.apps = clone # No need to actually clone them, they'll never change clone.real_models = self.real_models return clone def register_model(self, app_label, model): self.all_models[app_label][model._meta.model_name] = model if app_label not in self.app_configs: self.app_configs[app_label] = AppConfigStub(app_label) self.app_configs[app_label].apps = self self.app_configs[app_label].models = OrderedDict() self.app_configs[app_label].models[model._meta.model_name] = model self.do_pending_operations(model) self.clear_cache() def unregister_model(self, app_label, model_name): try: del self.all_models[app_label][model_name] del self.app_configs[app_label].models[model_name] except KeyError: pass class ModelState: """ Represent a Django Model. Don't use the actual Model class as it's not designed to have its options changed - instead, mutate this one and then render it into a Model as required. Note that while you are allowed to mutate .fields, you are not allowed to mutate the Field instances inside there themselves - you must instead assign new ones, as these are not detached during a clone. """ def __init__(self, app_label, name, fields, options=None, bases=None, managers=None): self.app_label = app_label self.name = name self.fields = fields self.options = options or {} self.options.setdefault('indexes', []) self.bases = bases or (models.Model,) self.managers = managers or [] # Sanity-check that fields is NOT a dict. It must be ordered. if isinstance(self.fields, dict): raise ValueError("ModelState.fields cannot be a dict - it must be a list of 2-tuples.") for name, field in fields: # Sanity-check that fields are NOT already bound to a model. if hasattr(field, 'model'): raise ValueError( 'ModelState.fields cannot be bound to a model - "%s" is.' % name ) # Sanity-check that relation fields are NOT referring to a model class. if field.is_relation and hasattr(field.related_model, '_meta'): raise ValueError( 'ModelState.fields cannot refer to a model class - "%s.to" does. ' 'Use a string reference instead.' % name ) if field.many_to_many and hasattr(field.remote_field.through, '_meta'): raise ValueError( 'ModelState.fields cannot refer to a model class - "%s.through" does. ' 'Use a string reference instead.' % name ) # Sanity-check that indexes have their name set. for index in self.options['indexes']: if not index.name: raise ValueError( "Indexes passed to ModelState require a name attribute. " "%r doesn't have one." % index ) @cached_property def name_lower(self): return self.name.lower() @classmethod def from_model(cls, model, exclude_rels=False): """Given a model, return a ModelState representing it.""" # Deconstruct the fields fields = [] for field in model._meta.local_fields: if getattr(field, "remote_field", None) and exclude_rels: continue if isinstance(field, OrderWrt): continue name = field.name try: fields.append((name, field.clone())) except TypeError as e: raise TypeError("Couldn't reconstruct field %s on %s: %s" % ( name, model._meta.label, e, )) if not exclude_rels: for field in model._meta.local_many_to_many: name = field.name try: fields.append((name, field.clone())) except TypeError as e: raise TypeError("Couldn't reconstruct m2m field %s on %s: %s" % ( name, model._meta.object_name, e, )) # Extract the options options = {} for name in DEFAULT_NAMES: # Ignore some special options if name in ["apps", "app_label"]: continue elif name in model._meta.original_attrs: if name == "unique_together": ut = model._meta.original_attrs["unique_together"] options[name] = set(normalize_together(ut)) elif name == "index_together": it = model._meta.original_attrs["index_together"] options[name] = set(normalize_together(it)) elif name == "indexes": indexes = [idx.clone() for idx in model._meta.indexes] for index in indexes: if not index.name: index.set_name_with_model(model) options['indexes'] = indexes else: options[name] = model._meta.original_attrs[name] # If we're ignoring relationships, remove all field-listing model # options (that option basically just means "make a stub model") if exclude_rels: for key in ["unique_together", "index_together", "order_with_respect_to"]: if key in options: del options[key] # Private fields are ignored, so remove options that refer to them. elif options.get('order_with_respect_to') in {field.name for field in model._meta.private_fields}: del options['order_with_respect_to'] def flatten_bases(model): bases = [] for base in model.__bases__: if hasattr(base, "_meta") and base._meta.abstract: bases.extend(flatten_bases(base)) else: bases.append(base) return bases # We can't rely on __mro__ directly because we only want to flatten # abstract models and not the whole tree. However by recursing on # __bases__ we may end up with duplicates and ordering issues, we # therefore discard any duplicates and reorder the bases according # to their index in the MRO. flattened_bases = sorted(set(flatten_bases(model)), key=lambda x: model.__mro__.index(x)) # Make our record bases = tuple( ( base._meta.label_lower if hasattr(base, "_meta") else base ) for base in flattened_bases ) # Ensure at least one base inherits from models.Model if not any((isinstance(base, str) or issubclass(base, models.Model)) for base in bases): bases = (models.Model,) managers = [] manager_names = set() default_manager_shim = None for manager in model._meta.managers: if manager.name in manager_names: # Skip overridden managers. continue elif manager.use_in_migrations: # Copy managers usable in migrations. new_manager = copy.copy(manager) new_manager._set_creation_counter() elif manager is model._base_manager or manager is model._default_manager: # Shim custom managers used as default and base managers. new_manager = models.Manager() new_manager.model = manager.model new_manager.name = manager.name if manager is model._default_manager: default_manager_shim = new_manager else: continue manager_names.add(manager.name) managers.append((manager.name, new_manager)) # Ignore a shimmed default manager called objects if it's the only one. if managers == [('objects', default_manager_shim)]: managers = [] # Construct the new ModelState return cls( model._meta.app_label, model._meta.object_name, fields, options, bases, managers, ) def construct_managers(self): """Deep-clone the managers using deconstruction.""" # Sort all managers by their creation counter sorted_managers = sorted(self.managers, key=lambda v: v[1].creation_counter) for mgr_name, manager in sorted_managers: as_manager, manager_path, qs_path, args, kwargs = manager.deconstruct() if as_manager: qs_class = import_string(qs_path) yield mgr_name, qs_class.as_manager() else: manager_class = import_string(manager_path) yield mgr_name, manager_class(*args, **kwargs) def clone(self): """Return an exact copy of this ModelState.""" return self.__class__( app_label=self.app_label, name=self.name, fields=list(self.fields), # Since options are shallow-copied here, operations such as # AddIndex must replace their option (e.g 'indexes') rather # than mutating it. options=dict(self.options), bases=self.bases, managers=list(self.managers), ) def render(self, apps): """Create a Model object from our current state into the given apps.""" # First, make a Meta object meta_contents = {'app_label': self.app_label, 'apps': apps, **self.options} meta = type("Meta", (), meta_contents) # Then, work out our bases try: bases = tuple( (apps.get_model(base) if isinstance(base, str) else base) for base in self.bases ) except LookupError: raise InvalidBasesError("Cannot resolve one or more bases from %r" % (self.bases,)) # Turn fields into a dict for the body, add other bits body = {name: field.clone() for name, field in self.fields} body['Meta'] = meta body['__module__'] = "__fake__" # Restore managers body.update(self.construct_managers()) # Then, make a Model object (apps.register_model is called in __new__) return type(self.name, bases, body) def get_field_by_name(self, name): for fname, field in self.fields: if fname == name: return field raise ValueError("No field called %s on model %s" % (name, self.name)) def get_index_by_name(self, name): for index in self.options['indexes']: if index.name == name: return index raise ValueError("No index named %s on model %s" % (name, self.name)) def __repr__(self): return "<%s: '%s.%s'>" % (self.__class__.__name__, self.app_label, self.name) def __eq__(self, other): return ( (self.app_label == other.app_label) and (self.name == other.name) and (len(self.fields) == len(other.fields)) and all((k1 == k2 and (f1.deconstruct()[1:] == f2.deconstruct()[1:])) for (k1, f1), (k2, f2) in zip(self.fields, other.fields)) and (self.options == other.options) and (self.bases == other.bases) and (self.managers == other.managers) )
39ae11bdf11aea12130aa75cab05d80bae9892714aca5baecbbbed35b49cf8be
from .migration import Migration, swappable_dependency # NOQA from .operations import * # NOQA
bc0f168ebc6d702edac3f1217d2abe7c542b1dfd7461fc321b2b22c8019740bf
import pkgutil import sys from importlib import import_module, reload from django.apps import apps from django.conf import settings from django.db.migrations.graph import MigrationGraph from django.db.migrations.recorder import MigrationRecorder from .exceptions import ( AmbiguityError, BadMigrationError, InconsistentMigrationHistory, NodeNotFoundError, ) MIGRATIONS_MODULE_NAME = 'migrations' class MigrationLoader: """ Load migration files from disk and their status from the database. Migration files are expected to live in the "migrations" directory of an app. Their names are entirely unimportant from a code perspective, but will probably follow the 1234_name.py convention. On initialization, this class will scan those directories, and open and read the python files, looking for a class called Migration, which should inherit from django.db.migrations.Migration. See django.db.migrations.migration for what that looks like. Some migrations will be marked as "replacing" another set of migrations. These are loaded into a separate set of migrations away from the main ones. If all the migrations they replace are either unapplied or missing from disk, then they are injected into the main set, replacing the named migrations. Any dependency pointers to the replaced migrations are re-pointed to the new migration. This does mean that this class MUST also talk to the database as well as to disk, but this is probably fine. We're already not just operating in memory. """ def __init__(self, connection, load=True, ignore_no_migrations=False): self.connection = connection self.disk_migrations = None self.applied_migrations = None self.ignore_no_migrations = ignore_no_migrations if load: self.build_graph() @classmethod def migrations_module(cls, app_label): """ Return the path to the migrations module for the specified app_label and a boolean indicating if the module is specified in settings.MIGRATION_MODULE. """ if app_label in settings.MIGRATION_MODULES: return settings.MIGRATION_MODULES[app_label], True else: app_package_name = apps.get_app_config(app_label).name return '%s.%s' % (app_package_name, MIGRATIONS_MODULE_NAME), False def load_disk(self): """Load the migrations from all INSTALLED_APPS from disk.""" self.disk_migrations = {} self.unmigrated_apps = set() self.migrated_apps = set() for app_config in apps.get_app_configs(): # Get the migrations module directory module_name, explicit = self.migrations_module(app_config.label) if module_name is None: self.unmigrated_apps.add(app_config.label) continue was_loaded = module_name in sys.modules try: module = import_module(module_name) except ImportError as e: # I hate doing this, but I don't want to squash other import errors. # Might be better to try a directory check directly. if ((explicit and self.ignore_no_migrations) or ( not explicit and "No module named" in str(e) and MIGRATIONS_MODULE_NAME in str(e))): self.unmigrated_apps.add(app_config.label) continue raise else: # Empty directories are namespaces. # getattr() needed on PY36 and older (replace w/attribute access). if getattr(module, '__file__', None) is None: self.unmigrated_apps.add(app_config.label) continue # Module is not a package (e.g. migrations.py). if not hasattr(module, '__path__'): self.unmigrated_apps.add(app_config.label) continue # Force a reload if it's already loaded (tests need this) if was_loaded: reload(module) self.migrated_apps.add(app_config.label) migration_names = {name for _, name, is_pkg in pkgutil.iter_modules(module.__path__) if not is_pkg} # Load migrations for migration_name in migration_names: migration_path = '%s.%s' % (module_name, migration_name) try: migration_module = import_module(migration_path) except ImportError as e: if 'bad magic number' in str(e): raise ImportError( "Couldn't import %r as it appears to be a stale " ".pyc file." % migration_path ) from e else: raise if not hasattr(migration_module, "Migration"): raise BadMigrationError( "Migration %s in app %s has no Migration class" % (migration_name, app_config.label) ) self.disk_migrations[app_config.label, migration_name] = migration_module.Migration( migration_name, app_config.label, ) def get_migration(self, app_label, name_prefix): """Return the named migration or raise NodeNotFoundError.""" return self.graph.nodes[app_label, name_prefix] def get_migration_by_prefix(self, app_label, name_prefix): """ Return the migration(s) which match the given app label and name_prefix. """ # Do the search results = [] for migration_app_label, migration_name in self.disk_migrations: if migration_app_label == app_label and migration_name.startswith(name_prefix): results.append((migration_app_label, migration_name)) if len(results) > 1: raise AmbiguityError( "There is more than one migration for '%s' with the prefix '%s'" % (app_label, name_prefix) ) elif not results: raise KeyError("There no migrations for '%s' with the prefix '%s'" % (app_label, name_prefix)) else: return self.disk_migrations[results[0]] def check_key(self, key, current_app): if (key[1] != "__first__" and key[1] != "__latest__") or key in self.graph: return key # Special-case __first__, which means "the first migration" for # migrated apps, and is ignored for unmigrated apps. It allows # makemigrations to declare dependencies on apps before they even have # migrations. if key[0] == current_app: # Ignore __first__ references to the same app (#22325) return if key[0] in self.unmigrated_apps: # This app isn't migrated, but something depends on it. # The models will get auto-added into the state, though # so we're fine. return if key[0] in self.migrated_apps: try: if key[1] == "__first__": return self.graph.root_nodes(key[0])[0] else: # "__latest__" return self.graph.leaf_nodes(key[0])[0] except IndexError: if self.ignore_no_migrations: return None else: raise ValueError("Dependency on app with no migrations: %s" % key[0]) raise ValueError("Dependency on unknown app: %s" % key[0]) def add_internal_dependencies(self, key, migration): """ Internal dependencies need to be added first to ensure `__first__` dependencies find the correct root node. """ for parent in migration.dependencies: # Ignore __first__ references to the same app. if parent[0] == key[0] and parent[1] != '__first__': self.graph.add_dependency(migration, key, parent, skip_validation=True) def add_external_dependencies(self, key, migration): for parent in migration.dependencies: # Skip internal dependencies if key[0] == parent[0]: continue parent = self.check_key(parent, key[0]) if parent is not None: self.graph.add_dependency(migration, key, parent, skip_validation=True) for child in migration.run_before: child = self.check_key(child, key[0]) if child is not None: self.graph.add_dependency(migration, child, key, skip_validation=True) def build_graph(self): """ Build a migration dependency graph using both the disk and database. You'll need to rebuild the graph if you apply migrations. This isn't usually a problem as generally migration stuff runs in a one-shot process. """ # Load disk data self.load_disk() # Load database data if self.connection is None: self.applied_migrations = set() else: recorder = MigrationRecorder(self.connection) self.applied_migrations = recorder.applied_migrations() # To start, populate the migration graph with nodes for ALL migrations # and their dependencies. Also make note of replacing migrations at this step. self.graph = MigrationGraph() self.replacements = {} for key, migration in self.disk_migrations.items(): self.graph.add_node(key, migration) # Internal (aka same-app) dependencies. self.add_internal_dependencies(key, migration) # Replacing migrations. if migration.replaces: self.replacements[key] = migration # Add external dependencies now that the internal ones have been resolved. for key, migration in self.disk_migrations.items(): self.add_external_dependencies(key, migration) # Carry out replacements where possible. for key, migration in self.replacements.items(): # Get applied status of each of this migration's replacement targets. applied_statuses = [(target in self.applied_migrations) for target in migration.replaces] # Ensure the replacing migration is only marked as applied if all of # its replacement targets are. if all(applied_statuses): self.applied_migrations.add(key) else: self.applied_migrations.discard(key) # A replacing migration can be used if either all or none of its # replacement targets have been applied. if all(applied_statuses) or (not any(applied_statuses)): self.graph.remove_replaced_nodes(key, migration.replaces) else: # This replacing migration cannot be used because it is partially applied. # Remove it from the graph and remap dependencies to it (#25945). self.graph.remove_replacement_node(key, migration.replaces) # Ensure the graph is consistent. try: self.graph.validate_consistency() except NodeNotFoundError as exc: # Check if the missing node could have been replaced by any squash # migration but wasn't because the squash migration was partially # applied before. In that case raise a more understandable exception # (#23556). # Get reverse replacements. reverse_replacements = {} for key, migration in self.replacements.items(): for replaced in migration.replaces: reverse_replacements.setdefault(replaced, set()).add(key) # Try to reraise exception with more detail. if exc.node in reverse_replacements: candidates = reverse_replacements.get(exc.node, set()) is_replaced = any(candidate in self.graph.nodes for candidate in candidates) if not is_replaced: tries = ', '.join('%s.%s' % c for c in candidates) raise NodeNotFoundError( "Migration {0} depends on nonexistent node ('{1}', '{2}'). " "Django tried to replace migration {1}.{2} with any of [{3}] " "but wasn't able to because some of the replaced migrations " "are already applied.".format( exc.origin, exc.node[0], exc.node[1], tries ), exc.node ) from exc raise exc def check_consistent_history(self, connection): """ Raise InconsistentMigrationHistory if any applied migrations have unapplied dependencies. """ recorder = MigrationRecorder(connection) applied = recorder.applied_migrations() for migration in applied: # If the migration is unknown, skip it. if migration not in self.graph.nodes: continue for parent in self.graph.node_map[migration].parents: if parent not in applied: # Skip unapplied squashed migrations that have all of their # `replaces` applied. if parent in self.replacements: if all(m in applied for m in self.replacements[parent].replaces): continue raise InconsistentMigrationHistory( "Migration {}.{} is applied before its dependency " "{}.{} on database '{}'.".format( migration[0], migration[1], parent[0], parent[1], connection.alias, ) ) def detect_conflicts(self): """ Look through the loaded graph and detect any conflicts - apps with more than one leaf migration. Return a dict of the app labels that conflict with the migration names that conflict. """ seen_apps = {} conflicting_apps = set() for app_label, migration_name in self.graph.leaf_nodes(): if app_label in seen_apps: conflicting_apps.add(app_label) seen_apps.setdefault(app_label, set()).add(migration_name) return {app_label: seen_apps[app_label] for app_label in conflicting_apps} def project_state(self, nodes=None, at_end=True): """ Return a ProjectState object representing the most recent state that the loaded migrations represent. See graph.make_state() for the meaning of "nodes" and "at_end". """ return self.graph.make_state(nodes=nodes, at_end=at_end, real_apps=list(self.unmigrated_apps))
71f6baabd59546c4e6c08b9c363abc5b631bbd203e08d0a17a7637bc589ee318
from django.db.utils import DatabaseError class AmbiguityError(Exception): """More than one migration matches a name prefix.""" pass class BadMigrationError(Exception): """There's a bad migration (unreadable/bad format/etc.).""" pass class CircularDependencyError(Exception): """There's an impossible-to-resolve circular dependency.""" pass class InconsistentMigrationHistory(Exception): """An applied migration has some of its dependencies not applied.""" pass class InvalidBasesError(ValueError): """A model's base classes can't be resolved.""" pass class IrreversibleError(RuntimeError): """An irreversible migration is about to be reversed.""" pass class NodeNotFoundError(LookupError): """An attempt on a node is made that is not available in the graph.""" def __init__(self, message, node, origin=None): self.message = message self.origin = origin self.node = node def __str__(self): return self.message def __repr__(self): return "NodeNotFoundError(%r)" % (self.node,) class MigrationSchemaMissing(DatabaseError): pass class InvalidMigrationPlan(ValueError): pass
6c08a35516d0b29fa2c4ce835905757cda0a4830b9b9dc269dd016384db958de
import os import re from importlib import import_module from django import get_version from django.apps import apps from django.db import migrations from django.db.migrations.loader import MigrationLoader from django.db.migrations.serializer import serializer_factory from django.utils.inspect import get_func_args from django.utils.module_loading import module_dir from django.utils.timezone import now class SettingsReference(str): """ Special subclass of string which actually references a current settings value. It's treated as the value in memory, but serializes out to a settings.NAME attribute reference. """ def __new__(self, value, setting_name): return str.__new__(self, value) def __init__(self, value, setting_name): self.setting_name = setting_name class OperationWriter: def __init__(self, operation, indentation=2): self.operation = operation self.buff = [] self.indentation = indentation def serialize(self): def _write(_arg_name, _arg_value): if (_arg_name in self.operation.serialization_expand_args and isinstance(_arg_value, (list, tuple, dict))): if isinstance(_arg_value, dict): self.feed('%s={' % _arg_name) self.indent() for key, value in _arg_value.items(): key_string, key_imports = MigrationWriter.serialize(key) arg_string, arg_imports = MigrationWriter.serialize(value) args = arg_string.splitlines() if len(args) > 1: self.feed('%s: %s' % (key_string, args[0])) for arg in args[1:-1]: self.feed(arg) self.feed('%s,' % args[-1]) else: self.feed('%s: %s,' % (key_string, arg_string)) imports.update(key_imports) imports.update(arg_imports) self.unindent() self.feed('},') else: self.feed('%s=[' % _arg_name) self.indent() for item in _arg_value: arg_string, arg_imports = MigrationWriter.serialize(item) args = arg_string.splitlines() if len(args) > 1: for arg in args[:-1]: self.feed(arg) self.feed('%s,' % args[-1]) else: self.feed('%s,' % arg_string) imports.update(arg_imports) self.unindent() self.feed('],') else: arg_string, arg_imports = MigrationWriter.serialize(_arg_value) args = arg_string.splitlines() if len(args) > 1: self.feed('%s=%s' % (_arg_name, args[0])) for arg in args[1:-1]: self.feed(arg) self.feed('%s,' % args[-1]) else: self.feed('%s=%s,' % (_arg_name, arg_string)) imports.update(arg_imports) imports = set() name, args, kwargs = self.operation.deconstruct() operation_args = get_func_args(self.operation.__init__) # See if this operation is in django.db.migrations. If it is, # We can just use the fact we already have that imported, # otherwise, we need to add an import for the operation class. if getattr(migrations, name, None) == self.operation.__class__: self.feed('migrations.%s(' % name) else: imports.add('import %s' % (self.operation.__class__.__module__)) self.feed('%s.%s(' % (self.operation.__class__.__module__, name)) self.indent() for i, arg in enumerate(args): arg_value = arg arg_name = operation_args[i] _write(arg_name, arg_value) i = len(args) # Only iterate over remaining arguments for arg_name in operation_args[i:]: if arg_name in kwargs: # Don't sort to maintain signature order arg_value = kwargs[arg_name] _write(arg_name, arg_value) self.unindent() self.feed('),') return self.render(), imports def indent(self): self.indentation += 1 def unindent(self): self.indentation -= 1 def feed(self, line): self.buff.append(' ' * (self.indentation * 4) + line) def render(self): return '\n'.join(self.buff) class MigrationWriter: """ Take a Migration instance and is able to produce the contents of the migration file from it. """ def __init__(self, migration): self.migration = migration self.needs_manual_porting = False def as_string(self): """Return a string of the file contents.""" items = { "replaces_str": "", "initial_str": "", } imports = set() # Deconstruct operations operations = [] for operation in self.migration.operations: operation_string, operation_imports = OperationWriter(operation).serialize() imports.update(operation_imports) operations.append(operation_string) items["operations"] = "\n".join(operations) + "\n" if operations else "" # Format dependencies and write out swappable dependencies right dependencies = [] for dependency in self.migration.dependencies: if dependency[0] == "__setting__": dependencies.append(" migrations.swappable_dependency(settings.%s)," % dependency[1]) imports.add("from django.conf import settings") else: dependencies.append(" %s," % self.serialize(dependency)[0]) items["dependencies"] = "\n".join(dependencies) + "\n" if dependencies else "" # Format imports nicely, swapping imports of functions from migration files # for comments migration_imports = set() for line in list(imports): if re.match(r"^import (.*)\.\d+[^\s]*$", line): migration_imports.add(line.split("import")[1].strip()) imports.remove(line) self.needs_manual_porting = True # django.db.migrations is always used, but models import may not be. # If models import exists, merge it with migrations import. if "from django.db import models" in imports: imports.discard("from django.db import models") imports.add("from django.db import migrations, models") else: imports.add("from django.db import migrations") # Sort imports by the package / module to be imported (the part after # "from" in "from ... import ..." or after "import" in "import ..."). sorted_imports = sorted(imports, key=lambda i: i.split()[1]) items["imports"] = "\n".join(sorted_imports) + "\n" if imports else "" if migration_imports: items["imports"] += ( "\n\n# Functions from the following migrations need manual " "copying.\n# Move them and any dependencies into this file, " "then update the\n# RunPython operations to refer to the local " "versions:\n# %s" ) % "\n# ".join(sorted(migration_imports)) # If there's a replaces, make a string for it if self.migration.replaces: items['replaces_str'] = "\n replaces = %s\n" % self.serialize(self.migration.replaces)[0] # Hinting that goes into comment items.update( version=get_version(), timestamp=now().strftime("%Y-%m-%d %H:%M"), ) if self.migration.initial: items['initial_str'] = "\n initial = True\n" return MIGRATION_TEMPLATE % items @property def basedir(self): migrations_package_name, _ = MigrationLoader.migrations_module(self.migration.app_label) if migrations_package_name is None: raise ValueError( "Django can't create migrations for app '%s' because " "migrations have been disabled via the MIGRATION_MODULES " "setting." % self.migration.app_label ) # See if we can import the migrations module directly try: migrations_module = import_module(migrations_package_name) except ImportError: pass else: try: return module_dir(migrations_module) except ValueError: pass # Alright, see if it's a direct submodule of the app app_config = apps.get_app_config(self.migration.app_label) maybe_app_name, _, migrations_package_basename = migrations_package_name.rpartition(".") if app_config.name == maybe_app_name: return os.path.join(app_config.path, migrations_package_basename) # In case of using MIGRATION_MODULES setting and the custom package # doesn't exist, create one, starting from an existing package existing_dirs, missing_dirs = migrations_package_name.split("."), [] while existing_dirs: missing_dirs.insert(0, existing_dirs.pop(-1)) try: base_module = import_module(".".join(existing_dirs)) except (ImportError, ValueError): continue else: try: base_dir = module_dir(base_module) except ValueError: continue else: break else: raise ValueError( "Could not locate an appropriate location to create " "migrations package %s. Make sure the toplevel " "package exists and can be imported." % migrations_package_name) final_dir = os.path.join(base_dir, *missing_dirs) if not os.path.isdir(final_dir): os.makedirs(final_dir) for missing_dir in missing_dirs: base_dir = os.path.join(base_dir, missing_dir) with open(os.path.join(base_dir, "__init__.py"), "w"): pass return final_dir @property def filename(self): return "%s.py" % self.migration.name @property def path(self): return os.path.join(self.basedir, self.filename) @classmethod def serialize(cls, value): return serializer_factory(value).serialize() MIGRATION_TEMPLATE = """\ # Generated by Django %(version)s on %(timestamp)s %(imports)s class Migration(migrations.Migration): %(replaces_str)s%(initial_str)s dependencies = [ %(dependencies)s\ ] operations = [ %(operations)s\ ] """
ecbe9f72fd272af3071917d12d2fcaf17182b31b5d3df03ac10c91990df4f960
import importlib import os import sys from django.apps import apps from django.db.models.fields import NOT_PROVIDED from django.utils import datetime_safe, timezone from .loader import MigrationLoader class MigrationQuestioner: """ Give the autodetector responses to questions it might have. This base class has a built-in noninteractive mode, but the interactive subclass is what the command-line arguments will use. """ def __init__(self, defaults=None, specified_apps=None, dry_run=None): self.defaults = defaults or {} self.specified_apps = specified_apps or set() self.dry_run = dry_run def ask_initial(self, app_label): """Should we create an initial migration for the app?""" # If it was specified on the command line, definitely true if app_label in self.specified_apps: return True # Otherwise, we look to see if it has a migrations module # without any Python files in it, apart from __init__.py. # Apps from the new app template will have these; the python # file check will ensure we skip South ones. try: app_config = apps.get_app_config(app_label) except LookupError: # It's a fake app. return self.defaults.get("ask_initial", False) migrations_import_path, _ = MigrationLoader.migrations_module(app_config.label) if migrations_import_path is None: # It's an application with migrations disabled. return self.defaults.get("ask_initial", False) try: migrations_module = importlib.import_module(migrations_import_path) except ImportError: return self.defaults.get("ask_initial", False) else: # getattr() needed on PY36 and older (replace with attribute access). if getattr(migrations_module, "__file__", None): filenames = os.listdir(os.path.dirname(migrations_module.__file__)) elif hasattr(migrations_module, "__path__"): if len(migrations_module.__path__) > 1: return False filenames = os.listdir(list(migrations_module.__path__)[0]) return not any(x.endswith(".py") for x in filenames if x != "__init__.py") def ask_not_null_addition(self, field_name, model_name): """Adding a NOT NULL field to a model.""" # None means quit return None def ask_not_null_alteration(self, field_name, model_name): """Changing a NULL field to NOT NULL.""" # None means quit return None def ask_rename(self, model_name, old_name, new_name, field_instance): """Was this field really renamed?""" return self.defaults.get("ask_rename", False) def ask_rename_model(self, old_model_state, new_model_state): """Was this model really renamed?""" return self.defaults.get("ask_rename_model", False) def ask_merge(self, app_label): """Do you really want to merge these migrations?""" return self.defaults.get("ask_merge", False) def ask_auto_now_add_addition(self, field_name, model_name): """Adding an auto_now_add field to a model.""" # None means quit return None class InteractiveMigrationQuestioner(MigrationQuestioner): def _boolean_input(self, question, default=None): result = input("%s " % question) if not result and default is not None: return default while not result or result[0].lower() not in "yn": result = input("Please answer yes or no: ") return result[0].lower() == "y" def _choice_input(self, question, choices): print(question) for i, choice in enumerate(choices): print(" %s) %s" % (i + 1, choice)) result = input("Select an option: ") while True: try: value = int(result) except ValueError: pass else: if 0 < value <= len(choices): return value result = input("Please select a valid option: ") def _ask_default(self, default=''): """ Prompt for a default value. The ``default`` argument allows providing a custom default value (as a string) which will be shown to the user and used as the return value if the user doesn't provide any other input. """ print("Please enter the default value now, as valid Python") if default: print( "You can accept the default '{}' by pressing 'Enter' or you " "can provide another value.".format(default) ) print("The datetime and django.utils.timezone modules are available, so you can do e.g. timezone.now") print("Type 'exit' to exit this prompt") while True: if default: prompt = "[default: {}] >>> ".format(default) else: prompt = ">>> " code = input(prompt) if not code and default: code = default if not code: print("Please enter some code, or 'exit' (with no quotes) to exit.") elif code == "exit": sys.exit(1) else: try: return eval(code, {}, {"datetime": datetime_safe, "timezone": timezone}) except (SyntaxError, NameError) as e: print("Invalid input: %s" % e) def ask_not_null_addition(self, field_name, model_name): """Adding a NOT NULL field to a model.""" if not self.dry_run: choice = self._choice_input( "You are trying to add a non-nullable field '%s' to %s without a default; " "we can't do that (the database needs something to populate existing rows).\n" "Please select a fix:" % (field_name, model_name), [ ("Provide a one-off default now (will be set on all existing " "rows with a null value for this column)"), "Quit, and let me add a default in models.py", ] ) if choice == 2: sys.exit(3) else: return self._ask_default() return None def ask_not_null_alteration(self, field_name, model_name): """Changing a NULL field to NOT NULL.""" if not self.dry_run: choice = self._choice_input( "You are trying to change the nullable field '%s' on %s to non-nullable " "without a default; we can't do that (the database needs something to " "populate existing rows).\n" "Please select a fix:" % (field_name, model_name), [ ("Provide a one-off default now (will be set on all existing " "rows with a null value for this column)"), ("Ignore for now, and let me handle existing rows with NULL myself " "(e.g. because you added a RunPython or RunSQL operation to handle " "NULL values in a previous data migration)"), "Quit, and let me add a default in models.py", ] ) if choice == 2: return NOT_PROVIDED elif choice == 3: sys.exit(3) else: return self._ask_default() return None def ask_rename(self, model_name, old_name, new_name, field_instance): """Was this field really renamed?""" msg = "Did you rename %s.%s to %s.%s (a %s)? [y/N]" return self._boolean_input(msg % (model_name, old_name, model_name, new_name, field_instance.__class__.__name__), False) def ask_rename_model(self, old_model_state, new_model_state): """Was this model really renamed?""" msg = "Did you rename the %s.%s model to %s? [y/N]" return self._boolean_input(msg % (old_model_state.app_label, old_model_state.name, new_model_state.name), False) def ask_merge(self, app_label): return self._boolean_input( "\nMerging will only work if the operations printed above do not conflict\n" + "with each other (working on different fields or models)\n" + "Do you want to merge these migration branches? [y/N]", False, ) def ask_auto_now_add_addition(self, field_name, model_name): """Adding an auto_now_add field to a model.""" if not self.dry_run: choice = self._choice_input( "You are trying to add the field '{}' with 'auto_now_add=True' " "to {} without a default; the database needs something to " "populate existing rows.\n".format(field_name, model_name), [ "Provide a one-off default now (will be set on all " "existing rows)", "Quit, and let me add a default in models.py", ] ) if choice == 2: sys.exit(3) else: return self._ask_default(default='timezone.now') return None class NonInteractiveMigrationQuestioner(MigrationQuestioner): def ask_not_null_addition(self, field_name, model_name): # We can't ask the user, so act like the user aborted. sys.exit(3) def ask_not_null_alteration(self, field_name, model_name): # We can't ask the user, so set as not provided. return NOT_PROVIDED def ask_auto_now_add_addition(self, field_name, model_name): # We can't ask the user, so act like the user aborted. sys.exit(3)
b3bb1756579ae81880800156c68ad51d34a86241171658c3f00c8a452c5c4168
import warnings from functools import total_ordering from django.db.migrations.state import ProjectState from django.utils.datastructures import OrderedSet from .exceptions import CircularDependencyError, NodeNotFoundError RECURSION_DEPTH_WARNING = ( "Maximum recursion depth exceeded while generating migration graph, " "falling back to iterative approach. If you're experiencing performance issues, " "consider squashing migrations as described at " "https://docs.djangoproject.com/en/dev/topics/migrations/#squashing-migrations." ) @total_ordering class Node: """ A single node in the migration graph. Contains direct links to adjacent nodes in either direction. """ def __init__(self, key): self.key = key self.children = set() self.parents = set() def __eq__(self, other): return self.key == other def __lt__(self, other): return self.key < other def __hash__(self): return hash(self.key) def __getitem__(self, item): return self.key[item] def __str__(self): return str(self.key) def __repr__(self): return '<%s: (%r, %r)>' % (self.__class__.__name__, self.key[0], self.key[1]) def add_child(self, child): self.children.add(child) def add_parent(self, parent): self.parents.add(parent) # Use manual caching, @cached_property effectively doubles the # recursion depth for each recursion. def ancestors(self): # Use self.key instead of self to speed up the frequent hashing # when constructing an OrderedSet. if '_ancestors' not in self.__dict__: ancestors = [] for parent in sorted(self.parents, reverse=True): ancestors += parent.ancestors() ancestors.append(self.key) self.__dict__['_ancestors'] = list(OrderedSet(ancestors)) return self.__dict__['_ancestors'] # Use manual caching, @cached_property effectively doubles the # recursion depth for each recursion. def descendants(self): # Use self.key instead of self to speed up the frequent hashing # when constructing an OrderedSet. if '_descendants' not in self.__dict__: descendants = [] for child in sorted(self.children, reverse=True): descendants += child.descendants() descendants.append(self.key) self.__dict__['_descendants'] = list(OrderedSet(descendants)) return self.__dict__['_descendants'] class DummyNode(Node): def __init__(self, key, origin, error_message): super().__init__(key) self.origin = origin self.error_message = error_message def promote(self): """ Transition dummy to a normal node and clean off excess attribs. Creating a Node object from scratch would be too much of a hassle as many dependendies would need to be remapped. """ del self.origin del self.error_message self.__class__ = Node def raise_error(self): raise NodeNotFoundError(self.error_message, self.key, origin=self.origin) class MigrationGraph: """ Represent the digraph of all migrations in a project. Each migration is a node, and each dependency is an edge. There are no implicit dependencies between numbered migrations - the numbering is merely a convention to aid file listing. Every new numbered migration has a declared dependency to the previous number, meaning that VCS branch merges can be detected and resolved. Migrations files can be marked as replacing another set of migrations - this is to support the "squash" feature. The graph handler isn't responsible for these; instead, the code to load them in here should examine the migration files and if the replaced migrations are all either unapplied or not present, it should ignore the replaced ones, load in just the replacing migration, and repoint any dependencies that pointed to the replaced migrations to point to the replacing one. A node should be a tuple: (app_path, migration_name). The tree special-cases things within an app - namely, root nodes and leaf nodes ignore dependencies to other apps. """ def __init__(self): self.node_map = {} self.nodes = {} self.cached = False def add_node(self, key, migration): # If the key already exists, then it must be a dummy node. dummy_node = self.node_map.get(key) if dummy_node: # Promote DummyNode to Node. dummy_node.promote() else: node = Node(key) self.node_map[key] = node self.nodes[key] = migration self.clear_cache() def add_dummy_node(self, key, origin, error_message): node = DummyNode(key, origin, error_message) self.node_map[key] = node self.nodes[key] = None def add_dependency(self, migration, child, parent, skip_validation=False): """ This may create dummy nodes if they don't yet exist. If `skip_validation=True`, validate_consistency() should be called afterwards. """ if child not in self.nodes: error_message = ( "Migration %s dependencies reference nonexistent" " child node %r" % (migration, child) ) self.add_dummy_node(child, migration, error_message) if parent not in self.nodes: error_message = ( "Migration %s dependencies reference nonexistent" " parent node %r" % (migration, parent) ) self.add_dummy_node(parent, migration, error_message) self.node_map[child].add_parent(self.node_map[parent]) self.node_map[parent].add_child(self.node_map[child]) if not skip_validation: self.validate_consistency() self.clear_cache() def remove_replaced_nodes(self, replacement, replaced): """ Remove each of the `replaced` nodes (when they exist). Any dependencies that were referencing them are changed to reference the `replacement` node instead. """ # Cast list of replaced keys to set to speed up lookup later. replaced = set(replaced) try: replacement_node = self.node_map[replacement] except KeyError as err: raise NodeNotFoundError( "Unable to find replacement node %r. It was either never added" " to the migration graph, or has been removed." % (replacement,), replacement ) from err for replaced_key in replaced: self.nodes.pop(replaced_key, None) replaced_node = self.node_map.pop(replaced_key, None) if replaced_node: for child in replaced_node.children: child.parents.remove(replaced_node) # We don't want to create dependencies between the replaced # node and the replacement node as this would lead to # self-referencing on the replacement node at a later iteration. if child.key not in replaced: replacement_node.add_child(child) child.add_parent(replacement_node) for parent in replaced_node.parents: parent.children.remove(replaced_node) # Again, to avoid self-referencing. if parent.key not in replaced: replacement_node.add_parent(parent) parent.add_child(replacement_node) self.clear_cache() def remove_replacement_node(self, replacement, replaced): """ The inverse operation to `remove_replaced_nodes`. Almost. Remove the replacement node `replacement` and remap its child nodes to `replaced` - the list of nodes it would have replaced. Don't remap its parent nodes as they are expected to be correct already. """ self.nodes.pop(replacement, None) try: replacement_node = self.node_map.pop(replacement) except KeyError as err: raise NodeNotFoundError( "Unable to remove replacement node %r. It was either never added" " to the migration graph, or has been removed already." % (replacement,), replacement ) from err replaced_nodes = set() replaced_nodes_parents = set() for key in replaced: replaced_node = self.node_map.get(key) if replaced_node: replaced_nodes.add(replaced_node) replaced_nodes_parents |= replaced_node.parents # We're only interested in the latest replaced node, so filter out # replaced nodes that are parents of other replaced nodes. replaced_nodes -= replaced_nodes_parents for child in replacement_node.children: child.parents.remove(replacement_node) for replaced_node in replaced_nodes: replaced_node.add_child(child) child.add_parent(replaced_node) for parent in replacement_node.parents: parent.children.remove(replacement_node) # NOTE: There is no need to remap parent dependencies as we can # assume the replaced nodes already have the correct ancestry. self.clear_cache() def validate_consistency(self): """Ensure there are no dummy nodes remaining in the graph.""" [n.raise_error() for n in self.node_map.values() if isinstance(n, DummyNode)] def clear_cache(self): if self.cached: for node in self.nodes: self.node_map[node].__dict__.pop('_ancestors', None) self.node_map[node].__dict__.pop('_descendants', None) self.cached = False def forwards_plan(self, target): """ Given a node, return a list of which previous nodes (dependencies) must be applied, ending with the node itself. This is the list you would follow if applying the migrations to a database. """ if target not in self.nodes: raise NodeNotFoundError("Node %r not a valid node" % (target,), target) # Use parent.key instead of parent to speed up the frequent hashing in ensure_not_cyclic self.ensure_not_cyclic(target, lambda x: (parent.key for parent in self.node_map[x].parents)) self.cached = True node = self.node_map[target] try: return node.ancestors() except RuntimeError: # fallback to iterative dfs warnings.warn(RECURSION_DEPTH_WARNING, RuntimeWarning) return self.iterative_dfs(node) def backwards_plan(self, target): """ Given a node, return a list of which dependent nodes (dependencies) must be unapplied, ending with the node itself. This is the list you would follow if removing the migrations from a database. """ if target not in self.nodes: raise NodeNotFoundError("Node %r not a valid node" % (target,), target) # Use child.key instead of child to speed up the frequent hashing in ensure_not_cyclic self.ensure_not_cyclic(target, lambda x: (child.key for child in self.node_map[x].children)) self.cached = True node = self.node_map[target] try: return node.descendants() except RuntimeError: # fallback to iterative dfs warnings.warn(RECURSION_DEPTH_WARNING, RuntimeWarning) return self.iterative_dfs(node, forwards=False) def iterative_dfs(self, start, forwards=True): """Iterative depth-first search for finding dependencies.""" visited = [] stack = [start] while stack: node = stack.pop() visited.append(node) stack += sorted(node.parents if forwards else node.children) return list(OrderedSet(reversed(visited))) def root_nodes(self, app=None): """ Return all root nodes - that is, nodes with no dependencies inside their app. These are the starting point for an app. """ roots = set() for node in self.nodes: if all(key[0] != node[0] for key in self.node_map[node].parents) and (not app or app == node[0]): roots.add(node) return sorted(roots) def leaf_nodes(self, app=None): """ Return all leaf nodes - that is, nodes with no dependents in their app. These are the "most current" version of an app's schema. Having more than one per app is technically an error, but one that gets handled further up, in the interactive command - it's usually the result of a VCS merge and needs some user input. """ leaves = set() for node in self.nodes: if all(key[0] != node[0] for key in self.node_map[node].children) and (not app or app == node[0]): leaves.add(node) return sorted(leaves) def ensure_not_cyclic(self, start, get_children): # Algo from GvR: # http://neopythonic.blogspot.co.uk/2009/01/detecting-cycles-in-directed-graph.html todo = set(self.nodes) while todo: node = todo.pop() stack = [node] while stack: top = stack[-1] for node in get_children(top): if node in stack: cycle = stack[stack.index(node):] raise CircularDependencyError(", ".join("%s.%s" % n for n in cycle)) if node in todo: stack.append(node) todo.remove(node) break else: node = stack.pop() def __str__(self): return 'Graph: %s nodes, %s edges' % self._nodes_and_edges() def __repr__(self): nodes, edges = self._nodes_and_edges() return '<%s: nodes=%s, edges=%s>' % (self.__class__.__name__, nodes, edges) def _nodes_and_edges(self): return len(self.nodes), sum(len(node.parents) for node in self.node_map.values()) def _generate_plan(self, nodes, at_end): plan = [] for node in nodes: for migration in self.forwards_plan(node): if migration not in plan and (at_end or migration not in nodes): plan.append(migration) return plan def make_state(self, nodes=None, at_end=True, real_apps=None): """ Given a migration node or nodes, return a complete ProjectState for it. If at_end is False, return the state before the migration has run. If nodes is not provided, return the overall most current project state. """ if nodes is None: nodes = list(self.leaf_nodes()) if not nodes: return ProjectState() if not isinstance(nodes[0], tuple): nodes = [nodes] plan = self._generate_plan(nodes, at_end) project_state = ProjectState(real_apps=real_apps) for node in plan: project_state = self.nodes[node].mutate_state(project_state, preserve=False) return project_state def __contains__(self, node): return node in self.nodes
6d88c943648cbe824b4f8c005d301f4e0a0c491757110c145f7613337de4178f
import functools import re from itertools import chain from django.conf import settings from django.db import models from django.db.migrations import operations from django.db.migrations.migration import Migration from django.db.migrations.operations.models import AlterModelOptions from django.db.migrations.optimizer import MigrationOptimizer from django.db.migrations.questioner import MigrationQuestioner from django.db.migrations.utils import ( COMPILED_REGEX_TYPE, RegexObject, get_migration_name_timestamp, ) from .topological_sort import stable_topological_sort class MigrationAutodetector: """ Take a pair of ProjectStates and compare them to see what the first would need doing to make it match the second (the second usually being the project's current state). Note that this naturally operates on entire projects at a time, as it's likely that changes interact (for example, you can't add a ForeignKey without having a migration to add the table it depends on first). A user interface may offer single-app usage if it wishes, with the caveat that it may not always be possible. """ def __init__(self, from_state, to_state, questioner=None): self.from_state = from_state self.to_state = to_state self.questioner = questioner or MigrationQuestioner() self.existing_apps = {app for app, model in from_state.models} def changes(self, graph, trim_to_apps=None, convert_apps=None, migration_name=None): """ Main entry point to produce a list of applicable changes. Take a graph to base names on and an optional set of apps to try and restrict to (restriction is not guaranteed) """ changes = self._detect_changes(convert_apps, graph) changes = self.arrange_for_graph(changes, graph, migration_name) if trim_to_apps: changes = self._trim_to_apps(changes, trim_to_apps) return changes def deep_deconstruct(self, obj): """ Recursive deconstruction for a field and its arguments. Used for full comparison for rename/alter; sometimes a single-level deconstruction will not compare correctly. """ if isinstance(obj, list): return [self.deep_deconstruct(value) for value in obj] elif isinstance(obj, tuple): return tuple(self.deep_deconstruct(value) for value in obj) elif isinstance(obj, dict): return { key: self.deep_deconstruct(value) for key, value in obj.items() } elif isinstance(obj, functools.partial): return (obj.func, self.deep_deconstruct(obj.args), self.deep_deconstruct(obj.keywords)) elif isinstance(obj, COMPILED_REGEX_TYPE): return RegexObject(obj) elif isinstance(obj, type): # If this is a type that implements 'deconstruct' as an instance method, # avoid treating this as being deconstructible itself - see #22951 return obj elif hasattr(obj, 'deconstruct'): deconstructed = obj.deconstruct() if isinstance(obj, models.Field): # we have a field which also returns a name deconstructed = deconstructed[1:] path, args, kwargs = deconstructed return ( path, [self.deep_deconstruct(value) for value in args], { key: self.deep_deconstruct(value) for key, value in kwargs.items() }, ) else: return obj def only_relation_agnostic_fields(self, fields): """ Return a definition of the fields that ignores field names and what related fields actually relate to. Used for detecting renames (as, of course, the related fields change during renames). """ fields_def = [] for name, field in sorted(fields): deconstruction = self.deep_deconstruct(field) if field.remote_field and field.remote_field.model: del deconstruction[2]['to'] fields_def.append(deconstruction) return fields_def def _detect_changes(self, convert_apps=None, graph=None): """ Return a dict of migration plans which will achieve the change from from_state to to_state. The dict has app labels as keys and a list of migrations as values. The resulting migrations aren't specially named, but the names do matter for dependencies inside the set. convert_apps is the list of apps to convert to use migrations (i.e. to make initial migrations for, in the usual case) graph is an optional argument that, if provided, can help improve dependency generation and avoid potential circular dependencies. """ # The first phase is generating all the operations for each app # and gathering them into a big per-app list. # Then go through that list, order it, and split into migrations to # resolve dependencies caused by M2Ms and FKs. self.generated_operations = {} self.altered_indexes = {} # Prepare some old/new state and model lists, separating # proxy models and ignoring unmigrated apps. self.old_apps = self.from_state.concrete_apps self.new_apps = self.to_state.apps self.old_model_keys = set() self.old_proxy_keys = set() self.old_unmanaged_keys = set() self.new_model_keys = set() self.new_proxy_keys = set() self.new_unmanaged_keys = set() for al, mn in self.from_state.models: model = self.old_apps.get_model(al, mn) if not model._meta.managed: self.old_unmanaged_keys.add((al, mn)) elif al not in self.from_state.real_apps: if model._meta.proxy: self.old_proxy_keys.add((al, mn)) else: self.old_model_keys.add((al, mn)) for al, mn in self.to_state.models: model = self.new_apps.get_model(al, mn) if not model._meta.managed: self.new_unmanaged_keys.add((al, mn)) elif ( al not in self.from_state.real_apps or (convert_apps and al in convert_apps) ): if model._meta.proxy: self.new_proxy_keys.add((al, mn)) else: self.new_model_keys.add((al, mn)) # Renames have to come first self.generate_renamed_models() # Prepare lists of fields and generate through model map self._prepare_field_lists() self._generate_through_model_map() # Generate non-rename model operations self.generate_deleted_models() self.generate_created_models() self.generate_deleted_proxies() self.generate_created_proxies() self.generate_altered_options() self.generate_altered_managers() # Create the altered indexes and store them in self.altered_indexes. # This avoids the same computation in generate_removed_indexes() # and generate_added_indexes(). self.create_altered_indexes() # Generate index removal operations before field is removed self.generate_removed_indexes() # Generate field operations self.generate_renamed_fields() self.generate_removed_fields() self.generate_added_fields() self.generate_altered_fields() self.generate_altered_unique_together() self.generate_altered_index_together() self.generate_added_indexes() self.generate_altered_db_table() self.generate_altered_order_with_respect_to() self._sort_migrations() self._build_migration_list(graph) self._optimize_migrations() return self.migrations def _prepare_field_lists(self): """ Prepare field lists and a list of the fields that used through models in the old state so dependencies can be made from the through model deletion to the field that uses it. """ self.kept_model_keys = self.old_model_keys & self.new_model_keys self.kept_proxy_keys = self.old_proxy_keys & self.new_proxy_keys self.kept_unmanaged_keys = self.old_unmanaged_keys & self.new_unmanaged_keys self.through_users = {} self.old_field_keys = { (app_label, model_name, x) for app_label, model_name in self.kept_model_keys for x, y in self.from_state.models[ app_label, self.renamed_models.get((app_label, model_name), model_name) ].fields } self.new_field_keys = { (app_label, model_name, x) for app_label, model_name in self.kept_model_keys for x, y in self.to_state.models[app_label, model_name].fields } def _generate_through_model_map(self): """Through model map generation.""" for app_label, model_name in sorted(self.old_model_keys): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] for field_name, field in old_model_state.fields: old_field = self.old_apps.get_model(app_label, old_model_name)._meta.get_field(field_name) if (hasattr(old_field, "remote_field") and getattr(old_field.remote_field, "through", None) and not old_field.remote_field.through._meta.auto_created): through_key = ( old_field.remote_field.through._meta.app_label, old_field.remote_field.through._meta.model_name, ) self.through_users[through_key] = (app_label, old_model_name, field_name) def _build_migration_list(self, graph=None): """ Chop the lists of operations up into migrations with dependencies on each other. Do this by going through an app's list of operations until one is found that has an outgoing dependency that isn't in another app's migration yet (hasn't been chopped off its list). Then chop off the operations before it into a migration and move onto the next app. If the loops completes without doing anything, there's a circular dependency (which _should_ be impossible as the operations are all split at this point so they can't depend and be depended on). """ self.migrations = {} num_ops = sum(len(x) for x in self.generated_operations.values()) chop_mode = False while num_ops: # On every iteration, we step through all the apps and see if there # is a completed set of operations. # If we find that a subset of the operations are complete we can # try to chop it off from the rest and continue, but we only # do this if we've already been through the list once before # without any chopping and nothing has changed. for app_label in sorted(self.generated_operations): chopped = [] dependencies = set() for operation in list(self.generated_operations[app_label]): deps_satisfied = True operation_dependencies = set() for dep in operation._auto_deps: is_swappable_dep = dep[0] == '__setting__' if is_swappable_dep: # We need to temporarily resolve the swappable dependency to prevent # circular references. While keeping the dependency checks on the # resolved model we still add the swappable dependencies. # See #23322 resolved_app_label, resolved_object_name = getattr(settings, dep[1]).split('.') original_dep = dep dep = (resolved_app_label, resolved_object_name.lower(), dep[2], dep[3]) if dep[0] != app_label and dep[0] != "__setting__": # External app dependency. See if it's not yet # satisfied. for other_operation in self.generated_operations.get(dep[0], []): if self.check_dependency(other_operation, dep): deps_satisfied = False break if not deps_satisfied: break else: if is_swappable_dep: operation_dependencies.add((original_dep[0], original_dep[1])) elif dep[0] in self.migrations: operation_dependencies.add((dep[0], self.migrations[dep[0]][-1].name)) else: # If we can't find the other app, we add a first/last dependency, # but only if we've already been through once and checked everything if chop_mode: # If the app already exists, we add a dependency on the last migration, # as we don't know which migration contains the target field. # If it's not yet migrated or has no migrations, we use __first__ if graph and graph.leaf_nodes(dep[0]): operation_dependencies.add(graph.leaf_nodes(dep[0])[0]) else: operation_dependencies.add((dep[0], "__first__")) else: deps_satisfied = False if deps_satisfied: chopped.append(operation) dependencies.update(operation_dependencies) del self.generated_operations[app_label][0] else: break # Make a migration! Well, only if there's stuff to put in it if dependencies or chopped: if not self.generated_operations[app_label] or chop_mode: subclass = type("Migration", (Migration,), {"operations": [], "dependencies": []}) instance = subclass("auto_%i" % (len(self.migrations.get(app_label, [])) + 1), app_label) instance.dependencies = list(dependencies) instance.operations = chopped instance.initial = app_label not in self.existing_apps self.migrations.setdefault(app_label, []).append(instance) chop_mode = False else: self.generated_operations[app_label] = chopped + self.generated_operations[app_label] new_num_ops = sum(len(x) for x in self.generated_operations.values()) if new_num_ops == num_ops: if not chop_mode: chop_mode = True else: raise ValueError("Cannot resolve operation dependencies: %r" % self.generated_operations) num_ops = new_num_ops def _sort_migrations(self): """ Reorder to make things possible. Reordering may be needed so FKs work nicely inside the same app. """ for app_label, ops in sorted(self.generated_operations.items()): # construct a dependency graph for intra-app dependencies dependency_graph = {op: set() for op in ops} for op in ops: for dep in op._auto_deps: if dep[0] == app_label: for op2 in ops: if self.check_dependency(op2, dep): dependency_graph[op].add(op2) # we use a stable sort for deterministic tests & general behavior self.generated_operations[app_label] = stable_topological_sort(ops, dependency_graph) def _optimize_migrations(self): # Add in internal dependencies among the migrations for app_label, migrations in self.migrations.items(): for m1, m2 in zip(migrations, migrations[1:]): m2.dependencies.append((app_label, m1.name)) # De-dupe dependencies for migrations in self.migrations.values(): for migration in migrations: migration.dependencies = list(set(migration.dependencies)) # Optimize migrations for app_label, migrations in self.migrations.items(): for migration in migrations: migration.operations = MigrationOptimizer().optimize(migration.operations, app_label=app_label) def check_dependency(self, operation, dependency): """ Return True if the given operation depends on the given dependency, False otherwise. """ # Created model if dependency[2] is None and dependency[3] is True: return ( isinstance(operation, operations.CreateModel) and operation.name_lower == dependency[1].lower() ) # Created field elif dependency[2] is not None and dependency[3] is True: return ( ( isinstance(operation, operations.CreateModel) and operation.name_lower == dependency[1].lower() and any(dependency[2] == x for x, y in operation.fields) ) or ( isinstance(operation, operations.AddField) and operation.model_name_lower == dependency[1].lower() and operation.name_lower == dependency[2].lower() ) ) # Removed field elif dependency[2] is not None and dependency[3] is False: return ( isinstance(operation, operations.RemoveField) and operation.model_name_lower == dependency[1].lower() and operation.name_lower == dependency[2].lower() ) # Removed model elif dependency[2] is None and dependency[3] is False: return ( isinstance(operation, operations.DeleteModel) and operation.name_lower == dependency[1].lower() ) # Field being altered elif dependency[2] is not None and dependency[3] == "alter": return ( isinstance(operation, operations.AlterField) and operation.model_name_lower == dependency[1].lower() and operation.name_lower == dependency[2].lower() ) # order_with_respect_to being unset for a field elif dependency[2] is not None and dependency[3] == "order_wrt_unset": return ( isinstance(operation, operations.AlterOrderWithRespectTo) and operation.name_lower == dependency[1].lower() and (operation.order_with_respect_to or "").lower() != dependency[2].lower() ) # Field is removed and part of an index/unique_together elif dependency[2] is not None and dependency[3] == "foo_together_change": return ( isinstance(operation, (operations.AlterUniqueTogether, operations.AlterIndexTogether)) and operation.name_lower == dependency[1].lower() ) # Unknown dependency. Raise an error. else: raise ValueError("Can't handle dependency %r" % (dependency,)) def add_operation(self, app_label, operation, dependencies=None, beginning=False): # Dependencies are (app_label, model_name, field_name, create/delete as True/False) operation._auto_deps = dependencies or [] if beginning: self.generated_operations.setdefault(app_label, []).insert(0, operation) else: self.generated_operations.setdefault(app_label, []).append(operation) def swappable_first_key(self, item): """ Place potential swappable models first in lists of created models (only real way to solve #22783). """ try: model = self.new_apps.get_model(item[0], item[1]) base_names = [base.__name__ for base in model.__bases__] string_version = "%s.%s" % (item[0], item[1]) if ( model._meta.swappable or "AbstractUser" in base_names or "AbstractBaseUser" in base_names or settings.AUTH_USER_MODEL.lower() == string_version.lower() ): return ("___" + item[0], "___" + item[1]) except LookupError: pass return item def generate_renamed_models(self): """ Find any renamed models, generate the operations for them, and remove the old entry from the model lists. Must be run before other model-level generation. """ self.renamed_models = {} self.renamed_models_rel = {} added_models = self.new_model_keys - self.old_model_keys for app_label, model_name in sorted(added_models): model_state = self.to_state.models[app_label, model_name] model_fields_def = self.only_relation_agnostic_fields(model_state.fields) removed_models = self.old_model_keys - self.new_model_keys for rem_app_label, rem_model_name in removed_models: if rem_app_label == app_label: rem_model_state = self.from_state.models[rem_app_label, rem_model_name] rem_model_fields_def = self.only_relation_agnostic_fields(rem_model_state.fields) if model_fields_def == rem_model_fields_def: if self.questioner.ask_rename_model(rem_model_state, model_state): model_opts = self.new_apps.get_model(app_label, model_name)._meta dependencies = [] for field in model_opts.get_fields(): if field.is_relation: dependencies.extend(self._get_dependencies_for_foreign_key(field)) self.add_operation( app_label, operations.RenameModel( old_name=rem_model_state.name, new_name=model_state.name, ), dependencies=dependencies, ) self.renamed_models[app_label, model_name] = rem_model_name renamed_models_rel_key = '%s.%s' % (rem_model_state.app_label, rem_model_state.name) self.renamed_models_rel[renamed_models_rel_key] = '%s.%s' % ( model_state.app_label, model_state.name, ) self.old_model_keys.remove((rem_app_label, rem_model_name)) self.old_model_keys.add((app_label, model_name)) break def generate_created_models(self): """ Find all new models (both managed and unmanaged) and make create operations for them as well as separate operations to create any foreign key or M2M relationships (these are optimized later, if possible). Defer any model options that refer to collections of fields that might be deferred (e.g. unique_together, index_together). """ old_keys = self.old_model_keys | self.old_unmanaged_keys added_models = self.new_model_keys - old_keys added_unmanaged_models = self.new_unmanaged_keys - old_keys all_added_models = chain( sorted(added_models, key=self.swappable_first_key, reverse=True), sorted(added_unmanaged_models, key=self.swappable_first_key, reverse=True) ) for app_label, model_name in all_added_models: model_state = self.to_state.models[app_label, model_name] model_opts = self.new_apps.get_model(app_label, model_name)._meta # Gather related fields related_fields = {} primary_key_rel = None for field in model_opts.local_fields: if field.remote_field: if field.remote_field.model: if field.primary_key: primary_key_rel = field.remote_field.model elif not field.remote_field.parent_link: related_fields[field.name] = field # through will be none on M2Ms on swapped-out models; # we can treat lack of through as auto_created=True, though. if (getattr(field.remote_field, "through", None) and not field.remote_field.through._meta.auto_created): related_fields[field.name] = field for field in model_opts.local_many_to_many: if field.remote_field.model: related_fields[field.name] = field if getattr(field.remote_field, "through", None) and not field.remote_field.through._meta.auto_created: related_fields[field.name] = field # Are there indexes/unique|index_together to defer? indexes = model_state.options.pop('indexes') unique_together = model_state.options.pop('unique_together', None) index_together = model_state.options.pop('index_together', None) order_with_respect_to = model_state.options.pop('order_with_respect_to', None) # Depend on the deletion of any possible proxy version of us dependencies = [ (app_label, model_name, None, False), ] # Depend on all bases for base in model_state.bases: if isinstance(base, str) and "." in base: base_app_label, base_name = base.split(".", 1) dependencies.append((base_app_label, base_name, None, True)) # Depend on the other end of the primary key if it's a relation if primary_key_rel: dependencies.append(( primary_key_rel._meta.app_label, primary_key_rel._meta.object_name, None, True )) # Generate creation operation self.add_operation( app_label, operations.CreateModel( name=model_state.name, fields=[d for d in model_state.fields if d[0] not in related_fields], options=model_state.options, bases=model_state.bases, managers=model_state.managers, ), dependencies=dependencies, beginning=True, ) # Don't add operations which modify the database for unmanaged models if not model_opts.managed: continue # Generate operations for each related field for name, field in sorted(related_fields.items()): dependencies = self._get_dependencies_for_foreign_key(field) # Depend on our own model being created dependencies.append((app_label, model_name, None, True)) # Make operation self.add_operation( app_label, operations.AddField( model_name=model_name, name=name, field=field, ), dependencies=list(set(dependencies)), ) # Generate other opns related_dependencies = [ (app_label, model_name, name, True) for name in sorted(related_fields) ] related_dependencies.append((app_label, model_name, None, True)) for index in indexes: self.add_operation( app_label, operations.AddIndex( model_name=model_name, index=index, ), dependencies=related_dependencies, ) if unique_together: self.add_operation( app_label, operations.AlterUniqueTogether( name=model_name, unique_together=unique_together, ), dependencies=related_dependencies ) if index_together: self.add_operation( app_label, operations.AlterIndexTogether( name=model_name, index_together=index_together, ), dependencies=related_dependencies ) if order_with_respect_to: self.add_operation( app_label, operations.AlterOrderWithRespectTo( name=model_name, order_with_respect_to=order_with_respect_to, ), dependencies=[ (app_label, model_name, order_with_respect_to, True), (app_label, model_name, None, True), ] ) # Fix relationships if the model changed from a proxy model to a # concrete model. if (app_label, model_name) in self.old_proxy_keys: for related_object in model_opts.related_objects: self.add_operation( related_object.related_model._meta.app_label, operations.AlterField( model_name=related_object.related_model._meta.object_name, name=related_object.field.name, field=related_object.field, ), dependencies=[(app_label, model_name, None, True)], ) def generate_created_proxies(self): """ Make CreateModel statements for proxy models. Use the same statements as that way there's less code duplication, but of course for proxy models it's safe to skip all the pointless field stuff and just chuck out an operation. """ added = self.new_proxy_keys - self.old_proxy_keys for app_label, model_name in sorted(added): model_state = self.to_state.models[app_label, model_name] assert model_state.options.get("proxy") # Depend on the deletion of any possible non-proxy version of us dependencies = [ (app_label, model_name, None, False), ] # Depend on all bases for base in model_state.bases: if isinstance(base, str) and "." in base: base_app_label, base_name = base.split(".", 1) dependencies.append((base_app_label, base_name, None, True)) # Generate creation operation self.add_operation( app_label, operations.CreateModel( name=model_state.name, fields=[], options=model_state.options, bases=model_state.bases, managers=model_state.managers, ), # Depend on the deletion of any possible non-proxy version of us dependencies=dependencies, ) def generate_deleted_models(self): """ Find all deleted models (managed and unmanaged) and make delete operations for them as well as separate operations to delete any foreign key or M2M relationships (these are optimized later, if possible). Also bring forward removal of any model options that refer to collections of fields - the inverse of generate_created_models(). """ new_keys = self.new_model_keys | self.new_unmanaged_keys deleted_models = self.old_model_keys - new_keys deleted_unmanaged_models = self.old_unmanaged_keys - new_keys all_deleted_models = chain(sorted(deleted_models), sorted(deleted_unmanaged_models)) for app_label, model_name in all_deleted_models: model_state = self.from_state.models[app_label, model_name] model = self.old_apps.get_model(app_label, model_name) if not model._meta.managed: # Skip here, no need to handle fields for unmanaged models continue # Gather related fields related_fields = {} for field in model._meta.local_fields: if field.remote_field: if field.remote_field.model: related_fields[field.name] = field # through will be none on M2Ms on swapped-out models; # we can treat lack of through as auto_created=True, though. if (getattr(field.remote_field, "through", None) and not field.remote_field.through._meta.auto_created): related_fields[field.name] = field for field in model._meta.local_many_to_many: if field.remote_field.model: related_fields[field.name] = field if getattr(field.remote_field, "through", None) and not field.remote_field.through._meta.auto_created: related_fields[field.name] = field # Generate option removal first unique_together = model_state.options.pop('unique_together', None) index_together = model_state.options.pop('index_together', None) if unique_together: self.add_operation( app_label, operations.AlterUniqueTogether( name=model_name, unique_together=None, ) ) if index_together: self.add_operation( app_label, operations.AlterIndexTogether( name=model_name, index_together=None, ) ) # Then remove each related field for name in sorted(related_fields): self.add_operation( app_label, operations.RemoveField( model_name=model_name, name=name, ) ) # Finally, remove the model. # This depends on both the removal/alteration of all incoming fields # and the removal of all its own related fields, and if it's # a through model the field that references it. dependencies = [] for related_object in model._meta.related_objects: related_object_app_label = related_object.related_model._meta.app_label object_name = related_object.related_model._meta.object_name field_name = related_object.field.name dependencies.append((related_object_app_label, object_name, field_name, False)) if not related_object.many_to_many: dependencies.append((related_object_app_label, object_name, field_name, "alter")) for name in sorted(related_fields): dependencies.append((app_label, model_name, name, False)) # We're referenced in another field's through= through_user = self.through_users.get((app_label, model_state.name_lower)) if through_user: dependencies.append((through_user[0], through_user[1], through_user[2], False)) # Finally, make the operation, deduping any dependencies self.add_operation( app_label, operations.DeleteModel( name=model_state.name, ), dependencies=list(set(dependencies)), ) def generate_deleted_proxies(self): """Make DeleteModel options for proxy models.""" deleted = self.old_proxy_keys - self.new_proxy_keys for app_label, model_name in sorted(deleted): model_state = self.from_state.models[app_label, model_name] assert model_state.options.get("proxy") self.add_operation( app_label, operations.DeleteModel( name=model_state.name, ), ) def generate_renamed_fields(self): """Work out renamed fields.""" self.renamed_fields = {} for app_label, model_name, field_name in sorted(self.new_field_keys - self.old_field_keys): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] field = self.new_apps.get_model(app_label, model_name)._meta.get_field(field_name) # Scan to see if this is actually a rename! field_dec = self.deep_deconstruct(field) for rem_app_label, rem_model_name, rem_field_name in sorted(self.old_field_keys - self.new_field_keys): if rem_app_label == app_label and rem_model_name == model_name: old_field = old_model_state.get_field_by_name(rem_field_name) old_field_dec = self.deep_deconstruct(old_field) if field.remote_field and field.remote_field.model and 'to' in old_field_dec[2]: old_rel_to = old_field_dec[2]['to'] if old_rel_to in self.renamed_models_rel: old_field_dec[2]['to'] = self.renamed_models_rel[old_rel_to] old_field.set_attributes_from_name(rem_field_name) old_db_column = old_field.get_attname_column()[1] if (old_field_dec == field_dec or ( # Was the field renamed and db_column equal to the # old field's column added? old_field_dec[0:2] == field_dec[0:2] and dict(old_field_dec[2], db_column=old_db_column) == field_dec[2])): if self.questioner.ask_rename(model_name, rem_field_name, field_name, field): self.add_operation( app_label, operations.RenameField( model_name=model_name, old_name=rem_field_name, new_name=field_name, ) ) self.old_field_keys.remove((rem_app_label, rem_model_name, rem_field_name)) self.old_field_keys.add((app_label, model_name, field_name)) self.renamed_fields[app_label, model_name, field_name] = rem_field_name break def generate_added_fields(self): """Make AddField operations.""" for app_label, model_name, field_name in sorted(self.new_field_keys - self.old_field_keys): self._generate_added_field(app_label, model_name, field_name) def _generate_added_field(self, app_label, model_name, field_name): field = self.new_apps.get_model(app_label, model_name)._meta.get_field(field_name) # Fields that are foreignkeys/m2ms depend on stuff dependencies = [] if field.remote_field and field.remote_field.model: dependencies.extend(self._get_dependencies_for_foreign_key(field)) # You can't just add NOT NULL fields with no default or fields # which don't allow empty strings as default. time_fields = (models.DateField, models.DateTimeField, models.TimeField) preserve_default = ( field.null or field.has_default() or field.many_to_many or (field.blank and field.empty_strings_allowed) or (isinstance(field, time_fields) and field.auto_now) ) if not preserve_default: field = field.clone() if isinstance(field, time_fields) and field.auto_now_add: field.default = self.questioner.ask_auto_now_add_addition(field_name, model_name) else: field.default = self.questioner.ask_not_null_addition(field_name, model_name) self.add_operation( app_label, operations.AddField( model_name=model_name, name=field_name, field=field, preserve_default=preserve_default, ), dependencies=dependencies, ) def generate_removed_fields(self): """Make RemoveField operations.""" for app_label, model_name, field_name in sorted(self.old_field_keys - self.new_field_keys): self._generate_removed_field(app_label, model_name, field_name) def _generate_removed_field(self, app_label, model_name, field_name): self.add_operation( app_label, operations.RemoveField( model_name=model_name, name=field_name, ), # We might need to depend on the removal of an # order_with_respect_to or index/unique_together operation; # this is safely ignored if there isn't one dependencies=[ (app_label, model_name, field_name, "order_wrt_unset"), (app_label, model_name, field_name, "foo_together_change"), ], ) def generate_altered_fields(self): """ Make AlterField operations, or possibly RemovedField/AddField if alter isn's possible. """ for app_label, model_name, field_name in sorted(self.old_field_keys & self.new_field_keys): # Did the field change? old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_field_name = self.renamed_fields.get((app_label, model_name, field_name), field_name) old_field = self.old_apps.get_model(app_label, old_model_name)._meta.get_field(old_field_name) new_field = self.new_apps.get_model(app_label, model_name)._meta.get_field(field_name) # Implement any model renames on relations; these are handled by RenameModel # so we need to exclude them from the comparison if hasattr(new_field, "remote_field") and getattr(new_field.remote_field, "model", None): rename_key = ( new_field.remote_field.model._meta.app_label, new_field.remote_field.model._meta.model_name, ) if rename_key in self.renamed_models: new_field.remote_field.model = old_field.remote_field.model # Handle ForeignKey which can only have a single to_field. remote_field_name = getattr(new_field.remote_field, 'field_name', None) if remote_field_name: to_field_rename_key = rename_key + (remote_field_name,) if to_field_rename_key in self.renamed_fields: new_field.remote_field.field_name = old_field.remote_field.field_name # Handle ForeignObjects which can have multiple from_fields/to_fields. from_fields = getattr(new_field, 'from_fields', None) if from_fields: from_rename_key = (app_label, model_name) new_field.from_fields = tuple([ self.renamed_fields.get(from_rename_key + (from_field,), from_field) for from_field in from_fields ]) new_field.to_fields = tuple([ self.renamed_fields.get(rename_key + (to_field,), to_field) for to_field in new_field.to_fields ]) if hasattr(new_field, "remote_field") and getattr(new_field.remote_field, "through", None): rename_key = ( new_field.remote_field.through._meta.app_label, new_field.remote_field.through._meta.model_name, ) if rename_key in self.renamed_models: new_field.remote_field.through = old_field.remote_field.through old_field_dec = self.deep_deconstruct(old_field) new_field_dec = self.deep_deconstruct(new_field) if old_field_dec != new_field_dec: both_m2m = old_field.many_to_many and new_field.many_to_many neither_m2m = not old_field.many_to_many and not new_field.many_to_many if both_m2m or neither_m2m: # Either both fields are m2m or neither is preserve_default = True if (old_field.null and not new_field.null and not new_field.has_default() and not new_field.many_to_many): field = new_field.clone() new_default = self.questioner.ask_not_null_alteration(field_name, model_name) if new_default is not models.NOT_PROVIDED: field.default = new_default preserve_default = False else: field = new_field self.add_operation( app_label, operations.AlterField( model_name=model_name, name=field_name, field=field, preserve_default=preserve_default, ) ) else: # We cannot alter between m2m and concrete fields self._generate_removed_field(app_label, model_name, field_name) self._generate_added_field(app_label, model_name, field_name) def create_altered_indexes(self): option_name = operations.AddIndex.option_name for app_label, model_name in sorted(self.kept_model_keys): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] new_model_state = self.to_state.models[app_label, model_name] old_indexes = old_model_state.options[option_name] new_indexes = new_model_state.options[option_name] add_idx = [idx for idx in new_indexes if idx not in old_indexes] rem_idx = [idx for idx in old_indexes if idx not in new_indexes] self.altered_indexes.update({ (app_label, model_name): { 'added_indexes': add_idx, 'removed_indexes': rem_idx, } }) def generate_added_indexes(self): for (app_label, model_name), alt_indexes in self.altered_indexes.items(): for index in alt_indexes['added_indexes']: self.add_operation( app_label, operations.AddIndex( model_name=model_name, index=index, ) ) def generate_removed_indexes(self): for (app_label, model_name), alt_indexes in self.altered_indexes.items(): for index in alt_indexes['removed_indexes']: self.add_operation( app_label, operations.RemoveIndex( model_name=model_name, name=index.name, ) ) def _get_dependencies_for_foreign_key(self, field): # Account for FKs to swappable models swappable_setting = getattr(field, 'swappable_setting', None) if swappable_setting is not None: dep_app_label = "__setting__" dep_object_name = swappable_setting else: dep_app_label = field.remote_field.model._meta.app_label dep_object_name = field.remote_field.model._meta.object_name dependencies = [(dep_app_label, dep_object_name, None, True)] if getattr(field.remote_field, "through", None) and not field.remote_field.through._meta.auto_created: dependencies.append(( field.remote_field.through._meta.app_label, field.remote_field.through._meta.object_name, None, True, )) return dependencies def _generate_altered_foo_together(self, operation): option_name = operation.option_name for app_label, model_name in sorted(self.kept_model_keys): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] new_model_state = self.to_state.models[app_label, model_name] # We run the old version through the field renames to account for those old_value = old_model_state.options.get(option_name) old_value = { tuple( self.renamed_fields.get((app_label, model_name, n), n) for n in unique ) for unique in old_value } if old_value else set() new_value = new_model_state.options.get(option_name) new_value = set(new_value) if new_value else set() if old_value != new_value: dependencies = [] for foo_togethers in new_value: for field_name in foo_togethers: field = self.new_apps.get_model(app_label, model_name)._meta.get_field(field_name) if field.remote_field and field.remote_field.model: dependencies.extend(self._get_dependencies_for_foreign_key(field)) self.add_operation( app_label, operation( name=model_name, **{option_name: new_value} ), dependencies=dependencies, ) def generate_altered_unique_together(self): self._generate_altered_foo_together(operations.AlterUniqueTogether) def generate_altered_index_together(self): self._generate_altered_foo_together(operations.AlterIndexTogether) def generate_altered_db_table(self): models_to_check = self.kept_model_keys.union(self.kept_proxy_keys, self.kept_unmanaged_keys) for app_label, model_name in sorted(models_to_check): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] new_model_state = self.to_state.models[app_label, model_name] old_db_table_name = old_model_state.options.get('db_table') new_db_table_name = new_model_state.options.get('db_table') if old_db_table_name != new_db_table_name: self.add_operation( app_label, operations.AlterModelTable( name=model_name, table=new_db_table_name, ) ) def generate_altered_options(self): """ Work out if any non-schema-affecting options have changed and make an operation to represent them in state changes (in case Python code in migrations needs them). """ models_to_check = self.kept_model_keys.union( self.kept_proxy_keys, self.kept_unmanaged_keys, # unmanaged converted to managed self.old_unmanaged_keys & self.new_model_keys, # managed converted to unmanaged self.old_model_keys & self.new_unmanaged_keys, ) for app_label, model_name in sorted(models_to_check): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] new_model_state = self.to_state.models[app_label, model_name] old_options = { key: value for key, value in old_model_state.options.items() if key in AlterModelOptions.ALTER_OPTION_KEYS } new_options = { key: value for key, value in new_model_state.options.items() if key in AlterModelOptions.ALTER_OPTION_KEYS } if old_options != new_options: self.add_operation( app_label, operations.AlterModelOptions( name=model_name, options=new_options, ) ) def generate_altered_order_with_respect_to(self): for app_label, model_name in sorted(self.kept_model_keys): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] new_model_state = self.to_state.models[app_label, model_name] if (old_model_state.options.get("order_with_respect_to") != new_model_state.options.get("order_with_respect_to")): # Make sure it comes second if we're adding # (removal dependency is part of RemoveField) dependencies = [] if new_model_state.options.get("order_with_respect_to"): dependencies.append(( app_label, model_name, new_model_state.options["order_with_respect_to"], True, )) # Actually generate the operation self.add_operation( app_label, operations.AlterOrderWithRespectTo( name=model_name, order_with_respect_to=new_model_state.options.get('order_with_respect_to'), ), dependencies=dependencies, ) def generate_altered_managers(self): for app_label, model_name in sorted(self.kept_model_keys): old_model_name = self.renamed_models.get((app_label, model_name), model_name) old_model_state = self.from_state.models[app_label, old_model_name] new_model_state = self.to_state.models[app_label, model_name] if old_model_state.managers != new_model_state.managers: self.add_operation( app_label, operations.AlterModelManagers( name=model_name, managers=new_model_state.managers, ) ) def arrange_for_graph(self, changes, graph, migration_name=None): """ Take a result from changes() and a MigrationGraph, and fix the names and dependencies of the changes so they extend the graph from the leaf nodes for each app. """ leaves = graph.leaf_nodes() name_map = {} for app_label, migrations in list(changes.items()): if not migrations: continue # Find the app label's current leaf node app_leaf = None for leaf in leaves: if leaf[0] == app_label: app_leaf = leaf break # Do they want an initial migration for this app? if app_leaf is None and not self.questioner.ask_initial(app_label): # They don't. for migration in migrations: name_map[(app_label, migration.name)] = (app_label, "__first__") del changes[app_label] continue # Work out the next number in the sequence if app_leaf is None: next_number = 1 else: next_number = (self.parse_number(app_leaf[1]) or 0) + 1 # Name each migration for i, migration in enumerate(migrations): if i == 0 and app_leaf: migration.dependencies.append(app_leaf) if i == 0 and not app_leaf: new_name = "0001_%s" % migration_name if migration_name else "0001_initial" else: new_name = "%04i_%s" % ( next_number, migration_name or self.suggest_name(migration.operations)[:100], ) name_map[(app_label, migration.name)] = (app_label, new_name) next_number += 1 migration.name = new_name # Now fix dependencies for migrations in changes.values(): for migration in migrations: migration.dependencies = [name_map.get(d, d) for d in migration.dependencies] return changes def _trim_to_apps(self, changes, app_labels): """ Take changes from arrange_for_graph() and set of app labels, and return a modified set of changes which trims out as many migrations that are not in app_labels as possible. Note that some other migrations may still be present as they may be required dependencies. """ # Gather other app dependencies in a first pass app_dependencies = {} for app_label, migrations in changes.items(): for migration in migrations: for dep_app_label, name in migration.dependencies: app_dependencies.setdefault(app_label, set()).add(dep_app_label) required_apps = set(app_labels) # Keep resolving till there's no change old_required_apps = None while old_required_apps != required_apps: old_required_apps = set(required_apps) required_apps.update(*[app_dependencies.get(app_label, ()) for app_label in required_apps]) # Remove all migrations that aren't needed for app_label in list(changes): if app_label not in required_apps: del changes[app_label] return changes @classmethod def suggest_name(cls, ops): """ Given a set of operations, suggest a name for the migration they might represent. Names are not guaranteed to be unique, but put some effort into the fallback name to avoid VCS conflicts if possible. """ if len(ops) == 1: if isinstance(ops[0], operations.CreateModel): return ops[0].name_lower elif isinstance(ops[0], operations.DeleteModel): return "delete_%s" % ops[0].name_lower elif isinstance(ops[0], operations.AddField): return "%s_%s" % (ops[0].model_name_lower, ops[0].name_lower) elif isinstance(ops[0], operations.RemoveField): return "remove_%s_%s" % (ops[0].model_name_lower, ops[0].name_lower) elif ops: if all(isinstance(o, operations.CreateModel) for o in ops): return "_".join(sorted(o.name_lower for o in ops)) return "auto_%s" % get_migration_name_timestamp() @classmethod def parse_number(cls, name): """ Given a migration name, try to extract a number from the beginning of it. If no number is found, return None. """ match = re.match(r'^\d+', name) if match: return int(match.group()) return None
a8af5f6945ea4693eb67cbe743cb776de04b547cea5f9420172a1b89635192a2
from django.db.transaction import atomic from .exceptions import IrreversibleError class Migration: """ The base class for all migrations. Migration files will import this from django.db.migrations.Migration and subclass it as a class called Migration. It will have one or more of the following attributes: - operations: A list of Operation instances, probably from django.db.migrations.operations - dependencies: A list of tuples of (app_path, migration_name) - run_before: A list of tuples of (app_path, migration_name) - replaces: A list of migration_names Note that all migrations come out of migrations and into the Loader or Graph as instances, having been initialized with their app label and name. """ # Operations to apply during this migration, in order. operations = [] # Other migrations that should be run before this migration. # Should be a list of (app, migration_name). dependencies = [] # Other migrations that should be run after this one (i.e. have # this migration added to their dependencies). Useful to make third-party # apps' migrations run after your AUTH_USER replacement, for example. run_before = [] # Migration names in this app that this migration replaces. If this is # non-empty, this migration will only be applied if all these migrations # are not applied. replaces = [] # Is this an initial migration? Initial migrations are skipped on # --fake-initial if the table or fields already exist. If None, check if # the migration has any dependencies to determine if there are dependencies # to tell if db introspection needs to be done. If True, always perform # introspection. If False, never perform introspection. initial = None # Whether to wrap the whole migration in a transaction. Only has an effect # on database backends which support transactional DDL. atomic = True def __init__(self, name, app_label): self.name = name self.app_label = app_label # Copy dependencies & other attrs as we might mutate them at runtime self.operations = list(self.__class__.operations) self.dependencies = list(self.__class__.dependencies) self.run_before = list(self.__class__.run_before) self.replaces = list(self.__class__.replaces) def __eq__(self, other): return ( isinstance(other, Migration) and self.name == other.name and self.app_label == other.app_label ) def __repr__(self): return "<Migration %s.%s>" % (self.app_label, self.name) def __str__(self): return "%s.%s" % (self.app_label, self.name) def __hash__(self): return hash("%s.%s" % (self.app_label, self.name)) def mutate_state(self, project_state, preserve=True): """ Take a ProjectState and return a new one with the migration's operations applied to it. Preserve the original object state by default and return a mutated state from a copy. """ new_state = project_state if preserve: new_state = project_state.clone() for operation in self.operations: operation.state_forwards(self.app_label, new_state) return new_state def apply(self, project_state, schema_editor, collect_sql=False): """ Take a project_state representing all migrations prior to this one and a schema_editor for a live database and apply the migration in a forwards order. Return the resulting project state for efficient reuse by following Migrations. """ for operation in self.operations: # If this operation cannot be represented as SQL, place a comment # there instead if collect_sql: schema_editor.collected_sql.append("--") if not operation.reduces_to_sql: schema_editor.collected_sql.append( "-- MIGRATION NOW PERFORMS OPERATION THAT CANNOT BE WRITTEN AS SQL:" ) schema_editor.collected_sql.append("-- %s" % operation.describe()) schema_editor.collected_sql.append("--") if not operation.reduces_to_sql: continue # Save the state before the operation has run old_state = project_state.clone() operation.state_forwards(self.app_label, project_state) # Run the operation atomic_operation = operation.atomic or (self.atomic and operation.atomic is not False) if not schema_editor.atomic_migration and atomic_operation: # Force a transaction on a non-transactional-DDL backend or an # atomic operation inside a non-atomic migration. with atomic(schema_editor.connection.alias): operation.database_forwards(self.app_label, schema_editor, old_state, project_state) else: # Normal behaviour operation.database_forwards(self.app_label, schema_editor, old_state, project_state) return project_state def unapply(self, project_state, schema_editor, collect_sql=False): """ Take a project_state representing all migrations prior to this one and a schema_editor for a live database and apply the migration in a reverse order. The backwards migration process consists of two phases: 1. The intermediate states from right before the first until right after the last operation inside this migration are preserved. 2. The operations are applied in reverse order using the states recorded in step 1. """ # Construct all the intermediate states we need for a reverse migration to_run = [] new_state = project_state # Phase 1 for operation in self.operations: # If it's irreversible, error out if not operation.reversible: raise IrreversibleError("Operation %s in %s is not reversible" % (operation, self)) # Preserve new state from previous run to not tamper the same state # over all operations new_state = new_state.clone() old_state = new_state.clone() operation.state_forwards(self.app_label, new_state) to_run.insert(0, (operation, old_state, new_state)) # Phase 2 for operation, to_state, from_state in to_run: if collect_sql: schema_editor.collected_sql.append("--") if not operation.reduces_to_sql: schema_editor.collected_sql.append( "-- MIGRATION NOW PERFORMS OPERATION THAT CANNOT BE WRITTEN AS SQL:" ) schema_editor.collected_sql.append("-- %s" % operation.describe()) schema_editor.collected_sql.append("--") if not operation.reduces_to_sql: continue atomic_operation = operation.atomic or (self.atomic and operation.atomic is not False) if not schema_editor.atomic_migration and atomic_operation: # Force a transaction on a non-transactional-DDL backend or an # atomic operation inside a non-atomic migration. with atomic(schema_editor.connection.alias): operation.database_backwards(self.app_label, schema_editor, from_state, to_state) else: # Normal behaviour operation.database_backwards(self.app_label, schema_editor, from_state, to_state) return project_state class SwappableTuple(tuple): """ Subclass of tuple so Django can tell this was originally a swappable dependency when it reads the migration file. """ def __new__(cls, value, setting): self = tuple.__new__(cls, value) self.setting = setting return self def swappable_dependency(value): """Turn a setting value into a dependency.""" return SwappableTuple((value.split(".", 1)[0], "__first__"), value)
02920856136b9e767bf72ceb6cf791105b24e64c4b0ae39dd6bc21ddd0da34b2
import datetime import re COMPILED_REGEX_TYPE = type(re.compile('')) class RegexObject: def __init__(self, obj): self.pattern = obj.pattern self.flags = obj.flags def __eq__(self, other): return self.pattern == other.pattern and self.flags == other.flags def get_migration_name_timestamp(): return datetime.datetime.now().strftime("%Y%m%d_%H%M")
615f550762165fd9f841fdc4b99cabcaed8e1c6232dacc9a729696e0b364b487
from django.apps.registry import Apps from django.db import models from django.db.utils import DatabaseError from django.utils.timezone import now from .exceptions import MigrationSchemaMissing class MigrationRecorder: """ Deal with storing migration records in the database. Because this table is actually itself used for dealing with model creation, it's the one thing we can't do normally via migrations. We manually handle table creation/schema updating (using schema backend) and then have a floating model to do queries with. If a migration is unapplied its row is removed from the table. Having a row in the table always means a migration is applied. """ class Migration(models.Model): app = models.CharField(max_length=255) name = models.CharField(max_length=255) applied = models.DateTimeField(default=now) class Meta: apps = Apps() app_label = "migrations" db_table = "django_migrations" def __str__(self): return "Migration %s for %s" % (self.name, self.app) def __init__(self, connection): self.connection = connection @property def migration_qs(self): return self.Migration.objects.using(self.connection.alias) def has_table(self): """Return True if the django_migrations table exists.""" return self.Migration._meta.db_table in self.connection.introspection.table_names(self.connection.cursor()) def ensure_schema(self): """Ensure the table exists and has the correct schema.""" # If the table's there, that's fine - we've never changed its schema # in the codebase. if self.has_table(): return # Make the table try: with self.connection.schema_editor() as editor: editor.create_model(self.Migration) except DatabaseError as exc: raise MigrationSchemaMissing("Unable to create the django_migrations table (%s)" % exc) def applied_migrations(self): """Return a set of (app, name) of applied migrations.""" if self.has_table(): return {tuple(x) for x in self.migration_qs.values_list('app', 'name')} else: # If the django_migrations table doesn't exist, then no migrations # are applied. return set() def record_applied(self, app, name): """Record that a migration was applied.""" self.ensure_schema() self.migration_qs.create(app=app, name=name) def record_unapplied(self, app, name): """Record that a migration was unapplied.""" self.ensure_schema() self.migration_qs.filter(app=app, name=name).delete() def flush(self): """Delete all migration records. Useful for testing migrations.""" self.migration_qs.all().delete()
73676dd2de0039528b382618599266f42d08b5e5734e40fc0fbaf62e1e00f221
class MigrationOptimizer: """ Power the optimization process, where you provide a list of Operations and you are returned a list of equal or shorter length - operations are merged into one if possible. For example, a CreateModel and an AddField can be optimized into a new CreateModel, and CreateModel and DeleteModel can be optimized into nothing. """ def optimize(self, operations, app_label=None): """ Main optimization entry point. Pass in a list of Operation instances, get out a new list of Operation instances. Unfortunately, due to the scope of the optimization (two combinable operations might be separated by several hundred others), this can't be done as a peephole optimization with checks/output implemented on the Operations themselves; instead, the optimizer looks at each individual operation and scans forwards in the list to see if there are any matches, stopping at boundaries - operations which can't be optimized over (RunSQL, operations on the same field/model, etc.) The inner loop is run until the starting list is the same as the result list, and then the result is returned. This means that operation optimization must be stable and always return an equal or shorter list. The app_label argument is optional, but if you pass it you'll get more efficient optimization. """ # Internal tracking variable for test assertions about # of loops self._iterations = 0 while True: result = self.optimize_inner(operations, app_label) self._iterations += 1 if result == operations: return result operations = result def optimize_inner(self, operations, app_label=None): """Inner optimization loop.""" new_operations = [] for i, operation in enumerate(operations): # Compare it to each operation after it for j, other in enumerate(operations[i + 1:]): in_between = operations[i + 1:i + j + 1] result = operation.reduce(other, in_between, app_label) if isinstance(result, list): # Optimize! Add result, then remaining others, then return new_operations.extend(result) new_operations.extend(in_between) new_operations.extend(operations[i + j + 2:]) return new_operations if not result: # We can't optimize across `other`. new_operations.append(operation) break else: new_operations.append(operation) return new_operations
23b1bd61f275c393f5d450c8361b0297dde6ee7bc0de49fcd63d22ce600d5d65
import builtins import collections.abc import datetime import decimal import enum import functools import math import re import types import uuid from django.db import models from django.db.migrations.operations.base import Operation from django.db.migrations.utils import COMPILED_REGEX_TYPE, RegexObject from django.utils import datetime_safe from django.utils.functional import LazyObject, Promise from django.utils.timezone import utc from django.utils.version import get_docs_version class BaseSerializer: def __init__(self, value): self.value = value def serialize(self): raise NotImplementedError('Subclasses of BaseSerializer must implement the serialize() method.') class BaseSequenceSerializer(BaseSerializer): def _format(self): raise NotImplementedError('Subclasses of BaseSequenceSerializer must implement the _format() method.') def serialize(self): imports = set() strings = [] for item in self.value: item_string, item_imports = serializer_factory(item).serialize() imports.update(item_imports) strings.append(item_string) value = self._format() return value % (", ".join(strings)), imports class BaseSimpleSerializer(BaseSerializer): def serialize(self): return repr(self.value), set() class DatetimeSerializer(BaseSerializer): def serialize(self): if self.value.tzinfo is not None and self.value.tzinfo != utc: self.value = self.value.astimezone(utc) value_repr = repr(self.value).replace("datetime.timezone(datetime.timedelta(0), 'UTC')", 'utc') if isinstance(self.value, datetime_safe.datetime): value_repr = "datetime.%s" % value_repr imports = ["import datetime"] if self.value.tzinfo is not None: imports.append("from django.utils.timezone import utc") return value_repr, set(imports) class DateSerializer(BaseSerializer): def serialize(self): value_repr = repr(self.value) if isinstance(self.value, datetime_safe.date): value_repr = "datetime.%s" % value_repr return value_repr, {"import datetime"} class DecimalSerializer(BaseSerializer): def serialize(self): return repr(self.value), {"from decimal import Decimal"} class DeconstructableSerializer(BaseSerializer): @staticmethod def serialize_deconstructed(path, args, kwargs): name, imports = DeconstructableSerializer._serialize_path(path) strings = [] for arg in args: arg_string, arg_imports = serializer_factory(arg).serialize() strings.append(arg_string) imports.update(arg_imports) for kw, arg in sorted(kwargs.items()): arg_string, arg_imports = serializer_factory(arg).serialize() imports.update(arg_imports) strings.append("%s=%s" % (kw, arg_string)) return "%s(%s)" % (name, ", ".join(strings)), imports @staticmethod def _serialize_path(path): module, name = path.rsplit(".", 1) if module == "django.db.models": imports = {"from django.db import models"} name = "models.%s" % name else: imports = {"import %s" % module} name = path return name, imports def serialize(self): return self.serialize_deconstructed(*self.value.deconstruct()) class DictionarySerializer(BaseSerializer): def serialize(self): imports = set() strings = [] for k, v in sorted(self.value.items()): k_string, k_imports = serializer_factory(k).serialize() v_string, v_imports = serializer_factory(v).serialize() imports.update(k_imports) imports.update(v_imports) strings.append((k_string, v_string)) return "{%s}" % (", ".join("%s: %s" % (k, v) for k, v in strings)), imports class EnumSerializer(BaseSerializer): def serialize(self): enum_class = self.value.__class__ module = enum_class.__module__ v_string, v_imports = serializer_factory(self.value.value).serialize() imports = {'import %s' % module, *v_imports} return "%s.%s(%s)" % (module, enum_class.__name__, v_string), imports class FloatSerializer(BaseSimpleSerializer): def serialize(self): if math.isnan(self.value) or math.isinf(self.value): return 'float("{}")'.format(self.value), set() return super().serialize() class FrozensetSerializer(BaseSequenceSerializer): def _format(self): return "frozenset([%s])" class FunctionTypeSerializer(BaseSerializer): def serialize(self): if getattr(self.value, "__self__", None) and isinstance(self.value.__self__, type): klass = self.value.__self__ module = klass.__module__ return "%s.%s.%s" % (module, klass.__name__, self.value.__name__), {"import %s" % module} # Further error checking if self.value.__name__ == '<lambda>': raise ValueError("Cannot serialize function: lambda") if self.value.__module__ is None: raise ValueError("Cannot serialize function %r: No module" % self.value) module_name = self.value.__module__ if '<' not in self.value.__qualname__: # Qualname can include <locals> return '%s.%s' % (module_name, self.value.__qualname__), {'import %s' % self.value.__module__} raise ValueError( 'Could not find function %s in %s.\n' % (self.value.__name__, module_name) ) class FunctoolsPartialSerializer(BaseSerializer): def serialize(self): # Serialize functools.partial() arguments func_string, func_imports = serializer_factory(self.value.func).serialize() args_string, args_imports = serializer_factory(self.value.args).serialize() keywords_string, keywords_imports = serializer_factory(self.value.keywords).serialize() # Add any imports needed by arguments imports = {'import functools', *func_imports, *args_imports, *keywords_imports} return ( 'functools.%s(%s, *%s, **%s)' % ( self.value.__class__.__name__, func_string, args_string, keywords_string, ), imports, ) class IterableSerializer(BaseSerializer): def serialize(self): imports = set() strings = [] for item in self.value: item_string, item_imports = serializer_factory(item).serialize() imports.update(item_imports) strings.append(item_string) # When len(strings)==0, the empty iterable should be serialized as # "()", not "(,)" because (,) is invalid Python syntax. value = "(%s)" if len(strings) != 1 else "(%s,)" return value % (", ".join(strings)), imports class ModelFieldSerializer(DeconstructableSerializer): def serialize(self): attr_name, path, args, kwargs = self.value.deconstruct() return self.serialize_deconstructed(path, args, kwargs) class ModelManagerSerializer(DeconstructableSerializer): def serialize(self): as_manager, manager_path, qs_path, args, kwargs = self.value.deconstruct() if as_manager: name, imports = self._serialize_path(qs_path) return "%s.as_manager()" % name, imports else: return self.serialize_deconstructed(manager_path, args, kwargs) class OperationSerializer(BaseSerializer): def serialize(self): from django.db.migrations.writer import OperationWriter string, imports = OperationWriter(self.value, indentation=0).serialize() # Nested operation, trailing comma is handled in upper OperationWriter._write() return string.rstrip(','), imports class RegexSerializer(BaseSerializer): def serialize(self): regex_pattern, pattern_imports = serializer_factory(self.value.pattern).serialize() # Turn off default implicit flags (e.g. re.U) because regexes with the # same implicit and explicit flags aren't equal. flags = self.value.flags ^ re.compile('').flags regex_flags, flag_imports = serializer_factory(flags).serialize() imports = {'import re', *pattern_imports, *flag_imports} args = [regex_pattern] if flags: args.append(regex_flags) return "re.compile(%s)" % ', '.join(args), imports class SequenceSerializer(BaseSequenceSerializer): def _format(self): return "[%s]" class SetSerializer(BaseSequenceSerializer): def _format(self): # Serialize as a set literal except when value is empty because {} # is an empty dict. return '{%s}' if self.value else 'set(%s)' class SettingsReferenceSerializer(BaseSerializer): def serialize(self): return "settings.%s" % self.value.setting_name, {"from django.conf import settings"} class TimedeltaSerializer(BaseSerializer): def serialize(self): return repr(self.value), {"import datetime"} class TimeSerializer(BaseSerializer): def serialize(self): value_repr = repr(self.value) if isinstance(self.value, datetime_safe.time): value_repr = "datetime.%s" % value_repr return value_repr, {"import datetime"} class TupleSerializer(BaseSequenceSerializer): def _format(self): # When len(value)==0, the empty tuple should be serialized as "()", # not "(,)" because (,) is invalid Python syntax. return "(%s)" if len(self.value) != 1 else "(%s,)" class TypeSerializer(BaseSerializer): def serialize(self): special_cases = [ (models.Model, "models.Model", []), ] for case, string, imports in special_cases: if case is self.value: return string, set(imports) if hasattr(self.value, "__module__"): module = self.value.__module__ if module == builtins.__name__: return self.value.__name__, set() else: return "%s.%s" % (module, self.value.__name__), {"import %s" % module} class UUIDSerializer(BaseSerializer): def serialize(self): return "uuid.%s" % repr(self.value), {"import uuid"} def serializer_factory(value): from django.db.migrations.writer import SettingsReference if isinstance(value, Promise): value = str(value) elif isinstance(value, LazyObject): # The unwrapped value is returned as the first item of the arguments # tuple. value = value.__reduce__()[1][0] if isinstance(value, models.Field): return ModelFieldSerializer(value) if isinstance(value, models.manager.BaseManager): return ModelManagerSerializer(value) if isinstance(value, Operation): return OperationSerializer(value) if isinstance(value, type): return TypeSerializer(value) # Anything that knows how to deconstruct itself. if hasattr(value, 'deconstruct'): return DeconstructableSerializer(value) # Unfortunately some of these are order-dependent. if isinstance(value, frozenset): return FrozensetSerializer(value) if isinstance(value, list): return SequenceSerializer(value) if isinstance(value, set): return SetSerializer(value) if isinstance(value, tuple): return TupleSerializer(value) if isinstance(value, dict): return DictionarySerializer(value) if isinstance(value, enum.Enum): return EnumSerializer(value) if isinstance(value, datetime.datetime): return DatetimeSerializer(value) if isinstance(value, datetime.date): return DateSerializer(value) if isinstance(value, datetime.time): return TimeSerializer(value) if isinstance(value, datetime.timedelta): return TimedeltaSerializer(value) if isinstance(value, SettingsReference): return SettingsReferenceSerializer(value) if isinstance(value, float): return FloatSerializer(value) if isinstance(value, (bool, int, type(None), bytes, str)): return BaseSimpleSerializer(value) if isinstance(value, decimal.Decimal): return DecimalSerializer(value) if isinstance(value, (functools.partial, functools.partialmethod)): return FunctoolsPartialSerializer(value) if isinstance(value, (types.FunctionType, types.BuiltinFunctionType, types.MethodType)): return FunctionTypeSerializer(value) if isinstance(value, collections.abc.Iterable): return IterableSerializer(value) if isinstance(value, (COMPILED_REGEX_TYPE, RegexObject)): return RegexSerializer(value) if isinstance(value, uuid.UUID): return UUIDSerializer(value) raise ValueError( "Cannot serialize: %r\nThere are some values Django cannot serialize into " "migration files.\nFor more, see https://docs.djangoproject.com/en/%s/" "topics/migrations/#migration-serializing" % (value, get_docs_version()) )
ec7a80c7171e11887d8949c980756f9eea8dee575f1a81dc8c36c667ee9d6473
""" Classes to represent the definitions of aggregate functions. """ from django.core.exceptions import FieldError from django.db.models.expressions import Case, Func, Star, When from django.db.models.fields import DecimalField, FloatField, IntegerField __all__ = [ 'Aggregate', 'Avg', 'Count', 'Max', 'Min', 'StdDev', 'Sum', 'Variance', ] class Aggregate(Func): contains_aggregate = True name = None filter_template = '%s FILTER (WHERE %%(filter)s)' window_compatible = True def __init__(self, *args, filter=None, **kwargs): self.filter = filter super().__init__(*args, **kwargs) def get_source_fields(self): # Don't return the filter expression since it's not a source field. return [e._output_field_or_none for e in super().get_source_expressions()] def get_source_expressions(self): source_expressions = super().get_source_expressions() if self.filter: source_expressions += [self.filter] return source_expressions def set_source_expressions(self, exprs): self.filter = self.filter and exprs.pop() return super().set_source_expressions(exprs) def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): # Aggregates are not allowed in UPDATE queries, so ignore for_save c = super().resolve_expression(query, allow_joins, reuse, summarize) c.filter = c.filter and c.filter.resolve_expression(query, allow_joins, reuse, summarize) if not summarize: # Call Aggregate.get_source_expressions() to avoid # returning self.filter and including that in this loop. expressions = super(Aggregate, c).get_source_expressions() for index, expr in enumerate(expressions): if expr.contains_aggregate: before_resolved = self.get_source_expressions()[index] name = before_resolved.name if hasattr(before_resolved, 'name') else repr(before_resolved) raise FieldError("Cannot compute %s('%s'): '%s' is an aggregate" % (c.name, name, name)) return c @property def default_alias(self): expressions = self.get_source_expressions() if len(expressions) == 1 and hasattr(expressions[0], 'name'): return '%s__%s' % (expressions[0].name, self.name.lower()) raise TypeError("Complex expressions require an alias") def get_group_by_cols(self): return [] def as_sql(self, compiler, connection, **extra_context): if self.filter: if connection.features.supports_aggregate_filter_clause: filter_sql, filter_params = self.filter.as_sql(compiler, connection) template = self.filter_template % extra_context.get('template', self.template) sql, params = super().as_sql(compiler, connection, template=template, filter=filter_sql) return sql, params + filter_params else: copy = self.copy() copy.filter = None source_expressions = copy.get_source_expressions() condition = When(self.filter, then=source_expressions[0]) copy.set_source_expressions([Case(condition)] + source_expressions[1:]) return super(Aggregate, copy).as_sql(compiler, connection, **extra_context) return super().as_sql(compiler, connection, **extra_context) def _get_repr_options(self): options = super()._get_repr_options() if self.filter: options.update({'filter': self.filter}) return options class Avg(Aggregate): function = 'AVG' name = 'Avg' def _resolve_output_field(self): source_field = self.get_source_fields()[0] if isinstance(source_field, (IntegerField, DecimalField)): return FloatField() return super()._resolve_output_field() def as_mysql(self, compiler, connection): sql, params = super().as_sql(compiler, connection) if self.output_field.get_internal_type() == 'DurationField': sql = 'CAST(%s as SIGNED)' % sql return sql, params def as_oracle(self, compiler, connection): if self.output_field.get_internal_type() == 'DurationField': expression = self.get_source_expressions()[0] from django.db.backends.oracle.functions import IntervalToSeconds, SecondsToInterval return compiler.compile( SecondsToInterval(Avg(IntervalToSeconds(expression), filter=self.filter)) ) return super().as_sql(compiler, connection) class Count(Aggregate): function = 'COUNT' name = 'Count' template = '%(function)s(%(distinct)s%(expressions)s)' output_field = IntegerField() def __init__(self, expression, distinct=False, filter=None, **extra): if expression == '*': expression = Star() if isinstance(expression, Star) and filter is not None: raise ValueError('Star cannot be used with filter. Please specify a field.') super().__init__( expression, distinct='DISTINCT ' if distinct else '', filter=filter, **extra ) def _get_repr_options(self): return {**super()._get_repr_options(), 'distinct': self.extra['distinct'] != ''} def convert_value(self, value, expression, connection): return 0 if value is None else value class Max(Aggregate): function = 'MAX' name = 'Max' class Min(Aggregate): function = 'MIN' name = 'Min' class StdDev(Aggregate): name = 'StdDev' output_field = FloatField() def __init__(self, expression, sample=False, **extra): self.function = 'STDDEV_SAMP' if sample else 'STDDEV_POP' super().__init__(expression, **extra) def _get_repr_options(self): return {**super()._get_repr_options(), 'sample': self.function == 'STDDEV_SAMP'} class Sum(Aggregate): function = 'SUM' name = 'Sum' def as_mysql(self, compiler, connection): sql, params = super().as_sql(compiler, connection) if self.output_field.get_internal_type() == 'DurationField': sql = 'CAST(%s as SIGNED)' % sql return sql, params def as_oracle(self, compiler, connection): if self.output_field.get_internal_type() == 'DurationField': expression = self.get_source_expressions()[0] from django.db.backends.oracle.functions import IntervalToSeconds, SecondsToInterval return compiler.compile( SecondsToInterval(Sum(IntervalToSeconds(expression))) ) return super().as_sql(compiler, connection) class Variance(Aggregate): name = 'Variance' output_field = FloatField() def __init__(self, expression, sample=False, **extra): self.function = 'VAR_SAMP' if sample else 'VAR_POP' super().__init__(expression, **extra) def _get_repr_options(self): return {**super()._get_repr_options(), 'sample': self.function == 'VAR_SAMP'}
1107ab1c514d452a1a54ac86f6e92c1507430ffcc9d9149d9400d0554b781a65
import hashlib from django.db.backends.utils import split_identifier from django.utils.encoding import force_bytes __all__ = ['Index'] class Index: suffix = 'idx' # The max length of the name of the index (restricted to 30 for # cross-database compatibility with Oracle) max_name_length = 30 def __init__(self, *, fields=(), name=None, db_tablespace=None): if not isinstance(fields, (list, tuple)): raise ValueError('Index.fields must be a list or tuple.') if not fields: raise ValueError('At least one field is required to define an index.') self.fields = list(fields) # A list of 2-tuple with the field name and ordering ('' or 'DESC'). self.fields_orders = [ (field_name[1:], 'DESC') if field_name.startswith('-') else (field_name, '') for field_name in self.fields ] self.name = name or '' if self.name: errors = self.check_name() if len(self.name) > self.max_name_length: errors.append('Index names cannot be longer than %s characters.' % self.max_name_length) if errors: raise ValueError(errors) self.db_tablespace = db_tablespace def check_name(self): errors = [] # Name can't start with an underscore on Oracle; prepend D if needed. if self.name[0] == '_': errors.append('Index names cannot start with an underscore (_).') self.name = 'D%s' % self.name[1:] # Name can't start with a number on Oracle; prepend D if needed. elif self.name[0].isdigit(): errors.append('Index names cannot start with a number (0-9).') self.name = 'D%s' % self.name[1:] return errors def create_sql(self, model, schema_editor, using=''): fields = [model._meta.get_field(field_name) for field_name, _ in self.fields_orders] col_suffixes = [order[1] for order in self.fields_orders] return schema_editor._create_index_sql( model, fields, name=self.name, using=using, db_tablespace=self.db_tablespace, col_suffixes=col_suffixes, ) def remove_sql(self, model, schema_editor): quote_name = schema_editor.quote_name return schema_editor.sql_delete_index % { 'table': quote_name(model._meta.db_table), 'name': quote_name(self.name), } def deconstruct(self): path = '%s.%s' % (self.__class__.__module__, self.__class__.__name__) path = path.replace('django.db.models.indexes', 'django.db.models') kwargs = {'fields': self.fields, 'name': self.name} if self.db_tablespace is not None: kwargs['db_tablespace'] = self.db_tablespace return (path, (), kwargs) def clone(self): """Create a copy of this Index.""" _, _, kwargs = self.deconstruct() return self.__class__(**kwargs) @staticmethod def _hash_generator(*args): """ Generate a 32-bit digest of a set of arguments that can be used to shorten identifying names. """ h = hashlib.md5() for arg in args: h.update(force_bytes(arg)) return h.hexdigest()[:6] def set_name_with_model(self, model): """ Generate a unique name for the index. The name is divided into 3 parts - table name (12 chars), field name (8 chars) and unique hash + suffix (10 chars). Each part is made to fit its size by truncating the excess length. """ _, table_name = split_identifier(model._meta.db_table) column_names = [model._meta.get_field(field_name).column for field_name, order in self.fields_orders] column_names_with_order = [ (('-%s' if order else '%s') % column_name) for column_name, (field_name, order) in zip(column_names, self.fields_orders) ] # The length of the parts of the name is based on the default max # length of 30 characters. hash_data = [table_name] + column_names_with_order + [self.suffix] self.name = '%s_%s_%s' % ( table_name[:11], column_names[0][:7], '%s_%s' % (self._hash_generator(*hash_data), self.suffix), ) assert len(self.name) <= self.max_name_length, ( 'Index too long for multiple database support. Is self.suffix ' 'longer than 3 characters?' ) self.check_name() def __repr__(self): return "<%s: fields='%s'>" % (self.__class__.__name__, ', '.join(self.fields)) def __eq__(self, other): return (self.__class__ == other.__class__) and (self.deconstruct() == other.deconstruct())
fdd98af2eedfb4bd2e3584cae7c4f45b74826bd83c21c0d25aa6f0e30f8175be
""" The main QuerySet implementation. This provides the public API for the ORM. """ import copy import operator import warnings from collections import OrderedDict, namedtuple from functools import lru_cache from itertools import chain from django.conf import settings from django.core import exceptions from django.db import ( DJANGO_VERSION_PICKLE_KEY, IntegrityError, connections, router, transaction, ) from django.db.models import DateField, DateTimeField, sql from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import Collector from django.db.models.expressions import F from django.db.models.fields import AutoField from django.db.models.functions import Trunc from django.db.models.query_utils import FilteredRelation, InvalidQuery, Q from django.db.models.sql.constants import CURSOR, GET_ITERATOR_CHUNK_SIZE from django.utils import timezone from django.utils.deprecation import RemovedInDjango30Warning from django.utils.functional import cached_property, partition from django.utils.version import get_version # The maximum number of items to display in a QuerySet.__repr__ REPR_OUTPUT_SIZE = 20 # Pull into this namespace for backwards compatibility. EmptyResultSet = sql.EmptyResultSet class BaseIterable: def __init__(self, queryset, chunked_fetch=False, chunk_size=GET_ITERATOR_CHUNK_SIZE): self.queryset = queryset self.chunked_fetch = chunked_fetch self.chunk_size = chunk_size class ModelIterable(BaseIterable): """Iterable that yields a model instance for each row.""" def __iter__(self): queryset = self.queryset db = queryset.db compiler = queryset.query.get_compiler(using=db) # Execute the query. This will also fill compiler.select, klass_info, # and annotations. results = compiler.execute_sql(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size) select, klass_info, annotation_col_map = (compiler.select, compiler.klass_info, compiler.annotation_col_map) model_cls = klass_info['model'] select_fields = klass_info['select_fields'] model_fields_start, model_fields_end = select_fields[0], select_fields[-1] + 1 init_list = [f[0].target.attname for f in select[model_fields_start:model_fields_end]] related_populators = get_related_populators(klass_info, select, db) for row in compiler.results_iter(results): obj = model_cls.from_db(db, init_list, row[model_fields_start:model_fields_end]) for rel_populator in related_populators: rel_populator.populate(row, obj) if annotation_col_map: for attr_name, col_pos in annotation_col_map.items(): setattr(obj, attr_name, row[col_pos]) # Add the known related objects to the model, if there are any if queryset._known_related_objects: for field, rel_objs in queryset._known_related_objects.items(): # Avoid overwriting objects loaded e.g. by select_related if field.is_cached(obj): continue pk = getattr(obj, field.get_attname()) try: rel_obj = rel_objs[pk] except KeyError: pass # may happen in qs1 | qs2 scenarios else: setattr(obj, field.name, rel_obj) yield obj class ValuesIterable(BaseIterable): """ Iterable returned by QuerySet.values() that yields a dict for each row. """ def __iter__(self): queryset = self.queryset query = queryset.query compiler = query.get_compiler(queryset.db) field_names = list(query.values_select) extra_names = list(query.extra_select) annotation_names = list(query.annotation_select) # extra(select=...) cols are always at the start of the row. names = extra_names + field_names + annotation_names indexes = range(len(names)) for row in compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size): yield {names[i]: row[i] for i in indexes} class ValuesListIterable(BaseIterable): """ Iterable returned by QuerySet.values_list(flat=False) that yields a tuple for each row. """ def __iter__(self): queryset = self.queryset query = queryset.query compiler = query.get_compiler(queryset.db) if queryset._fields: field_names = list(query.values_select) extra_names = list(query.extra_select) annotation_names = list(query.annotation_select) # extra(select=...) cols are always at the start of the row. names = extra_names + field_names + annotation_names fields = list(queryset._fields) + [f for f in annotation_names if f not in queryset._fields] if fields != names: # Reorder according to fields. index_map = {name: idx for idx, name in enumerate(names)} rowfactory = operator.itemgetter(*[index_map[f] for f in fields]) return map( rowfactory, compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size) ) return compiler.results_iter(tuple_expected=True, chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size) class NamedValuesListIterable(ValuesListIterable): """ Iterable returned by QuerySet.values_list(named=True) that yields a namedtuple for each row. """ @staticmethod @lru_cache() def create_namedtuple_class(*names): # Cache namedtuple() with @lru_cache() since it's too slow to be # called for every QuerySet evaluation. return namedtuple('Row', names) def __iter__(self): queryset = self.queryset if queryset._fields: names = queryset._fields else: query = queryset.query names = [*query.extra_select, *query.values_select, *query.annotation_select] tuple_class = self.create_namedtuple_class(*names) new = tuple.__new__ for row in super().__iter__(): yield new(tuple_class, row) class FlatValuesListIterable(BaseIterable): """ Iterable returned by QuerySet.values_list(flat=True) that yields single values. """ def __iter__(self): queryset = self.queryset compiler = queryset.query.get_compiler(queryset.db) for row in compiler.results_iter(chunked_fetch=self.chunked_fetch, chunk_size=self.chunk_size): yield row[0] class QuerySet: """Represent a lazy database lookup for a set of objects.""" def __init__(self, model=None, query=None, using=None, hints=None): self.model = model self._db = using self._hints = hints or {} self.query = query or sql.Query(self.model) self._result_cache = None self._sticky_filter = False self._for_write = False self._prefetch_related_lookups = () self._prefetch_done = False self._known_related_objects = {} # {rel_field: {pk: rel_obj}} self._iterable_class = ModelIterable self._fields = None def as_manager(cls): # Address the circular dependency between `Queryset` and `Manager`. from django.db.models.manager import Manager manager = Manager.from_queryset(cls)() manager._built_with_as_manager = True return manager as_manager.queryset_only = True as_manager = classmethod(as_manager) ######################## # PYTHON MAGIC METHODS # ######################## def __deepcopy__(self, memo): """Don't populate the QuerySet's cache.""" obj = self.__class__() for k, v in self.__dict__.items(): if k == '_result_cache': obj.__dict__[k] = None else: obj.__dict__[k] = copy.deepcopy(v, memo) return obj def __getstate__(self): # Force the cache to be fully populated. self._fetch_all() return {**self.__dict__, DJANGO_VERSION_PICKLE_KEY: get_version()} def __setstate__(self, state): msg = None pickled_version = state.get(DJANGO_VERSION_PICKLE_KEY) if pickled_version: current_version = get_version() if current_version != pickled_version: msg = ( "Pickled queryset instance's Django version %s does not " "match the current version %s." % (pickled_version, current_version) ) else: msg = "Pickled queryset instance's Django version is not specified." if msg: warnings.warn(msg, RuntimeWarning, stacklevel=2) self.__dict__.update(state) def __repr__(self): data = list(self[:REPR_OUTPUT_SIZE + 1]) if len(data) > REPR_OUTPUT_SIZE: data[-1] = "...(remaining elements truncated)..." return '<%s %r>' % (self.__class__.__name__, data) def __len__(self): self._fetch_all() return len(self._result_cache) def __iter__(self): """ The queryset iterator protocol uses three nested iterators in the default case: 1. sql.compiler.execute_sql() - Returns 100 rows at time (constants.GET_ITERATOR_CHUNK_SIZE) using cursor.fetchmany(). This part is responsible for doing some column masking, and returning the rows in chunks. 2. sql.compiler.results_iter() - Returns one row at time. At this point the rows are still just tuples. In some cases the return values are converted to Python values at this location. 3. self.iterator() - Responsible for turning the rows into model objects. """ self._fetch_all() return iter(self._result_cache) def __bool__(self): self._fetch_all() return bool(self._result_cache) def __getitem__(self, k): """Retrieve an item or slice from the set of results.""" if not isinstance(k, (int, slice)): raise TypeError assert ((not isinstance(k, slice) and (k >= 0)) or (isinstance(k, slice) and (k.start is None or k.start >= 0) and (k.stop is None or k.stop >= 0))), \ "Negative indexing is not supported." if self._result_cache is not None: return self._result_cache[k] if isinstance(k, slice): qs = self._chain() if k.start is not None: start = int(k.start) else: start = None if k.stop is not None: stop = int(k.stop) else: stop = None qs.query.set_limits(start, stop) return list(qs)[::k.step] if k.step else qs qs = self._chain() qs.query.set_limits(k, k + 1) qs._fetch_all() return qs._result_cache[0] def __and__(self, other): self._merge_sanity_check(other) if isinstance(other, EmptyQuerySet): return other if isinstance(self, EmptyQuerySet): return self combined = self._chain() combined._merge_known_related_objects(other) combined.query.combine(other.query, sql.AND) return combined def __or__(self, other): self._merge_sanity_check(other) if isinstance(self, EmptyQuerySet): return other if isinstance(other, EmptyQuerySet): return self combined = self._chain() combined._merge_known_related_objects(other) combined.query.combine(other.query, sql.OR) return combined #################################### # METHODS THAT DO DATABASE QUERIES # #################################### def _iterator(self, use_chunked_fetch, chunk_size): yield from self._iterable_class(self, chunked_fetch=use_chunked_fetch, chunk_size=chunk_size) def iterator(self, chunk_size=2000): """ An iterator over the results from applying this QuerySet to the database. """ if chunk_size <= 0: raise ValueError('Chunk size must be strictly positive.') use_chunked_fetch = not connections[self.db].settings_dict.get('DISABLE_SERVER_SIDE_CURSORS') return self._iterator(use_chunked_fetch, chunk_size) def aggregate(self, *args, **kwargs): """ Return a dictionary containing the calculations (aggregation) over the current queryset. If args is present the expression is passed as a kwarg using the Aggregate object's default alias. """ if self.query.distinct_fields: raise NotImplementedError("aggregate() + distinct(fields) not implemented.") self._validate_values_are_expressions(args + tuple(kwargs.values()), method_name='aggregate') for arg in args: # The default_alias property raises TypeError if default_alias # can't be set automatically or AttributeError if it isn't an # attribute. try: arg.default_alias except (AttributeError, TypeError): raise TypeError("Complex aggregates require an alias") kwargs[arg.default_alias] = arg query = self.query.chain() for (alias, aggregate_expr) in kwargs.items(): query.add_annotation(aggregate_expr, alias, is_summary=True) if not query.annotations[alias].contains_aggregate: raise TypeError("%s is not an aggregate expression" % alias) return query.get_aggregation(self.db, kwargs) def count(self): """ Perform a SELECT COUNT() and return the number of records as an integer. If the QuerySet is already fully cached, return the length of the cached results set to avoid multiple SELECT COUNT(*) calls. """ if self._result_cache is not None: return len(self._result_cache) return self.query.get_count(using=self.db) def get(self, *args, **kwargs): """ Perform the query and return a single object matching the given keyword arguments. """ clone = self.filter(*args, **kwargs) if self.query.can_filter() and not self.query.distinct_fields: clone = clone.order_by() num = len(clone) if num == 1: return clone._result_cache[0] if not num: raise self.model.DoesNotExist( "%s matching query does not exist." % self.model._meta.object_name ) raise self.model.MultipleObjectsReturned( "get() returned more than one %s -- it returned %s!" % (self.model._meta.object_name, num) ) def create(self, **kwargs): """ Create a new object with the given kwargs, saving it to the database and returning the created object. """ obj = self.model(**kwargs) self._for_write = True obj.save(force_insert=True, using=self.db) return obj def _populate_pk_values(self, objs): for obj in objs: if obj.pk is None: obj.pk = obj._meta.pk.get_pk_value_on_save(obj) def bulk_create(self, objs, batch_size=None): """ Insert each of the instances into the database. Do *not* call save() on each of the instances, do not send any pre/post_save signals, and do not set the primary key attribute if it is an autoincrement field (except if features.can_return_ids_from_bulk_insert=True). Multi-table models are not supported. """ # When you bulk insert you don't get the primary keys back (if it's an # autoincrement, except if can_return_ids_from_bulk_insert=True), so # you can't insert into the child tables which references this. There # are two workarounds: # 1) This could be implemented if you didn't have an autoincrement pk # 2) You could do it by doing O(n) normal inserts into the parent # tables to get the primary keys back and then doing a single bulk # insert into the childmost table. # We currently set the primary keys on the objects when using # PostgreSQL via the RETURNING ID clause. It should be possible for # Oracle as well, but the semantics for extracting the primary keys is # trickier so it's not done yet. assert batch_size is None or batch_size > 0 # Check that the parents share the same concrete model with the our # model to detect the inheritance pattern ConcreteGrandParent -> # MultiTableParent -> ProxyChild. Simply checking self.model._meta.proxy # would not identify that case as involving multiple tables. for parent in self.model._meta.get_parent_list(): if parent._meta.concrete_model is not self.model._meta.concrete_model: raise ValueError("Can't bulk create a multi-table inherited model") if not objs: return objs self._for_write = True connection = connections[self.db] fields = self.model._meta.concrete_fields objs = list(objs) self._populate_pk_values(objs) with transaction.atomic(using=self.db, savepoint=False): objs_with_pk, objs_without_pk = partition(lambda o: o.pk is None, objs) if objs_with_pk: self._batched_insert(objs_with_pk, fields, batch_size) for obj_with_pk in objs_with_pk: obj_with_pk._state.adding = False obj_with_pk._state.db = self.db if objs_without_pk: fields = [f for f in fields if not isinstance(f, AutoField)] ids = self._batched_insert(objs_without_pk, fields, batch_size) if connection.features.can_return_ids_from_bulk_insert: assert len(ids) == len(objs_without_pk) for obj_without_pk, pk in zip(objs_without_pk, ids): obj_without_pk.pk = pk obj_without_pk._state.adding = False obj_without_pk._state.db = self.db return objs def get_or_create(self, defaults=None, **kwargs): """ Look up an object with the given kwargs, creating one if necessary. Return a tuple of (object, created), where created is a boolean specifying whether an object was created. """ lookup, params = self._extract_model_params(defaults, **kwargs) # The get() needs to be targeted at the write database in order # to avoid potential transaction consistency problems. self._for_write = True try: return self.get(**lookup), False except self.model.DoesNotExist: return self._create_object_from_params(lookup, params) def update_or_create(self, defaults=None, **kwargs): """ Look up an object with the given kwargs, updating one with defaults if it exists, otherwise create a new one. Return a tuple (object, created), where created is a boolean specifying whether an object was created. """ defaults = defaults or {} lookup, params = self._extract_model_params(defaults, **kwargs) self._for_write = True with transaction.atomic(using=self.db): try: obj = self.select_for_update().get(**lookup) except self.model.DoesNotExist: obj, created = self._create_object_from_params(lookup, params) if created: return obj, created for k, v in defaults.items(): setattr(obj, k, v() if callable(v) else v) obj.save(using=self.db) return obj, False def _create_object_from_params(self, lookup, params): """ Try to create an object using passed params. Used by get_or_create() and update_or_create(). """ try: with transaction.atomic(using=self.db): params = {k: v() if callable(v) else v for k, v in params.items()} obj = self.create(**params) return obj, True except IntegrityError as e: try: return self.get(**lookup), False except self.model.DoesNotExist: pass raise e def _extract_model_params(self, defaults, **kwargs): """ Prepare `lookup` (kwargs that are valid model attributes), `params` (for creating a model instance) based on given kwargs; for use by get_or_create() and update_or_create(). """ defaults = defaults or {} lookup = kwargs.copy() for f in self.model._meta.fields: if f.attname in lookup: lookup[f.name] = lookup.pop(f.attname) params = {k: v for k, v in kwargs.items() if LOOKUP_SEP not in k} params.update(defaults) property_names = self.model._meta._property_names invalid_params = [] for param in params: try: self.model._meta.get_field(param) except exceptions.FieldDoesNotExist: # It's okay to use a model's property if it has a setter. if not (param in property_names and getattr(self.model, param).fset): invalid_params.append(param) if invalid_params: raise exceptions.FieldError( "Invalid field name(s) for model %s: '%s'." % ( self.model._meta.object_name, "', '".join(sorted(invalid_params)), )) return lookup, params def _earliest_or_latest(self, *fields, field_name=None): """ Return the latest object, according to the model's 'get_latest_by' option or optional given field_name. """ if fields and field_name is not None: raise ValueError('Cannot use both positional arguments and the field_name keyword argument.') if field_name is not None: warnings.warn( 'The field_name keyword argument to earliest() and latest() ' 'is deprecated in favor of passing positional arguments.', RemovedInDjango30Warning, ) order_by = (field_name,) elif fields: order_by = fields else: order_by = getattr(self.model._meta, 'get_latest_by') if order_by and not isinstance(order_by, (tuple, list)): order_by = (order_by,) if order_by is None: raise ValueError( "earliest() and latest() require either fields as positional " "arguments or 'get_latest_by' in the model's Meta." ) assert self.query.can_filter(), \ "Cannot change a query once a slice has been taken." obj = self._chain() obj.query.set_limits(high=1) obj.query.clear_ordering(force_empty=True) obj.query.add_ordering(*order_by) return obj.get() def earliest(self, *fields, field_name=None): return self._earliest_or_latest(*fields, field_name=field_name) def latest(self, *fields, field_name=None): return self.reverse()._earliest_or_latest(*fields, field_name=field_name) def first(self): """Return the first object of a query or None if no match is found.""" for obj in (self if self.ordered else self.order_by('pk'))[:1]: return obj def last(self): """Return the last object of a query or None if no match is found.""" for obj in (self.reverse() if self.ordered else self.order_by('-pk'))[:1]: return obj def in_bulk(self, id_list=None, *, field_name='pk'): """ Return a dictionary mapping each of the given IDs to the object with that ID. If `id_list` isn't provided, evaluate the entire QuerySet. """ assert self.query.can_filter(), \ "Cannot use 'limit' or 'offset' with in_bulk" if field_name != 'pk' and not self.model._meta.get_field(field_name).unique: raise ValueError("in_bulk()'s field_name must be a unique field but %r isn't." % field_name) if id_list is not None: if not id_list: return {} filter_key = '{}__in'.format(field_name) batch_size = connections[self.db].features.max_query_params id_list = tuple(id_list) # If the database has a limit on the number of query parameters # (e.g. SQLite), retrieve objects in batches if necessary. if batch_size and batch_size < len(id_list): qs = () for offset in range(0, len(id_list), batch_size): batch = id_list[offset:offset + batch_size] qs += tuple(self.filter(**{filter_key: batch}).order_by()) else: qs = self.filter(**{filter_key: id_list}).order_by() else: qs = self._chain() return {getattr(obj, field_name): obj for obj in qs} def delete(self): """Delete the records in the current QuerySet.""" assert self.query.can_filter(), \ "Cannot use 'limit' or 'offset' with delete." if self._fields is not None: raise TypeError("Cannot call delete() after .values() or .values_list()") del_query = self._chain() # The delete is actually 2 queries - one to find related objects, # and one to delete. Make sure that the discovery of related # objects is performed on the same database as the deletion. del_query._for_write = True # Disable non-supported fields. del_query.query.select_for_update = False del_query.query.select_related = False del_query.query.clear_ordering(force_empty=True) collector = Collector(using=del_query.db) collector.collect(del_query) deleted, _rows_count = collector.delete() # Clear the result cache, in case this QuerySet gets reused. self._result_cache = None return deleted, _rows_count delete.alters_data = True delete.queryset_only = True def _raw_delete(self, using): """ Delete objects found from the given queryset in single direct SQL query. No signals are sent and there is no protection for cascades. """ return sql.DeleteQuery(self.model).delete_qs(self, using) _raw_delete.alters_data = True def update(self, **kwargs): """ Update all elements in the current QuerySet, setting all the given fields to the appropriate values. """ assert self.query.can_filter(), \ "Cannot update a query once a slice has been taken." self._for_write = True query = self.query.chain(sql.UpdateQuery) query.add_update_values(kwargs) # Clear any annotations so that they won't be present in subqueries. query._annotations = None with transaction.atomic(using=self.db, savepoint=False): rows = query.get_compiler(self.db).execute_sql(CURSOR) self._result_cache = None return rows update.alters_data = True def _update(self, values): """ A version of update() that accepts field objects instead of field names. Used primarily for model saving and not intended for use by general code (it requires too much poking around at model internals to be useful at that level). """ assert self.query.can_filter(), \ "Cannot update a query once a slice has been taken." query = self.query.chain(sql.UpdateQuery) query.add_update_fields(values) # Clear any annotations so that they won't be present in subqueries. query._annotations = None self._result_cache = None return query.get_compiler(self.db).execute_sql(CURSOR) _update.alters_data = True _update.queryset_only = False def exists(self): if self._result_cache is None: return self.query.has_results(using=self.db) return bool(self._result_cache) def _prefetch_related_objects(self): # This method can only be called once the result cache has been filled. prefetch_related_objects(self._result_cache, *self._prefetch_related_lookups) self._prefetch_done = True def explain(self, *, format=None, **options): return self.query.explain(using=self.db, format=format, **options) ################################################## # PUBLIC METHODS THAT RETURN A QUERYSET SUBCLASS # ################################################## def raw(self, raw_query, params=None, translations=None, using=None): if using is None: using = self.db qs = RawQuerySet(raw_query, model=self.model, params=params, translations=translations, using=using) qs._prefetch_related_lookups = self._prefetch_related_lookups[:] return qs def _values(self, *fields, **expressions): clone = self._chain() if expressions: clone = clone.annotate(**expressions) clone._fields = fields clone.query.set_values(fields) return clone def values(self, *fields, **expressions): fields += tuple(expressions) clone = self._values(*fields, **expressions) clone._iterable_class = ValuesIterable return clone def values_list(self, *fields, flat=False, named=False): if flat and named: raise TypeError("'flat' and 'named' can't be used together.") if flat and len(fields) > 1: raise TypeError("'flat' is not valid when values_list is called with more than one field.") field_names = {f for f in fields if not hasattr(f, 'resolve_expression')} _fields = [] expressions = {} counter = 1 for field in fields: if hasattr(field, 'resolve_expression'): field_id_prefix = getattr(field, 'default_alias', field.__class__.__name__.lower()) while True: field_id = field_id_prefix + str(counter) counter += 1 if field_id not in field_names: break expressions[field_id] = field _fields.append(field_id) else: _fields.append(field) clone = self._values(*_fields, **expressions) clone._iterable_class = ( NamedValuesListIterable if named else FlatValuesListIterable if flat else ValuesListIterable ) return clone def dates(self, field_name, kind, order='ASC'): """ Return a list of date objects representing all available dates for the given field_name, scoped to 'kind'. """ assert kind in ('year', 'month', 'week', 'day'), \ "'kind' must be one of 'year', 'month', 'week', or 'day'." assert order in ('ASC', 'DESC'), \ "'order' must be either 'ASC' or 'DESC'." return self.annotate( datefield=Trunc(field_name, kind, output_field=DateField()), plain_field=F(field_name) ).values_list( 'datefield', flat=True ).distinct().filter(plain_field__isnull=False).order_by(('-' if order == 'DESC' else '') + 'datefield') def datetimes(self, field_name, kind, order='ASC', tzinfo=None): """ Return a list of datetime objects representing all available datetimes for the given field_name, scoped to 'kind'. """ assert kind in ('year', 'month', 'week', 'day', 'hour', 'minute', 'second'), \ "'kind' must be one of 'year', 'month', 'week', 'day', 'hour', 'minute', or 'second'." assert order in ('ASC', 'DESC'), \ "'order' must be either 'ASC' or 'DESC'." if settings.USE_TZ: if tzinfo is None: tzinfo = timezone.get_current_timezone() else: tzinfo = None return self.annotate( datetimefield=Trunc(field_name, kind, output_field=DateTimeField(), tzinfo=tzinfo), plain_field=F(field_name) ).values_list( 'datetimefield', flat=True ).distinct().filter(plain_field__isnull=False).order_by(('-' if order == 'DESC' else '') + 'datetimefield') def none(self): """Return an empty QuerySet.""" clone = self._chain() clone.query.set_empty() return clone ################################################################## # PUBLIC METHODS THAT ALTER ATTRIBUTES AND RETURN A NEW QUERYSET # ################################################################## def all(self): """ Return a new QuerySet that is a copy of the current one. This allows a QuerySet to proxy for a model manager in some cases. """ return self._chain() def filter(self, *args, **kwargs): """ Return a new QuerySet instance with the args ANDed to the existing set. """ return self._filter_or_exclude(False, *args, **kwargs) def exclude(self, *args, **kwargs): """ Return a new QuerySet instance with NOT (args) ANDed to the existing set. """ return self._filter_or_exclude(True, *args, **kwargs) def _filter_or_exclude(self, negate, *args, **kwargs): if args or kwargs: assert self.query.can_filter(), \ "Cannot filter a query once a slice has been taken." clone = self._chain() if negate: clone.query.add_q(~Q(*args, **kwargs)) else: clone.query.add_q(Q(*args, **kwargs)) return clone def complex_filter(self, filter_obj): """ Return a new QuerySet instance with filter_obj added to the filters. filter_obj can be a Q object or a dictionary of keyword lookup arguments. This exists to support framework features such as 'limit_choices_to', and usually it will be more natural to use other methods. """ if isinstance(filter_obj, Q): clone = self._chain() clone.query.add_q(filter_obj) return clone else: return self._filter_or_exclude(None, **filter_obj) def _combinator_query(self, combinator, *other_qs, all=False): # Clone the query to inherit the select list and everything clone = self._chain() # Clear limits and ordering so they can be reapplied clone.query.clear_ordering(True) clone.query.clear_limits() clone.query.combined_queries = (self.query,) + tuple(qs.query for qs in other_qs) clone.query.combinator = combinator clone.query.combinator_all = all return clone def union(self, *other_qs, all=False): # If the query is an EmptyQuerySet, combine all nonempty querysets. if isinstance(self, EmptyQuerySet): qs = [q for q in other_qs if not isinstance(q, EmptyQuerySet)] return qs[0]._combinator_query('union', *qs[1:], all=all) if qs else self return self._combinator_query('union', *other_qs, all=all) def intersection(self, *other_qs): # If any query is an EmptyQuerySet, return it. if isinstance(self, EmptyQuerySet): return self for other in other_qs: if isinstance(other, EmptyQuerySet): return other return self._combinator_query('intersection', *other_qs) def difference(self, *other_qs): # If the query is an EmptyQuerySet, return it. if isinstance(self, EmptyQuerySet): return self return self._combinator_query('difference', *other_qs) def select_for_update(self, nowait=False, skip_locked=False, of=()): """ Return a new QuerySet instance that will select objects with a FOR UPDATE lock. """ if nowait and skip_locked: raise ValueError('The nowait option cannot be used with skip_locked.') obj = self._chain() obj._for_write = True obj.query.select_for_update = True obj.query.select_for_update_nowait = nowait obj.query.select_for_update_skip_locked = skip_locked obj.query.select_for_update_of = of return obj def select_related(self, *fields): """ Return a new QuerySet instance that will select related objects. If fields are specified, they must be ForeignKey fields and only those related objects are included in the selection. If select_related(None) is called, clear the list. """ if self._fields is not None: raise TypeError("Cannot call select_related() after .values() or .values_list()") obj = self._chain() if fields == (None,): obj.query.select_related = False elif fields: obj.query.add_select_related(fields) else: obj.query.select_related = True return obj def prefetch_related(self, *lookups): """ Return a new QuerySet instance that will prefetch the specified Many-To-One and Many-To-Many related objects when the QuerySet is evaluated. When prefetch_related() is called more than once, append to the list of prefetch lookups. If prefetch_related(None) is called, clear the list. """ clone = self._chain() if lookups == (None,): clone._prefetch_related_lookups = () else: for lookup in lookups: if isinstance(lookup, Prefetch): lookup = lookup.prefetch_to lookup = lookup.split(LOOKUP_SEP, 1)[0] if lookup in self.query._filtered_relations: raise ValueError('prefetch_related() is not supported with FilteredRelation.') clone._prefetch_related_lookups = clone._prefetch_related_lookups + lookups return clone def annotate(self, *args, **kwargs): """ Return a query set in which the returned objects have been annotated with extra data or aggregations. """ self._validate_values_are_expressions(args + tuple(kwargs.values()), method_name='annotate') annotations = OrderedDict() # To preserve ordering of args for arg in args: # The default_alias property may raise a TypeError. try: if arg.default_alias in kwargs: raise ValueError("The named annotation '%s' conflicts with the " "default name for another annotation." % arg.default_alias) except TypeError: raise TypeError("Complex annotations require an alias") annotations[arg.default_alias] = arg annotations.update(kwargs) clone = self._chain() names = self._fields if names is None: names = set(chain.from_iterable( (field.name, field.attname) if hasattr(field, 'attname') else (field.name,) for field in self.model._meta.get_fields() )) for alias, annotation in annotations.items(): if alias in names: raise ValueError("The annotation '%s' conflicts with a field on " "the model." % alias) if isinstance(annotation, FilteredRelation): clone.query.add_filtered_relation(annotation, alias) else: clone.query.add_annotation(annotation, alias, is_summary=False) for alias, annotation in clone.query.annotations.items(): if alias in annotations and annotation.contains_aggregate: if clone._fields is None: clone.query.group_by = True else: clone.query.set_group_by() break return clone def order_by(self, *field_names): """Return a new QuerySet instance with the ordering changed.""" assert self.query.can_filter(), \ "Cannot reorder a query once a slice has been taken." obj = self._chain() obj.query.clear_ordering(force_empty=False) obj.query.add_ordering(*field_names) return obj def distinct(self, *field_names): """ Return a new QuerySet instance that will select only distinct results. """ assert self.query.can_filter(), \ "Cannot create distinct fields once a slice has been taken." obj = self._chain() obj.query.add_distinct_fields(*field_names) return obj def extra(self, select=None, where=None, params=None, tables=None, order_by=None, select_params=None): """Add extra SQL fragments to the query.""" assert self.query.can_filter(), \ "Cannot change a query once a slice has been taken" clone = self._chain() clone.query.add_extra(select, select_params, where, params, tables, order_by) return clone def reverse(self): """Reverse the ordering of the QuerySet.""" if not self.query.can_filter(): raise TypeError('Cannot reverse a query once a slice has been taken.') clone = self._chain() clone.query.standard_ordering = not clone.query.standard_ordering return clone def defer(self, *fields): """ Defer the loading of data for certain fields until they are accessed. Add the set of deferred fields to any existing set of deferred fields. The only exception to this is if None is passed in as the only parameter, in which case removal all deferrals. """ if self._fields is not None: raise TypeError("Cannot call defer() after .values() or .values_list()") clone = self._chain() if fields == (None,): clone.query.clear_deferred_loading() else: clone.query.add_deferred_loading(fields) return clone def only(self, *fields): """ Essentially, the opposite of defer(). Only the fields passed into this method and that are not already specified as deferred are loaded immediately when the queryset is evaluated. """ if self._fields is not None: raise TypeError("Cannot call only() after .values() or .values_list()") if fields == (None,): # Can only pass None to defer(), not only(), as the rest option. # That won't stop people trying to do this, so let's be explicit. raise TypeError("Cannot pass None as an argument to only().") for field in fields: field = field.split(LOOKUP_SEP, 1)[0] if field in self.query._filtered_relations: raise ValueError('only() is not supported with FilteredRelation.') clone = self._chain() clone.query.add_immediate_loading(fields) return clone def using(self, alias): """Select which database this QuerySet should execute against.""" clone = self._chain() clone._db = alias return clone ################################### # PUBLIC INTROSPECTION ATTRIBUTES # ################################### @property def ordered(self): """ Return True if the QuerySet is ordered -- i.e. has an order_by() clause or a default ordering on the model. """ if self.query.extra_order_by or self.query.order_by: return True elif self.query.default_ordering and self.query.get_meta().ordering: return True else: return False @property def db(self): """Return the database used if this query is executed now.""" if self._for_write: return self._db or router.db_for_write(self.model, **self._hints) return self._db or router.db_for_read(self.model, **self._hints) ################### # PRIVATE METHODS # ################### def _insert(self, objs, fields, return_id=False, raw=False, using=None): """ Insert a new record for the given model. This provides an interface to the InsertQuery class and is how Model.save() is implemented. """ self._for_write = True if using is None: using = self.db query = sql.InsertQuery(self.model) query.insert_values(fields, objs, raw=raw) return query.get_compiler(using=using).execute_sql(return_id) _insert.alters_data = True _insert.queryset_only = False def _batched_insert(self, objs, fields, batch_size): """ Helper method for bulk_create() to insert objs one batch at a time. """ ops = connections[self.db].ops batch_size = (batch_size or max(ops.bulk_batch_size(fields, objs), 1)) inserted_ids = [] for item in [objs[i:i + batch_size] for i in range(0, len(objs), batch_size)]: if connections[self.db].features.can_return_ids_from_bulk_insert: inserted_id = self._insert(item, fields=fields, using=self.db, return_id=True) if isinstance(inserted_id, list): inserted_ids.extend(inserted_id) else: inserted_ids.append(inserted_id) else: self._insert(item, fields=fields, using=self.db) return inserted_ids def _chain(self, **kwargs): """ Return a copy of the current QuerySet that's ready for another operation. """ obj = self._clone() if obj._sticky_filter: obj.query.filter_is_sticky = True obj._sticky_filter = False obj.__dict__.update(kwargs) return obj def _clone(self): """ Return a copy of the current QuerySet. A lightweight alternative to deepcopy(). """ c = self.__class__(model=self.model, query=self.query.chain(), using=self._db, hints=self._hints) c._sticky_filter = self._sticky_filter c._for_write = self._for_write c._prefetch_related_lookups = self._prefetch_related_lookups[:] c._known_related_objects = self._known_related_objects c._iterable_class = self._iterable_class c._fields = self._fields return c def _fetch_all(self): if self._result_cache is None: self._result_cache = list(self._iterable_class(self)) if self._prefetch_related_lookups and not self._prefetch_done: self._prefetch_related_objects() def _next_is_sticky(self): """ Indicate that the next filter call and the one following that should be treated as a single filter. This is only important when it comes to determining when to reuse tables for many-to-many filters. Required so that we can filter naturally on the results of related managers. This doesn't return a clone of the current QuerySet (it returns "self"). The method is only used internally and should be immediately followed by a filter() that does create a clone. """ self._sticky_filter = True return self def _merge_sanity_check(self, other): """Check that two QuerySet classes may be merged.""" if self._fields is not None and ( set(self.query.values_select) != set(other.query.values_select) or set(self.query.extra_select) != set(other.query.extra_select) or set(self.query.annotation_select) != set(other.query.annotation_select)): raise TypeError( "Merging '%s' classes must involve the same values in each case." % self.__class__.__name__ ) def _merge_known_related_objects(self, other): """ Keep track of all known related objects from either QuerySet instance. """ for field, objects in other._known_related_objects.items(): self._known_related_objects.setdefault(field, {}).update(objects) def resolve_expression(self, *args, **kwargs): if self._fields and len(self._fields) > 1: # values() queryset can only be used as nested queries # if they are set up to select only a single field. raise TypeError('Cannot use multi-field values as a filter value.') query = self.query.resolve_expression(*args, **kwargs) query._db = self._db return query resolve_expression.queryset_only = True def _add_hints(self, **hints): """ Update hinting information for use by routers. Add new key/values or overwrite existing key/values. """ self._hints.update(hints) def _has_filters(self): """ Check if this QuerySet has any filtering going on. This isn't equivalent with checking if all objects are present in results, for example, qs[1:]._has_filters() -> False. """ return self.query.has_filters() @staticmethod def _validate_values_are_expressions(values, method_name): invalid_args = sorted(str(arg) for arg in values if not hasattr(arg, 'resolve_expression')) if invalid_args: raise TypeError( 'QuerySet.%s() received non-expression(s): %s.' % ( method_name, ', '.join(invalid_args), ) ) class InstanceCheckMeta(type): def __instancecheck__(self, instance): return isinstance(instance, QuerySet) and instance.query.is_empty() class EmptyQuerySet(metaclass=InstanceCheckMeta): """ Marker class to checking if a queryset is empty by .none(): isinstance(qs.none(), EmptyQuerySet) -> True """ def __init__(self, *args, **kwargs): raise TypeError("EmptyQuerySet can't be instantiated") class RawQuerySet: """ Provide an iterator which converts the results of raw SQL queries into annotated model instances. """ def __init__(self, raw_query, model=None, query=None, params=None, translations=None, using=None, hints=None): self.raw_query = raw_query self.model = model self._db = using self._hints = hints or {} self.query = query or sql.RawQuery(sql=raw_query, using=self.db, params=params) self.params = params or () self.translations = translations or {} self._result_cache = None self._prefetch_related_lookups = () self._prefetch_done = False def resolve_model_init_order(self): """Resolve the init field names and value positions.""" converter = connections[self.db].introspection.column_name_converter model_init_fields = [f for f in self.model._meta.fields if converter(f.column) in self.columns] annotation_fields = [(column, pos) for pos, column in enumerate(self.columns) if column not in self.model_fields] model_init_order = [self.columns.index(converter(f.column)) for f in model_init_fields] model_init_names = [f.attname for f in model_init_fields] return model_init_names, model_init_order, annotation_fields def prefetch_related(self, *lookups): """Same as QuerySet.prefetch_related()""" clone = self._clone() if lookups == (None,): clone._prefetch_related_lookups = () else: clone._prefetch_related_lookups = clone._prefetch_related_lookups + lookups return clone def _prefetch_related_objects(self): prefetch_related_objects(self._result_cache, *self._prefetch_related_lookups) self._prefetch_done = True def _clone(self): """Same as QuerySet._clone()""" c = self.__class__( self.raw_query, model=self.model, query=self.query, params=self.params, translations=self.translations, using=self._db, hints=self._hints ) c._prefetch_related_lookups = self._prefetch_related_lookups[:] return c def _fetch_all(self): if self._result_cache is None: self._result_cache = list(self.iterator()) if self._prefetch_related_lookups and not self._prefetch_done: self._prefetch_related_objects() def __len__(self): self._fetch_all() return len(self._result_cache) def __bool__(self): self._fetch_all() return bool(self._result_cache) def __iter__(self): self._fetch_all() return iter(self._result_cache) def iterator(self): # Cache some things for performance reasons outside the loop. db = self.db compiler = connections[db].ops.compiler('SQLCompiler')( self.query, connections[db], db ) query = iter(self.query) try: model_init_names, model_init_pos, annotation_fields = self.resolve_model_init_order() if self.model._meta.pk.attname not in model_init_names: raise InvalidQuery('Raw query must include the primary key') model_cls = self.model fields = [self.model_fields.get(c) for c in self.columns] converters = compiler.get_converters([ f.get_col(f.model._meta.db_table) if f else None for f in fields ]) if converters: query = compiler.apply_converters(query, converters) for values in query: # Associate fields to values model_init_values = [values[pos] for pos in model_init_pos] instance = model_cls.from_db(db, model_init_names, model_init_values) if annotation_fields: for column, pos in annotation_fields: setattr(instance, column, values[pos]) yield instance finally: # Done iterating the Query. If it has its own cursor, close it. if hasattr(self.query, 'cursor') and self.query.cursor: self.query.cursor.close() def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self.query) def __getitem__(self, k): return list(self)[k] @property def db(self): """Return the database used if this query is executed now.""" return self._db or router.db_for_read(self.model, **self._hints) def using(self, alias): """Select the database this RawQuerySet should execute against.""" return RawQuerySet( self.raw_query, model=self.model, query=self.query.chain(using=alias), params=self.params, translations=self.translations, using=alias, ) @cached_property def columns(self): """ A list of model field names in the order they'll appear in the query results. """ columns = self.query.get_columns() # Adjust any column names which don't match field names for (query_name, model_name) in self.translations.items(): # Ignore translations for nonexistent column names try: index = columns.index(query_name) except ValueError: pass else: columns[index] = model_name return columns @cached_property def model_fields(self): """A dict mapping column names to model field names.""" converter = connections[self.db].introspection.table_name_converter model_fields = {} for field in self.model._meta.fields: name, column = field.get_attname_column() model_fields[converter(column)] = field return model_fields class Prefetch: def __init__(self, lookup, queryset=None, to_attr=None): # `prefetch_through` is the path we traverse to perform the prefetch. self.prefetch_through = lookup # `prefetch_to` is the path to the attribute that stores the result. self.prefetch_to = lookup if queryset is not None and not issubclass(queryset._iterable_class, ModelIterable): raise ValueError('Prefetch querysets cannot use values().') if to_attr: self.prefetch_to = LOOKUP_SEP.join(lookup.split(LOOKUP_SEP)[:-1] + [to_attr]) self.queryset = queryset self.to_attr = to_attr def __getstate__(self): obj_dict = self.__dict__.copy() if self.queryset is not None: # Prevent the QuerySet from being evaluated obj_dict['queryset'] = self.queryset._chain( _result_cache=[], _prefetch_done=True, ) return obj_dict def add_prefix(self, prefix): self.prefetch_through = prefix + LOOKUP_SEP + self.prefetch_through self.prefetch_to = prefix + LOOKUP_SEP + self.prefetch_to def get_current_prefetch_to(self, level): return LOOKUP_SEP.join(self.prefetch_to.split(LOOKUP_SEP)[:level + 1]) def get_current_to_attr(self, level): parts = self.prefetch_to.split(LOOKUP_SEP) to_attr = parts[level] as_attr = self.to_attr and level == len(parts) - 1 return to_attr, as_attr def get_current_queryset(self, level): if self.get_current_prefetch_to(level) == self.prefetch_to: return self.queryset return None def __eq__(self, other): return isinstance(other, Prefetch) and self.prefetch_to == other.prefetch_to def __hash__(self): return hash((self.__class__, self.prefetch_to)) def normalize_prefetch_lookups(lookups, prefix=None): """Normalize lookups into Prefetch objects.""" ret = [] for lookup in lookups: if not isinstance(lookup, Prefetch): lookup = Prefetch(lookup) if prefix: lookup.add_prefix(prefix) ret.append(lookup) return ret def prefetch_related_objects(model_instances, *related_lookups): """ Populate prefetched object caches for a list of model instances based on the lookups/Prefetch instances given. """ if not model_instances: return # nothing to do # We need to be able to dynamically add to the list of prefetch_related # lookups that we look up (see below). So we need some book keeping to # ensure we don't do duplicate work. done_queries = {} # dictionary of things like 'foo__bar': [results] auto_lookups = set() # we add to this as we go through. followed_descriptors = set() # recursion protection all_lookups = normalize_prefetch_lookups(reversed(related_lookups)) while all_lookups: lookup = all_lookups.pop() if lookup.prefetch_to in done_queries: if lookup.queryset: raise ValueError("'%s' lookup was already seen with a different queryset. " "You may need to adjust the ordering of your lookups." % lookup.prefetch_to) continue # Top level, the list of objects to decorate is the result cache # from the primary QuerySet. It won't be for deeper levels. obj_list = model_instances through_attrs = lookup.prefetch_through.split(LOOKUP_SEP) for level, through_attr in enumerate(through_attrs): # Prepare main instances if not obj_list: break prefetch_to = lookup.get_current_prefetch_to(level) if prefetch_to in done_queries: # Skip any prefetching, and any object preparation obj_list = done_queries[prefetch_to] continue # Prepare objects: good_objects = True for obj in obj_list: # Since prefetching can re-use instances, it is possible to have # the same instance multiple times in obj_list, so obj might # already be prepared. if not hasattr(obj, '_prefetched_objects_cache'): try: obj._prefetched_objects_cache = {} except (AttributeError, TypeError): # Must be an immutable object from # values_list(flat=True), for example (TypeError) or # a QuerySet subclass that isn't returning Model # instances (AttributeError), either in Django or a 3rd # party. prefetch_related() doesn't make sense, so quit. good_objects = False break if not good_objects: break # Descend down tree # We assume that objects retrieved are homogeneous (which is the premise # of prefetch_related), so what applies to first object applies to all. first_obj = obj_list[0] to_attr = lookup.get_current_to_attr(level)[0] prefetcher, descriptor, attr_found, is_fetched = get_prefetcher(first_obj, through_attr, to_attr) if not attr_found: raise AttributeError("Cannot find '%s' on %s object, '%s' is an invalid " "parameter to prefetch_related()" % (through_attr, first_obj.__class__.__name__, lookup.prefetch_through)) if level == len(through_attrs) - 1 and prefetcher is None: # Last one, this *must* resolve to something that supports # prefetching, otherwise there is no point adding it and the # developer asking for it has made a mistake. raise ValueError("'%s' does not resolve to an item that supports " "prefetching - this is an invalid parameter to " "prefetch_related()." % lookup.prefetch_through) if prefetcher is not None and not is_fetched: obj_list, additional_lookups = prefetch_one_level(obj_list, prefetcher, lookup, level) # We need to ensure we don't keep adding lookups from the # same relationships to stop infinite recursion. So, if we # are already on an automatically added lookup, don't add # the new lookups from relationships we've seen already. if not (prefetch_to in done_queries and lookup in auto_lookups and descriptor in followed_descriptors): done_queries[prefetch_to] = obj_list new_lookups = normalize_prefetch_lookups(reversed(additional_lookups), prefetch_to) auto_lookups.update(new_lookups) all_lookups.extend(new_lookups) followed_descriptors.add(descriptor) else: # Either a singly related object that has already been fetched # (e.g. via select_related), or hopefully some other property # that doesn't support prefetching but needs to be traversed. # We replace the current list of parent objects with the list # of related objects, filtering out empty or missing values so # that we can continue with nullable or reverse relations. new_obj_list = [] for obj in obj_list: if through_attr in getattr(obj, '_prefetched_objects_cache', ()): # If related objects have been prefetched, use the # cache rather than the object's through_attr. new_obj = list(obj._prefetched_objects_cache.get(through_attr)) else: try: new_obj = getattr(obj, through_attr) except exceptions.ObjectDoesNotExist: continue if new_obj is None: continue # We special-case `list` rather than something more generic # like `Iterable` because we don't want to accidentally match # user models that define __iter__. if isinstance(new_obj, list): new_obj_list.extend(new_obj) else: new_obj_list.append(new_obj) obj_list = new_obj_list def get_prefetcher(instance, through_attr, to_attr): """ For the attribute 'through_attr' on the given instance, find an object that has a get_prefetch_queryset(). Return a 4 tuple containing: (the object with get_prefetch_queryset (or None), the descriptor object representing this relationship (or None), a boolean that is False if the attribute was not found at all, a boolean that is True if the attribute has already been fetched) """ prefetcher = None is_fetched = False # For singly related objects, we have to avoid getting the attribute # from the object, as this will trigger the query. So we first try # on the class, in order to get the descriptor object. rel_obj_descriptor = getattr(instance.__class__, through_attr, None) if rel_obj_descriptor is None: attr_found = hasattr(instance, through_attr) else: attr_found = True if rel_obj_descriptor: # singly related object, descriptor object has the # get_prefetch_queryset() method. if hasattr(rel_obj_descriptor, 'get_prefetch_queryset'): prefetcher = rel_obj_descriptor if rel_obj_descriptor.is_cached(instance): is_fetched = True else: # descriptor doesn't support prefetching, so we go ahead and get # the attribute on the instance rather than the class to # support many related managers rel_obj = getattr(instance, through_attr) if hasattr(rel_obj, 'get_prefetch_queryset'): prefetcher = rel_obj if through_attr != to_attr: # Special case cached_property instances because hasattr # triggers attribute computation and assignment. if isinstance(getattr(instance.__class__, to_attr, None), cached_property): is_fetched = to_attr in instance.__dict__ else: is_fetched = hasattr(instance, to_attr) else: is_fetched = through_attr in instance._prefetched_objects_cache return prefetcher, rel_obj_descriptor, attr_found, is_fetched def prefetch_one_level(instances, prefetcher, lookup, level): """ Helper function for prefetch_related_objects(). Run prefetches on all instances using the prefetcher object, assigning results to relevant caches in instance. Return the prefetched objects along with any additional prefetches that must be done due to prefetch_related lookups found from default managers. """ # prefetcher must have a method get_prefetch_queryset() which takes a list # of instances, and returns a tuple: # (queryset of instances of self.model that are related to passed in instances, # callable that gets value to be matched for returned instances, # callable that gets value to be matched for passed in instances, # boolean that is True for singly related objects, # cache or field name to assign to, # boolean that is True when the previous argument is a cache name vs a field name). # The 'values to be matched' must be hashable as they will be used # in a dictionary. rel_qs, rel_obj_attr, instance_attr, single, cache_name, is_descriptor = ( prefetcher.get_prefetch_queryset(instances, lookup.get_current_queryset(level))) # We have to handle the possibility that the QuerySet we just got back # contains some prefetch_related lookups. We don't want to trigger the # prefetch_related functionality by evaluating the query. Rather, we need # to merge in the prefetch_related lookups. # Copy the lookups in case it is a Prefetch object which could be reused # later (happens in nested prefetch_related). additional_lookups = [ copy.copy(additional_lookup) for additional_lookup in getattr(rel_qs, '_prefetch_related_lookups', ()) ] if additional_lookups: # Don't need to clone because the manager should have given us a fresh # instance, so we access an internal instead of using public interface # for performance reasons. rel_qs._prefetch_related_lookups = () all_related_objects = list(rel_qs) rel_obj_cache = {} for rel_obj in all_related_objects: rel_attr_val = rel_obj_attr(rel_obj) rel_obj_cache.setdefault(rel_attr_val, []).append(rel_obj) to_attr, as_attr = lookup.get_current_to_attr(level) # Make sure `to_attr` does not conflict with a field. if as_attr and instances: # We assume that objects retrieved are homogeneous (which is the premise # of prefetch_related), so what applies to first object applies to all. model = instances[0].__class__ try: model._meta.get_field(to_attr) except exceptions.FieldDoesNotExist: pass else: msg = 'to_attr={} conflicts with a field on the {} model.' raise ValueError(msg.format(to_attr, model.__name__)) # Whether or not we're prefetching the last part of the lookup. leaf = len(lookup.prefetch_through.split(LOOKUP_SEP)) - 1 == level for obj in instances: instance_attr_val = instance_attr(obj) vals = rel_obj_cache.get(instance_attr_val, []) if single: val = vals[0] if vals else None if as_attr: # A to_attr has been given for the prefetch. setattr(obj, to_attr, val) elif is_descriptor: # cache_name points to a field name in obj. # This field is a descriptor for a related object. setattr(obj, cache_name, val) else: # No to_attr has been given for this prefetch operation and the # cache_name does not point to a descriptor. Store the value of # the field in the object's field cache. obj._state.fields_cache[cache_name] = val else: if as_attr: setattr(obj, to_attr, vals) else: manager = getattr(obj, to_attr) if leaf and lookup.queryset is not None: qs = manager._apply_rel_filters(lookup.queryset) else: qs = manager.get_queryset() qs._result_cache = vals # We don't want the individual qs doing prefetch_related now, # since we have merged this into the current work. qs._prefetch_done = True obj._prefetched_objects_cache[cache_name] = qs return all_related_objects, additional_lookups class RelatedPopulator: """ RelatedPopulator is used for select_related() object instantiation. The idea is that each select_related() model will be populated by a different RelatedPopulator instance. The RelatedPopulator instances get klass_info and select (computed in SQLCompiler) plus the used db as input for initialization. That data is used to compute which columns to use, how to instantiate the model, and how to populate the links between the objects. The actual creation of the objects is done in populate() method. This method gets row and from_obj as input and populates the select_related() model instance. """ def __init__(self, klass_info, select, db): self.db = db # Pre-compute needed attributes. The attributes are: # - model_cls: the possibly deferred model class to instantiate # - either: # - cols_start, cols_end: usually the columns in the row are # in the same order model_cls.__init__ expects them, so we # can instantiate by model_cls(*row[cols_start:cols_end]) # - reorder_for_init: When select_related descends to a child # class, then we want to reuse the already selected parent # data. However, in this case the parent data isn't necessarily # in the same order that Model.__init__ expects it to be, so # we have to reorder the parent data. The reorder_for_init # attribute contains a function used to reorder the field data # in the order __init__ expects it. # - pk_idx: the index of the primary key field in the reordered # model data. Used to check if a related object exists at all. # - init_list: the field attnames fetched from the database. For # deferred models this isn't the same as all attnames of the # model's fields. # - related_populators: a list of RelatedPopulator instances if # select_related() descends to related models from this model. # - local_setter, remote_setter: Methods to set cached values on # the object being populated and on the remote object. Usually # these are Field.set_cached_value() methods. select_fields = klass_info['select_fields'] from_parent = klass_info['from_parent'] if not from_parent: self.cols_start = select_fields[0] self.cols_end = select_fields[-1] + 1 self.init_list = [ f[0].target.attname for f in select[self.cols_start:self.cols_end] ] self.reorder_for_init = None else: attname_indexes = {select[idx][0].target.attname: idx for idx in select_fields} model_init_attnames = (f.attname for f in klass_info['model']._meta.concrete_fields) self.init_list = [attname for attname in model_init_attnames if attname in attname_indexes] self.reorder_for_init = operator.itemgetter(*[attname_indexes[attname] for attname in self.init_list]) self.model_cls = klass_info['model'] self.pk_idx = self.init_list.index(self.model_cls._meta.pk.attname) self.related_populators = get_related_populators(klass_info, select, self.db) self.local_setter = klass_info['local_setter'] self.remote_setter = klass_info['remote_setter'] def populate(self, row, from_obj): if self.reorder_for_init: obj_data = self.reorder_for_init(row) else: obj_data = row[self.cols_start:self.cols_end] if obj_data[self.pk_idx] is None: obj = None else: obj = self.model_cls.from_db(self.db, self.init_list, obj_data) for rel_iter in self.related_populators: rel_iter.populate(row, obj) self.local_setter(from_obj, obj) if obj is not None: self.remote_setter(obj, from_obj) def get_related_populators(klass_info, select, db): iterators = [] related_klass_infos = klass_info.get('related_klass_infos', []) for rel_klass_info in related_klass_infos: rel_cls = RelatedPopulator(rel_klass_info, select, db) iterators.append(rel_cls) return iterators
10186fa0e20b4ea3e8fb0817084ac119b684bd3040bdc628349d6425005ad4dd
from django.core.exceptions import ObjectDoesNotExist from django.db.models import signals from django.db.models.aggregates import * # NOQA from django.db.models.aggregates import __all__ as aggregates_all from django.db.models.deletion import ( CASCADE, DO_NOTHING, PROTECT, SET, SET_DEFAULT, SET_NULL, ProtectedError, ) from django.db.models.expressions import ( Case, Exists, Expression, ExpressionList, ExpressionWrapper, F, Func, OuterRef, RowRange, Subquery, Value, ValueRange, When, Window, WindowFrame, ) from django.db.models.fields import * # NOQA from django.db.models.fields import __all__ as fields_all from django.db.models.fields.files import FileField, ImageField from django.db.models.fields.proxy import OrderWrt from django.db.models.indexes import * # NOQA from django.db.models.indexes import __all__ as indexes_all from django.db.models.lookups import Lookup, Transform from django.db.models.manager import Manager from django.db.models.query import ( Prefetch, Q, QuerySet, prefetch_related_objects, ) from django.db.models.query_utils import FilteredRelation # Imports that would create circular imports if sorted from django.db.models.base import DEFERRED, Model # isort:skip from django.db.models.fields.related import ( # isort:skip ForeignKey, ForeignObject, OneToOneField, ManyToManyField, ManyToOneRel, ManyToManyRel, OneToOneRel, ) __all__ = aggregates_all + fields_all + indexes_all __all__ += [ 'ObjectDoesNotExist', 'signals', 'CASCADE', 'DO_NOTHING', 'PROTECT', 'SET', 'SET_DEFAULT', 'SET_NULL', 'ProtectedError', 'Case', 'Exists', 'Expression', 'ExpressionList', 'ExpressionWrapper', 'F', 'Func', 'OuterRef', 'RowRange', 'Subquery', 'Value', 'ValueRange', 'When', 'Window', 'WindowFrame', 'FileField', 'ImageField', 'OrderWrt', 'Lookup', 'Transform', 'Manager', 'Prefetch', 'Q', 'QuerySet', 'prefetch_related_objects', 'DEFERRED', 'Model', 'FilteredRelation', 'ForeignKey', 'ForeignObject', 'OneToOneField', 'ManyToManyField', 'ManyToOneRel', 'ManyToManyRel', 'OneToOneRel', ]
261a63592f3362ec2f81df6b5e1ddf726f4de51334688e3c1d90680593287d09
import copy import inspect from bisect import bisect from collections import OrderedDict, defaultdict from django.apps import apps from django.conf import settings from django.core.exceptions import FieldDoesNotExist, ImproperlyConfigured from django.db import connections from django.db.models import Manager from django.db.models.fields import AutoField from django.db.models.fields.proxy import OrderWrt from django.db.models.query_utils import PathInfo from django.utils.datastructures import ImmutableList, OrderedSet from django.utils.functional import cached_property from django.utils.text import camel_case_to_spaces, format_lazy from django.utils.translation import override PROXY_PARENTS = object() EMPTY_RELATION_TREE = () IMMUTABLE_WARNING = ( "The return type of '%s' should never be mutated. If you want to manipulate this list " "for your own use, make a copy first." ) DEFAULT_NAMES = ( 'verbose_name', 'verbose_name_plural', 'db_table', 'ordering', 'unique_together', 'permissions', 'get_latest_by', 'order_with_respect_to', 'app_label', 'db_tablespace', 'abstract', 'managed', 'proxy', 'swappable', 'auto_created', 'index_together', 'apps', 'default_permissions', 'select_on_save', 'default_related_name', 'required_db_features', 'required_db_vendor', 'base_manager_name', 'default_manager_name', 'indexes', # For backwards compatibility with Django 1.11. RemovedInDjango30Warning 'manager_inheritance_from_future', ) def normalize_together(option_together): """ option_together can be either a tuple of tuples, or a single tuple of two strings. Normalize it to a tuple of tuples, so that calling code can uniformly expect that. """ try: if not option_together: return () if not isinstance(option_together, (tuple, list)): raise TypeError first_element = option_together[0] if not isinstance(first_element, (tuple, list)): option_together = (option_together,) # Normalize everything to tuples return tuple(tuple(ot) for ot in option_together) except TypeError: # If the value of option_together isn't valid, return it # verbatim; this will be picked up by the check framework later. return option_together def make_immutable_fields_list(name, data): return ImmutableList(data, warning=IMMUTABLE_WARNING % name) class Options: FORWARD_PROPERTIES = { 'fields', 'many_to_many', 'concrete_fields', 'local_concrete_fields', '_forward_fields_map', 'managers', 'managers_map', 'base_manager', 'default_manager', } REVERSE_PROPERTIES = {'related_objects', 'fields_map', '_relation_tree'} default_apps = apps def __init__(self, meta, app_label=None): self._get_fields_cache = {} self.local_fields = [] self.local_many_to_many = [] self.private_fields = [] self.local_managers = [] self.base_manager_name = None self.default_manager_name = None self.model_name = None self.verbose_name = None self.verbose_name_plural = None self.db_table = '' self.ordering = [] self._ordering_clash = False self.indexes = [] self.unique_together = [] self.index_together = [] self.select_on_save = False self.default_permissions = ('add', 'change', 'delete', 'view') self.permissions = [] self.object_name = None self.app_label = app_label self.get_latest_by = None self.order_with_respect_to = None self.db_tablespace = settings.DEFAULT_TABLESPACE self.required_db_features = [] self.required_db_vendor = None self.meta = meta self.pk = None self.auto_field = None self.abstract = False self.managed = True self.proxy = False # For any class that is a proxy (including automatically created # classes for deferred object loading), proxy_for_model tells us # which class this model is proxying. Note that proxy_for_model # can create a chain of proxy models. For non-proxy models, the # variable is always None. self.proxy_for_model = None # For any non-abstract class, the concrete class is the model # in the end of the proxy_for_model chain. In particular, for # concrete models, the concrete_model is always the class itself. self.concrete_model = None self.swappable = None self.parents = OrderedDict() self.auto_created = False # List of all lookups defined in ForeignKey 'limit_choices_to' options # from *other* models. Needed for some admin checks. Internal use only. self.related_fkey_lookups = [] # A custom app registry to use, if you're making a separate model set. self.apps = self.default_apps self.default_related_name = None @property def label(self): return '%s.%s' % (self.app_label, self.object_name) @property def label_lower(self): return '%s.%s' % (self.app_label, self.model_name) @property def app_config(self): # Don't go through get_app_config to avoid triggering imports. return self.apps.app_configs.get(self.app_label) @property def installed(self): return self.app_config is not None def contribute_to_class(self, cls, name): from django.db import connection from django.db.backends.utils import truncate_name cls._meta = self self.model = cls # First, construct the default values for these options. self.object_name = cls.__name__ self.model_name = self.object_name.lower() self.verbose_name = camel_case_to_spaces(self.object_name) # Store the original user-defined values for each option, # for use when serializing the model definition self.original_attrs = {} # Next, apply any overridden values from 'class Meta'. if self.meta: meta_attrs = self.meta.__dict__.copy() for name in self.meta.__dict__: # Ignore any private attributes that Django doesn't care about. # NOTE: We can't modify a dictionary's contents while looping # over it, so we loop over the *original* dictionary instead. if name.startswith('_'): del meta_attrs[name] for attr_name in DEFAULT_NAMES: if attr_name in meta_attrs: setattr(self, attr_name, meta_attrs.pop(attr_name)) self.original_attrs[attr_name] = getattr(self, attr_name) elif hasattr(self.meta, attr_name): setattr(self, attr_name, getattr(self.meta, attr_name)) self.original_attrs[attr_name] = getattr(self, attr_name) self.unique_together = normalize_together(self.unique_together) self.index_together = normalize_together(self.index_together) # verbose_name_plural is a special case because it uses a 's' # by default. if self.verbose_name_plural is None: self.verbose_name_plural = format_lazy('{}s', self.verbose_name) # order_with_respect_and ordering are mutually exclusive. self._ordering_clash = bool(self.ordering and self.order_with_respect_to) # Any leftover attributes must be invalid. if meta_attrs != {}: raise TypeError("'class Meta' got invalid attribute(s): %s" % ','.join(meta_attrs)) else: self.verbose_name_plural = format_lazy('{}s', self.verbose_name) del self.meta # If the db_table wasn't provided, use the app_label + model_name. if not self.db_table: self.db_table = "%s_%s" % (self.app_label, self.model_name) self.db_table = truncate_name(self.db_table, connection.ops.max_name_length()) def _prepare(self, model): if self.order_with_respect_to: # The app registry will not be ready at this point, so we cannot # use get_field(). query = self.order_with_respect_to try: self.order_with_respect_to = next( f for f in self._get_fields(reverse=False) if f.name == query or f.attname == query ) except StopIteration: raise FieldDoesNotExist("%s has no field named '%s'" % (self.object_name, query)) self.ordering = ('_order',) if not any(isinstance(field, OrderWrt) for field in model._meta.local_fields): model.add_to_class('_order', OrderWrt()) else: self.order_with_respect_to = None if self.pk is None: if self.parents: # Promote the first parent link in lieu of adding yet another # field. field = next(iter(self.parents.values())) # Look for a local field with the same name as the # first parent link. If a local field has already been # created, use it instead of promoting the parent already_created = [fld for fld in self.local_fields if fld.name == field.name] if already_created: field = already_created[0] field.primary_key = True self.setup_pk(field) if not field.remote_field.parent_link: raise ImproperlyConfigured( 'Add parent_link=True to %s.' % field, ) else: auto = AutoField(verbose_name='ID', primary_key=True, auto_created=True) model.add_to_class('id', auto) def add_manager(self, manager): self.local_managers.append(manager) self._expire_cache() def add_field(self, field, private=False): # Insert the given field in the order in which it was created, using # the "creation_counter" attribute of the field. # Move many-to-many related fields from self.fields into # self.many_to_many. if private: self.private_fields.append(field) elif field.is_relation and field.many_to_many: self.local_many_to_many.insert(bisect(self.local_many_to_many, field), field) else: self.local_fields.insert(bisect(self.local_fields, field), field) self.setup_pk(field) # If the field being added is a relation to another known field, # expire the cache on this field and the forward cache on the field # being referenced, because there will be new relationships in the # cache. Otherwise, expire the cache of references *to* this field. # The mechanism for getting at the related model is slightly odd - # ideally, we'd just ask for field.related_model. However, related_model # is a cached property, and all the models haven't been loaded yet, so # we need to make sure we don't cache a string reference. if field.is_relation and hasattr(field.remote_field, 'model') and field.remote_field.model: try: field.remote_field.model._meta._expire_cache(forward=False) except AttributeError: pass self._expire_cache() else: self._expire_cache(reverse=False) def setup_pk(self, field): if not self.pk and field.primary_key: self.pk = field field.serialize = False def setup_proxy(self, target): """ Do the internal setup so that the current model is a proxy for "target". """ self.pk = target._meta.pk self.proxy_for_model = target self.db_table = target._meta.db_table def __repr__(self): return '<Options for %s>' % self.object_name def __str__(self): return "%s.%s" % (self.app_label, self.model_name) def can_migrate(self, connection): """ Return True if the model can/should be migrated on the `connection`. `connection` can be either a real connection or a connection alias. """ if self.proxy or self.swapped or not self.managed: return False if isinstance(connection, str): connection = connections[connection] if self.required_db_vendor: return self.required_db_vendor == connection.vendor if self.required_db_features: return all(getattr(connection.features, feat, False) for feat in self.required_db_features) return True @property def verbose_name_raw(self): """Return the untranslated verbose name.""" with override(None): return str(self.verbose_name) @property def swapped(self): """ Has this model been swapped out for another? If so, return the model name of the replacement; otherwise, return None. For historical reasons, model name lookups using get_model() are case insensitive, so we make sure we are case insensitive here. """ if self.swappable: swapped_for = getattr(settings, self.swappable, None) if swapped_for: try: swapped_label, swapped_object = swapped_for.split('.') except ValueError: # setting not in the format app_label.model_name # raising ImproperlyConfigured here causes problems with # test cleanup code - instead it is raised in get_user_model # or as part of validation. return swapped_for if '%s.%s' % (swapped_label, swapped_object.lower()) != self.label_lower: return swapped_for return None @cached_property def managers(self): managers = [] seen_managers = set() bases = (b for b in self.model.mro() if hasattr(b, '_meta')) for depth, base in enumerate(bases): for manager in base._meta.local_managers: if manager.name in seen_managers: continue manager = copy.copy(manager) manager.model = self.model seen_managers.add(manager.name) managers.append((depth, manager.creation_counter, manager)) return make_immutable_fields_list( "managers", (m[2] for m in sorted(managers)), ) @cached_property def managers_map(self): return {manager.name: manager for manager in self.managers} @cached_property def base_manager(self): base_manager_name = self.base_manager_name if not base_manager_name: # Get the first parent's base_manager_name if there's one. for parent in self.model.mro()[1:]: if hasattr(parent, '_meta'): if parent._base_manager.name != '_base_manager': base_manager_name = parent._base_manager.name break if base_manager_name: try: return self.managers_map[base_manager_name] except KeyError: raise ValueError( "%s has no manager named %r" % ( self.object_name, base_manager_name, ) ) manager = Manager() manager.name = '_base_manager' manager.model = self.model manager.auto_created = True return manager @cached_property def default_manager(self): default_manager_name = self.default_manager_name if not default_manager_name and not self.local_managers: # Get the first parent's default_manager_name if there's one. for parent in self.model.mro()[1:]: if hasattr(parent, '_meta'): default_manager_name = parent._meta.default_manager_name break if default_manager_name: try: return self.managers_map[default_manager_name] except KeyError: raise ValueError( "%s has no manager named %r" % ( self.object_name, default_manager_name, ) ) if self.managers: return self.managers[0] @cached_property def fields(self): """ Return a list of all forward fields on the model and its parents, excluding ManyToManyFields. Private API intended only to be used by Django itself; get_fields() combined with filtering of field properties is the public API for obtaining this field list. """ # For legacy reasons, the fields property should only contain forward # fields that are not private or with a m2m cardinality. Therefore we # pass these three filters as filters to the generator. # The third lambda is a longwinded way of checking f.related_model - we don't # use that property directly because related_model is a cached property, # and all the models may not have been loaded yet; we don't want to cache # the string reference to the related_model. def is_not_an_m2m_field(f): return not (f.is_relation and f.many_to_many) def is_not_a_generic_relation(f): return not (f.is_relation and f.one_to_many) def is_not_a_generic_foreign_key(f): return not ( f.is_relation and f.many_to_one and not (hasattr(f.remote_field, 'model') and f.remote_field.model) ) return make_immutable_fields_list( "fields", (f for f in self._get_fields(reverse=False) if is_not_an_m2m_field(f) and is_not_a_generic_relation(f) and is_not_a_generic_foreign_key(f)) ) @cached_property def concrete_fields(self): """ Return a list of all concrete fields on the model and its parents. Private API intended only to be used by Django itself; get_fields() combined with filtering of field properties is the public API for obtaining this field list. """ return make_immutable_fields_list( "concrete_fields", (f for f in self.fields if f.concrete) ) @cached_property def local_concrete_fields(self): """ Return a list of all concrete fields on the model. Private API intended only to be used by Django itself; get_fields() combined with filtering of field properties is the public API for obtaining this field list. """ return make_immutable_fields_list( "local_concrete_fields", (f for f in self.local_fields if f.concrete) ) @cached_property def many_to_many(self): """ Return a list of all many to many fields on the model and its parents. Private API intended only to be used by Django itself; get_fields() combined with filtering of field properties is the public API for obtaining this list. """ return make_immutable_fields_list( "many_to_many", (f for f in self._get_fields(reverse=False) if f.is_relation and f.many_to_many) ) @cached_property def related_objects(self): """ Return all related objects pointing to the current model. The related objects can come from a one-to-one, one-to-many, or many-to-many field relation type. Private API intended only to be used by Django itself; get_fields() combined with filtering of field properties is the public API for obtaining this field list. """ all_related_fields = self._get_fields(forward=False, reverse=True, include_hidden=True) return make_immutable_fields_list( "related_objects", (obj for obj in all_related_fields if not obj.hidden or obj.field.many_to_many) ) @cached_property def _forward_fields_map(self): res = {} fields = self._get_fields(reverse=False) for field in fields: res[field.name] = field # Due to the way Django's internals work, get_field() should also # be able to fetch a field by attname. In the case of a concrete # field with relation, includes the *_id name too try: res[field.attname] = field except AttributeError: pass return res @cached_property def fields_map(self): res = {} fields = self._get_fields(forward=False, include_hidden=True) for field in fields: res[field.name] = field # Due to the way Django's internals work, get_field() should also # be able to fetch a field by attname. In the case of a concrete # field with relation, includes the *_id name too try: res[field.attname] = field except AttributeError: pass return res def get_field(self, field_name): """ Return a field instance given the name of a forward or reverse field. """ try: # In order to avoid premature loading of the relation tree # (expensive) we prefer checking if the field is a forward field. return self._forward_fields_map[field_name] except KeyError: # If the app registry is not ready, reverse fields are # unavailable, therefore we throw a FieldDoesNotExist exception. if not self.apps.models_ready: raise FieldDoesNotExist( "%s has no field named '%s'. The app cache isn't ready yet, " "so if this is an auto-created related field, it won't " "be available yet." % (self.object_name, field_name) ) try: # Retrieve field instance by name from cached or just-computed # field map. return self.fields_map[field_name] except KeyError: raise FieldDoesNotExist("%s has no field named '%s'" % (self.object_name, field_name)) def get_base_chain(self, model): """ Return a list of parent classes leading to `model` (ordered from closest to most distant ancestor). This has to handle the case where `model` is a grandparent or even more distant relation. """ if not self.parents: return [] if model in self.parents: return [model] for parent in self.parents: res = parent._meta.get_base_chain(model) if res: res.insert(0, parent) return res return [] def get_parent_list(self): """ Return all the ancestors of this model as a list ordered by MRO. Useful for determining if something is an ancestor, regardless of lineage. """ result = OrderedSet(self.parents) for parent in self.parents: for ancestor in parent._meta.get_parent_list(): result.add(ancestor) return list(result) def get_ancestor_link(self, ancestor): """ Return the field on the current model which points to the given "ancestor". This is possible an indirect link (a pointer to a parent model, which points, eventually, to the ancestor). Used when constructing table joins for model inheritance. Return None if the model isn't an ancestor of this one. """ if ancestor in self.parents: return self.parents[ancestor] for parent in self.parents: # Tries to get a link field from the immediate parent parent_link = parent._meta.get_ancestor_link(ancestor) if parent_link: # In case of a proxied model, the first link # of the chain to the ancestor is that parent # links return self.parents[parent] or parent_link def get_path_to_parent(self, parent): """ Return a list of PathInfos containing the path from the current model to the parent model, or an empty list if parent is not a parent of the current model. """ if self.model is parent: return [] # Skip the chain of proxy to the concrete proxied model. proxied_model = self.concrete_model path = [] opts = self for int_model in self.get_base_chain(parent): if int_model is proxied_model: opts = int_model._meta else: final_field = opts.parents[int_model] targets = (final_field.remote_field.get_related_field(),) opts = int_model._meta path.append(PathInfo( from_opts=final_field.model._meta, to_opts=opts, target_fields=targets, join_field=final_field, m2m=False, direct=True, filtered_relation=None, )) return path def get_path_from_parent(self, parent): """ Return a list of PathInfos containing the path from the parent model to the current model, or an empty list if parent is not a parent of the current model. """ if self.model is parent: return [] model = self.concrete_model # Get a reversed base chain including both the current and parent # models. chain = model._meta.get_base_chain(parent) chain.reverse() chain.append(model) # Construct a list of the PathInfos between models in chain. path = [] for i, ancestor in enumerate(chain[:-1]): child = chain[i + 1] link = child._meta.get_ancestor_link(ancestor) path.extend(link.get_reverse_path_info()) return path def _populate_directed_relation_graph(self): """ This method is used by each model to find its reverse objects. As this method is very expensive and is accessed frequently (it looks up every field in a model, in every app), it is computed on first access and then is set as a property on every model. """ related_objects_graph = defaultdict(list) all_models = self.apps.get_models(include_auto_created=True) for model in all_models: opts = model._meta # Abstract model's fields are copied to child models, hence we will # see the fields from the child models. if opts.abstract: continue fields_with_relations = ( f for f in opts._get_fields(reverse=False, include_parents=False) if f.is_relation and f.related_model is not None ) for f in fields_with_relations: if not isinstance(f.remote_field.model, str): related_objects_graph[f.remote_field.model._meta.concrete_model._meta].append(f) for model in all_models: # Set the relation_tree using the internal __dict__. In this way # we avoid calling the cached property. In attribute lookup, # __dict__ takes precedence over a data descriptor (such as # @cached_property). This means that the _meta._relation_tree is # only called if related_objects is not in __dict__. related_objects = related_objects_graph[model._meta.concrete_model._meta] model._meta.__dict__['_relation_tree'] = related_objects # It seems it is possible that self is not in all_models, so guard # against that with default for get(). return self.__dict__.get('_relation_tree', EMPTY_RELATION_TREE) @cached_property def _relation_tree(self): return self._populate_directed_relation_graph() def _expire_cache(self, forward=True, reverse=True): # This method is usually called by apps.cache_clear(), when the # registry is finalized, or when a new field is added. if forward: for cache_key in self.FORWARD_PROPERTIES: if cache_key in self.__dict__: delattr(self, cache_key) if reverse and not self.abstract: for cache_key in self.REVERSE_PROPERTIES: if cache_key in self.__dict__: delattr(self, cache_key) self._get_fields_cache = {} def get_fields(self, include_parents=True, include_hidden=False): """ Return a list of fields associated to the model. By default, include forward and reverse fields, fields derived from inheritance, but not hidden fields. The returned fields can be changed using the parameters: - include_parents: include fields derived from inheritance - include_hidden: include fields that have a related_name that starts with a "+" """ if include_parents is False: include_parents = PROXY_PARENTS return self._get_fields(include_parents=include_parents, include_hidden=include_hidden) def _get_fields(self, forward=True, reverse=True, include_parents=True, include_hidden=False, seen_models=None): """ Internal helper function to return fields of the model. * If forward=True, then fields defined on this model are returned. * If reverse=True, then relations pointing to this model are returned. * If include_hidden=True, then fields with is_hidden=True are returned. * The include_parents argument toggles if fields from parent models should be included. It has three values: True, False, and PROXY_PARENTS. When set to PROXY_PARENTS, the call will return all fields defined for the current model or any of its parents in the parent chain to the model's concrete model. """ if include_parents not in (True, False, PROXY_PARENTS): raise TypeError("Invalid argument for include_parents: %s" % (include_parents,)) # This helper function is used to allow recursion in ``get_fields()`` # implementation and to provide a fast way for Django's internals to # access specific subsets of fields. # We must keep track of which models we have already seen. Otherwise we # could include the same field multiple times from different models. topmost_call = seen_models is None if topmost_call: seen_models = set() seen_models.add(self.model) # Creates a cache key composed of all arguments cache_key = (forward, reverse, include_parents, include_hidden, topmost_call) try: # In order to avoid list manipulation. Always return a shallow copy # of the results. return self._get_fields_cache[cache_key] except KeyError: pass fields = [] # Recursively call _get_fields() on each parent, with the same # options provided in this call. if include_parents is not False: for parent in self.parents: # In diamond inheritance it is possible that we see the same # model from two different routes. In that case, avoid adding # fields from the same parent again. if parent in seen_models: continue if (parent._meta.concrete_model != self.concrete_model and include_parents == PROXY_PARENTS): continue for obj in parent._meta._get_fields( forward=forward, reverse=reverse, include_parents=include_parents, include_hidden=include_hidden, seen_models=seen_models): if not getattr(obj, 'parent_link', False) or obj.model == self.concrete_model: fields.append(obj) if reverse and not self.proxy: # Tree is computed once and cached until the app cache is expired. # It is composed of a list of fields pointing to the current model # from other models. all_fields = self._relation_tree for field in all_fields: # If hidden fields should be included or the relation is not # intentionally hidden, add to the fields dict. if include_hidden or not field.remote_field.hidden: fields.append(field.remote_field) if forward: fields += self.local_fields fields += self.local_many_to_many # Private fields are recopied to each child model, and they get a # different model as field.model in each child. Hence we have to # add the private fields separately from the topmost call. If we # did this recursively similar to local_fields, we would get field # instances with field.model != self.model. if topmost_call: fields += self.private_fields # In order to avoid list manipulation. Always # return a shallow copy of the results fields = make_immutable_fields_list("get_fields()", fields) # Store result into cache for later access self._get_fields_cache[cache_key] = fields return fields @cached_property def _property_names(self): """Return a set of the names of the properties defined on the model.""" names = [] for name in dir(self.model): attr = inspect.getattr_static(self.model, name) if isinstance(attr, property): names.append(name) return frozenset(names)
7171b497a5672bd1de85efdc3054ded701ac03e826850b3bc21582d9d9832f4d
import copy import inspect import warnings from functools import partialmethod from itertools import chain from django.apps import apps from django.conf import settings from django.core import checks from django.core.exceptions import ( NON_FIELD_ERRORS, FieldDoesNotExist, FieldError, MultipleObjectsReturned, ObjectDoesNotExist, ValidationError, ) from django.db import ( DEFAULT_DB_ALIAS, DJANGO_VERSION_PICKLE_KEY, DatabaseError, connection, connections, router, transaction, ) from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import CASCADE, Collector from django.db.models.fields.related import ( ForeignObjectRel, OneToOneField, lazy_related_operation, resolve_relation, ) from django.db.models.manager import Manager from django.db.models.options import Options from django.db.models.query import Q from django.db.models.signals import ( class_prepared, post_init, post_save, pre_init, pre_save, ) from django.db.models.utils import make_model_tuple from django.utils.encoding import force_text from django.utils.text import capfirst, get_text_list from django.utils.translation import gettext_lazy as _ from django.utils.version import get_version class Deferred: def __repr__(self): return '<Deferred field>' def __str__(self): return '<Deferred field>' DEFERRED = Deferred() def subclass_exception(name, bases, module, attached_to): """ Create exception subclass. Used by ModelBase below. The exception is created in a way that allows it to be pickled, assuming that the returned exception class will be added as an attribute to the 'attached_to' class. """ return type(name, bases, { '__module__': module, '__qualname__': '%s.%s' % (attached_to.__qualname__, name), }) class ModelBase(type): """Metaclass for all models.""" def __new__(cls, name, bases, attrs, **kwargs): super_new = super().__new__ # Also ensure initialization is only performed for subclasses of Model # (excluding Model class itself). parents = [b for b in bases if isinstance(b, ModelBase)] if not parents: return super_new(cls, name, bases, attrs) # Create the class. module = attrs.pop('__module__') new_attrs = {'__module__': module} classcell = attrs.pop('__classcell__', None) if classcell is not None: new_attrs['__classcell__'] = classcell new_class = super_new(cls, name, bases, new_attrs, **kwargs) attr_meta = attrs.pop('Meta', None) abstract = getattr(attr_meta, 'abstract', False) meta = attr_meta or getattr(new_class, 'Meta', None) base_meta = getattr(new_class, '_meta', None) app_label = None # Look for an application configuration to attach the model to. app_config = apps.get_containing_app_config(module) if getattr(meta, 'app_label', None) is None: if app_config is None: if not abstract: raise RuntimeError( "Model class %s.%s doesn't declare an explicit " "app_label and isn't in an application in " "INSTALLED_APPS." % (module, name) ) else: app_label = app_config.label new_class.add_to_class('_meta', Options(meta, app_label)) if not abstract: new_class.add_to_class( 'DoesNotExist', subclass_exception( 'DoesNotExist', tuple( x.DoesNotExist for x in parents if hasattr(x, '_meta') and not x._meta.abstract ) or (ObjectDoesNotExist,), module, attached_to=new_class)) new_class.add_to_class( 'MultipleObjectsReturned', subclass_exception( 'MultipleObjectsReturned', tuple( x.MultipleObjectsReturned for x in parents if hasattr(x, '_meta') and not x._meta.abstract ) or (MultipleObjectsReturned,), module, attached_to=new_class)) if base_meta and not base_meta.abstract: # Non-abstract child classes inherit some attributes from their # non-abstract parent (unless an ABC comes before it in the # method resolution order). if not hasattr(meta, 'ordering'): new_class._meta.ordering = base_meta.ordering if not hasattr(meta, 'get_latest_by'): new_class._meta.get_latest_by = base_meta.get_latest_by is_proxy = new_class._meta.proxy # If the model is a proxy, ensure that the base class # hasn't been swapped out. if is_proxy and base_meta and base_meta.swapped: raise TypeError("%s cannot proxy the swapped model '%s'." % (name, base_meta.swapped)) # Add all attributes to the class. for obj_name, obj in attrs.items(): new_class.add_to_class(obj_name, obj) # All the fields of any type declared on this model new_fields = chain( new_class._meta.local_fields, new_class._meta.local_many_to_many, new_class._meta.private_fields ) field_names = {f.name for f in new_fields} # Basic setup for proxy models. if is_proxy: base = None for parent in [kls for kls in parents if hasattr(kls, '_meta')]: if parent._meta.abstract: if parent._meta.fields: raise TypeError( "Abstract base class containing model fields not " "permitted for proxy model '%s'." % name ) else: continue if base is None: base = parent elif parent._meta.concrete_model is not base._meta.concrete_model: raise TypeError("Proxy model '%s' has more than one non-abstract model base class." % name) if base is None: raise TypeError("Proxy model '%s' has no non-abstract model base class." % name) new_class._meta.setup_proxy(base) new_class._meta.concrete_model = base._meta.concrete_model else: new_class._meta.concrete_model = new_class # Collect the parent links for multi-table inheritance. parent_links = {} for base in reversed([new_class] + parents): # Conceptually equivalent to `if base is Model`. if not hasattr(base, '_meta'): continue # Skip concrete parent classes. if base != new_class and not base._meta.abstract: continue # Locate OneToOneField instances. for field in base._meta.local_fields: if isinstance(field, OneToOneField): related = resolve_relation(new_class, field.remote_field.model) parent_links[make_model_tuple(related)] = field # Track fields inherited from base models. inherited_attributes = set() # Do the appropriate setup for any model parents. for base in new_class.mro(): if base not in parents or not hasattr(base, '_meta'): # Things without _meta aren't functional models, so they're # uninteresting parents. inherited_attributes.update(base.__dict__) continue parent_fields = base._meta.local_fields + base._meta.local_many_to_many if not base._meta.abstract: # Check for clashes between locally declared fields and those # on the base classes. for field in parent_fields: if field.name in field_names: raise FieldError( 'Local field %r in class %r clashes with field of ' 'the same name from base class %r.' % ( field.name, name, base.__name__, ) ) else: inherited_attributes.add(field.name) # Concrete classes... base = base._meta.concrete_model base_key = make_model_tuple(base) if base_key in parent_links: field = parent_links[base_key] elif not is_proxy: attr_name = '%s_ptr' % base._meta.model_name field = OneToOneField( base, on_delete=CASCADE, name=attr_name, auto_created=True, parent_link=True, ) if attr_name in field_names: raise FieldError( "Auto-generated field '%s' in class %r for " "parent_link to base class %r clashes with " "declared field of the same name." % ( attr_name, name, base.__name__, ) ) # Only add the ptr field if it's not already present; # e.g. migrations will already have it specified if not hasattr(new_class, attr_name): new_class.add_to_class(attr_name, field) else: field = None new_class._meta.parents[base] = field else: base_parents = base._meta.parents.copy() # Add fields from abstract base class if it wasn't overridden. for field in parent_fields: if (field.name not in field_names and field.name not in new_class.__dict__ and field.name not in inherited_attributes): new_field = copy.deepcopy(field) new_class.add_to_class(field.name, new_field) # Replace parent links defined on this base by the new # field. It will be appropriately resolved if required. if field.one_to_one: for parent, parent_link in base_parents.items(): if field == parent_link: base_parents[parent] = new_field # Pass any non-abstract parent classes onto child. new_class._meta.parents.update(base_parents) # Inherit private fields (like GenericForeignKey) from the parent # class for field in base._meta.private_fields: if field.name in field_names: if not base._meta.abstract: raise FieldError( 'Local field %r in class %r clashes with field of ' 'the same name from base class %r.' % ( field.name, name, base.__name__, ) ) else: field = copy.deepcopy(field) field.mti_inherited = True new_class.add_to_class(field.name, field) # Copy indexes so that index names are unique when models extend an # abstract model. new_class._meta.indexes = [copy.deepcopy(idx) for idx in new_class._meta.indexes] if abstract: # Abstract base models can't be instantiated and don't appear in # the list of models for an app. We do the final setup for them a # little differently from normal models. attr_meta.abstract = False new_class.Meta = attr_meta return new_class new_class._prepare() new_class._meta.apps.register_model(new_class._meta.app_label, new_class) return new_class def add_to_class(cls, name, value): # We should call the contribute_to_class method only if it's bound if not inspect.isclass(value) and hasattr(value, 'contribute_to_class'): value.contribute_to_class(cls, name) else: setattr(cls, name, value) def _prepare(cls): """Create some methods once self._meta has been populated.""" opts = cls._meta opts._prepare(cls) if opts.order_with_respect_to: cls.get_next_in_order = partialmethod(cls._get_next_or_previous_in_order, is_next=True) cls.get_previous_in_order = partialmethod(cls._get_next_or_previous_in_order, is_next=False) # Defer creating accessors on the foreign class until it has been # created and registered. If remote_field is None, we're ordering # with respect to a GenericForeignKey and don't know what the # foreign class is - we'll add those accessors later in # contribute_to_class(). if opts.order_with_respect_to.remote_field: wrt = opts.order_with_respect_to remote = wrt.remote_field.model lazy_related_operation(make_foreign_order_accessors, cls, remote) # Give the class a docstring -- its definition. if cls.__doc__ is None: cls.__doc__ = "%s(%s)" % (cls.__name__, ", ".join(f.name for f in opts.fields)) get_absolute_url_override = settings.ABSOLUTE_URL_OVERRIDES.get(opts.label_lower) if get_absolute_url_override: setattr(cls, 'get_absolute_url', get_absolute_url_override) if not opts.managers: if any(f.name == 'objects' for f in opts.fields): raise ValueError( "Model %s must specify a custom Manager, because it has a " "field named 'objects'." % cls.__name__ ) manager = Manager() manager.auto_created = True cls.add_to_class('objects', manager) # Set the name of _meta.indexes. This can't be done in # Options.contribute_to_class() because fields haven't been added to # the model at that point. for index in cls._meta.indexes: if not index.name: index.set_name_with_model(cls) class_prepared.send(sender=cls) @property def _base_manager(cls): return cls._meta.base_manager @property def _default_manager(cls): return cls._meta.default_manager class ModelStateFieldsCacheDescriptor: def __get__(self, instance, cls=None): if instance is None: return self res = instance.fields_cache = {} return res class ModelState: """Store model instance state.""" db = None # If true, uniqueness validation checks will consider this a new, unsaved # object. Necessary for correct validation of new instances of objects with # explicit (non-auto) PKs. This impacts validation only; it has no effect # on the actual save. adding = True fields_cache = ModelStateFieldsCacheDescriptor() class Model(metaclass=ModelBase): def __init__(self, *args, **kwargs): # Alias some things as locals to avoid repeat global lookups cls = self.__class__ opts = self._meta _setattr = setattr _DEFERRED = DEFERRED pre_init.send(sender=cls, args=args, kwargs=kwargs) # Set up the storage for instance state self._state = ModelState() # There is a rather weird disparity here; if kwargs, it's set, then args # overrides it. It should be one or the other; don't duplicate the work # The reason for the kwargs check is that standard iterator passes in by # args, and instantiation for iteration is 33% faster. if len(args) > len(opts.concrete_fields): # Daft, but matches old exception sans the err msg. raise IndexError("Number of args exceeds number of fields") if not kwargs: fields_iter = iter(opts.concrete_fields) # The ordering of the zip calls matter - zip throws StopIteration # when an iter throws it. So if the first iter throws it, the second # is *not* consumed. We rely on this, so don't change the order # without changing the logic. for val, field in zip(args, fields_iter): if val is _DEFERRED: continue _setattr(self, field.attname, val) else: # Slower, kwargs-ready version. fields_iter = iter(opts.fields) for val, field in zip(args, fields_iter): if val is _DEFERRED: continue _setattr(self, field.attname, val) kwargs.pop(field.name, None) # Now we're left with the unprocessed fields that *must* come from # keywords, or default. for field in fields_iter: is_related_object = False # Virtual field if field.attname not in kwargs and field.column is None: continue if kwargs: if isinstance(field.remote_field, ForeignObjectRel): try: # Assume object instance was passed in. rel_obj = kwargs.pop(field.name) is_related_object = True except KeyError: try: # Object instance wasn't passed in -- must be an ID. val = kwargs.pop(field.attname) except KeyError: val = field.get_default() else: # Object instance was passed in. Special case: You can # pass in "None" for related objects if it's allowed. if rel_obj is None and field.null: val = None else: try: val = kwargs.pop(field.attname) except KeyError: # This is done with an exception rather than the # default argument on pop because we don't want # get_default() to be evaluated, and then not used. # Refs #12057. val = field.get_default() else: val = field.get_default() if is_related_object: # If we are passed a related instance, set it using the # field.name instead of field.attname (e.g. "user" instead of # "user_id") so that the object gets properly cached (and type # checked) by the RelatedObjectDescriptor. if rel_obj is not _DEFERRED: _setattr(self, field.name, rel_obj) else: if val is not _DEFERRED: _setattr(self, field.attname, val) if kwargs: property_names = opts._property_names for prop in tuple(kwargs): try: # Any remaining kwargs must correspond to properties or # virtual fields. if prop in property_names or opts.get_field(prop): if kwargs[prop] is not _DEFERRED: _setattr(self, prop, kwargs[prop]) del kwargs[prop] except (AttributeError, FieldDoesNotExist): pass for kwarg in kwargs: raise TypeError("%s() got an unexpected keyword argument '%s'" % (cls.__name__, kwarg)) super().__init__() post_init.send(sender=cls, instance=self) @classmethod def from_db(cls, db, field_names, values): if len(values) != len(cls._meta.concrete_fields): values_iter = iter(values) values = [ next(values_iter) if f.attname in field_names else DEFERRED for f in cls._meta.concrete_fields ] new = cls(*values) new._state.adding = False new._state.db = db return new def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self) def __str__(self): return '%s object (%s)' % (self.__class__.__name__, self.pk) def __eq__(self, other): if not isinstance(other, Model): return False if self._meta.concrete_model != other._meta.concrete_model: return False my_pk = self.pk if my_pk is None: return self is other return my_pk == other.pk def __hash__(self): if self.pk is None: raise TypeError("Model instances without primary key value are unhashable") return hash(self.pk) def __reduce__(self): data = self.__getstate__() data[DJANGO_VERSION_PICKLE_KEY] = get_version() class_id = self._meta.app_label, self._meta.object_name return model_unpickle, (class_id,), data def __getstate__(self): """Hook to allow choosing the attributes to pickle.""" return self.__dict__ def __setstate__(self, state): msg = None pickled_version = state.get(DJANGO_VERSION_PICKLE_KEY) if pickled_version: current_version = get_version() if current_version != pickled_version: msg = ( "Pickled model instance's Django version %s does not match " "the current version %s." % (pickled_version, current_version) ) else: msg = "Pickled model instance's Django version is not specified." if msg: warnings.warn(msg, RuntimeWarning, stacklevel=2) self.__dict__.update(state) def _get_pk_val(self, meta=None): meta = meta or self._meta return getattr(self, meta.pk.attname) def _set_pk_val(self, value): return setattr(self, self._meta.pk.attname, value) pk = property(_get_pk_val, _set_pk_val) def get_deferred_fields(self): """ Return a set containing names of deferred fields for this instance. """ return { f.attname for f in self._meta.concrete_fields if f.attname not in self.__dict__ } def refresh_from_db(self, using=None, fields=None): """ Reload field values from the database. By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn't loaded from any database. The using parameter will override the default. Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded. When accessing deferred fields of an instance, the deferred loading of the field will call this method. """ if fields is not None: if not fields: return if any(LOOKUP_SEP in f for f in fields): raise ValueError( 'Found "%s" in fields argument. Relations and transforms ' 'are not allowed in fields.' % LOOKUP_SEP) hints = {'instance': self} db_instance_qs = self.__class__._base_manager.db_manager(using, hints=hints).filter(pk=self.pk) # Use provided fields, if not set then reload all non-deferred fields. deferred_fields = self.get_deferred_fields() if fields is not None: fields = list(fields) db_instance_qs = db_instance_qs.only(*fields) elif deferred_fields: fields = [f.attname for f in self._meta.concrete_fields if f.attname not in deferred_fields] db_instance_qs = db_instance_qs.only(*fields) db_instance = db_instance_qs.get() non_loaded_fields = db_instance.get_deferred_fields() for field in self._meta.concrete_fields: if field.attname in non_loaded_fields: # This field wasn't refreshed - skip ahead. continue setattr(self, field.attname, getattr(db_instance, field.attname)) # Clear cached foreign keys. if field.is_relation and field.is_cached(self): field.delete_cached_value(self) # Clear cached relations. for field in self._meta.related_objects: if field.is_cached(self): field.delete_cached_value(self) self._state.db = db_instance._state.db def serializable_value(self, field_name): """ Return the value of the field name for this instance. If the field is a foreign key, return the id value instead of the object. If there's no Field object with this name on the model, return the model attribute's value. Used to serialize a field's value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method. """ try: field = self._meta.get_field(field_name) except FieldDoesNotExist: return getattr(self, field_name) return getattr(self, field.attname) def save(self, force_insert=False, force_update=False, using=None, update_fields=None): """ Save the current instance. Override this in a subclass if you want to control the saving process. The 'force_insert' and 'force_update' parameters can be used to insist that the "save" must be an SQL insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set. """ # Ensure that a model instance without a PK hasn't been assigned to # a ForeignKey or OneToOneField on this model. If the field is # nullable, allowing the save() would result in silent data loss. for field in self._meta.concrete_fields: # If the related field isn't cached, then an instance hasn't # been assigned and there's no need to worry about this check. if field.is_relation and field.is_cached(self): obj = getattr(self, field.name, None) # A pk may have been assigned manually to a model instance not # saved to the database (or auto-generated in a case like # UUIDField), but we allow the save to proceed and rely on the # database to raise an IntegrityError if applicable. If # constraints aren't supported by the database, there's the # unavoidable risk of data corruption. if obj and obj.pk is None: # Remove the object from a related instance cache. if not field.remote_field.multiple: field.remote_field.delete_cached_value(obj) raise ValueError( "save() prohibited to prevent data loss due to " "unsaved related object '%s'." % field.name ) # If the relationship's pk was changed, clear the cached # relationship. if obj and obj.pk != getattr(self, field.attname): field.delete_cached_value(self) using = using or router.db_for_write(self.__class__, instance=self) if force_insert and (force_update or update_fields): raise ValueError("Cannot force both insert and updating in model saving.") deferred_fields = self.get_deferred_fields() if update_fields is not None: # If update_fields is empty, skip the save. We do also check for # no-op saves later on for inheritance cases. This bailout is # still needed for skipping signal sending. if not update_fields: return update_fields = frozenset(update_fields) field_names = set() for field in self._meta.fields: if not field.primary_key: field_names.add(field.name) if field.name != field.attname: field_names.add(field.attname) non_model_fields = update_fields.difference(field_names) if non_model_fields: raise ValueError("The following fields do not exist in this " "model or are m2m fields: %s" % ', '.join(non_model_fields)) # If saving to the same database, and this model is deferred, then # automatically do a "update_fields" save on the loaded fields. elif not force_insert and deferred_fields and using == self._state.db: field_names = set() for field in self._meta.concrete_fields: if not field.primary_key and not hasattr(field, 'through'): field_names.add(field.attname) loaded_fields = field_names.difference(deferred_fields) if loaded_fields: update_fields = frozenset(loaded_fields) self.save_base(using=using, force_insert=force_insert, force_update=force_update, update_fields=update_fields) save.alters_data = True def save_base(self, raw=False, force_insert=False, force_update=False, using=None, update_fields=None): """ Handle the parts of saving which should be done only once per save, yet need to be done in raw saves, too. This includes some sanity checks and signal sending. The 'raw' argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading. """ using = using or router.db_for_write(self.__class__, instance=self) assert not (force_insert and (force_update or update_fields)) assert update_fields is None or update_fields cls = origin = self.__class__ # Skip proxies, but keep the origin as the proxy model. if cls._meta.proxy: cls = cls._meta.concrete_model meta = cls._meta if not meta.auto_created: pre_save.send( sender=origin, instance=self, raw=raw, using=using, update_fields=update_fields, ) with transaction.atomic(using=using, savepoint=False): if not raw: self._save_parents(cls, using, update_fields) updated = self._save_table(raw, cls, force_insert, force_update, using, update_fields) # Store the database on which the object was saved self._state.db = using # Once saved, this is no longer a to-be-added instance. self._state.adding = False # Signal that the save is complete if not meta.auto_created: post_save.send( sender=origin, instance=self, created=(not updated), update_fields=update_fields, raw=raw, using=using, ) save_base.alters_data = True def _save_parents(self, cls, using, update_fields): """Save all the parents of cls using values from self.""" meta = cls._meta for parent, field in meta.parents.items(): # Make sure the link fields are synced between parent and self. if (field and getattr(self, parent._meta.pk.attname) is None and getattr(self, field.attname) is not None): setattr(self, parent._meta.pk.attname, getattr(self, field.attname)) self._save_parents(cls=parent, using=using, update_fields=update_fields) self._save_table(cls=parent, using=using, update_fields=update_fields) # Set the parent's PK value to self. if field: setattr(self, field.attname, self._get_pk_val(parent._meta)) # Since we didn't have an instance of the parent handy set # attname directly, bypassing the descriptor. Invalidate # the related object cache, in case it's been accidentally # populated. A fresh instance will be re-built from the # database if necessary. if field.is_cached(self): field.delete_cached_value(self) def _save_table(self, raw=False, cls=None, force_insert=False, force_update=False, using=None, update_fields=None): """ Do the heavy-lifting involved in saving. Update or insert the data for a single table. """ meta = cls._meta non_pks = [f for f in meta.local_concrete_fields if not f.primary_key] if update_fields: non_pks = [f for f in non_pks if f.name in update_fields or f.attname in update_fields] pk_val = self._get_pk_val(meta) if pk_val is None: pk_val = meta.pk.get_pk_value_on_save(self) setattr(self, meta.pk.attname, pk_val) pk_set = pk_val is not None if not pk_set and (force_update or update_fields): raise ValueError("Cannot force an update in save() with no primary key.") updated = False # If possible, try an UPDATE. If that doesn't update anything, do an INSERT. if pk_set and not force_insert: base_qs = cls._base_manager.using(using) values = [(f, None, (getattr(self, f.attname) if raw else f.pre_save(self, False))) for f in non_pks] forced_update = update_fields or force_update updated = self._do_update(base_qs, using, pk_val, values, update_fields, forced_update) if force_update and not updated: raise DatabaseError("Forced update did not affect any rows.") if update_fields and not updated: raise DatabaseError("Save with update_fields did not affect any rows.") if not updated: if meta.order_with_respect_to: # If this is a model with an order_with_respect_to # autopopulate the _order field field = meta.order_with_respect_to filter_args = field.get_filter_kwargs_for_object(self) order_value = cls._base_manager.using(using).filter(**filter_args).count() self._order = order_value fields = meta.local_concrete_fields if not pk_set: fields = [f for f in fields if f is not meta.auto_field] update_pk = meta.auto_field and not pk_set result = self._do_insert(cls._base_manager, using, fields, update_pk, raw) if update_pk: setattr(self, meta.pk.attname, result) return updated def _do_update(self, base_qs, using, pk_val, values, update_fields, forced_update): """ Try to update the model. Return True if the model was updated (if an update query was done and a matching row was found in the DB). """ filtered = base_qs.filter(pk=pk_val) if not values: # We can end up here when saving a model in inheritance chain where # update_fields doesn't target any field in current model. In that # case we just say the update succeeded. Another case ending up here # is a model with just PK - in that case check that the PK still # exists. return update_fields is not None or filtered.exists() if self._meta.select_on_save and not forced_update: return ( filtered.exists() and # It may happen that the object is deleted from the DB right after # this check, causing the subsequent UPDATE to return zero matching # rows. The same result can occur in some rare cases when the # database returns zero despite the UPDATE being executed # successfully (a row is matched and updated). In order to # distinguish these two cases, the object's existence in the # database is again checked for if the UPDATE query returns 0. (filtered._update(values) > 0 or filtered.exists()) ) return filtered._update(values) > 0 def _do_insert(self, manager, using, fields, update_pk, raw): """ Do an INSERT. If update_pk is defined then this method should return the new pk for the model. """ return manager._insert([self], fields=fields, return_id=update_pk, using=using, raw=raw) def delete(self, using=None, keep_parents=False): using = using or router.db_for_write(self.__class__, instance=self) assert self.pk is not None, ( "%s object can't be deleted because its %s attribute is set to None." % (self._meta.object_name, self._meta.pk.attname) ) collector = Collector(using=using) collector.collect([self], keep_parents=keep_parents) return collector.delete() delete.alters_data = True def _get_FIELD_display(self, field): value = getattr(self, field.attname) return force_text(dict(field.flatchoices).get(value, value), strings_only=True) def _get_next_or_previous_by_FIELD(self, field, is_next, **kwargs): if not self.pk: raise ValueError("get_next/get_previous cannot be used on unsaved objects.") op = 'gt' if is_next else 'lt' order = '' if is_next else '-' param = getattr(self, field.attname) q = Q(**{'%s__%s' % (field.name, op): param}) q = q | Q(**{field.name: param, 'pk__%s' % op: self.pk}) qs = self.__class__._default_manager.using(self._state.db).filter(**kwargs).filter(q).order_by( '%s%s' % (order, field.name), '%spk' % order ) try: return qs[0] except IndexError: raise self.DoesNotExist("%s matching query does not exist." % self.__class__._meta.object_name) def _get_next_or_previous_in_order(self, is_next): cachename = "__%s_order_cache" % is_next if not hasattr(self, cachename): op = 'gt' if is_next else 'lt' order = '_order' if is_next else '-_order' order_field = self._meta.order_with_respect_to filter_args = order_field.get_filter_kwargs_for_object(self) obj = self.__class__._default_manager.filter(**filter_args).filter(**{ '_order__%s' % op: self.__class__._default_manager.values('_order').filter(**{ self._meta.pk.name: self.pk }) }).order_by(order)[:1].get() setattr(self, cachename, obj) return getattr(self, cachename) def prepare_database_save(self, field): if self.pk is None: raise ValueError("Unsaved model instance %r cannot be used in an ORM query." % self) return getattr(self, field.remote_field.get_related_field().attname) def clean(self): """ Hook for doing any extra model-wide validation after clean() has been called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS. """ pass def validate_unique(self, exclude=None): """ Check unique constraints on the model and raise ValidationError if any failed. """ unique_checks, date_checks = self._get_unique_checks(exclude=exclude) errors = self._perform_unique_checks(unique_checks) date_errors = self._perform_date_checks(date_checks) for k, v in date_errors.items(): errors.setdefault(k, []).extend(v) if errors: raise ValidationError(errors) def _get_unique_checks(self, exclude=None): """ Return a list of checks to perform. Since validate_unique() could be called from a ModelForm, some fields may have been excluded; we can't perform a unique check on a model that is missing fields involved in that check. Fields that did not validate should also be excluded, but they need to be passed in via the exclude argument. """ if exclude is None: exclude = [] unique_checks = [] unique_togethers = [(self.__class__, self._meta.unique_together)] for parent_class in self._meta.get_parent_list(): if parent_class._meta.unique_together: unique_togethers.append((parent_class, parent_class._meta.unique_together)) for model_class, unique_together in unique_togethers: for check in unique_together: if not any(name in exclude for name in check): # Add the check if the field isn't excluded. unique_checks.append((model_class, tuple(check))) # These are checks for the unique_for_<date/year/month>. date_checks = [] # Gather a list of checks for fields declared as unique and add them to # the list of checks. fields_with_class = [(self.__class__, self._meta.local_fields)] for parent_class in self._meta.get_parent_list(): fields_with_class.append((parent_class, parent_class._meta.local_fields)) for model_class, fields in fields_with_class: for f in fields: name = f.name if name in exclude: continue if f.unique: unique_checks.append((model_class, (name,))) if f.unique_for_date and f.unique_for_date not in exclude: date_checks.append((model_class, 'date', name, f.unique_for_date)) if f.unique_for_year and f.unique_for_year not in exclude: date_checks.append((model_class, 'year', name, f.unique_for_year)) if f.unique_for_month and f.unique_for_month not in exclude: date_checks.append((model_class, 'month', name, f.unique_for_month)) return unique_checks, date_checks def _perform_unique_checks(self, unique_checks): errors = {} for model_class, unique_check in unique_checks: # Try to look up an existing object with the same values as this # object's values for all the unique field. lookup_kwargs = {} for field_name in unique_check: f = self._meta.get_field(field_name) lookup_value = getattr(self, f.attname) # TODO: Handle multiple backends with different feature flags. if (lookup_value is None or (lookup_value == '' and connection.features.interprets_empty_strings_as_nulls)): # no value, skip the lookup continue if f.primary_key and not self._state.adding: # no need to check for unique primary key when editing continue lookup_kwargs[str(field_name)] = lookup_value # some fields were skipped, no reason to do the check if len(unique_check) != len(lookup_kwargs): continue qs = model_class._default_manager.filter(**lookup_kwargs) # Exclude the current object from the query if we are editing an # instance (as opposed to creating a new one) # Note that we need to use the pk as defined by model_class, not # self.pk. These can be different fields because model inheritance # allows single model to have effectively multiple primary keys. # Refs #17615. model_class_pk = self._get_pk_val(model_class._meta) if not self._state.adding and model_class_pk is not None: qs = qs.exclude(pk=model_class_pk) if qs.exists(): if len(unique_check) == 1: key = unique_check[0] else: key = NON_FIELD_ERRORS errors.setdefault(key, []).append(self.unique_error_message(model_class, unique_check)) return errors def _perform_date_checks(self, date_checks): errors = {} for model_class, lookup_type, field, unique_for in date_checks: lookup_kwargs = {} # there's a ticket to add a date lookup, we can remove this special # case if that makes it's way in date = getattr(self, unique_for) if date is None: continue if lookup_type == 'date': lookup_kwargs['%s__day' % unique_for] = date.day lookup_kwargs['%s__month' % unique_for] = date.month lookup_kwargs['%s__year' % unique_for] = date.year else: lookup_kwargs['%s__%s' % (unique_for, lookup_type)] = getattr(date, lookup_type) lookup_kwargs[field] = getattr(self, field) qs = model_class._default_manager.filter(**lookup_kwargs) # Exclude the current object from the query if we are editing an # instance (as opposed to creating a new one) if not self._state.adding and self.pk is not None: qs = qs.exclude(pk=self.pk) if qs.exists(): errors.setdefault(field, []).append( self.date_error_message(lookup_type, field, unique_for) ) return errors def date_error_message(self, lookup_type, field_name, unique_for): opts = self._meta field = opts.get_field(field_name) return ValidationError( message=field.error_messages['unique_for_date'], code='unique_for_date', params={ 'model': self, 'model_name': capfirst(opts.verbose_name), 'lookup_type': lookup_type, 'field': field_name, 'field_label': capfirst(field.verbose_name), 'date_field': unique_for, 'date_field_label': capfirst(opts.get_field(unique_for).verbose_name), } ) def unique_error_message(self, model_class, unique_check): opts = model_class._meta params = { 'model': self, 'model_class': model_class, 'model_name': capfirst(opts.verbose_name), 'unique_check': unique_check, } # A unique field if len(unique_check) == 1: field = opts.get_field(unique_check[0]) params['field_label'] = capfirst(field.verbose_name) return ValidationError( message=field.error_messages['unique'], code='unique', params=params, ) # unique_together else: field_labels = [capfirst(opts.get_field(f).verbose_name) for f in unique_check] params['field_labels'] = get_text_list(field_labels, _('and')) return ValidationError( message=_("%(model_name)s with this %(field_labels)s already exists."), code='unique_together', params=params, ) def full_clean(self, exclude=None, validate_unique=True): """ Call clean_fields(), clean(), and validate_unique() on the model. Raise a ValidationError for any errors that occur. """ errors = {} if exclude is None: exclude = [] else: exclude = list(exclude) try: self.clean_fields(exclude=exclude) except ValidationError as e: errors = e.update_error_dict(errors) # Form.clean() is run even if other validation fails, so do the # same with Model.clean() for consistency. try: self.clean() except ValidationError as e: errors = e.update_error_dict(errors) # Run unique checks, but only for fields that passed validation. if validate_unique: for name in errors: if name != NON_FIELD_ERRORS and name not in exclude: exclude.append(name) try: self.validate_unique(exclude=exclude) except ValidationError as e: errors = e.update_error_dict(errors) if errors: raise ValidationError(errors) def clean_fields(self, exclude=None): """ Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur. """ if exclude is None: exclude = [] errors = {} for f in self._meta.fields: if f.name in exclude: continue # Skip validation for empty fields with blank=True. The developer # is responsible for making sure they have a valid value. raw_value = getattr(self, f.attname) if f.blank and raw_value in f.empty_values: continue try: setattr(self, f.attname, f.clean(raw_value, self)) except ValidationError as e: errors[f.name] = e.error_list if errors: raise ValidationError(errors) @classmethod def check(cls, **kwargs): errors = [*cls._check_swappable(), *cls._check_model(), *cls._check_managers(**kwargs)] if not cls._meta.swapped: errors += [ *cls._check_fields(**kwargs), *cls._check_m2m_through_same_relationship(), *cls._check_long_column_names(), ] clash_errors = ( *cls._check_id_field(), *cls._check_field_name_clashes(), *cls._check_model_name_db_lookup_clashes(), *cls._check_property_name_related_field_accessor_clashes(), *cls._check_single_primary_key(), ) errors.extend(clash_errors) # If there are field name clashes, hide consequent column name # clashes. if not clash_errors: errors.extend(cls._check_column_name_clashes()) errors += [ *cls._check_index_together(), *cls._check_unique_together(), *cls._check_indexes(), *cls._check_ordering(), ] return errors @classmethod def _check_swappable(cls): """Check if the swapped model exists.""" errors = [] if cls._meta.swapped: try: apps.get_model(cls._meta.swapped) except ValueError: errors.append( checks.Error( "'%s' is not of the form 'app_label.app_name'." % cls._meta.swappable, id='models.E001', ) ) except LookupError: app_label, model_name = cls._meta.swapped.split('.') errors.append( checks.Error( "'%s' references '%s.%s', which has not been " "installed, or is abstract." % ( cls._meta.swappable, app_label, model_name ), id='models.E002', ) ) return errors @classmethod def _check_model(cls): errors = [] if cls._meta.proxy: if cls._meta.local_fields or cls._meta.local_many_to_many: errors.append( checks.Error( "Proxy model '%s' contains model fields." % cls.__name__, id='models.E017', ) ) return errors @classmethod def _check_managers(cls, **kwargs): """Perform all manager checks.""" errors = [] for manager in cls._meta.managers: errors.extend(manager.check(**kwargs)) return errors @classmethod def _check_fields(cls, **kwargs): """Perform all field checks.""" errors = [] for field in cls._meta.local_fields: errors.extend(field.check(**kwargs)) for field in cls._meta.local_many_to_many: errors.extend(field.check(from_model=cls, **kwargs)) return errors @classmethod def _check_m2m_through_same_relationship(cls): """ Check if no relationship model is used by more than one m2m field. """ errors = [] seen_intermediary_signatures = [] fields = cls._meta.local_many_to_many # Skip when the target model wasn't found. fields = (f for f in fields if isinstance(f.remote_field.model, ModelBase)) # Skip when the relationship model wasn't found. fields = (f for f in fields if isinstance(f.remote_field.through, ModelBase)) for f in fields: signature = (f.remote_field.model, cls, f.remote_field.through) if signature in seen_intermediary_signatures: errors.append( checks.Error( "The model has two many-to-many relations through " "the intermediate model '%s'." % f.remote_field.through._meta.label, obj=cls, id='models.E003', ) ) else: seen_intermediary_signatures.append(signature) return errors @classmethod def _check_id_field(cls): """Check if `id` field is a primary key.""" fields = [f for f in cls._meta.local_fields if f.name == 'id' and f != cls._meta.pk] # fields is empty or consists of the invalid "id" field if fields and not fields[0].primary_key and cls._meta.pk.name == 'id': return [ checks.Error( "'id' can only be used as a field name if the field also " "sets 'primary_key=True'.", obj=cls, id='models.E004', ) ] else: return [] @classmethod def _check_field_name_clashes(cls): """Forbid field shadowing in multi-table inheritance.""" errors = [] used_fields = {} # name or attname -> field # Check that multi-inheritance doesn't cause field name shadowing. for parent in cls._meta.get_parent_list(): for f in parent._meta.local_fields: clash = used_fields.get(f.name) or used_fields.get(f.attname) or None if clash: errors.append( checks.Error( "The field '%s' from parent model " "'%s' clashes with the field '%s' " "from parent model '%s'." % ( clash.name, clash.model._meta, f.name, f.model._meta ), obj=cls, id='models.E005', ) ) used_fields[f.name] = f used_fields[f.attname] = f # Check that fields defined in the model don't clash with fields from # parents, including auto-generated fields like multi-table inheritance # child accessors. for parent in cls._meta.get_parent_list(): for f in parent._meta.get_fields(): if f not in used_fields: used_fields[f.name] = f for f in cls._meta.local_fields: clash = used_fields.get(f.name) or used_fields.get(f.attname) or None # Note that we may detect clash between user-defined non-unique # field "id" and automatically added unique field "id", both # defined at the same model. This special case is considered in # _check_id_field and here we ignore it. id_conflict = f.name == "id" and clash and clash.name == "id" and clash.model == cls if clash and not id_conflict: errors.append( checks.Error( "The field '%s' clashes with the field '%s' " "from model '%s'." % ( f.name, clash.name, clash.model._meta ), obj=f, id='models.E006', ) ) used_fields[f.name] = f used_fields[f.attname] = f return errors @classmethod def _check_column_name_clashes(cls): # Store a list of column names which have already been used by other fields. used_column_names = [] errors = [] for f in cls._meta.local_fields: _, column_name = f.get_attname_column() # Ensure the column name is not already in use. if column_name and column_name in used_column_names: errors.append( checks.Error( "Field '%s' has column name '%s' that is used by " "another field." % (f.name, column_name), hint="Specify a 'db_column' for the field.", obj=cls, id='models.E007' ) ) else: used_column_names.append(column_name) return errors @classmethod def _check_model_name_db_lookup_clashes(cls): errors = [] model_name = cls.__name__ if model_name.startswith('_') or model_name.endswith('_'): errors.append( checks.Error( "The model name '%s' cannot start or end with an underscore " "as it collides with the query lookup syntax." % model_name, obj=cls, id='models.E023' ) ) elif LOOKUP_SEP in model_name: errors.append( checks.Error( "The model name '%s' cannot contain double underscores as " "it collides with the query lookup syntax." % model_name, obj=cls, id='models.E024' ) ) return errors @classmethod def _check_property_name_related_field_accessor_clashes(cls): errors = [] property_names = cls._meta._property_names related_field_accessors = ( f.get_attname() for f in cls._meta._get_fields(reverse=False) if f.is_relation and f.related_model is not None ) for accessor in related_field_accessors: if accessor in property_names: errors.append( checks.Error( "The property '%s' clashes with a related field " "accessor." % accessor, obj=cls, id='models.E025', ) ) return errors @classmethod def _check_single_primary_key(cls): errors = [] if sum(1 for f in cls._meta.local_fields if f.primary_key) > 1: errors.append( checks.Error( "The model cannot have more than one field with " "'primary_key=True'.", obj=cls, id='models.E026', ) ) return errors @classmethod def _check_index_together(cls): """Check the value of "index_together" option.""" if not isinstance(cls._meta.index_together, (tuple, list)): return [ checks.Error( "'index_together' must be a list or tuple.", obj=cls, id='models.E008', ) ] elif any(not isinstance(fields, (tuple, list)) for fields in cls._meta.index_together): return [ checks.Error( "All 'index_together' elements must be lists or tuples.", obj=cls, id='models.E009', ) ] else: errors = [] for fields in cls._meta.index_together: errors.extend(cls._check_local_fields(fields, "index_together")) return errors @classmethod def _check_unique_together(cls): """Check the value of "unique_together" option.""" if not isinstance(cls._meta.unique_together, (tuple, list)): return [ checks.Error( "'unique_together' must be a list or tuple.", obj=cls, id='models.E010', ) ] elif any(not isinstance(fields, (tuple, list)) for fields in cls._meta.unique_together): return [ checks.Error( "All 'unique_together' elements must be lists or tuples.", obj=cls, id='models.E011', ) ] else: errors = [] for fields in cls._meta.unique_together: errors.extend(cls._check_local_fields(fields, "unique_together")) return errors @classmethod def _check_indexes(cls): """Check the fields of indexes.""" fields = [field for index in cls._meta.indexes for field, _ in index.fields_orders] return cls._check_local_fields(fields, 'indexes') @classmethod def _check_local_fields(cls, fields, option): from django.db import models # In order to avoid hitting the relation tree prematurely, we use our # own fields_map instead of using get_field() forward_fields_map = { field.name: field for field in cls._meta._get_fields(reverse=False) } errors = [] for field_name in fields: try: field = forward_fields_map[field_name] except KeyError: errors.append( checks.Error( "'%s' refers to the nonexistent field '%s'." % ( option, field_name, ), obj=cls, id='models.E012', ) ) else: if isinstance(field.remote_field, models.ManyToManyRel): errors.append( checks.Error( "'%s' refers to a ManyToManyField '%s', but " "ManyToManyFields are not permitted in '%s'." % ( option, field_name, option, ), obj=cls, id='models.E013', ) ) elif field not in cls._meta.local_fields: errors.append( checks.Error( "'%s' refers to field '%s' which is not local to model '%s'." % (option, field_name, cls._meta.object_name), hint="This issue may be caused by multi-table inheritance.", obj=cls, id='models.E016', ) ) return errors @classmethod def _check_ordering(cls): """ Check "ordering" option -- is it a list of strings and do all fields exist? """ if cls._meta._ordering_clash: return [ checks.Error( "'ordering' and 'order_with_respect_to' cannot be used together.", obj=cls, id='models.E021', ), ] if cls._meta.order_with_respect_to or not cls._meta.ordering: return [] if not isinstance(cls._meta.ordering, (list, tuple)): return [ checks.Error( "'ordering' must be a tuple or list (even if you want to order by only one field).", obj=cls, id='models.E014', ) ] errors = [] fields = cls._meta.ordering # Skip expressions and '?' fields. fields = (f for f in fields if isinstance(f, str) and f != '?') # Convert "-field" to "field". fields = ((f[1:] if f.startswith('-') else f) for f in fields) # Skip ordering in the format field1__field2 (FIXME: checking # this format would be nice, but it's a little fiddly). fields = (f for f in fields if LOOKUP_SEP not in f) # Skip ordering on pk. This is always a valid order_by field # but is an alias and therefore won't be found by opts.get_field. fields = {f for f in fields if f != 'pk'} # Check for invalid or nonexistent fields in ordering. invalid_fields = [] # Any field name that is not present in field_names does not exist. # Also, ordering by m2m fields is not allowed. opts = cls._meta valid_fields = set(chain.from_iterable( (f.name, f.attname) if not (f.auto_created and not f.concrete) else (f.field.related_query_name(),) for f in chain(opts.fields, opts.related_objects) )) invalid_fields.extend(fields - valid_fields) for invalid_field in invalid_fields: errors.append( checks.Error( "'ordering' refers to the nonexistent field '%s'." % invalid_field, obj=cls, id='models.E015', ) ) return errors @classmethod def _check_long_column_names(cls): """ Check that any auto-generated column names are shorter than the limits for each database in which the model will be created. """ errors = [] allowed_len = None db_alias = None # Find the minimum max allowed length among all specified db_aliases. for db in settings.DATABASES: # skip databases where the model won't be created if not router.allow_migrate_model(db, cls): continue connection = connections[db] max_name_length = connection.ops.max_name_length() if max_name_length is None or connection.features.truncates_names: continue else: if allowed_len is None: allowed_len = max_name_length db_alias = db elif max_name_length < allowed_len: allowed_len = max_name_length db_alias = db if allowed_len is None: return errors for f in cls._meta.local_fields: _, column_name = f.get_attname_column() # Check if auto-generated name for the field is too long # for the database. if f.db_column is None and column_name is not None and len(column_name) > allowed_len: errors.append( checks.Error( 'Autogenerated column name too long for field "%s". ' 'Maximum length is "%s" for database "%s".' % (column_name, allowed_len, db_alias), hint="Set the column name manually using 'db_column'.", obj=cls, id='models.E018', ) ) for f in cls._meta.local_many_to_many: # Skip nonexistent models. if isinstance(f.remote_field.through, str): continue # Check if auto-generated name for the M2M field is too long # for the database. for m2m in f.remote_field.through._meta.local_fields: _, rel_name = m2m.get_attname_column() if m2m.db_column is None and rel_name is not None and len(rel_name) > allowed_len: errors.append( checks.Error( 'Autogenerated column name too long for M2M field ' '"%s". Maximum length is "%s" for database "%s".' % (rel_name, allowed_len, db_alias), hint=( "Use 'through' to create a separate model for " "M2M and then set column_name using 'db_column'." ), obj=cls, id='models.E019', ) ) return errors ############################################ # HELPER FUNCTIONS (CURRIED MODEL METHODS) # ############################################ # ORDERING METHODS ######################### def method_set_order(self, ordered_obj, id_list, using=None): if using is None: using = DEFAULT_DB_ALIAS order_wrt = ordered_obj._meta.order_with_respect_to filter_args = order_wrt.get_forward_related_filter(self) # FIXME: It would be nice if there was an "update many" version of update # for situations like this. with transaction.atomic(using=using, savepoint=False): for i, j in enumerate(id_list): ordered_obj.objects.filter(pk=j, **filter_args).update(_order=i) def method_get_order(self, ordered_obj): order_wrt = ordered_obj._meta.order_with_respect_to filter_args = order_wrt.get_forward_related_filter(self) pk_name = ordered_obj._meta.pk.name return ordered_obj.objects.filter(**filter_args).values_list(pk_name, flat=True) def make_foreign_order_accessors(model, related_model): setattr( related_model, 'get_%s_order' % model.__name__.lower(), partialmethod(method_get_order, model) ) setattr( related_model, 'set_%s_order' % model.__name__.lower(), partialmethod(method_set_order, model) ) ######## # MISC # ######## def model_unpickle(model_id): """Used to unpickle Model subclasses with deferred fields.""" if isinstance(model_id, tuple): model = apps.get_model(*model_id) else: # Backwards compat - the model was cached directly in earlier versions. model = model_id return model.__new__(model) model_unpickle.__safe_for_unpickle__ = True
5027933bd3788d7b98fc16f20f145d78344e5b6cb48314834a36776dbfaad666
import copy import inspect from importlib import import_module from django.db import router from django.db.models.query import QuerySet class BaseManager: # To retain order, track each time a Manager instance is created. creation_counter = 0 # Set to True for the 'objects' managers that are automatically created. auto_created = False #: If set to True the manager will be serialized into migrations and will #: thus be available in e.g. RunPython operations. use_in_migrations = False def __new__(cls, *args, **kwargs): # Capture the arguments to make returning them trivial. obj = super().__new__(cls) obj._constructor_args = (args, kwargs) return obj def __init__(self): super().__init__() self._set_creation_counter() self.model = None self.name = None self._db = None self._hints = {} def __str__(self): """Return "app_label.model_label.manager_name".""" return '%s.%s' % (self.model._meta.label, self.name) def deconstruct(self): """ Return a 5-tuple of the form (as_manager (True), manager_class, queryset_class, args, kwargs). Raise a ValueError if the manager is dynamically generated. """ qs_class = self._queryset_class if getattr(self, '_built_with_as_manager', False): # using MyQuerySet.as_manager() return ( True, # as_manager None, # manager_class '%s.%s' % (qs_class.__module__, qs_class.__name__), # qs_class None, # args None, # kwargs ) else: module_name = self.__module__ name = self.__class__.__name__ # Make sure it's actually there and not an inner class module = import_module(module_name) if not hasattr(module, name): raise ValueError( "Could not find manager %s in %s.\n" "Please note that you need to inherit from managers you " "dynamically generated with 'from_queryset()'." % (name, module_name) ) return ( False, # as_manager '%s.%s' % (module_name, name), # manager_class None, # qs_class self._constructor_args[0], # args self._constructor_args[1], # kwargs ) def check(self, **kwargs): return [] @classmethod def _get_queryset_methods(cls, queryset_class): def create_method(name, method): def manager_method(self, *args, **kwargs): return getattr(self.get_queryset(), name)(*args, **kwargs) manager_method.__name__ = method.__name__ manager_method.__doc__ = method.__doc__ return manager_method new_methods = {} for name, method in inspect.getmembers(queryset_class, predicate=inspect.isfunction): # Only copy missing methods. if hasattr(cls, name): continue # Only copy public methods or methods with the attribute `queryset_only=False`. queryset_only = getattr(method, 'queryset_only', None) if queryset_only or (queryset_only is None and name.startswith('_')): continue # Copy the method onto the manager. new_methods[name] = create_method(name, method) return new_methods @classmethod def from_queryset(cls, queryset_class, class_name=None): if class_name is None: class_name = '%sFrom%s' % (cls.__name__, queryset_class.__name__) return type(class_name, (cls,), { '_queryset_class': queryset_class, **cls._get_queryset_methods(queryset_class), }) def contribute_to_class(self, model, name): self.name = self.name or name self.model = model setattr(model, name, ManagerDescriptor(self)) model._meta.add_manager(self) def _set_creation_counter(self): """ Set the creation counter value for this instance and increment the class-level copy. """ self.creation_counter = BaseManager.creation_counter BaseManager.creation_counter += 1 def db_manager(self, using=None, hints=None): obj = copy.copy(self) obj._db = using or self._db obj._hints = hints or self._hints return obj @property def db(self): return self._db or router.db_for_read(self.model, **self._hints) ####################### # PROXIES TO QUERYSET # ####################### def get_queryset(self): """ Return a new QuerySet object. Subclasses can override this method to customize the behavior of the Manager. """ return self._queryset_class(model=self.model, using=self._db, hints=self._hints) def all(self): # We can't proxy this method through the `QuerySet` like we do for the # rest of the `QuerySet` methods. This is because `QuerySet.all()` # works by creating a "copy" of the current queryset and in making said # copy, all the cached `prefetch_related` lookups are lost. See the # implementation of `RelatedManager.get_queryset()` for a better # understanding of how this comes into play. return self.get_queryset() def __eq__(self, other): return ( isinstance(other, self.__class__) and self._constructor_args == other._constructor_args ) def __hash__(self): return id(self) class Manager(BaseManager.from_queryset(QuerySet)): pass class ManagerDescriptor: def __init__(self, manager): self.manager = manager def __get__(self, instance, cls=None): if instance is not None: raise AttributeError("Manager isn't accessible via %s instances" % cls.__name__) if cls._meta.abstract: raise AttributeError("Manager isn't available; %s is abstract" % ( cls._meta.object_name, )) if cls._meta.swapped: raise AttributeError( "Manager isn't available; '%s.%s' has been swapped for '%s'" % ( cls._meta.app_label, cls._meta.object_name, cls._meta.swapped, ) ) return cls._meta.managers_map[self.manager.name] class EmptyManager(Manager): def __init__(self, model): super().__init__() self.model = model def get_queryset(self): return super().get_queryset().none()
d6643fccf5691e578efc115d114ef5e1ad3d34cbd2991eb9f93dcfdf58613049
def make_model_tuple(model): """ Take a model or a string of the form "app_label.ModelName" and return a corresponding ("app_label", "modelname") tuple. If a tuple is passed in, assume it's a valid model tuple already and return it unchanged. """ try: if isinstance(model, tuple): model_tuple = model elif isinstance(model, str): app_label, model_name = model.split(".") model_tuple = app_label, model_name.lower() else: model_tuple = model._meta.app_label, model._meta.model_name assert len(model_tuple) == 2 return model_tuple except (ValueError, AssertionError): raise ValueError( "Invalid model reference '%s'. String model references " "must be of the form 'app_label.ModelName'." % model )
29624262e3055ab64fb0b0cf88cd937e4cc2fc7abc81b1185a4bf0faa5c003dc
from functools import partial from django.db.models.utils import make_model_tuple from django.dispatch import Signal class_prepared = Signal(providing_args=["class"]) class ModelSignal(Signal): """ Signal subclass that allows the sender to be lazily specified as a string of the `app_label.ModelName` form. """ def _lazy_method(self, method, apps, receiver, sender, **kwargs): from django.db.models.options import Options # This partial takes a single optional argument named "sender". partial_method = partial(method, receiver, **kwargs) if isinstance(sender, str): apps = apps or Options.default_apps apps.lazy_model_operation(partial_method, make_model_tuple(sender)) else: return partial_method(sender) def connect(self, receiver, sender=None, weak=True, dispatch_uid=None, apps=None): self._lazy_method( super().connect, apps, receiver, sender, weak=weak, dispatch_uid=dispatch_uid, ) def disconnect(self, receiver=None, sender=None, dispatch_uid=None, apps=None): return self._lazy_method( super().disconnect, apps, receiver, sender, dispatch_uid=dispatch_uid ) pre_init = ModelSignal(providing_args=["instance", "args", "kwargs"], use_caching=True) post_init = ModelSignal(providing_args=["instance"], use_caching=True) pre_save = ModelSignal(providing_args=["instance", "raw", "using", "update_fields"], use_caching=True) post_save = ModelSignal(providing_args=["instance", "raw", "created", "using", "update_fields"], use_caching=True) pre_delete = ModelSignal(providing_args=["instance", "using"], use_caching=True) post_delete = ModelSignal(providing_args=["instance", "using"], use_caching=True) m2m_changed = ModelSignal( providing_args=["action", "instance", "reverse", "model", "pk_set", "using"], use_caching=True, ) pre_migrate = Signal(providing_args=["app_config", "verbosity", "interactive", "using", "apps", "plan"]) post_migrate = Signal(providing_args=["app_config", "verbosity", "interactive", "using", "apps", "plan"])
9a82f4df251e655b5c4edbda5042ba6d734782cda7ed8aa39ed5eef94c6de8da
""" Various data structures used in query construction. Factored out from django.db.models.query to avoid making the main module very large and/or so that they can be used by other modules without getting into circular import difficulties. """ import copy import functools import inspect from collections import namedtuple from django.db.models.constants import LOOKUP_SEP from django.utils import tree # PathInfo is used when converting lookups (fk__somecol). The contents # describe the relation in Model terms (model Options and Fields for both # sides of the relation. The join_field is the field backing the relation. PathInfo = namedtuple('PathInfo', 'from_opts to_opts target_fields join_field m2m direct filtered_relation') class InvalidQuery(Exception): """The query passed to raw() isn't a safe query to use with raw().""" pass def subclasses(cls): yield cls for subclass in cls.__subclasses__(): yield from subclasses(subclass) class QueryWrapper: """ A type that indicates the contents are an SQL fragment and the associate parameters. Can be used to pass opaque data to a where-clause, for example. """ contains_aggregate = False def __init__(self, sql, params): self.data = sql, list(params) def as_sql(self, compiler=None, connection=None): return self.data class Q(tree.Node): """ Encapsulate filters as objects that can then be combined logically (using `&` and `|`). """ # Connection types AND = 'AND' OR = 'OR' default = AND conditional = True def __init__(self, *args, **kwargs): connector = kwargs.pop('_connector', None) negated = kwargs.pop('_negated', False) super().__init__(children=list(args) + sorted(kwargs.items()), connector=connector, negated=negated) def _combine(self, other, conn): if not isinstance(other, Q): raise TypeError(other) # If the other Q() is empty, ignore it and just use `self`. if not other: return copy.deepcopy(self) # Or if this Q is empty, ignore it and just use `other`. elif not self: return copy.deepcopy(other) obj = type(self)() obj.connector = conn obj.add(self, conn) obj.add(other, conn) return obj def __or__(self, other): return self._combine(other, self.OR) def __and__(self, other): return self._combine(other, self.AND) def __invert__(self): obj = type(self)() obj.add(self, self.AND) obj.negate() return obj def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): # We must promote any new joins to left outer joins so that when Q is # used as an expression, rows aren't filtered due to joins. clause, joins = query._add_q(self, reuse, allow_joins=allow_joins, split_subq=False) query.promote_joins(joins) return clause def deconstruct(self): path = '%s.%s' % (self.__class__.__module__, self.__class__.__name__) if path.startswith('django.db.models.query_utils'): path = path.replace('django.db.models.query_utils', 'django.db.models') args, kwargs = (), {} if len(self.children) == 1 and not isinstance(self.children[0], Q): child = self.children[0] kwargs = {child[0]: child[1]} else: args = tuple(self.children) if self.connector != self.default: kwargs = {'_connector': self.connector} if self.negated: kwargs['_negated'] = True return path, args, kwargs class DeferredAttribute: """ A wrapper for a deferred-loading field. When the value is read from this object the first time, the query is executed. """ def __init__(self, field_name): self.field_name = field_name def __get__(self, instance, cls=None): """ Retrieve and caches the value from the datastore on the first lookup. Return the cached value. """ if instance is None: return self data = instance.__dict__ if data.get(self.field_name, self) is self: # Let's see if the field is part of the parent chain. If so we # might be able to reuse the already loaded value. Refs #18343. val = self._check_parent_chain(instance, self.field_name) if val is None: instance.refresh_from_db(fields=[self.field_name]) val = getattr(instance, self.field_name) data[self.field_name] = val return data[self.field_name] def _check_parent_chain(self, instance, name): """ Check if the field value can be fetched from a parent field already loaded in the instance. This can be done if the to-be fetched field is a primary key field. """ opts = instance._meta f = opts.get_field(name) link_field = opts.get_ancestor_link(f.model) if f.primary_key and f != link_field: return getattr(instance, link_field.attname) return None class RegisterLookupMixin: @classmethod def _get_lookup(cls, lookup_name): return cls.get_lookups().get(lookup_name, None) @classmethod @functools.lru_cache(maxsize=None) def get_lookups(cls): class_lookups = [parent.__dict__.get('class_lookups', {}) for parent in inspect.getmro(cls)] return cls.merge_dicts(class_lookups) def get_lookup(self, lookup_name): from django.db.models.lookups import Lookup found = self._get_lookup(lookup_name) if found is None and hasattr(self, 'output_field'): return self.output_field.get_lookup(lookup_name) if found is not None and not issubclass(found, Lookup): return None return found def get_transform(self, lookup_name): from django.db.models.lookups import Transform found = self._get_lookup(lookup_name) if found is None and hasattr(self, 'output_field'): return self.output_field.get_transform(lookup_name) if found is not None and not issubclass(found, Transform): return None return found @staticmethod def merge_dicts(dicts): """ Merge dicts in reverse to preference the order of the original list. e.g., merge_dicts([a, b]) will preference the keys in 'a' over those in 'b'. """ merged = {} for d in reversed(dicts): merged.update(d) return merged @classmethod def _clear_cached_lookups(cls): for subclass in subclasses(cls): subclass.get_lookups.cache_clear() @classmethod def register_lookup(cls, lookup, lookup_name=None): if lookup_name is None: lookup_name = lookup.lookup_name if 'class_lookups' not in cls.__dict__: cls.class_lookups = {} cls.class_lookups[lookup_name] = lookup cls._clear_cached_lookups() return lookup @classmethod def _unregister_lookup(cls, lookup, lookup_name=None): """ Remove given lookup from cls lookups. For use in tests only as it's not thread-safe. """ if lookup_name is None: lookup_name = lookup.lookup_name del cls.class_lookups[lookup_name] def select_related_descend(field, restricted, requested, load_fields, reverse=False): """ Return True if this field should be used to descend deeper for select_related() purposes. Used by both the query construction code (sql.query.fill_related_selections()) and the model instance creation code (query.get_klass_info()). Arguments: * field - the field to be checked * restricted - a boolean field, indicating if the field list has been manually restricted using a requested clause) * requested - The select_related() dictionary. * load_fields - the set of fields to be loaded on this model * reverse - boolean, True if we are checking a reverse select related """ if not field.remote_field: return False if field.remote_field.parent_link and not reverse: return False if restricted: if reverse and field.related_query_name() not in requested: return False if not reverse and field.name not in requested: return False if not restricted and field.null: return False if load_fields: if field.attname not in load_fields: if restricted and field.name in requested: raise InvalidQuery("Field %s.%s cannot be both deferred" " and traversed using select_related" " at the same time." % (field.model._meta.object_name, field.name)) return True def refs_expression(lookup_parts, annotations): """ Check if the lookup_parts contains references to the given annotations set. Because the LOOKUP_SEP is contained in the default annotation names, check each prefix of the lookup_parts for a match. """ for n in range(1, len(lookup_parts) + 1): level_n_lookup = LOOKUP_SEP.join(lookup_parts[0:n]) if level_n_lookup in annotations and annotations[level_n_lookup]: return annotations[level_n_lookup], lookup_parts[n:] return False, () def check_rel_lookup_compatibility(model, target_opts, field): """ Check that self.model is compatible with target_opts. Compatibility is OK if: 1) model and opts match (where proxy inheritance is removed) 2) model is parent of opts' model or the other way around """ def check(opts): return ( model._meta.concrete_model == opts.concrete_model or opts.concrete_model in model._meta.get_parent_list() or model in opts.get_parent_list() ) # If the field is a primary key, then doing a query against the field's # model is ok, too. Consider the case: # class Restaurant(models.Model): # place = OnetoOneField(Place, primary_key=True): # Restaurant.objects.filter(pk__in=Restaurant.objects.all()). # If we didn't have the primary key check, then pk__in (== place__in) would # give Place's opts as the target opts, but Restaurant isn't compatible # with that. This logic applies only to primary keys, as when doing __in=qs, # we are going to turn this into __in=qs.values('pk') later on. return ( check(target_opts) or (getattr(field, 'primary_key', False) and check(field.model._meta)) ) class FilteredRelation: """Specify custom filtering in the ON clause of SQL joins.""" def __init__(self, relation_name, *, condition=Q()): if not relation_name: raise ValueError('relation_name cannot be empty.') self.relation_name = relation_name self.alias = None if not isinstance(condition, Q): raise ValueError('condition argument must be a Q() instance.') self.condition = condition self.path = [] def __eq__(self, other): return ( isinstance(other, self.__class__) and self.relation_name == other.relation_name and self.alias == other.alias and self.condition == other.condition ) def clone(self): clone = FilteredRelation(self.relation_name, condition=self.condition) clone.alias = self.alias clone.path = self.path[:] return clone def resolve_expression(self, *args, **kwargs): """ QuerySet.annotate() only accepts expression-like arguments (with a resolve_expression() method). """ raise NotImplementedError('FilteredRelation.resolve_expression() is unused.') def as_sql(self, compiler, connection): # Resolve the condition in Join.filtered_relation. query = compiler.query where = query.build_filtered_relation_q(self.condition, reuse=set(self.path)) return compiler.compile(where)
06cb452eb1bfaca0472fe219ee2a9763db9228b2fa20e28e8e179705eb426a7d
""" Constants used across the ORM in general. """ # Separator used to split filter strings apart. LOOKUP_SEP = '__'
a57a167eebc765bb4f0579f0da94c98a0b716ae2ff2ba751012074301f770c34
import copy import datetime from decimal import Decimal from django.core.exceptions import EmptyResultSet, FieldError from django.db import connection from django.db.models import fields from django.db.models.query_utils import Q from django.utils.deconstruct import deconstructible from django.utils.functional import cached_property class SQLiteNumericMixin: """ Some expressions with output_field=DecimalField() must be cast to numeric to be properly filtered. """ def as_sqlite(self, compiler, connection, **extra_context): sql, params = self.as_sql(compiler, connection, **extra_context) try: if self.output_field.get_internal_type() == 'DecimalField': sql = 'CAST(%s AS NUMERIC)' % sql except FieldError: pass return sql, params class Combinable: """ Provide the ability to combine one or two objects with some connector. For example F('foo') + F('bar'). """ # Arithmetic connectors ADD = '+' SUB = '-' MUL = '*' DIV = '/' POW = '^' # The following is a quoted % operator - it is quoted because it can be # used in strings that also have parameter substitution. MOD = '%%' # Bitwise operators - note that these are generated by .bitand() # and .bitor(), the '&' and '|' are reserved for boolean operator # usage. BITAND = '&' BITOR = '|' BITLEFTSHIFT = '<<' BITRIGHTSHIFT = '>>' def _combine(self, other, connector, reversed): if not hasattr(other, 'resolve_expression'): # everything must be resolvable to an expression if isinstance(other, datetime.timedelta): other = DurationValue(other, output_field=fields.DurationField()) else: other = Value(other) if reversed: return CombinedExpression(other, connector, self) return CombinedExpression(self, connector, other) ############# # OPERATORS # ############# def __neg__(self): return self._combine(-1, self.MUL, False) def __add__(self, other): return self._combine(other, self.ADD, False) def __sub__(self, other): return self._combine(other, self.SUB, False) def __mul__(self, other): return self._combine(other, self.MUL, False) def __truediv__(self, other): return self._combine(other, self.DIV, False) def __mod__(self, other): return self._combine(other, self.MOD, False) def __pow__(self, other): return self._combine(other, self.POW, False) def __and__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) def bitand(self, other): return self._combine(other, self.BITAND, False) def bitleftshift(self, other): return self._combine(other, self.BITLEFTSHIFT, False) def bitrightshift(self, other): return self._combine(other, self.BITRIGHTSHIFT, False) def __or__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) def bitor(self, other): return self._combine(other, self.BITOR, False) def __radd__(self, other): return self._combine(other, self.ADD, True) def __rsub__(self, other): return self._combine(other, self.SUB, True) def __rmul__(self, other): return self._combine(other, self.MUL, True) def __rtruediv__(self, other): return self._combine(other, self.DIV, True) def __rmod__(self, other): return self._combine(other, self.MOD, True) def __rpow__(self, other): return self._combine(other, self.POW, True) def __rand__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) def __ror__(self, other): raise NotImplementedError( "Use .bitand() and .bitor() for bitwise logical operations." ) @deconstructible class BaseExpression: """Base class for all query expressions.""" # aggregate specific fields is_summary = False _output_field_resolved_to_none = False # Can the expression be used in a WHERE clause? filterable = True # Can the expression can be used as a source expression in Window? window_compatible = False def __init__(self, output_field=None): if output_field is not None: self.output_field = output_field def __getstate__(self): state = self.__dict__.copy() state.pop('convert_value', None) return state def get_db_converters(self, connection): return ( [] if self.convert_value is self._convert_value_noop else [self.convert_value] ) + self.output_field.get_db_converters(connection) def get_source_expressions(self): return [] def set_source_expressions(self, exprs): assert not exprs def _parse_expressions(self, *expressions): return [ arg if hasattr(arg, 'resolve_expression') else ( F(arg) if isinstance(arg, str) else Value(arg) ) for arg in expressions ] def as_sql(self, compiler, connection): """ Responsible for returning a (sql, [params]) tuple to be included in the current query. Different backends can provide their own implementation, by providing an `as_{vendor}` method and patching the Expression: ``` def override_as_sql(self, compiler, connection): # custom logic return super().as_sql(compiler, connection) setattr(Expression, 'as_' + connection.vendor, override_as_sql) ``` Arguments: * compiler: the query compiler responsible for generating the query. Must have a compile method, returning a (sql, [params]) tuple. Calling compiler(value) will return a quoted `value`. * connection: the database connection used for the current query. Return: (sql, params) Where `sql` is a string containing ordered sql parameters to be replaced with the elements of the list `params`. """ raise NotImplementedError("Subclasses must implement as_sql()") @cached_property def contains_aggregate(self): return any(expr and expr.contains_aggregate for expr in self.get_source_expressions()) @cached_property def contains_over_clause(self): return any(expr and expr.contains_over_clause for expr in self.get_source_expressions()) @cached_property def contains_column_references(self): return any(expr and expr.contains_column_references for expr in self.get_source_expressions()) def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): """ Provide the chance to do any preprocessing or validation before being added to the query. Arguments: * query: the backend query implementation * allow_joins: boolean allowing or denying use of joins in this query * reuse: a set of reusable joins for multijoins * summarize: a terminal aggregate clause * for_save: whether this expression about to be used in a save or update Return: an Expression to be added to the query. """ c = self.copy() c.is_summary = summarize c.set_source_expressions([ expr.resolve_expression(query, allow_joins, reuse, summarize) if expr else None for expr in c.get_source_expressions() ]) return c def _prepare(self, field): """Hook used by Lookup.get_prep_lookup() to do custom preparation.""" return self @property def field(self): return self.output_field @cached_property def output_field(self): """Return the output type of this expressions.""" output_field = self._resolve_output_field() if output_field is None: self._output_field_resolved_to_none = True raise FieldError('Cannot resolve expression type, unknown output_field') return output_field @cached_property def _output_field_or_none(self): """ Return the output field of this expression, or None if _resolve_output_field() didn't return an output type. """ try: return self.output_field except FieldError: if not self._output_field_resolved_to_none: raise def _resolve_output_field(self): """ Attempt to infer the output type of the expression. If the output fields of all source fields match then, simply infer the same type here. This isn't always correct, but it makes sense most of the time. Consider the difference between `2 + 2` and `2 / 3`. Inferring the type here is a convenience for the common case. The user should supply their own output_field with more complex computations. If a source's output field resolves to None, exclude it from this check. If all sources are None, then an error is raised higher up the stack in the output_field property. """ sources_iter = (source for source in self.get_source_fields() if source is not None) for output_field in sources_iter: if any(not isinstance(output_field, source.__class__) for source in sources_iter): raise FieldError('Expression contains mixed types. You must set output_field.') return output_field @staticmethod def _convert_value_noop(value, expression, connection): return value @cached_property def convert_value(self): """ Expressions provide their own converters because users have the option of manually specifying the output_field which may be a different type from the one the database returns. """ field = self.output_field internal_type = field.get_internal_type() if internal_type == 'FloatField': return lambda value, expression, connection: None if value is None else float(value) elif internal_type.endswith('IntegerField'): return lambda value, expression, connection: None if value is None else int(value) elif internal_type == 'DecimalField': return lambda value, expression, connection: None if value is None else Decimal(value) return self._convert_value_noop def get_lookup(self, lookup): return self.output_field.get_lookup(lookup) def get_transform(self, name): return self.output_field.get_transform(name) def relabeled_clone(self, change_map): clone = self.copy() clone.set_source_expressions([ e.relabeled_clone(change_map) if e is not None else None for e in self.get_source_expressions() ]) return clone def copy(self): return copy.copy(self) def get_group_by_cols(self): if not self.contains_aggregate: return [self] cols = [] for source in self.get_source_expressions(): cols.extend(source.get_group_by_cols()) return cols def get_source_fields(self): """Return the underlying field types used by this aggregate.""" return [e._output_field_or_none for e in self.get_source_expressions()] def asc(self, **kwargs): return OrderBy(self, **kwargs) def desc(self, **kwargs): return OrderBy(self, descending=True, **kwargs) def reverse_ordering(self): return self def flatten(self): """ Recursively yield this expression and all subexpressions, in depth-first order. """ yield self for expr in self.get_source_expressions(): if expr: yield from expr.flatten() def __eq__(self, other): if self.__class__ != other.__class__: return False path, args, kwargs = self.deconstruct() other_path, other_args, other_kwargs = other.deconstruct() if (path, args) == (other_path, other_args): kwargs = kwargs.copy() other_kwargs = other_kwargs.copy() output_field = type(kwargs.pop('output_field', None)) other_output_field = type(other_kwargs.pop('output_field', None)) if output_field == other_output_field: return kwargs == other_kwargs return False def __hash__(self): path, args, kwargs = self.deconstruct() kwargs = kwargs.copy() output_field = type(kwargs.pop('output_field', None)) return hash((path, output_field) + args + tuple([ (key, tuple(value)) if isinstance(value, list) else (key, value) for key, value in kwargs.items() ])) class Expression(BaseExpression, Combinable): """An expression that can be combined with other expressions.""" pass class CombinedExpression(SQLiteNumericMixin, Expression): def __init__(self, lhs, connector, rhs, output_field=None): super().__init__(output_field=output_field) self.connector = connector self.lhs = lhs self.rhs = rhs def __repr__(self): return "<{}: {}>".format(self.__class__.__name__, self) def __str__(self): return "{} {} {}".format(self.lhs, self.connector, self.rhs) def get_source_expressions(self): return [self.lhs, self.rhs] def set_source_expressions(self, exprs): self.lhs, self.rhs = exprs def as_sql(self, compiler, connection): try: lhs_output = self.lhs.output_field except FieldError: lhs_output = None try: rhs_output = self.rhs.output_field except FieldError: rhs_output = None if (not connection.features.has_native_duration_field and ((lhs_output and lhs_output.get_internal_type() == 'DurationField') or (rhs_output and rhs_output.get_internal_type() == 'DurationField'))): return DurationExpression(self.lhs, self.connector, self.rhs).as_sql(compiler, connection) if (lhs_output and rhs_output and self.connector == self.SUB and lhs_output.get_internal_type() in {'DateField', 'DateTimeField', 'TimeField'} and lhs_output.get_internal_type() == rhs_output.get_internal_type()): return TemporalSubtraction(self.lhs, self.rhs).as_sql(compiler, connection) expressions = [] expression_params = [] sql, params = compiler.compile(self.lhs) expressions.append(sql) expression_params.extend(params) sql, params = compiler.compile(self.rhs) expressions.append(sql) expression_params.extend(params) # order of precedence expression_wrapper = '(%s)' sql = connection.ops.combine_expression(self.connector, expressions) return expression_wrapper % sql, expression_params def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): c = self.copy() c.is_summary = summarize c.lhs = c.lhs.resolve_expression(query, allow_joins, reuse, summarize, for_save) c.rhs = c.rhs.resolve_expression(query, allow_joins, reuse, summarize, for_save) return c class DurationExpression(CombinedExpression): def compile(self, side, compiler, connection): if not isinstance(side, DurationValue): try: output = side.output_field except FieldError: pass else: if output.get_internal_type() == 'DurationField': sql, params = compiler.compile(side) return connection.ops.format_for_duration_arithmetic(sql), params return compiler.compile(side) def as_sql(self, compiler, connection): connection.ops.check_expression_support(self) expressions = [] expression_params = [] sql, params = self.compile(self.lhs, compiler, connection) expressions.append(sql) expression_params.extend(params) sql, params = self.compile(self.rhs, compiler, connection) expressions.append(sql) expression_params.extend(params) # order of precedence expression_wrapper = '(%s)' sql = connection.ops.combine_duration_expression(self.connector, expressions) return expression_wrapper % sql, expression_params class TemporalSubtraction(CombinedExpression): output_field = fields.DurationField() def __init__(self, lhs, rhs): super().__init__(lhs, self.SUB, rhs) def as_sql(self, compiler, connection): connection.ops.check_expression_support(self) lhs = compiler.compile(self.lhs, connection) rhs = compiler.compile(self.rhs, connection) return connection.ops.subtract_temporals(self.lhs.output_field.get_internal_type(), lhs, rhs) @deconstructible class F(Combinable): """An object capable of resolving references to existing query objects.""" # Can the expression be used in a WHERE clause? filterable = True def __init__(self, name): """ Arguments: * name: the name of the field this expression references """ self.name = name def __repr__(self): return "{}({})".format(self.__class__.__name__, self.name) def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): return query.resolve_ref(self.name, allow_joins, reuse, summarize) def asc(self, **kwargs): return OrderBy(self, **kwargs) def desc(self, **kwargs): return OrderBy(self, descending=True, **kwargs) def __eq__(self, other): return self.__class__ == other.__class__ and self.name == other.name def __hash__(self): return hash(self.name) class ResolvedOuterRef(F): """ An object that contains a reference to an outer query. In this case, the reference to the outer query has been resolved because the inner query has been used as a subquery. """ def as_sql(self, *args, **kwargs): raise ValueError( 'This queryset contains a reference to an outer query and may ' 'only be used in a subquery.' ) def _prepare(self, output_field=None): return self def relabeled_clone(self, relabels): return self class OuterRef(F): def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): if isinstance(self.name, self.__class__): return self.name return ResolvedOuterRef(self.name) def _prepare(self, output_field=None): return self class Func(SQLiteNumericMixin, Expression): """An SQL function call.""" function = None template = '%(function)s(%(expressions)s)' arg_joiner = ', ' arity = None # The number of arguments the function accepts. def __init__(self, *expressions, output_field=None, **extra): if self.arity is not None and len(expressions) != self.arity: raise TypeError( "'%s' takes exactly %s %s (%s given)" % ( self.__class__.__name__, self.arity, "argument" if self.arity == 1 else "arguments", len(expressions), ) ) super().__init__(output_field=output_field) self.source_expressions = self._parse_expressions(*expressions) self.extra = extra def __repr__(self): args = self.arg_joiner.join(str(arg) for arg in self.source_expressions) extra = {**self.extra, **self._get_repr_options()} if extra: extra = ', '.join(str(key) + '=' + str(val) for key, val in sorted(extra.items())) return "{}({}, {})".format(self.__class__.__name__, args, extra) return "{}({})".format(self.__class__.__name__, args) def _get_repr_options(self): """Return a dict of extra __init__() options to include in the repr.""" return {} def get_source_expressions(self): return self.source_expressions def set_source_expressions(self, exprs): self.source_expressions = exprs def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): c = self.copy() c.is_summary = summarize for pos, arg in enumerate(c.source_expressions): c.source_expressions[pos] = arg.resolve_expression(query, allow_joins, reuse, summarize, for_save) return c def as_sql(self, compiler, connection, function=None, template=None, arg_joiner=None, **extra_context): connection.ops.check_expression_support(self) sql_parts = [] params = [] for arg in self.source_expressions: arg_sql, arg_params = compiler.compile(arg) sql_parts.append(arg_sql) params.extend(arg_params) data = {**self.extra, **extra_context} # Use the first supplied value in this order: the parameter to this # method, a value supplied in __init__()'s **extra (the value in # `data`), or the value defined on the class. if function is not None: data['function'] = function else: data.setdefault('function', self.function) template = template or data.get('template', self.template) arg_joiner = arg_joiner or data.get('arg_joiner', self.arg_joiner) data['expressions'] = data['field'] = arg_joiner.join(sql_parts) return template % data, params def copy(self): copy = super().copy() copy.source_expressions = self.source_expressions[:] copy.extra = self.extra.copy() return copy class Value(Expression): """Represent a wrapped value as a node within an expression.""" def __init__(self, value, output_field=None): """ Arguments: * value: the value this expression represents. The value will be added into the sql parameter list and properly quoted. * output_field: an instance of the model field type that this expression will return, such as IntegerField() or CharField(). """ super().__init__(output_field=output_field) self.value = value def __repr__(self): return "{}({})".format(self.__class__.__name__, self.value) def as_sql(self, compiler, connection): connection.ops.check_expression_support(self) val = self.value output_field = self._output_field_or_none if output_field is not None: if self.for_save: val = output_field.get_db_prep_save(val, connection=connection) else: val = output_field.get_db_prep_value(val, connection=connection) if hasattr(output_field, 'get_placeholder'): return output_field.get_placeholder(val, compiler, connection), [val] if val is None: # cx_Oracle does not always convert None to the appropriate # NULL type (like in case expressions using numbers), so we # use a literal SQL NULL return 'NULL', [] return '%s', [val] def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): c = super().resolve_expression(query, allow_joins, reuse, summarize, for_save) c.for_save = for_save return c def get_group_by_cols(self): return [] class DurationValue(Value): def as_sql(self, compiler, connection): connection.ops.check_expression_support(self) if connection.features.has_native_duration_field: return super().as_sql(compiler, connection) return connection.ops.date_interval_sql(self.value), [] class RawSQL(Expression): def __init__(self, sql, params, output_field=None): if output_field is None: output_field = fields.Field() self.sql, self.params = sql, params super().__init__(output_field=output_field) def __repr__(self): return "{}({}, {})".format(self.__class__.__name__, self.sql, self.params) def as_sql(self, compiler, connection): return '(%s)' % self.sql, self.params def get_group_by_cols(self): return [self] def __hash__(self): return hash((self.sql, self.output_field) + tuple(self.params)) class Star(Expression): def __repr__(self): return "'*'" def as_sql(self, compiler, connection): return '*', [] class Random(Expression): output_field = fields.FloatField() def __repr__(self): return "Random()" def as_sql(self, compiler, connection): return connection.ops.random_function_sql(), [] class Col(Expression): contains_column_references = True def __init__(self, alias, target, output_field=None): if output_field is None: output_field = target super().__init__(output_field=output_field) self.alias, self.target = alias, target def __repr__(self): return "{}({}, {})".format( self.__class__.__name__, self.alias, self.target) def as_sql(self, compiler, connection): qn = compiler.quote_name_unless_alias return "%s.%s" % (qn(self.alias), qn(self.target.column)), [] def relabeled_clone(self, relabels): return self.__class__(relabels.get(self.alias, self.alias), self.target, self.output_field) def get_group_by_cols(self): return [self] def get_db_converters(self, connection): if self.target == self.output_field: return self.output_field.get_db_converters(connection) return (self.output_field.get_db_converters(connection) + self.target.get_db_converters(connection)) class Ref(Expression): """ Reference to column alias of the query. For example, Ref('sum_cost') in qs.annotate(sum_cost=Sum('cost')) query. """ def __init__(self, refs, source): super().__init__() self.refs, self.source = refs, source def __repr__(self): return "{}({}, {})".format(self.__class__.__name__, self.refs, self.source) def get_source_expressions(self): return [self.source] def set_source_expressions(self, exprs): self.source, = exprs def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): # The sub-expression `source` has already been resolved, as this is # just a reference to the name of `source`. return self def relabeled_clone(self, relabels): return self def as_sql(self, compiler, connection): return "%s" % connection.ops.quote_name(self.refs), [] def get_group_by_cols(self): return [self] class ExpressionList(Func): """ An expression containing multiple expressions. Can be used to provide a list of expressions as an argument to another expression, like an ordering clause. """ template = '%(expressions)s' def __init__(self, *expressions, **extra): if not expressions: raise ValueError('%s requires at least one expression.' % self.__class__.__name__) super().__init__(*expressions, **extra) def __str__(self): return self.arg_joiner.join(str(arg) for arg in self.source_expressions) class ExpressionWrapper(Expression): """ An expression that can wrap another expression so that it can provide extra context to the inner expression, such as the output_field. """ def __init__(self, expression, output_field): super().__init__(output_field=output_field) self.expression = expression def set_source_expressions(self, exprs): self.expression = exprs[0] def get_source_expressions(self): return [self.expression] def as_sql(self, compiler, connection): return self.expression.as_sql(compiler, connection) def __repr__(self): return "{}({})".format(self.__class__.__name__, self.expression) class When(Expression): template = 'WHEN %(condition)s THEN %(result)s' def __init__(self, condition=None, then=None, **lookups): if lookups and condition is None: condition, lookups = Q(**lookups), None if condition is None or not getattr(condition, 'conditional', False) or lookups: raise TypeError("__init__() takes either a Q object or lookups as keyword arguments") if isinstance(condition, Q) and not condition: raise ValueError("An empty Q() can't be used as a When() condition.") super().__init__(output_field=None) self.condition = condition self.result = self._parse_expressions(then)[0] def __str__(self): return "WHEN %r THEN %r" % (self.condition, self.result) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self) def get_source_expressions(self): return [self.condition, self.result] def set_source_expressions(self, exprs): self.condition, self.result = exprs def get_source_fields(self): # We're only interested in the fields of the result expressions. return [self.result._output_field_or_none] def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): c = self.copy() c.is_summary = summarize if hasattr(c.condition, 'resolve_expression'): c.condition = c.condition.resolve_expression(query, allow_joins, reuse, summarize, False) c.result = c.result.resolve_expression(query, allow_joins, reuse, summarize, for_save) return c def as_sql(self, compiler, connection, template=None, **extra_context): connection.ops.check_expression_support(self) template_params = extra_context sql_params = [] condition_sql, condition_params = compiler.compile(self.condition) template_params['condition'] = condition_sql sql_params.extend(condition_params) result_sql, result_params = compiler.compile(self.result) template_params['result'] = result_sql sql_params.extend(result_params) template = template or self.template return template % template_params, sql_params def get_group_by_cols(self): # This is not a complete expression and cannot be used in GROUP BY. cols = [] for source in self.get_source_expressions(): cols.extend(source.get_group_by_cols()) return cols class Case(Expression): """ An SQL searched CASE expression: CASE WHEN n > 0 THEN 'positive' WHEN n < 0 THEN 'negative' ELSE 'zero' END """ template = 'CASE %(cases)s ELSE %(default)s END' case_joiner = ' ' def __init__(self, *cases, default=None, output_field=None, **extra): if not all(isinstance(case, When) for case in cases): raise TypeError("Positional arguments must all be When objects.") super().__init__(output_field) self.cases = list(cases) self.default = self._parse_expressions(default)[0] self.extra = extra def __str__(self): return "CASE %s, ELSE %r" % (', '.join(str(c) for c in self.cases), self.default) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, self) def get_source_expressions(self): return self.cases + [self.default] def set_source_expressions(self, exprs): self.cases = exprs[:-1] self.default = exprs[-1] def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): c = self.copy() c.is_summary = summarize for pos, case in enumerate(c.cases): c.cases[pos] = case.resolve_expression(query, allow_joins, reuse, summarize, for_save) c.default = c.default.resolve_expression(query, allow_joins, reuse, summarize, for_save) return c def copy(self): c = super().copy() c.cases = c.cases[:] return c def as_sql(self, compiler, connection, template=None, case_joiner=None, **extra_context): connection.ops.check_expression_support(self) if not self.cases: return compiler.compile(self.default) template_params = {**self.extra, **extra_context} case_parts = [] sql_params = [] for case in self.cases: try: case_sql, case_params = compiler.compile(case) except EmptyResultSet: continue case_parts.append(case_sql) sql_params.extend(case_params) default_sql, default_params = compiler.compile(self.default) if not case_parts: return default_sql, default_params case_joiner = case_joiner or self.case_joiner template_params['cases'] = case_joiner.join(case_parts) template_params['default'] = default_sql sql_params.extend(default_params) template = template or template_params.get('template', self.template) sql = template % template_params if self._output_field_or_none is not None: sql = connection.ops.unification_cast_sql(self.output_field) % sql return sql, sql_params class Subquery(Expression): """ An explicit subquery. It may contain OuterRef() references to the outer query which will be resolved when it is applied to that query. """ template = '(%(subquery)s)' def __init__(self, queryset, output_field=None, **extra): self.queryset = queryset self.extra = extra super().__init__(output_field) def _resolve_output_field(self): if len(self.queryset.query.select) == 1: return self.queryset.query.select[0].field return super()._resolve_output_field() def copy(self): clone = super().copy() clone.queryset = clone.queryset.all() return clone def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False): clone = self.copy() clone.is_summary = summarize clone.queryset.query.bump_prefix(query) # Need to recursively resolve these. def resolve_all(child): if hasattr(child, 'children'): [resolve_all(_child) for _child in child.children] if hasattr(child, 'rhs'): child.rhs = resolve(child.rhs) def resolve(child): if hasattr(child, 'resolve_expression'): resolved = child.resolve_expression( query=query, allow_joins=allow_joins, reuse=reuse, summarize=summarize, for_save=for_save, ) # Add table alias to the parent query's aliases to prevent # quoting. if hasattr(resolved, 'alias') and resolved.alias != resolved.target.model._meta.db_table: clone.queryset.query.external_aliases.add(resolved.alias) return resolved return child resolve_all(clone.queryset.query.where) for key, value in clone.queryset.query.annotations.items(): if isinstance(value, Subquery): clone.queryset.query.annotations[key] = resolve(value) return clone def get_source_expressions(self): return [ x for x in [ getattr(expr, 'lhs', None) for expr in self.queryset.query.where.children ] if x ] def relabeled_clone(self, change_map): clone = self.copy() clone.queryset.query = clone.queryset.query.relabeled_clone(change_map) clone.queryset.query.external_aliases.update( alias for alias in change_map.values() if alias not in clone.queryset.query.alias_map ) return clone def as_sql(self, compiler, connection, template=None, **extra_context): connection.ops.check_expression_support(self) template_params = {**self.extra, **extra_context} template_params['subquery'], sql_params = self.queryset.query.get_compiler(connection=connection).as_sql() template = template or template_params.get('template', self.template) sql = template % template_params return sql, sql_params def _prepare(self, output_field): # This method will only be called if this instance is the "rhs" in an # expression: the wrapping () must be removed (as the expression that # contains this will provide them). SQLite evaluates ((subquery)) # differently than the other databases. if self.template == '(%(subquery)s)': clone = self.copy() clone.template = '%(subquery)s' return clone return self class Exists(Subquery): template = 'EXISTS(%(subquery)s)' output_field = fields.BooleanField() def __init__(self, *args, negated=False, **kwargs): self.negated = negated super().__init__(*args, **kwargs) def __invert__(self): return type(self)(self.queryset, negated=(not self.negated), **self.extra) def resolve_expression(self, query=None, *args, **kwargs): # As a performance optimization, remove ordering since EXISTS doesn't # care about it, just whether or not a row matches. self.queryset = self.queryset.order_by() return super().resolve_expression(query, *args, **kwargs) def as_sql(self, compiler, connection, template=None, **extra_context): sql, params = super().as_sql(compiler, connection, template, **extra_context) if self.negated: sql = 'NOT {}'.format(sql) return sql, params def as_oracle(self, compiler, connection, template=None, **extra_context): # Oracle doesn't allow EXISTS() in the SELECT list, so wrap it with a # CASE WHEN expression. Change the template since the When expression # requires a left hand side (column) to compare against. sql, params = self.as_sql(compiler, connection, template, **extra_context) sql = 'CASE WHEN {} THEN 1 ELSE 0 END'.format(sql) return sql, params class OrderBy(BaseExpression): template = '%(expression)s %(ordering)s' def __init__(self, expression, descending=False, nulls_first=False, nulls_last=False): if nulls_first and nulls_last: raise ValueError('nulls_first and nulls_last are mutually exclusive') self.nulls_first = nulls_first self.nulls_last = nulls_last self.descending = descending if not hasattr(expression, 'resolve_expression'): raise ValueError('expression must be an expression type') self.expression = expression def __repr__(self): return "{}({}, descending={})".format( self.__class__.__name__, self.expression, self.descending) def set_source_expressions(self, exprs): self.expression = exprs[0] def get_source_expressions(self): return [self.expression] def as_sql(self, compiler, connection, template=None, **extra_context): if not template: if self.nulls_last: template = '%s NULLS LAST' % self.template elif self.nulls_first: template = '%s NULLS FIRST' % self.template connection.ops.check_expression_support(self) expression_sql, params = compiler.compile(self.expression) placeholders = { 'expression': expression_sql, 'ordering': 'DESC' if self.descending else 'ASC', **extra_context, } template = template or self.template params *= template.count('%(expression)s') return (template % placeholders).rstrip(), params def as_sqlite(self, compiler, connection): template = None if self.nulls_last: template = '%(expression)s IS NULL, %(expression)s %(ordering)s' elif self.nulls_first: template = '%(expression)s IS NOT NULL, %(expression)s %(ordering)s' return self.as_sql(compiler, connection, template=template) def as_mysql(self, compiler, connection): template = None if self.nulls_last: template = 'IF(ISNULL(%(expression)s),1,0), %(expression)s %(ordering)s ' elif self.nulls_first: template = 'IF(ISNULL(%(expression)s),0,1), %(expression)s %(ordering)s ' return self.as_sql(compiler, connection, template=template) def get_group_by_cols(self): cols = [] for source in self.get_source_expressions(): cols.extend(source.get_group_by_cols()) return cols def reverse_ordering(self): self.descending = not self.descending if self.nulls_first or self.nulls_last: self.nulls_first = not self.nulls_first self.nulls_last = not self.nulls_last return self def asc(self): self.descending = False def desc(self): self.descending = True class Window(Expression): template = '%(expression)s OVER (%(window)s)' # Although the main expression may either be an aggregate or an # expression with an aggregate function, the GROUP BY that will # be introduced in the query as a result is not desired. contains_aggregate = False contains_over_clause = True filterable = False def __init__(self, expression, partition_by=None, order_by=None, frame=None, output_field=None): self.partition_by = partition_by self.order_by = order_by self.frame = frame if not getattr(expression, 'window_compatible', False): raise ValueError( "Expression '%s' isn't compatible with OVER clauses." % expression.__class__.__name__ ) if self.partition_by is not None: if not isinstance(self.partition_by, (tuple, list)): self.partition_by = (self.partition_by,) self.partition_by = ExpressionList(*self.partition_by) if self.order_by is not None: if isinstance(self.order_by, (list, tuple)): self.order_by = ExpressionList(*self.order_by) elif not isinstance(self.order_by, BaseExpression): raise ValueError( 'order_by must be either an Expression or a sequence of ' 'expressions.' ) super().__init__(output_field=output_field) self.source_expression = self._parse_expressions(expression)[0] def _resolve_output_field(self): return self.source_expression.output_field def get_source_expressions(self): return [self.source_expression, self.partition_by, self.order_by, self.frame] def set_source_expressions(self, exprs): self.source_expression, self.partition_by, self.order_by, self.frame = exprs def as_sql(self, compiler, connection, function=None, template=None): connection.ops.check_expression_support(self) expr_sql, params = compiler.compile(self.source_expression) window_sql, window_params = [], [] if self.partition_by is not None: sql_expr, sql_params = self.partition_by.as_sql( compiler=compiler, connection=connection, template='PARTITION BY %(expressions)s', ) window_sql.extend(sql_expr) window_params.extend(sql_params) if self.order_by is not None: window_sql.append(' ORDER BY ') order_sql, order_params = compiler.compile(self.order_by) window_sql.extend(''.join(order_sql)) window_params.extend(order_params) if self.frame: frame_sql, frame_params = compiler.compile(self.frame) window_sql.extend(' ' + frame_sql) window_params.extend(frame_params) params.extend(window_params) template = template or self.template return template % { 'expression': expr_sql, 'window': ''.join(window_sql).strip() }, params def __str__(self): return '{} OVER ({}{}{})'.format( str(self.source_expression), 'PARTITION BY ' + str(self.partition_by) if self.partition_by else '', 'ORDER BY ' + str(self.order_by) if self.order_by else '', str(self.frame or ''), ) def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self) def get_group_by_cols(self): return [] class WindowFrame(Expression): """ Model the frame clause in window expressions. There are two types of frame clauses which are subclasses, however, all processing and validation (by no means intended to be complete) is done here. Thus, providing an end for a frame is optional (the default is UNBOUNDED FOLLOWING, which is the last row in the frame). """ template = '%(frame_type)s BETWEEN %(start)s AND %(end)s' def __init__(self, start=None, end=None): self.start = start self.end = end def set_source_expressions(self, exprs): self.start, self.end = exprs def get_source_expressions(self): return [Value(self.start), Value(self.end)] def as_sql(self, compiler, connection): connection.ops.check_expression_support(self) start, end = self.window_frame_start_end(connection, self.start.value, self.end.value) return self.template % { 'frame_type': self.frame_type, 'start': start, 'end': end, }, [] def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self) def get_group_by_cols(self): return [] def __str__(self): if self.start is not None and self.start < 0: start = '%d %s' % (abs(self.start), connection.ops.PRECEDING) elif self.start is not None and self.start == 0: start = connection.ops.CURRENT_ROW else: start = connection.ops.UNBOUNDED_PRECEDING if self.end is not None and self.end > 0: end = '%d %s' % (self.end, connection.ops.FOLLOWING) elif self.end is not None and self.end == 0: end = connection.ops.CURRENT_ROW else: end = connection.ops.UNBOUNDED_FOLLOWING return self.template % { 'frame_type': self.frame_type, 'start': start, 'end': end, } def window_frame_start_end(self, connection, start, end): raise NotImplementedError('Subclasses must implement window_frame_start_end().') class RowRange(WindowFrame): frame_type = 'ROWS' def window_frame_start_end(self, connection, start, end): return connection.ops.window_frame_rows_start_end(start, end) class ValueRange(WindowFrame): frame_type = 'RANGE' def window_frame_start_end(self, connection, start, end): return connection.ops.window_frame_range_start_end(start, end)
ad0b79910fdfc44f525056504c33f2449e92d11f7e40fbc28e16695cdd6169ff
from collections import Counter, OrderedDict from operator import attrgetter from django.db import IntegrityError, connections, transaction from django.db.models import signals, sql class ProtectedError(IntegrityError): def __init__(self, msg, protected_objects): self.protected_objects = protected_objects super().__init__(msg, protected_objects) def CASCADE(collector, field, sub_objs, using): collector.collect(sub_objs, source=field.remote_field.model, source_attr=field.name, nullable=field.null) if field.null and not connections[using].features.can_defer_constraint_checks: collector.add_field_update(field, None, sub_objs) def PROTECT(collector, field, sub_objs, using): raise ProtectedError( "Cannot delete some instances of model '%s' because they are " "referenced through a protected foreign key: '%s.%s'" % ( field.remote_field.model.__name__, sub_objs[0].__class__.__name__, field.name ), sub_objs ) def SET(value): if callable(value): def set_on_delete(collector, field, sub_objs, using): collector.add_field_update(field, value(), sub_objs) else: def set_on_delete(collector, field, sub_objs, using): collector.add_field_update(field, value, sub_objs) set_on_delete.deconstruct = lambda: ('django.db.models.SET', (value,), {}) return set_on_delete def SET_NULL(collector, field, sub_objs, using): collector.add_field_update(field, None, sub_objs) def SET_DEFAULT(collector, field, sub_objs, using): collector.add_field_update(field, field.get_default(), sub_objs) def DO_NOTHING(collector, field, sub_objs, using): pass def get_candidate_relations_to_delete(opts): # The candidate relations are the ones that come from N-1 and 1-1 relations. # N-N (i.e., many-to-many) relations aren't candidates for deletion. return ( f for f in opts.get_fields(include_hidden=True) if f.auto_created and not f.concrete and (f.one_to_one or f.one_to_many) ) class Collector: def __init__(self, using): self.using = using # Initially, {model: {instances}}, later values become lists. self.data = OrderedDict() self.field_updates = {} # {model: {(field, value): {instances}}} # fast_deletes is a list of queryset-likes that can be deleted without # fetching the objects into memory. self.fast_deletes = [] # Tracks deletion-order dependency for databases without transactions # or ability to defer constraint checks. Only concrete model classes # should be included, as the dependencies exist only between actual # database tables; proxy models are represented here by their concrete # parent. self.dependencies = {} # {model: {models}} def add(self, objs, source=None, nullable=False, reverse_dependency=False): """ Add 'objs' to the collection of objects to be deleted. If the call is the result of a cascade, 'source' should be the model that caused it, and 'nullable' should be set to True if the relation can be null. Return a list of all objects that were not already collected. """ if not objs: return [] new_objs = [] model = objs[0].__class__ instances = self.data.setdefault(model, set()) for obj in objs: if obj not in instances: new_objs.append(obj) instances.update(new_objs) # Nullable relationships can be ignored -- they are nulled out before # deleting, and therefore do not affect the order in which objects have # to be deleted. if source is not None and not nullable: if reverse_dependency: source, model = model, source self.dependencies.setdefault( source._meta.concrete_model, set()).add(model._meta.concrete_model) return new_objs def add_field_update(self, field, value, objs): """ Schedule a field update. 'objs' must be a homogeneous iterable collection of model instances (e.g. a QuerySet). """ if not objs: return model = objs[0].__class__ self.field_updates.setdefault( model, {}).setdefault( (field, value), set()).update(objs) def can_fast_delete(self, objs, from_field=None): """ Determine if the objects in the given queryset-like can be fast-deleted. This can be done if there are no cascades, no parents and no signal listeners for the object class. The 'from_field' tells where we are coming from - we need this to determine if the objects are in fact to be deleted. Allow also skipping parent -> child -> parent chain preventing fast delete of the child. """ if from_field and from_field.remote_field.on_delete is not CASCADE: return False if not (hasattr(objs, 'model') and hasattr(objs, '_raw_delete')): return False model = objs.model if (signals.pre_delete.has_listeners(model) or signals.post_delete.has_listeners(model) or signals.m2m_changed.has_listeners(model)): return False # The use of from_field comes from the need to avoid cascade back to # parent when parent delete is cascading to child. opts = model._meta return ( all(link == from_field for link in opts.concrete_model._meta.parents.values()) and # Foreign keys pointing to this model. all( related.field.remote_field.on_delete is DO_NOTHING for related in get_candidate_relations_to_delete(opts) ) and ( # Something like generic foreign key. not any(hasattr(field, 'bulk_related_objects') for field in model._meta.private_fields) ) ) def get_del_batches(self, objs, field): """ Return the objs in suitably sized batches for the used connection. """ conn_batch_size = max( connections[self.using].ops.bulk_batch_size([field.name], objs), 1) if len(objs) > conn_batch_size: return [objs[i:i + conn_batch_size] for i in range(0, len(objs), conn_batch_size)] else: return [objs] def collect(self, objs, source=None, nullable=False, collect_related=True, source_attr=None, reverse_dependency=False, keep_parents=False): """ Add 'objs' to the collection of objects to be deleted as well as all parent instances. 'objs' must be a homogeneous iterable collection of model instances (e.g. a QuerySet). If 'collect_related' is True, related objects will be handled by their respective on_delete handler. If the call is the result of a cascade, 'source' should be the model that caused it and 'nullable' should be set to True, if the relation can be null. If 'reverse_dependency' is True, 'source' will be deleted before the current model, rather than after. (Needed for cascading to parent models, the one case in which the cascade follows the forwards direction of an FK rather than the reverse direction.) If 'keep_parents' is True, data of parent model's will be not deleted. """ if self.can_fast_delete(objs): self.fast_deletes.append(objs) return new_objs = self.add(objs, source, nullable, reverse_dependency=reverse_dependency) if not new_objs: return model = new_objs[0].__class__ if not keep_parents: # Recursively collect concrete model's parent models, but not their # related objects. These will be found by meta.get_fields() concrete_model = model._meta.concrete_model for ptr in concrete_model._meta.parents.values(): if ptr: parent_objs = [getattr(obj, ptr.name) for obj in new_objs] self.collect(parent_objs, source=model, source_attr=ptr.remote_field.related_name, collect_related=False, reverse_dependency=True) if collect_related: parents = model._meta.parents for related in get_candidate_relations_to_delete(model._meta): # Preserve parent reverse relationships if keep_parents=True. if keep_parents and related.model in parents: continue field = related.field if field.remote_field.on_delete == DO_NOTHING: continue batches = self.get_del_batches(new_objs, field) for batch in batches: sub_objs = self.related_objects(related, batch) if self.can_fast_delete(sub_objs, from_field=field): self.fast_deletes.append(sub_objs) elif sub_objs: field.remote_field.on_delete(self, field, sub_objs, self.using) for field in model._meta.private_fields: if hasattr(field, 'bulk_related_objects'): # It's something like generic foreign key. sub_objs = field.bulk_related_objects(new_objs, self.using) self.collect(sub_objs, source=model, nullable=True) def related_objects(self, related, objs): """ Get a QuerySet of objects related to `objs` via the relation `related`. """ return related.related_model._base_manager.using(self.using).filter( **{"%s__in" % related.field.name: objs} ) def instances_with_model(self): for model, instances in self.data.items(): for obj in instances: yield model, obj def sort(self): sorted_models = [] concrete_models = set() models = list(self.data) while len(sorted_models) < len(models): found = False for model in models: if model in sorted_models: continue dependencies = self.dependencies.get(model._meta.concrete_model) if not (dependencies and dependencies.difference(concrete_models)): sorted_models.append(model) concrete_models.add(model._meta.concrete_model) found = True if not found: return self.data = OrderedDict((model, self.data[model]) for model in sorted_models) def delete(self): # sort instance collections for model, instances in self.data.items(): self.data[model] = sorted(instances, key=attrgetter("pk")) # if possible, bring the models in an order suitable for databases that # don't support transactions or cannot defer constraint checks until the # end of a transaction. self.sort() # number of objects deleted for each model label deleted_counter = Counter() with transaction.atomic(using=self.using, savepoint=False): # send pre_delete signals for model, obj in self.instances_with_model(): if not model._meta.auto_created: signals.pre_delete.send( sender=model, instance=obj, using=self.using ) # fast deletes for qs in self.fast_deletes: count = qs._raw_delete(using=self.using) deleted_counter[qs.model._meta.label] += count # update fields for model, instances_for_fieldvalues in self.field_updates.items(): for (field, value), instances in instances_for_fieldvalues.items(): query = sql.UpdateQuery(model) query.update_batch([obj.pk for obj in instances], {field.name: value}, self.using) # reverse instance collections for instances in self.data.values(): instances.reverse() # delete instances for model, instances in self.data.items(): query = sql.DeleteQuery(model) pk_list = [obj.pk for obj in instances] count = query.delete_batch(pk_list, self.using) deleted_counter[model._meta.label] += count if not model._meta.auto_created: for obj in instances: signals.post_delete.send( sender=model, instance=obj, using=self.using ) # update collected instances for instances_for_fieldvalues in self.field_updates.values(): for (field, value), instances in instances_for_fieldvalues.items(): for obj in instances: setattr(obj, field.attname, value) for model, instances in self.data.items(): for instance in instances: setattr(instance, model._meta.pk.attname, None) return sum(deleted_counter.values()), dict(deleted_counter)
d7ab4e4bbdbf1bb6a64d3e767f9cc32319e56e5aabbb12cc279d16a8053b6137
import itertools import math from copy import copy from django.core.exceptions import EmptyResultSet from django.db.models.expressions import Func, Value from django.db.models.fields import DateTimeField, Field, IntegerField from django.db.models.query_utils import RegisterLookupMixin from django.utils.datastructures import OrderedSet from django.utils.functional import cached_property class Lookup: lookup_name = None prepare_rhs = True can_use_none_as_rhs = False def __init__(self, lhs, rhs): self.lhs, self.rhs = lhs, rhs self.rhs = self.get_prep_lookup() if hasattr(self.lhs, 'get_bilateral_transforms'): bilateral_transforms = self.lhs.get_bilateral_transforms() else: bilateral_transforms = [] if bilateral_transforms: # Warn the user as soon as possible if they are trying to apply # a bilateral transformation on a nested QuerySet: that won't work. from django.db.models.sql.query import Query # avoid circular import if isinstance(rhs, Query): raise NotImplementedError("Bilateral transformations on nested querysets are not implemented.") self.bilateral_transforms = bilateral_transforms def apply_bilateral_transforms(self, value): for transform in self.bilateral_transforms: value = transform(value) return value def batch_process_rhs(self, compiler, connection, rhs=None): if rhs is None: rhs = self.rhs if self.bilateral_transforms: sqls, sqls_params = [], [] for p in rhs: value = Value(p, output_field=self.lhs.output_field) value = self.apply_bilateral_transforms(value) value = value.resolve_expression(compiler.query) sql, sql_params = compiler.compile(value) sqls.append(sql) sqls_params.extend(sql_params) else: _, params = self.get_db_prep_lookup(rhs, connection) sqls, sqls_params = ['%s'] * len(params), params return sqls, sqls_params def get_source_expressions(self): if self.rhs_is_direct_value(): return [self.lhs] return [self.lhs, self.rhs] def set_source_expressions(self, new_exprs): if len(new_exprs) == 1: self.lhs = new_exprs[0] else: self.lhs, self.rhs = new_exprs def get_prep_lookup(self): if hasattr(self.rhs, '_prepare'): return self.rhs._prepare(self.lhs.output_field) if self.prepare_rhs and hasattr(self.lhs.output_field, 'get_prep_value'): return self.lhs.output_field.get_prep_value(self.rhs) return self.rhs def get_db_prep_lookup(self, value, connection): return ('%s', [value]) def process_lhs(self, compiler, connection, lhs=None): lhs = lhs or self.lhs if hasattr(lhs, 'resolve_expression'): lhs = lhs.resolve_expression(compiler.query) return compiler.compile(lhs) def process_rhs(self, compiler, connection): value = self.rhs if self.bilateral_transforms: if self.rhs_is_direct_value(): # Do not call get_db_prep_lookup here as the value will be # transformed before being used for lookup value = Value(value, output_field=self.lhs.output_field) value = self.apply_bilateral_transforms(value) value = value.resolve_expression(compiler.query) if hasattr(value, 'as_sql'): sql, params = compiler.compile(value) return '(' + sql + ')', params else: return self.get_db_prep_lookup(value, connection) def rhs_is_direct_value(self): return not hasattr(self.rhs, 'as_sql') def relabeled_clone(self, relabels): new = copy(self) new.lhs = new.lhs.relabeled_clone(relabels) if hasattr(new.rhs, 'relabeled_clone'): new.rhs = new.rhs.relabeled_clone(relabels) return new def get_group_by_cols(self): cols = self.lhs.get_group_by_cols() if hasattr(self.rhs, 'get_group_by_cols'): cols.extend(self.rhs.get_group_by_cols()) return cols def as_sql(self, compiler, connection): raise NotImplementedError @cached_property def contains_aggregate(self): return self.lhs.contains_aggregate or getattr(self.rhs, 'contains_aggregate', False) @cached_property def contains_over_clause(self): return self.lhs.contains_over_clause or getattr(self.rhs, 'contains_over_clause', False) @property def is_summary(self): return self.lhs.is_summary or getattr(self.rhs, 'is_summary', False) class Transform(RegisterLookupMixin, Func): """ RegisterLookupMixin() is first so that get_lookup() and get_transform() first examine self and then check output_field. """ bilateral = False arity = 1 @property def lhs(self): return self.get_source_expressions()[0] def get_bilateral_transforms(self): if hasattr(self.lhs, 'get_bilateral_transforms'): bilateral_transforms = self.lhs.get_bilateral_transforms() else: bilateral_transforms = [] if self.bilateral: bilateral_transforms.append(self.__class__) return bilateral_transforms class BuiltinLookup(Lookup): def process_lhs(self, compiler, connection, lhs=None): lhs_sql, params = super().process_lhs(compiler, connection, lhs) field_internal_type = self.lhs.output_field.get_internal_type() db_type = self.lhs.output_field.db_type(connection=connection) lhs_sql = connection.ops.field_cast_sql( db_type, field_internal_type) % lhs_sql lhs_sql = connection.ops.lookup_cast(self.lookup_name, field_internal_type) % lhs_sql return lhs_sql, list(params) def as_sql(self, compiler, connection): lhs_sql, params = self.process_lhs(compiler, connection) rhs_sql, rhs_params = self.process_rhs(compiler, connection) params.extend(rhs_params) rhs_sql = self.get_rhs_op(connection, rhs_sql) return '%s %s' % (lhs_sql, rhs_sql), params def get_rhs_op(self, connection, rhs): return connection.operators[self.lookup_name] % rhs class FieldGetDbPrepValueMixin: """ Some lookups require Field.get_db_prep_value() to be called on their inputs. """ get_db_prep_lookup_value_is_iterable = False def get_db_prep_lookup(self, value, connection): # For relational fields, use the output_field of the 'field' attribute. field = getattr(self.lhs.output_field, 'field', None) get_db_prep_value = getattr(field, 'get_db_prep_value', None) or self.lhs.output_field.get_db_prep_value return ( '%s', [get_db_prep_value(v, connection, prepared=True) for v in value] if self.get_db_prep_lookup_value_is_iterable else [get_db_prep_value(value, connection, prepared=True)] ) class FieldGetDbPrepValueIterableMixin(FieldGetDbPrepValueMixin): """ Some lookups require Field.get_db_prep_value() to be called on each value in an iterable. """ get_db_prep_lookup_value_is_iterable = True def get_prep_lookup(self): prepared_values = [] if hasattr(self.rhs, '_prepare'): # A subquery is like an iterable but its items shouldn't be # prepared independently. return self.rhs._prepare(self.lhs.output_field) for rhs_value in self.rhs: if hasattr(rhs_value, 'resolve_expression'): # An expression will be handled by the database but can coexist # alongside real values. pass elif self.prepare_rhs and hasattr(self.lhs.output_field, 'get_prep_value'): rhs_value = self.lhs.output_field.get_prep_value(rhs_value) prepared_values.append(rhs_value) return prepared_values def process_rhs(self, compiler, connection): if self.rhs_is_direct_value(): # rhs should be an iterable of values. Use batch_process_rhs() # to prepare/transform those values. return self.batch_process_rhs(compiler, connection) else: return super().process_rhs(compiler, connection) def resolve_expression_parameter(self, compiler, connection, sql, param): params = [param] if hasattr(param, 'resolve_expression'): param = param.resolve_expression(compiler.query) if hasattr(param, 'as_sql'): sql, params = param.as_sql(compiler, connection) return sql, params def batch_process_rhs(self, compiler, connection, rhs=None): pre_processed = super().batch_process_rhs(compiler, connection, rhs) # The params list may contain expressions which compile to a # sql/param pair. Zip them to get sql and param pairs that refer to the # same argument and attempt to replace them with the result of # compiling the param step. sql, params = zip(*( self.resolve_expression_parameter(compiler, connection, sql, param) for sql, param in zip(*pre_processed) )) params = itertools.chain.from_iterable(params) return sql, tuple(params) @Field.register_lookup class Exact(FieldGetDbPrepValueMixin, BuiltinLookup): lookup_name = 'exact' def process_rhs(self, compiler, connection): from django.db.models.sql.query import Query if isinstance(self.rhs, Query): if self.rhs.has_limit_one(): # The subquery must select only the pk. self.rhs.clear_select_clause() self.rhs.add_fields(['pk']) else: raise ValueError( 'The QuerySet value for an exact lookup must be limited to ' 'one result using slicing.' ) return super().process_rhs(compiler, connection) @Field.register_lookup class IExact(BuiltinLookup): lookup_name = 'iexact' prepare_rhs = False def process_rhs(self, qn, connection): rhs, params = super().process_rhs(qn, connection) if params: params[0] = connection.ops.prep_for_iexact_query(params[0]) return rhs, params @Field.register_lookup class GreaterThan(FieldGetDbPrepValueMixin, BuiltinLookup): lookup_name = 'gt' @Field.register_lookup class GreaterThanOrEqual(FieldGetDbPrepValueMixin, BuiltinLookup): lookup_name = 'gte' @Field.register_lookup class LessThan(FieldGetDbPrepValueMixin, BuiltinLookup): lookup_name = 'lt' @Field.register_lookup class LessThanOrEqual(FieldGetDbPrepValueMixin, BuiltinLookup): lookup_name = 'lte' class IntegerFieldFloatRounding: """ Allow floats to work as query values for IntegerField. Without this, the decimal portion of the float would always be discarded. """ def get_prep_lookup(self): if isinstance(self.rhs, float): self.rhs = math.ceil(self.rhs) return super().get_prep_lookup() @IntegerField.register_lookup class IntegerGreaterThanOrEqual(IntegerFieldFloatRounding, GreaterThanOrEqual): pass @IntegerField.register_lookup class IntegerLessThan(IntegerFieldFloatRounding, LessThan): pass @Field.register_lookup class In(FieldGetDbPrepValueIterableMixin, BuiltinLookup): lookup_name = 'in' def process_rhs(self, compiler, connection): db_rhs = getattr(self.rhs, '_db', None) if db_rhs is not None and db_rhs != connection.alias: raise ValueError( "Subqueries aren't allowed across different databases. Force " "the inner query to be evaluated using `list(inner_query)`." ) if self.rhs_is_direct_value(): try: rhs = OrderedSet(self.rhs) except TypeError: # Unhashable items in self.rhs rhs = self.rhs if not rhs: raise EmptyResultSet # rhs should be an iterable; use batch_process_rhs() to # prepare/transform those values. sqls, sqls_params = self.batch_process_rhs(compiler, connection, rhs) placeholder = '(' + ', '.join(sqls) + ')' return (placeholder, sqls_params) else: if not getattr(self.rhs, 'has_select_fields', True): self.rhs.clear_select_clause() self.rhs.add_fields(['pk']) return super().process_rhs(compiler, connection) def get_rhs_op(self, connection, rhs): return 'IN %s' % rhs def as_sql(self, compiler, connection): max_in_list_size = connection.ops.max_in_list_size() if self.rhs_is_direct_value() and max_in_list_size and len(self.rhs) > max_in_list_size: return self.split_parameter_list_as_sql(compiler, connection) return super().as_sql(compiler, connection) def split_parameter_list_as_sql(self, compiler, connection): # This is a special case for databases which limit the number of # elements which can appear in an 'IN' clause. max_in_list_size = connection.ops.max_in_list_size() lhs, lhs_params = self.process_lhs(compiler, connection) rhs, rhs_params = self.batch_process_rhs(compiler, connection) in_clause_elements = ['('] params = [] for offset in range(0, len(rhs_params), max_in_list_size): if offset > 0: in_clause_elements.append(' OR ') in_clause_elements.append('%s IN (' % lhs) params.extend(lhs_params) sqls = rhs[offset: offset + max_in_list_size] sqls_params = rhs_params[offset: offset + max_in_list_size] param_group = ', '.join(sqls) in_clause_elements.append(param_group) in_clause_elements.append(')') params.extend(sqls_params) in_clause_elements.append(')') return ''.join(in_clause_elements), params class PatternLookup(BuiltinLookup): param_pattern = '%%%s%%' prepare_rhs = False def get_rhs_op(self, connection, rhs): # Assume we are in startswith. We need to produce SQL like: # col LIKE %s, ['thevalue%'] # For python values we can (and should) do that directly in Python, # but if the value is for example reference to other column, then # we need to add the % pattern match to the lookup by something like # col LIKE othercol || '%%' # So, for Python values we don't need any special pattern, but for # SQL reference values or SQL transformations we need the correct # pattern added. if hasattr(self.rhs, 'as_sql') or self.bilateral_transforms: pattern = connection.pattern_ops[self.lookup_name].format(connection.pattern_esc) return pattern.format(rhs) else: return super().get_rhs_op(connection, rhs) def process_rhs(self, qn, connection): rhs, params = super().process_rhs(qn, connection) if self.rhs_is_direct_value() and params and not self.bilateral_transforms: params[0] = self.param_pattern % connection.ops.prep_for_like_query(params[0]) return rhs, params @Field.register_lookup class Contains(PatternLookup): lookup_name = 'contains' @Field.register_lookup class IContains(Contains): lookup_name = 'icontains' @Field.register_lookup class StartsWith(PatternLookup): lookup_name = 'startswith' param_pattern = '%s%%' @Field.register_lookup class IStartsWith(StartsWith): lookup_name = 'istartswith' @Field.register_lookup class EndsWith(PatternLookup): lookup_name = 'endswith' param_pattern = '%%%s' @Field.register_lookup class IEndsWith(EndsWith): lookup_name = 'iendswith' @Field.register_lookup class Range(FieldGetDbPrepValueIterableMixin, BuiltinLookup): lookup_name = 'range' def get_rhs_op(self, connection, rhs): return "BETWEEN %s AND %s" % (rhs[0], rhs[1]) @Field.register_lookup class IsNull(BuiltinLookup): lookup_name = 'isnull' prepare_rhs = False def as_sql(self, compiler, connection): sql, params = compiler.compile(self.lhs) if self.rhs: return "%s IS NULL" % sql, params else: return "%s IS NOT NULL" % sql, params @Field.register_lookup class Regex(BuiltinLookup): lookup_name = 'regex' prepare_rhs = False def as_sql(self, compiler, connection): if self.lookup_name in connection.operators: return super().as_sql(compiler, connection) else: lhs, lhs_params = self.process_lhs(compiler, connection) rhs, rhs_params = self.process_rhs(compiler, connection) sql_template = connection.ops.regex_lookup(self.lookup_name) return sql_template % (lhs, rhs), lhs_params + rhs_params @Field.register_lookup class IRegex(Regex): lookup_name = 'iregex' class YearLookup(Lookup): def year_lookup_bounds(self, connection, year): output_field = self.lhs.lhs.output_field if isinstance(output_field, DateTimeField): bounds = connection.ops.year_lookup_bounds_for_datetime_field(year) else: bounds = connection.ops.year_lookup_bounds_for_date_field(year) return bounds class YearComparisonLookup(YearLookup): def as_sql(self, compiler, connection): # We will need to skip the extract part and instead go # directly with the originating field, that is self.lhs.lhs. lhs_sql, params = self.process_lhs(compiler, connection, self.lhs.lhs) rhs_sql, rhs_params = self.process_rhs(compiler, connection) rhs_sql = self.get_rhs_op(connection, rhs_sql) start, finish = self.year_lookup_bounds(connection, rhs_params[0]) params.append(self.get_bound(start, finish)) return '%s %s' % (lhs_sql, rhs_sql), params def get_rhs_op(self, connection, rhs): return connection.operators[self.lookup_name] % rhs def get_bound(self, start, finish): raise NotImplementedError( 'subclasses of YearComparisonLookup must provide a get_bound() method' ) class YearExact(YearLookup, Exact): lookup_name = 'exact' def as_sql(self, compiler, connection): # We will need to skip the extract part and instead go # directly with the originating field, that is self.lhs.lhs. lhs_sql, params = self.process_lhs(compiler, connection, self.lhs.lhs) rhs_sql, rhs_params = self.process_rhs(compiler, connection) try: # Check that rhs_params[0] exists (IndexError), # it isn't None (TypeError), and is a number (ValueError) int(rhs_params[0]) except (IndexError, TypeError, ValueError): # Can't determine the bounds before executing the query, so skip # optimizations by falling back to a standard exact comparison. return super().as_sql(compiler, connection) bounds = self.year_lookup_bounds(connection, rhs_params[0]) params.extend(bounds) return '%s BETWEEN %%s AND %%s' % lhs_sql, params class YearGt(YearComparisonLookup): lookup_name = 'gt' def get_bound(self, start, finish): return finish class YearGte(YearComparisonLookup): lookup_name = 'gte' def get_bound(self, start, finish): return start class YearLt(YearComparisonLookup): lookup_name = 'lt' def get_bound(self, start, finish): return start class YearLte(YearComparisonLookup): lookup_name = 'lte' def get_bound(self, start, finish): return finish
74183ac52369c87dd874722777969f028ea853f512a6ff36f259eb83bf2d9ae8
""" Helpers to manipulate deferred DDL statements that might need to be adjusted or discarded within when executing a migration. """ class Reference: """Base class that defines the reference interface.""" def references_table(self, table): """ Return whether or not this instance references the specified table. """ return False def references_column(self, table, column): """ Return whether or not this instance references the specified column. """ return False def rename_table_references(self, old_table, new_table): """ Rename all references to the old_name to the new_table. """ pass def rename_column_references(self, table, old_column, new_column): """ Rename all references to the old_column to the new_column. """ pass def __repr__(self): return '<%s %r>' % (self.__class__.__name__, str(self)) def __str__(self): raise NotImplementedError('Subclasses must define how they should be converted to string.') class Table(Reference): """Hold a reference to a table.""" def __init__(self, table, quote_name): self.table = table self.quote_name = quote_name def references_table(self, table): return self.table == table def rename_table_references(self, old_table, new_table): if self.table == old_table: self.table = new_table def __str__(self): return self.quote_name(self.table) class TableColumns(Table): """Base class for references to multiple columns of a table.""" def __init__(self, table, columns): self.table = table self.columns = columns def references_column(self, table, column): return self.table == table and column in self.columns def rename_column_references(self, table, old_column, new_column): if self.table == table: for index, column in enumerate(self.columns): if column == old_column: self.columns[index] = new_column class Columns(TableColumns): """Hold a reference to one or many columns.""" def __init__(self, table, columns, quote_name, col_suffixes=()): self.quote_name = quote_name self.col_suffixes = col_suffixes super().__init__(table, columns) def __str__(self): def col_str(column, idx): try: return self.quote_name(column) + self.col_suffixes[idx] except IndexError: return self.quote_name(column) return ', '.join(col_str(column, idx) for idx, column in enumerate(self.columns)) class IndexName(TableColumns): """Hold a reference to an index name.""" def __init__(self, table, columns, suffix, create_index_name): self.suffix = suffix self.create_index_name = create_index_name super().__init__(table, columns) def __str__(self): return self.create_index_name(self.table, self.columns, self.suffix) class ForeignKeyName(TableColumns): """Hold a reference to a foreign key name.""" def __init__(self, from_table, from_columns, to_table, to_columns, suffix_template, create_fk_name): self.to_reference = TableColumns(to_table, to_columns) self.suffix_template = suffix_template self.create_fk_name = create_fk_name super().__init__(from_table, from_columns,) def references_table(self, table): return super().references_table(table) or self.to_reference.references_table(table) def references_column(self, table, column): return ( super().references_column(table, column) or self.to_reference.references_column(table, column) ) def rename_table_references(self, old_table, new_table): super().rename_table_references(old_table, new_table) self.to_reference.rename_table_references(old_table, new_table) def rename_column_references(self, table, old_column, new_column): super().rename_column_references(table, old_column, new_column) self.to_reference.rename_column_references(table, old_column, new_column) def __str__(self): suffix = self.suffix_template % { 'to_table': self.to_reference.table, 'to_column': self.to_reference.columns[0], } return self.create_fk_name(self.table, self.columns, suffix) class Statement(Reference): """ Statement template and formatting parameters container. Allows keeping a reference to a statement without interpolating identifiers that might have to be adjusted if they're referencing a table or column that is removed """ def __init__(self, template, **parts): self.template = template self.parts = parts def references_table(self, table): return any( hasattr(part, 'references_table') and part.references_table(table) for part in self.parts.values() ) def references_column(self, table, column): return any( hasattr(part, 'references_column') and part.references_column(table, column) for part in self.parts.values() ) def rename_table_references(self, old_table, new_table): for part in self.parts.values(): if hasattr(part, 'rename_table_references'): part.rename_table_references(old_table, new_table) def rename_column_references(self, table, old_column, new_column): for part in self.parts.values(): if hasattr(part, 'rename_column_references'): part.rename_column_references(table, old_column, new_column) def __str__(self): return self.template % self.parts
db3d1c55a230406975b637f63b9d0da1062e83613ce81273d575ac89da6a625c
import datetime import decimal import functools import hashlib import logging from time import time from django.conf import settings from django.db.utils import NotSupportedError from django.utils.encoding import force_bytes from django.utils.timezone import utc logger = logging.getLogger('django.db.backends') class CursorWrapper: def __init__(self, cursor, db): self.cursor = cursor self.db = db WRAP_ERROR_ATTRS = frozenset(['fetchone', 'fetchmany', 'fetchall', 'nextset']) def __getattr__(self, attr): cursor_attr = getattr(self.cursor, attr) if attr in CursorWrapper.WRAP_ERROR_ATTRS: return self.db.wrap_database_errors(cursor_attr) else: return cursor_attr def __iter__(self): with self.db.wrap_database_errors: yield from self.cursor def __enter__(self): return self def __exit__(self, type, value, traceback): # Close instead of passing through to avoid backend-specific behavior # (#17671). Catch errors liberally because errors in cleanup code # aren't useful. try: self.close() except self.db.Database.Error: pass # The following methods cannot be implemented in __getattr__, because the # code must run when the method is invoked, not just when it is accessed. def callproc(self, procname, params=None, kparams=None): # Keyword parameters for callproc aren't supported in PEP 249, but the # database driver may support them (e.g. cx_Oracle). if kparams is not None and not self.db.features.supports_callproc_kwargs: raise NotSupportedError( 'Keyword parameters for callproc are not supported on this ' 'database backend.' ) self.db.validate_no_broken_transaction() with self.db.wrap_database_errors: if params is None and kparams is None: return self.cursor.callproc(procname) elif kparams is None: return self.cursor.callproc(procname, params) else: params = params or () return self.cursor.callproc(procname, params, kparams) def execute(self, sql, params=None): return self._execute_with_wrappers(sql, params, many=False, executor=self._execute) def executemany(self, sql, param_list): return self._execute_with_wrappers(sql, param_list, many=True, executor=self._executemany) def _execute_with_wrappers(self, sql, params, many, executor): context = {'connection': self.db, 'cursor': self} for wrapper in reversed(self.db.execute_wrappers): executor = functools.partial(wrapper, executor) return executor(sql, params, many, context) def _execute(self, sql, params, *ignored_wrapper_args): self.db.validate_no_broken_transaction() with self.db.wrap_database_errors: if params is None: return self.cursor.execute(sql) else: return self.cursor.execute(sql, params) def _executemany(self, sql, param_list, *ignored_wrapper_args): self.db.validate_no_broken_transaction() with self.db.wrap_database_errors: return self.cursor.executemany(sql, param_list) class CursorDebugWrapper(CursorWrapper): # XXX callproc isn't instrumented at this time. def execute(self, sql, params=None): start = time() try: return super().execute(sql, params) finally: stop = time() duration = stop - start sql = self.db.ops.last_executed_query(self.cursor, sql, params) self.db.queries_log.append({ 'sql': sql, 'time': "%.3f" % duration, }) logger.debug( '(%.3f) %s; args=%s', duration, sql, params, extra={'duration': duration, 'sql': sql, 'params': params} ) def executemany(self, sql, param_list): start = time() try: return super().executemany(sql, param_list) finally: stop = time() duration = stop - start try: times = len(param_list) except TypeError: # param_list could be an iterator times = '?' self.db.queries_log.append({ 'sql': '%s times: %s' % (times, sql), 'time': "%.3f" % duration, }) logger.debug( '(%.3f) %s; args=%s', duration, sql, param_list, extra={'duration': duration, 'sql': sql, 'params': param_list} ) ############################################### # Converters from database (string) to Python # ############################################### def typecast_date(s): return datetime.date(*map(int, s.split('-'))) if s else None # return None if s is null def typecast_time(s): # does NOT store time zone information if not s: return None hour, minutes, seconds = s.split(':') if '.' in seconds: # check whether seconds have a fractional part seconds, microseconds = seconds.split('.') else: microseconds = '0' return datetime.time(int(hour), int(minutes), int(seconds), int((microseconds + '000000')[:6])) def typecast_timestamp(s): # does NOT store time zone information # "2005-07-29 15:48:00.590358-05" # "2005-07-29 09:56:00-05" if not s: return None if ' ' not in s: return typecast_date(s) d, t = s.split() # Extract timezone information, if it exists. Currently it's ignored. if '-' in t: t, tz = t.split('-', 1) tz = '-' + tz elif '+' in t: t, tz = t.split('+', 1) tz = '+' + tz else: tz = '' dates = d.split('-') times = t.split(':') seconds = times[2] if '.' in seconds: # check whether seconds have a fractional part seconds, microseconds = seconds.split('.') else: microseconds = '0' tzinfo = utc if settings.USE_TZ else None return datetime.datetime( int(dates[0]), int(dates[1]), int(dates[2]), int(times[0]), int(times[1]), int(seconds), int((microseconds + '000000')[:6]), tzinfo ) ############################################### # Converters from Python to database (string) # ############################################### def rev_typecast_decimal(d): if d is None: return None return str(d) def split_identifier(identifier): """ Split a SQL identifier into a two element tuple of (namespace, name). The identifier could be a table, column, or sequence name might be prefixed by a namespace. """ try: namespace, name = identifier.split('"."') except ValueError: namespace, name = '', identifier return namespace.strip('"'), name.strip('"') def truncate_name(identifier, length=None, hash_len=4): """ Shorten a SQL identifier to a repeatable mangled version with the given length. If a quote stripped name contains a namespace, e.g. USERNAME"."TABLE, truncate the table portion only. """ namespace, name = split_identifier(identifier) if length is None or len(name) <= length: return identifier digest = hashlib.md5(force_bytes(name)).hexdigest()[:hash_len] return '%s%s%s' % ('%s"."' % namespace if namespace else '', name[:length - hash_len], digest) def format_number(value, max_digits, decimal_places): """ Format a number into a string with the requisite number of digits and decimal places. """ if value is None: return None if isinstance(value, decimal.Decimal): context = decimal.getcontext().copy() if max_digits is not None: context.prec = max_digits if decimal_places is not None: value = value.quantize(decimal.Decimal(1).scaleb(-decimal_places), context=context) else: context.traps[decimal.Rounded] = 1 value = context.create_decimal(value) return "{:f}".format(value) if decimal_places is not None: return "%.*f" % (decimal_places, value) return "{:f}".format(value) def strip_quotes(table_name): """ Strip quotes off of quoted table names to make them safe for use in index names, sequence names, etc. For example '"USER"."TABLE"' (an Oracle naming scheme) becomes 'USER"."TABLE'. """ has_quotes = table_name.startswith('"') and table_name.endswith('"') return table_name[1:-1] if has_quotes else table_name
ac0141e5b51d9e4e63724213e0fc15c04b84e9a8f875bb5ab111dc4672321fa6
from django.dispatch import Signal connection_created = Signal(providing_args=["connection"])
02c264e19d46ebe84b2515a4c8e2e93f7940a719f83a63f8875caa3eb9d495f5
from .fields import AddField, AlterField, RemoveField, RenameField from .models import ( AddIndex, AlterIndexTogether, AlterModelManagers, AlterModelOptions, AlterModelTable, AlterOrderWithRespectTo, AlterUniqueTogether, CreateModel, DeleteModel, RemoveIndex, RenameModel, ) from .special import RunPython, RunSQL, SeparateDatabaseAndState __all__ = [ 'CreateModel', 'DeleteModel', 'AlterModelTable', 'AlterUniqueTogether', 'RenameModel', 'AlterIndexTogether', 'AlterModelOptions', 'AddIndex', 'RemoveIndex', 'AddField', 'RemoveField', 'AlterField', 'RenameField', 'SeparateDatabaseAndState', 'RunSQL', 'RunPython', 'AlterOrderWithRespectTo', 'AlterModelManagers', ]
394b4bd2d63b46eb4db541ce9aa4a8259128448de320a49106e5cf9360a9ee2e
from django.db import models from django.db.migrations.operations.base import Operation from django.db.migrations.state import ModelState from django.db.models.options import normalize_together from django.utils.functional import cached_property from .fields import ( AddField, AlterField, FieldOperation, RemoveField, RenameField, ) def _check_for_duplicates(arg_name, objs): used_vals = set() for val in objs: if val in used_vals: raise ValueError( "Found duplicate value %s in CreateModel %s argument." % (val, arg_name) ) used_vals.add(val) class ModelOperation(Operation): def __init__(self, name): self.name = name @cached_property def name_lower(self): return self.name.lower() def references_model(self, name, app_label=None): return name.lower() == self.name_lower def reduce(self, operation, in_between, app_label=None): return ( super().reduce(operation, in_between, app_label=app_label) or not operation.references_model(self.name, app_label) ) class CreateModel(ModelOperation): """Create a model's table.""" serialization_expand_args = ['fields', 'options', 'managers'] def __init__(self, name, fields, options=None, bases=None, managers=None): self.fields = fields self.options = options or {} self.bases = bases or (models.Model,) self.managers = managers or [] super().__init__(name) # Sanity-check that there are no duplicated field names, bases, or # manager names _check_for_duplicates('fields', (name for name, _ in self.fields)) _check_for_duplicates('bases', ( base._meta.label_lower if hasattr(base, '_meta') else base.lower() if isinstance(base, str) else base for base in self.bases )) _check_for_duplicates('managers', (name for name, _ in self.managers)) def deconstruct(self): kwargs = { 'name': self.name, 'fields': self.fields, } if self.options: kwargs['options'] = self.options if self.bases and self.bases != (models.Model,): kwargs['bases'] = self.bases if self.managers and self.managers != [('objects', models.Manager())]: kwargs['managers'] = self.managers return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): state.add_model(ModelState( app_label, self.name, list(self.fields), dict(self.options), tuple(self.bases), list(self.managers), )) def database_forwards(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.create_model(model) def database_backwards(self, app_label, schema_editor, from_state, to_state): model = from_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.delete_model(model) def describe(self): return "Create %smodel %s" % ("proxy " if self.options.get("proxy", False) else "", self.name) def references_model(self, name, app_label=None): name_lower = name.lower() if name_lower == self.name_lower: return True # Check we didn't inherit from the model models_to_check = [ base for base in self.bases if base is not models.Model and isinstance(base, (models.base.ModelBase, str)) ] # Check we have no FKs/M2Ms with it for fname, field in self.fields: if field.remote_field: models_to_check.append(field.remote_field.model) # Now go over all the models and check against them for model in models_to_check: model_app_label, model_name = self.model_to_key(model) if model_name.lower() == name_lower: if app_label is None or not model_app_label or model_app_label == app_label: return True return False def model_to_key(self, model): """ Take either a model class or an "app_label.ModelName" string and return (app_label, object_name). """ if isinstance(model, str): return model.split(".", 1) else: return model._meta.app_label, model._meta.object_name def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, DeleteModel) and self.name_lower == operation.name_lower and not self.options.get("proxy", False)): return [] elif isinstance(operation, RenameModel) and self.name_lower == operation.old_name_lower: return [ CreateModel( operation.new_name, fields=self.fields, options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, AlterModelOptions) and self.name_lower == operation.name_lower: return [ CreateModel( self.name, fields=self.fields, options={**self.options, **operation.options}, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, FieldOperation) and self.name_lower == operation.model_name_lower: if isinstance(operation, AddField): # Don't allow optimizations of FKs through models they reference if hasattr(operation.field, "remote_field") and operation.field.remote_field: for between in in_between: # Check that it doesn't point to the model app_label, object_name = self.model_to_key(operation.field.remote_field.model) if between.references_model(object_name, app_label): return False # Check that it's not through the model if getattr(operation.field.remote_field, "through", None): app_label, object_name = self.model_to_key(operation.field.remote_field.through) if between.references_model(object_name, app_label): return False return [ CreateModel( self.name, fields=self.fields + [(operation.name, operation.field)], options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, AlterField): return [ CreateModel( self.name, fields=[ (n, operation.field if n == operation.name else v) for n, v in self.fields ], options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, RemoveField): return [ CreateModel( self.name, fields=[ (n, v) for n, v in self.fields if n.lower() != operation.name_lower ], options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, RenameField): return [ CreateModel( self.name, fields=[ (operation.new_name if n == operation.old_name else n, v) for n, v in self.fields ], options=self.options, bases=self.bases, managers=self.managers, ), ] return super().reduce(operation, in_between, app_label=app_label) class DeleteModel(ModelOperation): """Drop a model's table.""" def deconstruct(self): kwargs = { 'name': self.name, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): state.remove_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): model = from_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.delete_model(model) def database_backwards(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.create_model(model) def describe(self): return "Delete model %s" % self.name class RenameModel(ModelOperation): """Rename a model.""" def __init__(self, old_name, new_name): self.old_name = old_name self.new_name = new_name super().__init__(old_name) @cached_property def old_name_lower(self): return self.old_name.lower() @cached_property def new_name_lower(self): return self.new_name.lower() def deconstruct(self): kwargs = { 'old_name': self.old_name, 'new_name': self.new_name, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): # Add a new model. renamed_model = state.models[app_label, self.old_name_lower].clone() renamed_model.name = self.new_name state.models[app_label, self.new_name_lower] = renamed_model # Repoint all fields pointing to the old model to the new one. old_model_tuple = app_label, self.old_name_lower new_remote_model = '%s.%s' % (app_label, self.new_name) to_reload = [] for (model_app_label, model_name), model_state in state.models.items(): model_changed = False for index, (name, field) in enumerate(model_state.fields): changed_field = None remote_field = field.remote_field if remote_field: remote_model_tuple = self._get_model_tuple( remote_field.model, model_app_label, model_name ) if remote_model_tuple == old_model_tuple: changed_field = field.clone() changed_field.remote_field.model = new_remote_model through_model = getattr(remote_field, 'through', None) if through_model: through_model_tuple = self._get_model_tuple( through_model, model_app_label, model_name ) if through_model_tuple == old_model_tuple: if changed_field is None: changed_field = field.clone() changed_field.remote_field.through = new_remote_model if changed_field: model_state.fields[index] = name, changed_field model_changed = True if model_changed: to_reload.append((model_app_label, model_name)) # Reload models related to old model before removing the old model. state.reload_models(to_reload, delay=True) # Remove the old model. state.remove_model(app_label, self.old_name_lower) state.reload_model(app_label, self.new_name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.new_name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.old_name) # Move the main table schema_editor.alter_db_table( new_model, old_model._meta.db_table, new_model._meta.db_table, ) # Alter the fields pointing to us for related_object in old_model._meta.related_objects: if related_object.related_model == old_model: model = new_model related_key = (app_label, self.new_name_lower) else: model = related_object.related_model related_key = ( related_object.related_model._meta.app_label, related_object.related_model._meta.model_name, ) to_field = to_state.apps.get_model( *related_key )._meta.get_field(related_object.field.name) schema_editor.alter_field( model, related_object.field, to_field, ) # Rename M2M fields whose name is based on this model's name. fields = zip(old_model._meta.local_many_to_many, new_model._meta.local_many_to_many) for (old_field, new_field) in fields: # Skip self-referential fields as these are renamed above. if new_field.model == new_field.related_model or not new_field.remote_field.through._meta.auto_created: continue # Rename the M2M table that's based on this model's name. old_m2m_model = old_field.remote_field.through new_m2m_model = new_field.remote_field.through schema_editor.alter_db_table( new_m2m_model, old_m2m_model._meta.db_table, new_m2m_model._meta.db_table, ) # Rename the column in the M2M table that's based on this # model's name. schema_editor.alter_field( new_m2m_model, old_m2m_model._meta.get_field(old_model._meta.model_name), new_m2m_model._meta.get_field(new_model._meta.model_name), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): self.new_name_lower, self.old_name_lower = self.old_name_lower, self.new_name_lower self.new_name, self.old_name = self.old_name, self.new_name self.database_forwards(app_label, schema_editor, from_state, to_state) self.new_name_lower, self.old_name_lower = self.old_name_lower, self.new_name_lower self.new_name, self.old_name = self.old_name, self.new_name def references_model(self, name, app_label=None): return ( name.lower() == self.old_name_lower or name.lower() == self.new_name_lower ) def describe(self): return "Rename model %s to %s" % (self.old_name, self.new_name) def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, RenameModel) and self.new_name_lower == operation.old_name_lower): return [ RenameModel( self.old_name, operation.new_name, ), ] # Skip `ModelOperation.reduce` as we want to run `references_model` # against self.new_name. return ( super(ModelOperation, self).reduce(operation, in_between, app_label=app_label) or not operation.references_model(self.new_name, app_label) ) class AlterModelTable(ModelOperation): """Rename a model's table.""" def __init__(self, name, table): self.table = table super().__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'table': self.table, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): state.models[app_label, self.name_lower].options["db_table"] = self.table state.reload_model(app_label, self.name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.name) schema_editor.alter_db_table( new_model, old_model._meta.db_table, new_model._meta.db_table, ) # Rename M2M fields whose name is based on this model's db_table for (old_field, new_field) in zip(old_model._meta.local_many_to_many, new_model._meta.local_many_to_many): if new_field.remote_field.through._meta.auto_created: schema_editor.alter_db_table( new_field.remote_field.through, old_field.remote_field.through._meta.db_table, new_field.remote_field.through._meta.db_table, ) def database_backwards(self, app_label, schema_editor, from_state, to_state): return self.database_forwards(app_label, schema_editor, from_state, to_state) def describe(self): return "Rename table for %s to %s" % ( self.name, self.table if self.table is not None else "(default)" ) def reduce(self, operation, in_between, app_label=None): if isinstance(operation, (AlterModelTable, DeleteModel)) and self.name_lower == operation.name_lower: return [operation] return super().reduce(operation, in_between, app_label=app_label) class ModelOptionOperation(ModelOperation): def reduce(self, operation, in_between, app_label=None): if isinstance(operation, (self.__class__, DeleteModel)) and self.name_lower == operation.name_lower: return [operation] return super().reduce(operation, in_between, app_label=app_label) class FieldRelatedOptionOperation(ModelOptionOperation): def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, FieldOperation) and self.name_lower == operation.model_name_lower and not self.references_field(operation.model_name, operation.name)): return [operation, self] return super().reduce(operation, in_between, app_label=app_label) class AlterUniqueTogether(FieldRelatedOptionOperation): """ Change the value of unique_together to the target one. Input value of unique_together must be a set of tuples. """ option_name = "unique_together" def __init__(self, name, unique_together): unique_together = normalize_together(unique_together) self.unique_together = {tuple(cons) for cons in unique_together} super().__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'unique_together': self.unique_together, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options[self.option_name] = self.unique_together state.reload_model(app_label, self.name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.name) schema_editor.alter_unique_together( new_model, getattr(old_model._meta, self.option_name, set()), getattr(new_model._meta, self.option_name, set()), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): return self.database_forwards(app_label, schema_editor, from_state, to_state) def references_field(self, model_name, name, app_label=None): return ( self.references_model(model_name, app_label) and ( not self.unique_together or any((name in together) for together in self.unique_together) ) ) def describe(self): return "Alter %s for %s (%s constraint(s))" % (self.option_name, self.name, len(self.unique_together or '')) class AlterIndexTogether(FieldRelatedOptionOperation): """ Change the value of index_together to the target one. Input value of index_together must be a set of tuples. """ option_name = "index_together" def __init__(self, name, index_together): index_together = normalize_together(index_together) self.index_together = {tuple(cons) for cons in index_together} super().__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'index_together': self.index_together, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options[self.option_name] = self.index_together state.reload_model(app_label, self.name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.name) schema_editor.alter_index_together( new_model, getattr(old_model._meta, self.option_name, set()), getattr(new_model._meta, self.option_name, set()), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): return self.database_forwards(app_label, schema_editor, from_state, to_state) def references_field(self, model_name, name, app_label=None): return ( self.references_model(model_name, app_label) and ( not self.index_together or any((name in together) for together in self.index_together) ) ) def describe(self): return "Alter %s for %s (%s constraint(s))" % (self.option_name, self.name, len(self.index_together or '')) class AlterOrderWithRespectTo(FieldRelatedOptionOperation): """Represent a change with the order_with_respect_to option.""" def __init__(self, name, order_with_respect_to): self.order_with_respect_to = order_with_respect_to super().__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'order_with_respect_to': self.order_with_respect_to, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options['order_with_respect_to'] = self.order_with_respect_to state.reload_model(app_label, self.name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.name) # Remove a field if we need to if from_model._meta.order_with_respect_to and not to_model._meta.order_with_respect_to: schema_editor.remove_field(from_model, from_model._meta.get_field("_order")) # Add a field if we need to (altering the column is untouched as # it's likely a rename) elif to_model._meta.order_with_respect_to and not from_model._meta.order_with_respect_to: field = to_model._meta.get_field("_order") if not field.has_default(): field.default = 0 schema_editor.add_field( from_model, field, ) def database_backwards(self, app_label, schema_editor, from_state, to_state): self.database_forwards(app_label, schema_editor, from_state, to_state) def references_field(self, model_name, name, app_label=None): return ( self.references_model(model_name, app_label) and ( self.order_with_respect_to is None or name == self.order_with_respect_to ) ) def describe(self): return "Set order_with_respect_to on %s to %s" % (self.name, self.order_with_respect_to) class AlterModelOptions(ModelOptionOperation): """ Set new model options that don't directly affect the database schema (like verbose_name, permissions, ordering). Python code in migrations may still need them. """ # Model options we want to compare and preserve in an AlterModelOptions op ALTER_OPTION_KEYS = [ "base_manager_name", "default_manager_name", "get_latest_by", "managed", "ordering", "permissions", "default_permissions", "select_on_save", "verbose_name", "verbose_name_plural", ] def __init__(self, name, options): self.options = options super().__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'options': self.options, } return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options = {**model_state.options, **self.options} for key in self.ALTER_OPTION_KEYS: if key not in self.options: model_state.options.pop(key, False) state.reload_model(app_label, self.name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): pass def database_backwards(self, app_label, schema_editor, from_state, to_state): pass def describe(self): return "Change Meta options on %s" % self.name class AlterModelManagers(ModelOptionOperation): """Alter the model's managers.""" serialization_expand_args = ['managers'] def __init__(self, name, managers): self.managers = managers super().__init__(name) def deconstruct(self): return ( self.__class__.__qualname__, [self.name, self.managers], {} ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.managers = list(self.managers) state.reload_model(app_label, self.name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): pass def database_backwards(self, app_label, schema_editor, from_state, to_state): pass def describe(self): return "Change managers on %s" % self.name class IndexOperation(Operation): option_name = 'indexes' @cached_property def model_name_lower(self): return self.model_name.lower() class AddIndex(IndexOperation): """Add an index on a model.""" def __init__(self, model_name, index): self.model_name = model_name if not index.name: raise ValueError( "Indexes passed to AddIndex operations require a name " "argument. %r doesn't have one." % index ) self.index = index def state_forwards(self, app_label, state): model_state = state.models[app_label, self.model_name_lower] indexes = list(model_state.options[self.option_name]) indexes.append(self.index.clone()) model_state.options[self.option_name] = indexes state.reload_model(app_label, self.model_name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.add_index(model, self.index) def database_backwards(self, app_label, schema_editor, from_state, to_state): model = from_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.remove_index(model, self.index) def deconstruct(self): kwargs = { 'model_name': self.model_name, 'index': self.index, } return ( self.__class__.__qualname__, [], kwargs, ) def describe(self): return 'Create index %s on field(s) %s of model %s' % ( self.index.name, ', '.join(self.index.fields), self.model_name, ) class RemoveIndex(IndexOperation): """Remove an index from a model.""" def __init__(self, model_name, name): self.model_name = model_name self.name = name def state_forwards(self, app_label, state): model_state = state.models[app_label, self.model_name_lower] indexes = model_state.options[self.option_name] model_state.options[self.option_name] = [idx for idx in indexes if idx.name != self.name] state.reload_model(app_label, self.model_name_lower, delay=True) def database_forwards(self, app_label, schema_editor, from_state, to_state): model = from_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, model): from_model_state = from_state.models[app_label, self.model_name_lower] index = from_model_state.get_index_by_name(self.name) schema_editor.remove_index(model, index) def database_backwards(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, model): to_model_state = to_state.models[app_label, self.model_name_lower] index = to_model_state.get_index_by_name(self.name) schema_editor.add_index(model, index) def deconstruct(self): kwargs = { 'model_name': self.model_name, 'name': self.name, } return ( self.__class__.__qualname__, [], kwargs, ) def describe(self): return 'Remove index %s from %s' % (self.name, self.model_name)
93ff239da56957209e6cec53c96216e507dd3024b54db77bb7d9adb330c26404
from django.db import router from django.db.models.fields.related import RECURSIVE_RELATIONSHIP_CONSTANT class Operation: """ Base class for migration operations. It's responsible for both mutating the in-memory model state (see db/migrations/state.py) to represent what it performs, as well as actually performing it against a live database. Note that some operations won't modify memory state at all (e.g. data copying operations), and some will need their modifications to be optionally specified by the user (e.g. custom Python code snippets) Due to the way this class deals with deconstruction, it should be considered immutable. """ # If this migration can be run in reverse. # Some operations are impossible to reverse, like deleting data. reversible = True # Can this migration be represented as SQL? (things like RunPython cannot) reduces_to_sql = True # Should this operation be forced as atomic even on backends with no # DDL transaction support (i.e., does it have no DDL, like RunPython) atomic = False # Should this operation be considered safe to elide and optimize across? elidable = False serialization_expand_args = [] def __new__(cls, *args, **kwargs): # We capture the arguments to make returning them trivial self = object.__new__(cls) self._constructor_args = (args, kwargs) return self def deconstruct(self): """ Return a 3-tuple of class import path (or just name if it lives under django.db.migrations), positional arguments, and keyword arguments. """ return ( self.__class__.__name__, self._constructor_args[0], self._constructor_args[1], ) def state_forwards(self, app_label, state): """ Take the state from the previous migration, and mutate it so that it matches what this migration would perform. """ raise NotImplementedError('subclasses of Operation must provide a state_forwards() method') def database_forwards(self, app_label, schema_editor, from_state, to_state): """ Perform the mutation on the database schema in the normal (forwards) direction. """ raise NotImplementedError('subclasses of Operation must provide a database_forwards() method') def database_backwards(self, app_label, schema_editor, from_state, to_state): """ Perform the mutation on the database schema in the reverse direction - e.g. if this were CreateModel, it would in fact drop the model's table. """ raise NotImplementedError('subclasses of Operation must provide a database_backwards() method') def describe(self): """ Output a brief summary of what the action does. """ return "%s: %s" % (self.__class__.__name__, self._constructor_args) def references_model(self, name, app_label=None): """ Return True if there is a chance this operation references the given model name (as a string), with an optional app label for accuracy. Used for optimization. If in doubt, return True; returning a false positive will merely make the optimizer a little less efficient, while returning a false negative may result in an unusable optimized migration. """ return True def references_field(self, model_name, name, app_label=None): """ Return True if there is a chance this operation references the given field name, with an optional app label for accuracy. Used for optimization. If in doubt, return True. """ return self.references_model(model_name, app_label) def allow_migrate_model(self, connection_alias, model): """ Return wether or not a model may be migrated. This is a thin wrapper around router.allow_migrate_model() that preemptively rejects any proxy, swapped out, or unmanaged model. """ if not model._meta.can_migrate(connection_alias): return False return router.allow_migrate_model(connection_alias, model) def reduce(self, operation, in_between, app_label=None): """ Return either a list of operations the actual operation should be replaced with or a boolean that indicates whether or not the specified operation can be optimized across. """ if self.elidable: return [operation] elif operation.elidable: return [self] return False def _get_model_tuple(self, remote_model, app_label, model_name): if remote_model == RECURSIVE_RELATIONSHIP_CONSTANT: return app_label, model_name.lower() elif '.' in remote_model: return tuple(remote_model.lower().split('.')) else: return app_label, remote_model.lower() def __repr__(self): return "<%s %s%s>" % ( self.__class__.__name__, ", ".join(map(repr, self._constructor_args[0])), ",".join(" %s=%r" % x for x in self._constructor_args[1].items()), )
eaf3b645181a50f9f11236e44d7dd0c0037e2da69d6451d8a451e8b8068c9a28
from django.db import router from .base import Operation class SeparateDatabaseAndState(Operation): """ Take two lists of operations - ones that will be used for the database, and ones that will be used for the state change. This allows operations that don't support state change to have it applied, or have operations that affect the state or not the database, or so on. """ serialization_expand_args = ['database_operations', 'state_operations'] def __init__(self, database_operations=None, state_operations=None): self.database_operations = database_operations or [] self.state_operations = state_operations or [] def deconstruct(self): kwargs = {} if self.database_operations: kwargs['database_operations'] = self.database_operations if self.state_operations: kwargs['state_operations'] = self.state_operations return ( self.__class__.__qualname__, [], kwargs ) def state_forwards(self, app_label, state): for state_operation in self.state_operations: state_operation.state_forwards(app_label, state) def database_forwards(self, app_label, schema_editor, from_state, to_state): # We calculate state separately in here since our state functions aren't useful for database_operation in self.database_operations: to_state = from_state.clone() database_operation.state_forwards(app_label, to_state) database_operation.database_forwards(app_label, schema_editor, from_state, to_state) from_state = to_state def database_backwards(self, app_label, schema_editor, from_state, to_state): # We calculate state separately in here since our state functions aren't useful to_states = {} for dbop in self.database_operations: to_states[dbop] = to_state to_state = to_state.clone() dbop.state_forwards(app_label, to_state) # to_state now has the states of all the database_operations applied # which is the from_state for the backwards migration of the last # operation. for database_operation in reversed(self.database_operations): from_state = to_state to_state = to_states[database_operation] database_operation.database_backwards(app_label, schema_editor, from_state, to_state) def describe(self): return "Custom state/database change combination" class RunSQL(Operation): """ Run some raw SQL. A reverse SQL statement may be provided. Also accept a list of operations that represent the state change effected by this SQL change, in case it's custom column/table creation/deletion. """ noop = '' def __init__(self, sql, reverse_sql=None, state_operations=None, hints=None, elidable=False): self.sql = sql self.reverse_sql = reverse_sql self.state_operations = state_operations or [] self.hints = hints or {} self.elidable = elidable def deconstruct(self): kwargs = { 'sql': self.sql, } if self.reverse_sql is not None: kwargs['reverse_sql'] = self.reverse_sql if self.state_operations: kwargs['state_operations'] = self.state_operations if self.hints: kwargs['hints'] = self.hints return ( self.__class__.__qualname__, [], kwargs ) @property def reversible(self): return self.reverse_sql is not None def state_forwards(self, app_label, state): for state_operation in self.state_operations: state_operation.state_forwards(app_label, state) def database_forwards(self, app_label, schema_editor, from_state, to_state): if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): self._run_sql(schema_editor, self.sql) def database_backwards(self, app_label, schema_editor, from_state, to_state): if self.reverse_sql is None: raise NotImplementedError("You cannot reverse this operation") if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): self._run_sql(schema_editor, self.reverse_sql) def describe(self): return "Raw SQL operation" def _run_sql(self, schema_editor, sqls): if isinstance(sqls, (list, tuple)): for sql in sqls: params = None if isinstance(sql, (list, tuple)): elements = len(sql) if elements == 2: sql, params = sql else: raise ValueError("Expected a 2-tuple but got %d" % elements) schema_editor.execute(sql, params=params) elif sqls != RunSQL.noop: statements = schema_editor.connection.ops.prepare_sql_script(sqls) for statement in statements: schema_editor.execute(statement, params=None) class RunPython(Operation): """ Run Python code in a context suitable for doing versioned ORM operations. """ reduces_to_sql = False def __init__(self, code, reverse_code=None, atomic=None, hints=None, elidable=False): self.atomic = atomic # Forwards code if not callable(code): raise ValueError("RunPython must be supplied with a callable") self.code = code # Reverse code if reverse_code is None: self.reverse_code = None else: if not callable(reverse_code): raise ValueError("RunPython must be supplied with callable arguments") self.reverse_code = reverse_code self.hints = hints or {} self.elidable = elidable def deconstruct(self): kwargs = { 'code': self.code, } if self.reverse_code is not None: kwargs['reverse_code'] = self.reverse_code if self.atomic is not None: kwargs['atomic'] = self.atomic if self.hints: kwargs['hints'] = self.hints return ( self.__class__.__qualname__, [], kwargs ) @property def reversible(self): return self.reverse_code is not None def state_forwards(self, app_label, state): # RunPython objects have no state effect. To add some, combine this # with SeparateDatabaseAndState. pass def database_forwards(self, app_label, schema_editor, from_state, to_state): # RunPython has access to all models. Ensure that all models are # reloaded in case any are delayed. from_state.clear_delayed_apps_cache() if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): # We now execute the Python code in a context that contains a 'models' # object, representing the versioned models as an app registry. # We could try to override the global cache, but then people will still # use direct imports, so we go with a documentation approach instead. self.code(from_state.apps, schema_editor) def database_backwards(self, app_label, schema_editor, from_state, to_state): if self.reverse_code is None: raise NotImplementedError("You cannot reverse this operation") if router.allow_migrate(schema_editor.connection.alias, app_label, **self.hints): self.reverse_code(from_state.apps, schema_editor) def describe(self): return "Raw Python operation" @staticmethod def noop(apps, schema_editor): return None
3a55122631c7186cd0c393f79bd2846474c6399a5231b9143829a07f7a301288
from django.core.exceptions import FieldDoesNotExist from django.db.models.fields import NOT_PROVIDED from django.utils.functional import cached_property from .base import Operation from .utils import is_referenced_by_foreign_key class FieldOperation(Operation): def __init__(self, model_name, name): self.model_name = model_name self.name = name @cached_property def model_name_lower(self): return self.model_name.lower() @cached_property def name_lower(self): return self.name.lower() def is_same_model_operation(self, operation): return self.model_name_lower == operation.model_name_lower def is_same_field_operation(self, operation): return self.is_same_model_operation(operation) and self.name_lower == operation.name_lower def references_model(self, name, app_label=None): return name.lower() == self.model_name_lower def references_field(self, model_name, name, app_label=None): return self.references_model(model_name) and name.lower() == self.name_lower def reduce(self, operation, in_between, app_label=None): return ( super().reduce(operation, in_between, app_label=app_label) or not operation.references_field(self.model_name, self.name, app_label) ) class AddField(FieldOperation): """Add a field to a model.""" def __init__(self, model_name, name, field, preserve_default=True): self.field = field self.preserve_default = preserve_default super().__init__(model_name, name) def deconstruct(self): kwargs = { 'model_name': self.model_name, 'name': self.name, 'field': self.field, } if self.preserve_default is not True: kwargs['preserve_default'] = self.preserve_default return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): # If preserve default is off, don't use the default for future state if not self.preserve_default: field = self.field.clone() field.default = NOT_PROVIDED else: field = self.field state.models[app_label, self.model_name_lower].fields.append((self.name, field)) # Delay rendering of relationships if it's not a relational field delay = not field.is_relation state.reload_model(app_label, self.model_name_lower, delay=delay) def database_forwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.model_name) field = to_model._meta.get_field(self.name) if not self.preserve_default: field.default = self.field.default schema_editor.add_field( from_model, field, ) if not self.preserve_default: field.default = NOT_PROVIDED def database_backwards(self, app_label, schema_editor, from_state, to_state): from_model = from_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, from_model): schema_editor.remove_field(from_model, from_model._meta.get_field(self.name)) def describe(self): return "Add field %s to %s" % (self.name, self.model_name) def reduce(self, operation, in_between, app_label=None): if isinstance(operation, FieldOperation) and self.is_same_field_operation(operation): if isinstance(operation, AlterField): return [ AddField( model_name=self.model_name, name=operation.name, field=operation.field, ), ] elif isinstance(operation, RemoveField): return [] elif isinstance(operation, RenameField): return [ AddField( model_name=self.model_name, name=operation.new_name, field=self.field, ), ] return super().reduce(operation, in_between, app_label=app_label) class RemoveField(FieldOperation): """Remove a field from a model.""" def deconstruct(self): kwargs = { 'model_name': self.model_name, 'name': self.name, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): new_fields = [] old_field = None for name, instance in state.models[app_label, self.model_name_lower].fields: if name != self.name: new_fields.append((name, instance)) else: old_field = instance state.models[app_label, self.model_name_lower].fields = new_fields # Delay rendering of relationships if it's not a relational field delay = not old_field.is_relation state.reload_model(app_label, self.model_name_lower, delay=delay) def database_forwards(self, app_label, schema_editor, from_state, to_state): from_model = from_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, from_model): schema_editor.remove_field(from_model, from_model._meta.get_field(self.name)) def database_backwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.model_name) schema_editor.add_field(from_model, to_model._meta.get_field(self.name)) def describe(self): return "Remove field %s from %s" % (self.name, self.model_name) class AlterField(FieldOperation): """ Alter a field's database column (e.g. null, max_length) to the provided new field. """ def __init__(self, model_name, name, field, preserve_default=True): self.field = field self.preserve_default = preserve_default super().__init__(model_name, name) def deconstruct(self): kwargs = { 'model_name': self.model_name, 'name': self.name, 'field': self.field, } if self.preserve_default is not True: kwargs['preserve_default'] = self.preserve_default return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): if not self.preserve_default: field = self.field.clone() field.default = NOT_PROVIDED else: field = self.field state.models[app_label, self.model_name_lower].fields = [ (n, field if n == self.name else f) for n, f in state.models[app_label, self.model_name_lower].fields ] # TODO: investigate if old relational fields must be reloaded or if it's # sufficient if the new field is (#27737). # Delay rendering of relationships if it's not a relational field and # not referenced by a foreign key. delay = ( not field.is_relation and not is_referenced_by_foreign_key(state, self.model_name_lower, self.field, self.name) ) state.reload_model(app_label, self.model_name_lower, delay=delay) def database_forwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.model_name) from_field = from_model._meta.get_field(self.name) to_field = to_model._meta.get_field(self.name) if not self.preserve_default: to_field.default = self.field.default schema_editor.alter_field(from_model, from_field, to_field) if not self.preserve_default: to_field.default = NOT_PROVIDED def database_backwards(self, app_label, schema_editor, from_state, to_state): self.database_forwards(app_label, schema_editor, from_state, to_state) def describe(self): return "Alter field %s on %s" % (self.name, self.model_name) def reduce(self, operation, in_between, app_label=None): if isinstance(operation, RemoveField) and self.is_same_field_operation(operation): return [operation] elif isinstance(operation, RenameField) and self.is_same_field_operation(operation): return [ operation, AlterField( model_name=self.model_name, name=operation.new_name, field=self.field, ), ] return super().reduce(operation, in_between, app_label=app_label) class RenameField(FieldOperation): """Rename a field on the model. Might affect db_column too.""" def __init__(self, model_name, old_name, new_name): self.old_name = old_name self.new_name = new_name super().__init__(model_name, old_name) @cached_property def old_name_lower(self): return self.old_name.lower() @cached_property def new_name_lower(self): return self.new_name.lower() def deconstruct(self): kwargs = { 'model_name': self.model_name, 'old_name': self.old_name, 'new_name': self.new_name, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.model_name_lower] # Rename the field fields = model_state.fields found = False delay = True for index, (name, field) in enumerate(fields): if not found and name == self.old_name: fields[index] = (self.new_name, field) found = True # Fix from_fields to refer to the new field. from_fields = getattr(field, 'from_fields', None) if from_fields: field.from_fields = tuple([ self.new_name if from_field_name == self.old_name else from_field_name for from_field_name in from_fields ]) # Delay rendering of relationships if it's not a relational # field and not referenced by a foreign key. delay = delay and ( not field.is_relation and not is_referenced_by_foreign_key(state, self.model_name_lower, field, self.name) ) if not found: raise FieldDoesNotExist( "%s.%s has no field named '%s'" % (app_label, self.model_name, self.old_name) ) # Fix index/unique_together to refer to the new field options = model_state.options for option in ('index_together', 'unique_together'): if option in options: options[option] = [ [self.new_name if n == self.old_name else n for n in together] for together in options[option] ] # Fix to_fields to refer to the new field. model_tuple = app_label, self.model_name_lower for (model_app_label, model_name), model_state in state.models.items(): for index, (name, field) in enumerate(model_state.fields): remote_field = field.remote_field if remote_field: remote_model_tuple = self._get_model_tuple( remote_field.model, model_app_label, model_name ) if remote_model_tuple == model_tuple: if getattr(remote_field, 'field_name', None) == self.old_name: remote_field.field_name = self.new_name to_fields = getattr(field, 'to_fields', None) if to_fields: field.to_fields = tuple([ self.new_name if to_field_name == self.old_name else to_field_name for to_field_name in to_fields ]) state.reload_model(app_label, self.model_name_lower, delay=delay) def database_forwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.model_name) schema_editor.alter_field( from_model, from_model._meta.get_field(self.old_name), to_model._meta.get_field(self.new_name), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.model_name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.model_name) schema_editor.alter_field( from_model, from_model._meta.get_field(self.new_name), to_model._meta.get_field(self.old_name), ) def describe(self): return "Rename field %s on %s to %s" % (self.old_name, self.model_name, self.new_name) def references_field(self, model_name, name, app_label=None): return self.references_model(model_name) and ( name.lower() == self.old_name_lower or name.lower() == self.new_name_lower ) def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, RenameField) and self.is_same_model_operation(operation) and self.new_name_lower == operation.old_name_lower): return [ RenameField( self.model_name, self.old_name, operation.new_name, ), ] # Skip `FieldOperation.reduce` as we want to run `references_field` # against self.new_name. return ( super(FieldOperation, self).reduce(operation, in_between, app_label=app_label) or not operation.references_field(self.model_name, self.new_name, app_label) )
135a40c70a2eb7335ed130d9053686c23b6eee9d959add78b0589d2e5feadce2
def is_referenced_by_foreign_key(state, model_name_lower, field, field_name): for state_app_label, state_model in state.models: for _, f in state.models[state_app_label, state_model].fields: if (f.related_model and '%s.%s' % (state_app_label, model_name_lower) == f.related_model.lower() and hasattr(f, 'to_fields')): if (f.to_fields[0] is None and field.primary_key) or field_name in f.to_fields: return True return False
f93f6b21ae1a3a0cb7532f10d109138fc369bb1d04f0fe1949501ff63b0c7fa2
from django.db.models.lookups import ( Exact, GreaterThan, GreaterThanOrEqual, In, IsNull, LessThan, LessThanOrEqual, ) class MultiColSource: contains_aggregate = False def __init__(self, alias, targets, sources, field): self.targets, self.sources, self.field, self.alias = targets, sources, field, alias self.output_field = self.field def __repr__(self): return "{}({}, {})".format( self.__class__.__name__, self.alias, self.field) def relabeled_clone(self, relabels): return self.__class__(relabels.get(self.alias, self.alias), self.targets, self.sources, self.field) def get_lookup(self, lookup): return self.output_field.get_lookup(lookup) def get_normalized_value(value, lhs): from django.db.models import Model if isinstance(value, Model): value_list = [] sources = lhs.output_field.get_path_info()[-1].target_fields for source in sources: while not isinstance(value, source.model) and source.remote_field: source = source.remote_field.model._meta.get_field(source.remote_field.field_name) try: value_list.append(getattr(value, source.attname)) except AttributeError: # A case like Restaurant.objects.filter(place=restaurant_instance), # where place is a OneToOneField and the primary key of Restaurant. return (value.pk,) return tuple(value_list) if not isinstance(value, tuple): return (value,) return value class RelatedIn(In): def get_prep_lookup(self): if not isinstance(self.lhs, MultiColSource) and self.rhs_is_direct_value(): # If we get here, we are dealing with single-column relations. self.rhs = [get_normalized_value(val, self.lhs)[0] for val in self.rhs] # We need to run the related field's get_prep_value(). Consider case # ForeignKey to IntegerField given value 'abc'. The ForeignKey itself # doesn't have validation for non-integers, so we must run validation # using the target field. if hasattr(self.lhs.output_field, 'get_path_info'): # Run the target field's get_prep_value. We can safely assume there is # only one as we don't get to the direct value branch otherwise. target_field = self.lhs.output_field.get_path_info()[-1].target_fields[-1] self.rhs = [target_field.get_prep_value(v) for v in self.rhs] return super().get_prep_lookup() def as_sql(self, compiler, connection): if isinstance(self.lhs, MultiColSource): # For multicolumn lookups we need to build a multicolumn where clause. # This clause is either a SubqueryConstraint (for values that need to be compiled to # SQL) or an OR-combined list of (col1 = val1 AND col2 = val2 AND ...) clauses. from django.db.models.sql.where import WhereNode, SubqueryConstraint, AND, OR root_constraint = WhereNode(connector=OR) if self.rhs_is_direct_value(): values = [get_normalized_value(value, self.lhs) for value in self.rhs] for value in values: value_constraint = WhereNode() for source, target, val in zip(self.lhs.sources, self.lhs.targets, value): lookup_class = target.get_lookup('exact') lookup = lookup_class(target.get_col(self.lhs.alias, source), val) value_constraint.add(lookup, AND) root_constraint.add(value_constraint, OR) else: root_constraint.add( SubqueryConstraint( self.lhs.alias, [target.column for target in self.lhs.targets], [source.name for source in self.lhs.sources], self.rhs), AND) return root_constraint.as_sql(compiler, connection) else: if (not getattr(self.rhs, 'has_select_fields', True) and not getattr(self.lhs.field.target_field, 'primary_key', False)): self.rhs.clear_select_clause() if (getattr(self.lhs.output_field, 'primary_key', False) and self.lhs.output_field.model == self.rhs.model): # A case like Restaurant.objects.filter(place__in=restaurant_qs), # where place is a OneToOneField and the primary key of # Restaurant. target_field = self.lhs.field.name else: target_field = self.lhs.field.target_field.name self.rhs.add_fields([target_field], True) return super().as_sql(compiler, connection) class RelatedLookupMixin: def get_prep_lookup(self): if not isinstance(self.lhs, MultiColSource) and self.rhs_is_direct_value(): # If we get here, we are dealing with single-column relations. self.rhs = get_normalized_value(self.rhs, self.lhs)[0] # We need to run the related field's get_prep_value(). Consider case # ForeignKey to IntegerField given value 'abc'. The ForeignKey itself # doesn't have validation for non-integers, so we must run validation # using the target field. if self.prepare_rhs and hasattr(self.lhs.output_field, 'get_path_info'): # Get the target field. We can safely assume there is only one # as we don't get to the direct value branch otherwise. target_field = self.lhs.output_field.get_path_info()[-1].target_fields[-1] self.rhs = target_field.get_prep_value(self.rhs) return super().get_prep_lookup() def as_sql(self, compiler, connection): if isinstance(self.lhs, MultiColSource): assert self.rhs_is_direct_value() self.rhs = get_normalized_value(self.rhs, self.lhs) from django.db.models.sql.where import WhereNode, AND root_constraint = WhereNode() for target, source, val in zip(self.lhs.targets, self.lhs.sources, self.rhs): lookup_class = target.get_lookup(self.lookup_name) root_constraint.add( lookup_class(target.get_col(self.lhs.alias, source), val), AND) return root_constraint.as_sql(compiler, connection) return super().as_sql(compiler, connection) class RelatedExact(RelatedLookupMixin, Exact): pass class RelatedLessThan(RelatedLookupMixin, LessThan): pass class RelatedGreaterThan(RelatedLookupMixin, GreaterThan): pass class RelatedGreaterThanOrEqual(RelatedLookupMixin, GreaterThanOrEqual): pass class RelatedLessThanOrEqual(RelatedLookupMixin, LessThanOrEqual): pass class RelatedIsNull(RelatedLookupMixin, IsNull): pass
7dc276775662634b04a2e4aaf5257b5b57e6e5e1370bf9cc1a4cb731adf8edd9
""" Field-like classes that aren't really fields. It's easier to use objects that have the same attributes as fields sometimes (avoids a lot of special casing). """ from django.db.models import fields class OrderWrt(fields.IntegerField): """ A proxy for the _order database field that is used when Meta.order_with_respect_to is specified. """ def __init__(self, *args, **kwargs): kwargs['name'] = '_order' kwargs['editable'] = False super().__init__(*args, **kwargs)
0cb17b964dde645db0b03c241695e12c452e28485769f5117f6efba86b14935f
import collections.abc import copy import datetime import decimal import operator import uuid import warnings from base64 import b64decode, b64encode from functools import partialmethod, total_ordering from django import forms from django.apps import apps from django.conf import settings from django.core import checks, exceptions, validators # When the _meta object was formalized, this exception was moved to # django.core.exceptions. It is retained here for backwards compatibility # purposes. from django.core.exceptions import FieldDoesNotExist # NOQA from django.db import connection, connections, router from django.db.models.constants import LOOKUP_SEP from django.db.models.query_utils import DeferredAttribute, RegisterLookupMixin from django.utils import timezone from django.utils.datastructures import DictWrapper from django.utils.dateparse import ( parse_date, parse_datetime, parse_duration, parse_time, ) from django.utils.duration import duration_microseconds, duration_string from django.utils.encoding import force_bytes, smart_text from django.utils.functional import Promise, cached_property from django.utils.ipv6 import clean_ipv6_address from django.utils.itercompat import is_iterable from django.utils.text import capfirst from django.utils.translation import gettext_lazy as _ __all__ = [ 'AutoField', 'BLANK_CHOICE_DASH', 'BigAutoField', 'BigIntegerField', 'BinaryField', 'BooleanField', 'CharField', 'CommaSeparatedIntegerField', 'DateField', 'DateTimeField', 'DecimalField', 'DurationField', 'EmailField', 'Empty', 'Field', 'FieldDoesNotExist', 'FilePathField', 'FloatField', 'GenericIPAddressField', 'IPAddressField', 'IntegerField', 'NOT_PROVIDED', 'NullBooleanField', 'PositiveIntegerField', 'PositiveSmallIntegerField', 'SlugField', 'SmallIntegerField', 'TextField', 'TimeField', 'URLField', 'UUIDField', ] class Empty: pass class NOT_PROVIDED: pass # The values to use for "blank" in SelectFields. Will be appended to the start # of most "choices" lists. BLANK_CHOICE_DASH = [("", "---------")] def _load_field(app_label, model_name, field_name): return apps.get_model(app_label, model_name)._meta.get_field(field_name) # A guide to Field parameters: # # * name: The name of the field specified in the model. # * attname: The attribute to use on the model object. This is the same as # "name", except in the case of ForeignKeys, where "_id" is # appended. # * db_column: The db_column specified in the model (or None). # * column: The database column for this field. This is the same as # "attname", except if db_column is specified. # # Code that introspects values, or does other dynamic things, should use # attname. For example, this gets the primary key value of object "obj": # # getattr(obj, opts.pk.attname) def _empty(of_cls): new = Empty() new.__class__ = of_cls return new def return_None(): return None @total_ordering class Field(RegisterLookupMixin): """Base class for all field types""" # Designates whether empty strings fundamentally are allowed at the # database level. empty_strings_allowed = True empty_values = list(validators.EMPTY_VALUES) # These track each time a Field instance is created. Used to retain order. # The auto_creation_counter is used for fields that Django implicitly # creates, creation_counter is used for all user-specified fields. creation_counter = 0 auto_creation_counter = -1 default_validators = [] # Default set of validators default_error_messages = { 'invalid_choice': _('Value %(value)r is not a valid choice.'), 'null': _('This field cannot be null.'), 'blank': _('This field cannot be blank.'), 'unique': _('%(model_name)s with this %(field_label)s ' 'already exists.'), # Translators: The 'lookup_type' is one of 'date', 'year' or 'month'. # Eg: "Title must be unique for pub_date year" 'unique_for_date': _("%(field_label)s must be unique for " "%(date_field_label)s %(lookup_type)s."), } system_check_deprecated_details = None system_check_removed_details = None # Field flags hidden = False many_to_many = None many_to_one = None one_to_many = None one_to_one = None related_model = None # Generic field type description, usually overridden by subclasses def _description(self): return _('Field of type: %(field_type)s') % { 'field_type': self.__class__.__name__ } description = property(_description) def __init__(self, verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=NOT_PROVIDED, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=(), error_messages=None): self.name = name self.verbose_name = verbose_name # May be set by set_attributes_from_name self._verbose_name = verbose_name # Store original for deconstruction self.primary_key = primary_key self.max_length, self._unique = max_length, unique self.blank, self.null = blank, null self.remote_field = rel self.is_relation = self.remote_field is not None self.default = default self.editable = editable self.serialize = serialize self.unique_for_date = unique_for_date self.unique_for_month = unique_for_month self.unique_for_year = unique_for_year if isinstance(choices, collections.abc.Iterator): choices = list(choices) self.choices = choices or [] self.help_text = help_text self.db_index = db_index self.db_column = db_column self._db_tablespace = db_tablespace self.auto_created = auto_created # Adjust the appropriate creation counter, and save our local copy. if auto_created: self.creation_counter = Field.auto_creation_counter Field.auto_creation_counter -= 1 else: self.creation_counter = Field.creation_counter Field.creation_counter += 1 self._validators = list(validators) # Store for deconstruction later messages = {} for c in reversed(self.__class__.__mro__): messages.update(getattr(c, 'default_error_messages', {})) messages.update(error_messages or {}) self._error_messages = error_messages # Store for deconstruction later self.error_messages = messages def __str__(self): """ Return "app_label.model_label.field_name" for fields attached to models. """ if not hasattr(self, 'model'): return super().__str__() model = self.model app = model._meta.app_label return '%s.%s.%s' % (app, model._meta.object_name, self.name) def __repr__(self): """Display the module, class, and name of the field.""" path = '%s.%s' % (self.__class__.__module__, self.__class__.__qualname__) name = getattr(self, 'name', None) if name is not None: return '<%s: %s>' % (path, name) return '<%s>' % path def check(self, **kwargs): return [ *self._check_field_name(), *self._check_choices(), *self._check_db_index(), *self._check_null_allowed_for_primary_keys(), *self._check_backend_specific_checks(**kwargs), *self._check_validators(), *self._check_deprecation_details(), ] def _check_field_name(self): """ Check if field name is valid, i.e. 1) does not end with an underscore, 2) does not contain "__" and 3) is not "pk". """ if self.name.endswith('_'): return [ checks.Error( 'Field names must not end with an underscore.', obj=self, id='fields.E001', ) ] elif LOOKUP_SEP in self.name: return [ checks.Error( 'Field names must not contain "%s".' % (LOOKUP_SEP,), obj=self, id='fields.E002', ) ] elif self.name == 'pk': return [ checks.Error( "'pk' is a reserved word that cannot be used as a field name.", obj=self, id='fields.E003', ) ] else: return [] def _check_choices(self): if not self.choices: return [] def is_value(value, accept_promise=True): return isinstance(value, (str, Promise) if accept_promise else str) or not is_iterable(value) if is_value(self.choices, accept_promise=False): return [ checks.Error( "'choices' must be an iterable (e.g., a list or tuple).", obj=self, id='fields.E004', ) ] # Expect [group_name, [value, display]] for choices_group in self.choices: try: group_name, group_choices = choices_group except ValueError: # Containing non-pairs break try: if not all( is_value(value) and is_value(human_name) for value, human_name in group_choices ): break except (TypeError, ValueError): # No groups, choices in the form [value, display] value, human_name = group_name, group_choices if not is_value(value) or not is_value(human_name): break # Special case: choices=['ab'] if isinstance(choices_group, str): break else: return [] return [ checks.Error( "'choices' must be an iterable containing " "(actual value, human readable name) tuples.", obj=self, id='fields.E005', ) ] def _check_db_index(self): if self.db_index not in (None, True, False): return [ checks.Error( "'db_index' must be None, True or False.", obj=self, id='fields.E006', ) ] else: return [] def _check_null_allowed_for_primary_keys(self): if (self.primary_key and self.null and not connection.features.interprets_empty_strings_as_nulls): # We cannot reliably check this for backends like Oracle which # consider NULL and '' to be equal (and thus set up # character-based fields a little differently). return [ checks.Error( 'Primary keys must not have null=True.', hint=('Set null=False on the field, or ' 'remove primary_key=True argument.'), obj=self, id='fields.E007', ) ] else: return [] def _check_backend_specific_checks(self, **kwargs): app_label = self.model._meta.app_label for db in connections: if router.allow_migrate(db, app_label, model_name=self.model._meta.model_name): return connections[db].validation.check_field(self, **kwargs) return [] def _check_validators(self): errors = [] for i, validator in enumerate(self.validators): if not callable(validator): errors.append( checks.Error( "All 'validators' must be callable.", hint=( "validators[{i}] ({repr}) isn't a function or " "instance of a validator class.".format( i=i, repr=repr(validator), ) ), obj=self, id='fields.E008', ) ) return errors def _check_deprecation_details(self): if self.system_check_removed_details is not None: return [ checks.Error( self.system_check_removed_details.get( 'msg', '%s has been removed except for support in historical ' 'migrations.' % self.__class__.__name__ ), hint=self.system_check_removed_details.get('hint'), obj=self, id=self.system_check_removed_details.get('id', 'fields.EXXX'), ) ] elif self.system_check_deprecated_details is not None: return [ checks.Warning( self.system_check_deprecated_details.get( 'msg', '%s has been deprecated.' % self.__class__.__name__ ), hint=self.system_check_deprecated_details.get('hint'), obj=self, id=self.system_check_deprecated_details.get('id', 'fields.WXXX'), ) ] return [] def get_col(self, alias, output_field=None): if output_field is None: output_field = self if alias != self.model._meta.db_table or output_field != self: from django.db.models.expressions import Col return Col(alias, self, output_field) else: return self.cached_col @cached_property def cached_col(self): from django.db.models.expressions import Col return Col(self.model._meta.db_table, self) def select_format(self, compiler, sql, params): """ Custom format for select clauses. For example, GIS columns need to be selected as AsText(table.col) on MySQL as the table.col data can't be used by Django. """ return sql, params def deconstruct(self): """ Return enough information to recreate the field as a 4-tuple: * The name of the field on the model, if contribute_to_class() has been run. * The import path of the field, including the class:e.g. django.db.models.IntegerField This should be the most portable version, so less specific may be better. * A list of positional arguments. * A dict of keyword arguments. Note that the positional or keyword arguments must contain values of the following types (including inner values of collection types): * None, bool, str, int, float, complex, set, frozenset, list, tuple, dict * UUID * datetime.datetime (naive), datetime.date * top-level classes, top-level functions - will be referenced by their full import path * Storage instances - these have their own deconstruct() method This is because the values here must be serialized into a text format (possibly new Python code, possibly JSON) and these are the only types with encoding handlers defined. There's no need to return the exact way the field was instantiated this time, just ensure that the resulting field is the same - prefer keyword arguments over positional ones, and omit parameters with their default values. """ # Short-form way of fetching all the default parameters keywords = {} possibles = { "verbose_name": None, "primary_key": False, "max_length": None, "unique": False, "blank": False, "null": False, "db_index": False, "default": NOT_PROVIDED, "editable": True, "serialize": True, "unique_for_date": None, "unique_for_month": None, "unique_for_year": None, "choices": [], "help_text": '', "db_column": None, "db_tablespace": None, "auto_created": False, "validators": [], "error_messages": None, } attr_overrides = { "unique": "_unique", "error_messages": "_error_messages", "validators": "_validators", "verbose_name": "_verbose_name", "db_tablespace": "_db_tablespace", } equals_comparison = {"choices", "validators"} for name, default in possibles.items(): value = getattr(self, attr_overrides.get(name, name)) # Unroll anything iterable for choices into a concrete list if name == "choices" and isinstance(value, collections.abc.Iterable): value = list(value) # Do correct kind of comparison if name in equals_comparison: if value != default: keywords[name] = value else: if value is not default: keywords[name] = value # Work out path - we shorten it for known Django core fields path = "%s.%s" % (self.__class__.__module__, self.__class__.__qualname__) if path.startswith("django.db.models.fields.related"): path = path.replace("django.db.models.fields.related", "django.db.models") if path.startswith("django.db.models.fields.files"): path = path.replace("django.db.models.fields.files", "django.db.models") if path.startswith("django.db.models.fields.proxy"): path = path.replace("django.db.models.fields.proxy", "django.db.models") if path.startswith("django.db.models.fields"): path = path.replace("django.db.models.fields", "django.db.models") # Return basic info - other fields should override this. return (self.name, path, [], keywords) def clone(self): """ Uses deconstruct() to clone a new copy of this Field. Will not preserve any class attachments/attribute names. """ name, path, args, kwargs = self.deconstruct() return self.__class__(*args, **kwargs) def __eq__(self, other): # Needed for @total_ordering if isinstance(other, Field): return self.creation_counter == other.creation_counter return NotImplemented def __lt__(self, other): # This is needed because bisect does not take a comparison function. if isinstance(other, Field): return self.creation_counter < other.creation_counter return NotImplemented def __hash__(self): return hash(self.creation_counter) def __deepcopy__(self, memodict): # We don't have to deepcopy very much here, since most things are not # intended to be altered after initial creation. obj = copy.copy(self) if self.remote_field: obj.remote_field = copy.copy(self.remote_field) if hasattr(self.remote_field, 'field') and self.remote_field.field is self: obj.remote_field.field = obj memodict[id(self)] = obj return obj def __copy__(self): # We need to avoid hitting __reduce__, so define this # slightly weird copy construct. obj = Empty() obj.__class__ = self.__class__ obj.__dict__ = self.__dict__.copy() return obj def __reduce__(self): """ Pickling should return the model._meta.fields instance of the field, not a new copy of that field. So, use the app registry to load the model and then the field back. """ if not hasattr(self, 'model'): # Fields are sometimes used without attaching them to models (for # example in aggregation). In this case give back a plain field # instance. The code below will create a new empty instance of # class self.__class__, then update its dict with self.__dict__ # values - so, this is very close to normal pickle. state = self.__dict__.copy() # The _get_default cached_property can't be pickled due to lambda # usage. state.pop('_get_default', None) return _empty, (self.__class__,), state return _load_field, (self.model._meta.app_label, self.model._meta.object_name, self.name) def get_pk_value_on_save(self, instance): """ Hook to generate new PK values on save. This method is called when saving instances with no primary key value set. If this method returns something else than None, then the returned value is used when saving the new instance. """ if self.default: return self.get_default() return None def to_python(self, value): """ Convert the input value into the expected Python data type, raising django.core.exceptions.ValidationError if the data can't be converted. Return the converted value. Subclasses should override this. """ return value @cached_property def validators(self): """ Some validators can't be created at field initialization time. This method provides a way to delay their creation until required. """ return [*self.default_validators, *self._validators] def run_validators(self, value): if value in self.empty_values: return errors = [] for v in self.validators: try: v(value) except exceptions.ValidationError as e: if hasattr(e, 'code') and e.code in self.error_messages: e.message = self.error_messages[e.code] errors.extend(e.error_list) if errors: raise exceptions.ValidationError(errors) def validate(self, value, model_instance): """ Validate value and raise ValidationError if necessary. Subclasses should override this to provide validation logic. """ if not self.editable: # Skip validation for non-editable fields. return if self.choices and value not in self.empty_values: for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for # options. for optgroup_key, optgroup_value in option_value: if value == optgroup_key: return elif value == option_key: return raise exceptions.ValidationError( self.error_messages['invalid_choice'], code='invalid_choice', params={'value': value}, ) if value is None and not self.null: raise exceptions.ValidationError(self.error_messages['null'], code='null') if not self.blank and value in self.empty_values: raise exceptions.ValidationError(self.error_messages['blank'], code='blank') def clean(self, value, model_instance): """ Convert the value's type and run validation. Validation errors from to_python() and validate() are propagated. Return the correct value if no error is raised. """ value = self.to_python(value) self.validate(value, model_instance) self.run_validators(value) return value def db_type_parameters(self, connection): return DictWrapper(self.__dict__, connection.ops.quote_name, 'qn_') def db_check(self, connection): """ Return the database column check constraint for this field, for the provided connection. Works the same way as db_type() for the case that get_internal_type() does not map to a preexisting model field. """ data = self.db_type_parameters(connection) try: return connection.data_type_check_constraints[self.get_internal_type()] % data except KeyError: return None def db_type(self, connection): """ Return the database column data type for this field, for the provided connection. """ # The default implementation of this method looks at the # backend-specific data_types dictionary, looking up the field by its # "internal type". # # A Field class can implement the get_internal_type() method to specify # which *preexisting* Django Field class it's most similar to -- i.e., # a custom field might be represented by a TEXT column type, which is # the same as the TextField Django field type, which means the custom # field's get_internal_type() returns 'TextField'. # # But the limitation of the get_internal_type() / data_types approach # is that it cannot handle database column types that aren't already # mapped to one of the built-in Django field types. In this case, you # can implement db_type() instead of get_internal_type() to specify # exactly which wacky database column type you want to use. data = self.db_type_parameters(connection) try: return connection.data_types[self.get_internal_type()] % data except KeyError: return None def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. For example, this method is called by ForeignKey and OneToOneField to determine its data type. """ return self.db_type(connection) def cast_db_type(self, connection): """Return the data type to use in the Cast() function.""" db_type = connection.ops.cast_data_types.get(self.get_internal_type()) if db_type: return db_type % self.db_type_parameters(connection) return self.db_type(connection) def db_parameters(self, connection): """ Extension of db_type(), providing a range of different return values (type, checks). This will look at db_type(), allowing custom model fields to override it. """ type_string = self.db_type(connection) check_string = self.db_check(connection) return { "type": type_string, "check": check_string, } def db_type_suffix(self, connection): return connection.data_types_suffix.get(self.get_internal_type()) def get_db_converters(self, connection): if hasattr(self, 'from_db_value'): return [self.from_db_value] return [] @property def unique(self): return self._unique or self.primary_key @property def db_tablespace(self): return self._db_tablespace or settings.DEFAULT_INDEX_TABLESPACE def set_attributes_from_name(self, name): self.name = self.name or name self.attname, self.column = self.get_attname_column() self.concrete = self.column is not None if self.verbose_name is None and self.name: self.verbose_name = self.name.replace('_', ' ') def contribute_to_class(self, cls, name, private_only=False): """ Register the field with the model class it belongs to. If private_only is True, create a separate instance of this field for every subclass of cls, even if cls is not an abstract model. """ self.set_attributes_from_name(name) self.model = cls if private_only: cls._meta.add_field(self, private=True) else: cls._meta.add_field(self) if self.column: # Don't override classmethods with the descriptor. This means that # if you have a classmethod and a field with the same name, then # such fields can't be deferred (we don't have a check for this). if not getattr(cls, self.attname, None): setattr(cls, self.attname, DeferredAttribute(self.attname)) if self.choices: setattr(cls, 'get_%s_display' % self.name, partialmethod(cls._get_FIELD_display, field=self)) def get_filter_kwargs_for_object(self, obj): """ Return a dict that when passed as kwargs to self.model.filter(), would yield all instances having the same value for this field as obj has. """ return {self.name: getattr(obj, self.attname)} def get_attname(self): return self.name def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def get_internal_type(self): return self.__class__.__name__ def pre_save(self, model_instance, add): """Return field's value just before saving.""" return getattr(model_instance, self.attname) def get_prep_value(self, value): """Perform preliminary non-db specific value checks and conversions.""" if isinstance(value, Promise): value = value._proxy____cast() return value def get_db_prep_value(self, value, connection, prepared=False): """ Return field's value prepared for interacting with the database backend. Used by the default implementations of get_db_prep_save(). """ if not prepared: value = self.get_prep_value(value) return value def get_db_prep_save(self, value, connection): """Return field's value prepared for saving into a database.""" return self.get_db_prep_value(value, connection=connection, prepared=False) def has_default(self): """Return a boolean of whether this field has a default value.""" return self.default is not NOT_PROVIDED def get_default(self): """Return the default value for this field.""" return self._get_default() @cached_property def _get_default(self): if self.has_default(): if callable(self.default): return self.default return lambda: self.default if not self.empty_strings_allowed or self.null and not connection.features.interprets_empty_strings_as_nulls: return return_None return str # return empty string def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH, limit_choices_to=None): """ Return choices with a default blank choices included, for use as <select> choices for this field. """ if self.choices: choices = list(self.choices) if include_blank: blank_defined = any(choice in ('', None) for choice, _ in self.flatchoices) if not blank_defined: choices = blank_choice + choices return choices rel_model = self.remote_field.model limit_choices_to = limit_choices_to or self.get_limit_choices_to() choice_func = operator.attrgetter( self.remote_field.get_related_field().attname if hasattr(self.remote_field, 'get_related_field') else 'pk' ) return (blank_choice if include_blank else []) + [ (choice_func(x), smart_text(x)) for x in rel_model._default_manager.complex_filter(limit_choices_to) ] def value_to_string(self, obj): """ Return a string value of this field from the passed obj. This is used by the serialization framework. """ return str(self.value_from_object(obj)) def _get_flatchoices(self): """Flattened version of choices tuple.""" flat = [] for choice, value in self.choices: if isinstance(value, (list, tuple)): flat.extend(value) else: flat.append((choice, value)) return flat flatchoices = property(_get_flatchoices) def save_form_data(self, instance, data): setattr(instance, self.name, data) def formfield(self, form_class=None, choices_form_class=None, **kwargs): """Return a django.forms.Field instance for this field.""" defaults = {'required': not self.blank, 'label': capfirst(self.verbose_name), 'help_text': self.help_text} if self.has_default(): if callable(self.default): defaults['initial'] = self.default defaults['show_hidden_initial'] = True else: defaults['initial'] = self.get_default() if self.choices: # Fields with choices get special treatment. include_blank = (self.blank or not (self.has_default() or 'initial' in kwargs)) defaults['choices'] = self.get_choices(include_blank=include_blank) defaults['coerce'] = self.to_python if self.null: defaults['empty_value'] = None if choices_form_class is not None: form_class = choices_form_class else: form_class = forms.TypedChoiceField # Many of the subclass-specific formfield arguments (min_value, # max_value) don't apply for choice fields, so be sure to only pass # the values that TypedChoiceField will understand. for k in list(kwargs): if k not in ('coerce', 'empty_value', 'choices', 'required', 'widget', 'label', 'initial', 'help_text', 'error_messages', 'show_hidden_initial', 'disabled'): del kwargs[k] defaults.update(kwargs) if form_class is None: form_class = forms.CharField return form_class(**defaults) def value_from_object(self, obj): """Return the value of this field in the given model instance.""" return getattr(obj, self.attname) class AutoField(Field): description = _("Integer") empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be an integer."), } def __init__(self, *args, **kwargs): kwargs['blank'] = True super().__init__(*args, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_primary_key(), ] def _check_primary_key(self): if not self.primary_key: return [ checks.Error( 'AutoFields must set primary_key=True.', obj=self, id='fields.E100', ), ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['blank'] kwargs['primary_key'] = True return name, path, args, kwargs def get_internal_type(self): return "AutoField" def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def rel_db_type(self, connection): return IntegerField().db_type(connection=connection) def validate(self, value, model_instance): pass def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) value = connection.ops.validate_autopk_value(value) return value def get_prep_value(self, value): from django.db.models.expressions import OuterRef value = super().get_prep_value(value) if value is None or isinstance(value, OuterRef): return value return int(value) def contribute_to_class(self, cls, name, **kwargs): assert not cls._meta.auto_field, "Model %s can't have more than one AutoField." % cls._meta.label super().contribute_to_class(cls, name, **kwargs) cls._meta.auto_field = self def formfield(self, **kwargs): return None class BigAutoField(AutoField): description = _("Big (8 byte) integer") def get_internal_type(self): return "BigAutoField" def rel_db_type(self, connection): return BigIntegerField().db_type(connection=connection) class BooleanField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be either True or False."), 'invalid_nullable': _("'%(value)s' value must be either True, False, or None."), } description = _("Boolean (Either True or False)") def get_internal_type(self): return "BooleanField" def to_python(self, value): if self.null and value in self.empty_values: return None if value in (True, False): # if value is 1 or 0 than it's equal to True or False, but we want # to return a true bool for semantic reasons. return bool(value) if value in ('t', 'True', '1'): return True if value in ('f', 'False', '0'): return False raise exceptions.ValidationError( self.error_messages['invalid_nullable' if self.null else 'invalid'], code='invalid', params={'value': value}, ) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return self.to_python(value) def formfield(self, **kwargs): if self.choices: include_blank = not (self.has_default() or 'initial' in kwargs) defaults = {'choices': self.get_choices(include_blank=include_blank)} else: form_class = forms.NullBooleanField if self.null else forms.BooleanField # In HTML checkboxes, 'required' means "must be checked" which is # different from the choices case ("must select some value"). # required=False allows unchecked checkboxes. defaults = {'form_class': form_class, 'required': False} return super().formfield(**{**defaults, **kwargs}) class CharField(Field): description = _("String (up to %(max_length)s)") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.validators.append(validators.MaxLengthValidator(self.max_length)) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_max_length_attribute(**kwargs), ] def _check_max_length_attribute(self, **kwargs): if self.max_length is None: return [ checks.Error( "CharFields must define a 'max_length' attribute.", obj=self, id='fields.E120', ) ] elif (not isinstance(self.max_length, int) or isinstance(self.max_length, bool) or self.max_length <= 0): return [ checks.Error( "'max_length' must be a positive integer.", obj=self, id='fields.E121', ) ] else: return [] def cast_db_type(self, connection): if self.max_length is None: return connection.ops.cast_char_field_without_max_length return super().cast_db_type(connection) def get_internal_type(self): return "CharField" def to_python(self, value): if isinstance(value, str) or value is None: return value return str(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). defaults = {'max_length': self.max_length} # TODO: Handle multiple backends with different feature flags. if self.null and not connection.features.interprets_empty_strings_as_nulls: defaults['empty_value'] = None defaults.update(kwargs) return super().formfield(**defaults) class CommaSeparatedIntegerField(CharField): default_validators = [validators.validate_comma_separated_integer_list] description = _("Comma-separated integers") system_check_removed_details = { 'msg': ( 'CommaSeparatedIntegerField is removed except for support in ' 'historical migrations.' ), 'hint': ( 'Use CharField(validators=[validate_comma_separated_integer_list]) ' 'instead.' ), 'id': 'fields.E901', } class DateTimeCheckMixin: def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_mutually_exclusive_options(), *self._check_fix_default_value(), ] def _check_mutually_exclusive_options(self): # auto_now, auto_now_add, and default are mutually exclusive # options. The use of more than one of these options together # will trigger an Error mutually_exclusive_options = [self.auto_now_add, self.auto_now, self.has_default()] enabled_options = [option not in (None, False) for option in mutually_exclusive_options].count(True) if enabled_options > 1: return [ checks.Error( "The options auto_now, auto_now_add, and default " "are mutually exclusive. Only one of these options " "may be present.", obj=self, id='fields.E160', ) ] else: return [] def _check_fix_default_value(self): return [] class DateField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value has an invalid date format. It must be " "in YYYY-MM-DD format."), 'invalid_date': _("'%(value)s' value has the correct format (YYYY-MM-DD) " "but it is an invalid date."), } description = _("Date (without time)") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): if not timezone.is_naive(value): value = timezone.make_naive(value, timezone.utc) value = value.date() elif isinstance(value, datetime.date): # Nothing to do, as dates don't have tz information pass else: # No explicit date / datetime value -- no checks necessary return [] offset = datetime.timedelta(days=1) lower = (now - offset).date() upper = (now + offset).date() if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.auto_now: kwargs['auto_now'] = True if self.auto_now_add: kwargs['auto_now_add'] = True if self.auto_now or self.auto_now_add: del kwargs['editable'] del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "DateField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): if settings.USE_TZ and timezone.is_aware(value): # Convert aware datetimes to the default time zone # before casting them to dates (#17742). default_timezone = timezone.get_default_timezone() value = timezone.make_naive(value, default_timezone) return value.date() if isinstance(value, datetime.date): return value try: parsed = parse_date(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_date'], code='invalid_date', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.date.today() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) def contribute_to_class(self, cls, name, **kwargs): super().contribute_to_class(cls, name, **kwargs) if not self.null: setattr( cls, 'get_next_by_%s' % self.name, partialmethod(cls._get_next_or_previous_by_FIELD, field=self, is_next=True) ) setattr( cls, 'get_previous_by_%s' % self.name, partialmethod(cls._get_next_or_previous_by_FIELD, field=self, is_next=False) ) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts dates into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_datefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DateField, **kwargs, }) class DateTimeField(DateField): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value has an invalid format. It must be in " "YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ] format."), 'invalid_date': _("'%(value)s' value has the correct format " "(YYYY-MM-DD) but it is an invalid date."), 'invalid_datetime': _("'%(value)s' value has the correct format " "(YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ]) " "but it is an invalid date/time."), } description = _("Date (with time)") # __init__ is inherited from DateField def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.date): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset lower = datetime.datetime(lower.year, lower.month, lower.day) upper = now + second_offset upper = datetime.datetime(upper.year, upper.month, upper.day) value = datetime.datetime(value.year, value.month, value.day) else: # No explicit date / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def get_internal_type(self): return "DateTimeField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): return value if isinstance(value, datetime.date): value = datetime.datetime(value.year, value.month, value.day) if settings.USE_TZ: # For backwards compatibility, interpret naive datetimes in # local time. This won't work during DST change, but we can't # do much about it, so we let the exceptions percolate up the # call stack. warnings.warn("DateTimeField %s.%s received a naive datetime " "(%s) while time zone support is active." % (self.model.__name__, self.name, value), RuntimeWarning) default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) return value try: parsed = parse_datetime(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_datetime'], code='invalid_datetime', params={'value': value}, ) try: parsed = parse_date(value) if parsed is not None: return datetime.datetime(parsed.year, parsed.month, parsed.day) except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_date'], code='invalid_date', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = timezone.now() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) # contribute_to_class is inherited from DateField, it registers # get_next_by_FOO and get_prev_by_FOO def get_prep_value(self, value): value = super().get_prep_value(value) value = self.to_python(value) if value is not None and settings.USE_TZ and timezone.is_naive(value): # For backwards compatibility, interpret naive datetimes in local # time. This won't work during DST change, but we can't do much # about it, so we let the exceptions percolate up the call stack. try: name = '%s.%s' % (self.model.__name__, self.name) except AttributeError: name = '(unbound)' warnings.warn("DateTimeField %s received a naive datetime (%s)" " while time zone support is active." % (name, value), RuntimeWarning) default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) return value def get_db_prep_value(self, value, connection, prepared=False): # Casts datetimes into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_datetimefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DateTimeField, **kwargs, }) class DecimalField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be a decimal number."), } description = _("Decimal number") def __init__(self, verbose_name=None, name=None, max_digits=None, decimal_places=None, **kwargs): self.max_digits, self.decimal_places = max_digits, decimal_places super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): errors = super().check(**kwargs) digits_errors = [ *self._check_decimal_places(), *self._check_max_digits(), ] if not digits_errors: errors.extend(self._check_decimal_places_and_max_digits(**kwargs)) else: errors.extend(digits_errors) return errors def _check_decimal_places(self): try: decimal_places = int(self.decimal_places) if decimal_places < 0: raise ValueError() except TypeError: return [ checks.Error( "DecimalFields must define a 'decimal_places' attribute.", obj=self, id='fields.E130', ) ] except ValueError: return [ checks.Error( "'decimal_places' must be a non-negative integer.", obj=self, id='fields.E131', ) ] else: return [] def _check_max_digits(self): try: max_digits = int(self.max_digits) if max_digits <= 0: raise ValueError() except TypeError: return [ checks.Error( "DecimalFields must define a 'max_digits' attribute.", obj=self, id='fields.E132', ) ] except ValueError: return [ checks.Error( "'max_digits' must be a positive integer.", obj=self, id='fields.E133', ) ] else: return [] def _check_decimal_places_and_max_digits(self, **kwargs): if int(self.decimal_places) > int(self.max_digits): return [ checks.Error( "'max_digits' must be greater or equal to 'decimal_places'.", obj=self, id='fields.E134', ) ] return [] @cached_property def validators(self): return super().validators + [ validators.DecimalValidator(self.max_digits, self.decimal_places) ] @cached_property def context(self): return decimal.Context(prec=self.max_digits) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.max_digits is not None: kwargs['max_digits'] = self.max_digits if self.decimal_places is not None: kwargs['decimal_places'] = self.decimal_places return name, path, args, kwargs def get_internal_type(self): return "DecimalField" def to_python(self, value): if value is None: return value if isinstance(value, float): return self.context.create_decimal_from_float(value) try: return decimal.Decimal(value) except decimal.InvalidOperation: raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_db_prep_save(self, value, connection): return connection.ops.adapt_decimalfield_value(self.to_python(value), self.max_digits, self.decimal_places) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): return super().formfield(**{ 'max_digits': self.max_digits, 'decimal_places': self.decimal_places, 'form_class': forms.DecimalField, **kwargs, }) class DurationField(Field): """ Store timedelta objects. Use interval on PostgreSQL, INTERVAL DAY TO SECOND on Oracle, and bigint of microseconds on other databases. """ empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value has an invalid format. It must be in " "[DD] [HH:[MM:]]ss[.uuuuuu] format.") } description = _("Duration") def get_internal_type(self): return "DurationField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.timedelta): return value try: parsed = parse_duration(value) except ValueError: pass else: if parsed is not None: return parsed raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_db_prep_value(self, value, connection, prepared=False): if connection.features.has_native_duration_field: return value if value is None: return None return duration_microseconds(value) def get_db_converters(self, connection): converters = [] if not connection.features.has_native_duration_field: converters.append(connection.ops.convert_durationfield_value) return converters + super().get_db_converters(connection) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else duration_string(val) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DurationField, **kwargs, }) class EmailField(CharField): default_validators = [validators.validate_email] description = _("Email address") def __init__(self, *args, **kwargs): # max_length=254 to be compliant with RFCs 3696 and 5321 kwargs.setdefault('max_length', 254) super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() # We do not exclude max_length if it matches default as we want to change # the default in future. return name, path, args, kwargs def formfield(self, **kwargs): # As with CharField, this will cause email validation to be performed # twice. return super().formfield(**{ 'form_class': forms.EmailField, **kwargs, }) class FilePathField(Field): description = _("File path") def __init__(self, verbose_name=None, name=None, path='', match=None, recursive=False, allow_files=True, allow_folders=False, **kwargs): self.path, self.match, self.recursive = path, match, recursive self.allow_files, self.allow_folders = allow_files, allow_folders kwargs.setdefault('max_length', 100) super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_allowing_files_or_folders(**kwargs), ] def _check_allowing_files_or_folders(self, **kwargs): if not self.allow_files and not self.allow_folders: return [ checks.Error( "FilePathFields must have either 'allow_files' or 'allow_folders' set to True.", obj=self, id='fields.E140', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.path != '': kwargs['path'] = self.path if self.match is not None: kwargs['match'] = self.match if self.recursive is not False: kwargs['recursive'] = self.recursive if self.allow_files is not True: kwargs['allow_files'] = self.allow_files if self.allow_folders is not False: kwargs['allow_folders'] = self.allow_folders if kwargs.get("max_length") == 100: del kwargs["max_length"] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def formfield(self, **kwargs): return super().formfield(**{ 'path': self.path, 'match': self.match, 'recursive': self.recursive, 'form_class': forms.FilePathField, 'allow_files': self.allow_files, 'allow_folders': self.allow_folders, **kwargs, }) def get_internal_type(self): return "FilePathField" class FloatField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be a float."), } description = _("Floating point number") def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return float(value) def get_internal_type(self): return "FloatField" def to_python(self, value): if value is None: return value try: return float(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.FloatField, **kwargs, }) class IntegerField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value must be an integer."), } description = _("Integer") def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_max_length_warning(), ] def _check_max_length_warning(self): if self.max_length is not None: return [ checks.Warning( "'max_length' is ignored when used with IntegerField", hint="Remove 'max_length' from field", obj=self, id='fields.W122', ) ] return [] @cached_property def validators(self): # These validators can't be added at field initialization time since # they're based on values retrieved from `connection`. validators_ = super().validators internal_type = self.get_internal_type() min_value, max_value = connection.ops.integer_field_range(internal_type) if (min_value is not None and not any(isinstance(validator, validators.MinValueValidator) and validator.limit_value >= min_value for validator in validators_)): validators_.append(validators.MinValueValidator(min_value)) if (max_value is not None and not any(isinstance(validator, validators.MaxValueValidator) and validator.limit_value <= max_value for validator in validators_)): validators_.append(validators.MaxValueValidator(max_value)) return validators_ def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return int(value) def get_internal_type(self): return "IntegerField" def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.IntegerField, **kwargs, }) class BigIntegerField(IntegerField): empty_strings_allowed = False description = _("Big (8 byte) integer") MAX_BIGINT = 9223372036854775807 def get_internal_type(self): return "BigIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': -BigIntegerField.MAX_BIGINT - 1, 'max_value': BigIntegerField.MAX_BIGINT, **kwargs, }) class IPAddressField(Field): empty_strings_allowed = False description = _("IPv4 address") system_check_removed_details = { 'msg': ( 'IPAddressField has been removed except for support in ' 'historical migrations.' ), 'hint': 'Use GenericIPAddressField instead.', 'id': 'fields.E900', } def __init__(self, *args, **kwargs): kwargs['max_length'] = 15 super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['max_length'] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def get_internal_type(self): return "IPAddressField" class GenericIPAddressField(Field): empty_strings_allowed = False description = _("IP address") default_error_messages = {} def __init__(self, verbose_name=None, name=None, protocol='both', unpack_ipv4=False, *args, **kwargs): self.unpack_ipv4 = unpack_ipv4 self.protocol = protocol self.default_validators, invalid_error_message = \ validators.ip_address_validators(protocol, unpack_ipv4) self.default_error_messages['invalid'] = invalid_error_message kwargs['max_length'] = 39 super().__init__(verbose_name, name, *args, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_blank_and_null_values(**kwargs), ] def _check_blank_and_null_values(self, **kwargs): if not getattr(self, 'null', False) and getattr(self, 'blank', False): return [ checks.Error( 'GenericIPAddressFields cannot have blank=True if null=False, ' 'as blank values are stored as nulls.', obj=self, id='fields.E150', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.unpack_ipv4 is not False: kwargs['unpack_ipv4'] = self.unpack_ipv4 if self.protocol != "both": kwargs['protocol'] = self.protocol if kwargs.get("max_length") == 39: del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "GenericIPAddressField" def to_python(self, value): if value is None: return None if not isinstance(value, str): value = str(value) value = value.strip() if ':' in value: return clean_ipv6_address(value, self.unpack_ipv4, self.error_messages['invalid']) return value def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_ipaddressfield_value(value) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None if value and ':' in value: try: return clean_ipv6_address(value, self.unpack_ipv4) except exceptions.ValidationError: pass return str(value) def formfield(self, **kwargs): return super().formfield(**{ 'protocol': self.protocol, 'form_class': forms.GenericIPAddressField, **kwargs, }) class NullBooleanField(BooleanField): default_error_messages = { 'invalid': _("'%(value)s' value must be either None, True or False."), 'invalid_nullable': _("'%(value)s' value must be either None, True or False."), } description = _("Boolean (Either True, False or None)") def __init__(self, *args, **kwargs): kwargs['null'] = True kwargs['blank'] = True super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['null'] del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "NullBooleanField" class PositiveIntegerRelDbTypeMixin: def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. In most cases, a foreign key pointing to a positive integer primary key will have an integer column data type but some databases (e.g. MySQL) have an unsigned integer type. In that case (related_fields_match_type=True), the primary key should return its db_type. """ if connection.features.related_fields_match_type: return self.db_type(connection) else: return IntegerField().db_type(connection=connection) class PositiveIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _("Positive integer") def get_internal_type(self): return "PositiveIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class PositiveSmallIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _("Positive small integer") def get_internal_type(self): return "PositiveSmallIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class SlugField(CharField): default_validators = [validators.validate_slug] description = _("Slug (up to %(max_length)s)") def __init__(self, *args, max_length=50, db_index=True, allow_unicode=False, **kwargs): self.allow_unicode = allow_unicode if self.allow_unicode: self.default_validators = [validators.validate_unicode_slug] super().__init__(*args, max_length=max_length, db_index=db_index, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 50: del kwargs['max_length'] if self.db_index is False: kwargs['db_index'] = False else: del kwargs['db_index'] if self.allow_unicode is not False: kwargs['allow_unicode'] = self.allow_unicode return name, path, args, kwargs def get_internal_type(self): return "SlugField" def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.SlugField, 'allow_unicode': self.allow_unicode, **kwargs, }) class SmallIntegerField(IntegerField): description = _("Small integer") def get_internal_type(self): return "SmallIntegerField" class TextField(Field): description = _("Text") def get_internal_type(self): return "TextField" def to_python(self, value): if isinstance(value, str) or value is None: return value return str(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). return super().formfield(**{ 'max_length': self.max_length, **({} if self.choices else {'widget': forms.Textarea}), **kwargs, }) class TimeField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("'%(value)s' value has an invalid format. It must be in " "HH:MM[:ss[.uuuuuu]] format."), 'invalid_time': _("'%(value)s' value has the correct format " "(HH:MM[:ss[.uuuuuu]]) but it is an invalid time."), } description = _("Time") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.time): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset value = datetime.datetime.combine(now.date(), value) if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc).time() else: # No explicit time / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.auto_now is not False: kwargs["auto_now"] = self.auto_now if self.auto_now_add is not False: kwargs["auto_now_add"] = self.auto_now_add if self.auto_now or self.auto_now_add: del kwargs['blank'] del kwargs['editable'] return name, path, args, kwargs def get_internal_type(self): return "TimeField" def to_python(self, value): if value is None: return None if isinstance(value, datetime.time): return value if isinstance(value, datetime.datetime): # Not usually a good idea to pass in a datetime here (it loses # information), but this can be a side-effect of interacting with a # database backend (e.g. Oracle), so we'll be accommodating. return value.time() try: parsed = parse_time(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_time'], code='invalid_time', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.datetime.now().time() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts times into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_timefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.TimeField, **kwargs, }) class URLField(CharField): default_validators = [validators.URLValidator()] description = _("URL") def __init__(self, verbose_name=None, name=None, **kwargs): kwargs.setdefault('max_length', 200) super().__init__(verbose_name, name, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 200: del kwargs['max_length'] return name, path, args, kwargs def formfield(self, **kwargs): # As with CharField, this will cause URL validation to be performed # twice. return super().formfield(**{ 'form_class': forms.URLField, **kwargs, }) class BinaryField(Field): description = _("Raw binary data") empty_values = [None, b''] def __init__(self, *args, **kwargs): kwargs.setdefault('editable', False) super().__init__(*args, **kwargs) if self.max_length is not None: self.validators.append(validators.MaxLengthValidator(self.max_length)) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.editable: kwargs['editable'] = True else: del kwargs['editable'] return name, path, args, kwargs def get_internal_type(self): return "BinaryField" def get_placeholder(self, value, compiler, connection): return connection.ops.binary_placeholder_sql(value) def get_default(self): if self.has_default() and not callable(self.default): return self.default default = super().get_default() if default == '': return b'' return default def get_db_prep_value(self, value, connection, prepared=False): value = super().get_db_prep_value(value, connection, prepared) if value is not None: return connection.Database.Binary(value) return value def value_to_string(self, obj): """Binary data is serialized as base64""" return b64encode(force_bytes(self.value_from_object(obj))).decode('ascii') def to_python(self, value): # If it's a string, it should be base64-encoded data if isinstance(value, str): return memoryview(b64decode(force_bytes(value))) return value class UUIDField(Field): default_error_messages = { 'invalid': _("'%(value)s' is not a valid UUID."), } description = 'Universally unique identifier' empty_strings_allowed = False def __init__(self, verbose_name=None, **kwargs): kwargs['max_length'] = 32 super().__init__(verbose_name, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "UUIDField" def get_db_prep_value(self, value, connection, prepared=False): if value is None: return None if not isinstance(value, uuid.UUID): value = self.to_python(value) if connection.features.has_native_uuid_field: return value return value.hex def to_python(self, value): if value is not None and not isinstance(value, uuid.UUID): try: return uuid.UUID(value) except (AttributeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) return value def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.UUIDField, **kwargs, })
dc2cd68f50682ff95a02b8ec0ef56c8ecad9c385c8dae8469a4e7c5b7b2647a1
import functools import inspect from functools import partial from django import forms from django.apps import apps from django.core import checks, exceptions from django.db import connection, router from django.db.backends import utils from django.db.models import Q from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import CASCADE, SET_DEFAULT, SET_NULL from django.db.models.query_utils import PathInfo from django.db.models.utils import make_model_tuple from django.utils.functional import cached_property from django.utils.translation import gettext_lazy as _ from . import Field from .mixins import FieldCacheMixin from .related_descriptors import ( ForwardManyToOneDescriptor, ForwardOneToOneDescriptor, ManyToManyDescriptor, ReverseManyToOneDescriptor, ReverseOneToOneDescriptor, ) from .related_lookups import ( RelatedExact, RelatedGreaterThan, RelatedGreaterThanOrEqual, RelatedIn, RelatedIsNull, RelatedLessThan, RelatedLessThanOrEqual, ) from .reverse_related import ( ForeignObjectRel, ManyToManyRel, ManyToOneRel, OneToOneRel, ) RECURSIVE_RELATIONSHIP_CONSTANT = 'self' def resolve_relation(scope_model, relation): """ Transform relation into a model or fully-qualified model string of the form "app_label.ModelName", relative to scope_model. The relation argument can be: * RECURSIVE_RELATIONSHIP_CONSTANT, i.e. the string "self", in which case the model argument will be returned. * A bare model name without an app_label, in which case scope_model's app_label will be prepended. * An "app_label.ModelName" string. * A model class, which will be returned unchanged. """ # Check for recursive relations if relation == RECURSIVE_RELATIONSHIP_CONSTANT: relation = scope_model # Look for an "app.Model" relation if isinstance(relation, str): if "." not in relation: relation = "%s.%s" % (scope_model._meta.app_label, relation) return relation def lazy_related_operation(function, model, *related_models, **kwargs): """ Schedule `function` to be called once `model` and all `related_models` have been imported and registered with the app registry. `function` will be called with the newly-loaded model classes as its positional arguments, plus any optional keyword arguments. The `model` argument must be a model class. Each subsequent positional argument is another model, or a reference to another model - see `resolve_relation()` for the various forms these may take. Any relative references will be resolved relative to `model`. This is a convenience wrapper for `Apps.lazy_model_operation` - the app registry model used is the one found in `model._meta.apps`. """ models = [model] + [resolve_relation(model, rel) for rel in related_models] model_keys = (make_model_tuple(m) for m in models) apps = model._meta.apps return apps.lazy_model_operation(partial(function, **kwargs), *model_keys) class RelatedField(FieldCacheMixin, Field): """Base class that all relational fields inherit from.""" # Field flags one_to_many = False one_to_one = False many_to_many = False many_to_one = False @cached_property def related_model(self): # Can't cache this property until all the models are loaded. apps.check_models_ready() return self.remote_field.model def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_related_name_is_valid(), *self._check_related_query_name_is_valid(), *self._check_relation_model_exists(), *self._check_referencing_to_swapped_model(), *self._check_clashes(), ] def _check_related_name_is_valid(self): import keyword related_name = self.remote_field.related_name if related_name is None: return [] is_valid_id = not keyword.iskeyword(related_name) and related_name.isidentifier() if not (is_valid_id or related_name.endswith('+')): return [ checks.Error( "The name '%s' is invalid related_name for field %s.%s" % (self.remote_field.related_name, self.model._meta.object_name, self.name), hint="Related name must be a valid Python identifier or end with a '+'", obj=self, id='fields.E306', ) ] return [] def _check_related_query_name_is_valid(self): if self.remote_field.is_hidden(): return [] rel_query_name = self.related_query_name() errors = [] if rel_query_name.endswith('_'): errors.append( checks.Error( "Reverse query name '%s' must not end with an underscore." % (rel_query_name,), hint=("Add or change a related_name or related_query_name " "argument for this field."), obj=self, id='fields.E308', ) ) if LOOKUP_SEP in rel_query_name: errors.append( checks.Error( "Reverse query name '%s' must not contain '%s'." % (rel_query_name, LOOKUP_SEP), hint=("Add or change a related_name or related_query_name " "argument for this field."), obj=self, id='fields.E309', ) ) return errors def _check_relation_model_exists(self): rel_is_missing = self.remote_field.model not in self.opts.apps.get_models() rel_is_string = isinstance(self.remote_field.model, str) model_name = self.remote_field.model if rel_is_string else self.remote_field.model._meta.object_name if rel_is_missing and (rel_is_string or not self.remote_field.model._meta.swapped): return [ checks.Error( "Field defines a relation with model '%s', which is either " "not installed, or is abstract." % model_name, obj=self, id='fields.E300', ) ] return [] def _check_referencing_to_swapped_model(self): if (self.remote_field.model not in self.opts.apps.get_models() and not isinstance(self.remote_field.model, str) and self.remote_field.model._meta.swapped): model = "%s.%s" % ( self.remote_field.model._meta.app_label, self.remote_field.model._meta.object_name ) return [ checks.Error( "Field defines a relation with the model '%s', which has " "been swapped out." % model, hint="Update the relation to point at 'settings.%s'." % self.remote_field.model._meta.swappable, obj=self, id='fields.E301', ) ] return [] def _check_clashes(self): """Check accessor and reverse query name clashes.""" from django.db.models.base import ModelBase errors = [] opts = self.model._meta # `f.remote_field.model` may be a string instead of a model. Skip if model name is # not resolved. if not isinstance(self.remote_field.model, ModelBase): return [] # Consider that we are checking field `Model.foreign` and the models # are: # # class Target(models.Model): # model = models.IntegerField() # model_set = models.IntegerField() # # class Model(models.Model): # foreign = models.ForeignKey(Target) # m2m = models.ManyToManyField(Target) # rel_opts.object_name == "Target" rel_opts = self.remote_field.model._meta # If the field doesn't install a backward relation on the target model # (so `is_hidden` returns True), then there are no clashes to check # and we can skip these fields. rel_is_hidden = self.remote_field.is_hidden() rel_name = self.remote_field.get_accessor_name() # i. e. "model_set" rel_query_name = self.related_query_name() # i. e. "model" field_name = "%s.%s" % (opts.object_name, self.name) # i. e. "Model.field" # Check clashes between accessor or reverse query name of `field` # and any other field name -- i.e. accessor for Model.foreign is # model_set and it clashes with Target.model_set. potential_clashes = rel_opts.fields + rel_opts.many_to_many for clash_field in potential_clashes: clash_name = "%s.%s" % (rel_opts.object_name, clash_field.name) # i.e. "Target.model_set" if not rel_is_hidden and clash_field.name == rel_name: errors.append( checks.Error( "Reverse accessor for '%s' clashes with field name '%s'." % (field_name, clash_name), hint=("Rename field '%s', or add/change a related_name " "argument to the definition for field '%s'.") % (clash_name, field_name), obj=self, id='fields.E302', ) ) if clash_field.name == rel_query_name: errors.append( checks.Error( "Reverse query name for '%s' clashes with field name '%s'." % (field_name, clash_name), hint=("Rename field '%s', or add/change a related_name " "argument to the definition for field '%s'.") % (clash_name, field_name), obj=self, id='fields.E303', ) ) # Check clashes between accessors/reverse query names of `field` and # any other field accessor -- i. e. Model.foreign accessor clashes with # Model.m2m accessor. potential_clashes = (r for r in rel_opts.related_objects if r.field is not self) for clash_field in potential_clashes: clash_name = "%s.%s" % ( # i. e. "Model.m2m" clash_field.related_model._meta.object_name, clash_field.field.name) if not rel_is_hidden and clash_field.get_accessor_name() == rel_name: errors.append( checks.Error( "Reverse accessor for '%s' clashes with reverse accessor for '%s'." % (field_name, clash_name), hint=("Add or change a related_name argument " "to the definition for '%s' or '%s'.") % (field_name, clash_name), obj=self, id='fields.E304', ) ) if clash_field.get_accessor_name() == rel_query_name: errors.append( checks.Error( "Reverse query name for '%s' clashes with reverse query name for '%s'." % (field_name, clash_name), hint=("Add or change a related_name argument " "to the definition for '%s' or '%s'.") % (field_name, clash_name), obj=self, id='fields.E305', ) ) return errors def db_type(self, connection): # By default related field will not have a column as it relates to # columns from another table. return None def contribute_to_class(self, cls, name, private_only=False, **kwargs): super().contribute_to_class(cls, name, private_only=private_only, **kwargs) self.opts = cls._meta if not cls._meta.abstract: if self.remote_field.related_name: related_name = self.remote_field.related_name else: related_name = self.opts.default_related_name if related_name: related_name = related_name % { 'class': cls.__name__.lower(), 'model_name': cls._meta.model_name.lower(), 'app_label': cls._meta.app_label.lower() } self.remote_field.related_name = related_name if self.remote_field.related_query_name: related_query_name = self.remote_field.related_query_name % { 'class': cls.__name__.lower(), 'app_label': cls._meta.app_label.lower(), } self.remote_field.related_query_name = related_query_name def resolve_related_class(model, related, field): field.remote_field.model = related field.do_related_class(related, model) lazy_related_operation(resolve_related_class, cls, self.remote_field.model, field=self) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.remote_field.limit_choices_to: kwargs['limit_choices_to'] = self.remote_field.limit_choices_to if self.remote_field.related_name is not None: kwargs['related_name'] = self.remote_field.related_name if self.remote_field.related_query_name is not None: kwargs['related_query_name'] = self.remote_field.related_query_name return name, path, args, kwargs def get_forward_related_filter(self, obj): """ Return the keyword arguments that when supplied to self.model.object.filter(), would select all instances related through this field to the remote obj. This is used to build the querysets returned by related descriptors. obj is an instance of self.related_field.model. """ return { '%s__%s' % (self.name, rh_field.name): getattr(obj, rh_field.attname) for _, rh_field in self.related_fields } def get_reverse_related_filter(self, obj): """ Complement to get_forward_related_filter(). Return the keyword arguments that when passed to self.related_field.model.object.filter() select all instances of self.related_field.model related through this field to obj. obj is an instance of self.model. """ base_filter = { rh_field.attname: getattr(obj, lh_field.attname) for lh_field, rh_field in self.related_fields } descriptor_filter = self.get_extra_descriptor_filter(obj) base_q = Q(**base_filter) if isinstance(descriptor_filter, dict): return base_q & Q(**descriptor_filter) elif descriptor_filter: return base_q & descriptor_filter return base_q @property def swappable_setting(self): """ Get the setting that this is powered from for swapping, or None if it's not swapped in / marked with swappable=False. """ if self.swappable: # Work out string form of "to" if isinstance(self.remote_field.model, str): to_string = self.remote_field.model else: to_string = self.remote_field.model._meta.label return apps.get_swappable_settings_name(to_string) return None def set_attributes_from_rel(self): self.name = ( self.name or (self.remote_field.model._meta.model_name + '_' + self.remote_field.model._meta.pk.name) ) if self.verbose_name is None: self.verbose_name = self.remote_field.model._meta.verbose_name self.remote_field.set_field_name() def do_related_class(self, other, cls): self.set_attributes_from_rel() self.contribute_to_related_class(other, self.remote_field) def get_limit_choices_to(self): """ Return ``limit_choices_to`` for this model field. If it is a callable, it will be invoked and the result will be returned. """ if callable(self.remote_field.limit_choices_to): return self.remote_field.limit_choices_to() return self.remote_field.limit_choices_to def formfield(self, **kwargs): """ Pass ``limit_choices_to`` to the field being constructed. Only passes it if there is a type that supports related fields. This is a similar strategy used to pass the ``queryset`` to the field being constructed. """ defaults = {} if hasattr(self.remote_field, 'get_related_field'): # If this is a callable, do not invoke it here. Just pass # it in the defaults for when the form class will later be # instantiated. limit_choices_to = self.remote_field.limit_choices_to defaults.update({ 'limit_choices_to': limit_choices_to, }) defaults.update(kwargs) return super().formfield(**defaults) def related_query_name(self): """ Define the name that can be used to identify this related object in a table-spanning query. """ return self.remote_field.related_query_name or self.remote_field.related_name or self.opts.model_name @property def target_field(self): """ When filtering against this relation, return the field on the remote model against which the filtering should happen. """ target_fields = self.get_path_info()[-1].target_fields if len(target_fields) > 1: raise exceptions.FieldError( "The relation has multiple target fields, but only single target field was asked for") return target_fields[0] def get_cache_name(self): return self.name class ForeignObject(RelatedField): """ Abstraction of the ForeignKey relation to support multi-column relations. """ # Field flags many_to_many = False many_to_one = True one_to_many = False one_to_one = False requires_unique_target = True related_accessor_class = ReverseManyToOneDescriptor forward_related_accessor_class = ForwardManyToOneDescriptor rel_class = ForeignObjectRel def __init__(self, to, on_delete, from_fields, to_fields, rel=None, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, swappable=True, **kwargs): if rel is None: rel = self.rel_class( self, to, related_name=related_name, related_query_name=related_query_name, limit_choices_to=limit_choices_to, parent_link=parent_link, on_delete=on_delete, ) super().__init__(rel=rel, **kwargs) self.from_fields = from_fields self.to_fields = to_fields self.swappable = swappable def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_to_fields_exist(), *self._check_unique_target(), ] def _check_to_fields_exist(self): # Skip nonexistent models. if isinstance(self.remote_field.model, str): return [] errors = [] for to_field in self.to_fields: if to_field: try: self.remote_field.model._meta.get_field(to_field) except exceptions.FieldDoesNotExist: errors.append( checks.Error( "The to_field '%s' doesn't exist on the related " "model '%s'." % (to_field, self.remote_field.model._meta.label), obj=self, id='fields.E312', ) ) return errors def _check_unique_target(self): rel_is_string = isinstance(self.remote_field.model, str) if rel_is_string or not self.requires_unique_target: return [] try: self.foreign_related_fields except exceptions.FieldDoesNotExist: return [] if not self.foreign_related_fields: return [] unique_foreign_fields = { frozenset([f.name]) for f in self.remote_field.model._meta.get_fields() if getattr(f, 'unique', False) } unique_foreign_fields.update({ frozenset(ut) for ut in self.remote_field.model._meta.unique_together }) foreign_fields = {f.name for f in self.foreign_related_fields} has_unique_constraint = any(u <= foreign_fields for u in unique_foreign_fields) if not has_unique_constraint and len(self.foreign_related_fields) > 1: field_combination = ', '.join( "'%s'" % rel_field.name for rel_field in self.foreign_related_fields ) model_name = self.remote_field.model.__name__ return [ checks.Error( "No subset of the fields %s on model '%s' is unique." % (field_combination, model_name), hint=( "Add unique=True on any of those fields or add at " "least a subset of them to a unique_together constraint." ), obj=self, id='fields.E310', ) ] elif not has_unique_constraint: field_name = self.foreign_related_fields[0].name model_name = self.remote_field.model.__name__ return [ checks.Error( "'%s.%s' must set unique=True because it is referenced by " "a foreign key." % (model_name, field_name), obj=self, id='fields.E311', ) ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() kwargs['on_delete'] = self.remote_field.on_delete kwargs['from_fields'] = self.from_fields kwargs['to_fields'] = self.to_fields if self.remote_field.parent_link: kwargs['parent_link'] = self.remote_field.parent_link # Work out string form of "to" if isinstance(self.remote_field.model, str): kwargs['to'] = self.remote_field.model else: kwargs['to'] = "%s.%s" % ( self.remote_field.model._meta.app_label, self.remote_field.model._meta.object_name, ) # If swappable is True, then see if we're actually pointing to the target # of a swap. swappable_setting = self.swappable_setting if swappable_setting is not None: # If it's already a settings reference, error if hasattr(kwargs['to'], "setting_name"): if kwargs['to'].setting_name != swappable_setting: raise ValueError( "Cannot deconstruct a ForeignKey pointing to a model " "that is swapped in place of more than one model (%s and %s)" % (kwargs['to'].setting_name, swappable_setting) ) # Set it from django.db.migrations.writer import SettingsReference kwargs['to'] = SettingsReference( kwargs['to'], swappable_setting, ) return name, path, args, kwargs def resolve_related_fields(self): if not self.from_fields or len(self.from_fields) != len(self.to_fields): raise ValueError('Foreign Object from and to fields must be the same non-zero length') if isinstance(self.remote_field.model, str): raise ValueError('Related model %r cannot be resolved' % self.remote_field.model) related_fields = [] for index in range(len(self.from_fields)): from_field_name = self.from_fields[index] to_field_name = self.to_fields[index] from_field = (self if from_field_name == 'self' else self.opts.get_field(from_field_name)) to_field = (self.remote_field.model._meta.pk if to_field_name is None else self.remote_field.model._meta.get_field(to_field_name)) related_fields.append((from_field, to_field)) return related_fields @property def related_fields(self): if not hasattr(self, '_related_fields'): self._related_fields = self.resolve_related_fields() return self._related_fields @property def reverse_related_fields(self): return [(rhs_field, lhs_field) for lhs_field, rhs_field in self.related_fields] @property def local_related_fields(self): return tuple(lhs_field for lhs_field, rhs_field in self.related_fields) @property def foreign_related_fields(self): return tuple(rhs_field for lhs_field, rhs_field in self.related_fields if rhs_field) def get_local_related_value(self, instance): return self.get_instance_value_for_fields(instance, self.local_related_fields) def get_foreign_related_value(self, instance): return self.get_instance_value_for_fields(instance, self.foreign_related_fields) @staticmethod def get_instance_value_for_fields(instance, fields): ret = [] opts = instance._meta for field in fields: # Gotcha: in some cases (like fixture loading) a model can have # different values in parent_ptr_id and parent's id. So, use # instance.pk (that is, parent_ptr_id) when asked for instance.id. if field.primary_key: possible_parent_link = opts.get_ancestor_link(field.model) if (not possible_parent_link or possible_parent_link.primary_key or possible_parent_link.model._meta.abstract): ret.append(instance.pk) continue ret.append(getattr(instance, field.attname)) return tuple(ret) def get_attname_column(self): attname, column = super().get_attname_column() return attname, None def get_joining_columns(self, reverse_join=False): source = self.reverse_related_fields if reverse_join else self.related_fields return tuple((lhs_field.column, rhs_field.column) for lhs_field, rhs_field in source) def get_reverse_joining_columns(self): return self.get_joining_columns(reverse_join=True) def get_extra_descriptor_filter(self, instance): """ Return an extra filter condition for related object fetching when user does 'instance.fieldname', that is the extra filter is used in the descriptor of the field. The filter should be either a dict usable in .filter(**kwargs) call or a Q-object. The condition will be ANDed together with the relation's joining columns. A parallel method is get_extra_restriction() which is used in JOIN and subquery conditions. """ return {} def get_extra_restriction(self, where_class, alias, related_alias): """ Return a pair condition used for joining and subquery pushdown. The condition is something that responds to as_sql(compiler, connection) method. Note that currently referring both the 'alias' and 'related_alias' will not work in some conditions, like subquery pushdown. A parallel method is get_extra_descriptor_filter() which is used in instance.fieldname related object fetching. """ return None def get_path_info(self, filtered_relation=None): """Get path from this field to the related model.""" opts = self.remote_field.model._meta from_opts = self.model._meta return [PathInfo( from_opts=from_opts, to_opts=opts, target_fields=self.foreign_related_fields, join_field=self, m2m=False, direct=True, filtered_relation=filtered_relation, )] def get_reverse_path_info(self, filtered_relation=None): """Get path from the related model to this field's model.""" opts = self.model._meta from_opts = self.remote_field.model._meta return [PathInfo( from_opts=from_opts, to_opts=opts, target_fields=(opts.pk,), join_field=self.remote_field, m2m=not self.unique, direct=False, filtered_relation=filtered_relation, )] @classmethod @functools.lru_cache(maxsize=None) def get_lookups(cls): bases = inspect.getmro(cls) bases = bases[:bases.index(ForeignObject) + 1] class_lookups = [parent.__dict__.get('class_lookups', {}) for parent in bases] return cls.merge_dicts(class_lookups) def contribute_to_class(self, cls, name, private_only=False, **kwargs): super().contribute_to_class(cls, name, private_only=private_only, **kwargs) setattr(cls, self.name, self.forward_related_accessor_class(self)) def contribute_to_related_class(self, cls, related): # Internal FK's - i.e., those with a related name ending with '+' - # and swapped models don't get a related descriptor. if not self.remote_field.is_hidden() and not related.related_model._meta.swapped: setattr(cls._meta.concrete_model, related.get_accessor_name(), self.related_accessor_class(related)) # While 'limit_choices_to' might be a callable, simply pass # it along for later - this is too early because it's still # model load time. if self.remote_field.limit_choices_to: cls._meta.related_fkey_lookups.append(self.remote_field.limit_choices_to) ForeignObject.register_lookup(RelatedIn) ForeignObject.register_lookup(RelatedExact) ForeignObject.register_lookup(RelatedLessThan) ForeignObject.register_lookup(RelatedGreaterThan) ForeignObject.register_lookup(RelatedGreaterThanOrEqual) ForeignObject.register_lookup(RelatedLessThanOrEqual) ForeignObject.register_lookup(RelatedIsNull) class ForeignKey(ForeignObject): """ Provide a many-to-one relation by adding a column to the local model to hold the remote value. By default ForeignKey will target the pk of the remote model but this behavior can be changed by using the ``to_field`` argument. """ # Field flags many_to_many = False many_to_one = True one_to_many = False one_to_one = False rel_class = ManyToOneRel empty_strings_allowed = False default_error_messages = { 'invalid': _('%(model)s instance with %(field)s %(value)r does not exist.') } description = _("Foreign Key (type determined by related field)") def __init__(self, to, on_delete, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, to_field=None, db_constraint=True, **kwargs): try: to._meta.model_name except AttributeError: assert isinstance(to, str), ( "%s(%r) is invalid. First parameter to ForeignKey must be " "either a model, a model name, or the string %r" % ( self.__class__.__name__, to, RECURSIVE_RELATIONSHIP_CONSTANT, ) ) else: # For backwards compatibility purposes, we need to *try* and set # the to_field during FK construction. It won't be guaranteed to # be correct until contribute_to_class is called. Refs #12190. to_field = to_field or (to._meta.pk and to._meta.pk.name) kwargs['rel'] = self.rel_class( self, to, to_field, related_name=related_name, related_query_name=related_query_name, limit_choices_to=limit_choices_to, parent_link=parent_link, on_delete=on_delete, ) kwargs.setdefault('db_index', True) super().__init__(to, on_delete, from_fields=['self'], to_fields=[to_field], **kwargs) self.db_constraint = db_constraint def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_on_delete(), *self._check_unique(), ] def _check_on_delete(self): on_delete = getattr(self.remote_field, 'on_delete', None) if on_delete == SET_NULL and not self.null: return [ checks.Error( 'Field specifies on_delete=SET_NULL, but cannot be null.', hint='Set null=True argument on the field, or change the on_delete rule.', obj=self, id='fields.E320', ) ] elif on_delete == SET_DEFAULT and not self.has_default(): return [ checks.Error( 'Field specifies on_delete=SET_DEFAULT, but has no default value.', hint='Set a default value, or change the on_delete rule.', obj=self, id='fields.E321', ) ] else: return [] def _check_unique(self, **kwargs): return [ checks.Warning( 'Setting unique=True on a ForeignKey has the same effect as using a OneToOneField.', hint='ForeignKey(unique=True) is usually better served by a OneToOneField.', obj=self, id='fields.W342', ) ] if self.unique else [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['to_fields'] del kwargs['from_fields'] # Handle the simpler arguments if self.db_index: del kwargs['db_index'] else: kwargs['db_index'] = False if self.db_constraint is not True: kwargs['db_constraint'] = self.db_constraint # Rel needs more work. to_meta = getattr(self.remote_field.model, "_meta", None) if self.remote_field.field_name and ( not to_meta or (to_meta.pk and self.remote_field.field_name != to_meta.pk.name)): kwargs['to_field'] = self.remote_field.field_name return name, path, args, kwargs def to_python(self, value): return self.target_field.to_python(value) @property def target_field(self): return self.foreign_related_fields[0] def get_reverse_path_info(self, filtered_relation=None): """Get path from the related model to this field's model.""" opts = self.model._meta from_opts = self.remote_field.model._meta return [PathInfo( from_opts=from_opts, to_opts=opts, target_fields=(opts.pk,), join_field=self.remote_field, m2m=not self.unique, direct=False, filtered_relation=filtered_relation, )] def validate(self, value, model_instance): if self.remote_field.parent_link: return super().validate(value, model_instance) if value is None: return using = router.db_for_read(self.remote_field.model, instance=model_instance) qs = self.remote_field.model._default_manager.using(using).filter( **{self.remote_field.field_name: value} ) qs = qs.complex_filter(self.get_limit_choices_to()) if not qs.exists(): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={ 'model': self.remote_field.model._meta.verbose_name, 'pk': value, 'field': self.remote_field.field_name, 'value': value, }, # 'pk' is included for backwards compatibility ) def get_attname(self): return '%s_id' % self.name def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def get_default(self): """Return the to_field if the default value is an object.""" field_default = super().get_default() if isinstance(field_default, self.remote_field.model): return getattr(field_default, self.target_field.attname) return field_default def get_db_prep_save(self, value, connection): if value is None or (value == '' and (not self.target_field.empty_strings_allowed or connection.features.interprets_empty_strings_as_nulls)): return None else: return self.target_field.get_db_prep_save(value, connection=connection) def get_db_prep_value(self, value, connection, prepared=False): return self.target_field.get_db_prep_value(value, connection, prepared) def contribute_to_related_class(self, cls, related): super().contribute_to_related_class(cls, related) if self.remote_field.field_name is None: self.remote_field.field_name = cls._meta.pk.name def formfield(self, *, using=None, **kwargs): if isinstance(self.remote_field.model, str): raise ValueError("Cannot create form field for %r yet, because " "its related model %r has not been loaded yet" % (self.name, self.remote_field.model)) return super().formfield(**{ 'form_class': forms.ModelChoiceField, 'queryset': self.remote_field.model._default_manager.using(using), 'to_field_name': self.remote_field.field_name, **kwargs, }) def db_check(self, connection): return [] def db_type(self, connection): return self.target_field.rel_db_type(connection=connection) def db_parameters(self, connection): return {"type": self.db_type(connection), "check": self.db_check(connection)} def convert_empty_strings(self, value, expression, connection): if (not value) and isinstance(value, str): return None return value def get_db_converters(self, connection): converters = super().get_db_converters(connection) if connection.features.interprets_empty_strings_as_nulls: converters += [self.convert_empty_strings] return converters def get_col(self, alias, output_field=None): return super().get_col(alias, output_field or self.target_field) class OneToOneField(ForeignKey): """ A OneToOneField is essentially the same as a ForeignKey, with the exception that it always carries a "unique" constraint with it and the reverse relation always returns the object pointed to (since there will only ever be one), rather than returning a list. """ # Field flags many_to_many = False many_to_one = False one_to_many = False one_to_one = True related_accessor_class = ReverseOneToOneDescriptor forward_related_accessor_class = ForwardOneToOneDescriptor rel_class = OneToOneRel description = _("One-to-one relationship") def __init__(self, to, on_delete, to_field=None, **kwargs): kwargs['unique'] = True super().__init__(to, on_delete, to_field=to_field, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if "unique" in kwargs: del kwargs['unique'] return name, path, args, kwargs def formfield(self, **kwargs): if self.remote_field.parent_link: return None return super().formfield(**kwargs) def save_form_data(self, instance, data): if isinstance(data, self.remote_field.model): setattr(instance, self.name, data) else: setattr(instance, self.attname, data) def _check_unique(self, **kwargs): # Override ForeignKey since check isn't applicable here. return [] def create_many_to_many_intermediary_model(field, klass): from django.db import models def set_managed(model, related, through): through._meta.managed = model._meta.managed or related._meta.managed to_model = resolve_relation(klass, field.remote_field.model) name = '%s_%s' % (klass._meta.object_name, field.name) lazy_related_operation(set_managed, klass, to_model, name) to = make_model_tuple(to_model)[1] from_ = klass._meta.model_name if to == from_: to = 'to_%s' % to from_ = 'from_%s' % from_ meta = type('Meta', (), { 'db_table': field._get_m2m_db_table(klass._meta), 'auto_created': klass, 'app_label': klass._meta.app_label, 'db_tablespace': klass._meta.db_tablespace, 'unique_together': (from_, to), 'verbose_name': _('%(from)s-%(to)s relationship') % {'from': from_, 'to': to}, 'verbose_name_plural': _('%(from)s-%(to)s relationships') % {'from': from_, 'to': to}, 'apps': field.model._meta.apps, }) # Construct and return the new class. return type(name, (models.Model,), { 'Meta': meta, '__module__': klass.__module__, from_: models.ForeignKey( klass, related_name='%s+' % name, db_tablespace=field.db_tablespace, db_constraint=field.remote_field.db_constraint, on_delete=CASCADE, ), to: models.ForeignKey( to_model, related_name='%s+' % name, db_tablespace=field.db_tablespace, db_constraint=field.remote_field.db_constraint, on_delete=CASCADE, ) }) class ManyToManyField(RelatedField): """ Provide a many-to-many relation by using an intermediary model that holds two ForeignKey fields pointed at the two sides of the relation. Unless a ``through`` model was provided, ManyToManyField will use the create_many_to_many_intermediary_model factory to automatically generate the intermediary model. """ # Field flags many_to_many = True many_to_one = False one_to_many = False one_to_one = False rel_class = ManyToManyRel description = _("Many-to-many relationship") def __init__(self, to, related_name=None, related_query_name=None, limit_choices_to=None, symmetrical=None, through=None, through_fields=None, db_constraint=True, db_table=None, swappable=True, **kwargs): try: to._meta except AttributeError: assert isinstance(to, str), ( "%s(%r) is invalid. First parameter to ManyToManyField must be " "either a model, a model name, or the string %r" % (self.__class__.__name__, to, RECURSIVE_RELATIONSHIP_CONSTANT) ) if symmetrical is None: symmetrical = (to == RECURSIVE_RELATIONSHIP_CONSTANT) if through is not None: assert db_table is None, ( "Cannot specify a db_table if an intermediary model is used." ) kwargs['rel'] = self.rel_class( self, to, related_name=related_name, related_query_name=related_query_name, limit_choices_to=limit_choices_to, symmetrical=symmetrical, through=through, through_fields=through_fields, db_constraint=db_constraint, ) self.has_null_arg = 'null' in kwargs super().__init__(**kwargs) self.db_table = db_table self.swappable = swappable def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_unique(**kwargs), *self._check_relationship_model(**kwargs), *self._check_ignored_options(**kwargs), *self._check_table_uniqueness(**kwargs), ] def _check_unique(self, **kwargs): if self.unique: return [ checks.Error( 'ManyToManyFields cannot be unique.', obj=self, id='fields.E330', ) ] return [] def _check_ignored_options(self, **kwargs): warnings = [] if self.has_null_arg: warnings.append( checks.Warning( 'null has no effect on ManyToManyField.', obj=self, id='fields.W340', ) ) if self._validators: warnings.append( checks.Warning( 'ManyToManyField does not support validators.', obj=self, id='fields.W341', ) ) if (self.remote_field.limit_choices_to and self.remote_field.through and not self.remote_field.through._meta.auto_created): warnings.append( checks.Warning( 'limit_choices_to has no effect on ManyToManyField ' 'with a through model.', obj=self, id='fields.W343', ) ) return warnings def _check_relationship_model(self, from_model=None, **kwargs): if hasattr(self.remote_field.through, '_meta'): qualified_model_name = "%s.%s" % ( self.remote_field.through._meta.app_label, self.remote_field.through.__name__) else: qualified_model_name = self.remote_field.through errors = [] if self.remote_field.through not in self.opts.apps.get_models(include_auto_created=True): # The relationship model is not installed. errors.append( checks.Error( "Field specifies a many-to-many relation through model " "'%s', which has not been installed." % qualified_model_name, obj=self, id='fields.E331', ) ) else: assert from_model is not None, ( "ManyToManyField with intermediate " "tables cannot be checked if you don't pass the model " "where the field is attached to." ) # Set some useful local variables to_model = resolve_relation(from_model, self.remote_field.model) from_model_name = from_model._meta.object_name if isinstance(to_model, str): to_model_name = to_model else: to_model_name = to_model._meta.object_name relationship_model_name = self.remote_field.through._meta.object_name self_referential = from_model == to_model # Check symmetrical attribute. if (self_referential and self.remote_field.symmetrical and not self.remote_field.through._meta.auto_created): errors.append( checks.Error( 'Many-to-many fields with intermediate tables must not be symmetrical.', obj=self, id='fields.E332', ) ) # Count foreign keys in intermediate model if self_referential: seen_self = sum( from_model == getattr(field.remote_field, 'model', None) for field in self.remote_field.through._meta.fields ) if seen_self > 2 and not self.remote_field.through_fields: errors.append( checks.Error( "The model is used as an intermediate model by " "'%s', but it has more than two foreign keys " "to '%s', which is ambiguous. You must specify " "which two foreign keys Django should use via the " "through_fields keyword argument." % (self, from_model_name), hint="Use through_fields to specify which two foreign keys Django should use.", obj=self.remote_field.through, id='fields.E333', ) ) else: # Count foreign keys in relationship model seen_from = sum( from_model == getattr(field.remote_field, 'model', None) for field in self.remote_field.through._meta.fields ) seen_to = sum( to_model == getattr(field.remote_field, 'model', None) for field in self.remote_field.through._meta.fields ) if seen_from > 1 and not self.remote_field.through_fields: errors.append( checks.Error( ("The model is used as an intermediate model by " "'%s', but it has more than one foreign key " "from '%s', which is ambiguous. You must specify " "which foreign key Django should use via the " "through_fields keyword argument.") % (self, from_model_name), hint=( 'If you want to create a recursive relationship, ' 'use ForeignKey("self", symmetrical=False, through="%s").' ) % relationship_model_name, obj=self, id='fields.E334', ) ) if seen_to > 1 and not self.remote_field.through_fields: errors.append( checks.Error( "The model is used as an intermediate model by " "'%s', but it has more than one foreign key " "to '%s', which is ambiguous. You must specify " "which foreign key Django should use via the " "through_fields keyword argument." % (self, to_model_name), hint=( 'If you want to create a recursive relationship, ' 'use ForeignKey("self", symmetrical=False, through="%s").' ) % relationship_model_name, obj=self, id='fields.E335', ) ) if seen_from == 0 or seen_to == 0: errors.append( checks.Error( "The model is used as an intermediate model by " "'%s', but it does not have a foreign key to '%s' or '%s'." % ( self, from_model_name, to_model_name ), obj=self.remote_field.through, id='fields.E336', ) ) # Validate `through_fields`. if self.remote_field.through_fields is not None: # Validate that we're given an iterable of at least two items # and that none of them is "falsy". if not (len(self.remote_field.through_fields) >= 2 and self.remote_field.through_fields[0] and self.remote_field.through_fields[1]): errors.append( checks.Error( "Field specifies 'through_fields' but does not provide " "the names of the two link fields that should be used " "for the relation through model '%s'." % qualified_model_name, hint="Make sure you specify 'through_fields' as through_fields=('field1', 'field2')", obj=self, id='fields.E337', ) ) # Validate the given through fields -- they should be actual # fields on the through model, and also be foreign keys to the # expected models. else: assert from_model is not None, ( "ManyToManyField with intermediate " "tables cannot be checked if you don't pass the model " "where the field is attached to." ) source, through, target = from_model, self.remote_field.through, self.remote_field.model source_field_name, target_field_name = self.remote_field.through_fields[:2] for field_name, related_model in ((source_field_name, source), (target_field_name, target)): possible_field_names = [] for f in through._meta.fields: if hasattr(f, 'remote_field') and getattr(f.remote_field, 'model', None) == related_model: possible_field_names.append(f.name) if possible_field_names: hint = "Did you mean one of the following foreign keys to '%s': %s?" % ( related_model._meta.object_name, ', '.join(possible_field_names), ) else: hint = None try: field = through._meta.get_field(field_name) except exceptions.FieldDoesNotExist: errors.append( checks.Error( "The intermediary model '%s' has no field '%s'." % (qualified_model_name, field_name), hint=hint, obj=self, id='fields.E338', ) ) else: if not (hasattr(field, 'remote_field') and getattr(field.remote_field, 'model', None) == related_model): errors.append( checks.Error( "'%s.%s' is not a foreign key to '%s'." % ( through._meta.object_name, field_name, related_model._meta.object_name, ), hint=hint, obj=self, id='fields.E339', ) ) return errors def _check_table_uniqueness(self, **kwargs): if isinstance(self.remote_field.through, str) or not self.remote_field.through._meta.managed: return [] registered_tables = { model._meta.db_table: model for model in self.opts.apps.get_models(include_auto_created=True) if model != self.remote_field.through and model._meta.managed } m2m_db_table = self.m2m_db_table() model = registered_tables.get(m2m_db_table) # The second condition allows multiple m2m relations on a model if # some point to a through model that proxies another through model. if model and model._meta.concrete_model != self.remote_field.through._meta.concrete_model: if model._meta.auto_created: def _get_field_name(model): for field in model._meta.auto_created._meta.many_to_many: if field.remote_field.through is model: return field.name opts = model._meta.auto_created._meta clashing_obj = '%s.%s' % (opts.label, _get_field_name(model)) else: clashing_obj = '%s' % model._meta.label return [ checks.Error( "The field's intermediary table '%s' clashes with the " "table name of '%s'." % (m2m_db_table, clashing_obj), obj=self, id='fields.E340', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() # Handle the simpler arguments. if self.db_table is not None: kwargs['db_table'] = self.db_table if self.remote_field.db_constraint is not True: kwargs['db_constraint'] = self.remote_field.db_constraint # Rel needs more work. if isinstance(self.remote_field.model, str): kwargs['to'] = self.remote_field.model else: kwargs['to'] = "%s.%s" % ( self.remote_field.model._meta.app_label, self.remote_field.model._meta.object_name, ) if getattr(self.remote_field, 'through', None) is not None: if isinstance(self.remote_field.through, str): kwargs['through'] = self.remote_field.through elif not self.remote_field.through._meta.auto_created: kwargs['through'] = "%s.%s" % ( self.remote_field.through._meta.app_label, self.remote_field.through._meta.object_name, ) # If swappable is True, then see if we're actually pointing to the target # of a swap. swappable_setting = self.swappable_setting if swappable_setting is not None: # If it's already a settings reference, error. if hasattr(kwargs['to'], "setting_name"): if kwargs['to'].setting_name != swappable_setting: raise ValueError( "Cannot deconstruct a ManyToManyField pointing to a " "model that is swapped in place of more than one model " "(%s and %s)" % (kwargs['to'].setting_name, swappable_setting) ) from django.db.migrations.writer import SettingsReference kwargs['to'] = SettingsReference( kwargs['to'], swappable_setting, ) return name, path, args, kwargs def _get_path_info(self, direct=False, filtered_relation=None): """Called by both direct and indirect m2m traversal.""" int_model = self.remote_field.through linkfield1 = int_model._meta.get_field(self.m2m_field_name()) linkfield2 = int_model._meta.get_field(self.m2m_reverse_field_name()) if direct: join1infos = linkfield1.get_reverse_path_info() join2infos = linkfield2.get_path_info(filtered_relation) else: join1infos = linkfield2.get_reverse_path_info() join2infos = linkfield1.get_path_info(filtered_relation) # Get join infos between the last model of join 1 and the first model # of join 2. Assume the only reason these may differ is due to model # inheritance. join1_final = join1infos[-1].to_opts join2_initial = join2infos[0].from_opts if join1_final is join2_initial: intermediate_infos = [] elif issubclass(join1_final.model, join2_initial.model): intermediate_infos = join1_final.get_path_to_parent(join2_initial.model) else: intermediate_infos = join2_initial.get_path_from_parent(join1_final.model) return [*join1infos, *intermediate_infos, *join2infos] def get_path_info(self, filtered_relation=None): return self._get_path_info(direct=True, filtered_relation=filtered_relation) def get_reverse_path_info(self, filtered_relation=None): return self._get_path_info(direct=False, filtered_relation=filtered_relation) def _get_m2m_db_table(self, opts): """ Function that can be curried to provide the m2m table name for this relation. """ if self.remote_field.through is not None: return self.remote_field.through._meta.db_table elif self.db_table: return self.db_table else: m2m_table_name = '%s_%s' % (utils.strip_quotes(opts.db_table), self.name) return utils.truncate_name(m2m_table_name, connection.ops.max_name_length()) def _get_m2m_attr(self, related, attr): """ Function that can be curried to provide the source accessor or DB column name for the m2m table. """ cache_attr = '_m2m_%s_cache' % attr if hasattr(self, cache_attr): return getattr(self, cache_attr) if self.remote_field.through_fields is not None: link_field_name = self.remote_field.through_fields[0] else: link_field_name = None for f in self.remote_field.through._meta.fields: if (f.is_relation and f.remote_field.model == related.related_model and (link_field_name is None or link_field_name == f.name)): setattr(self, cache_attr, getattr(f, attr)) return getattr(self, cache_attr) def _get_m2m_reverse_attr(self, related, attr): """ Function that can be curried to provide the related accessor or DB column name for the m2m table. """ cache_attr = '_m2m_reverse_%s_cache' % attr if hasattr(self, cache_attr): return getattr(self, cache_attr) found = False if self.remote_field.through_fields is not None: link_field_name = self.remote_field.through_fields[1] else: link_field_name = None for f in self.remote_field.through._meta.fields: if f.is_relation and f.remote_field.model == related.model: if link_field_name is None and related.related_model == related.model: # If this is an m2m-intermediate to self, # the first foreign key you find will be # the source column. Keep searching for # the second foreign key. if found: setattr(self, cache_attr, getattr(f, attr)) break else: found = True elif link_field_name is None or link_field_name == f.name: setattr(self, cache_attr, getattr(f, attr)) break return getattr(self, cache_attr) def contribute_to_class(self, cls, name, **kwargs): # To support multiple relations to self, it's useful to have a non-None # related name on symmetrical relations for internal reasons. The # concept doesn't make a lot of sense externally ("you want me to # specify *what* on my non-reversible relation?!"), so we set it up # automatically. The funky name reduces the chance of an accidental # clash. if self.remote_field.symmetrical and ( self.remote_field.model == "self" or self.remote_field.model == cls._meta.object_name): self.remote_field.related_name = "%s_rel_+" % name elif self.remote_field.is_hidden(): # If the backwards relation is disabled, replace the original # related_name with one generated from the m2m field name. Django # still uses backwards relations internally and we need to avoid # clashes between multiple m2m fields with related_name == '+'. self.remote_field.related_name = "_%s_%s_+" % (cls.__name__.lower(), name) super().contribute_to_class(cls, name, **kwargs) # The intermediate m2m model is not auto created if: # 1) There is a manually specified intermediate, or # 2) The class owning the m2m field is abstract. # 3) The class owning the m2m field has been swapped out. if not cls._meta.abstract: if self.remote_field.through: def resolve_through_model(_, model, field): field.remote_field.through = model lazy_related_operation(resolve_through_model, cls, self.remote_field.through, field=self) elif not cls._meta.swapped: self.remote_field.through = create_many_to_many_intermediary_model(self, cls) # Add the descriptor for the m2m relation. setattr(cls, self.name, ManyToManyDescriptor(self.remote_field, reverse=False)) # Set up the accessor for the m2m table name for the relation. self.m2m_db_table = partial(self._get_m2m_db_table, cls._meta) def contribute_to_related_class(self, cls, related): # Internal M2Ms (i.e., those with a related name ending with '+') # and swapped models don't get a related descriptor. if not self.remote_field.is_hidden() and not related.related_model._meta.swapped: setattr(cls, related.get_accessor_name(), ManyToManyDescriptor(self.remote_field, reverse=True)) # Set up the accessors for the column names on the m2m table. self.m2m_column_name = partial(self._get_m2m_attr, related, 'column') self.m2m_reverse_name = partial(self._get_m2m_reverse_attr, related, 'column') self.m2m_field_name = partial(self._get_m2m_attr, related, 'name') self.m2m_reverse_field_name = partial(self._get_m2m_reverse_attr, related, 'name') get_m2m_rel = partial(self._get_m2m_attr, related, 'remote_field') self.m2m_target_field_name = lambda: get_m2m_rel().field_name get_m2m_reverse_rel = partial(self._get_m2m_reverse_attr, related, 'remote_field') self.m2m_reverse_target_field_name = lambda: get_m2m_reverse_rel().field_name def set_attributes_from_rel(self): pass def value_from_object(self, obj): return [] if obj.pk is None else list(getattr(obj, self.attname).all()) def save_form_data(self, instance, data): getattr(instance, self.attname).set(data) def formfield(self, *, using=None, **kwargs): defaults = { 'form_class': forms.ModelMultipleChoiceField, 'queryset': self.remote_field.model._default_manager.using(using), **kwargs, } # If initial is passed in, it's a list of related objects, but the # MultipleChoiceField takes a list of IDs. if defaults.get('initial') is not None: initial = defaults['initial'] if callable(initial): initial = initial() defaults['initial'] = [i.pk for i in initial] return super().formfield(**defaults) def db_check(self, connection): return None def db_type(self, connection): # A ManyToManyField is not represented by a single column, # so return None. return None def db_parameters(self, connection): return {"type": None, "check": None}
a1192012ab6fc5065ad066e0a5a289b9af3744acc798d592764276ee8265694d
import datetime import posixpath from django import forms from django.core import checks from django.core.files.base import File from django.core.files.images import ImageFile from django.core.files.storage import default_storage from django.db.models import signals from django.db.models.fields import Field from django.utils.translation import gettext_lazy as _ class FieldFile(File): def __init__(self, instance, field, name): super().__init__(None, name) self.instance = instance self.field = field self.storage = field.storage self._committed = True def __eq__(self, other): # Older code may be expecting FileField values to be simple strings. # By overriding the == operator, it can remain backwards compatibility. if hasattr(other, 'name'): return self.name == other.name return self.name == other def __hash__(self): return hash(self.name) # The standard File contains most of the necessary properties, but # FieldFiles can be instantiated without a name, so that needs to # be checked for here. def _require_file(self): if not self: raise ValueError("The '%s' attribute has no file associated with it." % self.field.name) def _get_file(self): self._require_file() if getattr(self, '_file', None) is None: self._file = self.storage.open(self.name, 'rb') return self._file def _set_file(self, file): self._file = file def _del_file(self): del self._file file = property(_get_file, _set_file, _del_file) @property def path(self): self._require_file() return self.storage.path(self.name) @property def url(self): self._require_file() return self.storage.url(self.name) @property def size(self): self._require_file() if not self._committed: return self.file.size return self.storage.size(self.name) def open(self, mode='rb'): self._require_file() if getattr(self, '_file', None) is None: self.file = self.storage.open(self.name, mode) else: self.file.open(mode) return self # open() doesn't alter the file's contents, but it does reset the pointer open.alters_data = True # In addition to the standard File API, FieldFiles have extra methods # to further manipulate the underlying file, as well as update the # associated model instance. def save(self, name, content, save=True): name = self.field.generate_filename(self.instance, name) self.name = self.storage.save(name, content, max_length=self.field.max_length) setattr(self.instance, self.field.name, self.name) self._committed = True # Save the object because it has changed, unless save is False if save: self.instance.save() save.alters_data = True def delete(self, save=True): if not self: return # Only close the file if it's already open, which we know by the # presence of self._file if hasattr(self, '_file'): self.close() del self.file self.storage.delete(self.name) self.name = None setattr(self.instance, self.field.name, self.name) self._committed = False if save: self.instance.save() delete.alters_data = True @property def closed(self): file = getattr(self, '_file', None) return file is None or file.closed def close(self): file = getattr(self, '_file', None) if file is not None: file.close() def __getstate__(self): # FieldFile needs access to its associated model field and an instance # it's attached to in order to work properly, but the only necessary # data to be pickled is the file's name itself. Everything else will # be restored later, by FileDescriptor below. return {'name': self.name, 'closed': False, '_committed': True, '_file': None} class FileDescriptor: """ The descriptor for the file attribute on the model instance. Return a FieldFile when accessed so you can write code like:: >>> from myapp.models import MyModel >>> instance = MyModel.objects.get(pk=1) >>> instance.file.size Assign a file object on assignment so you can do:: >>> with open('/path/to/hello.world', 'r') as f: ... instance.file = File(f) """ def __init__(self, field): self.field = field def __get__(self, instance, cls=None): if instance is None: return self # This is slightly complicated, so worth an explanation. # instance.file`needs to ultimately return some instance of `File`, # probably a subclass. Additionally, this returned object needs to have # the FieldFile API so that users can easily do things like # instance.file.path and have that delegated to the file storage engine. # Easy enough if we're strict about assignment in __set__, but if you # peek below you can see that we're not. So depending on the current # value of the field we have to dynamically construct some sort of # "thing" to return. # The instance dict contains whatever was originally assigned # in __set__. if self.field.name in instance.__dict__: file = instance.__dict__[self.field.name] else: instance.refresh_from_db(fields=[self.field.name]) file = getattr(instance, self.field.name) # If this value is a string (instance.file = "path/to/file") or None # then we simply wrap it with the appropriate attribute class according # to the file field. [This is FieldFile for FileFields and # ImageFieldFile for ImageFields; it's also conceivable that user # subclasses might also want to subclass the attribute class]. This # object understands how to convert a path to a file, and also how to # handle None. if isinstance(file, str) or file is None: attr = self.field.attr_class(instance, self.field, file) instance.__dict__[self.field.name] = attr # Other types of files may be assigned as well, but they need to have # the FieldFile interface added to them. Thus, we wrap any other type of # File inside a FieldFile (well, the field's attr_class, which is # usually FieldFile). elif isinstance(file, File) and not isinstance(file, FieldFile): file_copy = self.field.attr_class(instance, self.field, file.name) file_copy.file = file file_copy._committed = False instance.__dict__[self.field.name] = file_copy # Finally, because of the (some would say boneheaded) way pickle works, # the underlying FieldFile might not actually itself have an associated # file. So we need to reset the details of the FieldFile in those cases. elif isinstance(file, FieldFile) and not hasattr(file, 'field'): file.instance = instance file.field = self.field file.storage = self.field.storage # Make sure that the instance is correct. elif isinstance(file, FieldFile) and instance is not file.instance: file.instance = instance # That was fun, wasn't it? return instance.__dict__[self.field.name] def __set__(self, instance, value): instance.__dict__[self.field.name] = value class FileField(Field): # The class to wrap instance attributes in. Accessing the file object off # the instance will always return an instance of attr_class. attr_class = FieldFile # The descriptor to use for accessing the attribute off of the class. descriptor_class = FileDescriptor description = _("File") def __init__(self, verbose_name=None, name=None, upload_to='', storage=None, **kwargs): self._primary_key_set_explicitly = 'primary_key' in kwargs self.storage = storage or default_storage self.upload_to = upload_to kwargs.setdefault('max_length', 100) super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_primary_key(), *self._check_upload_to(), ] def _check_primary_key(self): if self._primary_key_set_explicitly: return [ checks.Error( "'primary_key' is not a valid argument for a %s." % self.__class__.__name__, obj=self, id='fields.E201', ) ] else: return [] def _check_upload_to(self): if isinstance(self.upload_to, str) and self.upload_to.startswith('/'): return [ checks.Error( "%s's 'upload_to' argument must be a relative path, not an " "absolute path." % self.__class__.__name__, obj=self, id='fields.E202', hint='Remove the leading slash.', ) ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 100: del kwargs["max_length"] kwargs['upload_to'] = self.upload_to if self.storage is not default_storage: kwargs['storage'] = self.storage return name, path, args, kwargs def get_internal_type(self): return "FileField" def get_prep_value(self, value): value = super().get_prep_value(value) # Need to convert File objects provided via a form to string for database insertion if value is None: return None return str(value) def pre_save(self, model_instance, add): file = super().pre_save(model_instance, add) if file and not file._committed: # Commit the file to storage prior to saving the model file.save(file.name, file.file, save=False) return file def contribute_to_class(self, cls, name, **kwargs): super().contribute_to_class(cls, name, **kwargs) setattr(cls, self.name, self.descriptor_class(self)) def generate_filename(self, instance, filename): """ Apply (if callable) or prepend (if a string) upload_to to the filename, then delegate further processing of the name to the storage backend. Until the storage layer, all file paths are expected to be Unix style (with forward slashes). """ if callable(self.upload_to): filename = self.upload_to(instance, filename) else: dirname = datetime.datetime.now().strftime(self.upload_to) filename = posixpath.join(dirname, filename) return self.storage.generate_filename(filename) def save_form_data(self, instance, data): # Important: None means "no change", other false value means "clear" # This subtle distinction (rather than a more explicit marker) is # needed because we need to consume values that are also sane for a # regular (non Model-) Form to find in its cleaned_data dictionary. if data is not None: # This value will be converted to str and stored in the # database, so leaving False as-is is not acceptable. setattr(instance, self.name, data or '') def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.FileField, 'max_length': self.max_length, **kwargs, }) class ImageFileDescriptor(FileDescriptor): """ Just like the FileDescriptor, but for ImageFields. The only difference is assigning the width/height to the width_field/height_field, if appropriate. """ def __set__(self, instance, value): previous_file = instance.__dict__.get(self.field.name) super().__set__(instance, value) # To prevent recalculating image dimensions when we are instantiating # an object from the database (bug #11084), only update dimensions if # the field had a value before this assignment. Since the default # value for FileField subclasses is an instance of field.attr_class, # previous_file will only be None when we are called from # Model.__init__(). The ImageField.update_dimension_fields method # hooked up to the post_init signal handles the Model.__init__() cases. # Assignment happening outside of Model.__init__() will trigger the # update right here. if previous_file is not None: self.field.update_dimension_fields(instance, force=True) class ImageFieldFile(ImageFile, FieldFile): def delete(self, save=True): # Clear the image dimensions cache if hasattr(self, '_dimensions_cache'): del self._dimensions_cache super().delete(save) class ImageField(FileField): attr_class = ImageFieldFile descriptor_class = ImageFileDescriptor description = _("Image") def __init__(self, verbose_name=None, name=None, width_field=None, height_field=None, **kwargs): self.width_field, self.height_field = width_field, height_field super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_image_library_installed(), ] def _check_image_library_installed(self): try: from PIL import Image # NOQA except ImportError: return [ checks.Error( 'Cannot use ImageField because Pillow is not installed.', hint=('Get Pillow at https://pypi.org/project/Pillow/ ' 'or run command "pip install Pillow".'), obj=self, id='fields.E210', ) ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.width_field: kwargs['width_field'] = self.width_field if self.height_field: kwargs['height_field'] = self.height_field return name, path, args, kwargs def contribute_to_class(self, cls, name, **kwargs): super().contribute_to_class(cls, name, **kwargs) # Attach update_dimension_fields so that dimension fields declared # after their corresponding image field don't stay cleared by # Model.__init__, see bug #11196. # Only run post-initialization dimension update on non-abstract models if not cls._meta.abstract: signals.post_init.connect(self.update_dimension_fields, sender=cls) def update_dimension_fields(self, instance, force=False, *args, **kwargs): """ Update field's width and height fields, if defined. This method is hooked up to model's post_init signal to update dimensions after instantiating a model instance. However, dimensions won't be updated if the dimensions fields are already populated. This avoids unnecessary recalculation when loading an object from the database. Dimensions can be forced to update with force=True, which is how ImageFileDescriptor.__set__ calls this method. """ # Nothing to update if the field doesn't have dimension fields or if # the field is deferred. has_dimension_fields = self.width_field or self.height_field if not has_dimension_fields or self.attname not in instance.__dict__: return # getattr will call the ImageFileDescriptor's __get__ method, which # coerces the assigned value into an instance of self.attr_class # (ImageFieldFile in this case). file = getattr(instance, self.attname) # Nothing to update if we have no file and not being forced to update. if not file and not force: return dimension_fields_filled = not( (self.width_field and not getattr(instance, self.width_field)) or (self.height_field and not getattr(instance, self.height_field)) ) # When both dimension fields have values, we are most likely loading # data from the database or updating an image field that already had # an image stored. In the first case, we don't want to update the # dimension fields because we are already getting their values from the # database. In the second case, we do want to update the dimensions # fields and will skip this return because force will be True since we # were called from ImageFileDescriptor.__set__. if dimension_fields_filled and not force: return # file should be an instance of ImageFieldFile or should be None. if file: width = file.width height = file.height else: # No file, so clear dimensions fields. width = None height = None # Update the width and height fields. if self.width_field: setattr(instance, self.width_field, width) if self.height_field: setattr(instance, self.height_field, height) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.ImageField, **kwargs, })
e4292ae1dd5c64e0c77d588b19c532b89c2f54fc95f8a7ddd9a649cd8e1c9317
NOT_PROVIDED = object() class FieldCacheMixin: """Provide an API for working with the model's fields value cache.""" def get_cache_name(self): raise NotImplementedError def get_cached_value(self, instance, default=NOT_PROVIDED): cache_name = self.get_cache_name() try: return instance._state.fields_cache[cache_name] except KeyError: if default is NOT_PROVIDED: raise return default def is_cached(self, instance): return self.get_cache_name() in instance._state.fields_cache def set_cached_value(self, instance, value): instance._state.fields_cache[self.get_cache_name()] = value def delete_cached_value(self, instance): del instance._state.fields_cache[self.get_cache_name()]
eac9db43e58707e0c6cf57df48c859129bff17688f6ec306c9a0bc607235e72e
""" Accessors for related objects. When a field defines a relation between two models, each model class provides an attribute to access related instances of the other model class (unless the reverse accessor has been disabled with related_name='+'). Accessors are implemented as descriptors in order to customize access and assignment. This module defines the descriptor classes. Forward accessors follow foreign keys. Reverse accessors trace them back. For example, with the following models:: class Parent(Model): pass class Child(Model): parent = ForeignKey(Parent, related_name='children') ``child.parent`` is a forward many-to-one relation. ``parent.children`` is a reverse many-to-one relation. There are three types of relations (many-to-one, one-to-one, and many-to-many) and two directions (forward and reverse) for a total of six combinations. 1. Related instance on the forward side of a many-to-one relation: ``ForwardManyToOneDescriptor``. Uniqueness of foreign key values is irrelevant to accessing the related instance, making the many-to-one and one-to-one cases identical as far as the descriptor is concerned. The constraint is checked upstream (unicity validation in forms) or downstream (unique indexes in the database). 2. Related instance on the forward side of a one-to-one relation: ``ForwardOneToOneDescriptor``. It avoids querying the database when accessing the parent link field in a multi-table inheritance scenario. 3. Related instance on the reverse side of a one-to-one relation: ``ReverseOneToOneDescriptor``. One-to-one relations are asymmetrical, despite the apparent symmetry of the name, because they're implemented in the database with a foreign key from one table to another. As a consequence ``ReverseOneToOneDescriptor`` is slightly different from ``ForwardManyToOneDescriptor``. 4. Related objects manager for related instances on the reverse side of a many-to-one relation: ``ReverseManyToOneDescriptor``. Unlike the previous two classes, this one provides access to a collection of objects. It returns a manager rather than an instance. 5. Related objects manager for related instances on the forward or reverse sides of a many-to-many relation: ``ManyToManyDescriptor``. Many-to-many relations are symmetrical. The syntax of Django models requires declaring them on one side but that's an implementation detail. They could be declared on the other side without any change in behavior. Therefore the forward and reverse descriptors can be the same. If you're looking for ``ForwardManyToManyDescriptor`` or ``ReverseManyToManyDescriptor``, use ``ManyToManyDescriptor`` instead. """ from django.db import connections, router, transaction from django.db.models import Q, signals from django.db.models.query import QuerySet from django.utils.functional import cached_property class ForwardManyToOneDescriptor: """ Accessor to the related object on the forward side of a many-to-one or one-to-one (via ForwardOneToOneDescriptor subclass) relation. In the example:: class Child(Model): parent = ForeignKey(Parent, related_name='children') ``Child.parent`` is a ``ForwardManyToOneDescriptor`` instance. """ def __init__(self, field_with_rel): self.field = field_with_rel @cached_property def RelatedObjectDoesNotExist(self): # The exception can't be created at initialization time since the # related model might not be resolved yet; `self.field.model` might # still be a string model reference. return type( 'RelatedObjectDoesNotExist', (self.field.remote_field.model.DoesNotExist, AttributeError), { '__module__': self.field.model.__module__, '__qualname__': '%s.%s.RelatedObjectDoesNotExist' % ( self.field.model.__qualname__, self.field.name, ), } ) def is_cached(self, instance): return self.field.is_cached(instance) def get_queryset(self, **hints): return self.field.remote_field.model._base_manager.db_manager(hints=hints).all() def get_prefetch_queryset(self, instances, queryset=None): if queryset is None: queryset = self.get_queryset() queryset._add_hints(instance=instances[0]) rel_obj_attr = self.field.get_foreign_related_value instance_attr = self.field.get_local_related_value instances_dict = {instance_attr(inst): inst for inst in instances} related_field = self.field.foreign_related_fields[0] remote_field = self.field.remote_field # FIXME: This will need to be revisited when we introduce support for # composite fields. In the meantime we take this practical approach to # solve a regression on 1.6 when the reverse manager in hidden # (related_name ends with a '+'). Refs #21410. # The check for len(...) == 1 is a special case that allows the query # to be join-less and smaller. Refs #21760. if remote_field.is_hidden() or len(self.field.foreign_related_fields) == 1: query = {'%s__in' % related_field.name: {instance_attr(inst)[0] for inst in instances}} else: query = {'%s__in' % self.field.related_query_name(): instances} queryset = queryset.filter(**query) # Since we're going to assign directly in the cache, # we must manage the reverse relation cache manually. if not remote_field.multiple: for rel_obj in queryset: instance = instances_dict[rel_obj_attr(rel_obj)] remote_field.set_cached_value(rel_obj, instance) return queryset, rel_obj_attr, instance_attr, True, self.field.get_cache_name(), False def get_object(self, instance): qs = self.get_queryset(instance=instance) # Assuming the database enforces foreign keys, this won't fail. return qs.get(self.field.get_reverse_related_filter(instance)) def __get__(self, instance, cls=None): """ Get the related instance through the forward relation. With the example above, when getting ``child.parent``: - ``self`` is the descriptor managing the ``parent`` attribute - ``instance`` is the ``child`` instance - ``cls`` is the ``Child`` class (we don't need it) """ if instance is None: return self # The related instance is loaded from the database and then cached # by the field on the model instance state. It can also be pre-cached # by the reverse accessor (ReverseOneToOneDescriptor). try: rel_obj = self.field.get_cached_value(instance) except KeyError: has_value = None not in self.field.get_local_related_value(instance) ancestor_link = instance._meta.get_ancestor_link(self.field.model) if has_value else None if ancestor_link and ancestor_link.is_cached(instance): # An ancestor link will exist if this field is defined on a # multi-table inheritance parent of the instance's class. ancestor = ancestor_link.get_cached_value(instance) # The value might be cached on an ancestor if the instance # originated from walking down the inheritance chain. rel_obj = self.field.get_cached_value(ancestor, default=None) else: rel_obj = None if rel_obj is None and has_value: rel_obj = self.get_object(instance) remote_field = self.field.remote_field # If this is a one-to-one relation, set the reverse accessor # cache on the related object to the current instance to avoid # an extra SQL query if it's accessed later on. if not remote_field.multiple: remote_field.set_cached_value(rel_obj, instance) self.field.set_cached_value(instance, rel_obj) if rel_obj is None and not self.field.null: raise self.RelatedObjectDoesNotExist( "%s has no %s." % (self.field.model.__name__, self.field.name) ) else: return rel_obj def __set__(self, instance, value): """ Set the related instance through the forward relation. With the example above, when setting ``child.parent = parent``: - ``self`` is the descriptor managing the ``parent`` attribute - ``instance`` is the ``child`` instance - ``value`` is the ``parent`` instance on the right of the equal sign """ # An object must be an instance of the related class. if value is not None and not isinstance(value, self.field.remote_field.model._meta.concrete_model): raise ValueError( 'Cannot assign "%r": "%s.%s" must be a "%s" instance.' % ( value, instance._meta.object_name, self.field.name, self.field.remote_field.model._meta.object_name, ) ) elif value is not None: if instance._state.db is None: instance._state.db = router.db_for_write(instance.__class__, instance=value) if value._state.db is None: value._state.db = router.db_for_write(value.__class__, instance=instance) if not router.allow_relation(value, instance): raise ValueError('Cannot assign "%r": the current database router prevents this relation.' % value) remote_field = self.field.remote_field # If we're setting the value of a OneToOneField to None, we need to clear # out the cache on any old related object. Otherwise, deleting the # previously-related object will also cause this object to be deleted, # which is wrong. if value is None: # Look up the previously-related object, which may still be available # since we've not yet cleared out the related field. # Use the cache directly, instead of the accessor; if we haven't # populated the cache, then we don't care - we're only accessing # the object to invalidate the accessor cache, so there's no # need to populate the cache just to expire it again. related = self.field.get_cached_value(instance, default=None) # If we've got an old related object, we need to clear out its # cache. This cache also might not exist if the related object # hasn't been accessed yet. if related is not None: remote_field.set_cached_value(related, None) for lh_field, rh_field in self.field.related_fields: setattr(instance, lh_field.attname, None) # Set the values of the related field. else: for lh_field, rh_field in self.field.related_fields: setattr(instance, lh_field.attname, getattr(value, rh_field.attname)) # Set the related instance cache used by __get__ to avoid an SQL query # when accessing the attribute we just set. self.field.set_cached_value(instance, value) # If this is a one-to-one relation, set the reverse accessor cache on # the related object to the current instance to avoid an extra SQL # query if it's accessed later on. if value is not None and not remote_field.multiple: remote_field.set_cached_value(value, instance) def __reduce__(self): """ Pickling should return the instance attached by self.field on the model, not a new copy of that descriptor. Use getattr() to retrieve the instance directly from the model. """ return getattr, (self.field.model, self.field.name) class ForwardOneToOneDescriptor(ForwardManyToOneDescriptor): """ Accessor to the related object on the forward side of a one-to-one relation. In the example:: class Restaurant(Model): place = OneToOneField(Place, related_name='restaurant') ``Restaurant.place`` is a ``ForwardOneToOneDescriptor`` instance. """ def get_object(self, instance): if self.field.remote_field.parent_link: deferred = instance.get_deferred_fields() # Because it's a parent link, all the data is available in the # instance, so populate the parent model with this data. rel_model = self.field.remote_field.model fields = [field.attname for field in rel_model._meta.concrete_fields] # If any of the related model's fields are deferred, fallback to # fetching all fields from the related model. This avoids a query # on the related model for every deferred field. if not any(field in fields for field in deferred): kwargs = {field: getattr(instance, field) for field in fields} obj = rel_model(**kwargs) obj._state.adding = instance._state.adding obj._state.db = instance._state.db return obj return super().get_object(instance) def __set__(self, instance, value): super().__set__(instance, value) # If the primary key is a link to a parent model and a parent instance # is being set, update the value of the inherited pk(s). if self.field.primary_key and self.field.remote_field.parent_link: opts = instance._meta # Inherited primary key fields from this object's base classes. inherited_pk_fields = [ field for field in opts.concrete_fields if field.primary_key and field.remote_field ] for field in inherited_pk_fields: rel_model_pk_name = field.remote_field.model._meta.pk.attname raw_value = getattr(value, rel_model_pk_name) if value is not None else None setattr(instance, rel_model_pk_name, raw_value) class ReverseOneToOneDescriptor: """ Accessor to the related object on the reverse side of a one-to-one relation. In the example:: class Restaurant(Model): place = OneToOneField(Place, related_name='restaurant') ``Place.restaurant`` is a ``ReverseOneToOneDescriptor`` instance. """ def __init__(self, related): # Following the example above, `related` is an instance of OneToOneRel # which represents the reverse restaurant field (place.restaurant). self.related = related @cached_property def RelatedObjectDoesNotExist(self): # The exception isn't created at initialization time for the sake of # consistency with `ForwardManyToOneDescriptor`. return type( 'RelatedObjectDoesNotExist', (self.related.related_model.DoesNotExist, AttributeError), { '__module__': self.related.model.__module__, '__qualname__': '%s.%s.RelatedObjectDoesNotExist' % ( self.related.model.__qualname__, self.related.name, ) }, ) def is_cached(self, instance): return self.related.is_cached(instance) def get_queryset(self, **hints): return self.related.related_model._base_manager.db_manager(hints=hints).all() def get_prefetch_queryset(self, instances, queryset=None): if queryset is None: queryset = self.get_queryset() queryset._add_hints(instance=instances[0]) rel_obj_attr = self.related.field.get_local_related_value instance_attr = self.related.field.get_foreign_related_value instances_dict = {instance_attr(inst): inst for inst in instances} query = {'%s__in' % self.related.field.name: instances} queryset = queryset.filter(**query) # Since we're going to assign directly in the cache, # we must manage the reverse relation cache manually. for rel_obj in queryset: instance = instances_dict[rel_obj_attr(rel_obj)] self.related.field.set_cached_value(rel_obj, instance) return queryset, rel_obj_attr, instance_attr, True, self.related.get_cache_name(), False def __get__(self, instance, cls=None): """ Get the related instance through the reverse relation. With the example above, when getting ``place.restaurant``: - ``self`` is the descriptor managing the ``restaurant`` attribute - ``instance`` is the ``place`` instance - ``cls`` is the ``Place`` class (unused) Keep in mind that ``Restaurant`` holds the foreign key to ``Place``. """ if instance is None: return self # The related instance is loaded from the database and then cached # by the field on the model instance state. It can also be pre-cached # by the forward accessor (ForwardManyToOneDescriptor). try: rel_obj = self.related.get_cached_value(instance) except KeyError: related_pk = instance.pk if related_pk is None: rel_obj = None else: filter_args = self.related.field.get_forward_related_filter(instance) try: rel_obj = self.get_queryset(instance=instance).get(**filter_args) except self.related.related_model.DoesNotExist: rel_obj = None else: # Set the forward accessor cache on the related object to # the current instance to avoid an extra SQL query if it's # accessed later on. self.related.field.set_cached_value(rel_obj, instance) self.related.set_cached_value(instance, rel_obj) if rel_obj is None: raise self.RelatedObjectDoesNotExist( "%s has no %s." % ( instance.__class__.__name__, self.related.get_accessor_name() ) ) else: return rel_obj def __set__(self, instance, value): """ Set the related instance through the reverse relation. With the example above, when setting ``place.restaurant = restaurant``: - ``self`` is the descriptor managing the ``restaurant`` attribute - ``instance`` is the ``place`` instance - ``value`` is the ``restaurant`` instance on the right of the equal sign Keep in mind that ``Restaurant`` holds the foreign key to ``Place``. """ # The similarity of the code below to the code in # ForwardManyToOneDescriptor is annoying, but there's a bunch # of small differences that would make a common base class convoluted. if value is None: # Update the cached related instance (if any) & clear the cache. # Following the example above, this would be the cached # ``restaurant`` instance (if any). rel_obj = self.related.get_cached_value(instance, default=None) if rel_obj is not None: # Remove the ``restaurant`` instance from the ``place`` # instance cache. self.related.delete_cached_value(instance) # Set the ``place`` field on the ``restaurant`` # instance to None. setattr(rel_obj, self.related.field.name, None) elif not isinstance(value, self.related.related_model): # An object must be an instance of the related class. raise ValueError( 'Cannot assign "%r": "%s.%s" must be a "%s" instance.' % ( value, instance._meta.object_name, self.related.get_accessor_name(), self.related.related_model._meta.object_name, ) ) else: if instance._state.db is None: instance._state.db = router.db_for_write(instance.__class__, instance=value) if value._state.db is None: value._state.db = router.db_for_write(value.__class__, instance=instance) if not router.allow_relation(value, instance): raise ValueError('Cannot assign "%r": the current database router prevents this relation.' % value) related_pk = tuple(getattr(instance, field.attname) for field in self.related.field.foreign_related_fields) # Set the value of the related field to the value of the related object's related field for index, field in enumerate(self.related.field.local_related_fields): setattr(value, field.attname, related_pk[index]) # Set the related instance cache used by __get__ to avoid an SQL query # when accessing the attribute we just set. self.related.set_cached_value(instance, value) # Set the forward accessor cache on the related object to the current # instance to avoid an extra SQL query if it's accessed later on. self.related.field.set_cached_value(value, instance) def __reduce__(self): # Same purpose as ForwardManyToOneDescriptor.__reduce__(). return getattr, (self.related.model, self.related.name) class ReverseManyToOneDescriptor: """ Accessor to the related objects manager on the reverse side of a many-to-one relation. In the example:: class Child(Model): parent = ForeignKey(Parent, related_name='children') ``Parent.children`` is a ``ReverseManyToOneDescriptor`` instance. Most of the implementation is delegated to a dynamically defined manager class built by ``create_forward_many_to_many_manager()`` defined below. """ def __init__(self, rel): self.rel = rel self.field = rel.field @cached_property def related_manager_cls(self): related_model = self.rel.related_model return create_reverse_many_to_one_manager( related_model._default_manager.__class__, self.rel, ) def __get__(self, instance, cls=None): """ Get the related objects through the reverse relation. With the example above, when getting ``parent.children``: - ``self`` is the descriptor managing the ``children`` attribute - ``instance`` is the ``parent`` instance - ``cls`` is the ``Parent`` class (unused) """ if instance is None: return self return self.related_manager_cls(instance) def _get_set_deprecation_msg_params(self): return ( 'reverse side of a related set', self.rel.get_accessor_name(), ) def __set__(self, instance, value): raise TypeError( 'Direct assignment to the %s is prohibited. Use %s.set() instead.' % self._get_set_deprecation_msg_params(), ) def create_reverse_many_to_one_manager(superclass, rel): """ Create a manager for the reverse side of a many-to-one relation. This manager subclasses another manager, generally the default manager of the related model, and adds behaviors specific to many-to-one relations. """ class RelatedManager(superclass): def __init__(self, instance): super().__init__() self.instance = instance self.model = rel.related_model self.field = rel.field self.core_filters = {self.field.name: instance} def __call__(self, *, manager): manager = getattr(self.model, manager) manager_class = create_reverse_many_to_one_manager(manager.__class__, rel) return manager_class(self.instance) do_not_call_in_templates = True def _apply_rel_filters(self, queryset): """ Filter the queryset for the instance this manager is bound to. """ db = self._db or router.db_for_read(self.model, instance=self.instance) empty_strings_as_null = connections[db].features.interprets_empty_strings_as_nulls queryset._add_hints(instance=self.instance) if self._db: queryset = queryset.using(self._db) queryset = queryset.filter(**self.core_filters) for field in self.field.foreign_related_fields: val = getattr(self.instance, field.attname) if val is None or (val == '' and empty_strings_as_null): return queryset.none() queryset._known_related_objects = {self.field: {self.instance.pk: self.instance}} return queryset def _remove_prefetched_objects(self): try: self.instance._prefetched_objects_cache.pop(self.field.remote_field.get_cache_name()) except (AttributeError, KeyError): pass # nothing to clear from cache def get_queryset(self): try: return self.instance._prefetched_objects_cache[self.field.remote_field.get_cache_name()] except (AttributeError, KeyError): queryset = super().get_queryset() return self._apply_rel_filters(queryset) def get_prefetch_queryset(self, instances, queryset=None): if queryset is None: queryset = super().get_queryset() queryset._add_hints(instance=instances[0]) queryset = queryset.using(queryset._db or self._db) rel_obj_attr = self.field.get_local_related_value instance_attr = self.field.get_foreign_related_value instances_dict = {instance_attr(inst): inst for inst in instances} query = {'%s__in' % self.field.name: instances} queryset = queryset.filter(**query) # Since we just bypassed this class' get_queryset(), we must manage # the reverse relation manually. for rel_obj in queryset: instance = instances_dict[rel_obj_attr(rel_obj)] setattr(rel_obj, self.field.name, instance) cache_name = self.field.remote_field.get_cache_name() return queryset, rel_obj_attr, instance_attr, False, cache_name, False def add(self, *objs, bulk=True): self._remove_prefetched_objects() objs = list(objs) db = router.db_for_write(self.model, instance=self.instance) def check_and_update_obj(obj): if not isinstance(obj, self.model): raise TypeError("'%s' instance expected, got %r" % ( self.model._meta.object_name, obj, )) setattr(obj, self.field.name, self.instance) if bulk: pks = [] for obj in objs: check_and_update_obj(obj) if obj._state.adding or obj._state.db != db: raise ValueError( "%r instance isn't saved. Use bulk=False or save " "the object first." % obj ) pks.append(obj.pk) self.model._base_manager.using(db).filter(pk__in=pks).update(**{ self.field.name: self.instance, }) else: with transaction.atomic(using=db, savepoint=False): for obj in objs: check_and_update_obj(obj) obj.save() add.alters_data = True def create(self, **kwargs): kwargs[self.field.name] = self.instance db = router.db_for_write(self.model, instance=self.instance) return super(RelatedManager, self.db_manager(db)).create(**kwargs) create.alters_data = True def get_or_create(self, **kwargs): kwargs[self.field.name] = self.instance db = router.db_for_write(self.model, instance=self.instance) return super(RelatedManager, self.db_manager(db)).get_or_create(**kwargs) get_or_create.alters_data = True def update_or_create(self, **kwargs): kwargs[self.field.name] = self.instance db = router.db_for_write(self.model, instance=self.instance) return super(RelatedManager, self.db_manager(db)).update_or_create(**kwargs) update_or_create.alters_data = True # remove() and clear() are only provided if the ForeignKey can have a value of null. if rel.field.null: def remove(self, *objs, bulk=True): if not objs: return val = self.field.get_foreign_related_value(self.instance) old_ids = set() for obj in objs: # Is obj actually part of this descriptor set? if self.field.get_local_related_value(obj) == val: old_ids.add(obj.pk) else: raise self.field.remote_field.model.DoesNotExist( "%r is not related to %r." % (obj, self.instance) ) self._clear(self.filter(pk__in=old_ids), bulk) remove.alters_data = True def clear(self, *, bulk=True): self._clear(self, bulk) clear.alters_data = True def _clear(self, queryset, bulk): self._remove_prefetched_objects() db = router.db_for_write(self.model, instance=self.instance) queryset = queryset.using(db) if bulk: # `QuerySet.update()` is intrinsically atomic. queryset.update(**{self.field.name: None}) else: with transaction.atomic(using=db, savepoint=False): for obj in queryset: setattr(obj, self.field.name, None) obj.save(update_fields=[self.field.name]) _clear.alters_data = True def set(self, objs, *, bulk=True, clear=False): # Force evaluation of `objs` in case it's a queryset whose value # could be affected by `manager.clear()`. Refs #19816. objs = tuple(objs) if self.field.null: db = router.db_for_write(self.model, instance=self.instance) with transaction.atomic(using=db, savepoint=False): if clear: self.clear(bulk=bulk) self.add(*objs, bulk=bulk) else: old_objs = set(self.using(db).all()) new_objs = [] for obj in objs: if obj in old_objs: old_objs.remove(obj) else: new_objs.append(obj) self.remove(*old_objs, bulk=bulk) self.add(*new_objs, bulk=bulk) else: self.add(*objs, bulk=bulk) set.alters_data = True return RelatedManager class ManyToManyDescriptor(ReverseManyToOneDescriptor): """ Accessor to the related objects manager on the forward and reverse sides of a many-to-many relation. In the example:: class Pizza(Model): toppings = ManyToManyField(Topping, related_name='pizzas') ``Pizza.toppings`` and ``Topping.pizzas`` are ``ManyToManyDescriptor`` instances. Most of the implementation is delegated to a dynamically defined manager class built by ``create_forward_many_to_many_manager()`` defined below. """ def __init__(self, rel, reverse=False): super().__init__(rel) self.reverse = reverse @property def through(self): # through is provided so that you have easy access to the through # model (Book.authors.through) for inlines, etc. This is done as # a property to ensure that the fully resolved value is returned. return self.rel.through @cached_property def related_manager_cls(self): related_model = self.rel.related_model if self.reverse else self.rel.model return create_forward_many_to_many_manager( related_model._default_manager.__class__, self.rel, reverse=self.reverse, ) def _get_set_deprecation_msg_params(self): return ( '%s side of a many-to-many set' % ('reverse' if self.reverse else 'forward'), self.rel.get_accessor_name() if self.reverse else self.field.name, ) def create_forward_many_to_many_manager(superclass, rel, reverse): """ Create a manager for the either side of a many-to-many relation. This manager subclasses another manager, generally the default manager of the related model, and adds behaviors specific to many-to-many relations. """ class ManyRelatedManager(superclass): def __init__(self, instance=None): super().__init__() self.instance = instance if not reverse: self.model = rel.model self.query_field_name = rel.field.related_query_name() self.prefetch_cache_name = rel.field.name self.source_field_name = rel.field.m2m_field_name() self.target_field_name = rel.field.m2m_reverse_field_name() self.symmetrical = rel.symmetrical else: self.model = rel.related_model self.query_field_name = rel.field.name self.prefetch_cache_name = rel.field.related_query_name() self.source_field_name = rel.field.m2m_reverse_field_name() self.target_field_name = rel.field.m2m_field_name() self.symmetrical = False self.through = rel.through self.reverse = reverse self.source_field = self.through._meta.get_field(self.source_field_name) self.target_field = self.through._meta.get_field(self.target_field_name) self.core_filters = {} self.pk_field_names = {} for lh_field, rh_field in self.source_field.related_fields: core_filter_key = '%s__%s' % (self.query_field_name, rh_field.name) self.core_filters[core_filter_key] = getattr(instance, rh_field.attname) self.pk_field_names[lh_field.name] = rh_field.name self.related_val = self.source_field.get_foreign_related_value(instance) if None in self.related_val: raise ValueError('"%r" needs to have a value for field "%s" before ' 'this many-to-many relationship can be used.' % (instance, self.pk_field_names[self.source_field_name])) # Even if this relation is not to pk, we require still pk value. # The wish is that the instance has been already saved to DB, # although having a pk value isn't a guarantee of that. if instance.pk is None: raise ValueError("%r instance needs to have a primary key value before " "a many-to-many relationship can be used." % instance.__class__.__name__) def __call__(self, *, manager): manager = getattr(self.model, manager) manager_class = create_forward_many_to_many_manager(manager.__class__, rel, reverse) return manager_class(instance=self.instance) do_not_call_in_templates = True def _build_remove_filters(self, removed_vals): filters = Q(**{self.source_field_name: self.related_val}) # No need to add a subquery condition if removed_vals is a QuerySet without # filters. removed_vals_filters = (not isinstance(removed_vals, QuerySet) or removed_vals._has_filters()) if removed_vals_filters: filters &= Q(**{'%s__in' % self.target_field_name: removed_vals}) if self.symmetrical: symmetrical_filters = Q(**{self.target_field_name: self.related_val}) if removed_vals_filters: symmetrical_filters &= Q( **{'%s__in' % self.source_field_name: removed_vals}) filters |= symmetrical_filters return filters def _apply_rel_filters(self, queryset): """ Filter the queryset for the instance this manager is bound to. """ queryset._add_hints(instance=self.instance) if self._db: queryset = queryset.using(self._db) return queryset._next_is_sticky().filter(**self.core_filters) def _remove_prefetched_objects(self): try: self.instance._prefetched_objects_cache.pop(self.prefetch_cache_name) except (AttributeError, KeyError): pass # nothing to clear from cache def get_queryset(self): try: return self.instance._prefetched_objects_cache[self.prefetch_cache_name] except (AttributeError, KeyError): queryset = super().get_queryset() return self._apply_rel_filters(queryset) def get_prefetch_queryset(self, instances, queryset=None): if queryset is None: queryset = super().get_queryset() queryset._add_hints(instance=instances[0]) queryset = queryset.using(queryset._db or self._db) query = {'%s__in' % self.query_field_name: instances} queryset = queryset._next_is_sticky().filter(**query) # M2M: need to annotate the query in order to get the primary model # that the secondary model was actually related to. We know that # there will already be a join on the join table, so we can just add # the select. # For non-autocreated 'through' models, can't assume we are # dealing with PK values. fk = self.through._meta.get_field(self.source_field_name) join_table = fk.model._meta.db_table connection = connections[queryset.db] qn = connection.ops.quote_name queryset = queryset.extra(select={ '_prefetch_related_val_%s' % f.attname: '%s.%s' % (qn(join_table), qn(f.column)) for f in fk.local_related_fields}) return ( queryset, lambda result: tuple( getattr(result, '_prefetch_related_val_%s' % f.attname) for f in fk.local_related_fields ), lambda inst: tuple( f.get_db_prep_value(getattr(inst, f.attname), connection) for f in fk.foreign_related_fields ), False, self.prefetch_cache_name, False, ) def add(self, *objs): if not rel.through._meta.auto_created: opts = self.through._meta raise AttributeError( "Cannot use add() on a ManyToManyField which specifies an " "intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name) ) self._remove_prefetched_objects() db = router.db_for_write(self.through, instance=self.instance) with transaction.atomic(using=db, savepoint=False): self._add_items(self.source_field_name, self.target_field_name, *objs) # If this is a symmetrical m2m relation to self, add the mirror entry in the m2m table if self.symmetrical: self._add_items(self.target_field_name, self.source_field_name, *objs) add.alters_data = True def remove(self, *objs): if not rel.through._meta.auto_created: opts = self.through._meta raise AttributeError( "Cannot use remove() on a ManyToManyField which specifies " "an intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name) ) self._remove_prefetched_objects() self._remove_items(self.source_field_name, self.target_field_name, *objs) remove.alters_data = True def clear(self): db = router.db_for_write(self.through, instance=self.instance) with transaction.atomic(using=db, savepoint=False): signals.m2m_changed.send( sender=self.through, action="pre_clear", instance=self.instance, reverse=self.reverse, model=self.model, pk_set=None, using=db, ) self._remove_prefetched_objects() filters = self._build_remove_filters(super().get_queryset().using(db)) self.through._default_manager.using(db).filter(filters).delete() signals.m2m_changed.send( sender=self.through, action="post_clear", instance=self.instance, reverse=self.reverse, model=self.model, pk_set=None, using=db, ) clear.alters_data = True def set(self, objs, *, clear=False): if not rel.through._meta.auto_created: opts = self.through._meta raise AttributeError( "Cannot set values on a ManyToManyField which specifies an " "intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name) ) # Force evaluation of `objs` in case it's a queryset whose value # could be affected by `manager.clear()`. Refs #19816. objs = tuple(objs) db = router.db_for_write(self.through, instance=self.instance) with transaction.atomic(using=db, savepoint=False): if clear: self.clear() self.add(*objs) else: old_ids = set(self.using(db).values_list(self.target_field.target_field.attname, flat=True)) new_objs = [] for obj in objs: fk_val = ( self.target_field.get_foreign_related_value(obj)[0] if isinstance(obj, self.model) else obj ) if fk_val in old_ids: old_ids.remove(fk_val) else: new_objs.append(obj) self.remove(*old_ids) self.add(*new_objs) set.alters_data = True def create(self, **kwargs): # This check needs to be done here, since we can't later remove this # from the method lookup table, as we do with add and remove. if not self.through._meta.auto_created: opts = self.through._meta raise AttributeError( "Cannot use create() on a ManyToManyField which specifies " "an intermediary model. Use %s.%s's Manager instead." % (opts.app_label, opts.object_name) ) db = router.db_for_write(self.instance.__class__, instance=self.instance) new_obj = super(ManyRelatedManager, self.db_manager(db)).create(**kwargs) self.add(new_obj) return new_obj create.alters_data = True def get_or_create(self, **kwargs): db = router.db_for_write(self.instance.__class__, instance=self.instance) obj, created = super(ManyRelatedManager, self.db_manager(db)).get_or_create(**kwargs) # We only need to add() if created because if we got an object back # from get() then the relationship already exists. if created: self.add(obj) return obj, created get_or_create.alters_data = True def update_or_create(self, **kwargs): db = router.db_for_write(self.instance.__class__, instance=self.instance) obj, created = super(ManyRelatedManager, self.db_manager(db)).update_or_create(**kwargs) # We only need to add() if created because if we got an object back # from get() then the relationship already exists. if created: self.add(obj) return obj, created update_or_create.alters_data = True def _add_items(self, source_field_name, target_field_name, *objs): # source_field_name: the PK fieldname in join table for the source object # target_field_name: the PK fieldname in join table for the target object # *objs - objects to add. Either object instances, or primary keys of object instances. # If there aren't any objects, there is nothing to do. from django.db.models import Model if objs: new_ids = set() for obj in objs: if isinstance(obj, self.model): if not router.allow_relation(obj, self.instance): raise ValueError( 'Cannot add "%r": instance is on database "%s", value is on database "%s"' % (obj, self.instance._state.db, obj._state.db) ) fk_val = self.through._meta.get_field( target_field_name).get_foreign_related_value(obj)[0] if fk_val is None: raise ValueError( 'Cannot add "%r": the value for field "%s" is None' % (obj, target_field_name) ) new_ids.add(fk_val) elif isinstance(obj, Model): raise TypeError( "'%s' instance expected, got %r" % (self.model._meta.object_name, obj) ) else: new_ids.add(obj) db = router.db_for_write(self.through, instance=self.instance) vals = (self.through._default_manager.using(db) .values_list(target_field_name, flat=True) .filter(**{ source_field_name: self.related_val[0], '%s__in' % target_field_name: new_ids, })) new_ids.difference_update(vals) with transaction.atomic(using=db, savepoint=False): if self.reverse or source_field_name == self.source_field_name: # Don't send the signal when we are inserting the # duplicate data row for symmetrical reverse entries. signals.m2m_changed.send( sender=self.through, action='pre_add', instance=self.instance, reverse=self.reverse, model=self.model, pk_set=new_ids, using=db, ) # Add the ones that aren't there already self.through._default_manager.using(db).bulk_create([ self.through(**{ '%s_id' % source_field_name: self.related_val[0], '%s_id' % target_field_name: obj_id, }) for obj_id in new_ids ]) if self.reverse or source_field_name == self.source_field_name: # Don't send the signal when we are inserting the # duplicate data row for symmetrical reverse entries. signals.m2m_changed.send( sender=self.through, action='post_add', instance=self.instance, reverse=self.reverse, model=self.model, pk_set=new_ids, using=db, ) def _remove_items(self, source_field_name, target_field_name, *objs): # source_field_name: the PK colname in join table for the source object # target_field_name: the PK colname in join table for the target object # *objs - objects to remove if not objs: return # Check that all the objects are of the right type old_ids = set() for obj in objs: if isinstance(obj, self.model): fk_val = self.target_field.get_foreign_related_value(obj)[0] old_ids.add(fk_val) else: old_ids.add(obj) db = router.db_for_write(self.through, instance=self.instance) with transaction.atomic(using=db, savepoint=False): # Send a signal to the other end if need be. signals.m2m_changed.send( sender=self.through, action="pre_remove", instance=self.instance, reverse=self.reverse, model=self.model, pk_set=old_ids, using=db, ) target_model_qs = super().get_queryset() if target_model_qs._has_filters(): old_vals = target_model_qs.using(db).filter(**{ '%s__in' % self.target_field.target_field.attname: old_ids}) else: old_vals = old_ids filters = self._build_remove_filters(old_vals) self.through._default_manager.using(db).filter(filters).delete() signals.m2m_changed.send( sender=self.through, action="post_remove", instance=self.instance, reverse=self.reverse, model=self.model, pk_set=old_ids, using=db, ) return ManyRelatedManager
8fe60ecace3aa2a3fb4fef317e3cf7ff915c39647f84c041a76c60f317c5992b
""" "Rel objects" for related fields. "Rel objects" (for lack of a better name) carry information about the relation modeled by a related field and provide some utility functions. They're stored in the ``remote_field`` attribute of the field. They also act as reverse fields for the purposes of the Meta API because they're the closest concept currently available. """ from django.core import exceptions from django.utils.functional import cached_property from . import BLANK_CHOICE_DASH from .mixins import FieldCacheMixin class ForeignObjectRel(FieldCacheMixin): """ Used by ForeignObject to store information about the relation. ``_meta.get_fields()`` returns this class to provide access to the field flags for the reverse relation. """ # Field flags auto_created = True concrete = False editable = False is_relation = True # Reverse relations are always nullable (Django can't enforce that a # foreign key on the related model points to this model). null = True def __init__(self, field, to, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, on_delete=None): self.field = field self.model = to self.related_name = related_name self.related_query_name = related_query_name self.limit_choices_to = {} if limit_choices_to is None else limit_choices_to self.parent_link = parent_link self.on_delete = on_delete self.symmetrical = False self.multiple = True # Some of the following cached_properties can't be initialized in # __init__ as the field doesn't have its model yet. Calling these methods # before field.contribute_to_class() has been called will result in # AttributeError @cached_property def hidden(self): return self.is_hidden() @cached_property def name(self): return self.field.related_query_name() @property def remote_field(self): return self.field @property def target_field(self): """ When filtering against this relation, return the field on the remote model against which the filtering should happen. """ target_fields = self.get_path_info()[-1].target_fields if len(target_fields) > 1: raise exceptions.FieldError("Can't use target_field for multicolumn relations.") return target_fields[0] @cached_property def related_model(self): if not self.field.model: raise AttributeError( "This property can't be accessed before self.field.contribute_to_class has been called.") return self.field.model @cached_property def many_to_many(self): return self.field.many_to_many @cached_property def many_to_one(self): return self.field.one_to_many @cached_property def one_to_many(self): return self.field.many_to_one @cached_property def one_to_one(self): return self.field.one_to_one def get_lookup(self, lookup_name): return self.field.get_lookup(lookup_name) def get_internal_type(self): return self.field.get_internal_type() @property def db_type(self): return self.field.db_type def __repr__(self): return '<%s: %s.%s>' % ( type(self).__name__, self.related_model._meta.app_label, self.related_model._meta.model_name, ) def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH): """ Return choices with a default blank choices included, for use as <select> choices for this field. Analog of django.db.models.fields.Field.get_choices(), provided initially for utilization by RelatedFieldListFilter. """ return (blank_choice if include_blank else []) + [ (x.pk, str(x)) for x in self.related_model._default_manager.all() ] def is_hidden(self): """Should the related object be hidden?""" return bool(self.related_name) and self.related_name[-1] == '+' def get_joining_columns(self): return self.field.get_reverse_joining_columns() def get_extra_restriction(self, where_class, alias, related_alias): return self.field.get_extra_restriction(where_class, related_alias, alias) def set_field_name(self): """ Set the related field's name, this is not available until later stages of app loading, so set_field_name is called from set_attributes_from_rel() """ # By default foreign object doesn't relate to any remote field (for # example custom multicolumn joins currently have no remote field). self.field_name = None def get_accessor_name(self, model=None): # This method encapsulates the logic that decides what name to give an # accessor descriptor that retrieves related many-to-one or # many-to-many objects. It uses the lower-cased object_name + "_set", # but this can be overridden with the "related_name" option. # Due to backwards compatibility ModelForms need to be able to provide # an alternate model. See BaseInlineFormSet.get_default_prefix(). opts = model._meta if model else self.related_model._meta model = model or self.related_model if self.multiple: # If this is a symmetrical m2m relation on self, there is no reverse accessor. if self.symmetrical and model == self.model: return None if self.related_name: return self.related_name return opts.model_name + ('_set' if self.multiple else '') def get_path_info(self, filtered_relation=None): return self.field.get_reverse_path_info(filtered_relation) def get_cache_name(self): """ Return the name of the cache key to use for storing an instance of the forward model on the reverse model. """ return self.get_accessor_name() class ManyToOneRel(ForeignObjectRel): """ Used by the ForeignKey field to store information about the relation. ``_meta.get_fields()`` returns this class to provide access to the field flags for the reverse relation. Note: Because we somewhat abuse the Rel objects by using them as reverse fields we get the funny situation where ``ManyToOneRel.many_to_one == False`` and ``ManyToOneRel.one_to_many == True``. This is unfortunate but the actual ManyToOneRel class is a private API and there is work underway to turn reverse relations into actual fields. """ def __init__(self, field, to, field_name, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, on_delete=None): super().__init__( field, to, related_name=related_name, related_query_name=related_query_name, limit_choices_to=limit_choices_to, parent_link=parent_link, on_delete=on_delete, ) self.field_name = field_name def __getstate__(self): state = self.__dict__.copy() state.pop('related_model', None) return state def get_related_field(self): """ Return the Field in the 'to' object to which this relationship is tied. """ field = self.model._meta.get_field(self.field_name) if not field.concrete: raise exceptions.FieldDoesNotExist("No related field named '%s'" % self.field_name) return field def set_field_name(self): self.field_name = self.field_name or self.model._meta.pk.name class OneToOneRel(ManyToOneRel): """ Used by OneToOneField to store information about the relation. ``_meta.get_fields()`` returns this class to provide access to the field flags for the reverse relation. """ def __init__(self, field, to, field_name, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, on_delete=None): super().__init__( field, to, field_name, related_name=related_name, related_query_name=related_query_name, limit_choices_to=limit_choices_to, parent_link=parent_link, on_delete=on_delete, ) self.multiple = False class ManyToManyRel(ForeignObjectRel): """ Used by ManyToManyField to store information about the relation. ``_meta.get_fields()`` returns this class to provide access to the field flags for the reverse relation. """ def __init__(self, field, to, related_name=None, related_query_name=None, limit_choices_to=None, symmetrical=True, through=None, through_fields=None, db_constraint=True): super().__init__( field, to, related_name=related_name, related_query_name=related_query_name, limit_choices_to=limit_choices_to, ) if through and not db_constraint: raise ValueError("Can't supply a through model and db_constraint=False") self.through = through if through_fields and not through: raise ValueError("Cannot specify through_fields without a through model") self.through_fields = through_fields self.symmetrical = symmetrical self.db_constraint = db_constraint def get_related_field(self): """ Return the field in the 'to' object to which this relationship is tied. Provided for symmetry with ManyToOneRel. """ opts = self.through._meta if self.through_fields: field = opts.get_field(self.through_fields[0]) else: for field in opts.fields: rel = getattr(field, 'remote_field', None) if rel and rel.model == self.model: break return field.foreign_related_fields[0]
ca9660f94d3e4447017324422a8abb8269ab3903bbf5d7828da17d3cf276032e
from django.db.models import Func, IntegerField, Transform, Value, fields from django.db.models.functions import Coalesce class BytesToCharFieldConversionMixin: """ Convert CharField results from bytes to str. MySQL returns long data types (bytes) instead of chars when it can't determine the length of the result string. For example: LPAD(column1, CHAR_LENGTH(column2), ' ') returns the LONGTEXT (bytes) instead of VARCHAR. """ def convert_value(self, value, expression, connection): if connection.features.db_functions_convert_bytes_to_str: if self.output_field.get_internal_type() == 'CharField' and isinstance(value, bytes): return value.decode() return super().convert_value(value, expression, connection) class Chr(Transform): function = 'CHR' lookup_name = 'chr' def as_mysql(self, compiler, connection): return super().as_sql( compiler, connection, function='CHAR', template='%(function)s(%(expressions)s USING utf16)' ) def as_oracle(self, compiler, connection): return super().as_sql(compiler, connection, template='%(function)s(%(expressions)s USING NCHAR_CS)') def as_sqlite(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='CHAR', **extra_context) class ConcatPair(Func): """ Concatenate two arguments together. This is used by `Concat` because not all backend databases support more than two arguments. """ function = 'CONCAT' def as_sqlite(self, compiler, connection): coalesced = self.coalesce() return super(ConcatPair, coalesced).as_sql( compiler, connection, template='%(expressions)s', arg_joiner=' || ' ) def as_mysql(self, compiler, connection): # Use CONCAT_WS with an empty separator so that NULLs are ignored. return super().as_sql( compiler, connection, function='CONCAT_WS', template="%(function)s('', %(expressions)s)" ) def coalesce(self): # null on either side results in null for expression, wrap with coalesce c = self.copy() expressions = [ Coalesce(expression, Value('')) for expression in c.get_source_expressions() ] c.set_source_expressions(expressions) return c class Concat(Func): """ Concatenate text fields together. Backends that result in an entire null expression when any arguments are null will wrap each argument in coalesce functions to ensure a non-null result. """ function = None template = "%(expressions)s" def __init__(self, *expressions, **extra): if len(expressions) < 2: raise ValueError('Concat must take at least two expressions') paired = self._paired(expressions) super().__init__(paired, **extra) def _paired(self, expressions): # wrap pairs of expressions in successive concat functions # exp = [a, b, c, d] # -> ConcatPair(a, ConcatPair(b, ConcatPair(c, d)))) if len(expressions) == 2: return ConcatPair(*expressions) return ConcatPair(expressions[0], self._paired(expressions[1:])) class Left(Func): function = 'LEFT' arity = 2 def __init__(self, expression, length, **extra): """ expression: the name of a field, or an expression returning a string length: the number of characters to return from the start of the string """ if not hasattr(length, 'resolve_expression'): if length < 1: raise ValueError("'length' must be greater than 0.") super().__init__(expression, length, **extra) def get_substr(self): return Substr(self.source_expressions[0], Value(1), self.source_expressions[1]) def use_substr(self, compiler, connection, **extra_context): return self.get_substr().as_oracle(compiler, connection, **extra_context) as_oracle = use_substr as_sqlite = use_substr class Length(Transform): """Return the number of characters in the expression.""" function = 'LENGTH' lookup_name = 'length' output_field = fields.IntegerField() def as_mysql(self, compiler, connection): return super().as_sql(compiler, connection, function='CHAR_LENGTH') class Lower(Transform): function = 'LOWER' lookup_name = 'lower' class LPad(BytesToCharFieldConversionMixin, Func): function = 'LPAD' def __init__(self, expression, length, fill_text=Value(' '), **extra): if not hasattr(length, 'resolve_expression') and length < 0: raise ValueError("'length' must be greater or equal to 0.") super().__init__(expression, length, fill_text, **extra) class LTrim(Transform): function = 'LTRIM' lookup_name = 'ltrim' class Ord(Transform): function = 'ASCII' lookup_name = 'ord' output_field = IntegerField() def as_mysql(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='ORD', **extra_context) def as_sqlite(self, compiler, connection, **extra_context): return super().as_sql(compiler, connection, function='UNICODE', **extra_context) class Repeat(BytesToCharFieldConversionMixin, Func): function = 'REPEAT' def __init__(self, expression, number, **extra): if not hasattr(number, 'resolve_expression') and number < 0: raise ValueError("'number' must be greater or equal to 0.") super().__init__(expression, number, **extra) def as_oracle(self, compiler, connection, **extra_context): expression, number = self.source_expressions rpad = RPad(expression, Length(expression) * number, expression) return rpad.as_sql(compiler, connection, **extra_context) class Replace(Func): function = 'REPLACE' def __init__(self, expression, text, replacement=Value(''), **extra): super().__init__(expression, text, replacement, **extra) class Right(Left): function = 'RIGHT' def get_substr(self): return Substr(self.source_expressions[0], self.source_expressions[1] * Value(-1)) class RPad(LPad): function = 'RPAD' class RTrim(Transform): function = 'RTRIM' lookup_name = 'rtrim' class StrIndex(Func): """ Return a positive integer corresponding to the 1-indexed position of the first occurrence of a substring inside another string, or 0 if the substring is not found. """ function = 'INSTR' arity = 2 output_field = fields.IntegerField() def as_postgresql(self, compiler, connection): return super().as_sql(compiler, connection, function='STRPOS') class Substr(Func): function = 'SUBSTRING' def __init__(self, expression, pos, length=None, **extra): """ expression: the name of a field, or an expression returning a string pos: an integer > 0, or an expression returning an integer length: an optional number of characters to return """ if not hasattr(pos, 'resolve_expression'): if pos < 1: raise ValueError("'pos' must be greater than 0") expressions = [expression, pos] if length is not None: expressions.append(length) super().__init__(*expressions, **extra) def as_sqlite(self, compiler, connection): return super().as_sql(compiler, connection, function='SUBSTR') def as_oracle(self, compiler, connection): return super().as_sql(compiler, connection, function='SUBSTR') class Trim(Transform): function = 'TRIM' lookup_name = 'trim' class Upper(Transform): function = 'UPPER' lookup_name = 'upper'
0b0036a1f55b300c581ecd644f8a65ec10c81888304426ab212f069ec86ed5b0
"""Database functions that do comparisons or type conversions.""" from django.db.models import Func class Cast(Func): """Coerce an expression to a new field type.""" function = 'CAST' template = '%(function)s(%(expressions)s AS %(db_type)s)' def __init__(self, expression, output_field): super().__init__(expression, output_field=output_field) def as_sql(self, compiler, connection, **extra_context): extra_context['db_type'] = self.output_field.cast_db_type(connection) return super().as_sql(compiler, connection, **extra_context) def as_mysql(self, compiler, connection): # MySQL doesn't support explicit cast to float. template = '(%(expressions)s + 0.0)' if self.output_field.get_internal_type() == 'FloatField' else None return self.as_sql(compiler, connection, template=template) def as_postgresql(self, compiler, connection): # CAST would be valid too, but the :: shortcut syntax is more readable. # 'expressions' is wrapped in parentheses in case it's a complex # expression. return self.as_sql(compiler, connection, template='(%(expressions)s)::%(db_type)s') class Coalesce(Func): """Return, from left to right, the first non-null expression.""" function = 'COALESCE' def __init__(self, *expressions, **extra): if len(expressions) < 2: raise ValueError('Coalesce must take at least two expressions') super().__init__(*expressions, **extra) def as_oracle(self, compiler, connection): # Oracle prohibits mixing TextField (NCLOB) and CharField (NVARCHAR2), # so convert all fields to NCLOB when that type is expected. if self.output_field.get_internal_type() == 'TextField': class ToNCLOB(Func): function = 'TO_NCLOB' expressions = [ ToNCLOB(expression) for expression in self.get_source_expressions() ] clone = self.copy() clone.set_source_expressions(expressions) return super(Coalesce, clone).as_sql(compiler, connection) return self.as_sql(compiler, connection) class Greatest(Func): """ Return the maximum expression. If any expression is null the return value is database-specific: On PostgreSQL, the maximum not-null expression is returned. On MySQL, Oracle, and SQLite, if any expression is null, null is returned. """ function = 'GREATEST' def __init__(self, *expressions, **extra): if len(expressions) < 2: raise ValueError('Greatest must take at least two expressions') super().__init__(*expressions, **extra) def as_sqlite(self, compiler, connection): """Use the MAX function on SQLite.""" return super().as_sqlite(compiler, connection, function='MAX') class Least(Func): """ Return the minimum expression. If any expression is null the return value is database-specific: On PostgreSQL, return the minimum not-null expression. On MySQL, Oracle, and SQLite, if any expression is null, return null. """ function = 'LEAST' def __init__(self, *expressions, **extra): if len(expressions) < 2: raise ValueError('Least must take at least two expressions') super().__init__(*expressions, **extra) def as_sqlite(self, compiler, connection): """Use the MIN function on SQLite.""" return super().as_sqlite(compiler, connection, function='MIN')
eeb564bfe603c9c2ebae66aebb0303f2e80f1ad8e61bdcb704fda8366fde35a4
from .comparison import Cast, Coalesce, Greatest, Least from .datetime import ( Extract, ExtractDay, ExtractHour, ExtractMinute, ExtractMonth, ExtractQuarter, ExtractSecond, ExtractWeek, ExtractWeekDay, ExtractYear, Now, Trunc, TruncDate, TruncDay, TruncHour, TruncMinute, TruncMonth, TruncQuarter, TruncSecond, TruncTime, TruncWeek, TruncYear, ) from .text import ( Chr, Concat, ConcatPair, Left, Length, Lower, LPad, LTrim, Ord, Repeat, Replace, Right, RPad, RTrim, StrIndex, Substr, Trim, Upper, ) from .window import ( CumeDist, DenseRank, FirstValue, Lag, LastValue, Lead, NthValue, Ntile, PercentRank, Rank, RowNumber, ) __all__ = [ # comparison and conversion 'Cast', 'Coalesce', 'Greatest', 'Least', # datetime 'Extract', 'ExtractDay', 'ExtractHour', 'ExtractMinute', 'ExtractMonth', 'ExtractQuarter', 'ExtractSecond', 'ExtractWeek', 'ExtractWeekDay', 'ExtractYear', 'Now', 'Trunc', 'TruncDate', 'TruncDay', 'TruncHour', 'TruncMinute', 'TruncMonth', 'TruncQuarter', 'TruncSecond', 'TruncTime', 'TruncWeek', 'TruncYear', # text 'Chr', 'Concat', 'ConcatPair', 'Left', 'Length', 'Lower', 'LPad', 'LTrim', 'Ord', 'Repeat', 'Replace', 'Right', 'RPad', 'RTrim', 'StrIndex', 'Substr', 'Trim', 'Upper', # window 'CumeDist', 'DenseRank', 'FirstValue', 'Lag', 'LastValue', 'Lead', 'NthValue', 'Ntile', 'PercentRank', 'Rank', 'RowNumber', ]