hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
b5d3f9b0de68de80dcf6fc2c986ef235bbb5a1766555929fcf50910822e331ee | """
This module implements Holonomic Functions and
various operations on them.
"""
from sympy import (Symbol, S, Dummy, Order, rf, I,
solve, limit, Float, nsimplify, gamma)
from sympy.core.compatibility import ordered
from sympy.core.numbers import NaN, Infinity, NegativeInfinity
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial
from sympy.functions.elementary.exponential import exp_polar, exp
from sympy.functions.special.hyper import hyper, meijerg
from sympy.integrals import meijerint
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.printing import sstr
from sympy.simplify.hyperexpand import hyperexpand
from .linearsolver import NewMatrix
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Explanation
===========
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra:
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, str):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator:
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Explanation
===========
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = []
for i in range(0, n):
sol.append(self.parent.base.zero)
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction:
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Explanation
===========
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S.Zero)
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(0)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S.Zero for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
# solving the linear system using gauss jordan solver
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero_matrix:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(S.Zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
r = NewMatrix(r).transpose()
homosys = [[S.Zero for q in range(dim + 1)]]
homosys = NewMatrix(homosys).transpose()
solcomp = r.gauss_jordan_solve(homosys)
sol = solcomp[0]
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the intiial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if not i in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j in range(len(c)):
if c[j] == 0:
c2.append(S.Zero)
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(c[j] / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S.Zero]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
.integrate()
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S.Zero
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S.Zero
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[S.Zero for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = S.One
# making the ansatz
lin_sys = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
homo_sys = [[S.Zero for q in range(a * b)]]
homo_sys = NewMatrix(homo_sys).transpose()
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
# until a non trivial solution is found
while sol[0].is_zero_matrix:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b].is_zero:
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = S.Zero
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = S.Zero
lin_sys.append([coeff_mul[i][j] for i in range(a)
for j in range(b)])
sol = (NewMatrix(lin_sys).transpose()).gauss_jordan_solve(homo_sys)
sol_ann = _normalize(sol[0][0:], self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S.Zero
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S.Zero, [S.One])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method can't compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper()
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S.One
system = [coeffs]
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
sol = S.Zero
while True:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
if sol.is_zero_matrix is not True:
break
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
Explanation
===========
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series()
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if j == i:
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
Explanation
===========
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence()
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = [i for i in recurrence.u0]
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S.Zero
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S.Zero
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
Explanation
===========
The path should be given as a list :math:`[x_1, x_2, ... x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 --> x_2 --> x_3 ... --> x_n`.
Returns values of the function at :math:`x_1, x_2, ... x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Explanation
===========
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} ...`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S.Zero
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate through the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy.polys.domains import ZZ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to ``b`` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics is None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper()
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S.Zero
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
r1 = 1
for i in range(len(a)):
r1 = r1 * (x * Dx + a[i])
r2 = Dx
for i in range(len(b)):
r2 = r2 * (x * Dx + b[i] - 1)
sol = r1 - r2
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simplified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
mnp = (-1)**(m + n - p)
r1 = x * mnp
for i in range(len(a)):
r1 *= x * Dx + 1 - a[i]
r2 = 1
for i in range(len(b)):
r2 *= x * Dx - b[i]
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if isinstance(simp, Infinity) or isinstance(simp, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
isn't able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in ``x`` appearing as coefficients
in the annihilator.
initcond:
Set it false if you don't want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain is None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
from sympy.core import Add, Mul, Pow
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S.One)
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S.Zero, )
bmq = (1 - i for i in bq)
k = S.One
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = [i for i in y0]
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
if not getattr(r, 'is_finite', True):
return y0
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S.Zero
sol_q = S.Zero
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular and \
(lenics is None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] == x else S.Zero
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] == x else S.Zero
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=[]):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
from sympy import (sin, cos, exp, log, erf, sqrt, pi,
sinh, cosh, sinc, erfc, Si, Ci, Shi, erfi)
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0
|
fe93534f523d7f13541183b40218eb96bef70c846670f331ec85f07422fe7e7f | from sympy.printing import pycode, ccode, fcode
from sympy.external import import_module
from sympy.utilities.decorator import doctest_depends_on
lfortran = import_module('lfortran')
cin = import_module('clang.cindex', import_kwargs = {'fromlist': ['cindex']})
if lfortran:
from sympy.parsing.fortran.fortran_parser import src_to_sympy
if cin:
from sympy.parsing.c.c_parser import parse_c
@doctest_depends_on(modules=['lfortran', 'clang.cindex'])
class SymPyExpression: # type: ignore
"""Class to store and handle SymPy expressions
This class will hold SymPy Expressions and handle the API for the
conversion to and from different languages.
It works with the C and the Fortran Parser to generate SymPy expressions
which are stored here and which can be converted to multiple language's
source code.
Notes
=====
The module and its API are currently under development and experimental
and can be changed during development.
The Fortran parser does not support numeric assignments, so all the
variables have been Initialized to zero.
The module also depends on external dependencies:
- LFortran which is required to use the Fortran parser
- Clang which is required for the C parser
Examples
========
Example of parsing C code:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = '''
... int a,b;
... float c = 2, d =4;
... '''
>>> a = SymPyExpression(src, 'c')
>>> a.return_expr()
[Declaration(Variable(a, type=intc)),
Declaration(Variable(b, type=intc)),
Declaration(Variable(c, type=float32, value=2.0)),
Declaration(Variable(d, type=float32, value=4.0))]
An example of variable definiton:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0', 'double q = 0.0', 'double r = 0.0', 'double s = 0.0']
An example of Assignment:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer :: a, b, c, d, e
... d = a + b - c
... e = b * d + c * e / a
... '''
>>> p = SymPyExpression(src3, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'e = 0', 'd = a + b - c', 'e = b*d + c*e/a']
An example of function definition:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... end function
... '''
>>> a = SymPyExpression(src, 'f')
>>> a.convert_to_python()
['def f(a, b):\\n f = 0\\n r = 0\\n return f']
"""
def __init__(self, source_code = None, mode = None):
"""Constructor for SymPyExpression class"""
super().__init__()
if not(mode or source_code):
self._expr = []
elif mode:
if source_code:
if mode.lower() == 'f':
if lfortran:
self._expr = src_to_sympy(source_code)
else:
raise ImportError("LFortran is not installed, cannot parse Fortran code")
elif mode.lower() == 'c':
if cin:
self._expr = parse_c(source_code)
else:
raise ImportError("Clang is not installed, cannot parse C code")
else:
raise NotImplementedError(
'Parser for specified language is not implemented'
)
else:
raise ValueError('Source code not present')
else:
raise ValueError('Please specify a mode for conversion')
def convert_to_expr(self, src_code, mode):
"""Converts the given source code to sympy Expressions
Attributes
==========
src_code : String
the source code or filename of the source code that is to be
converted
mode: String
the mode to determine which parser is to be used according to
the language of the source code
f or F for Fortran
c or C for C/C++
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer function f(a,b) result(r)
... integer, intent(in) :: a, b
... integer :: x
... r = a + b -x
... end function
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
>>> p.return_expr()
[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)), body=CodeBlock(
Declaration(Variable(r, type=integer, value=0)),
Declaration(Variable(x, type=integer, value=0)),
Assignment(Variable(r), a + b - x),
Return(Variable(r))
))]
"""
if mode.lower() == 'f':
if lfortran:
self._expr = src_to_sympy(src_code)
else:
raise ImportError("LFortran is not installed, cannot parse Fortran code")
elif mode.lower() == 'c':
if cin:
self._expr = parse_c(src_code)
else:
raise ImportError("Clang is not installed, cannot parse C code")
else:
raise NotImplementedError(
"Parser for specified language has not been implemented"
)
def convert_to_python(self):
"""Returns a list with python code for the sympy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'p = 0.0', 'q = 0.0', 'r = 0.0', 's = 0.0', 'c = a/b', 'd = c/a', 's = p/q', 'r = q/p']
"""
self._pycode = []
for iter in self._expr:
self._pycode.append(pycode(iter))
return self._pycode
def convert_to_c(self):
"""Returns a list with the c source code for the sympy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0', 'double q = 0.0', 'double r = 0.0', 'double s = 0.0', 'c = a/b;', 'd = c/a;', 's = p/q;', 'r = q/p;']
"""
self._ccode = []
for iter in self._expr:
self._ccode.append(ccode(iter))
return self._ccode
def convert_to_fortran(self):
"""Returns a list with the fortran source code for the sympy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_fortran()
[' integer*4 a', ' integer*4 b', ' integer*4 c', ' integer*4 d', ' real*8 p', ' real*8 q', ' real*8 r', ' real*8 s', ' c = a/b', ' d = c/a', ' s = p/q', ' r = q/p']
"""
self._fcode = []
for iter in self._expr:
self._fcode.append(fcode(iter))
return self._fcode
def return_expr(self):
"""Returns the expression list
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... r = a+b
... f = r
... end function
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
>>> p.return_expr()
[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)), body=CodeBlock(
Declaration(Variable(f, type=integer, value=0)),
Declaration(Variable(r, type=integer, value=0)),
Assignment(Variable(f), Variable(r)),
Return(Variable(f))
))]
"""
return self._expr
|
9f484e86e5b3a6a33e8830c680bce6203ce814969c99847d075b5d44ef020abd | import re
from sympy import sympify, Sum, product, sin, cos
class MaximaHelpers:
def maxima_expand(expr):
return expr.expand()
def maxima_float(expr):
return expr.evalf()
def maxima_trigexpand(expr):
return expr.expand(trig=True)
def maxima_sum(a1, a2, a3, a4):
return Sum(a1, (a2, a3, a4)).doit()
def maxima_product(a1, a2, a3, a4):
return product(a1, (a2, a3, a4))
def maxima_csc(expr):
return 1/sin(expr)
def maxima_sec(expr):
return 1/cos(expr)
sub_dict = {
'pi': re.compile(r'%pi'),
'E': re.compile(r'%e'),
'I': re.compile(r'%i'),
'**': re.compile(r'\^'),
'oo': re.compile(r'\binf\b'),
'-oo': re.compile(r'\bminf\b'),
"'-'": re.compile(r'\bminus\b'),
'maxima_expand': re.compile(r'\bexpand\b'),
'maxima_float': re.compile(r'\bfloat\b'),
'maxima_trigexpand': re.compile(r'\btrigexpand'),
'maxima_sum': re.compile(r'\bsum\b'),
'maxima_product': re.compile(r'\bproduct\b'),
'cancel': re.compile(r'\bratsimp\b'),
'maxima_csc': re.compile(r'\bcsc\b'),
'maxima_sec': re.compile(r'\bsec\b')
}
var_name = re.compile(r'^\s*(\w+)\s*:')
def parse_maxima(str, globals=None, name_dict={}):
str = str.strip()
str = str.rstrip('; ')
for k, v in sub_dict.items():
str = v.sub(k, str)
assign_var = None
var_match = var_name.search(str)
if var_match:
assign_var = var_match.group(1)
str = str[var_match.end():].strip()
dct = MaximaHelpers.__dict__.copy()
dct.update(name_dict)
obj = sympify(str, locals=dct)
if assign_var and globals:
globals[assign_var] = obj
return obj
|
e49e508a62209a00cb85ce309909b9dca9458628ba16659efec8aeb1dc99ddda | from typing import Any, Dict, Tuple
from itertools import product
import re
from sympy import sympify
def mathematica(s, additional_translations=None):
'''
Users can add their own translation dictionary.
variable-length argument needs '*' character.
Examples
========
>>> from sympy.parsing.mathematica import mathematica
>>> mathematica('Log3[9]', {'Log3[x]':'log(x,3)'})
2
>>> mathematica('F[7,5,3]', {'F[*x]':'Max(*x)*Min(*x)'})
21
'''
parser = MathematicaParser(additional_translations)
return sympify(parser.parse(s))
def _deco(cls):
cls._initialize_class()
return cls
@_deco
class MathematicaParser:
'''An instance of this class converts a string of a basic Mathematica
expression to SymPy style. Output is string type.'''
# left: Mathematica, right: SymPy
CORRESPONDENCES = {
'Sqrt[x]': 'sqrt(x)',
'Exp[x]': 'exp(x)',
'Log[x]': 'log(x)',
'Log[x,y]': 'log(y,x)',
'Log2[x]': 'log(x,2)',
'Log10[x]': 'log(x,10)',
'Mod[x,y]': 'Mod(x,y)',
'Max[*x]': 'Max(*x)',
'Min[*x]': 'Min(*x)',
'Pochhammer[x,y]':'rf(x,y)',
'ArcTan[x,y]':'atan2(y,x)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[x]': 'airyaiprime(x)',
'AiryBi[x]' :'airybi(x)',
'AiryBiPrime[x]' :'airybiprime(x)',
'LogIntegral[x]':' li(x)',
'PrimePi[x]': 'primepi(x)',
'Prime[x]': 'prime(x)',
'PrimeQ[x]': 'isprime(x)'
}
# trigonometric, e.t.c.
for arc, tri, h in product(('', 'Arc'), (
'Sin', 'Cos', 'Tan', 'Cot', 'Sec', 'Csc'), ('', 'h')):
fm = arc + tri + h + '[x]'
if arc: # arc func
fs = 'a' + tri.lower() + h + '(x)'
else: # non-arc func
fs = tri.lower() + h + '(x)'
CORRESPONDENCES.update({fm: fs})
REPLACEMENTS = {
' ': '',
'^': '**',
'{': '[',
'}': ']',
}
RULES = {
# a single whitespace to '*'
'whitespace': (
re.compile(r'''
(?<=[a-zA-Z\d]) # a letter or a number
\ # a whitespace
(?=[a-zA-Z\d]) # a letter or a number
''', re.VERBOSE),
'*'),
# add omitted '*' character
'add*_1': (
re.compile(r'''
(?<=[])\d]) # ], ) or a number
# ''
(?=[(a-zA-Z]) # ( or a single letter
''', re.VERBOSE),
'*'),
# add omitted '*' character (variable letter preceding)
'add*_2': (
re.compile(r'''
(?<=[a-zA-Z]) # a letter
\( # ( as a character
(?=.) # any characters
''', re.VERBOSE),
'*('),
# convert 'Pi' to 'pi'
'Pi': (
re.compile(r'''
(?:
\A|(?<=[^a-zA-Z])
)
Pi # 'Pi' is 3.14159... in Mathematica
(?=[^a-zA-Z])
''', re.VERBOSE),
'pi'),
}
# Mathematica function name pattern
FM_PATTERN = re.compile(r'''
(?:
\A|(?<=[^a-zA-Z]) # at the top or a non-letter
)
[A-Z][a-zA-Z\d]* # Function
(?=\[) # [ as a character
''', re.VERBOSE)
# list or matrix pattern (for future usage)
ARG_MTRX_PATTERN = re.compile(r'''
\{.*\}
''', re.VERBOSE)
# regex string for function argument pattern
ARGS_PATTERN_TEMPLATE = r'''
(?:
\A|(?<=[^a-zA-Z])
)
{arguments} # model argument like x, y,...
(?=[^a-zA-Z])
'''
# will contain transformed CORRESPONDENCES dictionary
TRANSLATIONS = {} # type: Dict[Tuple[str, int], Dict[str, Any]]
# cache for a raw users' translation dictionary
cache_original = {} # type: Dict[Tuple[str, int], Dict[str, Any]]
# cache for a compiled users' translation dictionary
cache_compiled = {} # type: Dict[Tuple[str, int], Dict[str, Any]]
@classmethod
def _initialize_class(cls):
# get a transformed CORRESPONDENCES dictionary
d = cls._compile_dictionary(cls.CORRESPONDENCES)
cls.TRANSLATIONS.update(d)
def __init__(self, additional_translations=None):
self.translations = {}
# update with TRANSLATIONS (class constant)
self.translations.update(self.TRANSLATIONS)
if additional_translations is None:
additional_translations = {}
# check the latest added translations
if self.__class__.cache_original != additional_translations:
if not isinstance(additional_translations, dict):
raise ValueError('The argument must be dict type')
# get a transformed additional_translations dictionary
d = self._compile_dictionary(additional_translations)
# update cache
self.__class__.cache_original = additional_translations
self.__class__.cache_compiled = d
# merge user's own translations
self.translations.update(self.__class__.cache_compiled)
@classmethod
def _compile_dictionary(cls, dic):
# for return
d = {}
for fm, fs in dic.items():
# check function form
cls._check_input(fm)
cls._check_input(fs)
# uncover '*' hiding behind a whitespace
fm = cls._apply_rules(fm, 'whitespace')
fs = cls._apply_rules(fs, 'whitespace')
# remove whitespace(s)
fm = cls._replace(fm, ' ')
fs = cls._replace(fs, ' ')
# search Mathematica function name
m = cls.FM_PATTERN.search(fm)
# if no-hit
if m is None:
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# get Mathematica function name like 'Log'
fm_name = m.group()
# get arguments of Mathematica function
args, end = cls._get_args(m)
# function side check. (e.g.) '2*Func[x]' is invalid.
if m.start() != 0 or end != len(fm):
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# check the last argument's 1st character
if args[-1][0] == '*':
key_arg = '*'
else:
key_arg = len(args)
key = (fm_name, key_arg)
# convert '*x' to '\\*x' for regex
re_args = [x if x[0] != '*' else '\\' + x for x in args]
# for regex. Example: (?:(x|y|z))
xyz = '(?:(' + '|'.join(re_args) + '))'
# string for regex compile
patStr = cls.ARGS_PATTERN_TEMPLATE.format(arguments=xyz)
pat = re.compile(patStr, re.VERBOSE)
# update dictionary
d[key] = {}
d[key]['fs'] = fs # SymPy function template
d[key]['args'] = args # args are ['x', 'y'] for example
d[key]['pat'] = pat
return d
def _convert_function(self, s):
'''Parse Mathematica function to SymPy one'''
# compiled regex object
pat = self.FM_PATTERN
scanned = '' # converted string
cur = 0 # position cursor
while True:
m = pat.search(s)
if m is None:
# append the rest of string
scanned += s
break
# get Mathematica function name
fm = m.group()
# get arguments, and the end position of fm function
args, end = self._get_args(m)
# the start position of fm function
bgn = m.start()
# convert Mathematica function to SymPy one
s = self._convert_one_function(s, fm, args, bgn, end)
# update cursor
cur = bgn
# append converted part
scanned += s[:cur]
# shrink s
s = s[cur:]
return scanned
def _convert_one_function(self, s, fm, args, bgn, end):
# no variable-length argument
if (fm, len(args)) in self.translations:
key = (fm, len(args))
# x, y,... model arguments
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {k: v for k, v in zip(x_args, args)}
# with variable-length argument
elif (fm, '*') in self.translations:
key = (fm, '*')
# x, y,..*args (model arguments)
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {}
for i, x in enumerate(x_args):
if x[0] == '*':
d[x] = ','.join(args[i:])
break
d[x] = args[i]
# out of self.translations
else:
err = "'{f}' is out of the whitelist.".format(f=fm)
raise ValueError(err)
# template string of converted function
template = self.translations[key]['fs']
# regex pattern for x_args
pat = self.translations[key]['pat']
scanned = ''
cur = 0
while True:
m = pat.search(template)
if m is None:
scanned += template
break
# get model argument
x = m.group()
# get a start position of the model argument
xbgn = m.start()
# add the corresponding actual argument
scanned += template[:xbgn] + d[x]
# update cursor to the end of the model argument
cur = m.end()
# shrink template
template = template[cur:]
# update to swapped string
s = s[:bgn] + scanned + s[end:]
return s
@classmethod
def _get_args(cls, m):
'''Get arguments of a Mathematica function'''
s = m.string # whole string
anc = m.end() + 1 # pointing the first letter of arguments
square, curly = [], [] # stack for brakets
args = []
# current cursor
cur = anc
for i, c in enumerate(s[anc:], anc):
# extract one argument
if c == ',' and (not square) and (not curly):
args.append(s[cur:i]) # add an argument
cur = i + 1 # move cursor
# handle list or matrix (for future usage)
if c == '{':
curly.append(c)
elif c == '}':
curly.pop()
# seek corresponding ']' with skipping irrevant ones
if c == '[':
square.append(c)
elif c == ']':
if square:
square.pop()
else: # empty stack
args.append(s[cur:i])
break
# the next position to ']' bracket (the function end)
func_end = i + 1
return args, func_end
@classmethod
def _replace(cls, s, bef):
aft = cls.REPLACEMENTS[bef]
s = s.replace(bef, aft)
return s
@classmethod
def _apply_rules(cls, s, bef):
pat, aft = cls.RULES[bef]
return pat.sub(aft, s)
@classmethod
def _check_input(cls, s):
for bracket in (('[', ']'), ('{', '}'), ('(', ')')):
if s.count(bracket[0]) != s.count(bracket[1]):
err = "'{f}' function form is invalid.".format(f=s)
raise ValueError(err)
if '{' in s:
err = "Currently list is not supported."
raise ValueError(err)
def parse(self, s):
# input check
self._check_input(s)
# uncover '*' hiding behind a whitespace
s = self._apply_rules(s, 'whitespace')
# remove whitespace(s)
s = self._replace(s, ' ')
# add omitted '*' character
s = self._apply_rules(s, 'add*_1')
s = self._apply_rules(s, 'add*_2')
# translate function
s = self._convert_function(s)
# '^' to '**'
s = self._replace(s, '^')
# 'Pi' to 'pi'
s = self._apply_rules(s, 'Pi')
# '{', '}' to '[', ']', respectively
# s = cls._replace(s, '{') # currently list is not taken into account
# s = cls._replace(s, '}')
return s
|
3efeb94e5a4f41a3b192474bf1946df6bd7a3bd5fb8519526d1b6092ec8e68cd | """Transform a string with Python-like source code into SymPy expression. """
from tokenize import (generate_tokens, untokenize, TokenError,
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
from keyword import iskeyword
import ast
import unicodedata
from sympy.core.compatibility import exec_, StringIO, iterable
from sympy.core.basic import Basic
from sympy.core import Symbol
from sympy.core.function import arity
from sympy.utilities.misc import filldedent, func_name
def _token_splittable(token):
"""
Predicate for whether a token name can be split into multiple tokens.
A token is splittable if it does not contain an underscore character and
it is not the name of a Greek letter. This is used to implicitly convert
expressions like 'xyz' into 'x*y*z'.
"""
if '_' in token:
return False
else:
try:
return not unicodedata.lookup('GREEK SMALL LETTER ' + token)
except KeyError:
pass
if len(token) > 1:
return True
return False
def _token_callable(token, local_dict, global_dict, nextToken=None):
"""
Predicate for whether a token name represents a callable function.
Essentially wraps ``callable``, but looks up the token name in the
locals and globals.
"""
func = local_dict.get(token[1])
if not func:
func = global_dict.get(token[1])
return callable(func) and not isinstance(func, Symbol)
def _add_factorial_tokens(name, result):
if result == [] or result[-1][1] == '(':
raise TokenError()
beginning = [(NAME, name), (OP, '(')]
end = [(OP, ')')]
diff = 0
length = len(result)
for index, token in enumerate(result[::-1]):
toknum, tokval = token
i = length - index - 1
if tokval == ')':
diff += 1
elif tokval == '(':
diff -= 1
if diff == 0:
if i - 1 >= 0 and result[i - 1][0] == NAME:
return result[:i - 1] + beginning + result[i - 1:] + end
else:
return result[:i] + beginning + result[i:] + end
return result
class AppliedFunction:
"""
A group of tokens representing a function and its arguments.
`exponent` is for handling the shorthand sin^2, ln^2, etc.
"""
def __init__(self, function, args, exponent=None):
if exponent is None:
exponent = []
self.function = function
self.args = args
self.exponent = exponent
self.items = ['function', 'args', 'exponent']
def expand(self):
"""Return a list of tokens representing the function"""
result = []
result.append(self.function)
result.extend(self.args)
return result
def __getitem__(self, index):
return getattr(self, self.items[index])
def __repr__(self):
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
self.exponent)
class ParenthesisGroup(list):
"""List of tokens representing an expression in parentheses."""
pass
def _flatten(result):
result2 = []
for tok in result:
if isinstance(tok, AppliedFunction):
result2.extend(tok.expand())
else:
result2.append(tok)
return result2
def _group_parentheses(recursor):
def _inner(tokens, local_dict, global_dict):
"""Group tokens between parentheses with ParenthesisGroup.
Also processes those tokens recursively.
"""
result = []
stacks = []
stacklevel = 0
for token in tokens:
if token[0] == OP:
if token[1] == '(':
stacks.append(ParenthesisGroup([]))
stacklevel += 1
elif token[1] == ')':
stacks[-1].append(token)
stack = stacks.pop()
if len(stacks) > 0:
# We don't recurse here since the upper-level stack
# would reprocess these tokens
stacks[-1].extend(stack)
else:
# Recurse here to handle nested parentheses
# Strip off the outer parentheses to avoid an infinite loop
inner = stack[1:-1]
inner = recursor(inner,
local_dict,
global_dict)
parenGroup = [stack[0]] + inner + [stack[-1]]
result.append(ParenthesisGroup(parenGroup))
stacklevel -= 1
continue
if stacklevel:
stacks[-1].append(token)
else:
result.append(token)
if stacklevel:
raise TokenError("Mismatched parentheses")
return result
return _inner
def _apply_functions(tokens, local_dict, global_dict):
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
Note that ParenthesisGroups, if not applied to any function, are
converted back into lists of tokens.
"""
result = []
symbol = None
for tok in tokens:
if tok[0] == NAME:
symbol = tok
result.append(tok)
elif isinstance(tok, ParenthesisGroup):
if symbol and _token_callable(symbol, local_dict, global_dict):
result[-1] = AppliedFunction(symbol, tok)
symbol = None
else:
result.extend(tok)
else:
symbol = None
result.append(tok)
return result
def _implicit_multiplication(tokens, local_dict, global_dict):
"""Implicitly adds '*' tokens.
Cases:
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
"""
result = []
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (isinstance(tok, AppliedFunction) and
isinstance(nextTok, AppliedFunction)):
result.append((OP, '*'))
elif (isinstance(tok, AppliedFunction) and
nextTok[0] == OP and nextTok[1] == '('):
# Applied function followed by an open parenthesis
if tok.function[1] == "Function":
result[-1].function = (result[-1].function[0], 'Symbol')
result.append((OP, '*'))
elif (tok[0] == OP and tok[1] == ')' and
isinstance(nextTok, AppliedFunction)):
# Close parenthesis followed by an applied function
result.append((OP, '*'))
elif (tok[0] == OP and tok[1] == ')' and
nextTok[0] == NAME):
# Close parenthesis followed by an implicitly applied function
result.append((OP, '*'))
elif (tok[0] == nextTok[0] == OP
and tok[1] == ')' and nextTok[1] == '('):
# Close parenthesis followed by an open parenthesis
result.append((OP, '*'))
elif (isinstance(tok, AppliedFunction) and nextTok[0] == NAME):
# Applied function followed by implicitly applied function
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
nextTok[0] == OP and nextTok[1] == '('):
# Constant followed by parenthesis
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
nextTok[0] == NAME and
not _token_callable(nextTok, local_dict, global_dict)):
# Constant followed by constant
result.append((OP, '*'))
elif (tok[0] == NAME and
not _token_callable(tok, local_dict, global_dict) and
(isinstance(nextTok, AppliedFunction) or nextTok[0] == NAME)):
# Constant followed by (implicitly applied) function
result.append((OP, '*'))
if tokens:
result.append(tokens[-1])
return result
def _implicit_application(tokens, local_dict, global_dict):
"""Adds parentheses as needed after functions."""
result = []
appendParen = 0 # number of closing parentheses to add
skip = 0 # number of tokens to delay before adding a ')' (to
# capture **, ^, etc.)
exponentSkip = False # skipping tokens before inserting parentheses to
# work with function exponentiation
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
if _token_callable(tok, local_dict, global_dict, nextTok):
result.append((OP, '('))
appendParen += 1
# name followed by exponent - function exponentiation
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
if _token_callable(tok, local_dict, global_dict):
exponentSkip = True
elif exponentSkip:
# if the last token added was an applied function (i.e. the
# power of the function exponent) OR a multiplication (as
# implicit multiplication would have added an extraneous
# multiplication)
if (isinstance(tok, AppliedFunction)
or (tok[0] == OP and tok[1] == '*')):
# don't add anything if the next token is a multiplication
# or if there's already a parenthesis (if parenthesis, still
# stop skipping tokens)
if not (nextTok[0] == OP and nextTok[1] == '*'):
if not(nextTok[0] == OP and nextTok[1] == '('):
result.append((OP, '('))
appendParen += 1
exponentSkip = False
elif appendParen:
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
skip = 1
continue
if skip:
skip -= 1
continue
result.append((OP, ')'))
appendParen -= 1
if tokens:
result.append(tokens[-1])
if appendParen:
result.extend([(OP, ')')] * appendParen)
return result
def function_exponentiation(tokens, local_dict, global_dict):
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('sin**4(x)', transformations=transformations)
sin(x)**4
"""
result = []
exponent = []
consuming_exponent = False
level = 0
for tok, nextTok in zip(tokens, tokens[1:]):
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
if _token_callable(tok, local_dict, global_dict):
consuming_exponent = True
elif consuming_exponent:
if tok[0] == NAME and tok[1] == 'Function':
tok = (NAME, 'Symbol')
exponent.append(tok)
# only want to stop after hitting )
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
consuming_exponent = False
# if implicit multiplication was used, we may have )*( instead
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
consuming_exponent = False
del exponent[-1]
continue
elif exponent and not consuming_exponent:
if tok[0] == OP:
if tok[1] == '(':
level += 1
elif tok[1] == ')':
level -= 1
if level == 0:
result.append(tok)
result.extend(exponent)
exponent = []
continue
result.append(tok)
if tokens:
result.append(tokens[-1])
if exponent:
result.extend(exponent)
return result
def split_symbols_custom(predicate):
"""Creates a transformation that splits symbol names.
``predicate`` should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain
symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
... standard_transformations, implicit_multiplication,
... split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations +
... (transformation, implicit_multiplication))
unsplittable
"""
def _split_symbols(tokens, local_dict, global_dict):
result = []
split = False
split_previous=False
for tok in tokens:
if split_previous:
# throw out closing parenthesis of Symbol that was split
split_previous=False
continue
split_previous=False
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
split = True
elif split and tok[0] == NAME:
symbol = tok[1][1:-1]
if predicate(symbol):
tok_type = result[-2][1] # Symbol or Function
del result[-2:] # Get rid of the call to Symbol
i = 0
while i < len(symbol):
char = symbol[i]
if char in local_dict or char in global_dict:
result.extend([(NAME, "%s" % char)])
elif char.isdigit():
char = [char]
for i in range(i + 1, len(symbol)):
if not symbol[i].isdigit():
i -= 1
break
char.append(symbol[i])
char = ''.join(char)
result.extend([(NAME, 'Number'), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
else:
use = tok_type if i == len(symbol) else 'Symbol'
result.extend([(NAME, use), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
i += 1
# Set split_previous=True so will skip
# the closing parenthesis of the original Symbol
split = False
split_previous = True
continue
else:
split = False
result.append(tok)
return result
return _split_symbols
#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)
def implicit_multiplication(result, local_dict, global_dict):
"""Makes the multiplication operator optional in most cases.
Use this before :func:`implicit_application`, otherwise expressions like
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
"""
# These are interdependent steps, so we don't expose them separately
for step in (_group_parentheses(implicit_multiplication),
_apply_functions,
_implicit_multiplication):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
def implicit_application(result, local_dict, global_dict):
"""Makes parentheses optional in some cases for function calls.
Use this after :func:`implicit_multiplication`, otherwise expressions
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
"""
for step in (_group_parentheses(implicit_application),
_apply_functions,
_implicit_application,):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
def implicit_multiplication_application(result, local_dict, global_dict):
"""Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between
symbols).
- Functions can be exponentiated.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
"""
for step in (split_symbols, implicit_multiplication,
implicit_application, function_exponentiation):
result = step(result, local_dict, global_dict)
return result
def auto_symbol(tokens, local_dict, global_dict):
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
result = []
prevTok = (None, None)
tokens.append((None, None)) # so zip traverses all tokens
for tok, nextTok in zip(tokens, tokens[1:]):
tokNum, tokVal = tok
nextTokNum, nextTokVal = nextTok
if tokNum == NAME:
name = tokVal
if (name in ['True', 'False', 'None']
or iskeyword(name)
# Don't convert attribute access
or (prevTok[0] == OP and prevTok[1] == '.')
# Don't convert keyword arguments
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
and nextTokNum == OP and nextTokVal == '=')):
result.append((NAME, name))
continue
elif name in local_dict:
if isinstance(local_dict[name], Symbol) and nextTokVal == '(':
result.extend([(NAME, 'Function'),
(OP, '('),
(NAME, repr(str(local_dict[name]))),
(OP, ')')])
else:
result.append((NAME, name))
continue
elif name in global_dict:
obj = global_dict[name]
if isinstance(obj, (Basic, type)) or callable(obj):
result.append((NAME, name))
continue
result.extend([
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
(OP, '('),
(NAME, repr(str(name))),
(OP, ')'),
])
else:
result.append((tokNum, tokVal))
prevTok = (tokNum, tokVal)
return result
def lambda_notation(tokens, local_dict, global_dict):
"""Substitutes "lambda" with its Sympy equivalent Lambda().
However, the conversion doesn't take place if only "lambda"
is passed because that is a syntax error.
"""
result = []
flag = False
toknum, tokval = tokens[0]
tokLen = len(tokens)
if toknum == NAME and tokval == 'lambda':
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
# the tokens
result.extend(tokens)
elif tokLen > 2:
result.extend([
(NAME, 'Lambda'),
(OP, '('),
(OP, '('),
(OP, ')'),
(OP, ')'),
])
for tokNum, tokVal in tokens[1:]:
if tokNum == OP and tokVal == ':':
tokVal = ','
flag = True
if not flag and tokNum == OP and tokVal in ['*', '**']:
raise TokenError("Starred arguments in lambda not supported")
if flag:
result.insert(-1, (tokNum, tokVal))
else:
result.insert(-2, (tokNum, tokVal))
else:
result.extend(tokens)
return result
def factorial_notation(tokens, local_dict, global_dict):
"""Allows standard notation for factorial."""
result = []
nfactorial = 0
for toknum, tokval in tokens:
if toknum == ERRORTOKEN:
op = tokval
if op == '!':
nfactorial += 1
else:
nfactorial = 0
result.append((OP, op))
else:
if nfactorial == 1:
result = _add_factorial_tokens('factorial', result)
elif nfactorial == 2:
result = _add_factorial_tokens('factorial2', result)
elif nfactorial > 2:
raise TokenError
nfactorial = 0
result.append((toknum, tokval))
return result
def convert_xor(tokens, local_dict, global_dict):
"""Treats XOR, ``^``, as exponentiation, ``**``."""
result = []
for toknum, tokval in tokens:
if toknum == OP:
if tokval == '^':
result.append((OP, '**'))
else:
result.append((toknum, tokval))
else:
result.append((toknum, tokval))
return result
def repeated_decimals(tokens, local_dict, global_dict):
"""
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
Run this before auto_number.
"""
result = []
def is_digit(s):
return all(i in '0123456789_' for i in s)
# num will running match any DECIMAL [ INTEGER ]
num = []
for toknum, tokval in tokens:
if toknum == NUMBER:
if (not num and '.' in tokval and 'e' not in tokval.lower() and
'j' not in tokval.lower()):
num.append((toknum, tokval))
elif is_digit(tokval)and len(num) == 2:
num.append((toknum, tokval))
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
# Python 2 tokenizes 00123 as '00', '123'
# Python 3 tokenizes 01289 as '012', '89'
num.append((toknum, tokval))
else:
num = []
elif toknum == OP:
if tokval == '[' and len(num) == 1:
num.append((OP, tokval))
elif tokval == ']' and len(num) >= 3:
num.append((OP, tokval))
elif tokval == '.' and not num:
# handle .[1]
num.append((NUMBER, '0.'))
else:
num = []
else:
num = []
result.append((toknum, tokval))
if num and num[-1][1] == ']':
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
# and d/e = repetend
result = result[:-len(num)]
pre, post = num[0][1].split('.')
repetend = num[2][1]
if len(num) == 5:
repetend += num[3][1]
pre = pre.replace('_', '')
post = post.replace('_', '')
repetend = repetend.replace('_', '')
zeros = '0'*len(post)
post, repetends = [w.lstrip('0') for w in [post, repetend]]
# or else interpreted as octal
a = pre or '0'
b, c = post or '0', '1' + zeros
d, e = repetends, ('9'*len(repetend)) + zeros
seq = [
(OP, '('),
(NAME, 'Integer'),
(OP, '('),
(NUMBER, a),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, b),
(OP, ','),
(NUMBER, c),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, d),
(OP, ','),
(NUMBER, e),
(OP, ')'),
(OP, ')'),
]
result.extend(seq)
num = []
return result
def auto_number(tokens, local_dict, global_dict):
"""
Converts numeric literals to use SymPy equivalents.
Complex numbers use ``I``, integer literals use ``Integer``, and float
literals use ``Float``.
"""
result = []
for toknum, tokval in tokens:
if toknum == NUMBER:
number = tokval
postfix = []
if number.endswith('j') or number.endswith('J'):
number = number[:-1]
postfix = [(OP, '*'), (NAME, 'I')]
if '.' in number or (('e' in number or 'E' in number) and
not (number.startswith('0x') or number.startswith('0X'))):
seq = [(NAME, 'Float'), (OP, '('),
(NUMBER, repr(str(number))), (OP, ')')]
else:
seq = [(NAME, 'Integer'), (OP, '('), (
NUMBER, number), (OP, ')')]
result.extend(seq + postfix)
else:
result.append((toknum, tokval))
return result
def rationalize(tokens, local_dict, global_dict):
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
result = []
passed_float = False
for toknum, tokval in tokens:
if toknum == NAME:
if tokval == 'Float':
passed_float = True
tokval = 'Rational'
result.append((toknum, tokval))
elif passed_float == True and toknum == NUMBER:
passed_float = False
result.append((STRING, tokval))
else:
result.append((toknum, tokval))
return result
def _transform_equals_sign(tokens, local_dict, global_dict):
"""Transforms the equals sign ``=`` to instances of Eq.
This is a helper function for `convert_equals_signs`.
Works with expressions containing one equals sign and no
nesting. Expressions like `(1=2)=False` won't work with this
and should be used with `convert_equals_signs`.
Examples: 1=2 to Eq(1,2)
1*2=x to Eq(1*2, x)
This does not deal with function arguments yet.
"""
result = []
if (OP, "=") in tokens:
result.append((NAME, "Eq"))
result.append((OP, "("))
for index, token in enumerate(tokens):
if token == (OP, "="):
result.append((OP, ","))
continue
result.append(token)
result.append((OP, ")"))
else:
result = tokens
return result
def convert_equals_signs(result, local_dict, global_dict):
""" Transforms all the equals signs ``=`` to instances of Eq.
Parses the equals signs in the expression and replaces them with
appropriate Eq instances.Also works with nested equals signs.
Does not yet play well with function arguments.
For example, the expression `(x=y)` is ambiguous and can be interpreted
as x being an argument to a function and `convert_equals_signs` won't
work for this.
See also
========
convert_equality_operators
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, convert_equals_signs)
>>> parse_expr("1*2=x", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(2, x)
>>> parse_expr("(1*2=x)=False", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(Eq(2, x), False)
"""
for step in (_group_parentheses(convert_equals_signs),
_apply_functions,
_transform_equals_sign):
result = step(result, local_dict, global_dict)
result = _flatten(result)
return result
#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations = (lambda_notation, auto_symbol, repeated_decimals, auto_number,
factorial_notation)
def stringify_expr(s, local_dict, global_dict, transformations):
"""
Converts the string ``s`` to Python code, in ``local_dict``
Generally, ``parse_expr`` should be used.
"""
tokens = []
input_code = StringIO(s.strip())
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
tokens.append((toknum, tokval))
for transform in transformations:
tokens = transform(tokens, local_dict, global_dict)
return untokenize(tokens)
def eval_expr(code, local_dict, global_dict):
"""
Evaluate Python code generated by ``stringify_expr``.
Generally, ``parse_expr`` should be used.
"""
expr = eval(
code, global_dict, local_dict) # take local objects in preference
return expr
def parse_expr(s, local_dict=None, transformations=standard_transformations,
global_dict=None, evaluate=True):
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``
Parameters
==========
s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized
with ``from sympy import *``; provide this parameter to override
this behavior (for instance, to parse ``"Q & S"``).
transformations : tuple, optional
A tuple of transformation functions used to modify the tokens of the
parsed expression before evaluation. The default transformations
convert numeric literals into their SymPy equivalents, convert
undefined variables into SymPy symbols, and allow the use of standard
mathematical factorial notation (e.g. ``x!``).
evaluate : bool, optional
When False, the order of the arguments will remain as they were in the
string and automatic simplification that would normally occur is
suppressed. (see examples)
Examples
========
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
... implicit_multiplication_application
>>> transformations = (standard_transformations +
... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
In addition the order of the arguments will not be made canonical.
This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
See Also
========
stringify_expr, eval_expr, standard_transformations,
implicit_multiplication_application
"""
if local_dict is None:
local_dict = {}
elif not isinstance(local_dict, dict):
raise TypeError('expecting local_dict to be a dict')
if global_dict is None:
global_dict = {}
exec_('from sympy import *', global_dict)
elif not isinstance(global_dict, dict):
raise TypeError('expecting global_dict to be a dict')
transformations = transformations or ()
if transformations:
if not iterable(transformations):
raise TypeError(
'`transformations` should be a list of functions.')
for _ in transformations:
if not callable(_):
raise TypeError(filldedent('''
expected a function in `transformations`,
not %s''' % func_name(_)))
if arity(_) != 3:
raise TypeError(filldedent('''
a transformation should be function that
takes 3 arguments'''))
code = stringify_expr(s, local_dict, global_dict, transformations)
if not evaluate:
code = compile(evaluateFalse(code), '<string>', 'eval')
return eval_expr(code, local_dict, global_dict)
def evaluateFalse(s):
"""
Replaces operators with the SymPy equivalent and sets evaluate=False.
"""
node = ast.parse(s)
node = EvaluateFalseTransformer().visit(node)
# node is a Module, we want an Expression
node = ast.Expression(node.body[0].value)
return ast.fix_missing_locations(node)
class EvaluateFalseTransformer(ast.NodeTransformer):
operators = {
ast.Add: 'Add',
ast.Mult: 'Mul',
ast.Pow: 'Pow',
ast.Sub: 'Add',
ast.Div: 'Mul',
ast.BitOr: 'Or',
ast.BitAnd: 'And',
ast.BitXor: 'Not',
}
def flatten(self, args, func):
result = []
for arg in args:
if isinstance(arg, ast.Call):
arg_func = arg.func
if isinstance(arg_func, ast.Call):
arg_func = arg_func.func
if arg_func.id == func:
result.extend(self.flatten(arg.args, func))
else:
result.append(arg)
else:
result.append(arg)
return result
def visit_BinOp(self, node):
if node.op.__class__ in self.operators:
sympy_class = self.operators[node.op.__class__]
right = self.visit(node.right)
left = self.visit(node.left)
if isinstance(node.left, ast.UnaryOp) and (isinstance(node.right, ast.UnaryOp) == 0) and sympy_class in ('Mul',):
left, right = right, left
if isinstance(node.op, ast.Sub):
right = ast.Call(
func=ast.Name(id='Mul', ctx=ast.Load()),
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Num(1)), right],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if isinstance(node.op, ast.Div):
if isinstance(node.left, ast.UnaryOp):
if isinstance(node.right,ast.UnaryOp):
left, right = right, left
left = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
else:
right = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if sympy_class in ('Add', 'Mul'):
# Denest Add or Mul as appropriate
new_node.args = self.flatten(new_node.args, sympy_class)
return new_node
return node
|
78de22bd4bab719a73c8f378de4a01049744da58805a508cc78f8d1b937f89ad | """
This module implements the functionality to take any Python expression as a
string and fix all numbers and other things before evaluating it,
thus
1/2
returns
Integer(1)/Integer(2)
We use the ast module for this. It is well documented at docs.python.org.
Some tips to understand how this works: use dump() to get a nice
representation of any node. Then write a string of what you want to get,
e.g. "Integer(1)", parse it, dump it and you'll see that you need to do
"Call(Name('Integer', Load()), [node], [], None, None)". You don't need
to bother with lineno and col_offset, just call fix_missing_locations()
before returning the node.
"""
from sympy.core.basic import Basic
from sympy.core.compatibility import exec_
from sympy.core.sympify import SympifyError
from ast import parse, NodeTransformer, Call, Name, Load, \
fix_missing_locations, Str, Tuple
class Transform(NodeTransformer):
def __init__(self, local_dict, global_dict):
NodeTransformer.__init__(self)
self.local_dict = local_dict
self.global_dict = global_dict
def visit_Num(self, node):
if isinstance(node.n, int):
return fix_missing_locations(Call(func=Name('Integer', Load()),
args=[node], keywords=[]))
elif isinstance(node.n, float):
return fix_missing_locations(Call(func=Name('Float', Load()),
args=[node], keywords=[]))
return node
def visit_Name(self, node):
if node.id in self.local_dict:
return node
elif node.id in self.global_dict:
name_obj = self.global_dict[node.id]
if isinstance(name_obj, (Basic, type)) or callable(name_obj):
return node
elif node.id in ['True', 'False']:
return node
return fix_missing_locations(Call(func=Name('Symbol', Load()),
args=[Str(node.id)], keywords=[]))
def visit_Lambda(self, node):
args = [self.visit(arg) for arg in node.args.args]
body = self.visit(node.body)
n = Call(func=Name('Lambda', Load()),
args=[Tuple(args, Load()), body], keywords=[])
return fix_missing_locations(n)
def parse_expr(s, local_dict):
"""
Converts the string "s" to a SymPy expression, in local_dict.
It converts all numbers to Integers before feeding it to Python and
automatically creates Symbols.
"""
global_dict = {}
exec_('from sympy import *', global_dict)
try:
a = parse(s.strip(), mode="eval")
except SyntaxError:
raise SympifyError("Cannot parse %s." % repr(s))
a = Transform(local_dict, global_dict).visit(a)
e = compile(a, "<string>", "eval")
return eval(e, global_dict, local_dict)
|
bc9479a440521bbbfd783b0c66e37b7d072ac153cc8501590c578df322ee05fa | # -*- coding: utf-8 -*-
r"""
Wigner, Clebsch-Gordan, Racah, and Gaunt coefficients
Collection of functions for calculating Wigner 3j, 6j, 9j,
Clebsch-Gordan, Racah as well as Gaunt coefficients exactly, all
evaluating to a rational number times the square root of a rational
number [Rasch03]_.
Please see the description of the individual functions for further
details and examples.
References
~~~~~~~~~~
.. [Regge58] 'Symmetry Properties of Clebsch-Gordan Coefficients',
T. Regge, Nuovo Cimento, Volume 10, pp. 544 (1958)
.. [Regge59] 'Symmetry Properties of Racah Coefficients',
T. Regge, Nuovo Cimento, Volume 11, pp. 116 (1959)
.. [Edmonds74] A. R. Edmonds. Angular momentum in quantum mechanics.
Investigations in physics, 4.; Investigations in physics, no. 4.
Princeton, N.J., Princeton University Press, 1957.
.. [Rasch03] J. Rasch and A. C. H. Yu, 'Efficient Storage Scheme for
Pre-calculated Wigner 3j, 6j and Gaunt Coefficients', SIAM
J. Sci. Comput. Volume 25, Issue 4, pp. 1416-1428 (2003)
.. [Liberatodebrito82] 'FORTRAN program for the integral of three
spherical harmonics', A. Liberato de Brito,
Comput. Phys. Commun., Volume 25, pp. 81-85 (1982)
Credits and Copyright
~~~~~~~~~~~~~~~~~~~~~
This code was taken from Sage with the permission of all authors:
https://groups.google.com/forum/#!topic/sage-devel/M4NZdu-7O38
AUTHORS:
- Jens Rasch (2009-03-24): initial version for Sage
- Jens Rasch (2009-05-31): updated to sage-4.0
- Oscar Gerardo Lazo Arjona (2017-06-18): added Wigner D matrices
Copyright (C) 2008 Jens Rasch <[email protected]>
"""
from sympy import (Integer, pi, sqrt, sympify, Dummy, S, Sum, Ynm, zeros,
Function, sin, cos, exp, I, factorial, binomial,
Add, ImmutableMatrix)
# This list of precomputed factorials is needed to massively
# accelerate future calculations of the various coefficients
_Factlist = [1]
def _calc_factlist(nn):
r"""
Function calculates a list of precomputed factorials in order to
massively accelerate future calculations of the various
coefficients.
INPUT:
- ``nn`` - integer, highest factorial to be computed
OUTPUT:
list of integers -- the list of precomputed factorials
EXAMPLES:
Calculate list of factorials::
sage: from sage.functions.wigner import _calc_factlist
sage: _calc_factlist(10)
[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800]
"""
if nn >= len(_Factlist):
for ii in range(len(_Factlist), int(nn + 1)):
_Factlist.append(_Factlist[ii - 1] * ii)
return _Factlist[:int(nn) + 1]
def wigner_3j(j_1, j_2, j_3, m_1, m_2, m_3):
r"""
Calculate the Wigner 3j symbol `\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)`.
INPUT:
- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer
OUTPUT:
Rational number times the square root of a rational number.
Examples
========
>>> from sympy.physics.wigner import wigner_3j
>>> wigner_3j(2, 6, 4, 0, 0, 0)
sqrt(715)/143
>>> wigner_3j(2, 6, 4, 0, 0, 1)
0
It is an error to have arguments that are not integer or half
integer values::
sage: wigner_3j(2.1, 6, 4, 0, 0, 0)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer
sage: wigner_3j(2, 6, 4, 1, 0, -1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer or half integer
NOTES:
The Wigner 3j symbol obeys the following symmetry rules:
- invariant under any permutation of the columns (with the
exception of a sign change where `J:=j_1+j_2+j_3`):
.. math::
\begin{aligned}
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)
&=\operatorname{Wigner3j}(j_3,j_1,j_2,m_3,m_1,m_2) \\
&=\operatorname{Wigner3j}(j_2,j_3,j_1,m_2,m_3,m_1) \\
&=(-1)^J \operatorname{Wigner3j}(j_3,j_2,j_1,m_3,m_2,m_1) \\
&=(-1)^J \operatorname{Wigner3j}(j_1,j_3,j_2,m_1,m_3,m_2) \\
&=(-1)^J \operatorname{Wigner3j}(j_2,j_1,j_3,m_2,m_1,m_3)
\end{aligned}
- invariant under space inflection, i.e.
.. math::
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,m_3)
=(-1)^J \operatorname{Wigner3j}(j_1,j_2,j_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 additional symmetries based on
the work by [Regge58]_
- zero for `j_1`, `j_2`, `j_3` not fulfilling triangle relation
- zero for `m_1 + m_2 + m_3 \neq 0`
- zero for violating any one of the conditions
`j_1 \ge |m_1|`, `j_2 \ge |m_2|`, `j_3 \ge |m_3|`
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
if int(j_1 * 2) != j_1 * 2 or int(j_2 * 2) != j_2 * 2 or \
int(j_3 * 2) != j_3 * 2:
raise ValueError("j values must be integer or half integer")
if int(m_1 * 2) != m_1 * 2 or int(m_2 * 2) != m_2 * 2 or \
int(m_3 * 2) != m_3 * 2:
raise ValueError("m values must be integer or half integer")
if m_1 + m_2 + m_3 != 0:
return 0
prefid = Integer((-1) ** int(j_1 - j_2 - m_3))
m_3 = -m_3
a1 = j_1 + j_2 - j_3
if a1 < 0:
return 0
a2 = j_1 - j_2 + j_3
if a2 < 0:
return 0
a3 = -j_1 + j_2 + j_3
if a3 < 0:
return 0
if (abs(m_1) > j_1) or (abs(m_2) > j_2) or (abs(m_3) > j_3):
return 0
maxfact = max(j_1 + j_2 + j_3 + 1, j_1 + abs(m_1), j_2 + abs(m_2),
j_3 + abs(m_3))
_calc_factlist(int(maxfact))
argsqrt = Integer(_Factlist[int(j_1 + j_2 - j_3)] *
_Factlist[int(j_1 - j_2 + j_3)] *
_Factlist[int(-j_1 + j_2 + j_3)] *
_Factlist[int(j_1 - m_1)] *
_Factlist[int(j_1 + m_1)] *
_Factlist[int(j_2 - m_2)] *
_Factlist[int(j_2 + m_2)] *
_Factlist[int(j_3 - m_3)] *
_Factlist[int(j_3 + m_3)]) / \
_Factlist[int(j_1 + j_2 + j_3 + 1)]
ressqrt = sqrt(argsqrt)
if ressqrt.is_complex or ressqrt.is_infinite:
ressqrt = ressqrt.as_real_imag()[0]
imin = max(-j_3 + j_1 + m_2, -j_3 + j_2 - m_1, 0)
imax = min(j_2 + m_2, j_1 - m_1, j_1 + j_2 - j_3)
sumres = 0
for ii in range(int(imin), int(imax) + 1):
den = _Factlist[ii] * \
_Factlist[int(ii + j_3 - j_1 - m_2)] * \
_Factlist[int(j_2 + m_2 - ii)] * \
_Factlist[int(j_1 - ii - m_1)] * \
_Factlist[int(ii + j_3 - j_2 + m_1)] * \
_Factlist[int(j_1 + j_2 - j_3 - ii)]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * sumres * prefid
return res
def clebsch_gordan(j_1, j_2, j_3, m_1, m_2, m_3):
r"""
Calculates the Clebsch-Gordan coefficient
`\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle`.
The reference for this function is [Edmonds74]_.
INPUT:
- ``j_1``, ``j_2``, ``j_3``, ``m_1``, ``m_2``, ``m_3`` - integer or half integer
OUTPUT:
Rational number times the square root of a rational number.
EXAMPLES::
>>> from sympy import S
>>> from sympy.physics.wigner import clebsch_gordan
>>> clebsch_gordan(S(3)/2, S(1)/2, 2, S(3)/2, S(1)/2, 2)
1
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, S(3)/2, -S(1)/2, 1)
sqrt(3)/2
>>> clebsch_gordan(S(3)/2, S(1)/2, 1, -S(1)/2, S(1)/2, 0)
-sqrt(2)/2
NOTES:
The Clebsch-Gordan coefficient will be evaluated via its relation
to Wigner 3j symbols:
.. math::
\left\langle j_1 m_1 \; j_2 m_2 | j_3 m_3 \right\rangle
=(-1)^{j_1-j_2+m_3} \sqrt{2j_3+1}
\operatorname{Wigner3j}(j_1,j_2,j_3,m_1,m_2,-m_3)
See also the documentation on Wigner 3j symbols which exhibit much
higher symmetry relations than the Clebsch-Gordan coefficient.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
res = (-1) ** sympify(j_1 - j_2 + m_3) * sqrt(2 * j_3 + 1) * \
wigner_3j(j_1, j_2, j_3, m_1, m_2, -m_3)
return res
def _big_delta_coeff(aa, bb, cc, prec=None):
r"""
Calculates the Delta coefficient of the 3 angular momenta for
Racah symbols. Also checks that the differences are of integer
value.
INPUT:
- ``aa`` - first angular momentum, integer or half integer
- ``bb`` - second angular momentum, integer or half integer
- ``cc`` - third angular momentum, integer or half integer
- ``prec`` - precision of the ``sqrt()`` calculation
OUTPUT:
double - Value of the Delta coefficient
EXAMPLES::
sage: from sage.functions.wigner import _big_delta_coeff
sage: _big_delta_coeff(1,1,1)
1/2*sqrt(1/6)
"""
if int(aa + bb - cc) != (aa + bb - cc):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if int(aa + cc - bb) != (aa + cc - bb):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if int(bb + cc - aa) != (bb + cc - aa):
raise ValueError("j values must be integer or half integer and fulfill the triangle relation")
if (aa + bb - cc) < 0:
return 0
if (aa + cc - bb) < 0:
return 0
if (bb + cc - aa) < 0:
return 0
maxfact = max(aa + bb - cc, aa + cc - bb, bb + cc - aa, aa + bb + cc + 1)
_calc_factlist(maxfact)
argsqrt = Integer(_Factlist[int(aa + bb - cc)] *
_Factlist[int(aa + cc - bb)] *
_Factlist[int(bb + cc - aa)]) / \
Integer(_Factlist[int(aa + bb + cc + 1)])
ressqrt = sqrt(argsqrt)
if prec:
ressqrt = ressqrt.evalf(prec).as_real_imag()[0]
return ressqrt
def racah(aa, bb, cc, dd, ee, ff, prec=None):
r"""
Calculate the Racah symbol `W(a,b,c,d;e,f)`.
INPUT:
- ``a``, ..., ``f`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import racah
>>> racah(3,3,3,3,3,3)
-1/14
NOTES:
The Racah symbol is related to the Wigner 6j symbol:
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
Please see the 6j symbol for its much richer symmetries and for
additional properties.
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version
"""
prefac = _big_delta_coeff(aa, bb, ee, prec) * \
_big_delta_coeff(cc, dd, ee, prec) * \
_big_delta_coeff(aa, cc, ff, prec) * \
_big_delta_coeff(bb, dd, ff, prec)
if prefac == 0:
return 0
imin = max(aa + bb + ee, cc + dd + ee, aa + cc + ff, bb + dd + ff)
imax = min(aa + bb + cc + dd, aa + dd + ee + ff, bb + cc + ee + ff)
maxfact = max(imax + 1, aa + bb + cc + dd, aa + dd + ee + ff,
bb + cc + ee + ff)
_calc_factlist(maxfact)
sumres = 0
for kk in range(int(imin), int(imax) + 1):
den = _Factlist[int(kk - aa - bb - ee)] * \
_Factlist[int(kk - cc - dd - ee)] * \
_Factlist[int(kk - aa - cc - ff)] * \
_Factlist[int(kk - bb - dd - ff)] * \
_Factlist[int(aa + bb + cc + dd - kk)] * \
_Factlist[int(aa + dd + ee + ff - kk)] * \
_Factlist[int(bb + cc + ee + ff - kk)]
sumres = sumres + Integer((-1) ** kk * _Factlist[kk + 1]) / den
res = prefac * sumres * (-1) ** int(aa + bb + cc + dd)
return res
def wigner_6j(j_1, j_2, j_3, j_4, j_5, j_6, prec=None):
r"""
Calculate the Wigner 6j symbol `\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)`.
INPUT:
- ``j_1``, ..., ``j_6`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import wigner_6j
>>> wigner_6j(3,3,3,3,3,3)
-1/14
>>> wigner_6j(5,5,5,5,5,5)
1/52
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_6j(2.5,2.5,2.5,2.5,2.5,2.5)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_6j(0.5,0.5,1.1,0.5,0.5,1.1)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
NOTES:
The Wigner 6j symbol is related to the Racah symbol but exhibits
more symmetries as detailed below.
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=(-1)^{j_1+j_2+j_4+j_5} W(j_1,j_2,j_5,j_4,j_3,j_6)
The Wigner 6j symbol obeys the following symmetry rules:
- Wigner 6j symbols are left invariant under any permutation of
the columns:
.. math::
\begin{aligned}
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
&=\operatorname{Wigner6j}(j_3,j_1,j_2,j_6,j_4,j_5) \\
&=\operatorname{Wigner6j}(j_2,j_3,j_1,j_5,j_6,j_4) \\
&=\operatorname{Wigner6j}(j_3,j_2,j_1,j_6,j_5,j_4) \\
&=\operatorname{Wigner6j}(j_1,j_3,j_2,j_4,j_6,j_5) \\
&=\operatorname{Wigner6j}(j_2,j_1,j_3,j_5,j_4,j_6)
\end{aligned}
- They are invariant under the exchange of the upper and lower
arguments in each of any two columns, i.e.
.. math::
\operatorname{Wigner6j}(j_1,j_2,j_3,j_4,j_5,j_6)
=\operatorname{Wigner6j}(j_1,j_5,j_6,j_4,j_2,j_3)
=\operatorname{Wigner6j}(j_4,j_2,j_6,j_1,j_5,j_3)
=\operatorname{Wigner6j}(j_4,j_5,j_3,j_1,j_2,j_6)
- additional 6 symmetries [Regge59]_ giving rise to 144 symmetries
in total
- only non-zero if any triple of `j`'s fulfill a triangle relation
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 6j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
res = (-1) ** int(j_1 + j_2 + j_4 + j_5) * \
racah(j_1, j_2, j_5, j_4, j_3, j_6, prec)
return res
def wigner_9j(j_1, j_2, j_3, j_4, j_5, j_6, j_7, j_8, j_9, prec=None):
r"""
Calculate the Wigner 9j symbol
`\operatorname{Wigner9j}(j_1,j_2,j_3,j_4,j_5,j_6,j_7,j_8,j_9)`.
INPUT:
- ``j_1``, ..., ``j_9`` - integer or half integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import wigner_9j
>>> wigner_9j(1,1,1, 1,1,1, 1,1,0 ,prec=64) # ==1/18
0.05555555...
>>> wigner_9j(1/2,1/2,0, 1/2,3/2,1, 0,1,1 ,prec=64) # ==1/6
0.1666666...
It is an error to have arguments that are not integer or half
integer values or do not fulfill the triangle relation::
sage: wigner_9j(0.5,0.5,0.5, 0.5,0.5,0.5, 0.5,0.5,0.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
sage: wigner_9j(1,1,1, 0.5,1,1.5, 0.5,1,2.5,prec=64)
Traceback (most recent call last):
...
ValueError: j values must be integer or half integer and fulfill the triangle relation
ALGORITHM:
This function uses the algorithm of [Edmonds74]_ to calculate the
value of the 3j symbol exactly. Note that the formula contains
alternating sums over large factorials and is therefore unsuitable
for finite precision arithmetic and only useful for a computer
algebra system [Rasch03]_.
"""
imax = int(min(j_1 + j_9, j_2 + j_6, j_4 + j_8) * 2)
imin = imax % 2
sumres = 0
for kk in range(imin, int(imax) + 1, 2):
sumres = sumres + (kk + 1) * \
racah(j_1, j_2, j_9, j_6, j_3, kk / 2, prec) * \
racah(j_4, j_6, j_8, j_2, j_5, kk / 2, prec) * \
racah(j_1, j_4, j_9, j_8, j_7, kk / 2, prec)
return sumres
def gaunt(l_1, l_2, l_3, m_1, m_2, m_3, prec=None):
r"""
Calculate the Gaunt coefficient.
The Gaunt coefficient is defined as the integral over three
spherical harmonics:
.. math::
\begin{aligned}
\operatorname{Gaunt}(l_1,l_2,l_3,m_1,m_2,m_3)
&=\int Y_{l_1,m_1}(\Omega)
Y_{l_2,m_2}(\Omega) Y_{l_3,m_3}(\Omega) \,d\Omega \\
&=\sqrt{\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}}
\operatorname{Wigner3j}(l_1,l_2,l_3,0,0,0)
\operatorname{Wigner3j}(l_1,l_2,l_3,m_1,m_2,m_3)
\end{aligned}
INPUT:
- ``l_1``, ``l_2``, ``l_3``, ``m_1``, ``m_2``, ``m_3`` - integer
- ``prec`` - precision, default: ``None``. Providing a precision can
drastically speed up the calculation.
OUTPUT:
Rational number times the square root of a rational number
(if ``prec=None``), or real number if a precision is given.
Examples
========
>>> from sympy.physics.wigner import gaunt
>>> gaunt(1,0,1,1,0,-1)
-1/(2*sqrt(pi))
>>> gaunt(1000,1000,1200,9,3,-12).n(64)
0.00689500421922113448...
It is an error to use non-integer values for `l` and `m`::
sage: gaunt(1.2,0,1.2,0,0,0)
Traceback (most recent call last):
...
ValueError: l values must be integer
sage: gaunt(1,0,1,1.1,0,-1.1)
Traceback (most recent call last):
...
ValueError: m values must be integer
NOTES:
The Gaunt coefficient obeys the following symmetry rules:
- invariant under any permutation of the columns
.. math::
\begin{aligned}
Y(l_1,l_2,l_3,m_1,m_2,m_3)
&=Y(l_3,l_1,l_2,m_3,m_1,m_2) \\
&=Y(l_2,l_3,l_1,m_2,m_3,m_1) \\
&=Y(l_3,l_2,l_1,m_3,m_2,m_1) \\
&=Y(l_1,l_3,l_2,m_1,m_3,m_2) \\
&=Y(l_2,l_1,l_3,m_2,m_1,m_3)
\end{aligned}
- invariant under space inflection, i.e.
.. math::
Y(l_1,l_2,l_3,m_1,m_2,m_3)
=Y(l_1,l_2,l_3,-m_1,-m_2,-m_3)
- symmetric with respect to the 72 Regge symmetries as inherited
for the `3j` symbols [Regge58]_
- zero for `l_1`, `l_2`, `l_3` not fulfilling triangle relation
- zero for violating any one of the conditions: `l_1 \ge |m_1|`,
`l_2 \ge |m_2|`, `l_3 \ge |m_3|`
- non-zero only for an even sum of the `l_i`, i.e.
`L = l_1 + l_2 + l_3 = 2n` for `n` in `\mathbb{N}`
ALGORITHM:
This function uses the algorithm of [Liberatodebrito82]_ to
calculate the value of the Gaunt coefficient exactly. Note that
the formula contains alternating sums over large factorials and is
therefore unsuitable for finite precision arithmetic and only
useful for a computer algebra system [Rasch03]_.
AUTHORS:
- Jens Rasch (2009-03-24): initial version for Sage
"""
if int(l_1) != l_1 or int(l_2) != l_2 or int(l_3) != l_3:
raise ValueError("l values must be integer")
if int(m_1) != m_1 or int(m_2) != m_2 or int(m_3) != m_3:
raise ValueError("m values must be integer")
sumL = l_1 + l_2 + l_3
bigL = sumL // 2
a1 = l_1 + l_2 - l_3
if a1 < 0:
return 0
a2 = l_1 - l_2 + l_3
if a2 < 0:
return 0
a3 = -l_1 + l_2 + l_3
if a3 < 0:
return 0
if sumL % 2:
return 0
if (m_1 + m_2 + m_3) != 0:
return 0
if (abs(m_1) > l_1) or (abs(m_2) > l_2) or (abs(m_3) > l_3):
return 0
imin = max(-l_3 + l_1 + m_2, -l_3 + l_2 - m_1, 0)
imax = min(l_2 + m_2, l_1 - m_1, l_1 + l_2 - l_3)
maxfact = max(l_1 + l_2 + l_3 + 1, imax + 1)
_calc_factlist(maxfact)
argsqrt = (2 * l_1 + 1) * (2 * l_2 + 1) * (2 * l_3 + 1) * \
_Factlist[l_1 - m_1] * _Factlist[l_1 + m_1] * _Factlist[l_2 - m_2] * \
_Factlist[l_2 + m_2] * _Factlist[l_3 - m_3] * _Factlist[l_3 + m_3] / \
(4*pi)
ressqrt = sqrt(argsqrt)
prefac = Integer(_Factlist[bigL] * _Factlist[l_2 - l_1 + l_3] *
_Factlist[l_1 - l_2 + l_3] * _Factlist[l_1 + l_2 - l_3])/ \
_Factlist[2 * bigL + 1]/ \
(_Factlist[bigL - l_1] *
_Factlist[bigL - l_2] * _Factlist[bigL - l_3])
sumres = 0
for ii in range(int(imin), int(imax) + 1):
den = _Factlist[ii] * _Factlist[ii + l_3 - l_1 - m_2] * \
_Factlist[l_2 + m_2 - ii] * _Factlist[l_1 - ii - m_1] * \
_Factlist[ii + l_3 - l_2 + m_1] * _Factlist[l_1 + l_2 - l_3 - ii]
sumres = sumres + Integer((-1) ** ii) / den
res = ressqrt * prefac * sumres * Integer((-1) ** (bigL + l_3 + m_1 - m_2))
if prec is not None:
res = res.n(prec)
return res
class Wigner3j(Function):
def doit(self, **hints):
if all(obj.is_number for obj in self.args):
return wigner_3j(*self.args)
else:
return self
def dot_rot_grad_Ynm(j, p, l, m, theta, phi):
r"""
Returns dot product of rotational gradients of spherical harmonics.
This function returns the right hand side of the following expression:
.. math ::
\vec{R}Y{_j^{p}} \cdot \vec{R}Y{_l^{m}} = (-1)^{m+p}
\sum\limits_{k=|l-j|}^{l+j}Y{_k^{m+p}} * \alpha_{l,m,j,p,k} *
\frac{1}{2} (k^2-j^2-l^2+k-j-l)
Arguments
=========
j, p, l, m .... indices in spherical harmonics (expressions or integers)
theta, phi .... angle arguments in spherical harmonics
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.wigner import dot_rot_grad_Ynm
>>> theta, phi = symbols("theta phi")
>>> dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit()
3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
"""
j = sympify(j)
p = sympify(p)
l = sympify(l)
m = sympify(m)
theta = sympify(theta)
phi = sympify(phi)
k = Dummy("k")
def alpha(l,m,j,p,k):
return sqrt((2*l+1)*(2*j+1)*(2*k+1)/(4*pi)) * \
Wigner3j(j, l, k, S.Zero, S.Zero, S.Zero) * \
Wigner3j(j, l, k, p, m, -m-p)
return (S.NegativeOne)**(m+p) * Sum(Ynm(k, m+p, theta, phi) * alpha(l,m,j,p,k) / 2 \
*(k**2-j**2-l**2+k-j-l), (k, abs(l-j), l+j))
def wigner_d_small(J, beta):
"""Return the small Wigner d matrix for angular momentum J.
INPUT:
- ``J`` - An integer, half-integer, or sympy symbol for the total angular
momentum of the angular momentum space being rotated.
- ``beta`` - A real number representing the Euler angle of rotation about
the so-called line of nodes. See [Edmonds74]_.
OUTPUT:
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of `J_z`).
.. math ::
\\mathcal{d}_{\\beta} = \\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
The components are calculated using the general form [Edmonds74]_,
equation 4.1.15.
Examples
========
>>> from sympy import Integer, symbols, pi, pprint
>>> from sympy.physics.wigner import wigner_d_small
>>> half = 1/Integer(2)
>>> beta = symbols("beta", real=True)
>>> pprint(wigner_d_small(half, beta), use_unicode=True)
⎡ ⎛β⎞ ⎛β⎞⎤
⎢cos⎜─⎟ sin⎜─⎟⎥
⎢ ⎝2⎠ ⎝2⎠⎥
⎢ ⎥
⎢ ⎛β⎞ ⎛β⎞⎥
⎢-sin⎜─⎟ cos⎜─⎟⎥
⎣ ⎝2⎠ ⎝2⎠⎦
>>> pprint(wigner_d_small(2*half, beta), use_unicode=True)
⎡ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎤
⎢ cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟ sin ⎜─⎟ ⎥
⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎥
⎢ ⎥
⎢ ⎛β⎞ ⎛β⎞ 2⎛β⎞ 2⎛β⎞ ⎛β⎞ ⎛β⎞⎥
⎢-√2⋅sin⎜─⎟⋅cos⎜─⎟ - sin ⎜─⎟ + cos ⎜─⎟ √2⋅sin⎜─⎟⋅cos⎜─⎟⎥
⎢ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠⎥
⎢ ⎥
⎢ 2⎛β⎞ ⎛β⎞ ⎛β⎞ 2⎛β⎞ ⎥
⎢ sin ⎜─⎟ -√2⋅sin⎜─⎟⋅cos⎜─⎟ cos ⎜─⎟ ⎥
⎣ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎝2⎠ ⎦
From table 4 in [Edmonds74]_
>>> pprint(wigner_d_small(half, beta).subs({beta:pi/2}), use_unicode=True)
⎡ √2 √2⎤
⎢ ── ──⎥
⎢ 2 2 ⎥
⎢ ⎥
⎢-√2 √2⎥
⎢──── ──⎥
⎣ 2 2 ⎦
>>> pprint(wigner_d_small(2*half, beta).subs({beta:pi/2}),
... use_unicode=True)
⎡ √2 ⎤
⎢1/2 ── 1/2⎥
⎢ 2 ⎥
⎢ ⎥
⎢-√2 √2 ⎥
⎢──── 0 ── ⎥
⎢ 2 2 ⎥
⎢ ⎥
⎢ -√2 ⎥
⎢1/2 ──── 1/2⎥
⎣ 2 ⎦
>>> pprint(wigner_d_small(3*half, beta).subs({beta:pi/2}),
... use_unicode=True)
⎡ √2 √6 √6 √2⎤
⎢ ── ── ── ──⎥
⎢ 4 4 4 4 ⎥
⎢ ⎥
⎢-√6 -√2 √2 √6⎥
⎢──── ──── ── ──⎥
⎢ 4 4 4 4 ⎥
⎢ ⎥
⎢ √6 -√2 -√2 √6⎥
⎢ ── ──── ──── ──⎥
⎢ 4 4 4 4 ⎥
⎢ ⎥
⎢-√2 √6 -√6 √2⎥
⎢──── ── ──── ──⎥
⎣ 4 4 4 4 ⎦
>>> pprint(wigner_d_small(4*half, beta).subs({beta:pi/2}),
... use_unicode=True)
⎡ √6 ⎤
⎢1/4 1/2 ── 1/2 1/4⎥
⎢ 4 ⎥
⎢ ⎥
⎢-1/2 -1/2 0 1/2 1/2⎥
⎢ ⎥
⎢ √6 √6 ⎥
⎢ ── 0 -1/2 0 ── ⎥
⎢ 4 4 ⎥
⎢ ⎥
⎢-1/2 1/2 0 -1/2 1/2⎥
⎢ ⎥
⎢ √6 ⎥
⎢1/4 -1/2 ── -1/2 1/4⎥
⎣ 4 ⎦
"""
M = [J-i for i in range(2*J+1)]
d = zeros(2*J+1)
for i, Mi in enumerate(M):
for j, Mj in enumerate(M):
# We get the maximum and minimum value of sigma.
sigmamax = max([-Mi-Mj, J-Mj])
sigmamin = min([0, J-Mi])
dij = sqrt(factorial(J+Mi)*factorial(J-Mi) /
factorial(J+Mj)/factorial(J-Mj))
terms = [(-1)**(J-Mi-s) *
binomial(J+Mj, J-Mi-s) *
binomial(J-Mj, s) *
cos(beta/2)**(2*s+Mi+Mj) *
sin(beta/2)**(2*J-2*s-Mj-Mi)
for s in range(sigmamin, sigmamax+1)]
d[i, j] = dij*Add(*terms)
return ImmutableMatrix(d)
def wigner_d(J, alpha, beta, gamma):
"""Return the Wigner D matrix for angular momentum J.
INPUT:
- ``J`` - An integer, half-integer, or sympy symbol for the total angular
momentum of the angular momentum space being rotated.
- ``alpha``, ``beta``, ``gamma`` - Real numbers representing the Euler
angles of rotation about the so-called vertical, line of nodes, and
figure axes. See [Edmonds74]_.
OUTPUT:
A matrix representing the corresponding Euler angle rotation( in the basis
of eigenvectors of `J_z`).
.. math ::
\\mathcal{D}_{\\alpha \\beta \\gamma} =
\\exp\\big( \\frac{i\\alpha}{\\hbar} J_z\\big)
\\exp\\big( \\frac{i\\beta}{\\hbar} J_y\\big)
\\exp\\big( \\frac{i\\gamma}{\\hbar} J_z\\big)
The components are calculated using the general form [Edmonds74]_,
equation 4.1.12.
Examples
========
The simplest possible example:
>>> from sympy.physics.wigner import wigner_d
>>> from sympy import Integer, symbols, pprint
>>> half = 1/Integer(2)
>>> alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
>>> pprint(wigner_d(half, alpha, beta, gamma), use_unicode=True)
⎡ ⅈ⋅α ⅈ⋅γ ⅈ⋅α -ⅈ⋅γ ⎤
⎢ ─── ─── ─── ───── ⎥
⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞ ⎥
⎢ ℯ ⋅ℯ ⋅cos⎜─⎟ ℯ ⋅ℯ ⋅sin⎜─⎟ ⎥
⎢ ⎝2⎠ ⎝2⎠ ⎥
⎢ ⎥
⎢ -ⅈ⋅α ⅈ⋅γ -ⅈ⋅α -ⅈ⋅γ ⎥
⎢ ───── ─── ───── ───── ⎥
⎢ 2 2 ⎛β⎞ 2 2 ⎛β⎞⎥
⎢-ℯ ⋅ℯ ⋅sin⎜─⎟ ℯ ⋅ℯ ⋅cos⎜─⎟⎥
⎣ ⎝2⎠ ⎝2⎠⎦
"""
d = wigner_d_small(J, beta)
M = [J-i for i in range(2*J+1)]
D = [[exp(I*Mi*alpha)*d[i, j]*exp(I*Mj*gamma)
for j, Mj in enumerate(M)] for i, Mi in enumerate(M)]
return ImmutableMatrix(D)
|
7ea75b019ce2e829725a2b807ec5689caf47665583ea951b8a115c5dd4f7ed96 | """
This module implements Pauli algebra by subclassing Symbol. Only algebraic
properties of Pauli matrices are used (we don't use the Matrix class).
See the documentation to the class Pauli for examples.
References
~~~~~~~~~~
.. [1] https://en.wikipedia.org/wiki/Pauli_matrices
"""
from sympy import Symbol, I, Mul, Pow, Add
from sympy.physics.quantum import TensorProduct
__all__ = ['evaluate_pauli_product']
def delta(i, j):
"""
Returns 1 if i == j, else 0.
This is used in the multiplication of Pauli matrices.
Examples
========
>>> from sympy.physics.paulialgebra import delta
>>> delta(1, 1)
1
>>> delta(2, 3)
0
"""
if i == j:
return 1
else:
return 0
def epsilon(i, j, k):
"""
Return 1 if i,j,k is equal to (1,2,3), (2,3,1), or (3,1,2);
-1 if i,j,k is equal to (1,3,2), (3,2,1), or (2,1,3);
else return 0.
This is used in the multiplication of Pauli matrices.
Examples
========
>>> from sympy.physics.paulialgebra import epsilon
>>> epsilon(1, 2, 3)
1
>>> epsilon(1, 3, 2)
-1
"""
if (i, j, k) in [(1, 2, 3), (2, 3, 1), (3, 1, 2)]:
return 1
elif (i, j, k) in [(1, 3, 2), (3, 2, 1), (2, 1, 3)]:
return -1
else:
return 0
class Pauli(Symbol):
"""
The class representing algebraic properties of Pauli matrices.
The symbol used to display the Pauli matrices can be changed with an
optional parameter ``label="sigma"``. Pauli matrices with different
``label`` attributes cannot multiply together.
If the left multiplication of symbol or number with Pauli matrix is needed,
please use parentheses to separate Pauli and symbolic multiplication
(for example: 2*I*(Pauli(3)*Pauli(2))).
Another variant is to use evaluate_pauli_product function to evaluate
the product of Pauli matrices and other symbols (with commutative
multiply rules).
See Also
========
evaluate_pauli_product
Examples
========
>>> from sympy.physics.paulialgebra import Pauli
>>> Pauli(1)
sigma1
>>> Pauli(1)*Pauli(2)
I*sigma3
>>> Pauli(1)*Pauli(1)
1
>>> Pauli(3)**4
1
>>> Pauli(1)*Pauli(2)*Pauli(3)
I
>>> from sympy.physics.paulialgebra import Pauli
>>> Pauli(1, label="tau")
tau1
>>> Pauli(1)*Pauli(2, label="tau")
sigma1*tau2
>>> Pauli(1, label="tau")*Pauli(2, label="tau")
I*tau3
>>> from sympy import I
>>> I*(Pauli(2)*Pauli(3))
-sigma1
>>> from sympy.physics.paulialgebra import evaluate_pauli_product
>>> f = I*Pauli(2)*Pauli(3)
>>> f
I*sigma2*sigma3
>>> evaluate_pauli_product(f)
-sigma1
"""
__slots__ = ("i", "label")
def __new__(cls, i, label="sigma"):
if not i in [1, 2, 3]:
raise IndexError("Invalid Pauli index")
obj = Symbol.__new__(cls, "%s%d" %(label,i), commutative=False, hermitian=True)
obj.i = i
obj.label = label
return obj
def __getnewargs__(self):
return (self.i,self.label,)
# FIXME don't work for -I*Pauli(2)*Pauli(3)
def __mul__(self, other):
if isinstance(other, Pauli):
j = self.i
k = other.i
jlab = self.label
klab = other.label
if jlab == klab:
return delta(j, k) \
+ I*epsilon(j, k, 1)*Pauli(1,jlab) \
+ I*epsilon(j, k, 2)*Pauli(2,jlab) \
+ I*epsilon(j, k, 3)*Pauli(3,jlab)
return super().__mul__(other)
def _eval_power(b, e):
if e.is_Integer and e.is_positive:
return super().__pow__(int(e) % 2)
def evaluate_pauli_product(arg):
'''Help function to evaluate Pauli matrices product
with symbolic objects
Parameters
==========
arg: symbolic expression that contains Paulimatrices
Examples
========
>>> from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product
>>> from sympy import I
>>> evaluate_pauli_product(I*Pauli(1)*Pauli(2))
-sigma3
>>> from sympy.abc import x
>>> evaluate_pauli_product(x**2*Pauli(2)*Pauli(1))
-I*x**2*sigma3
'''
start = arg
end = arg
if isinstance(arg, Pow) and isinstance(arg.args[0], Pauli):
if arg.args[1].is_odd:
return arg.args[0]
else:
return 1
if isinstance(arg, Add):
return Add(*[evaluate_pauli_product(part) for part in arg.args])
if isinstance(arg, TensorProduct):
return TensorProduct(*[evaluate_pauli_product(part) for part in arg.args])
elif not(isinstance(arg, Mul)):
return arg
while ((not(start == end)) | ((start == arg) & (end == arg))):
start = end
tmp = start.as_coeff_mul()
sigma_product = 1
com_product = 1
keeper = 1
for el in tmp[1]:
if isinstance(el, Pauli):
sigma_product *= el
elif not(el.is_commutative):
if isinstance(el, Pow) and isinstance(el.args[0], Pauli):
if el.args[1].is_odd:
sigma_product *= el.args[0]
elif isinstance(el, TensorProduct):
keeper = keeper*sigma_product*\
TensorProduct(
*[evaluate_pauli_product(part) for part in el.args]
)
sigma_product = 1
else:
keeper = keeper*sigma_product*el
sigma_product = 1
else:
com_product *= el
end = (tmp[0]*keeper*sigma_product*com_product)
if end == arg: break
return end
|
76b203fc17abe71376c95ce0b72b831b897ad997ce954543bb2060ae6e98cfd9 | from sympy.core import S, pi, Rational
from sympy.functions import assoc_laguerre, sqrt, exp, factorial, factorial2
def R_nl(n, l, nu, r):
"""
Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic
oscillator.
``n``
the "nodal" quantum number. Corresponds to the number of nodes in
the wavefunction. n >= 0
``l``
the quantum number for orbital angular momentum
``nu``
mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass
and `omega` the frequency of the oscillator.
(in atomic units nu == omega/2)
``r``
Radial coordinate
Examples
========
>>> from sympy.physics.sho import R_nl
>>> from sympy.abc import r, nu, l
>>> R_nl(0, 0, 1, r)
2*2**(3/4)*exp(-r**2)/pi**(1/4)
>>> R_nl(1, 0, 1, r)
4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))
l, nu and r may be symbolic:
>>> R_nl(0, 0, nu, r)
2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4)
>>> R_nl(0, l, 1, r)
r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)
The normalization of the radial wavefunction is:
>>> from sympy import Integral, oo
>>> Integral(R_nl(0, 0, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 0, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 1, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
"""
n, l, nu, r = map(S, [n, l, nu, r])
# formula uses n >= 1 (instead of nodal n >= 0)
n = n + 1
C = sqrt(
((2*nu)**(l + Rational(3, 2))*2**(n + l + 1)*factorial(n - 1))/
(sqrt(pi)*(factorial2(2*n + 2*l - 1)))
)
return C*r**(l)*exp(-nu*r**2)*assoc_laguerre(n - 1, l + S.Half, 2*nu*r**2)
def E_nl(n, l, hw):
"""
Returns the Energy of an isotropic harmonic oscillator
``n``
the "nodal" quantum number
``l``
the orbital angular momentum
``hw``
the harmonic oscillator parameter.
The unit of the returned value matches the unit of hw, since the energy is
calculated as:
E_nl = (2*n + l + 3/2)*hw
Examples
========
>>> from sympy.physics.sho import E_nl
>>> from sympy import symbols
>>> x, y, z = symbols('x, y, z')
>>> E_nl(x, y, z)
z*(2*x + y + 3/2)
"""
return (2*n + l + Rational(3, 2))*hw
|
e2ae13b95c239fee8da86232b706d7152151f976d6f020b9cbe8be1768c5c444 | from sympy.core import S, pi, Rational
from sympy.functions import hermite, sqrt, exp, factorial, Abs
from sympy.physics.quantum.constants import hbar
def psi_n(n, x, m, omega):
"""
Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.
``n``
the "nodal" quantum number. Corresponds to the number of nodes in the
wavefunction. n >= 0
``x``
x coordinate
``m``
mass of the particle
``omega``
angular frequency of the oscillator
Examples
========
>>> from sympy.physics.qho_1d import psi_n
>>> from sympy.abc import m, x, omega
>>> psi_n(0, x, m, omega)
(m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))
"""
# sympify arguments
n, x, m, omega = map(S, [n, x, m, omega])
nu = m * omega / hbar
# normalization coefficient
C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n)))
return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x)
def E_n(n, omega):
"""
Returns the Energy of the One-dimensional harmonic oscillator
``n``
the "nodal" quantum number
``omega``
the harmonic oscillator angular frequency
The unit of the returned value matches the unit of hw, since the energy is
calculated as:
E_n = hbar * omega*(n + 1/2)
Examples
========
>>> from sympy.physics.qho_1d import E_n
>>> from sympy.abc import x, omega
>>> E_n(x, omega)
hbar*omega*(x + 1/2)
"""
return hbar * omega * (n + S.Half)
def coherent_state(n, alpha):
"""
Returns <n|alpha> for the coherent states of 1D harmonic oscillator.
See https://en.wikipedia.org/wiki/Coherent_states
``n``
the "nodal" quantum number
``alpha``
the eigen value of annihilation operator
"""
return exp(- Abs(alpha)**2/2)*(alpha**n)/sqrt(factorial(n))
|
7001161b2b42eaa29b2a0b6e17f823cf3aa197e2515b5ba616707e0fc6632511 | from sympy import factorial, sqrt, exp, S, assoc_laguerre, Float
from sympy.functions.special.spherical_harmonics import Ynm
def R_nl(n, l, r, Z=1):
"""
Returns the Hydrogen radial wavefunction R_{nl}.
n, l
quantum numbers 'n' and 'l'
r
radial coordinate
Z
atomic number (1 for Hydrogen, 2 for Helium, ...)
Everything is in Hartree atomic units.
Examples
========
>>> from sympy.physics.hydrogen import R_nl
>>> from sympy.abc import r, Z
>>> R_nl(1, 0, r, Z)
2*sqrt(Z**3)*exp(-Z*r)
>>> R_nl(2, 0, r, Z)
sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4
>>> R_nl(2, 1, r, Z)
sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12
For Hydrogen atom, you can just use the default value of Z=1:
>>> R_nl(1, 0, r)
2*exp(-r)
>>> R_nl(2, 0, r)
sqrt(2)*(2 - r)*exp(-r/2)/4
>>> R_nl(3, 0, r)
2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27
For Silver atom, you would use Z=47:
>>> R_nl(1, 0, r, Z=47)
94*sqrt(47)*exp(-47*r)
>>> R_nl(2, 0, r, Z=47)
47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4
>>> R_nl(3, 0, r, Z=47)
94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27
The normalization of the radial wavefunction is:
>>> from sympy import integrate, oo
>>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo))
1
It holds for any atomic number:
>>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo))
1
>>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo))
1
"""
# sympify arguments
n, l, r, Z = map(S, [n, l, r, Z])
# radial quantum number
n_r = n - l - 1
# rescaled "r"
a = 1/Z # Bohr radius
r0 = 2 * r / (n * a)
# normalization coefficient
C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n + l)))
# This is an equivalent normalization coefficient, that can be found in
# some books. Both coefficients seem to be the same fast:
# C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l)))
return C * r0**l * assoc_laguerre(n_r, 2*l + 1, r0).expand() * exp(-r0/2)
def Psi_nlm(n, l, m, r, phi, theta, Z=1):
"""
Returns the Hydrogen wave function psi_{nlm}. It's the product of
the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}.
n, l, m
quantum numbers 'n', 'l' and 'm'
r
radial coordinate
phi
azimuthal angle
theta
polar angle
Z
atomic number (1 for Hydrogen, 2 for Helium, ...)
Everything is in Hartree atomic units.
Examples
========
>>> from sympy.physics.hydrogen import Psi_nlm
>>> from sympy import Symbol
>>> r=Symbol("r", real=True, positive=True)
>>> phi=Symbol("phi", real=True)
>>> theta=Symbol("theta", real=True)
>>> Z=Symbol("Z", positive=True, integer=True, nonzero=True)
>>> Psi_nlm(1,0,0,r,phi,theta,Z)
Z**(3/2)*exp(-Z*r)/sqrt(pi)
>>> Psi_nlm(2,1,1,r,phi,theta,Z)
-Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi))
Integrating the absolute square of a hydrogen wavefunction psi_{nlm}
over the whole space leads 1.
The normalization of the hydrogen wavefunctions Psi_nlm is:
>>> from sympy import integrate, conjugate, pi, oo, sin
>>> wf=Psi_nlm(2,1,1,r,phi,theta,Z)
>>> abs_sqrd=wf*conjugate(wf)
>>> jacobi=r**2*sin(theta)
>>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi))
1
"""
# sympify arguments
n, l, m, r, phi, theta, Z = map(S, [n, l, m, r, phi, theta, Z])
# check if values for n,l,m make physically sense
if n.is_integer and n < 1:
raise ValueError("'n' must be positive integer")
if l.is_integer and not (n > l):
raise ValueError("'n' must be greater than 'l'")
if m.is_integer and not (abs(m) <= l):
raise ValueError("|'m'| must be less or equal 'l'")
# return the hydrogen wave function
return R_nl(n, l, r, Z)*Ynm(l, m, theta, phi).expand(func=True)
def E_nl(n, Z=1):
"""
Returns the energy of the state (n, l) in Hartree atomic units.
The energy doesn't depend on "l".
Examples
========
>>> from sympy.physics.hydrogen import E_nl
>>> from sympy.abc import n, Z
>>> E_nl(n, Z)
-Z**2/(2*n**2)
>>> E_nl(1)
-1/2
>>> E_nl(2)
-1/8
>>> E_nl(3)
-1/18
>>> E_nl(3, 47)
-2209/18
"""
n, Z = S(n), S(Z)
if n.is_integer and (n < 1):
raise ValueError("'n' must be positive integer")
return -Z**2/(2*n**2)
def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")):
"""
Returns the relativistic energy of the state (n, l, spin) in Hartree atomic
units.
The energy is calculated from the Dirac equation. The rest mass energy is
*not* included.
n, l
quantum numbers 'n' and 'l'
spin_up
True if the electron spin is up (default), otherwise down
Z
atomic number (1 for Hydrogen, 2 for Helium, ...)
c
speed of light in atomic units. Default value is 137.035999037,
taken from: http://arxiv.org/abs/1012.3627
Examples
========
>>> from sympy.physics.hydrogen import E_nl_dirac
>>> E_nl_dirac(1, 0)
-0.500006656595360
>>> E_nl_dirac(2, 0)
-0.125002080189006
>>> E_nl_dirac(2, 1)
-0.125000416028342
>>> E_nl_dirac(2, 1, False)
-0.125002080189006
>>> E_nl_dirac(3, 0)
-0.0555562951740285
>>> E_nl_dirac(3, 1)
-0.0555558020932949
>>> E_nl_dirac(3, 1, False)
-0.0555562951740285
>>> E_nl_dirac(3, 2)
-0.0555556377366884
>>> E_nl_dirac(3, 2, False)
-0.0555558020932949
"""
n, l, Z, c = map(S, [n, l, Z, c])
if not (l >= 0):
raise ValueError("'l' must be positive or zero")
if not (n > l):
raise ValueError("'n' must be greater than 'l'")
if (l == 0 and spin_up is False):
raise ValueError("Spin must be up for l==0.")
# skappa is sign*kappa, where sign contains the correct sign
if spin_up:
skappa = -l - 1
else:
skappa = -l
beta = sqrt(skappa**2 - Z**2/c**2)
return c**2/sqrt(1 + Z**2/(n + skappa + beta)**2/c**2) - c**2
|
a90e85b4000c2d8a000f2db7b81e094c1375d053debdb905422309b14831645f | """Known matrices related to physics"""
from sympy import Matrix, I, pi, sqrt
from sympy.functions import exp
def msigma(i):
r"""Returns a Pauli matrix `\sigma_i` with `i=1,2,3`
References
==========
.. [1] https://en.wikipedia.org/wiki/Pauli_matrices
Examples
========
>>> from sympy.physics.matrices import msigma
>>> msigma(1)
Matrix([
[0, 1],
[1, 0]])
"""
if i == 1:
mat = ( (
(0, 1),
(1, 0)
) )
elif i == 2:
mat = ( (
(0, -I),
(I, 0)
) )
elif i == 3:
mat = ( (
(1, 0),
(0, -1)
) )
else:
raise IndexError("Invalid Pauli index")
return Matrix(mat)
def pat_matrix(m, dx, dy, dz):
"""Returns the Parallel Axis Theorem matrix to translate the inertia
matrix a distance of `(dx, dy, dz)` for a body of mass m.
Examples
========
To translate a body having a mass of 2 units a distance of 1 unit along
the `x`-axis we get:
>>> from sympy.physics.matrices import pat_matrix
>>> pat_matrix(2, 1, 0, 0)
Matrix([
[0, 0, 0],
[0, 2, 0],
[0, 0, 2]])
"""
dxdy = -dx*dy
dydz = -dy*dz
dzdx = -dz*dx
dxdx = dx**2
dydy = dy**2
dzdz = dz**2
mat = ((dydy + dzdz, dxdy, dzdx),
(dxdy, dxdx + dzdz, dydz),
(dzdx, dydz, dydy + dxdx))
return m*Matrix(mat)
def mgamma(mu, lower=False):
r"""Returns a Dirac gamma matrix `\gamma^\mu` in the standard
(Dirac) representation.
If you want `\gamma_\mu`, use ``gamma(mu, True)``.
We use a convention:
`\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3`
`\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5`
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_matrices
Examples
========
>>> from sympy.physics.matrices import mgamma
>>> mgamma(1)
Matrix([
[ 0, 0, 0, 1],
[ 0, 0, 1, 0],
[ 0, -1, 0, 0],
[-1, 0, 0, 0]])
"""
if not mu in [0, 1, 2, 3, 5]:
raise IndexError("Invalid Dirac index")
if mu == 0:
mat = (
(1, 0, 0, 0),
(0, 1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1)
)
elif mu == 1:
mat = (
(0, 0, 0, 1),
(0, 0, 1, 0),
(0, -1, 0, 0),
(-1, 0, 0, 0)
)
elif mu == 2:
mat = (
(0, 0, 0, -I),
(0, 0, I, 0),
(0, I, 0, 0),
(-I, 0, 0, 0)
)
elif mu == 3:
mat = (
(0, 0, 1, 0),
(0, 0, 0, -1),
(-1, 0, 0, 0),
(0, 1, 0, 0)
)
elif mu == 5:
mat = (
(0, 0, 1, 0),
(0, 0, 0, 1),
(1, 0, 0, 0),
(0, 1, 0, 0)
)
m = Matrix(mat)
if lower:
if mu in [1, 2, 3, 5]:
m = -m
return m
#Minkowski tensor using the convention (+,-,-,-) used in the Quantum Field
#Theory
minkowski_tensor = Matrix( (
(1, 0, 0, 0),
(0, -1, 0, 0),
(0, 0, -1, 0),
(0, 0, 0, -1)
))
def mdft(n):
r"""
Returns an expression of a discrete Fourier transform as a matrix multiplication.
It is an n X n matrix.
References
==========
.. [1] https://en.wikipedia.org/wiki/DFT_matrix
Examples
========
>>> from sympy.physics.matrices import mdft
>>> mdft(3)
Matrix([
[sqrt(3)/3, sqrt(3)/3, sqrt(3)/3],
[sqrt(3)/3, sqrt(3)*exp(-2*I*pi/3)/3, sqrt(3)*exp(2*I*pi/3)/3],
[sqrt(3)/3, sqrt(3)*exp(2*I*pi/3)/3, sqrt(3)*exp(-2*I*pi/3)/3]])
"""
mat = [[None for x in range(n)] for y in range(n)]
base = exp(-2*pi*I/n)
mat[0] = [1]*n
for i in range(n):
mat[i][0] = 1
for i in range(1, n):
for j in range(i, n):
mat[i][j] = mat[j][i] = base**(i*j)
return (1/sqrt(n))*Matrix(mat)
|
913ad06ea27316f21b8f36af80475fdd8a47110f53a3870837fae454eb8cd317 | """
Second quantization operators and states for bosons.
This follow the formulation of Fetter and Welecka, "Quantum Theory
of Many-Particle Systems."
"""
from collections import defaultdict
from sympy import (Add, Basic, cacheit, Dummy, Expr, Function, I,
KroneckerDelta, Mul, Pow, S, sqrt, Symbol, sympify, Tuple,
zeros)
from sympy.printing.str import StrPrinter
from sympy.utilities.iterables import has_dups
from sympy.utilities import default_sort_key
__all__ = [
'Dagger',
'KroneckerDelta',
'BosonicOperator',
'AnnihilateBoson',
'CreateBoson',
'AnnihilateFermion',
'CreateFermion',
'FockState',
'FockStateBra',
'FockStateKet',
'FockStateBosonKet',
'FockStateBosonBra',
'FockStateFermionKet',
'FockStateFermionBra',
'BBra',
'BKet',
'FBra',
'FKet',
'F',
'Fd',
'B',
'Bd',
'apply_operators',
'InnerProduct',
'BosonicBasis',
'VarBosonicBasis',
'FixedBosonicBasis',
'Commutator',
'matrix_rep',
'contraction',
'wicks',
'NO',
'evaluate_deltas',
'AntiSymmetricTensor',
'substitute_dummies',
'PermutationOperator',
'simplify_index_permutations',
]
class SecondQuantizationError(Exception):
pass
class AppliesOnlyToSymbolicIndex(SecondQuantizationError):
pass
class ContractionAppliesOnlyToFermions(SecondQuantizationError):
pass
class ViolationOfPauliPrinciple(SecondQuantizationError):
pass
class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError):
pass
class WicksTheoremDoesNotApply(SecondQuantizationError):
pass
class Dagger(Expr):
"""
Hermitian conjugate of creation/annihilation operators.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
"""
def __new__(cls, arg):
arg = sympify(arg)
r = cls.eval(arg)
if isinstance(r, Basic):
return r
obj = Basic.__new__(cls, arg)
return obj
@classmethod
def eval(cls, arg):
"""
Evaluates the Dagger instance.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
The eval() method is called automatically.
"""
dagger = getattr(arg, '_dagger_', None)
if dagger is not None:
return dagger()
if isinstance(arg, Basic):
if arg.is_Add:
return Add(*tuple(map(Dagger, arg.args)))
if arg.is_Mul:
return Mul(*tuple(map(Dagger, reversed(arg.args))))
if arg.is_Number:
return arg
if arg.is_Pow:
return Pow(Dagger(arg.args[0]), arg.args[1])
if arg == I:
return -arg
else:
return None
def _dagger_(self):
return self.args[0]
class TensorSymbol(Expr):
is_commutative = True
class AntiSymmetricTensor(TensorSymbol):
"""Stores upper and lower indices in separate Tuple's.
Each group of indices is assumed to be antisymmetric.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (i, a), (b, j))
-AntiSymmetricTensor(v, (a, i), (b, j))
As you can see, the indices are automatically sorted to a canonical form.
"""
def __new__(cls, symbol, upper, lower):
try:
upper, signu = _sort_anticommuting_fermions(
upper, key=cls._sortkey)
lower, signl = _sort_anticommuting_fermions(
lower, key=cls._sortkey)
except ViolationOfPauliPrinciple:
return S.Zero
symbol = sympify(symbol)
upper = Tuple(*upper)
lower = Tuple(*lower)
if (signu + signl) % 2:
return -TensorSymbol.__new__(cls, symbol, upper, lower)
else:
return TensorSymbol.__new__(cls, symbol, upper, lower)
@classmethod
def _sortkey(cls, index):
"""Key for sorting of indices.
particle < hole < general
FIXME: This is a bottle-neck, can we do it faster?
"""
h = hash(index)
label = str(index)
if isinstance(index, Dummy):
if index.assumptions0.get('above_fermi'):
return (20, label, h)
elif index.assumptions0.get('below_fermi'):
return (21, label, h)
else:
return (22, label, h)
if index.assumptions0.get('above_fermi'):
return (10, label, h)
elif index.assumptions0.get('below_fermi'):
return (11, label, h)
else:
return (12, label, h)
def _latex(self, printer):
return "%s^{%s}_{%s}" % (
self.symbol,
"".join([ i.name for i in self.args[1]]),
"".join([ i.name for i in self.args[2]])
)
@property
def symbol(self):
"""
Returns the symbol of the tensor.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol
v
"""
return self.args[0]
@property
def upper(self):
"""
Returns the upper indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).upper
(a, i)
"""
return self.args[1]
@property
def lower(self):
"""
Returns the lower indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).lower
(b, j)
"""
return self.args[2]
def __str__(self):
return "%s(%s,%s)" % self.args
def doit(self, **kw_args):
"""
Returns self.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j)).doit()
AntiSymmetricTensor(v, (a, i), (b, j))
"""
return self
class SqOperator(Expr):
"""
Base class for Second Quantization operators.
"""
op_symbol = 'sq'
is_commutative = False
def __new__(cls, k):
obj = Basic.__new__(cls, sympify(k))
return obj
@property
def state(self):
"""
Returns the state index related to this operator.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd, B, Bd
>>> p = Symbol('p')
>>> F(p).state
p
>>> Fd(p).state
p
>>> B(p).state
p
>>> Bd(p).state
p
"""
return self.args[0]
@property
def is_symbolic(self):
"""
Returns True if the state is a symbol (as opposed to a number).
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> p = Symbol('p')
>>> F(p).is_symbolic
True
>>> F(1).is_symbolic
False
"""
if self.state.is_Integer:
return False
else:
return True
def doit(self, **kw_args):
"""
FIXME: hack to prevent crash further up...
"""
return self
def __repr__(self):
return NotImplemented
def __str__(self):
return "%s(%r)" % (self.op_symbol, self.state)
def apply_operator(self, state):
"""
Applies an operator to itself.
"""
raise NotImplementedError('implement apply_operator in a subclass')
class BosonicOperator(SqOperator):
pass
class Annihilator(SqOperator):
pass
class Creator(SqOperator):
pass
class AnnihilateBoson(BosonicOperator, Annihilator):
"""
Bosonic annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import B
>>> from sympy.abc import x
>>> B(x)
AnnihilateBoson(x)
"""
op_symbol = 'b'
def _dagger_(self):
return CreateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, BKet
>>> from sympy.abc import x, y, n
>>> B(x).apply_operator(y)
y*AnnihilateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element])
return amp*state.down(element)
else:
return Mul(self, state)
def __repr__(self):
return "AnnihilateBoson(%s)" % self.state
def _latex(self, printer):
return "b_{%s}" % self.state.name
class CreateBoson(BosonicOperator, Creator):
"""
Bosonic creation operator.
"""
op_symbol = 'b+'
def _dagger_(self):
return AnnihilateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element] + 1)
return amp*state.up(element)
else:
return Mul(self, state)
def __repr__(self):
return "CreateBoson(%s)" % self.state
def _latex(self, printer):
return "b^\\dagger_{%s}" % self.state.name
B = AnnihilateBoson
Bd = CreateBoson
class FermionicOperator(SqOperator):
@property
def is_restricted(self):
"""
Is this FermionicOperator restricted with respect to fermi level?
Return values:
1 : restricted to orbits above fermi
0 : no restriction
-1 : restricted to orbits below fermi
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_restricted
1
>>> Fd(a).is_restricted
1
>>> F(i).is_restricted
-1
>>> Fd(i).is_restricted
-1
>>> F(p).is_restricted
0
>>> Fd(p).is_restricted
0
"""
ass = self.args[0].assumptions0
if ass.get("below_fermi"):
return -1
if ass.get("above_fermi"):
return 1
return 0
@property
def is_above_fermi(self):
"""
Does the index of this FermionicOperator allow values above fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_above_fermi
True
>>> F(i).is_above_fermi
False
>>> F(p).is_above_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("below_fermi")
@property
def is_below_fermi(self):
"""
Does the index of this FermionicOperator allow values below fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_below_fermi
False
>>> F(i).is_below_fermi
True
>>> F(p).is_below_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("above_fermi")
@property
def is_only_below_fermi(self):
"""
Is the index of this FermionicOperator restricted to values below fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_below_fermi
False
>>> F(i).is_only_below_fermi
True
>>> F(p).is_only_below_fermi
False
The same applies to creation operators Fd
"""
return self.is_below_fermi and not self.is_above_fermi
@property
def is_only_above_fermi(self):
"""
Is the index of this FermionicOperator restricted to values above fermi?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_above_fermi
True
>>> F(i).is_only_above_fermi
False
>>> F(p).is_only_above_fermi
False
The same applies to creation operators Fd
"""
return self.is_above_fermi and not self.is_below_fermi
def _sortkey(self):
h = hash(self)
label = str(self.args[0])
if self.is_only_q_creator:
return 1, label, h
if self.is_only_q_annihilator:
return 4, label, h
if isinstance(self, Annihilator):
return 3, label, h
if isinstance(self, Creator):
return 2, label, h
class AnnihilateFermion(FermionicOperator, Annihilator):
"""
Fermionic annihilation operator.
"""
op_symbol = 'f'
def _dagger_(self):
return CreateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.down(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:]))
else:
return Mul(self, state)
else:
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_q_creator
0
>>> F(i).is_q_creator
-1
>>> F(p).is_q_creator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> F(a).is_q_annihilator
1
>>> F(i).is_q_annihilator
0
>>> F(p).is_q_annihilator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_creator
False
>>> F(i).is_only_q_creator
True
>>> F(p).is_only_q_creator
False
"""
return self.is_only_below_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_annihilator
True
>>> F(i).is_only_q_annihilator
False
>>> F(p).is_only_q_annihilator
False
"""
return self.is_only_above_fermi
def __repr__(self):
return "AnnihilateFermion(%s)" % self.state
def _latex(self, printer):
return "a_{%s}" % self.state.name
class CreateFermion(FermionicOperator, Creator):
"""
Fermionic creation operator.
"""
op_symbol = 'f+'
def _dagger_(self):
return AnnihilateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.up(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:]))
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_q_creator
1
>>> Fd(i).is_q_creator
0
>>> Fd(p).is_q_creator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> Fd(a).is_q_annihilator
0
>>> Fd(i).is_q_annihilator
-1
>>> Fd(p).is_q_annihilator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_creator
True
>>> Fd(i).is_only_q_creator
False
>>> Fd(p).is_only_q_creator
False
"""
return self.is_only_above_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_annihilator
False
>>> Fd(i).is_only_q_annihilator
True
>>> Fd(p).is_only_q_annihilator
False
"""
return self.is_only_below_fermi
def __repr__(self):
return "CreateFermion(%s)" % self.state
def _latex(self, printer):
return "a^\\dagger_{%s}" % self.state.name
Fd = CreateFermion
F = AnnihilateFermion
class FockState(Expr):
"""
Many particle Fock state with a sequence of occupation numbers.
Anywhere you can have a FockState, you can also have S.Zero.
All code must check for this!
Base class to represent FockStates.
"""
is_commutative = False
def __new__(cls, occupations):
"""
occupations is a list with two possible meanings:
- For bosons it is a list of occupation numbers.
Element i is the number of particles in state i.
- For fermions it is a list of occupied orbits.
Element 0 is the state that was occupied first, element i
is the i'th occupied state.
"""
occupations = list(map(sympify, occupations))
obj = Basic.__new__(cls, Tuple(*occupations))
return obj
def __getitem__(self, i):
i = int(i)
return self.args[0][i]
def __repr__(self):
return ("FockState(%r)") % (self.args)
def __str__(self):
return "%s%r%s" % (self.lbracket, self._labels(), self.rbracket)
def _labels(self):
return self.args[0]
def __len__(self):
return len(self.args[0])
class BosonState(FockState):
"""
Base class for FockStateBoson(Ket/Bra).
"""
def up(self, i):
"""
Performs the action of a creation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.up(1)
FockStateBosonBra((1, 3))
"""
i = int(i)
new_occs = list(self.args[0])
new_occs[i] = new_occs[i] + S.One
return self.__class__(new_occs)
def down(self, i):
"""
Performs the action of an annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.down(1)
FockStateBosonBra((1, 1))
"""
i = int(i)
new_occs = list(self.args[0])
if new_occs[i] == S.Zero:
return S.Zero
else:
new_occs[i] = new_occs[i] - S.One
return self.__class__(new_occs)
class FermionState(FockState):
"""
Base class for FockStateFermion(Ket/Bra).
"""
fermi_level = 0
def __new__(cls, occupations, fermi_level=0):
occupations = list(map(sympify, occupations))
if len(occupations) > 1:
try:
(occupations, sign) = _sort_anticommuting_fermions(
occupations, key=hash)
except ViolationOfPauliPrinciple:
return S.Zero
else:
sign = 0
cls.fermi_level = fermi_level
if cls._count_holes(occupations) > fermi_level:
return S.Zero
if sign % 2:
return S.NegativeOne*FockState.__new__(cls, occupations)
else:
return FockState.__new__(cls, occupations)
def up(self, i):
"""
Performs the action of a creation operator.
If below fermi we try to remove a hole,
if above fermi we try to create a particle.
if general index p we return Kronecker(p,i)*self
where i is a new symbol with restriction above or below.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> FKet([]).up(a)
FockStateFermionKet((a,))
A creator acting on vacuum below fermi vanishes
>>> FKet([]).up(i)
0
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
elif self._only_below_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._remove_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._add_orbit(i)
def down(self, i):
"""
Performs the action of an annihilation operator.
If below fermi we try to create a hole,
if above fermi we try to remove a particle.
if general index p we return Kronecker(p,i)*self
where i is a new symbol with restriction above or below.
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
An annihilator acting on vacuum above fermi vanishes
>>> FKet([]).down(a)
0
Also below fermi, it vanishes, unless we specify a fermi level > 0
>>> FKet([]).down(i)
0
>>> FKet([],4).down(i)
FockStateFermionKet((i,))
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
elif self._only_below_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._add_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._remove_orbit(i)
@classmethod
def _only_below_fermi(cls, i):
"""
Tests if given orbit is only below fermi surface.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i <= cls.fermi_level
if i.assumptions0.get('below_fermi'):
return True
return False
@classmethod
def _only_above_fermi(cls, i):
"""
Tests if given orbit is only above fermi surface.
If fermi level has not been set we return True.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i > cls.fermi_level
if i.assumptions0.get('above_fermi'):
return True
return not cls.fermi_level
def _remove_orbit(self, i):
"""
Removes particle/fills hole in orbit i. No input tests performed here.
"""
new_occs = list(self.args[0])
pos = new_occs.index(i)
del new_occs[pos]
if (pos) % 2:
return S.NegativeOne*self.__class__(new_occs, self.fermi_level)
else:
return self.__class__(new_occs, self.fermi_level)
def _add_orbit(self, i):
"""
Adds particle/creates hole in orbit i. No input tests performed here.
"""
return self.__class__((i,) + self.args[0], self.fermi_level)
@classmethod
def _count_holes(cls, list):
"""
returns number of identified hole states in list.
"""
return len([i for i in list if cls._only_below_fermi(i)])
def _negate_holes(self, list):
return tuple([-i if i <= self.fermi_level else i for i in list])
def __repr__(self):
if self.fermi_level:
return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level)
else:
return "FockStateKet(%r)" % (self.args[0],)
def _labels(self):
return self._negate_holes(self.args[0])
class FockStateKet(FockState):
"""
Representation of a ket.
"""
lbracket = '|'
rbracket = '>'
class FockStateBra(FockState):
"""
Representation of a bra.
"""
lbracket = '<'
rbracket = '|'
def __mul__(self, other):
if isinstance(other, FockStateKet):
return InnerProduct(self, other)
else:
return Expr.__mul__(self, other)
class FockStateBosonKet(BosonState, FockStateKet):
"""
Many particle Fock state with a sequence of occupation numbers.
Occupation numbers can be any integer >= 0.
Examples
========
>>> from sympy.physics.secondquant import BKet
>>> BKet([1, 2])
FockStateBosonKet((1, 2))
"""
def _dagger_(self):
return FockStateBosonBra(*self.args)
class FockStateBosonBra(BosonState, FockStateBra):
"""
Describes a collection of BosonBra particles.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> BBra([1, 2])
FockStateBosonBra((1, 2))
"""
def _dagger_(self):
return FockStateBosonKet(*self.args)
class FockStateFermionKet(FermionState, FockStateKet):
"""
Many-particle Fock state with a sequence of occupied orbits.
Each state can only have one particle, so we choose to store a list of
occupied orbits rather than a tuple with occupation numbers (zeros and ones).
states below fermi level are holes, and are represented by negative labels
in the occupation list.
For symbolic state labels, the fermi_level caps the number of allowed hole-
states.
Examples
========
>>> from sympy.physics.secondquant import FKet
>>> FKet([1, 2])
FockStateFermionKet((1, 2))
"""
def _dagger_(self):
return FockStateFermionBra(*self.args)
class FockStateFermionBra(FermionState, FockStateBra):
"""
See Also
========
FockStateFermionKet
Examples
========
>>> from sympy.physics.secondquant import FBra
>>> FBra([1, 2])
FockStateFermionBra((1, 2))
"""
def _dagger_(self):
return FockStateFermionKet(*self.args)
BBra = FockStateBosonBra
BKet = FockStateBosonKet
FBra = FockStateFermionBra
FKet = FockStateFermionKet
def _apply_Mul(m):
"""
Take a Mul instance with operators and apply them to states.
This method applies all operators with integer state labels
to the actual states. For symbolic state labels, nothing is done.
When inner products of FockStates are encountered (like <a|b>),
they are converted to instances of InnerProduct.
This does not currently work on double inner products like,
<a|b><c|d>.
If the argument is not a Mul, it is simply returned as is.
"""
if not isinstance(m, Mul):
return m
c_part, nc_part = m.args_cnc()
n_nc = len(nc_part)
if n_nc == 0 or n_nc == 1:
return m
else:
last = nc_part[-1]
next_to_last = nc_part[-2]
if isinstance(last, FockStateKet):
if isinstance(next_to_last, SqOperator):
if next_to_last.is_symbolic:
return m
else:
result = next_to_last.apply_operator(last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
elif isinstance(next_to_last, Pow):
if isinstance(next_to_last.base, SqOperator) and \
next_to_last.exp.is_Integer:
if next_to_last.base.is_symbolic:
return m
else:
result = last
for i in range(next_to_last.exp):
result = next_to_last.base.apply_operator(result)
if result == 0:
break
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
elif isinstance(next_to_last, FockStateBra):
result = InnerProduct(next_to_last, last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
else:
return m
def apply_operators(e):
"""
Take a sympy expression with operators and states and apply the operators.
Examples
========
>>> from sympy.physics.secondquant import apply_operators
>>> from sympy import sympify
>>> apply_operators(sympify(3)+4)
7
"""
e = e.expand()
muls = e.atoms(Mul)
subs_list = [(m, _apply_Mul(m)) for m in iter(muls)]
return e.subs(subs_list)
class InnerProduct(Basic):
"""
An unevaluated inner product between a bra and ket.
Currently this class just reduces things to a product of
Kronecker Deltas. In the future, we could introduce abstract
states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as
``<a|b>``.
"""
is_commutative = True
def __new__(cls, bra, ket):
if not isinstance(bra, FockStateBra):
raise TypeError("must be a bra")
if not isinstance(ket, FockStateKet):
raise TypeError("must be a key")
return cls.eval(bra, ket)
@classmethod
def eval(cls, bra, ket):
result = S.One
for i, j in zip(bra.args[0], ket.args[0]):
result *= KroneckerDelta(i, j)
if result == 0:
break
return result
@property
def bra(self):
"""Returns the bra part of the state"""
return self.args[0]
@property
def ket(self):
"""Returns the ket part of the state"""
return self.args[1]
def __repr__(self):
sbra = repr(self.bra)
sket = repr(self.ket)
return "%s|%s" % (sbra[:-1], sket[1:])
def __str__(self):
return self.__repr__()
def matrix_rep(op, basis):
"""
Find the representation of an operator in a basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
>>> b = VarBosonicBasis(5)
>>> o = B(0)
>>> matrix_rep(o, b)
Matrix([
[0, 1, 0, 0, 0],
[0, 0, sqrt(2), 0, 0],
[0, 0, 0, sqrt(3), 0],
[0, 0, 0, 0, 2],
[0, 0, 0, 0, 0]])
"""
a = zeros(len(basis))
for i in range(len(basis)):
for j in range(len(basis)):
a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j])
return a
class BosonicBasis:
"""
Base class for a basis set of bosonic Fock states.
"""
pass
class VarBosonicBasis:
"""
A single state, variable particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,)),
FockState((3,)), FockState((4,))]
"""
def __init__(self, n_max):
self.n_max = n_max
self._build_states()
def _build_states(self):
self.basis = []
for i in range(self.n_max):
self.basis.append(FockStateBosonKet([i]))
self.n_basis = len(self.basis)
def index(self, state):
"""
Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(3)
>>> state = b.state(1)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,))]
>>> state
FockStateBosonKet((1,))
>>> b.index(state)
1
"""
return self.basis.index(state)
def state(self, i):
"""
The state of a single basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b.state(3)
FockStateBosonKet((3,))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class FixedBosonicBasis(BosonicBasis):
"""
Fixed particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 2)
>>> state = b.state(1)
>>> b
[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
>>> state
FockStateBosonKet((1, 1))
>>> b.index(state)
1
"""
def __init__(self, n_particles, n_levels):
self.n_particles = n_particles
self.n_levels = n_levels
self._build_particle_locations()
self._build_states()
def _build_particle_locations(self):
tup = ["i%i" % i for i in range(self.n_particles)]
first_loop = "for i0 in range(%i)" % self.n_levels
other_loops = ''
for cur, prev in zip(tup[1:], tup):
temp = "for %s in range(%s + 1) " % (cur, prev)
other_loops = other_loops + temp
tup_string = "(%s)" % ", ".join(tup)
list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops)
result = eval(list_comp)
if self.n_particles == 1:
result = [(item,) for item in result]
self.particle_locations = result
def _build_states(self):
self.basis = []
for tuple_of_indices in self.particle_locations:
occ_numbers = self.n_levels*[0]
for level in tuple_of_indices:
occ_numbers[level] += 1
self.basis.append(FockStateBosonKet(occ_numbers))
self.n_basis = len(self.basis)
def index(self, state):
"""Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.index(b.state(3))
3
"""
return self.basis.index(state)
def state(self, i):
"""Returns the state that lies at index i of the basis
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.state(3)
FockStateBosonKet((1, 0, 1))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class Commutator(Function):
"""
The Commutator: [A, B] = A*B - B*A
The arguments are ordered according to .__cmp__()
>>> from sympy import symbols
>>> from sympy.physics.secondquant import Commutator
>>> A, B = symbols('A,B', commutative=False)
>>> Commutator(B, A)
-Commutator(A, B)
Evaluate the commutator with .doit()
>>> comm = Commutator(A,B); comm
Commutator(A, B)
>>> comm.doit()
A*B - B*A
For two second quantization operators the commutator is evaluated
immediately:
>>> from sympy.physics.secondquant import Fd, F
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> p,q = symbols('p,q')
>>> Commutator(Fd(a),Fd(i))
2*NO(CreateFermion(a)*CreateFermion(i))
But for more complicated expressions, the evaluation is triggered by
a call to .doit()
>>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm
Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i))
>>> comm.doit(wicks=True)
-KroneckerDelta(i, p)*CreateFermion(q) +
KroneckerDelta(i, q)*CreateFermion(p)
"""
is_commutative = False
@classmethod
def eval(cls, a, b):
"""
The Commutator [A,B] is on canonical form if A < B.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy.abc import x
>>> c1 = Commutator(F(x), Fd(x))
>>> c2 = Commutator(Fd(x), F(x))
>>> Commutator.eval(c1, c2)
0
"""
if not (a and b):
return S.Zero
if a == b:
return S.Zero
if a.is_commutative or b.is_commutative:
return S.Zero
#
# [A+B,C] -> [A,C] + [B,C]
#
a = a.expand()
if isinstance(a, Add):
return Add(*[cls(term, b) for term in a.args])
b = b.expand()
if isinstance(b, Add):
return Add(*[cls(a, term) for term in b.args])
#
# [xA,yB] -> xy*[A,B]
#
ca, nca = a.args_cnc()
cb, ncb = b.args_cnc()
c_part = list(ca) + list(cb)
if c_part:
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
#
# single second quantization operators
#
if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator):
if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson):
return KroneckerDelta(a.state, b.state)
if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson):
return S.NegativeOne*KroneckerDelta(a.state, b.state)
else:
return S.Zero
if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator):
return wicks(a*b) - wicks(b*a)
#
# Canonical ordering of arguments
#
if a.sort_key() > b.sort_key():
return S.NegativeOne*cls(b, a)
def doit(self, **hints):
"""
Enables the computation of complex expressions.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy import symbols
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
>>> c.doit(wicks=True)
0
"""
a = self.args[0]
b = self.args[1]
if hints.get("wicks"):
a = a.doit(**hints)
b = b.doit(**hints)
try:
return wicks(a*b) - wicks(b*a)
except ContractionAppliesOnlyToFermions:
pass
except WicksTheoremDoesNotApply:
pass
return (a*b - b*a).doit(**hints)
def __repr__(self):
return "Commutator(%s,%s)" % (self.args[0], self.args[1])
def __str__(self):
return "[%s,%s]" % (self.args[0], self.args[1])
def _latex(self, printer):
return "\\left[%s,%s\\right]" % tuple([
printer._print(arg) for arg in self.args])
class NO(Expr):
"""
This Object is used to represent normal ordering brackets.
i.e. {abcd} sometimes written :abcd:
Applying the function NO(arg) to an argument means that all operators in
the argument will be assumed to anticommute, and have vanishing
contractions. This allows an immediate reordering to canonical form
upon object creation.
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> p,q = symbols('p,q')
>>> NO(Fd(p)*F(q))
NO(CreateFermion(p)*AnnihilateFermion(q))
>>> NO(F(q)*Fd(p))
-NO(CreateFermion(p)*AnnihilateFermion(q))
Note:
If you want to generate a normal ordered equivalent of an expression, you
should use the function wicks(). This class only indicates that all
operators inside the brackets anticommute, and have vanishing contractions.
Nothing more, nothing less.
"""
is_commutative = False
def __new__(cls, arg):
"""
Use anticommutation to get canonical form of operators.
Employ associativity of normal ordered product: {ab{cd}} = {abcd}
but note that {ab}{cd} /= {abcd}.
We also employ distributivity: {ab + cd} = {ab} + {cd}.
Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}.
"""
# {ab + cd} = {ab} + {cd}
arg = sympify(arg)
arg = arg.expand()
if arg.is_Add:
return Add(*[ cls(term) for term in arg.args])
if arg.is_Mul:
# take coefficient outside of normal ordering brackets
c_part, seq = arg.args_cnc()
if c_part:
coeff = Mul(*c_part)
if not seq:
return coeff
else:
coeff = S.One
# {ab{cd}} = {abcd}
newseq = []
foundit = False
for fac in seq:
if isinstance(fac, NO):
newseq.extend(fac.args)
foundit = True
else:
newseq.append(fac)
if foundit:
return coeff*cls(Mul(*newseq))
# We assume that the user don't mix B and F operators
if isinstance(seq[0], BosonicOperator):
raise NotImplementedError
try:
newseq, sign = _sort_anticommuting_fermions(seq)
except ViolationOfPauliPrinciple:
return S.Zero
if sign % 2:
return (S.NegativeOne*coeff)*cls(Mul(*newseq))
elif sign:
return coeff*cls(Mul(*newseq))
else:
pass # since sign==0, no permutations was necessary
# if we couldn't do anything with Mul object, we just
# mark it as normal ordered
if coeff != S.One:
return coeff*cls(Mul(*newseq))
return Expr.__new__(cls, Mul(*newseq))
if isinstance(arg, NO):
return arg
# if object was not Mul or Add, normal ordering does not apply
return arg
@property
def has_q_creators(self):
"""
Return 0 if the leftmost argument of the first argument is a not a
q_creator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_creators
1
>>> NO(F(i)*F(a)).has_q_creators
-1
>>> NO(Fd(i)*F(a)).has_q_creators #doctest: +SKIP
0
"""
return self.args[0].args[0].is_q_creator
@property
def has_q_annihilators(self):
"""
Return 0 if the rightmost argument of the first argument is a not a
q_annihilator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_annihilators
-1
>>> NO(F(i)*F(a)).has_q_annihilators
1
>>> NO(Fd(a)*F(i)).has_q_annihilators
0
"""
return self.args[0].args[-1].is_q_annihilator
def doit(self, **kw_args):
"""
Either removes the brackets or enables complex computations
in its arguments.
Examples
========
>>> from sympy.physics.secondquant import NO, Fd, F
>>> from textwrap import fill
>>> from sympy import symbols, Dummy
>>> p,q = symbols('p,q', cls=Dummy)
>>> print(fill(str(NO(Fd(p)*F(q)).doit())))
KroneckerDelta(_a, _p)*KroneckerDelta(_a,
_q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a,
_p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) -
KroneckerDelta(_a, _q)*KroneckerDelta(_i,
_p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i,
_p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i)
"""
if kw_args.get("remove_brackets", True):
return self._remove_brackets()
else:
return self.__new__(type(self), self.args[0].doit(**kw_args))
def _remove_brackets(self):
"""
Returns the sorted string without normal order brackets.
The returned string have the property that no nonzero
contractions exist.
"""
# check if any creator is also an annihilator
subslist = []
for i in self.iter_q_creators():
if self[i].is_q_annihilator:
assume = self[i].state.assumptions0
# only operators with a dummy index can be split in two terms
if isinstance(self[i].state, Dummy):
# create indices with fermi restriction
assume.pop("above_fermi", None)
assume["below_fermi"] = True
below = Dummy('i', **assume)
assume.pop("below_fermi", None)
assume["above_fermi"] = True
above = Dummy('a', **assume)
cls = type(self[i])
split = (
self[i].__new__(cls, below)
* KroneckerDelta(below, self[i].state)
+ self[i].__new__(cls, above)
* KroneckerDelta(above, self[i].state)
)
subslist.append((self[i], split))
else:
raise SubstitutionOfAmbigousOperatorFailed(self[i])
if subslist:
result = NO(self.subs(subslist))
if isinstance(result, Add):
return Add(*[term.doit() for term in result.args])
else:
return self.args[0]
def _expand_operators(self):
"""
Returns a sum of NO objects that contain no ambiguous q-operators.
If an index q has range both above and below fermi, the operator F(q)
is ambiguous in the sense that it can be both a q-creator and a q-annihilator.
If q is dummy, it is assumed to be a summation variable and this method
rewrites it into a sum of NO terms with unambiguous operators:
{Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)}
where a,b are above and i,j are below fermi level.
"""
return NO(self._remove_brackets)
def __getitem__(self, i):
if isinstance(i, slice):
indices = i.indices(len(self))
return [self.args[0].args[i] for i in range(*indices)]
else:
return self.args[0].args[i]
def __len__(self):
return len(self.args[0].args)
def iter_q_annihilators(self):
"""
Iterates over the annihilation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(len(ops) - 1, -1, -1)
for i in iter:
if ops[i].is_q_annihilator:
yield i
else:
break
def iter_q_creators(self):
"""
Iterates over the creation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(0, len(ops))
for i in iter:
if ops[i].is_q_creator:
yield i
else:
break
def get_subNO(self, i):
"""
Returns a NO() without FermionicOperator at index i.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, NO
>>> p, q, r = symbols('p,q,r')
>>> NO(F(p)*F(q)*F(r)).get_subNO(1)
NO(AnnihilateFermion(p)*AnnihilateFermion(r))
"""
arg0 = self.args[0] # it's a Mul by definition of how it's created
mul = arg0._new_rawargs(*(arg0.args[:i] + arg0.args[i + 1:]))
return NO(mul)
def _latex(self, printer):
return "\\left\\{%s\\right\\}" % printer._print(self.args[0])
def __repr__(self):
return "NO(%s)" % self.args[0]
def __str__(self):
return ":%s:" % self.args[0]
def contraction(a, b):
"""
Calculates contraction of Fermionic operators a and b.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, Fd, contraction
>>> p, q = symbols('p,q')
>>> a, b = symbols('a,b', above_fermi=True)
>>> i, j = symbols('i,j', below_fermi=True)
A contraction is non-zero only if a quasi-creator is to the right of a
quasi-annihilator:
>>> contraction(F(a),Fd(b))
KroneckerDelta(a, b)
>>> contraction(Fd(i),F(j))
KroneckerDelta(i, j)
For general indices a non-zero result restricts the indices to below/above
the fermi surface:
>>> contraction(Fd(p),F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q)
>>> contraction(F(p),Fd(q))
KroneckerDelta(_a, q)*KroneckerDelta(p, q)
Two creators or two annihilators always vanishes:
>>> contraction(F(p),F(q))
0
>>> contraction(Fd(p),Fd(q))
0
"""
if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator):
if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion):
if b.state.assumptions0.get("below_fermi"):
return S.Zero
if a.state.assumptions0.get("below_fermi"):
return S.Zero
if b.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('a', above_fermi=True)))
if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion):
if b.state.assumptions0.get("above_fermi"):
return S.Zero
if a.state.assumptions0.get("above_fermi"):
return S.Zero
if b.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('i', below_fermi=True)))
# vanish if 2xAnnihilator or 2xCreator
return S.Zero
else:
#not fermion operators
t = ( isinstance(i, FermionicOperator) for i in (a, b) )
raise ContractionAppliesOnlyToFermions(*t)
def _sqkey(sq_operator):
"""Generates key for canonical sorting of SQ operators."""
return sq_operator._sortkey()
def _sort_anticommuting_fermions(string1, key=_sqkey):
"""Sort fermionic operators to canonical order, assuming all pairs anticommute.
Uses a bidirectional bubble sort. Items in string1 are not referenced
so in principle they may be any comparable objects. The sorting depends on the
operators '>' and '=='.
If the Pauli principle is violated, an exception is raised.
Returns
=======
tuple (sorted_str, sign)
sorted_str: list containing the sorted operators
sign: int telling how many times the sign should be changed
(if sign==0 the string was already sorted)
"""
verified = False
sign = 0
rng = list(range(len(string1) - 1))
rev = list(range(len(string1) - 3, -1, -1))
keys = list(map(key, string1))
key_val = dict(list(zip(keys, string1)))
while not verified:
verified = True
for i in rng:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
if verified:
break
for i in rev:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
string1 = [ key_val[k] for k in keys ]
return (string1, sign)
def evaluate_deltas(e):
"""
We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
If one index is repeated it is summed over and in effect substituted with
the other one. If both indices are repeated we substitute according to what
is the preferred index. this is determined by
KroneckerDelta.preferred_index and KroneckerDelta.killable_index.
In case there are no possible substitutions or if a substitution would
imply a loss of information, nothing is done.
In case an index appears in more than one KroneckerDelta, the resulting
substitution depends on the order of the factors. Since the ordering is platform
dependent, the literal expression resulting from this function may be hard to
predict.
Examples
========
We assume the following:
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p,q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
The order of preference for these indices according to KroneckerDelta is
(a, b, i, j, p, q).
Trivial cases:
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)
f(_j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)
f(_q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)
f(_p)
More interesting cases:
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
f(_i, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
f(_a, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
f(_p, _p)
Finally, here are some cases where nothing is done, because that would
imply a loss of information:
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
f(_q)*KroneckerDelta(_i, _p)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
f(_i)*KroneckerDelta(_i, _p)
"""
# We treat Deltas only in mul objects
# for general function objects we don't evaluate KroneckerDeltas in arguments,
# but here we hard code exceptions to this rule
accepted_functions = (
Add,
)
if isinstance(e, accepted_functions):
return e.func(*[evaluate_deltas(arg) for arg in e.args])
elif isinstance(e, Mul):
# find all occurrences of delta function and count each index present in
# expression.
deltas = []
indices = {}
for i in e.args:
for s in i.free_symbols:
if s in indices:
indices[s] += 1
else:
indices[s] = 0 # geek counting simplifies logic below
if isinstance(i, KroneckerDelta):
deltas.append(i)
for d in deltas:
# If we do something, and there are more deltas, we should recurse
# to treat the resulting expression properly
if d.killable_index.is_Symbol and indices[d.killable_index]:
e = e.subs(d.killable_index, d.preferred_index)
if len(deltas) > 1:
return evaluate_deltas(e)
elif (d.preferred_index.is_Symbol and indices[d.preferred_index]
and d.indices_contain_equal_information):
e = e.subs(d.preferred_index, d.killable_index)
if len(deltas) > 1:
return evaluate_deltas(e)
else:
pass
return e
# nothing to do, maybe we hit a Symbol or a number
else:
return e
def substitute_dummies(expr, new_indices=False, pretty_indices={}):
"""
Collect terms by substitution of dummy variables.
This routine allows simplification of Add expressions containing terms
which differ only due to dummy variables.
The idea is to substitute all dummy variables consistently depending on
the structure of the term. For each term, we obtain a sequence of all
dummy variables, where the order is determined by the index range, what
factors the index belongs to and its position in each factor. See
_get_ordered_dummies() for more information about the sorting of dummies.
The index sequence is then substituted consistently in each term.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')
>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)
Since a, b, c and d are equivalent summation indices, the expression can be
simplified to a single term (for which the dummy indices are still summed over)
>>> substitute_dummies(expr)
2*f(_a, _b)
Controlling output:
By default the dummy symbols that are already present in the expression
will be reused in a different permutation. However, if new_indices=True,
new dummies will be generated and inserted. The keyword 'pretty_indices'
can be used to control this generation of new symbols.
By default the new dummies will be generated on the form i_1, i_2, a_1,
etc. If you supply a dictionary with key:value pairs in the form:
{ index_group: string_of_letters }
The letters will be used as labels for the new dummy symbols. The
index_groups must be one of 'above', 'below' or 'general'.
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above':'st', 'below':'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
If we run out of letters, or if there is no keyword for some index_group
the default dummy generator will be used as a fallback:
>>> p,q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p,q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
"""
# setup the replacing dummies
if new_indices:
letters_above = pretty_indices.get('above', "")
letters_below = pretty_indices.get('below', "")
letters_general = pretty_indices.get('general', "")
len_above = len(letters_above)
len_below = len(letters_below)
len_general = len(letters_general)
def _i(number):
try:
return letters_below[number]
except IndexError:
return 'i_' + str(number - len_below)
def _a(number):
try:
return letters_above[number]
except IndexError:
return 'a_' + str(number - len_above)
def _p(number):
try:
return letters_general[number]
except IndexError:
return 'p_' + str(number - len_general)
aboves = []
belows = []
generals = []
dummies = expr.atoms(Dummy)
if not new_indices:
dummies = sorted(dummies, key=default_sort_key)
# generate lists with the dummies we will insert
a = i = p = 0
for d in dummies:
assum = d.assumptions0
if assum.get("above_fermi"):
if new_indices:
sym = _a(a)
a += 1
l1 = aboves
elif assum.get("below_fermi"):
if new_indices:
sym = _i(i)
i += 1
l1 = belows
else:
if new_indices:
sym = _p(p)
p += 1
l1 = generals
if new_indices:
l1.append(Dummy(sym, **assum))
else:
l1.append(d)
expr = expr.expand()
terms = Add.make_args(expr)
new_terms = []
for term in terms:
i = iter(belows)
a = iter(aboves)
p = iter(generals)
ordered = _get_ordered_dummies(term)
subsdict = {}
for d in ordered:
if d.assumptions0.get('below_fermi'):
subsdict[d] = next(i)
elif d.assumptions0.get('above_fermi'):
subsdict[d] = next(a)
else:
subsdict[d] = next(p)
subslist = []
final_subs = []
for k, v in subsdict.items():
if k == v:
continue
if v in subsdict:
# We check if the sequence of substitutions end quickly. In
# that case, we can avoid temporary symbols if we ensure the
# correct substitution order.
if subsdict[v] in subsdict:
# (x, y) -> (y, x), we need a temporary variable
x = Dummy('x')
subslist.append((k, x))
final_subs.append((x, v))
else:
# (x, y) -> (y, a), x->y must be done last
# but before temporary variables are resolved
final_subs.insert(0, (k, v))
else:
subslist.append((k, v))
subslist.extend(final_subs)
new_terms.append(term.subs(subslist))
return Add(*new_terms)
class KeyPrinter(StrPrinter):
"""Printer for which only equal objects are equal in print"""
def _print_Dummy(self, expr):
return "(%s_%i)" % (expr.name, expr.dummy_index)
def __kprint(expr):
p = KeyPrinter()
return p.doprint(expr)
def _get_ordered_dummies(mul, verbose=False):
"""Returns all dummies in the mul sorted in canonical order
The purpose of the canonical ordering is that dummies can be substituted
consistently across terms with the result that equivalent terms can be
simplified.
It is not possible to determine if two terms are equivalent based solely on
the dummy order. However, a consistent substitution guided by the ordered
dummies should lead to trivially (non-)equivalent terms, thereby revealing
the equivalence. This also means that if two terms have identical sequences of
dummies, the (non-)equivalence should already be apparent.
Strategy
--------
The canoncial order is given by an arbitrary sorting rule. A sort key
is determined for each dummy as a tuple that depends on all factors where
the index is present. The dummies are thereby sorted according to the
contraction structure of the term, instead of sorting based solely on the
dummy symbol itself.
After all dummies in the term has been assigned a key, we check for identical
keys, i.e. unorderable dummies. If any are found, we call a specialized
method, _determine_ambiguous(), that will determine a unique order based
on recursive calls to _get_ordered_dummies().
Key description
---------------
A high level description of the sort key:
1. Range of the dummy index
2. Relation to external (non-dummy) indices
3. Position of the index in the first factor
4. Position of the index in the second factor
The sort key is a tuple with the following components:
1. A single character indicating the range of the dummy (above, below
or general.)
2. A list of strings with fully masked string representations of all
factors where the dummy is present. By masked, we mean that dummies
are represented by a symbol to indicate either below fermi, above or
general. No other information is displayed about the dummies at
this point. The list is sorted stringwise.
3. An integer number indicating the position of the index, in the first
factor as sorted in 2.
4. An integer number indicating the position of the index, in the second
factor as sorted in 2.
If a factor is either of type AntiSymmetricTensor or SqOperator, the index
position in items 3 and 4 is indicated as 'upper' or 'lower' only.
(Creation operators are considered upper and annihilation operators lower.)
If the masked factors are identical, the two factors cannot be ordered
unambiguously in item 2. In this case, items 3, 4 are left out. If several
indices are contracted between the unorderable factors, it will be handled by
_determine_ambiguous()
"""
# setup dicts to avoid repeated calculations in key()
args = Mul.make_args(mul)
fac_dum = { fac: fac.atoms(Dummy) for fac in args }
fac_repr = { fac: __kprint(fac) for fac in args }
all_dums = set().union(*fac_dum.values())
mask = {}
for d in all_dums:
if d.assumptions0.get('below_fermi'):
mask[d] = '0'
elif d.assumptions0.get('above_fermi'):
mask[d] = '1'
else:
mask[d] = '2'
dum_repr = {d: __kprint(d) for d in all_dums}
def _key(d):
dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ]
other_dums = set().union(*[fac_dum[fac] for fac in dumstruct])
fac = dumstruct[-1]
if other_dums is fac_dum[fac]:
other_dums = fac_dum[fac].copy()
other_dums.remove(d)
masked_facs = [ fac_repr[fac] for fac in dumstruct ]
for d2 in other_dums:
masked_facs = [ fac.replace(dum_repr[d2], mask[d2])
for fac in masked_facs ]
all_masked = [ fac.replace(dum_repr[d], mask[d])
for fac in masked_facs ]
masked_facs = dict(list(zip(dumstruct, masked_facs)))
# dummies for which the ordering cannot be determined
if has_dups(all_masked):
all_masked.sort()
return mask[d], tuple(all_masked) # positions are ambiguous
# sort factors according to fully masked strings
keydict = dict(list(zip(dumstruct, all_masked)))
dumstruct.sort(key=lambda x: keydict[x])
all_masked.sort()
pos_val = []
for fac in dumstruct:
if isinstance(fac, AntiSymmetricTensor):
if d in fac.upper:
pos_val.append('u')
if d in fac.lower:
pos_val.append('l')
elif isinstance(fac, Creator):
pos_val.append('u')
elif isinstance(fac, Annihilator):
pos_val.append('l')
elif isinstance(fac, NO):
ops = [ op for op in fac if op.has(d) ]
for op in ops:
if isinstance(op, Creator):
pos_val.append('u')
else:
pos_val.append('l')
else:
# fallback to position in string representation
facpos = -1
while 1:
facpos = masked_facs[fac].find(dum_repr[d], facpos + 1)
if facpos == -1:
break
pos_val.append(facpos)
return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1])
dumkey = dict(list(zip(all_dums, list(map(_key, all_dums)))))
result = sorted(all_dums, key=lambda x: dumkey[x])
if has_dups(iter(dumkey.values())):
# We have ambiguities
unordered = defaultdict(set)
for d, k in dumkey.items():
unordered[k].add(d)
for k in [ k for k in unordered if len(unordered[k]) < 2 ]:
del unordered[k]
unordered = [ unordered[k] for k in sorted(unordered) ]
result = _determine_ambiguous(mul, result, unordered)
return result
def _determine_ambiguous(term, ordered, ambiguous_groups):
# We encountered a term for which the dummy substitution is ambiguous.
# This happens for terms with 2 or more contractions between factors that
# cannot be uniquely ordered independent of summation indices. For
# example:
#
# Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .}
#
# Assuming that the indices represented by . are dummies with the
# same range, the factors cannot be ordered, and there is no
# way to determine a consistent ordering of p and q.
#
# The strategy employed here, is to relabel all unambiguous dummies with
# non-dummy symbols and call _get_ordered_dummies again. This procedure is
# applied to the entire term so there is a possibility that
# _determine_ambiguous() is called again from a deeper recursion level.
# break recursion if there are no ordered dummies
all_ambiguous = set()
for dummies in ambiguous_groups:
all_ambiguous |= dummies
all_ordered = set(ordered) - all_ambiguous
if not all_ordered:
# FIXME: If we arrive here, there are no ordered dummies. A method to
# handle this needs to be implemented. In order to return something
# useful nevertheless, we choose arbitrarily the first dummy and
# determine the rest from this one. This method is dependent on the
# actual dummy labels which violates an assumption for the
# canonicalization procedure. A better implementation is needed.
group = [ d for d in ordered if d in ambiguous_groups[0] ]
d = group[0]
all_ordered.add(d)
ambiguous_groups[0].remove(d)
stored_counter = _symbol_factory._counter
subslist = []
for d in [ d for d in ordered if d in all_ordered ]:
nondum = _symbol_factory._next()
subslist.append((d, nondum))
newterm = term.subs(subslist)
neworder = _get_ordered_dummies(newterm)
_symbol_factory._set_counter(stored_counter)
# update ordered list with new information
for group in ambiguous_groups:
ordered_group = [ d for d in neworder if d in group ]
ordered_group.reverse()
result = []
for d in ordered:
if d in group:
result.append(ordered_group.pop())
else:
result.append(d)
ordered = result
return ordered
class _SymbolFactory:
def __init__(self, label):
self._counterVar = 0
self._label = label
def _set_counter(self, value):
"""
Sets counter to value.
"""
self._counterVar = value
@property
def _counter(self):
"""
What counter is currently at.
"""
return self._counterVar
def _next(self):
"""
Generates the next symbols and increments counter by 1.
"""
s = Symbol("%s%i" % (self._label, self._counterVar))
self._counterVar += 1
return s
_symbol_factory = _SymbolFactory('_]"]_') # most certainly a unique label
@cacheit
def _get_contractions(string1, keep_only_fully_contracted=False):
"""
Returns Add-object with contracted terms.
Uses recursion to find all contractions. -- Internal helper function --
Will find nonzero contractions in string1 between indices given in
leftrange and rightrange.
"""
# Should we store current level of contraction?
if keep_only_fully_contracted and string1:
result = []
else:
result = [NO(Mul(*string1))]
for i in range(len(string1) - 1):
for j in range(i + 1, len(string1)):
c = contraction(string1[i], string1[j])
if c:
sign = (j - i + 1) % 2
if sign:
coeff = S.NegativeOne*c
else:
coeff = c
#
# Call next level of recursion
# ============================
#
# We now need to find more contractions among operators
#
# oplist = string1[:i]+ string1[i+1:j] + string1[j+1:]
#
# To prevent overcounting, we don't allow contractions
# we have already encountered. i.e. contractions between
# string1[:i] <---> string1[i+1:j]
# and string1[:i] <---> string1[j+1:].
#
# This leaves the case:
oplist = string1[i + 1:j] + string1[j + 1:]
if oplist:
result.append(coeff*NO(
Mul(*string1[:i])*_get_contractions( oplist,
keep_only_fully_contracted=keep_only_fully_contracted)))
else:
result.append(coeff*NO( Mul(*string1[:i])))
if keep_only_fully_contracted:
break # next iteration over i leaves leftmost operator string1[0] uncontracted
return Add(*result)
def wicks(e, **kw_args):
"""
Returns the normal ordered equivalent of an expression using Wicks Theorem.
Examples
========
>>> from sympy import symbols, Dummy
>>> from sympy.physics.secondquant import wicks, F, Fd
>>> p, q, r = symbols('p,q,r')
>>> wicks(Fd(p)*F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q) + NO(CreateFermion(p)*AnnihilateFermion(q))
By default, the expression is expanded:
>>> wicks(F(p)*(F(q)+F(r)))
NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO(AnnihilateFermion(p)*AnnihilateFermion(r))
With the keyword 'keep_only_fully_contracted=True', only fully contracted
terms are returned.
By request, the result can be simplified in the following order:
-- KroneckerDelta functions are evaluated
-- Dummy variables are substituted consistently across terms
>>> p, q, r = symbols('p q r', cls=Dummy)
>>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True)
KroneckerDelta(_i, _q)*KroneckerDelta(_p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r)
"""
if not e:
return S.Zero
opts = {
'simplify_kronecker_deltas': False,
'expand': True,
'simplify_dummies': False,
'keep_only_fully_contracted': False
}
opts.update(kw_args)
# check if we are already normally ordered
if isinstance(e, NO):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
elif isinstance(e, FermionicOperator):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
# break up any NO-objects, and evaluate commutators
e = e.doit(wicks=True)
# make sure we have only one term to consider
e = e.expand()
if isinstance(e, Add):
if opts['simplify_dummies']:
return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args]))
else:
return Add(*[ wicks(term, **kw_args) for term in e.args])
# For Mul-objects we can actually do something
if isinstance(e, Mul):
# we don't want to mess around with commuting part of Mul
# so we factorize it out before starting recursion
c_part = []
string1 = []
for factor in e.args:
if factor.is_commutative:
c_part.append(factor)
else:
string1.append(factor)
n = len(string1)
# catch trivial cases
if n == 0:
result = e
elif n == 1:
if opts['keep_only_fully_contracted']:
return S.Zero
else:
result = e
else: # non-trivial
if isinstance(string1[0], BosonicOperator):
raise NotImplementedError
string1 = tuple(string1)
# recursion over higher order contractions
result = _get_contractions(string1,
keep_only_fully_contracted=opts['keep_only_fully_contracted'] )
result = Mul(*c_part)*result
if opts['expand']:
result = result.expand()
if opts['simplify_kronecker_deltas']:
result = evaluate_deltas(result)
return result
# there was nothing to do
return e
class PermutationOperator(Expr):
"""
Represents the index permutation operator P(ij).
P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)
"""
is_commutative = True
def __new__(cls, i, j):
i, j = sorted(map(sympify, (i, j)), key=default_sort_key)
obj = Basic.__new__(cls, i, j)
return obj
def get_permuted(self, expr):
"""
Returns -expr with permuted indices.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q = symbols('p,q')
>>> f = Function('f')
>>> PermutationOperator(p,q).get_permuted(f(p,q))
-f(q, p)
"""
i = self.args[0]
j = self.args[1]
if expr.has(i) and expr.has(j):
tmp = Dummy()
expr = expr.subs(i, tmp)
expr = expr.subs(j, i)
expr = expr.subs(tmp, j)
return S.NegativeOne*expr
else:
return expr
def _latex(self, printer):
return "P(%s%s)" % self.args
def simplify_index_permutations(expr, permutation_operators):
"""
Performs simplification by introducing PermutationOperators where appropriate.
Schematically:
[abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij]
permutation_operators is a list of PermutationOperators to consider.
If permutation_operators=[P(ab),P(ij)] we will try to introduce the
permutation operators P(ij) and P(ab) in the expression. If there are other
possible simplifications, we ignore them.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import simplify_index_permutations
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q,r,s = symbols('p,q,r,s')
>>> f = Function('f')
>>> g = Function('g')
>>> expr = f(p)*g(q) - f(q)*g(p); expr
f(p)*g(q) - f(q)*g(p)
>>> simplify_index_permutations(expr,[PermutationOperator(p,q)])
f(p)*g(q)*PermutationOperator(p, q)
>>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)]
>>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r)
>>> simplify_index_permutations(expr,PermutList)
f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s)
"""
def _get_indices(expr, ind):
"""
Collects indices recursively in predictable order.
"""
result = []
for arg in expr.args:
if arg in ind:
result.append(arg)
else:
if arg.args:
result.extend(_get_indices(arg, ind))
return result
def _choose_one_to_keep(a, b, ind):
# we keep the one where indices in ind are in order ind[0] < ind[1]
return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind)))
expr = expr.expand()
if isinstance(expr, Add):
terms = set(expr.args)
for P in permutation_operators:
new_terms = set()
on_hold = set()
while terms:
term = terms.pop()
permuted = P.get_permuted(term)
if permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
# Some terms must get a second chance because the permuted
# term may already have canonical dummy ordering. Then
# substitute_dummies() does nothing. However, the other
# term, if it exists, will be able to match with us.
permuted1 = permuted
permuted = substitute_dummies(permuted)
if permuted1 == permuted:
on_hold.add(term)
elif permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
new_terms.add(term)
terms = new_terms | on_hold
return Add(*terms)
return expr
|
b591189259f58dd32da44b80182dc3d3d8b90ad90459daafa78385a0b03aeba4 | from sympy import sqrt, exp, S, pi, I
from sympy.physics.quantum.constants import hbar
def wavefunction(n, x):
"""
Returns the wavefunction for particle on ring.
n is the quantum number, x is the angle,
here n can be positive as well as negative
which can be used to describe the direction of motion of particle
Examples
========
>>> from sympy.physics.pring import wavefunction
>>> from sympy import Symbol, integrate, pi
>>> x=Symbol("x")
>>> wavefunction(1, x)
sqrt(2)*exp(I*x)/(2*sqrt(pi))
>>> wavefunction(2, x)
sqrt(2)*exp(2*I*x)/(2*sqrt(pi))
>>> wavefunction(3, x)
sqrt(2)*exp(3*I*x)/(2*sqrt(pi))
The normalization of the wavefunction is:
>>> integrate(wavefunction(2, x)*wavefunction(-2, x), (x, 0, 2*pi))
1
>>> integrate(wavefunction(4, x)*wavefunction(-4, x), (x, 0, 2*pi))
1
References
==========
.. [1] Atkins, Peter W.; Friedman, Ronald (2005). Molecular Quantum
Mechanics (4th ed.). Pages 71-73.
"""
# sympify arguments
n, x = S(n), S(x)
return exp(n * I * x) / sqrt(2 * pi)
def energy(n, m, r):
"""
Returns the energy of the state corresponding to quantum number n.
E=(n**2 * (hcross)**2) / (2 * m * r**2)
here n is the quantum number, m is the mass of the particle
and r is the radius of circle.
Examples
========
>>> from sympy.physics.pring import energy
>>> from sympy import Symbol
>>> m=Symbol("m")
>>> r=Symbol("r")
>>> energy(1, m, r)
hbar**2/(2*m*r**2)
>>> energy(2, m, r)
2*hbar**2/(m*r**2)
>>> energy(-2, 2.0, 3.0)
0.111111111111111*hbar**2
References
==========
.. [1] Atkins, Peter W.; Friedman, Ronald (2005). Molecular Quantum
Mechanics (4th ed.). Pages 71-73.
"""
n, m, r = S(n), S(m), S(r)
if n.is_integer:
return (n**2 * hbar**2) / (2 * m * r**2)
else:
raise ValueError("'n' must be integer")
|
6a50e5a3944f207ecacdec66eb33347316295c37b2dd124012bf3888942558f9 | """
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from typing import Any, Dict as tDict, List, Set
from abc import abstractmethod, ABCMeta
from collections import defaultdict
import operator
import itertools
from sympy import Rational, prod, Integer, default_sort_key
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.assumptions import ManagedProperties
from sympy.core.compatibility import reduce, SYMPY_INTS
from sympy.core.containers import Tuple, Dict
from sympy.core.decorators import deprecated
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.matrices import eye
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.decorator import memoize_property
import warnings
@deprecated(useinstead=".replace_with_arrays", issue=15276, deprecated_since_version="1.4")
def deprecate_data():
pass
@deprecated(useinstead=".substitute_indices()", issue=17515,
deprecated_since_version="1.5")
def deprecate_fun_eval():
pass
@deprecated(useinstead="tensor_heads()", issue=17108,
deprecated_since_version="1.5")
def deprecate_TensorType():
pass
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index.name
typ = index.tensor_index_type
contr = index.is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index.is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_name, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
return dummy_name_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
see ``canonicalize`` in ``tensor_can.py`` in combinatorics module
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# Converts the symmetry of the metric into msym from .canonicalize()
# method in the combinatorics module
def metric_symmetry_to_msym(metric):
if metric is None:
return None
sym = metric.symmetry
if sym == TensorSymmetry.fully_symmetric(2):
return 0
if sym == TensorSymmetry.fully_symmetric(-2):
return 1
return None
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(metric_symmetry_to_msym(typ.metric))
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h.comm == 0 or h.comm == 1:
comm = h.comm
else:
comm = TensorManager.get_comm(h.comm, h.comm)
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict = dict() # type: tDict[Any, Any]
_substitutions_dict_tensmul = dict() # type: tDict[Any, Any]
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all([i is None for i in data_list]):
return None
if any([i is None for i in data_list]):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
from .array.arrayop import Flatten
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, list(range(rank))))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(Flatten(last_data - sign_change*data_swapped)):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if not indextype.dim.is_number:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the transpose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, sympy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager:
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
get the commutation group number corresponding to ``i``
``i`` can be a symbol or a number or a string
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
set the commutation parameter ``c`` for commutation groups ``i, j``
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
set the commutation group numbers ``c`` for symbols ``i, j``
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or ``None`` for no metirc
metric_name : string with the name of the metric tensor
Attributes
==========
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The possible values of the ``metric_symmetry`` parameter are:
``1`` : metric tensor is fully symmetric
``0`` : metric tensor possesses no index symmetry
``-1`` : metric tensor is fully antisymmetric
``None``: there is no metric tensor (metric equals to ``None``)
The metric is assumed to be symmetric by default. It can also be set
to a custom tensor by the ``.set_metric()`` method.
If there is a metric the metric is used to raise and lower indices.
In the case of non-symmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
From these it is easy to find:
``g(-a, b) = delta(-a, b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
For antisymmetric metrics there is also the following equality:
``g(a, -b) = -delta(a, -b)``
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
metric_symmetry=1, metric_name='metric', **kwargs):
if 'dummy_fmt' in kwargs:
SymPyDeprecationWarning(useinstead="dummy_name",
feature="dummy_fmt", issue=17517,
deprecated_since_version="1.5").warn()
dummy_name = kwargs.get('dummy_fmt')
if isinstance(name, str):
name = Symbol(name)
if dummy_name is None:
dummy_name = str(name)[0]
if isinstance(dummy_name, str):
dummy_name = Symbol(dummy_name)
if dim is None:
dim = Symbol("dim_" + dummy_name.name)
else:
dim = sympify(dim)
if eps_dim is None:
eps_dim = dim
else:
eps_dim = sympify(eps_dim)
metric_symmetry = sympify(metric_symmetry)
if isinstance(metric_name, str):
metric_name = Symbol(metric_name)
if 'metric' in kwargs:
SymPyDeprecationWarning(useinstead="metric_symmetry or .set_metric()",
feature="metric argument", issue=17517,
deprecated_since_version="1.5").warn()
metric = kwargs.get('metric')
if metric is not None:
if metric in (True, False, 0, 1):
metric_name = 'metric'
#metric_antisym = metric
else:
metric_name = metric.name
#metric_antisym = metric.antisym
if metric:
metric_symmetry = -1
else:
metric_symmetry = 1
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
metric_symmetry, metric_name)
obj._autogenerated = []
return obj
@property
def name(self):
return self.args[0].name
@property
def dummy_name(self):
return self.args[1].name
@property
def dim(self):
return self.args[2]
@property
def eps_dim(self):
return self.args[3]
@memoize_property
def metric(self):
metric_symmetry = self.args[4]
metric_name = self.args[5]
if metric_symmetry is None:
return None
if metric_symmetry == 0:
symmetry = TensorSymmetry.no_symmetry(2)
elif metric_symmetry == 1:
symmetry = TensorSymmetry.fully_symmetric(2)
elif metric_symmetry == -1:
symmetry = TensorSymmetry.fully_symmetric(-2)
return TensorHead(metric_name, [self]*2, symmetry)
@memoize_property
def delta(self):
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
@memoize_property
def epsilon(self):
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
return None
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
def set_metric(self, tensor):
self._metric = tensor
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
# Everything below this line is deprecated
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim.is_number:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim.is_number:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
@deprecated(useinstead=".delta", issue=17517,
deprecated_since_version="1.5")
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
delta = TensorHead('KD', [self]*2, sym2)
return delta
@deprecated(useinstead=".delta", issue=17517,
deprecated_since_version="1.5")
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
return epsilon
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents a tensor index
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensor_index_type : ``TensorIndexType`` of the index
is_up : flag for contravariant index (is_up=True by default)
Attributes
==========
``name``
``tensor_index_type``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name. Adding
``-`` to a covariant (is_up=False) index makes it contravariant.
Dummy indices have a name with head given by
``tensor_inde_type.dummy_name`` with underscore and a number.
Similar to ``symbols`` multiple contravariant indices can be created
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
of names.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
A(mu, -rho)
>>> A(mu, -mu)
A(-L_0, L_0)
"""
def __new__(cls, name, tensor_index_type, is_up=True):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{}".format(len(tensor_index_type._autogenerated))
name_symbol = Symbol(name)
tensor_index_type._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
@property
def name(self):
return self.args[0].name
@property
def tensor_index_type(self):
return self.args[1]
@property
def is_up(self):
return self.args[2]
def _print(self):
s = self.name
if not self.is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return ((self.tensor_index_type, self.name) <
(other.tensor_index_type, other.name))
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
index permutation). For the relevant terminology see ``tensor_can.py``
section of the combinatorics module.
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
(i.e., Bianchi identity), are not covered. See combinatorics module for
information on how to generate BSGS for a general index permutation group.
Simple symmetries can be generated using built-in methods.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor of rank 2
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
Note, that the same can also be done using built-in TensorSymmetry methods
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
return Basic.__new__(cls, base, generators, **kw_args)
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.generators[0].size - 2
@classmethod
def fully_symmetric(cls, rank):
"""
Returns a fully symmetric (antisymmetric if ``rank``<0)
TensorSymmetry object for ``abs(rank)`` indices.
"""
if rank > 0:
bsgs = get_symmetric_group_sgs(rank, False)
elif rank < 0:
bsgs = get_symmetric_group_sgs(-rank, True)
elif rank == 0:
bsgs = ([], [Permutation(1)])
return TensorSymmetry(bsgs)
@classmethod
def direct_product(cls, *args):
"""
Returns a TensorSymmetry object that is being a direct product of
fully (anti-)symmetric index permutation groups.
Notes
=====
Some examples for different values of ``(*args)``:
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
``(1, 1, 1)`` tensor with 3 indices without any symmetry
"""
base, sgs = [], [Permutation(1)]
for arg in args:
if arg > 0:
bsgs2 = get_symmetric_group_sgs(arg, False)
elif arg < 0:
bsgs2 = get_symmetric_group_sgs(-arg, True)
else:
continue
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
return TensorSymmetry(base, sgs)
@classmethod
def riemann(cls):
"""
Returns a monotorem symmetry of the Riemann tensor
"""
return TensorSymmetry(riemann_bsgs)
@classmethod
def no_symmetry(cls, rank):
"""
TensorSymmetry object for ``rank`` indices with no symmetry
"""
return TensorSymmetry([], [Permutation(rank+1)])
@deprecated(useinstead="TensorSymmetry class constructor and methods", issue=17108,
deprecated_since_version="1.5")
def tensorsymmetry(*args):
"""
Returns a ``TensorSymmetry`` object. This method is deprecated, use
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
class TensorType(Basic):
"""
Class of tensor types. Deprecated, use tensor_heads() instead.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
deprecate_TensorType()
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
``s`` name or string of names
``comm``: commutation group number
see ``_TensorManager.set_comm``
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self.index_types, self.symmetry, comm)
else:
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
@deprecated(useinstead="TensorHead class constructor or tensor_heads()",
issue=17108, deprecated_since_version="1.5")
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s). This method is deprecated,
use TensorHead constructor or tensor_heads() instead.
Parameters
==========
name : name or sequence of names (as in ``symbols``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
sym = tensorsymmetry(*sym)
return TensorHead(name, typ, sym, comm)
class TensorHead(Basic):
"""
Tensor head of the tensor
Parameters
==========
name : name of the tensor
index_types : list of TensorIndexType
symmetry : TensorSymmetry of the tensor
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank`` : total number of indices
``symmetry``
``comm`` : commutation group
Notes
=====
Similar to ``symbols`` multiple TensorHeads can be created using
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
is the string of names and ``sym`` is the monoterm tensor symmetry
(see ``tensorsymmetry``).
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
Define a fully antisymmetric tensor of rank 2:
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor:
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, index_types, symmetry=None, comm=0):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
if symmetry is None:
symmetry = TensorSymmetry.no_symmetry(len(index_types))
else:
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
obj.comm = TensorManager.comm_symbols2i(comm)
return obj
@property
def name(self):
return self.args[0].name
@property
def index_types(self):
return list(self.args[1])
@property
def symmetry(self):
return self.args[2]
@property
def rank(self):
return len(self.index_types)
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self.comm, other.comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Indices can also be strings, in which case the attribute
``index_types`` is used to convert them to proper ``TensorIndex``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
updated_indices = []
for idx, typ in zip(indices, self.index_types):
if isinstance(idx, str):
idx = idx.strip().replace(" ", "")
if idx.startswith('-'):
updated_indices.append(TensorIndex(idx[1:], typ,
is_up=False))
else:
updated_indices.append(TensorIndex(idx, typ))
else:
updated_indices.append(idx)
updated_indices += indices[len(updated_indices):]
tensor = Tensor(self, updated_indices, **kw_args)
return tensor.doit()
# Everything below this line is deprecated
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power on abstract tensors.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.index_types]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (other * S.Half)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
deprecate_data()
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def tensor_heads(s, index_types, symmetry=None, comm=0):
"""
Returns a sequence of TensorHeads from a string `s`
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
if len(thlist) == 1:
return thlist[0]
return thlist
class _TensorMetaclass(ManagedProperties, ABCMeta):
pass
class TensExpr(Expr, metaclass=_TensorMetaclass):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __truediv__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rtruediv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=SymPyDeprecationWarning)
if self.data is None:
raise ValueError("No power without ndarray data.")
deprecate_data()
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (other * S.Half)
def __rpow__(self, other):
raise NotImplementedError
@property
@abstractmethod
def nocoeff(self):
raise NotImplementedError("abstract method")
@property
@abstractmethod
def coeff(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_indices(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_free_indices(self): # type: () -> List[TensorIndex]
raise NotImplementedError("abstract method")
@abstractmethod
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
raise NotImplementedError("abstract method")
def fun_eval(self, *index_tuples):
deprecate_fun_eval()
return self.substitute_indices(*index_tuples)
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy import Matrix
deprecate_data()
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@staticmethod
def _contract_and_permute_with_metric(metric, array, pos, dim):
# TODO: add possibility of metric after (spinors)
from .array import tensorcontraction, tensorproduct, permutedims
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(dim))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# Raise indices:
for pos in pos2up:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
# Lower indices:
for pos in pos2down:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices=None):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read. The
original index order will be used if no value is passed.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
Since 'indices' is optional, we can also call replace_with_arrays by
this way if no specific index order is needed:
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]})
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
-3
Symmetrization of an array:
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
indices = indices or []
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all([dim1 == dim2 if
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
array.shape)])):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
def _expand_partial_derivative(self):
# simply delegate the _expand_partial_derivative() to
# its arguments to expand a possibly found PartialDerivative
return self.func(*[
a._expand_partial_derivative()
if isinstance(a, TensExpr) else a
for a in self.args])
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
args.sort(key=default_sort_key)
if not args:
return S.Zero
if len(args) == 1:
return args[0]
return Basic.__new__(cls, *args, **kw_args)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self): # type: () -> List[TensorIndex]
return self.free_indices
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
return self.func(*newargs)
@memoize_property
def rank(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].rank
else:
return 0
@memoize_property
def free_args(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_args
else:
return []
@memoize_property
def free_indices(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].get_free_indices()
else:
return set()
def doit(self, **kwargs):
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
if not isinstance(t, TensExpr):
return [], [], []
if hasattr(t, "_index_structure") and hasattr(t, "components"):
x = get_index_structure(t)
return t.components, x.free, x.dum
return [], [], []
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
def get_indices_set(x): # type: (Expr) -> Set[TensorIndex]
if isinstance(x, TensExpr):
return set(x.get_free_indices())
return set()
indices0 = get_indices_set(args[0]) # type: Set[TensorIndex]
list_indices = [get_indices_set(arg) for arg in args[1:]] # type: List[Set[TensorIndex]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set()
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set():
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other.coeff == 0:
return all(x.coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t.coeff == 0
else:
return all(x.coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensAdd(*new_args).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
def _eval_partial_derivative(self, s):
# Evaluation like Add
list_addends = []
for a in self.args:
if isinstance(a, TensExpr):
list_addends.append(a._eval_partial_derivative(s))
# do not call diff if s is no symbol
elif s._diff_wrt:
list_addends.append(a._eval_derivative(s))
return self.func(*list_addends)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = TensorHead("A", [Lorentz, Lorentz])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
It is also possible to use symbols instead of inidices (appropriate indices
are then generated automatically).
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> A(x, mu)
A(x, mu)
>>> A(x, -x)
A(L_0, -L_0)
"""
is_commutative = False
_index_structure = None # type: _IndexStructure
def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free = obj._index_structure.free[:]
obj._dum = obj._index_structure.dum[:]
obj._ext_rank = obj._index_structure._ext_rank
obj._coeff = S.One
obj._nocoeff = obj
obj._component = tensor_head
obj._components = [tensor_head]
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj.is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@property
def free(self):
return self._free
@property
def dum(self):
return self._dum
@property
def ext_rank(self):
return self._ext_rank
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self._nocoeff
@property
def component(self):
return self._component
@property
def components(self):
return self._components
@property
def head(self):
return self.args[0]
@property
def indices(self):
return self.args[1]
@property
def free_indices(self):
return set(self._index_structure.get_free_indices())
@property
def index_types(self):
return self.head.index_types
@property
def rank(self):
return len(self.free_indices)
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **kwargs):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()
def _get_free_indices_set(self):
return {i[0] for i in self._index_structure.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos}
def _get_indices_set(self):
return set(self.args[1].args)
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self.is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> Tensor
# TODO: this could be optimized by only swapping the indices
# instead of visiting the whole expression tree:
return self.xreplace(repl)
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``
``index_types`` list of tuples ``(old_index, new_index)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
indices = []
for index in self.indices:
for ind_old, ind_new in index_tuples:
if (index.name == ind_old.name and index.tensor_index_type ==
ind_old.tensor_index_type):
if index.is_up == ind_old.is_up:
indices.append(ind_new)
else:
indices.append(-ind_new)
break
else:
indices.append(index)
return self.head(*indices)
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices1 = self.get_indices()
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
for pos in (p1, p2):
if indices1[pos].is_up ^ indices2[pos].is_up:
metric = replacement_dict[indices1[pos].tensor_index_type]
if indices1[pos].is_up:
metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
sign = sign*typ.dim
else:
# g(i, -i)
sign = sign*typ.dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr
if not isinstance(s, Tensor):
return S.Zero
else:
# @a_i/@a_k = delta_i^k
# @a_i/@a^k = g_ij delta^j_k
# @a^i/@a^k = delta^i_k
# @a^i/@a_k = g^ij delta_j^k
# TODO: if there is no metric present, the derivative should be zero?
if self.head != s.head:
return S.Zero
# if heads are the same, provide delta and/or metric products
# for every free index pair in the appropriate tensor
# assumed that the free indices are in proper order
# A contravariante index in the derivative becomes covariant
# after performing the derivative and vice versa
kronecker_delta_list = [1]
# not guarantee a correct index order
for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
if iself.tensor_index_type != iother.tensor_index_type:
raise ValueError("index types not compatible")
else:
tensor_index_type = iself.tensor_index_type
tensor_metric = tensor_index_type.metric
dummy = TensorIndex("d_" + str(count), tensor_index_type,
is_up=iself.is_up)
if iself.is_up == iother.is_up:
kroneckerdelta = tensor_index_type.delta(iself, -iother)
else:
kroneckerdelta = (
TensMul(tensor_metric(iself, dummy),
tensor_index_type.delta(-dummy, -iother))
)
kronecker_delta_list.append(kroneckerdelta)
return TensMul.fromiter(kronecker_delta_list).doit()
# doit necessary to rename dummy indices accordingly
class TensMul(TensExpr, AssocOp):
"""
Product of tensors
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
_index_structure = None # type: _IndexStructure
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types[:]
obj._index_structure = index_structure
obj._free = index_structure.free[:]
obj._dum = index_structure.dum[:]
obj._free_indices = {x[0] for x in obj.free}
obj._rank = len(obj.free)
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
index_types = property(lambda self: self._index_types)
free = property(lambda self: self._free)
dum = property(lambda self: self._dum)
free_indices = property(lambda self: self._free_indices)
rank = property(lambda self: self._rank)
ext_rank = property(lambda self: self._ext_rank)
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all([_has_index_order(arg) for arg in args])
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_name_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [
arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **kwargs):
is_canon_bp = self._is_canon_bp
deep = kwargs.get('deep', True)
if deep:
args = [arg.doit(**kwargs) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return {i[0] for i in self.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos}
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
# return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self.coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Returns the list of free indices of the tensor
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])
def split(self):
"""
Returns a list of tensors, whose product is ``self``
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in [0, 1]:
continue
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = dict()
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``
Parameters
==========
g : metric
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensMul(*new_args).doit()
def __call__(self, *indices):
deprecate_fun_eval()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s):
# Evaluation like Mul
terms = []
for i, arg in enumerate(self.args):
# checking whether some tensor instance is differentiated
# or some other thing is necessary, but ugly
if isinstance(arg, TensExpr):
d = arg._eval_partial_derivative(s)
else:
# do not call diff is s is no symbol
if s._diff_wrt:
d = arg._eval_derivative(s)
else:
d = S.Zero
if d:
terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
return TensAdd.fromiter(terms)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self):
return self._free_indices
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
# TODO: can be improved:
return self.xreplace(repl)
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
combinatorics module for the details.
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = t_r*Rational(2, 3)
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
if not isinstance(t, TensExpr):
return t
return t.substitute_indices(*index_tuples)
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
3987b0ceb1343a8f9a90d50806d975e8dfc90f57431c7d2b58391d44b52a3b6e | """Module with functions operating on IndexedBase, Indexed and Idx objects
- Check shape conformance
- Determine indices in resulting expression
etc.
Methods in this module could be implemented by calling methods on Expr
objects instead. When things stabilize this could be a useful
refactoring.
"""
from sympy.core.compatibility import reduce
from sympy.core.function import Function
from sympy.functions import exp, Piecewise
from sympy.tensor.indexed import Idx, Indexed
from sympy.utilities import sift
from collections import OrderedDict
class IndexConformanceException(Exception):
pass
def _unique_and_repeated(inds):
"""
Returns the unique and repeated indices. Also note, from the examples given below
that the order of indices is maintained as given in the input.
Examples
========
>>> from sympy.tensor.index_methods import _unique_and_repeated
>>> _unique_and_repeated([2, 3, 1, 3, 0, 4, 0])
([2, 1, 4], [3, 0])
"""
uniq = OrderedDict()
for i in inds:
if i in uniq:
uniq[i] = 0
else:
uniq[i] = 1
return sift(uniq, lambda x: uniq[x], binary=True)
def _remove_repeated(inds):
"""
Removes repeated objects from sequences
Returns a set of the unique objects and a tuple of all that have been
removed.
Examples
========
>>> from sympy.tensor.index_methods import _remove_repeated
>>> l1 = [1, 2, 3, 2]
>>> _remove_repeated(l1)
({1, 3}, (2,))
"""
u, r = _unique_and_repeated(inds)
return set(u), tuple(r)
def _get_indices_Mul(expr, return_dummies=False):
"""Determine the outer indices of a Mul object.
Examples
========
>>> from sympy.tensor.index_methods import _get_indices_Mul
>>> from sympy.tensor.indexed import IndexedBase, Idx
>>> i, j, k = map(Idx, ['i', 'j', 'k'])
>>> x = IndexedBase('x')
>>> y = IndexedBase('y')
>>> _get_indices_Mul(x[i, k]*y[j, k])
({i, j}, {})
>>> _get_indices_Mul(x[i, k]*y[j, k], return_dummies=True)
({i, j}, {}, (k,))
"""
inds = list(map(get_indices, expr.args))
inds, syms = list(zip(*inds))
inds = list(map(list, inds))
inds = list(reduce(lambda x, y: x + y, inds))
inds, dummies = _remove_repeated(inds)
symmetry = {}
for s in syms:
for pair in s:
if pair in symmetry:
symmetry[pair] *= s[pair]
else:
symmetry[pair] = s[pair]
if return_dummies:
return inds, symmetry, dummies
else:
return inds, symmetry
def _get_indices_Pow(expr):
"""Determine outer indices of a power or an exponential.
A power is considered a universal function, so that the indices of a Pow is
just the collection of indices present in the expression. This may be
viewed as a bit inconsistent in the special case:
x[i]**2 = x[i]*x[i] (1)
The above expression could have been interpreted as the contraction of x[i]
with itself, but we choose instead to interpret it as a function
lambda y: y**2
applied to each element of x (a universal function in numpy terms). In
order to allow an interpretation of (1) as a contraction, we need
contravariant and covariant Idx subclasses. (FIXME: this is not yet
implemented)
Expressions in the base or exponent are subject to contraction as usual,
but an index that is present in the exponent, will not be considered
contractable with its own base. Note however, that indices in the same
exponent can be contracted with each other.
Examples
========
>>> from sympy.tensor.index_methods import _get_indices_Pow
>>> from sympy import Pow, exp, IndexedBase, Idx
>>> A = IndexedBase('A')
>>> x = IndexedBase('x')
>>> i, j, k = map(Idx, ['i', 'j', 'k'])
>>> _get_indices_Pow(exp(A[i, j]*x[j]))
({i}, {})
>>> _get_indices_Pow(Pow(x[i], x[i]))
({i}, {})
>>> _get_indices_Pow(Pow(A[i, j]*x[j], x[i]))
({i}, {})
"""
base, exp = expr.as_base_exp()
binds, bsyms = get_indices(base)
einds, esyms = get_indices(exp)
inds = binds | einds
# FIXME: symmetries from power needs to check special cases, else nothing
symmetries = {}
return inds, symmetries
def _get_indices_Add(expr):
"""Determine outer indices of an Add object.
In a sum, each term must have the same set of outer indices. A valid
expression could be
x(i)*y(j) - x(j)*y(i)
But we do not allow expressions like:
x(i)*y(j) - z(j)*z(j)
FIXME: Add support for Numpy broadcasting
Examples
========
>>> from sympy.tensor.index_methods import _get_indices_Add
>>> from sympy.tensor.indexed import IndexedBase, Idx
>>> i, j, k = map(Idx, ['i', 'j', 'k'])
>>> x = IndexedBase('x')
>>> y = IndexedBase('y')
>>> _get_indices_Add(x[i] + x[k]*y[i, k])
({i}, {})
"""
inds = list(map(get_indices, expr.args))
inds, syms = list(zip(*inds))
# allow broadcast of scalars
non_scalars = [x for x in inds if x != set()]
if not non_scalars:
return set(), {}
if not all([x == non_scalars[0] for x in non_scalars[1:]]):
raise IndexConformanceException("Indices are not consistent: %s" % expr)
if not reduce(lambda x, y: x != y or y, syms):
symmetries = syms[0]
else:
# FIXME: search for symmetries
symmetries = {}
return non_scalars[0], symmetries
def get_indices(expr):
"""Determine the outer indices of expression ``expr``
By *outer* we mean indices that are not summation indices. Returns a set
and a dict. The set contains outer indices and the dict contains
information about index symmetries.
Examples
========
>>> from sympy.tensor.index_methods import get_indices
>>> from sympy import symbols
>>> from sympy.tensor import IndexedBase
>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, a, z = symbols('i j a z', integer=True)
The indices of the total expression is determined, Repeated indices imply a
summation, for instance the trace of a matrix A:
>>> get_indices(A[i, i])
(set(), {})
In the case of many terms, the terms are required to have identical
outer indices. Else an IndexConformanceException is raised.
>>> get_indices(x[i] + A[i, j]*y[j])
({i}, {})
:Exceptions:
An IndexConformanceException means that the terms ar not compatible, e.g.
>>> get_indices(x[i] + y[j]) #doctest: +SKIP
(...)
IndexConformanceException: Indices are not consistent: x(i) + y(j)
.. warning::
The concept of *outer* indices applies recursively, starting on the deepest
level. This implies that dummies inside parenthesis are assumed to be
summed first, so that the following expression is handled gracefully:
>>> get_indices((x[i] + A[i, j]*y[j])*x[j])
({i, j}, {})
This is correct and may appear convenient, but you need to be careful
with this as SymPy will happily .expand() the product, if requested. The
resulting expression would mix the outer ``j`` with the dummies inside
the parenthesis, which makes it a different expression. To be on the
safe side, it is best to avoid such ambiguities by using unique indices
for all contractions that should be held separate.
"""
# We call ourself recursively to determine indices of sub expressions.
# break recursion
if isinstance(expr, Indexed):
c = expr.indices
inds, dummies = _remove_repeated(c)
return inds, {}
elif expr is None:
return set(), {}
elif isinstance(expr, Idx):
return {expr}, {}
elif expr.is_Atom:
return set(), {}
# recurse via specialized functions
else:
if expr.is_Mul:
return _get_indices_Mul(expr)
elif expr.is_Add:
return _get_indices_Add(expr)
elif expr.is_Pow or isinstance(expr, exp):
return _get_indices_Pow(expr)
elif isinstance(expr, Piecewise):
# FIXME: No support for Piecewise yet
return set(), {}
elif isinstance(expr, Function):
# Support ufunc like behaviour by returning indices from arguments.
# Functions do not interpret repeated indices across argumnts
# as summation
ind0 = set()
for arg in expr.args:
ind, sym = get_indices(arg)
ind0 |= ind
return ind0, sym
# this test is expensive, so it should be at the end
elif not expr.has(Indexed):
return set(), {}
raise NotImplementedError(
"FIXME: No specialized handling of type %s" % type(expr))
def get_contraction_structure(expr):
"""Determine dummy indices of ``expr`` and describe its structure
By *dummy* we mean indices that are summation indices.
The structure of the expression is determined and described as follows:
1) A conforming summation of Indexed objects is described with a dict where
the keys are summation indices and the corresponding values are sets
containing all terms for which the summation applies. All Add objects
in the SymPy expression tree are described like this.
2) For all nodes in the SymPy expression tree that are *not* of type Add, the
following applies:
If a node discovers contractions in one of its arguments, the node
itself will be stored as a key in the dict. For that key, the
corresponding value is a list of dicts, each of which is the result of a
recursive call to get_contraction_structure(). The list contains only
dicts for the non-trivial deeper contractions, omitting dicts with None
as the one and only key.
.. Note:: The presence of expressions among the dictionary keys indicates
multiple levels of index contractions. A nested dict displays nested
contractions and may itself contain dicts from a deeper level. In
practical calculations the summation in the deepest nested level must be
calculated first so that the outer expression can access the resulting
indexed object.
Examples
========
>>> from sympy.tensor.index_methods import get_contraction_structure
>>> from sympy import default_sort_key
>>> from sympy.tensor import IndexedBase, Idx
>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, k, l = map(Idx, ['i', 'j', 'k', 'l'])
>>> get_contraction_structure(x[i]*y[i] + A[j, j])
{(i,): {x[i]*y[i]}, (j,): {A[j, j]}}
>>> get_contraction_structure(x[i]*y[j])
{None: {x[i]*y[j]}}
A multiplication of contracted factors results in nested dicts representing
the internal contractions.
>>> d = get_contraction_structure(x[i, i]*y[j, j])
>>> sorted(d.keys(), key=default_sort_key)
[None, x[i, i]*y[j, j]]
In this case, the product has no contractions:
>>> d[None]
{x[i, i]*y[j, j]}
Factors are contracted "first":
>>> sorted(d[x[i, i]*y[j, j]], key=default_sort_key)
[{(i,): {x[i, i]}}, {(j,): {y[j, j]}}]
A parenthesized Add object is also returned as a nested dictionary. The
term containing the parenthesis is a Mul with a contraction among the
arguments, so it will be found as a key in the result. It stores the
dictionary resulting from a recursive call on the Add expression.
>>> d = get_contraction_structure(x[i]*(y[i] + A[i, j]*x[j]))
>>> sorted(d.keys(), key=default_sort_key)
[(A[i, j]*x[j] + y[i])*x[i], (i,)]
>>> d[(i,)]
{(A[i, j]*x[j] + y[i])*x[i]}
>>> d[x[i]*(A[i, j]*x[j] + y[i])]
[{None: {y[i]}, (j,): {A[i, j]*x[j]}}]
Powers with contractions in either base or exponent will also be found as
keys in the dictionary, mapping to a list of results from recursive calls:
>>> d = get_contraction_structure(A[j, j]**A[i, i])
>>> d[None]
{A[j, j]**A[i, i]}
>>> nested_contractions = d[A[j, j]**A[i, i]]
>>> nested_contractions[0]
{(j,): {A[j, j]}}
>>> nested_contractions[1]
{(i,): {A[i, i]}}
The description of the contraction structure may appear complicated when
represented with a string in the above examples, but it is easy to iterate
over:
>>> from sympy import Expr
>>> for key in d:
... if isinstance(key, Expr):
... continue
... for term in d[key]:
... if term in d:
... # treat deepest contraction first
... pass
... # treat outermost contactions here
"""
# We call ourself recursively to inspect sub expressions.
if isinstance(expr, Indexed):
junk, key = _remove_repeated(expr.indices)
return {key or None: {expr}}
elif expr.is_Atom:
return {None: {expr}}
elif expr.is_Mul:
junk, junk, key = _get_indices_Mul(expr, return_dummies=True)
result = {key or None: {expr}}
# recurse on every factor
nested = []
for fac in expr.args:
facd = get_contraction_structure(fac)
if not (None in facd and len(facd) == 1):
nested.append(facd)
if nested:
result[expr] = nested
return result
elif expr.is_Pow or isinstance(expr, exp):
# recurse in base and exp separately. If either has internal
# contractions we must include ourselves as a key in the returned dict
b, e = expr.as_base_exp()
dbase = get_contraction_structure(b)
dexp = get_contraction_structure(e)
dicts = []
for d in dbase, dexp:
if not (None in d and len(d) == 1):
dicts.append(d)
result = {None: {expr}}
if dicts:
result[expr] = dicts
return result
elif expr.is_Add:
# Note: we just collect all terms with identical summation indices, We
# do nothing to identify equivalent terms here, as this would require
# substitutions or pattern matching in expressions of unknown
# complexity.
result = {}
for term in expr.args:
# recurse on every term
d = get_contraction_structure(term)
for key in d:
if key in result:
result[key] |= d[key]
else:
result[key] = d[key]
return result
elif isinstance(expr, Piecewise):
# FIXME: No support for Piecewise yet
return {None: expr}
elif isinstance(expr, Function):
# Collect non-trivial contraction structures in each argument
# We do not report repeated indices in separate arguments as a
# contraction
deeplist = []
for arg in expr.args:
deep = get_contraction_structure(arg)
if not (None in deep and len(deep) == 1):
deeplist.append(deep)
d = {None: {expr}}
if deeplist:
d[expr] = deeplist
return d
# this test is expensive, so it should be at the end
elif not expr.has(Indexed):
return {None: {expr}}
raise NotImplementedError(
"FIXME: No specialized handling of type %s" % type(expr))
|
854ed45e07d6e0369b8a48bd1a5ed3d9b119888e5de898630b6c62265b035cb6 | r"""Module that defines indexed objects
The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a
matrix element ``M[i, j]`` as in the following diagram::
1) The Indexed class represents the entire indexed object.
|
___|___
' '
M[i, j]
/ \__\______
| |
| |
| 2) The Idx class represents indices; each Idx can
| optionally contain information about its range.
|
3) IndexedBase represents the 'stem' of an indexed object, here `M`.
The stem used by itself is usually taken to represent the entire
array.
There can be any number of indices on an Indexed object. No
transformation properties are implemented in these Base objects, but
implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer
expressions as indices is limited. (This should be improved in
future releases.)
Examples
========
To express the above matrix element example you would write:
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
Repeated indices in a product implies a summation, so to express a
matrix-vector product in terms of Indexed objects:
>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
M[i, j]*x[j]
If the indexed objects will be converted to component based arrays, e.g.
with the code printers or the autowrap framework, you also need to provide
(symbolic or numerical) dimensions. This can be done by passing an
optional shape parameter to IndexedBase upon construction:
>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)
If an IndexedBase object has no shape information, it is assumed that the
array is as large as the ranges of its indices:
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]
The above can be compared with the following:
>>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]
To analyze the structure of indexed expressions, you can use the methods
get_indices() and get_contraction_structure():
>>> from sympy.tensor import get_indices, get_contraction_structure
>>> get_indices(A[i, j, j])
({i}, {})
>>> get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
See the appropriate docstrings for a detailed explanation of the output.
"""
# TODO: (some ideas for improvement)
#
# o test and guarantee numpy compatibility
# - implement full support for broadcasting
# - strided arrays
#
# o more functions to analyze indexed expressions
# - identify standard constructs, e.g matrix-vector product in a subexpression
#
# o functions to generate component based arrays (numpy and sympy.Matrix)
# - generate a single array directly from Indexed
# - convert simple sub-expressions
#
# o sophisticated indexing (possibly in subclasses to preserve simplicity)
# - Idx with range smaller than dimension of Indexed
# - Idx with stepsize != 1
# - Idx with step determined by function call
from sympy import Number
from sympy.core.assumptions import StdFactKB
from sympy.core import Expr, Tuple, sympify, S
from sympy.core.symbol import _filter_assumptions, Symbol
from sympy.core.compatibility import (is_sequence, NotIterable,
Iterable)
from sympy.core.logic import fuzzy_bool, fuzzy_not
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.multipledispatch import dispatch
class IndexException(Exception):
pass
class Indexed(Expr):
"""Represents a mathematical object with indices.
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
It is recommended that ``Indexed`` objects be created by indexing ``IndexedBase``:
``IndexedBase('A')[i, j]`` instead of ``Indexed(IndexedBase('A'), i, j)``.
>>> A = IndexedBase('A')
>>> a_ij = A[i, j] # Prefer this,
>>> b_ij = Indexed(A, i, j) # over this.
>>> a_ij == b_ij
True
"""
is_commutative = True
is_Indexed = True
is_symbol = True
is_Atom = True
def __new__(cls, base, *args, **kw_args):
from sympy.utilities.misc import filldedent
from sympy.tensor.array.ndim_array import NDimArray
from sympy.matrices.matrices import MatrixBase
if not args:
raise IndexException("Indexed needs at least one index.")
if isinstance(base, (str, Symbol)):
base = IndexedBase(base)
elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
raise TypeError(filldedent("""
The base can only be replaced with a string, Symbol,
IndexedBase or an object with a method for getting
items (i.e. an object with a `__getitem__` method).
"""))
args = list(map(sympify, args))
if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all([i.is_number for i in args]):
if len(args) == 1:
return base[args[0]]
else:
return base[args]
obj = Expr.__new__(cls, base, *args, **kw_args)
try:
IndexedBase._set_assumptions(obj, base.assumptions0)
except AttributeError:
IndexedBase._set_assumptions(obj, {})
return obj
def _hashable_content(self):
return super()._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def name(self):
return str(self)
@property
def _diff_wrt(self):
"""Allow derivatives with respect to an ``Indexed`` object."""
return True
def _eval_derivative(self, wrt):
from sympy.tensor.array.ndim_array import NDimArray
if isinstance(wrt, Indexed) and wrt.base == self.base:
if len(self.indices) != len(wrt.indices):
msg = "Different # of indices: d({!s})/d({!s})".format(self,
wrt)
raise IndexException(msg)
result = S.One
for index1, index2 in zip(self.indices, wrt.indices):
result *= KroneckerDelta(index1, index2)
return result
elif isinstance(self.base, NDimArray):
from sympy.tensor.array import derive_by_array
return Indexed(derive_by_array(self.base, wrt), *self.args[1:])
else:
if Tuple(self.indices).has(wrt):
return S.NaN
return S.Zero
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
@property
def base(self):
"""Returns the ``IndexedBase`` of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
"""
return self.args[0]
@property
def indices(self):
"""
Returns the indices of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
"""
return self.args[1:]
@property
def rank(self):
"""
Returns the rank of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
"""
return len(self.args) - 1
@property
def shape(self):
"""Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if
the ``IndexedBase`` does not define a shape attribute, it is assumed
that the ranges of the indices correspond to the shape of the array.
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
"""
from sympy.utilities.misc import filldedent
if self.base.shape:
return self.base.shape
sizes = []
for i in self.indices:
upper = getattr(i, 'upper', None)
lower = getattr(i, 'lower', None)
if None in (upper, lower):
raise IndexException(filldedent("""
Range is not defined for all indices in: %s""" % self))
try:
size = upper - lower + 1
except TypeError:
raise IndexException(filldedent("""
Shape cannot be inferred from Idx with
undefined range: %s""" % self))
sizes.append(size)
return Tuple(*sizes)
@property
def ranges(self):
"""Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the
corresponding slot in the list contains ``None`` instead of a tuple.
Examples
========
>>> from sympy import Indexed,Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
"""
ranges = []
for i in self.indices:
sentinel = object()
upper = getattr(i, 'upper', sentinel)
lower = getattr(i, 'lower', sentinel)
if sentinel not in (upper, lower):
ranges.append(Tuple(lower, upper))
else:
ranges.append(None)
return ranges
def _sympystr(self, p):
indices = list(map(p.doprint, self.indices))
return "%s[%s]" % (p.doprint(self.base), ", ".join(indices))
@property
def free_symbols(self):
base_free_symbols = self.base.free_symbols
indices_free_symbols = {
fs for i in self.indices for fs in i.free_symbols}
if base_free_symbols:
return {self} | base_free_symbols | indices_free_symbols
else:
return indices_free_symbols
@property
def expr_free_symbols(self):
return {self}
class IndexedBase(Expr, NotIterable):
"""Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose
of this class is to allow the convenient creation of objects of the Indexed
class. The __getitem__ method of IndexedBase returns an instance of
Indexed. Alone, without indices, the IndexedBase class can be used as a
notation for e.g. matrix equations, resembling what you could do with the
Symbol class. But, the IndexedBase class adds functionality that is not
available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can
be used in to check array conformance and conditions for numpy
broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic
representation of array operations, using implicit summation of
repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent
to arrays, and is recognized as such for code generation and automatic
compilation and wrapping.
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
>>> type(A)
<class 'sympy.tensor.indexed.IndexedBase'>
When an IndexedBase object receives indices, it returns an array with named
axes, represented by an Indexed object:
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
The IndexedBase constructor takes an optional shape argument. If given,
it overrides any shape information in the indices. (But not the index
ranges!)
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
Assumptions can be specified with keyword arguments the same way as for Symbol:
>>> A_real = IndexedBase('A', real=True)
>>> A_real.is_real
True
>>> A != A_real
True
Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase:
>>> I = symbols('I', integer=True)
>>> C_inherit = IndexedBase(I)
>>> C_explicit = IndexedBase('I', integer=True)
>>> C_inherit == C_explicit
True
"""
is_commutative = True
is_symbol = True
is_Atom = True
@staticmethod
def _set_assumptions(obj, assumptions):
"""Set assumptions on obj, making sure to apply consistent values."""
tmp_asm_copy = assumptions.copy()
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
assumptions['commutative'] = is_commutative
obj._assumptions = StdFactKB(assumptions)
obj._assumptions._generator = tmp_asm_copy # Issue #8873
def __new__(cls, label, shape=None, *, offset=S.Zero, strides=None, **kw_args):
from sympy import MatrixBase, NDimArray
assumptions, kw_args = _filter_assumptions(kw_args)
if isinstance(label, str):
label = Symbol(label, **assumptions)
elif isinstance(label, Symbol):
assumptions = label._merge(assumptions)
elif isinstance(label, (MatrixBase, NDimArray)):
return label
elif isinstance(label, Iterable):
return _sympify(label)
else:
label = _sympify(label)
if is_sequence(shape):
shape = Tuple(*shape)
elif shape is not None:
shape = Tuple(shape)
if shape is not None:
obj = Expr.__new__(cls, label, shape)
else:
obj = Expr.__new__(cls, label)
obj._shape = shape
obj._offset = offset
obj._strides = strides
obj._name = str(label)
IndexedBase._set_assumptions(obj, assumptions)
return obj
@property
def name(self):
return self._name
def _hashable_content(self):
return super()._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
def __getitem__(self, indices, **kw_args):
if is_sequence(indices):
# Special case needed because M[*my_tuple] is a syntax error.
if self.shape and len(self.shape) != len(indices):
raise IndexException("Rank mismatch.")
return Indexed(self, *indices, **kw_args)
else:
if self.shape and len(self.shape) != 1:
raise IndexException("Rank mismatch.")
return Indexed(self, indices, **kw_args)
@property
def shape(self):
"""Returns the shape of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase, Idx
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
Note: If the shape of the ``IndexedBase`` is specified, it will override
any shape information given by the indices.
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
"""
return self._shape
@property
def strides(self):
"""Returns the strided scheme for the ``IndexedBase`` object.
Normally this is a tuple denoting the number of
steps to take in the respective dimension when traversing
an array. For code generation purposes strides='C' and
strides='F' can also be used.
strides='C' would mean that code printer would unroll
in row-major order and 'F' means unroll in column major
order.
"""
return self._strides
@property
def offset(self):
"""Returns the offset for the ``IndexedBase`` object.
This is the value added to the resulting index when the
2D Indexed object is unrolled to a 1D form. Used in code
generation.
Examples
==========
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
"""
return self._offset
@property
def label(self):
"""Returns the label of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
"""
return self.args[0]
def _sympystr(self, p):
return p.doprint(self.label)
class Idx(Expr):
"""Represents an integer index as an ``Integer`` or integer expression.
There are a number of ways to create an ``Idx`` object. The constructor
takes two arguments:
``label``
An integer or a symbol that labels the index.
``range``
Optionally you can specify a range as either
* ``Symbol`` or integer: This is interpreted as a dimension. Lower and
upper bounds are set to ``0`` and ``range - 1``, respectively.
* ``tuple``: The two elements are interpreted as the lower and upper
bounds of the range, respectively.
Note: bounds of the range are assumed to be either integer or infinite (oo
and -oo are allowed to specify an unbounded range). If ``n`` is given as a
bound, then ``n.is_integer`` must not return false.
For convenience, if the label is given as a string it is automatically
converted to an integer symbol. (Note: this conversion is not done for
range or dimension arguments.)
Examples
========
>>> from sympy import Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
If a string is given for the label an integer ``Symbol`` is created and the
bounds are both ``None``:
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
Both upper and lower bounds can be specified:
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
When only a single bound is given it is interpreted as the dimension
and the lower bound defaults to 0:
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
"""
is_integer = True
is_finite = True
is_real = True
is_symbol = True
is_Atom = True
_diff_wrt = True
def __new__(cls, label, range=None, **kw_args):
from sympy.utilities.misc import filldedent
if isinstance(label, str):
label = Symbol(label, integer=True)
label, range = list(map(sympify, (label, range)))
if label.is_Number:
if not label.is_integer:
raise TypeError("Index is not an integer number.")
return label
if not label.is_integer:
raise TypeError("Idx object requires an integer label.")
elif is_sequence(range):
if len(range) != 2:
raise ValueError(filldedent("""
Idx range tuple must have length 2, but got %s""" % len(range)))
for bound in range:
if (bound.is_integer is False and bound is not S.Infinity
and bound is not S.NegativeInfinity):
raise TypeError("Idx object requires integer bounds.")
args = label, Tuple(*range)
elif isinstance(range, Expr):
if range is not S.Infinity and fuzzy_not(range.is_integer):
raise TypeError("Idx object requires an integer dimension.")
args = label, Tuple(0, range - 1)
elif range:
raise TypeError(filldedent("""
The range must be an ordered iterable or
integer SymPy expression."""))
else:
args = label,
obj = Expr.__new__(cls, *args, **kw_args)
obj._assumptions["finite"] = True
obj._assumptions["real"] = True
return obj
@property
def label(self):
"""Returns the label (Integer or integer expression) of the Idx object.
Examples
========
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
"""
return self.args[0]
@property
def lower(self):
"""Returns the lower bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
"""
try:
return self.args[1][0]
except IndexError:
return
@property
def upper(self):
"""Returns the upper bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
"""
try:
return self.args[1][1]
except IndexError:
return
def _sympystr(self, p):
return p.doprint(self.label)
@property
def name(self):
return self.label.name if self.label.is_Symbol else str(self.label)
@property
def free_symbols(self):
return {self}
@dispatch(Idx, Idx)
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = rhs if rhs.upper is None else rhs.upper
other_lower = rhs if rhs.lower is None else rhs.lower
if lhs.lower is not None and (lhs.lower >= other_upper) == True:
return True
if lhs.upper is not None and (lhs.upper < other_lower) == True:
return False
return None
@dispatch(Idx, Number) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = rhs
other_lower = rhs
if lhs.lower is not None and (lhs.lower >= other_upper) == True:
return True
if lhs.upper is not None and (lhs.upper < other_lower) == True:
return False
return None
@dispatch(Number, Idx) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = lhs
other_lower = lhs
if rhs.upper is not None and (rhs.upper <= other_lower) == True:
return True
if rhs.lower is not None and (rhs.lower > other_upper) == True:
return False
return None
|
50cfca40d38969eb39bed25153b6dab15e0e8db5f102ea13d567de37e923677f | from contextlib import contextmanager
from threading import local
from sympy.core.function import expand_mul
from sympy.simplify.simplify import dotprodsimp as _dotprodsimp
class DotProdSimpState(local):
def __init__(self):
self.state = None
_dotprodsimp_state = DotProdSimpState()
@contextmanager
def dotprodsimp(x):
old = _dotprodsimp_state.state
try:
_dotprodsimp_state.state = x
yield
finally:
_dotprodsimp_state.state = old
def _get_intermediate_simp(deffunc=lambda x: x, offfunc=lambda x: x,
onfunc=_dotprodsimp, dotprodsimp=None):
"""Support function for controlling intermediate simplification. Returns a
simplification function according to the global setting of dotprodsimp
operation.
``deffunc`` - Function to be used by default.
``offfunc`` - Function to be used if dotprodsimp has been turned off.
``onfunc`` - Function to be used if dotprodsimp has been turned on.
``dotprodsimp`` - True, False or None. Will be overridden by global
_dotprodsimp_state.state if that is not None.
"""
if dotprodsimp is False or _dotprodsimp_state.state is False:
return offfunc
if dotprodsimp is True or _dotprodsimp_state.state is True:
return onfunc
return deffunc # None, None
def _get_intermediate_simp_bool(default=False, dotprodsimp=None):
"""Same as ``_get_intermediate_simp`` but returns bools instead of functions
by default."""
return _get_intermediate_simp(default, False, True, dotprodsimp)
def _iszero(x):
"""Returns True if x is zero."""
return getattr(x, 'is_zero', None)
def _is_zero_after_expand_mul(x):
"""Tests by expand_mul only, suitable for polynomials and rational
functions."""
return expand_mul(x) == 0
|
e090949f6d3e8cf5b069933e13d626c3c2f8c0cccd111a2cf7c528f3c13afbf3 | from types import FunctionType
from sympy.core.numbers import Float, Integer
from sympy.core.singleton import S
from sympy.core.symbol import uniquely_named_symbol
from sympy.polys import PurePoly, cancel
from sympy.simplify.simplify import (simplify as _simplify,
dotprodsimp as _dotprodsimp)
from sympy import sympify
from sympy.functions.combinatorial.numbers import nC
from .common import MatrixError, NonSquareMatrixError
from .utilities import (
_get_intermediate_simp, _get_intermediate_simp_bool,
_iszero, _is_zero_after_expand_mul)
def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
""" Find the lowest index of an item in ``col`` that is
suitable for a pivot. If ``col`` consists only of
Floats, the pivot with the largest norm is returned.
Otherwise, the first element where ``iszerofunc`` returns
False is used. If ``iszerofunc`` doesn't return false,
items are simplified and retested until a suitable
pivot is found.
Returns a 4-tuple
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
where pivot_offset is the index of the pivot, pivot_val is
the (possibly simplified) value of the pivot, assumed_nonzero
is True if an assumption that the pivot was non-zero
was made without being proved, and newly_determined are
elements that were simplified during the process of pivot
finding."""
newly_determined = []
col = list(col)
# a column that contains a mix of floats and integers
# but at least one float is considered a numerical
# column, and so we do partial pivoting
if all(isinstance(x, (Float, Integer)) for x in col) and any(
isinstance(x, Float) for x in col):
col_abs = [abs(x) for x in col]
max_value = max(col_abs)
if iszerofunc(max_value):
# just because iszerofunc returned True, doesn't
# mean the value is numerically zero. Make sure
# to replace all entries with numerical zeros
if max_value != 0:
newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
return (None, None, False, newly_determined)
index = col_abs.index(max_value)
return (index, col[index], False, newly_determined)
# PASS 1 (iszerofunc directly)
possible_zeros = []
for i, x in enumerate(col):
is_zero = iszerofunc(x)
# is someone wrote a custom iszerofunc, it may return
# BooleanFalse or BooleanTrue instead of True or False,
# so use == for comparison instead of `is`
if is_zero == False:
# we found something that is definitely not zero
return (i, x, False, newly_determined)
possible_zeros.append(is_zero)
# by this point, we've found no certain non-zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 2 (iszerofunc after simplify)
# we haven't found any for-sure non-zeros, so
# go through the elements iszerofunc couldn't
# make a determination about and opportunistically
# simplify to see if we find something
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
simped = simpfunc(x)
is_zero = iszerofunc(simped)
if is_zero == True or is_zero == False:
newly_determined.append((i, simped))
if is_zero == False:
return (i, simped, False, newly_determined)
possible_zeros[i] = is_zero
# after simplifying, some things that were recognized
# as zeros might be zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 3 (.equals(0))
# some expressions fail to simplify to zero, but
# ``.equals(0)`` evaluates to True. As a last-ditch
# attempt, apply ``.equals`` to these expressions
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
if x.equals(S.Zero):
# ``.iszero`` may return False with
# an implicit assumption (e.g., ``x.equals(0)``
# when ``x`` is a symbol), so only treat it
# as proved when ``.equals(0)`` returns True
possible_zeros[i] = True
newly_determined.append((i, S.Zero))
if all(possible_zeros):
return (None, None, False, newly_determined)
# at this point there is nothing that could definitely
# be a pivot. To maintain compatibility with existing
# behavior, we'll assume that an illdetermined thing is
# non-zero. We should probably raise a warning in this case
i = possible_zeros.index(None)
return (i, col[i], True, newly_determined)
def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
"""
Helper that computes the pivot value and location from a
sequence of contiguous matrix column elements. As a side effect
of the pivot search, this function may simplify some of the elements
of the input column. A list of these simplified entries and their
indices are also returned.
This function mimics the behavior of _find_reasonable_pivot(),
but does less work trying to determine if an indeterminate candidate
pivot simplifies to zero. This more naive approach can be much faster,
with the trade-off that it may erroneously return a pivot that is zero.
``col`` is a sequence of contiguous column entries to be searched for
a suitable pivot.
``iszerofunc`` is a callable that returns a Boolean that indicates
if its input is zero, or None if no such determination can be made.
``simpfunc`` is a callable that simplifies its input. It must return
its input if it does not simplify its input. Passing in
``simpfunc=None`` indicates that the pivot search should not attempt
to simplify any candidate pivots.
Returns a 4-tuple:
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
``pivot_offset`` is the sequence index of the pivot.
``pivot_val`` is the value of the pivot.
pivot_val and col[pivot_index] are equivalent, but will be different
when col[pivot_index] was simplified during the pivot search.
``assumed_nonzero`` is a boolean indicating if the pivot cannot be
guaranteed to be zero. If assumed_nonzero is true, then the pivot
may or may not be non-zero. If assumed_nonzero is false, then
the pivot is non-zero.
``newly_determined`` is a list of index-value pairs of pivot candidates
that were simplified during the pivot search.
"""
# indeterminates holds the index-value pairs of each pivot candidate
# that is neither zero or non-zero, as determined by iszerofunc().
# If iszerofunc() indicates that a candidate pivot is guaranteed
# non-zero, or that every candidate pivot is zero then the contents
# of indeterminates are unused.
# Otherwise, the only viable candidate pivots are symbolic.
# In this case, indeterminates will have at least one entry,
# and all but the first entry are ignored when simpfunc is None.
indeterminates = []
for i, col_val in enumerate(col):
col_val_is_zero = iszerofunc(col_val)
if col_val_is_zero == False:
# This pivot candidate is non-zero.
return i, col_val, False, []
elif col_val_is_zero is None:
# The candidate pivot's comparison with zero
# is indeterminate.
indeterminates.append((i, col_val))
if len(indeterminates) == 0:
# All candidate pivots are guaranteed to be zero, i.e. there is
# no pivot.
return None, None, False, []
if simpfunc is None:
# Caller did not pass in a simplification function that might
# determine if an indeterminate pivot candidate is guaranteed
# to be nonzero, so assume the first indeterminate candidate
# is non-zero.
return indeterminates[0][0], indeterminates[0][1], True, []
# newly_determined holds index-value pairs of candidate pivots
# that were simplified during the search for a non-zero pivot.
newly_determined = []
for i, col_val in indeterminates:
tmp_col_val = simpfunc(col_val)
if id(col_val) != id(tmp_col_val):
# simpfunc() simplified this candidate pivot.
newly_determined.append((i, tmp_col_val))
if iszerofunc(tmp_col_val) == False:
# Candidate pivot simplified to a guaranteed non-zero value.
return i, tmp_col_val, False, newly_determined
return indeterminates[0][0], indeterminates[0][1], True, newly_determined
# This functions is a candidate for caching if it gets implemented for matrices.
def _berkowitz_toeplitz_matrix(M):
"""Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
corresponding to ``M`` and A is the first principal submatrix.
"""
# the 0 x 0 case is trivial
if M.rows == 0 and M.cols == 0:
return M._new(1,1, [M.one])
#
# Partition M = [ a_11 R ]
# [ C A ]
#
a, R = M[0,0], M[0, 1:]
C, A = M[1:, 0], M[1:,1:]
#
# The Toeplitz matrix looks like
#
# [ 1 ]
# [ -a 1 ]
# [ -RC -a 1 ]
# [ -RAC -RC -a 1 ]
# [ -RA**2C -RAC -RC -a 1 ]
# etc.
# Compute the diagonal entries.
# Because multiplying matrix times vector is so much
# more efficient than matrix times matrix, recursively
# compute -R * A**n * C.
diags = [C]
for i in range(M.rows - 2):
diags.append(A.multiply(diags[i], dotprodsimp=None))
diags = [(-R).multiply(d, dotprodsimp=None)[0, 0] for d in diags]
diags = [M.one, -a] + diags
def entry(i,j):
if j > i:
return M.zero
return diags[i - j]
toeplitz = M._new(M.cols + 1, M.rows, entry)
return (A, toeplitz)
# This functions is a candidate for caching if it gets implemented for matrices.
def _berkowitz_vector(M):
""" Run the Berkowitz algorithm and return a vector whose entries
are the coefficients of the characteristic polynomial of ``M``.
Given N x N matrix, efficiently compute
coefficients of characteristic polynomials of ``M``
without division in the ground domain.
This method is particularly useful for computing determinant,
principal minors and characteristic polynomial when ``M``
has complicated coefficients e.g. polynomials. Semi-direct
usage of this algorithm is also important in computing
efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension N x N and
I is N x N identity matrix, then the Berkowitz vector is
an N x 1 vector whose entries are coefficients of the
polynomial
charpoly(M) = det(t*I - M)
As a consequence, all polynomials generated by Berkowitz
algorithm are monic.
For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small
parallel time using a small number of processors, ACM,
Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants
using Bezout matrices, Tech. Report MPI-I-2006-1-006,
Saarbrucken, 2006
"""
# handle the trivial cases
if M.rows == 0 and M.cols == 0:
return M._new(1, 1, [M.one])
elif M.rows == 1 and M.cols == 1:
return M._new(2, 1, [M.one, -M[0,0]])
submat, toeplitz = _berkowitz_toeplitz_matrix(M)
return toeplitz.multiply(_berkowitz_vector(submat), dotprodsimp=None)
def _adjugate(M, method="berkowitz"):
"""Returns the adjugate, or classical adjoint, of
a matrix. That is, the transpose of the matrix of cofactors.
https://en.wikipedia.org/wiki/Adjugate
Parameters
==========
method : string, optional
Method to use to find the cofactors, can be "bareiss", "berkowitz" or
"lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.adjugate()
Matrix([
[ 4, -2],
[-3, 1]])
See Also
========
cofactor_matrix
sympy.matrices.common.MatrixCommon.transpose
"""
return M.cofactor_matrix(method=method).transpose()
# This functions is a candidate for caching if it gets implemented for matrices.
def _charpoly(M, x='lambda', simplify=_simplify):
"""Computes characteristic polynomial det(x*I - M) where I is
the identity matrix.
A PurePoly is returned, so using different variables for ``x`` does
not affect the comparison or the polynomials:
Parameters
==========
x : string, optional
Name for the "lambda" variable, defaults to "lambda".
simplify : function, optional
Simplification function to use on the characteristic polynomial
calculated. Defaults to ``simplify``.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[1, 3], [2, 0]])
>>> M.charpoly()
PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ')
>>> M.charpoly(x) == M.charpoly(y)
True
>>> M.charpoly(x) == M.charpoly(y)
True
Specifying ``x`` is optional; a symbol named ``lambda`` is used by
default (which looks good when pretty-printed in unicode):
>>> M.charpoly().as_expr()
lambda**2 - lambda - 6
And if ``x`` clashes with an existing symbol, underscores will
be prepended to the name to make it unique:
>>> M = Matrix([[1, 2], [x, 0]])
>>> M.charpoly(x).as_expr()
_x**2 - _x - 2*x
Whether you pass a symbol or not, the generator can be obtained
with the gen attribute since it may not be the same as the symbol
that was passed:
>>> M.charpoly(x).gen
_x
>>> M.charpoly(x).gen == x
False
Notes
=====
The Samuelson-Berkowitz algorithm is used to compute
the characteristic polynomial efficiently and without any
division operations. Thus the characteristic polynomial over any
commutative ring without zero divisors can be computed.
If the determinant det(x*I - M) can be found out easily as
in the case of an upper or a lower triangular matrix, then
instead of Samuelson-Berkowitz algorithm, eigenvalues are computed
and the characteristic polynomial with their help.
See Also
========
det
"""
if not M.is_square:
raise NonSquareMatrixError()
if M.is_lower or M.is_upper:
diagonal_elements = M.diagonal()
x = uniquely_named_symbol(x, diagonal_elements, modify=lambda s: '_' + s)
m = 1
for i in diagonal_elements:
m = m * (x - simplify(i))
return PurePoly(m, x)
berk_vector = _berkowitz_vector(M)
x = uniquely_named_symbol(x, berk_vector, modify=lambda s: '_' + s)
return PurePoly([simplify(a) for a in berk_vector], x)
def _cofactor(M, i, j, method="berkowitz"):
"""Calculate the cofactor of an element.
Parameters
==========
method : string, optional
Method to use to find the cofactors, can be "bareiss", "berkowitz" or
"lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.cofactor(0, 1)
-3
See Also
========
cofactor_matrix
minor
minor_submatrix
"""
if not M.is_square or M.rows < 1:
raise NonSquareMatrixError()
return (-1)**((i + j) % 2) * M.minor(i, j, method)
def _cofactor_matrix(M, method="berkowitz"):
"""Return a matrix containing the cofactor of each element.
Parameters
==========
method : string, optional
Method to use to find the cofactors, can be "bareiss", "berkowitz" or
"lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.cofactor_matrix()
Matrix([
[ 4, -3],
[-2, 1]])
See Also
========
cofactor
minor
minor_submatrix
"""
if not M.is_square or M.rows < 1:
raise NonSquareMatrixError()
return M._new(M.rows, M.cols,
lambda i, j: M.cofactor(i, j, method))
def _per(M):
"""Returns the permanent of a matrix. Unlike determinant,
permanent is defined for both square and non-square matrices.
For an m x n matrix, with m less than or equal to n,
it is given as the sum over the permutations s of size
less than or equal to m on [1, 2, . . . n] of the product
from i = 1 to m of M[i, s[i]]. Taking the transpose will
not affect the value of the permanent.
In the case of a square matrix, this is the same as the permutation
definition of the determinant, but it does not take the sign of the
permutation into account. Computing the permanent with this definition
is quite inefficient, so here the Ryser formula is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.per()
450
>>> M = Matrix([1, 5, 7])
>>> M.per()
13
References
==========
.. [1] Prof. Frank Ben's notes: https://math.berkeley.edu/~bernd/ban275.pdf
.. [2] Wikipedia article on Permanent: https://en.wikipedia.org/wiki/Permanent_(mathematics)
.. [3] https://reference.wolfram.com/language/ref/Permanent.html
.. [4] Permanent of a rectangular matrix : https://arxiv.org/pdf/0904.3251.pdf
"""
import itertools
m, n = M.shape
if m > n:
M = M.T
m, n = n, m
s = list(range(n))
subsets = []
for i in range(1, m + 1):
subsets += list(map(list, itertools.combinations(s, i)))
perm = 0
for subset in subsets:
prod = 1
sub_len = len(subset)
for i in range(m):
prod *= sum([M[i, j] for j in subset])
perm += prod * (-1)**sub_len * nC(n - sub_len, m - sub_len)
perm *= (-1)**m
perm = sympify(perm)
return perm.simplify()
# This functions is a candidate for caching if it gets implemented for matrices.
def _det(M, method="bareiss", iszerofunc=None):
"""Computes the determinant of a matrix if ``M`` is a concrete matrix object
otherwise return an expressions ``Determinant(M)`` if ``M`` is a
``MatrixSymbol`` or other expression.
Parameters
==========
method : string, optional
Specifies the algorithm used for computing the matrix determinant.
If the matrix is at most 3x3, a hard-coded formula is used and the
specified method is ignored. Otherwise, it defaults to
``'bareiss'``.
Also, if the matrix is an upper or a lower triangular matrix, determinant
is computed by simple multiplication of diagonal elements, and the
specified method is ignored.
If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
be used.
If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
.. note::
For backward compatibility, legacy keys like "bareis" and
"det_lu" can still be used to indicate the corresponding
methods.
And the keys are also case-insensitive for now. However, it is
suggested to use the precise keys for specifying the method.
iszerofunc : FunctionType or None, optional
If it is set to ``None``, it will be defaulted to ``_iszero`` if the
method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
the method is set to ``'lu'``.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
tested as non-zero, and also ``None`` if it is undecidable.
Returns
=======
det : Basic
Result of determinant.
Raises
======
ValueError
If unrecognized keys are given for ``method`` or ``iszerofunc``.
NonSquareMatrixError
If attempted to calculate determinant from a non-square matrix.
Examples
========
>>> from sympy import Matrix, eye, det
>>> I3 = eye(3)
>>> det(I3)
1
>>> M = Matrix([[1, 2], [3, 4]])
>>> det(M)
-2
>>> det(M) == M.det()
True
"""
# sanitize `method`
method = method.lower()
if method == "bareis":
method = "bareiss"
elif method == "det_lu":
method = "lu"
if method not in ("bareiss", "berkowitz", "lu"):
raise ValueError("Determinant method '%s' unrecognized" % method)
if iszerofunc is None:
if method == "bareiss":
iszerofunc = _is_zero_after_expand_mul
elif method == "lu":
iszerofunc = _iszero
elif not isinstance(iszerofunc, FunctionType):
raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
n = M.rows
if n == M.cols: # square check is done in individual method functions
if M.is_upper or M.is_lower:
m = 1
for i in range(n):
m = m * M[i, i]
return _get_intermediate_simp(_dotprodsimp)(m)
elif n == 0:
return M.one
elif n == 1:
return M[0,0]
elif n == 2:
m = M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]
return _get_intermediate_simp(_dotprodsimp)(m)
elif n == 3:
m = (M[0, 0] * M[1, 1] * M[2, 2]
+ M[0, 1] * M[1, 2] * M[2, 0]
+ M[0, 2] * M[1, 0] * M[2, 1]
- M[0, 2] * M[1, 1] * M[2, 0]
- M[0, 0] * M[1, 2] * M[2, 1]
- M[0, 1] * M[1, 0] * M[2, 2])
return _get_intermediate_simp(_dotprodsimp)(m)
if method == "bareiss":
return M._eval_det_bareiss(iszerofunc=iszerofunc)
elif method == "berkowitz":
return M._eval_det_berkowitz()
elif method == "lu":
return M._eval_det_lu(iszerofunc=iszerofunc)
else:
raise MatrixError('unknown method for calculating determinant')
# This functions is a candidate for caching if it gets implemented for matrices.
def _det_bareiss(M, iszerofunc=_is_zero_after_expand_mul):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
Parameters
==========
iszerofunc : function, optional
The function to use to determine zeros when doing an LU decomposition.
Defaults to ``lambda x: x.is_zero``.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
"""
# Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
# thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
def bareiss(mat, cumm=1):
if mat.rows == 0:
return mat.one
elif mat.rows == 1:
return mat[0, 0]
# find a pivot and extract the remaining matrix
# With the default iszerofunc, _find_reasonable_pivot slows down
# the computation by the factor of 2.5 in one test.
# Relevant issues: #10279 and #13877.
pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc)
if pivot_pos is None:
return mat.zero
# if we have a valid pivot, we'll do a "row swap", so keep the
# sign of the det
sign = (-1) ** (pivot_pos % 2)
# we want every row but the pivot row and every column
rows = list(i for i in range(mat.rows) if i != pivot_pos)
cols = list(range(mat.cols))
tmp_mat = mat.extract(rows, cols)
def entry(i, j):
ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
if _get_intermediate_simp_bool(True):
return _dotprodsimp(ret)
elif not ret.is_Atom:
return cancel(ret)
return ret
return sign*bareiss(M._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
if not M.is_square:
raise NonSquareMatrixError()
if M.rows == 0:
return M.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
return bareiss(M)
def _det_berkowitz(M):
""" Use the Berkowitz algorithm to compute the determinant."""
if not M.is_square:
raise NonSquareMatrixError()
if M.rows == 0:
return M.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
berk_vector = _berkowitz_vector(M)
return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
# This functions is a candidate for caching if it gets implemented for matrices.
def _det_LU(M, iszerofunc=_iszero, simpfunc=None):
""" Computes the determinant of a matrix from its LU decomposition.
This function uses the LU decomposition computed by
LUDecomposition_Simple().
The keyword arguments iszerofunc and simpfunc are passed to
LUDecomposition_Simple().
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy.
Parameters
==========
iszerofunc : function, optional
The function to use to determine zeros when doing an LU decomposition.
Defaults to ``lambda x: x.is_zero``.
simpfunc : function, optional
The simplification function to use when looking for zeros for pivots.
"""
if not M.is_square:
raise NonSquareMatrixError()
if M.rows == 0:
return M.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
lu, row_swaps = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc)
# P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
# Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
# P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
# LUdecomposition_Simple() returns a list of row exchange index pairs, rather
# than a permutation matrix, but det(P) = (-1)**len(row_swaps).
# Avoid forming the potentially time consuming product of U's diagonal entries
# if the product is zero.
# Bottom right entry of U is 0 => det(A) = 0.
# It may be impossible to determine if this entry of U is zero when it is symbolic.
if iszerofunc(lu[lu.rows-1, lu.rows-1]):
return M.zero
# Compute det(P)
det = -M.one if len(row_swaps)%2 else M.one
# Compute det(U) by calculating the product of U's diagonal entries.
# The upper triangular portion of lu is the upper triangular portion of the
# U factor in the LU decomposition.
for k in range(lu.rows):
det *= lu[k, k]
# return det(P)*det(U)
return det
def _minor(M, i, j, method="berkowitz"):
"""Return the (i,j) minor of ``M``. That is,
return the determinant of the matrix obtained by deleting
the `i`th row and `j`th column from ``M``.
Parameters
==========
i, j : int
The row and column to exclude to obtain the submatrix.
method : string, optional
Method to use to find the determinant of the submatrix, can be
"bareiss", "berkowitz" or "lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.minor(1, 1)
-12
See Also
========
minor_submatrix
cofactor
det
"""
if not M.is_square:
raise NonSquareMatrixError()
return M.minor_submatrix(i, j).det(method=method)
def _minor_submatrix(M, i, j):
"""Return the submatrix obtained by removing the `i`th row
and `j`th column from ``M`` (works with Pythonic negative indices).
Parameters
==========
i, j : int
The row and column to exclude to obtain the submatrix.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.minor_submatrix(1, 1)
Matrix([
[1, 3],
[7, 9]])
See Also
========
minor
cofactor
"""
if i < 0:
i += M.rows
if j < 0:
j += M.cols
if not 0 <= i < M.rows or not 0 <= j < M.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < ``M.rows`` "
"(%d)" % M.rows + "and 0 <= j < ``M.cols`` (%d)." % M.cols)
rows = [a for a in range(M.rows) if a != i]
cols = [a for a in range(M.cols) if a != j]
return M.extract(rows, cols)
|
a654e3d35574351de454d03e973ac01ea57bf6455bd9277cdd72507792294a49 | """A module that handles matrices.
Includes functions for fast creating matrices like zero, one/eye, random
matrix, etc.
"""
from .common import ShapeError, NonSquareMatrixError
from .dense import (
GramSchmidt, casoratian, diag, eye, hessian, jordan_cell,
list2numpy, matrix2numpy, matrix_multiply_elementwise, ones,
randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian,
zeros)
from .dense import MutableDenseMatrix
from .matrices import DeferredVector, MatrixBase
Matrix = MutableMatrix = MutableDenseMatrix
from .sparse import MutableSparseMatrix
from .sparsetools import banded
from .immutable import ImmutableDenseMatrix, ImmutableSparseMatrix
ImmutableMatrix = ImmutableDenseMatrix
SparseMatrix = MutableSparseMatrix
from .expressions import (
MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity,
Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace,
Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint,
hadamard_product, HadamardProduct, HadamardPower, Determinant, det,
diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace,
DotProduct, kronecker_product, KroneckerProduct,
PermutationMatrix, MatrixPermute, MatrixSet, Permanent, per)
from .utilities import dotprodsimp
__all__ = [
'ShapeError', 'NonSquareMatrixError',
'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell',
'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones',
'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray',
'wronskian', 'zeros',
'MutableDenseMatrix',
'DeferredVector', 'MatrixBase',
'Matrix', 'MutableMatrix',
'MutableSparseMatrix',
'banded',
'ImmutableDenseMatrix', 'ImmutableSparseMatrix',
'ImmutableMatrix', 'SparseMatrix',
'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix',
'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr',
'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix',
'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint',
'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant',
'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix',
'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product',
'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'MatrixSet',
'Permanent', 'per',
'dotprodsimp',
]
|
7d3974fbc2c191950835d57fe93555841aa5e4cd0a22941e38a7dd70c68df7a6 | from mpmath.matrices.matrices import _matrix
from sympy.core import Basic, Dict, Integer, Tuple
from sympy.core.cache import cacheit
from sympy.core.sympify import converter as sympify_converter, _sympify
from sympy.matrices.dense import DenseMatrix
from sympy.matrices.expressions import MatrixExpr
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.sparse import SparseMatrix
from sympy.multipledispatch import dispatch
def sympify_matrix(arg):
return arg.as_immutable()
sympify_converter[MatrixBase] = sympify_matrix
def sympify_mpmath_matrix(arg):
mat = [_sympify(x) for x in arg]
return ImmutableDenseMatrix(arg.rows, arg.cols, mat)
sympify_converter[_matrix] = sympify_mpmath_matrix
class ImmutableDenseMatrix(DenseMatrix, MatrixExpr): # type: ignore
"""Create an immutable version of a matrix.
Examples
========
>>> from sympy import eye
>>> from sympy.matrices import ImmutableMatrix
>>> ImmutableMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> _[0, 0] = 42
Traceback (most recent call last):
...
TypeError: Cannot set values of ImmutableDenseMatrix
"""
# MatrixExpr is set as NotIterable, but we want explicit matrices to be
# iterable
_iterable = True
_class_priority = 8
_op_priority = 10.001
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
__hash__ = MatrixExpr.__hash__
@classmethod
def _new(cls, *args, **kwargs):
if len(args) == 1 and isinstance(args[0], ImmutableDenseMatrix):
return args[0]
if kwargs.get('copy', True) is False:
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
obj = Basic.__new__(cls,
Integer(rows),
Integer(cols),
Tuple(*flat_list))
obj._rows = rows
obj._cols = cols
obj._mat = flat_list
return obj
def _entry(self, i, j, **kwargs):
return DenseMatrix.__getitem__(self, (i, j))
def __setitem__(self, *args):
raise TypeError("Cannot set values of {}".format(self.__class__))
def _eval_extract(self, rowsList, colsList):
# self._mat is a Tuple. It is slightly faster to index a
# tuple over a Tuple, so grab the internal tuple directly
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
Tuple(*(mat[i] for i in indices), sympify=False), copy=False)
@property
def cols(self):
return self._cols
@property
def rows(self):
return self._rows
@property
def shape(self):
return self._rows, self._cols
def as_immutable(self):
return self
def is_diagonalizable(self, reals_only=False, **kwargs):
return super().is_diagonalizable(
reals_only=reals_only, **kwargs)
is_diagonalizable.__doc__ = DenseMatrix.is_diagonalizable.__doc__
is_diagonalizable = cacheit(is_diagonalizable)
# make sure ImmutableDenseMatrix is aliased as ImmutableMatrix
ImmutableMatrix = ImmutableDenseMatrix
class ImmutableSparseMatrix(SparseMatrix, MatrixExpr): # type:ignore
"""Create an immutable version of a sparse matrix.
Examples
========
>>> from sympy import eye
>>> from sympy.matrices.immutable import ImmutableSparseMatrix
>>> ImmutableSparseMatrix(1, 1, {})
Matrix([[0]])
>>> ImmutableSparseMatrix(eye(3))
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> _[0, 0] = 42
Traceback (most recent call last):
...
TypeError: Cannot set values of ImmutableSparseMatrix
>>> _.shape
(3, 3)
"""
is_Matrix = True
_class_priority = 9
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
__hash__ = MatrixExpr.__hash__
@classmethod
def _new(cls, *args, **kwargs):
rows, cols, smat = cls._handle_creation_inputs(*args, **kwargs)
obj = Basic.__new__(cls, Integer(rows), Integer(cols), Dict(smat))
obj._rows = rows
obj._cols = cols
obj._smat = smat
return obj
def __setitem__(self, *args):
raise TypeError("Cannot set values of ImmutableSparseMatrix")
def _entry(self, i, j, **kwargs):
return SparseMatrix.__getitem__(self, (i, j))
@property
def cols(self):
return self._cols
@property
def rows(self):
return self._rows
@property
def shape(self):
return self._rows, self._cols
def as_immutable(self):
return self
def is_diagonalizable(self, reals_only=False, **kwargs):
return super().is_diagonalizable(
reals_only=reals_only, **kwargs)
is_diagonalizable.__doc__ = SparseMatrix.is_diagonalizable.__doc__
is_diagonalizable = cacheit(is_diagonalizable)
@dispatch(ImmutableDenseMatrix, ImmutableDenseMatrix)
def _eval_is_eq(lhs, rhs): # noqa:F811
"""Helper method for Equality with matrices.sympy.
Relational automatically converts matrices to ImmutableDenseMatrix
instances, so this method only applies here. Returns True if the
matrices are definitively the same, False if they are definitively
different, and None if undetermined (e.g. if they contain Symbols).
Returning None triggers default handling of Equalities.
"""
if lhs.shape != rhs.shape:
return False
return (lhs - rhs).is_zero_matrix
|
eac7c416b2349ce03ddb0716c8e833cb2a0695a68dca2c75eeb870a4c21e57e6 | """
Basic methods common to all matrices to be used
when creating more advanced matrices (e.g., matrices over rings,
etc.).
"""
from sympy.core.logic import FuzzyBool
from collections import defaultdict
from inspect import isfunction
from sympy.assumptions.refine import refine
from sympy.core import SympifyError, Add
from sympy.core.basic import Atom
from sympy.core.compatibility import (
Iterable, as_int, is_sequence, reduce)
from sympy.core.decorators import call_highest_priority
from sympy.core.logic import fuzzy_and
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions import Abs
from sympy.polys.polytools import Poly
from sympy.simplify import simplify as _simplify
from sympy.simplify.simplify import dotprodsimp as _dotprodsimp
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import filldedent
from sympy.tensor.array import NDimArray
from .utilities import _get_intermediate_simp_bool
class MatrixError(Exception):
pass
class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
class NonSquareMatrixError(ShapeError):
pass
class NonInvertibleMatrixError(ValueError, MatrixError):
"""The matrix in not invertible (division by multidimensional zero error)."""
pass
class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
"""The matrix is not a positive-definite matrix."""
pass
class MatrixRequired:
"""All subclasses of matrix objects must implement the
required matrix properties listed here."""
rows = None # type: int
cols = None # type: int
_simplify = None
@classmethod
def _new(cls, *args, **kwargs):
"""`_new` must, at minimum, be callable as
`_new(rows, cols, mat) where mat is a flat list of the
elements of the matrix."""
raise NotImplementedError("Subclasses must implement this.")
def __eq__(self, other):
raise NotImplementedError("Subclasses must implement this.")
def __getitem__(self, key):
"""Implementations of __getitem__ should accept ints, in which
case the matrix is indexed as a flat list, tuples (i,j) in which
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
where a and b are any combintion of slices and integers."""
raise NotImplementedError("Subclasses must implement this.")
def __len__(self):
"""The total number of entries in the matrix."""
raise NotImplementedError("Subclasses must implement this.")
@property
def shape(self):
raise NotImplementedError("Subclasses must implement this.")
class MatrixShaping(MatrixRequired):
"""Provides basic matrix shaping and extracting of submatrices"""
def _eval_col_del(self, col):
def entry(i, j):
return self[i, j] if j < col else self[i, j + 1]
return self._new(self.rows, self.cols - 1, entry)
def _eval_col_insert(self, pos, other):
def entry(i, j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, j - other.cols]
return self._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_col_join(self, other):
rows = self.rows
def entry(i, j):
if i < rows:
return self[i, j]
return other[i - rows, j]
return classof(self, other)._new(self.rows + other.rows, self.cols,
lambda i, j: entry(i, j))
def _eval_extract(self, rowsList, colsList):
mat = list(self)
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices))
def _eval_get_diag_blocks(self):
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
def _eval_row_del(self, row):
def entry(i, j):
return self[i, j] if i < row else self[i + 1, j]
return self._new(self.rows - 1, self.cols, entry)
def _eval_row_insert(self, pos, other):
entries = list(self)
insert_pos = pos * self.cols
entries[insert_pos:insert_pos] = list(other)
return self._new(self.rows + other.rows, self.cols, entries)
def _eval_row_join(self, other):
cols = self.cols
def entry(i, j):
if j < cols:
return self[i, j]
return other[i, j - cols]
return classof(self, other)._new(self.rows, self.cols + other.cols,
lambda i, j: entry(i, j))
def _eval_tolist(self):
return [list(self[i,:]) for i in range(self.rows)]
def _eval_todok(self):
dok = {}
rows, cols = self.shape
for i in range(rows):
for j in range(cols):
val = self[i, j]
if val != self.zero:
dok[i, j] = val
return dok
def _eval_vec(self):
rows = self.rows
def entry(n, _):
# we want to read off the columns first
j = n // rows
i = n - j * rows
return self[i, j]
return self._new(len(self), 1, entry)
def _eval_vech(self, diagonal):
c = self.cols
v = []
if diagonal:
for j in range(c):
for i in range(j, c):
v.append(self[i, j])
else:
for j in range(c):
for i in range(j + 1, c):
v.append(self[i, j])
return self._new(len(v), 1, v)
def col_del(self, col):
"""Delete the specified column."""
if col < 0:
col += self.cols
if not 0 <= col < self.cols:
raise IndexError("Column {} is out of range.".format(col))
return self._eval_col_del(col)
def col_insert(self, pos, other):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return type(self)(other)
pos = as_int(pos)
if pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != other.rows:
raise ShapeError(
"`self` and `other` must have the same number of rows.")
return self._eval_col_insert(pos, other)
def col_join(self, other):
"""Concatenates two matrices along self's last and other's first row.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_col_join(other)
def col(self, j):
"""Elementary column selector.
Examples
========
>>> from sympy import eye
>>> eye(2).col(0)
Matrix([
[1],
[0]])
See Also
========
row
sympy.matrices.dense.MutableDenseMatrix.col_op
sympy.matrices.dense.MutableDenseMatrix.col_swap
col_del
col_join
col_insert
"""
return self[:, j]
def extract(self, rowsList, colsList):
"""Return a submatrix by specifying a list of rows and columns.
Negative indices can be given. All indices must be in the range
-n <= i < n where n is the number of rows or columns.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
RowsList or colsList can also be a list of booleans, in which case
the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix([
[0, 2],
[3, 5],
[6, 8],
[9, 11]])
"""
if not is_sequence(rowsList) or not is_sequence(colsList):
raise TypeError("rowsList and colsList must be iterable")
# ensure rowsList and colsList are lists of integers
if rowsList and all(isinstance(i, bool) for i in rowsList):
rowsList = [index for index, item in enumerate(rowsList) if item]
if colsList and all(isinstance(i, bool) for i in colsList):
colsList = [index for index, item in enumerate(colsList) if item]
# ensure everything is in range
rowsList = [a2idx(k, self.rows) for k in rowsList]
colsList = [a2idx(k, self.cols) for k in colsList]
return self._eval_extract(rowsList, colsList)
def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
return self._eval_get_diag_blocks()
@classmethod
def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.row_join, args)
def reshape(self, rows, cols):
"""Reshape the matrix. Total number of elements must remain the same.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
"""
if self.rows * self.cols != rows * cols:
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
return self._new(rows, cols, lambda i, j: self[i * cols + j])
def row_del(self, row):
"""Delete the specified row."""
if row < 0:
row += self.rows
if not 0 <= row < self.rows:
raise IndexError("Row {} is out of range.".format(row))
return self._eval_row_del(row)
def row_insert(self, pos, other):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return self._new(other)
pos = as_int(pos)
if pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != other.cols:
raise ShapeError(
"`self` and `other` must have the same number of columns.")
return self._eval_row_insert(pos, other)
def row_join(self, other):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"`self` and `rhs` must have the same number of rows.")
return self._eval_row_join(other)
def diagonal(self, k=0):
"""Returns the kth diagonal of self. The main diagonal
corresponds to `k=0`; diagonals above and below correspond to
`k > 0` and `k < 0`, respectively. The values of `self[i, j]`
for which `j - i = k`, are returned in order of increasing
`i + j`, starting with `i + j = |k|`.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, lambda i, j: j - i); m
Matrix([
[ 0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]])
>>> _.diagonal()
Matrix([[0, 0, 0]])
>>> m.diagonal(1)
Matrix([[1, 1]])
>>> m.diagonal(-2)
Matrix([[-2]])
Even though the diagonal is returned as a Matrix, the element
retrieval can be done with a single index:
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
2
See Also
========
diag - to create a diagonal matrix
"""
rv = []
k = as_int(k)
r = 0 if k > 0 else -k
c = 0 if r else k
while True:
if r == self.rows or c == self.cols:
break
rv.append(self[r, c])
r += 1
c += 1
if not rv:
raise ValueError(filldedent('''
The %s diagonal is out of range [%s, %s]''' % (
k, 1 - self.rows, self.cols - 1)))
return self._new(1, len(rv), rv)
def row(self, i):
"""Elementary row selector.
Examples
========
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[1, 0]])
See Also
========
col
sympy.matrices.dense.MutableDenseMatrix.row_op
sympy.matrices.dense.MutableDenseMatrix.row_swap
row_del
row_join
row_insert
"""
return self[i, :]
@property
def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy.matrices import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def todok(self):
"""Return the matrix as dictionary of keys.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix.eye(3)
>>> M.todok()
{(0, 0): 1, (1, 1): 1, (2, 2): 1}
"""
return self._eval_todok()
def tolist(self):
"""Return the Matrix as a nested Python list.
Examples
========
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
When there are no rows then it will not be possible to tell how
many columns were in the original matrix:
>>> ones(0, 3).tolist()
[]
"""
if not self.rows:
return []
if not self.cols:
return [[] for i in range(self.rows)]
return self._eval_tolist()
def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self._eval_vec()
def vech(self, diagonal=True, check_symmetry=True):
"""Reshapes the matrix into a column vector by stacking the
elements in the lower triangle.
Parameters
==========
diagonal : bool, optional
If ``True``, it includes the diagonal elements.
check_symmetry : bool, optional
If ``True``, it checks whether the matrix is symmetric.
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
Notes
=====
This should work for symmetric matrices and ``vech`` can
represent symmetric matrices in vector form with less size than
``vec``.
See Also
========
vec
"""
if not self.is_square:
raise NonSquareMatrixError
if check_symmetry and not self.is_symmetric():
raise ValueError("The matrix is not symmetric.")
return self._eval_vech(diagonal)
@classmethod
def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.col_join, args)
class MatrixSpecial(MatrixRequired):
"""Construction of special matrices"""
@classmethod
def _eval_diag(cls, rows, cols, diag_dict):
"""diag_dict is a defaultdict containing
all the entries of the diagonal matrix."""
def entry(i, j):
return diag_dict[(i, j)]
return cls._new(rows, cols, entry)
@classmethod
def _eval_eye(cls, rows, cols):
def entry(i, j):
return cls.one if i == j else cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'):
if band == 'lower':
def entry(i, j):
if i == j:
return eigenvalue
elif j + 1 == i:
return cls.one
return cls.zero
else:
def entry(i, j):
if i == j:
return eigenvalue
elif i + 1 == j:
return cls.one
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_ones(cls, rows, cols):
def entry(i, j):
return cls.one
return cls._new(rows, cols, entry)
@classmethod
def _eval_zeros(cls, rows, cols):
def entry(i, j):
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
"""Returns a matrix with the specified diagonal.
If matrices are passed, a block-diagonal matrix
is created (i.e. the "direct sum" of the matrices).
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single
sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to
have variable-length rows.
Examples
========
>>> from sympy.matrices import Matrix
>>> Matrix.diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The current default is to unpack a single sequence. If this is
not desired, set `unpack=False` and it will be interpreted as
a matrix.
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
When more than one element is passed, each is interpreted as
something to put on the diagonal. Lists are converted to
matrices. Filling of the diagonal always continues from
the bottom right hand corner of the previous item: this
will create a block-diagonal matrix whether the matrices
are square or not.
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[0, 4, 5]])
When `unpack` is False, elements within a list need not all be
of the same length. Setting `strict` to True would raise a
ValueError for the following:
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
Matrix([
[1, 2, 3],
[4, 5, 0],
[6, 0, 0]])
The type of the returned matrix can be set with the ``cls``
keyword.
>>> from sympy.matrices import ImmutableMatrix
>>> from sympy.utilities.misc import func_name
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
'ImmutableDenseMatrix'
A zero dimension matrix can be used to position the start of
the filling at the start of an arbitrary row or column:
>>> from sympy import ones
>>> r2 = ones(0, 2)
>>> Matrix.diag(r2, 1, 2)
Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
See Also
========
eye
diagonal - to extract a diagonal
.dense.diag
.expressions.blockmatrix.BlockMatrix
.sparsetools.banded - to create multi-diagonal matrices
"""
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.dense import Matrix
from sympy.matrices.sparse import SparseMatrix
klass = kwargs.get('cls', kls)
if unpack and len(args) == 1 and is_sequence(args[0]) and \
not isinstance(args[0], MatrixBase):
args = args[0]
# fill a default dict with the diagonal entries
diag_entries = defaultdict(int)
rmax = cmax = 0 # keep track of the biggest index seen
for m in args:
if isinstance(m, list):
if strict:
# if malformed, Matrix will raise an error
_ = Matrix(m)
r, c = _.shape
m = _.tolist()
else:
r, c, smat = SparseMatrix._handle_creation_inputs(m)
for (i, j), _ in smat.items():
diag_entries[(i + rmax, j + cmax)] = _
m = [] # to skip process below
elif hasattr(m, 'shape'): # a Matrix
# convert to list of lists
r, c = m.shape
m = m.tolist()
else: # in this case, we're a single value
diag_entries[(rmax, cmax)] = m
rmax += 1
cmax += 1
continue
# process list of lists
for i in range(len(m)):
for j, _ in enumerate(m[i]):
diag_entries[(i + rmax, j + cmax)] = _
rmax += r
cmax += c
if rows is None:
rows, cols = cols, rows
if rows is None:
rows, cols = rmax, cmax
else:
cols = rows if cols is None else cols
if rows < rmax or cols < cmax:
raise ValueError(filldedent('''
The constructed matrix is {} x {} but a size of {} x {}
was specified.'''.format(rmax, cmax, rows, cols)))
return klass._eval_diag(rows, cols, diag_entries)
@classmethod
def eye(kls, rows, cols=None, **kwargs):
"""Returns an identity matrix.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_eye(rows, cols)
@classmethod
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
"""Returns a Jordan block
Parameters
==========
size : Integer, optional
Specifies the shape of the Jordan block matrix.
eigenvalue : Number or Symbol
Specifies the value for the main diagonal of the matrix.
.. note::
The keyword ``eigenval`` is also specified as an alias
of this keyword, but it is not recommended to use.
We may deprecate the alias in later release.
band : 'upper' or 'lower', optional
Specifies the position of the off-diagonal to put `1` s on.
cls : Matrix, optional
Specifies the matrix class of the output form.
If it is not specified, the class type where the method is
being executed on will be returned.
rows, cols : Integer, optional
Specifies the shape of the Jordan block matrix. See Notes
section for the details of how these key works.
.. note::
This feature will be deprecated in the future.
Returns
=======
Matrix
A Jordan block matrix.
Raises
======
ValueError
If insufficient arguments are given for matrix size
specification, or no eigenvalue is given.
Examples
========
Creating a default Jordan block:
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Creating an alternative Jordan block matrix where `1` is on
lower off-diagonal:
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([
[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
Creating a Jordan block with keyword arguments
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Notes
=====
.. note::
This feature will be deprecated in the future.
The keyword arguments ``size``, ``rows``, ``cols`` relates to
the Jordan block size specifications.
If you want to create a square Jordan block, specify either
one of the three arguments.
If you want to create a rectangular Jordan block, specify
``rows`` and ``cols`` individually.
+--------------------------------+---------------------+
| Arguments Given | Matrix Shape |
+----------+----------+----------+----------+----------+
| size | rows | cols | rows | cols |
+==========+==========+==========+==========+==========+
| size | Any | size | size |
+----------+----------+----------+----------+----------+
| | None | ValueError |
| +----------+----------+----------+----------+
| None | rows | None | rows | rows |
| +----------+----------+----------+----------+
| | None | cols | cols | cols |
+ +----------+----------+----------+----------+
| | rows | cols | rows | cols |
+----------+----------+----------+----------+----------+
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
"""
if 'rows' in kwargs or 'cols' in kwargs:
SymPyDeprecationWarning(
feature="Keyword arguments 'rows' or 'cols'",
issue=16102,
useinstead="a more generic banded matrix constructor",
deprecated_since_version="1.4"
).warn()
klass = kwargs.pop('cls', kls)
rows = kwargs.pop('rows', None)
cols = kwargs.pop('cols', None)
eigenval = kwargs.get('eigenval', None)
if eigenvalue is None and eigenval is None:
raise ValueError("Must supply an eigenvalue")
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
raise ValueError(
"Inconsistent values are given: 'eigenval'={}, "
"'eigenvalue'={}".format(eigenval, eigenvalue))
else:
if eigenval is not None:
eigenvalue = eigenval
if (size, rows, cols) == (None, None, None):
raise ValueError("Must supply a matrix size")
if size is not None:
rows, cols = size, size
elif rows is not None and cols is None:
cols = rows
elif cols is not None and rows is None:
rows = cols
rows, cols = as_int(rows), as_int(cols)
return klass._eval_jordan_block(rows, cols, eigenvalue, band)
@classmethod
def ones(kls, rows, cols=None, **kwargs):
"""Returns a matrix of ones.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_ones(rows, cols)
@classmethod
def zeros(kls, rows, cols=None, **kwargs):
"""Returns a matrix of zeros.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_zeros(rows, cols)
@classmethod
def companion(kls, poly):
"""Returns a companion matrix of a polynomial.
Examples
========
>>> from sympy import Matrix, Poly, Symbol, symbols
>>> x = Symbol('x')
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
>>> Matrix.companion(p)
Matrix([
[0, 0, 0, 0, -c0],
[1, 0, 0, 0, -c1],
[0, 1, 0, 0, -c2],
[0, 0, 1, 0, -c3],
[0, 0, 0, 1, -c4]])
"""
poly = kls._sympify(poly)
if not isinstance(poly, Poly):
raise ValueError("{} must be a Poly instance.".format(poly))
if not poly.is_monic:
raise ValueError("{} must be a monic polynomial.".format(poly))
if not poly.is_univariate:
raise ValueError(
"{} must be a univariate polynomial.".format(poly))
size = poly.degree()
if not size >= 1:
raise ValueError(
"{} must have degree not less than 1.".format(poly))
coeffs = poly.all_coeffs()
def entry(i, j):
if j == size - 1:
return -coeffs[-1 - i]
elif i == j + 1:
return kls.one
return kls.zero
return kls._new(size, size, entry)
class MatrixProperties(MatrixRequired):
"""Provides basic properties of a matrix."""
def _eval_atoms(self, *types):
result = set()
for i in self:
result.update(i.atoms(*types))
return result
def _eval_free_symbols(self):
return set().union(*(i.free_symbols for i in self if i))
def _eval_has(self, *patterns):
return any(a.has(*patterns) for a in self)
def _eval_is_anti_symmetric(self, simpfunc):
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
return False
return True
def _eval_is_diagonal(self):
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
# _eval_is_hermitian is called by some general sympy
# routines and has a different *args signature. Make
# sure the names don't clash by adding `_matrix_` in name.
def _eval_is_matrix_hermitian(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
return mat.is_zero_matrix
def _eval_is_Identity(self) -> FuzzyBool:
def dirac(i, j):
if i == j:
return 1
return 0
return all(self[i, j] == dirac(i, j)
for i in range(self.rows)
for j in range(self.cols))
def _eval_is_lower_hessenberg(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
def _eval_is_lower(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
def _eval_is_symbolic(self):
return self.has(Symbol)
def _eval_is_symmetric(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
return mat.is_zero_matrix
def _eval_is_zero_matrix(self):
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero is None for i in self):
return None
return True
def _eval_is_upper_hessenberg(self):
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(min(self.cols, (i - 1))))
def _eval_values(self):
return [i for i in self if not i.is_zero]
def _has_positive_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and(x.is_positive for x in diagonal_entries)
def _has_nonnegative_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and(x.is_nonnegative for x in diagonal_entries)
def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
>>> Matrix([[x, y], [y, x]])
Matrix([
[x, y],
[y, x]])
>>> _.atoms()
{x, y}
"""
types = tuple(t if isinstance(t, type) else type(t) for t in types)
if not types:
types = (Atom,)
return self._eval_atoms(*types)
@property
def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}
"""
return self._eval_free_symbols()
def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
"""
return self._eval_has(*patterns)
def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2 , 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite wouldn't
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If 'simplify=False' is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_anti_symmetric(simpfunc)
def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
sympy.matrices.matrices.MatrixEigen.is_diagonalizable
diagonalize
"""
return self._eval_is_diagonal()
@property
def is_weakly_diagonally_dominant(self):
r"""Tests if the matrix is row weakly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row weakly diagonally dominant if
.. math::
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_weakly_diagonally_dominant
True
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_weakly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_weakly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_nonnegative
return fuzzy_and(test_row(i) for i in range(rows))
@property
def is_strongly_diagonally_dominant(self):
r"""Tests if the matrix is row strongly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row strongly diagonally dominant if
.. math::
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_strongly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_positive
return fuzzy_and(test_row(i) for i in range(rows))
@property
def is_hermitian(self):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
if not self.is_square:
return False
return self._eval_is_matrix_hermitian(_simplify)
@property
def is_Identity(self) -> FuzzyBool:
if not self.is_square:
return False
return self._eval_is_Identity()
@property
def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return self._eval_is_lower_hessenberg()
@property
def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4 , 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return self._eval_is_lower()
@property
def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return self._eval_is_symbolic()
def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2 , 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_symmetric(simpfunc)
@property
def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy.matrices import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return self._eval_is_upper_hessenberg()
@property
def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4 , 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(min(i, self.cols)))
@property
def is_zero_matrix(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero_matrix
True
>>> b.is_zero_matrix
True
>>> c.is_zero_matrix
False
>>> d.is_zero_matrix
True
>>> e.is_zero_matrix
"""
return self._eval_is_zero_matrix()
def values(self):
"""Return non-zero values of self."""
return self._eval_values()
class MatrixOperations(MatrixRequired):
"""Provides basic matrix shape and elementwise
operations. Should not be instantiated directly."""
def _eval_adjoint(self):
return self.transpose().conjugate()
def _eval_applyfunc(self, f):
out = self._new(self.rows, self.cols, [f(x) for x in self])
return out
def _eval_as_real_imag(self): # type: ignore
from sympy.functions.elementary.complexes import re, im
return (self.applyfunc(re), self.applyfunc(im))
def _eval_conjugate(self):
return self.applyfunc(lambda x: x.conjugate())
def _eval_permute_cols(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[i, mapping[j]]
return self._new(self.rows, self.cols, entry)
def _eval_permute_rows(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[mapping[i], j]
return self._new(self.rows, self.cols, entry)
def _eval_trace(self):
return sum(self[i, i] for i in range(self.rows))
def _eval_transpose(self):
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self._eval_adjoint()
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
return self._eval_applyfunc(f)
def as_real_imag(self, deep=True, **hints):
"""Returns a tuple containing the (real, imaginary) part of matrix."""
# XXX: Ignoring deep and hints...
return self._eval_as_real_imag()
def conjugate(self):
"""Return the by-element conjugation.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> from sympy import I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([
[1, 2 + I],
[3, 4],
[I, -I]])
>>> a.C
Matrix([
[ 1, 2 - I],
[ 3, 4],
[-I, I]])
See Also
========
transpose: Matrix transposition
H: Hermite conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self._eval_conjugate()
def doit(self, **kwargs):
return self.applyfunc(lambda x: x.doit())
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""Apply evalf() to each element of self."""
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
'quad':quad, 'verbose':verbose}
return self.applyfunc(lambda i: i.evalf(n, **options))
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy.matrices import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
@property
def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self.T.C
def permute(self, perm, orientation='rows', direction='forward'):
r"""Permute the rows or columns of a matrix by the given list of
swaps.
Parameters
==========
perm : Permutation, list, or list of lists
A representation for the permutation.
If it is ``Permutation``, it is used directly with some
resizing with respect to the matrix size.
If it is specified as list of lists,
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
from applying the product of cycles. The direction how the
cyclic product is applied is described in below.
If it is specified as a list, the list should represent
an array form of a permutation. (e.g., ``[1, 2, 0]``) which
would would form the swapping function
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
orientation : 'rows', 'cols'
A flag to control whether to permute the rows or the columns
direction : 'forward', 'backward'
A flag to control whether to apply the permutations from
the start of the list first, or from the back of the list
first.
For example, if the permutation specification is
``[[0, 1], [0, 2]]``,
If the flag is set to ``'forward'``, the cycle would be
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
If the flag is set to ``'backward'``, the cycle would be
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
If the argument ``perm`` is not in a form of list of lists,
this flag takes no effect.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Notes
=====
If a bijective function
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
permutation.
If the matrix `A` is the matrix to permute, represented as
a horizontal or a vertical stack of vectors:
.. math::
A =
\begin{bmatrix}
a_0 \\ a_1 \\ \vdots \\ a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
\end{bmatrix}
If the matrix `B` is the result, the permutation of matrix rows
is defined as:
.. math::
B := \begin{bmatrix}
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
\end{bmatrix}
And the permutation of matrix columns is defined as:
.. math::
B := \begin{bmatrix}
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
\cdots & \alpha_{\sigma(n-1)}
\end{bmatrix}
"""
from sympy.combinatorics import Permutation
# allow british variants and `columns`
if direction == 'forwards':
direction = 'forward'
if direction == 'backwards':
direction = 'backward'
if orientation == 'columns':
orientation = 'cols'
if direction not in ('forward', 'backward'):
raise TypeError("direction='{}' is an invalid kwarg. "
"Try 'forward' or 'backward'".format(direction))
if orientation not in ('rows', 'cols'):
raise TypeError("orientation='{}' is an invalid kwarg. "
"Try 'rows' or 'cols'".format(orientation))
if not isinstance(perm, (Permutation, Iterable)):
raise ValueError(
"{} must be a list, a list of lists, "
"or a SymPy permutation object.".format(perm))
# ensure all swaps are in range
max_index = self.rows if orientation == 'rows' else self.cols
if not all(0 <= t <= max_index for t in flatten(list(perm))):
raise IndexError("`swap` indices out of range.")
if perm and not isinstance(perm, Permutation) and \
isinstance(perm[0], Iterable):
if direction == 'forward':
perm = list(reversed(perm))
perm = Permutation(perm, size=max_index+1)
else:
perm = Permutation(perm, size=max_index+1)
if orientation == 'rows':
return self._eval_permute_rows(perm)
if orientation == 'cols':
return self._eval_permute_cols(perm)
def permute_cols(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='cols', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='cols', direction=direction)
def permute_rows(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='rows', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='rows', direction=direction)
def refine(self, assumptions=True):
"""Apply refine to each element of the matrix.
Examples
========
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([
[ Abs(x)**2, sqrt(x**2)],
[sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([
[ x**2, Abs(x)],
[Abs(x), x**2]])
"""
return self.applyfunc(lambda x: refine(x, assumptions))
def replace(self, F, G, map=False, simultaneous=True, exact=None):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
return self.applyfunc(
lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact))
def rot90(self, k=1):
"""Rotates Matrix by 90 degrees
Parameters
==========
k : int
Specifies how many times the matrix is rotated by 90 degrees
(clockwise when positive, counter-clockwise when negative).
Examples
========
>>> from sympy import Matrix, symbols
>>> A = Matrix(2, 2, symbols('a:d'))
>>> A
Matrix([
[a, b],
[c, d]])
Rotating the matrix clockwise one time:
>>> A.rot90(1)
Matrix([
[c, a],
[d, b]])
Rotating the matrix anticlockwise two times:
>>> A.rot90(-2)
Matrix([
[d, c],
[b, a]])
"""
mod = k%4
if mod == 0:
return self
if mod == 1:
return self[::-1, ::].T
if mod == 2:
return self[::-1, ::-1]
if mod == 3:
return self[::, ::-1].T
def simplify(self, **kwargs):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import sin, cos
>>> from sympy.matrices import SparseMatrix
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(**kwargs))
def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
args = (list(args[0]),)
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
def trace(self):
"""
Returns the trace of a square matrix i.e. the sum of the
diagonal elements.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
return self._eval_trace()
def transpose(self):
"""
Returns the transpose of the matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([
[1, 3],
[2, 4]])
>>> from sympy import Matrix, I
>>> m=Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m.transpose()
Matrix([
[ 1, 3],
[2 + I, 4]])
>>> m.T == m.transpose()
True
See Also
========
conjugate: By-element conjugation
"""
return self._eval_transpose()
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
@property
def C(self):
'''By-element conjugation'''
return self.conjugate()
def n(self, *args, **kwargs):
"""Apply evalf() to each element of self."""
return self.evalf(*args, **kwargs)
def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.matrices import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
def _eval_simplify(self, **kwargs):
# XXX: We can't use self.simplify here as mutable subclasses will
# override simplify and have it return None
return MatrixOperations.simplify(self, **kwargs)
def _eval_trigsimp(self, **opts):
from sympy.simplify import trigsimp
return self.applyfunc(lambda x: trigsimp(x, **opts))
class MatrixArithmetic(MatrixRequired):
"""Provides basic matrix arithmetic operations.
Should not be instantiated directly."""
_op_priority = 10.01
def _eval_Abs(self):
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
def _eval_add(self, other):
return self._new(self.rows, self.cols,
lambda i, j: self[i, j] + other[i, j])
def _eval_matrix_mul(self, other):
def entry(i, j):
vec = [self[i,k]*other[k,j] for k in range(self.cols)]
try:
return Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
return reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, entry)
def _eval_matrix_mul_elementwise(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
def _eval_matrix_rmul(self, other):
def entry(i, j):
return sum(other[i,k]*self[k,j] for k in range(other.cols))
return self._new(other.rows, self.cols, entry)
def _eval_pow_by_recursion(self, num):
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion(num - 1)
else:
a = b = self._eval_pow_by_recursion(num // 2)
return a.multiply(b)
def _eval_pow_by_cayley(self, exp):
from sympy.discrete.recurrences import linrec_coeffs
row = self.shape[0]
p = self.charpoly()
coeffs = (-p).all_coeffs()[1:]
coeffs = linrec_coeffs(coeffs, exp)
new_mat = self.eye(row)
ans = self.zeros(row)
for i in range(row):
ans += coeffs[i]*new_mat
new_mat *= self
return ans
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
if prevsimp is None:
prevsimp = [True]*len(self)
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
prevsimp=prevsimp)
else:
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
prevsimp=prevsimp)
m = a.multiply(b, dotprodsimp=False)
lenm = len(m)
elems = [None]*lenm
for i in range(lenm):
if prevsimp[i]:
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
else:
elems[i] = m[i]
return m._new(m.rows, m.cols, elems)
def _eval_scalar_mul(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
def _eval_scalar_rmul(self, other):
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
def _eval_Mod(self, other):
from sympy import Mod
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
# python arithmetic functions
def __abs__(self):
"""Returns a new matrix with entry-wise absolute values."""
return self._eval_Abs()
@call_highest_priority('__radd__')
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes don't match."""
if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented
return NotImplemented
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape'):
if self.shape != other.shape:
raise ShapeError("Matrix size mismatch: %s + %s" % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
# call the highest-priority class's _eval_add
a, b = self, other
if a.__class__ != classof(a, b):
b, a = a, b
return a._eval_add(b)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_add(self, other)
raise TypeError('cannot add %s and %s' % (type(self), type(other)))
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * (self.one / other)
@call_highest_priority('__rmatmul__')
def __matmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__mul__(other)
def __mod__(self, other):
return self.applyfunc(lambda x: x % other)
@call_highest_priority('__rmul__')
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
return self.multiply(other)
def multiply(self, other, dotprodsimp=None):
"""Same as __mul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[1] != other.shape[0]:
raise ShapeError("Matrix size mismatch: %s * %s." % (
self.shape, other.shape))
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_mul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_mul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_mul(other)
except TypeError:
pass
return NotImplemented
def multiply_elementwise(self, other):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.matrices.MatrixBase.cross
sympy.matrices.matrices.MatrixBase.dot
multiply
"""
if self.shape != other.shape:
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
return self._eval_matrix_mul_elementwise(other)
def __neg__(self):
return self._eval_scalar_mul(-1)
@call_highest_priority('__rpow__')
def __pow__(self, exp):
"""Return self**exp a scalar or symbol."""
return self.pow(exp)
def pow(self, exp, method=None):
r"""Return self**exp a scalar or symbol.
Parameters
==========
method : multiply, mulsimp, jordan, cayley
If multiply then it returns exponentiation using recursion.
If jordan then Jordan form exponentiation will be used.
If cayley then the exponentiation is done using Cayley-Hamilton
theorem.
If mulsimp then the exponentiation is done using recursion
with dotprodsimp. This specifies whether intermediate term
algebraic simplification is used during naive matrix power to
control expression blowup and thus speed up calculation.
If None, then it heuristically decides which method to use.
"""
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
raise TypeError('No such method')
if self.rows != self.cols:
raise NonSquareMatrixError()
a = self
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
exp = sympify(exp)
if exp.is_zero:
return a._new(a.rows, a.cols, lambda i, j: int(i == j))
if exp == 1:
return a
diagonal = getattr(a, 'is_diagonal', None)
if diagonal is not None and diagonal():
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
if exp.is_Number and exp % 1 == 0:
if a.rows == 1:
return a._new([[a[0]**exp]])
if exp < 0:
exp = -exp
a = a.inv()
# When certain conditions are met,
# Jordan block algorithm is faster than
# computation by recursion.
if method == 'jordan':
try:
return jordan_pow(exp)
except MatrixError:
if method == 'jordan':
raise
elif method == 'cayley':
if not exp.is_Number or exp % 1 != 0:
raise ValueError("cayley method is only valid for integer powers")
return a._eval_pow_by_cayley(exp)
elif method == "mulsimp":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("mulsimp method is only valid for integer powers")
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif method == "multiply":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("multiply method is only valid for integer powers")
return a._eval_pow_by_recursion(exp)
elif method is None and exp.is_Number and exp % 1 == 0:
# Decide heuristically which method to apply
if a.rows == 2 and exp > 100000:
return jordan_pow(exp)
elif _get_intermediate_simp_bool(True, None):
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif exp > 10000:
return a._eval_pow_by_cayley(exp)
else:
return a._eval_pow_by_recursion(exp)
if jordan_pow:
try:
return jordan_pow(exp)
except NonInvertibleMatrixError:
# Raised by jordan_pow on zero determinant matrix unless exp is
# definitely known to be a non-negative integer.
# Here we raise if n is definitely not a non-negative integer
# but otherwise we can leave this as an unevaluated MatPow.
if exp.is_integer is False or exp.is_nonnegative is False:
raise
from sympy.matrices.expressions import MatPow
return MatPow(a, exp)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
@call_highest_priority('__matmul__')
def __rmatmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__rmul__(other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self.rmultiply(other)
def rmultiply(self, other, dotprodsimp=None):
"""Same as __rmul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[0] != other.shape[1]:
raise ShapeError("Matrix size mismatch.")
# honest sympy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_rmul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_rmul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_rmul(other)
except TypeError:
pass
return NotImplemented
@call_highest_priority('__sub__')
def __rsub__(self, a):
return (-self) + a
@call_highest_priority('__rsub__')
def __sub__(self, a):
return self + (-a)
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
MatrixSpecial, MatrixShaping):
"""All common matrix operations including basic arithmetic, shaping,
and special matrices like `zeros`, and `eye`."""
_diff_wrt = True # type: bool
class _MinimalMatrix:
"""Class providing the minimum functionality
for a matrix-like object and implementing every method
required for a `MatrixRequired`. This class does not have everything
needed to become a full-fledged SymPy object, but it will satisfy the
requirements of anything inheriting from `MatrixRequired`. If you wish
to make a specialized matrix type, make sure to implement these
methods and properties with the exception of `__init__` and `__repr__`
which are included for convenience."""
is_MatrixLike = True
_sympify = staticmethod(sympify)
_class_priority = 3
zero = S.Zero
one = S.One
is_Matrix = True
is_MatrixExpr = False
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args, **kwargs)
def __init__(self, rows, cols=None, mat=None):
if isfunction(mat):
# if we passed in a function, use that to populate the indices
mat = list(mat(i, j) for i in range(rows) for j in range(cols))
if cols is None and mat is None:
mat = rows
rows, cols = getattr(mat, 'shape', (rows, cols))
try:
# if we passed in a list of lists, flatten it and set the size
if cols is None and mat is None:
mat = rows
cols = len(mat[0])
rows = len(mat)
mat = [x for l in mat for x in l]
except (IndexError, TypeError):
pass
self.mat = tuple(self._sympify(x) for x in mat)
self.rows, self.cols = rows, cols
if self.rows is None or self.cols is None:
raise NotImplementedError("Cannot initialize matrix with given parameters")
def __getitem__(self, key):
def _normalize_slices(row_slice, col_slice):
"""Ensure that row_slice and col_slice don't have
`None` in their arguments. Any integers are converted
to slices of length 1"""
if not isinstance(row_slice, slice):
row_slice = slice(row_slice, row_slice + 1, None)
row_slice = slice(*row_slice.indices(self.rows))
if not isinstance(col_slice, slice):
col_slice = slice(col_slice, col_slice + 1, None)
col_slice = slice(*col_slice.indices(self.cols))
return (row_slice, col_slice)
def _coord_to_index(i, j):
"""Return the index in _mat corresponding
to the (i,j) position in the matrix. """
return i * self.cols + j
if isinstance(key, tuple):
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
# if the coordinates are not slices, make them so
# and expand the slices so they don't contain `None`
i, j = _normalize_slices(i, j)
rowsList, colsList = list(range(self.rows))[i], \
list(range(self.cols))[j]
indices = (i * self.cols + j for i in rowsList for j in
colsList)
return self._new(len(rowsList), len(colsList),
list(self.mat[i] for i in indices))
# if the key is a tuple of ints, change
# it to an array index
key = _coord_to_index(i, j)
return self.mat[key]
def __eq__(self, other):
try:
classof(self, other)
except TypeError:
return False
return (
self.shape == other.shape and list(self) == list(other))
def __len__(self):
return self.rows*self.cols
def __repr__(self):
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
self.mat)
@property
def shape(self):
return (self.rows, self.cols)
class _CastableMatrix: # this is needed here ONLY FOR TESTS.
def as_mutable(self):
return self
def as_immutable(self):
return self
class _MatrixWrapper:
"""Wrapper class providing the minimum functionality for a matrix-like
object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix
math operations should work on matrix-like objects. This one is intended for
matrix-like objects which use the same indexing format as SymPy with respect
to returning matrix elements instead of rows for non-tuple indexes.
"""
is_Matrix = False # needs to be here because of __getattr__
is_MatrixLike = True
def __init__(self, mat, shape):
self.mat = mat
self.shape = shape
self.rows, self.cols = shape
def __getitem__(self, key):
if isinstance(key, tuple):
return sympify(self.mat.__getitem__(key))
return sympify(self.mat.__getitem__((key // self.rows, key % self.cols)))
def __iter__(self): # supports numpy.matrix and numpy.array
mat = self.mat
cols = self.cols
return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols))
def _matrixify(mat):
"""If `mat` is a Matrix or is matrix-like,
return a Matrix or MatrixWrapper object. Otherwise
`mat` is passed through without modification."""
if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False):
return mat
if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)):
return mat
shape = None
if hasattr(mat, 'shape'): # numpy, scipy.sparse
if len(mat.shape) == 2:
shape = mat.shape
elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath
shape = (mat.rows, mat.cols)
if shape:
return _MatrixWrapper(mat, shape)
return mat
def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if type(j) is not int:
jindex = getattr(j, '__index__', None)
if jindex is not None:
j = jindex()
else:
raise IndexError("Invalid index a[%r]" % (j,))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j,))
return int(j)
def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.common import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
"""
priority_A = getattr(A, '_class_priority', None)
priority_B = getattr(B, '_class_priority', None)
if None not in (priority_A, priority_B):
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
try:
import numpy
except ImportError:
pass
else:
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
2a809dcfbf8dde12479ae4166287a55599503c9072ef9eda161dff3cd2ff529c | import random
from sympy.core import SympifyError, Add
from sympy.core.basic import Basic
from sympy.core.compatibility import is_sequence, reduce
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify, _sympify
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.common import \
a2idx, classof, ShapeError
from sympy.matrices.matrices import MatrixBase
from sympy.simplify.simplify import simplify as _simplify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.misc import filldedent
from .decompositions import _cholesky, _LDLdecomposition
from .solvers import _lower_triangular_solve, _upper_triangular_solve
def _iszero(x):
"""Returns True if x is zero."""
return x.is_zero
def _compare_sequence(a, b):
"""Compares the elements of a list/tuple `a`
and a list/tuple `b`. `_compare_sequence((1,2), [1, 2])`
is True, whereas `(1,2) == [1, 2]` is False"""
if type(a) is type(b):
# if they are the same type, compare directly
return a == b
# there is no overhead for calling `tuple` on a
# tuple
return tuple(a) == tuple(b)
class DenseMatrix(MatrixBase):
is_MatrixExpr = False # type: bool
_op_priority = 10.01
_class_priority = 4
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, Matrix):
return _compare_sequence(self._mat, other._mat)
elif isinstance(other, MatrixBase):
return _compare_sequence(self._mat, Matrix(other)._mat)
def __getitem__(self, key):
"""Return portion of self defined by key. If the key involves a slice
then a list will be returned (if key is a single slice) or a matrix
(if key was a tuple involving a slice).
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix([
... [1, 2 + I],
... [3, 4 ]])
If the key is a tuple that doesn't involve a slice then that element
is returned:
>>> m[1, 0]
3
When a tuple key involves a slice, a matrix is returned. Here, the
first column is selected (all rows, column 0):
>>> m[:, 0]
Matrix([
[1],
[3]])
If the slice is not a tuple then it selects from the underlying
list of elements that are arranged in row order and a list is
returned if a slice is involved:
>>> m[0]
1
>>> m[::2]
[1, 3]
"""
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._mat[i*self.cols + j]
except (TypeError, IndexError):
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
((i < 0) is True) or ((i >= self.shape[0]) is True):
raise ValueError("index out of boundary")
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
if isinstance(i, slice):
i = range(self.rows)[i]
elif is_sequence(i):
pass
else:
i = [i]
if isinstance(j, slice):
j = range(self.cols)[j]
elif is_sequence(j):
pass
else:
j = [j]
return self.extract(i, j)
else:
# row-wise decomposition of matrix
if isinstance(key, slice):
return self._mat[key]
return self._mat[a2idx(key)]
def __setitem__(self, key, value):
raise NotImplementedError()
def _eval_add(self, other):
# we assume both arguments are dense matrices since
# sparse matrices have a higher priority
mat = [a + b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_extract(self, rowsList, colsList):
mat = self._mat
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices), copy=False)
def _eval_matrix_mul(self, other):
other_len = other.rows*other.cols
new_len = self.rows*other.cols
new_mat = [self.zero]*new_len
# if we multiply an n x 0 with a 0 x m, the
# expected behavior is to produce an n x m matrix of zeros
if self.cols != 0 and other.rows != 0:
self_cols = self.cols
mat = self._mat
other_mat = other._mat
for i in range(new_len):
row, col = i // other.cols, i % other.cols
row_indices = range(self_cols*row, self_cols*(row+1))
col_indices = range(col, other_len, other.cols)
vec = [mat[a]*other_mat[b] for a, b in zip(row_indices, col_indices)]
try:
new_mat[i] = Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
new_mat[i] = reduce(lambda a, b: a + b, vec)
return classof(self, other)._new(self.rows, other.cols, new_mat, copy=False)
def _eval_matrix_mul_elementwise(self, other):
mat = [a*b for a,b in zip(self._mat, other._mat)]
return classof(self, other)._new(self.rows, self.cols, mat, copy=False)
def _eval_inverse(self, **kwargs):
return self.inv(method=kwargs.get('method', 'GE'),
iszerofunc=kwargs.get('iszerofunc', _iszero),
try_block_diag=kwargs.get('try_block_diag', False))
def _eval_scalar_mul(self, other):
mat = [other*a for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_scalar_rmul(self, other):
mat = [a*other for a in self._mat]
return self._new(self.rows, self.cols, mat, copy=False)
def _eval_tolist(self):
mat = list(self._mat)
cols = self.cols
return [mat[i*cols:(i + 1)*cols] for i in range(self.rows)]
def as_immutable(self):
"""Returns an Immutable version of this Matrix
"""
from .immutable import ImmutableDenseMatrix as cls
if self.rows and self.cols:
return cls._new(self.tolist())
return cls._new(self.rows, self.cols, [])
def as_mutable(self):
"""Returns a mutable version of this matrix
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return Matrix(self)
def equals(self, other, failing_expression=False):
"""Applies ``equals`` to corresponding elements of the matrices,
trying to prove that the elements are equivalent, returning True
if they are, False if any pair is not, and None (or the first
failing expression if failing_expression is True) if it cannot
be decided if the expressions are equivalent or not. This is, in
general, an expensive operation.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x
>>> A = Matrix([x*(x - 1), 0])
>>> B = Matrix([x**2 - x, 0])
>>> A == B
False
>>> A.simplify() == B.simplify()
True
>>> A.equals(B)
True
>>> A.equals(2)
False
See Also
========
sympy.core.expr.Expr.equals
"""
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
rv = True
for i in range(self.rows):
for j in range(self.cols):
ans = self[i, j].equals(other[i, j], failing_expression)
if ans is False:
return False
elif ans is not True and rv is True:
rv = ans
return rv
def cholesky(self, hermitian=True):
return _cholesky(self, hermitian=hermitian)
def LDLdecomposition(self, hermitian=True):
return _LDLdecomposition(self, hermitian=hermitian)
def lower_triangular_solve(self, rhs):
return _lower_triangular_solve(self, rhs)
def upper_triangular_solve(self, rhs):
return _upper_triangular_solve(self, rhs)
cholesky.__doc__ = _cholesky.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
def _force_mutable(x):
"""Return a matrix as a Matrix, otherwise return x."""
if getattr(x, 'is_Matrix', False):
return x.as_mutable()
elif isinstance(x, Basic):
return x
elif hasattr(x, '__array__'):
a = x.__array__()
if len(a.shape) == 0:
return sympify(a)
return Matrix(x)
return x
class MutableDenseMatrix(DenseMatrix, MatrixBase):
__hash__ = None # type: ignore
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, copy=True, **kwargs):
if copy is False:
# The input was rows, cols, [list].
# It should be used directly without creating a copy.
if len(args) != 3:
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
rows, cols, flat_list = args
else:
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
flat_list = list(flat_list) # create a shallow copy
self = object.__new__(cls)
self.rows = rows
self.cols = cols
self._mat = flat_list
return self
def __setitem__(self, key, value):
"""
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
self._mat[i*self.cols + j] = value
def as_mutable(self):
return self.copy()
def _eval_col_del(self, col):
for j in range(self.rows-1, -1, -1):
del self._mat[col + j*self.cols]
self.cols -= 1
def _eval_row_del(self, row):
del self._mat[row*self.cols: (row+1)*self.cols]
self.rows -= 1
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i).
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[1, 2, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
col
row_op
"""
self._mat[j::self.cols] = [f(*t) for t in list(zip(self._mat[j::self.cols], list(range(self.rows))))]
def col_swap(self, i, j):
"""Swap the two given columns of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[1, 0], [1, 0]])
>>> M
Matrix([
[1, 0],
[1, 0]])
>>> M.col_swap(0, 1)
>>> M
Matrix([
[0, 1],
[0, 1]])
See Also
========
col
row_swap
"""
for k in range(0, self.rows):
self[k, i], self[k, j] = self[k, j], self[k, i]
def copyin_list(self, key, value):
"""Copy in elements from a list.
Parameters
==========
key : slice
The section of this matrix to replace.
value : iterable
The iterable to copy values from.
Examples
========
>>> from sympy.matrices import eye
>>> I = eye(3)
>>> I[:2, 0] = [1, 2] # col
>>> I
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
>>> I[1, :2] = [[3, 4]]
>>> I
Matrix([
[1, 0, 0],
[3, 4, 0],
[0, 0, 1]])
See Also
========
copyin_matrix
"""
if not is_sequence(value):
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
return self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
"""Copy in values from a matrix into the given bounds.
Parameters
==========
key : slice
The section of this matrix to replace.
value : Matrix
The matrix to copy values from.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
>>> I = eye(3)
>>> I[:3, :2] = M
>>> I
Matrix([
[0, 1, 0],
[2, 3, 0],
[4, 5, 1]])
>>> I[0, 1] = M
>>> I
Matrix([
[0, 0, 1],
[2, 2, 3],
[4, 4, 5]])
See Also
========
copyin_list
"""
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
"same dimensions "
"as the in sub-Matrix given by `key`."))
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill the matrix with the scalar value.
See Also
========
zeros
ones
"""
self._mat = [value]*len(self)
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
zip_row_op
col_op
"""
i0 = i*self.cols
ri = self._mat[i0: i0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, j) for x, j in zip(ri, list(range(self.cols)))]
def row_swap(self, i, j):
"""Swap the two given rows of the matrix in-place.
Examples
========
>>> from sympy.matrices import Matrix
>>> M = Matrix([[0, 1], [1, 0]])
>>> M
Matrix([
[0, 1],
[1, 0]])
>>> M.row_swap(0, 1)
>>> M
Matrix([
[1, 0],
[0, 1]])
See Also
========
row
col_swap
"""
for k in range(0, self.cols):
self[i, k], self[j, k] = self[j, k], self[i, k]
def simplify(self, **kwargs):
"""Applies simplify to the elements of a matrix in place.
This is a shortcut for M.applyfunc(lambda x: simplify(x, ratio, measure))
See Also
========
sympy.simplify.simplify.simplify
"""
for i in range(len(self._mat)):
self._mat[i] = _simplify(self._mat[i], **kwargs)
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import eye
>>> M = eye(3)
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[1, 0, 0],
[2, 1, 0],
[0, 0, 1]])
See Also
========
row
row_op
col_op
"""
i0 = i*self.cols
k0 = k*self.cols
ri = self._mat[i0: i0 + self.cols]
rk = self._mat[k0: k0 + self.cols]
self._mat[i0: i0 + self.cols] = [f(x, y) for x, y in zip(ri, rk)]
is_zero = False
MutableMatrix = Matrix = MutableDenseMatrix
###########
# Numpy Utility Functions:
# list2numpy, matrix2numpy, symmarray, rot_axis[123]
###########
def list2numpy(l, dtype=object): # pragma: no cover
"""Converts python list of SymPy expressions to a NumPy array.
See Also
========
matrix2numpy
"""
from numpy import empty
a = empty(len(l), dtype)
for i, s in enumerate(l):
a[i] = s
return a
def matrix2numpy(m, dtype=object): # pragma: no cover
"""Converts SymPy's matrix to a NumPy array.
See Also
========
list2numpy
"""
from numpy import empty
a = empty(m.shape, dtype)
for i in range(m.rows):
for j in range(m.cols):
a[i, j] = m[i, j]
return a
def rot_axis3(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 3-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis3
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis3(theta)
Matrix([
[ 1/2, sqrt(3)/2, 0],
[-sqrt(3)/2, 1/2, 0],
[ 0, 0, 1]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis3(pi/2)
Matrix([
[ 0, 1, 0],
[-1, 0, 0],
[ 0, 0, 1]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, st, 0),
(-st, ct, 0),
(0, 0, 1))
return Matrix(lil)
def rot_axis2(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 2-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis2
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis2(theta)
Matrix([
[ 1/2, 0, -sqrt(3)/2],
[ 0, 1, 0],
[sqrt(3)/2, 0, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis2(pi/2)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
See Also
========
rot_axis1: Returns a rotation matrix for a rotation of theta (in radians)
about the 1-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((ct, 0, -st),
(0, 1, 0),
(st, 0, ct))
return Matrix(lil)
def rot_axis1(theta):
"""Returns a rotation matrix for a rotation of theta (in radians) about
the 1-axis.
Examples
========
>>> from sympy import pi
>>> from sympy.matrices import rot_axis1
A rotation of pi/3 (60 degrees):
>>> theta = pi/3
>>> rot_axis1(theta)
Matrix([
[1, 0, 0],
[0, 1/2, sqrt(3)/2],
[0, -sqrt(3)/2, 1/2]])
If we rotate by pi/2 (90 degrees):
>>> rot_axis1(pi/2)
Matrix([
[1, 0, 0],
[0, 0, 1],
[0, -1, 0]])
See Also
========
rot_axis2: Returns a rotation matrix for a rotation of theta (in radians)
about the 2-axis
rot_axis3: Returns a rotation matrix for a rotation of theta (in radians)
about the 3-axis
"""
ct = cos(theta)
st = sin(theta)
lil = ((1, 0, 0),
(0, ct, st),
(0, -st, ct))
return Matrix(lil)
@doctest_depends_on(modules=('numpy',))
def symarray(prefix, shape, **kwargs): # pragma: no cover
r"""Create a numpy ndarray of symbols (as an object array).
The created symbols are named ``prefix_i1_i2_``... You should thus provide a
non-empty prefix if you want your symbols to be unique for different output
arrays, as SymPy symbols with identical names are the same object.
Parameters
----------
prefix : string
A prefix prepended to the name of every symbol.
shape : int or tuple
Shape of the created array. If an int, the array is one-dimensional; for
more than one dimension the shape must be a tuple.
\*\*kwargs : dict
keyword arguments passed on to Symbol
Examples
========
These doctests require numpy.
>>> from sympy import symarray
>>> symarray('', 3)
[_0 _1 _2]
If you want multiple symarrays to contain distinct symbols, you *must*
provide unique prefixes:
>>> a = symarray('', 3)
>>> b = symarray('', 3)
>>> a[0] == b[0]
True
>>> a = symarray('a', 3)
>>> b = symarray('b', 3)
>>> a[0] == b[0]
False
Creating symarrays with a prefix:
>>> symarray('a', 3)
[a_0 a_1 a_2]
For more than one dimension, the shape must be given as a tuple:
>>> symarray('a', (2, 3))
[[a_0_0 a_0_1 a_0_2]
[a_1_0 a_1_1 a_1_2]]
>>> symarray('a', (2, 3, 2))
[[[a_0_0_0 a_0_0_1]
[a_0_1_0 a_0_1_1]
[a_0_2_0 a_0_2_1]]
<BLANKLINE>
[[a_1_0_0 a_1_0_1]
[a_1_1_0 a_1_1_1]
[a_1_2_0 a_1_2_1]]]
For setting assumptions of the underlying Symbols:
>>> [s.is_real for s in symarray('a', 2, real=True)]
[True, True]
"""
from numpy import empty, ndindex
arr = empty(shape, dtype=object)
for index in ndindex(shape):
arr[index] = Symbol('%s_%s' % (prefix, '_'.join(map(str, index))),
**kwargs)
return arr
###############
# Functions
###############
def casoratian(seqs, n, zero=True):
"""Given linear difference operator L of order 'k' and homogeneous
equation Ly = 0 we want to compute kernel of L, which is a set
of 'k' sequences: a(n), b(n), ... z(n).
Solutions of L are linearly independent iff their Casoratian,
denoted as C(a, b, ..., z), do not vanish for n = 0.
Casoratian is defined by k x k determinant::
+ a(n) b(n) . . . z(n) +
| a(n+1) b(n+1) . . . z(n+1) |
| . . . . |
| . . . . |
| . . . . |
+ a(n+k-1) b(n+k-1) . . . z(n+k-1) +
It proves very useful in rsolve_hyper() where it is applied
to a generating set of a recurrence to factor out linearly
dependent solutions and return a basis:
>>> from sympy import Symbol, casoratian, factorial
>>> n = Symbol('n', integer=True)
Exponential and factorial are linearly independent:
>>> casoratian([2**n, factorial(n)], n) != 0
True
"""
seqs = list(map(sympify, seqs))
if not zero:
f = lambda i, j: seqs[j].subs(n, n + i)
else:
f = lambda i, j: seqs[j].subs(n, i)
k = len(seqs)
return Matrix(k, k, f).det()
def eye(*args, **kwargs):
"""Create square identity matrix n x n
See Also
========
diag
zeros
ones
"""
return Matrix.eye(*args, **kwargs)
def diag(*values, strict=True, unpack=False, **kwargs):
"""Returns a matrix with the provided values placed on the
diagonal. If non-square matrices are included, they will
produce a block-diagonal matrix.
Examples
========
This version of diag is a thin wrapper to Matrix.diag that differs
in that it treats all lists like matrices -- even when a single list
is given. If this is not desired, either put a `*` before the list or
set `unpack=True`.
>>> from sympy import diag
>>> diag([1, 2, 3], unpack=True) # = diag(1,2,3) or diag(*[1,2,3])
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> diag([1, 2, 3]) # a column vector
Matrix([
[1],
[2],
[3]])
See Also
========
.common.MatrixCommon.eye
.common.MatrixCommon.diagonal - to extract a diagonal
.common.MatrixCommon.diag
.expressions.blockmatrix.BlockMatrix
"""
return Matrix.diag(*values, strict=strict, unpack=unpack, **kwargs)
def GramSchmidt(vlist, orthonormal=False):
"""Apply the Gram-Schmidt process to a set of vectors.
Parameters
==========
vlist : List of Matrix
Vectors to be orthogonalized for.
orthonormal : Bool, optional
If true, return an orthonormal basis.
Returns
=======
vlist : List of Matrix
Orthogonalized vectors
Notes
=====
This routine is mostly duplicate from ``Matrix.orthogonalize``,
except for some difference that this always raises error when
linearly dependent vectors are found, and the keyword ``normalize``
has been named as ``orthonormal`` in this function.
See Also
========
.matrices.MatrixSubspaces.orthogonalize
References
==========
.. [1] https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
"""
return MutableDenseMatrix.orthogonalize(
*vlist, normalize=orthonormal, rankcheck=True
)
def hessian(f, varlist, constraints=[]):
"""Compute Hessian matrix for a function f wrt parameters in varlist
which may be given as a sequence or a row/column vector. A list of
constraints may optionally be given.
Examples
========
>>> from sympy import Function, hessian, pprint
>>> from sympy.abc import x, y
>>> f = Function('f')(x, y)
>>> g1 = Function('g')(x, y)
>>> g2 = x**2 + 3*y
>>> pprint(hessian(f, (x, y), [g1, g2]))
[ d d ]
[ 0 0 --(g(x, y)) --(g(x, y)) ]
[ dx dy ]
[ ]
[ 0 0 2*x 3 ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 2*x ---(f(x, y)) -----(f(x, y))]
[dx 2 dy dx ]
[ dx ]
[ ]
[ 2 2 ]
[d d d ]
[--(g(x, y)) 3 -----(f(x, y)) ---(f(x, y)) ]
[dy dy dx 2 ]
[ dy ]
References
==========
https://en.wikipedia.org/wiki/Hessian_matrix
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
wronskian
"""
# f is the expression representing a function f, return regular matrix
if isinstance(varlist, MatrixBase):
if 1 not in varlist.shape:
raise ShapeError("`varlist` must be a column or row vector.")
if varlist.cols == 1:
varlist = varlist.T
varlist = varlist.tolist()[0]
if is_sequence(varlist):
n = len(varlist)
if not n:
raise ShapeError("`len(varlist)` must not be zero.")
else:
raise ValueError("Improper variable list in hessian function")
if not getattr(f, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
m = len(constraints)
N = m + n
out = zeros(N)
for k, g in enumerate(constraints):
if not getattr(g, 'diff'):
# check differentiability
raise ValueError("Function `f` (%s) is not differentiable" % f)
for i in range(n):
out[k, i + m] = g.diff(varlist[i])
for i in range(n):
for j in range(i, n):
out[i + m, j + m] = f.diff(varlist[i]).diff(varlist[j])
for i in range(N):
for j in range(i + 1, N):
out[j, i] = out[i, j]
return out
def jordan_cell(eigenval, n):
"""
Create a Jordan block:
Examples
========
>>> from sympy.matrices import jordan_cell
>>> from sympy.abc import x
>>> jordan_cell(x, 4)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
"""
return Matrix.jordan_block(size=n, eigenvalue=eigenval)
def matrix_multiply_elementwise(A, B):
"""Return the Hadamard product (elementwise product) of A and B
>>> from sympy.matrices import matrix_multiply_elementwise
>>> from sympy.matrices import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> matrix_multiply_elementwise(A, B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.common.MatrixCommon.__mul__
"""
return A.multiply_elementwise(B)
def ones(*args, **kwargs):
"""Returns a matrix of ones with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
zeros
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.ones(*args, **kwargs)
def randMatrix(r, c=None, min=0, max=99, seed=None, symmetric=False,
percent=100, prng=None):
"""Create random matrix with dimensions ``r`` x ``c``. If ``c`` is omitted
the matrix will be square. If ``symmetric`` is True the matrix must be
square. If ``percent`` is less than 100 then only approximately the given
percentage of elements will be non-zero.
The pseudo-random number generator used to generate matrix is chosen in the
following way.
* If ``prng`` is supplied, it will be used as random number generator.
It should be an instance of ``random.Random``, or at least have
``randint`` and ``shuffle`` methods with same signatures.
* if ``prng`` is not supplied but ``seed`` is supplied, then new
``random.Random`` with given ``seed`` will be created;
* otherwise, a new ``random.Random`` with default seed will be used.
Examples
========
>>> from sympy.matrices import randMatrix
>>> randMatrix(3) # doctest:+SKIP
[25, 45, 27]
[44, 54, 9]
[23, 96, 46]
>>> randMatrix(3, 2) # doctest:+SKIP
[87, 29]
[23, 37]
[90, 26]
>>> randMatrix(3, 3, 0, 2) # doctest:+SKIP
[0, 2, 0]
[2, 0, 1]
[0, 0, 1]
>>> randMatrix(3, symmetric=True) # doctest:+SKIP
[85, 26, 29]
[26, 71, 43]
[29, 43, 57]
>>> A = randMatrix(3, seed=1)
>>> B = randMatrix(3, seed=2)
>>> A == B
False
>>> A == randMatrix(3, seed=1)
True
>>> randMatrix(3, symmetric=True, percent=50) # doctest:+SKIP
[77, 70, 0],
[70, 0, 0],
[ 0, 0, 88]
"""
if c is None:
c = r
# Note that ``Random()`` is equivalent to ``Random(None)``
prng = prng or random.Random(seed)
if not symmetric:
m = Matrix._new(r, c, lambda i, j: prng.randint(min, max))
if percent == 100:
return m
z = int(r*c*(100 - percent) // 100)
m._mat[:z] = [S.Zero]*z
prng.shuffle(m._mat)
return m
# Symmetric case
if r != c:
raise ValueError('For symmetric matrices, r must equal c, but %i != %i' % (r, c))
m = zeros(r)
ij = [(i, j) for i in range(r) for j in range(i, r)]
if percent != 100:
ij = prng.sample(ij, int(len(ij)*percent // 100))
for i, j in ij:
value = prng.randint(min, max)
m[i, j] = m[j, i] = value
return m
def wronskian(functions, var, method='bareiss'):
"""
Compute Wronskian for [] of functions
::
| f1 f2 ... fn |
| f1' f2' ... fn' |
| . . . . |
W(f1, ..., fn) = | . . . . |
| . . . . |
| (n) (n) (n) |
| D (f1) D (f2) ... D (fn) |
see: https://en.wikipedia.org/wiki/Wronskian
See Also
========
sympy.matrices.matrices.MatrixCalculus.jacobian
hessian
"""
for index in range(0, len(functions)):
functions[index] = sympify(functions[index])
n = len(functions)
if n == 0:
return 1
W = Matrix(n, n, lambda i, j: functions[i].diff(var, j))
return W.det(method)
def zeros(*args, **kwargs):
"""Returns a matrix of zeros with ``rows`` rows and ``cols`` columns;
if ``cols`` is omitted a square matrix will be returned.
See Also
========
ones
eye
diag
"""
if 'c' in kwargs:
kwargs['cols'] = kwargs.pop('c')
return Matrix.zeros(*args, **kwargs)
|
70eee23da3bbfffbd639649ec8f01869ad9db7184d77db940716161bf3894382 | from sympy.core.function import expand_mul
from sympy.core.symbol import Dummy, uniquely_named_symbol, symbols
from sympy.utilities.iterables import numbered_symbols
from .common import ShapeError, NonSquareMatrixError, NonInvertibleMatrixError
from .eigen import _fuzzy_positive_definite
from .utilities import _get_intermediate_simp, _iszero
def _diagonal_solve(M, rhs):
"""Solves ``Ax = B`` efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_diagonal():
raise TypeError("Matrix should be diagonal")
if rhs.rows != M.rows:
raise TypeError("Size mis-match")
return M._new(
rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / M[i, i])
def _lower_triangular_solve(M, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrices size mismatch.")
if not M.is_lower:
raise ValueError("Matrix must be lower triangular.")
dps = _get_intermediate_simp()
X = MutableDenseMatrix.zeros(M.rows, rhs.cols)
for j in range(rhs.cols):
for i in range(M.rows):
if M[i, i] == 0:
raise TypeError("Matrix must be non-singular.")
X[i, j] = dps((rhs[i, j] - sum(M[i, k]*X[k, j]
for k in range(i))) / M[i, i])
return M._new(X)
def _lower_triangular_solve_sparse(M, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrices size mismatch.")
if not M.is_lower:
raise ValueError("Matrix must be lower triangular.")
dps = _get_intermediate_simp()
rows = [[] for i in range(M.rows)]
for i, j, v in M.row_list():
if i > j:
rows[i].append((j, v))
X = rhs.as_mutable()
for j in range(rhs.cols):
for i in range(rhs.rows):
for u, v in rows[i]:
X[i, j] -= v*X[u, j]
X[i, j] = dps(X[i, j] / M[i, i])
return M._new(X)
def _upper_triangular_solve(M, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrix size mismatch.")
if not M.is_upper:
raise TypeError("Matrix is not upper triangular.")
dps = _get_intermediate_simp()
X = MutableDenseMatrix.zeros(M.rows, rhs.cols)
for j in range(rhs.cols):
for i in reversed(range(M.rows)):
if M[i, i] == 0:
raise ValueError("Matrix must be non-singular.")
X[i, j] = dps((rhs[i, j] - sum(M[i, k]*X[k, j]
for k in range(i + 1, M.rows))) / M[i, i])
return M._new(X)
def _upper_triangular_solve_sparse(M, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrix size mismatch.")
if not M.is_upper:
raise TypeError("Matrix is not upper triangular.")
dps = _get_intermediate_simp()
rows = [[] for i in range(M.rows)]
for i, j, v in M.row_list():
if i < j:
rows[i].append((j, v))
X = rhs.as_mutable()
for j in range(rhs.cols):
for i in reversed(range(rhs.rows)):
for u, v in reversed(rows[i]):
X[i, j] -= v*X[u, j]
X[i, j] = dps(X[i, j] / M[i, i])
return M._new(X)
def _cholesky_solve(M, rhs):
"""Solves ``Ax = B`` using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if M.rows < M.cols:
raise NotImplementedError(
'Under-determined System. Try M.gauss_jordan_solve(rhs)')
hermitian = True
reform = False
if M.is_symmetric():
hermitian = False
elif not M.is_hermitian:
reform = True
if reform or _fuzzy_positive_definite(M) is False:
H = M.H
M = H.multiply(M)
rhs = H.multiply(rhs)
hermitian = not M.is_symmetric()
L = M.cholesky(hermitian=hermitian)
Y = L.lower_triangular_solve(rhs)
if hermitian:
return (L.H).upper_triangular_solve(Y)
else:
return (L.T).upper_triangular_solve(Y)
def _LDLsolve(M, rhs):
"""Solves ``Ax = B`` using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
if M.rows < M.cols:
raise NotImplementedError(
'Under-determined System. Try M.gauss_jordan_solve(rhs)')
hermitian = True
reform = False
if M.is_symmetric():
hermitian = False
elif not M.is_hermitian:
reform = True
if reform or _fuzzy_positive_definite(M) is False:
H = M.H
M = H.multiply(M)
rhs = H.multiply(rhs)
hermitian = not M.is_symmetric()
L, D = M.LDLdecomposition(hermitian=hermitian)
Y = L.lower_triangular_solve(rhs)
Z = D.diagonal_solve(Y)
if hermitian:
return (L.H).upper_triangular_solve(Z)
else:
return (L.T).upper_triangular_solve(Z)
def _LUsolve(M, rhs, iszerofunc=_iszero):
"""Solve the linear system ``Ax = rhs`` for ``x`` where ``A = M``.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != M.rows:
raise ShapeError(
"``M`` and ``rhs`` must have the same number of rows.")
m = M.rows
n = M.cols
if m < n:
raise NotImplementedError("Underdetermined systems not supported.")
try:
A, perm = M.LUdecomposition_Simple(
iszerofunc=_iszero, rankcheck=True)
except ValueError:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
dps = _get_intermediate_simp()
b = rhs.permute_rows(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(m):
for j in range(min(i, n)):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: dps(x - y * scale))
# consistency check for overdetermined systems
if m > n:
for i in range(n, m):
for j in range(b.cols):
if not iszerofunc(b[i, j]):
raise ValueError("The system is inconsistent.")
b = b[0:n, :] # truncate zero rows if consistent
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: dps(x - y * scale))
scale = A[i, i]
b.row_op(i, lambda x, _: dps(x / scale))
return rhs.__class__(b)
def _QRsolve(M, b):
"""Solve the linear system ``Ax = b``.
``M`` is the matrix ``A``, the method argument is the vector
``b``. The method returns the solution vector ``x``. If ``b`` is a
matrix, the system is solved for each column of ``b`` and the
return value is a matrix of the same shape as ``b``.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you don't need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
dps = _get_intermediate_simp(expand_mul, expand_mul)
Q, R = M.QRdecomposition()
y = Q.T * b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k] * x[n - 1 - k]
tmp = dps(tmp)
x.append(tmp / R[j, j])
return M._new([row._mat for row in reversed(x)])
def _gauss_jordan_solve(M, B, freevar=False):
"""
Solves ``Ax = B`` using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : boolean, optional
Flag, when set to `True` will return the indices of the free
variables in the solutions (column Matrix), for a system that is
undetermined (e.g. A has more columns than rows), for which
infinite solutions are possible, in terms of arbitrary
values of free variables. Default `False`.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
free_var_index : List, optional
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
values of free variables. Then the indices of the free variables
in the solutions (column Matrix) are returned by free_var_index,
if the flag `freevar` is set to `True`.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> taus_zeroes = { tau:0 for tau in params }
>>> sol_unique = sol.xreplace(taus_zeroes)
>>> sol_unique
Matrix([
[2],
[0],
[5],
[0]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> B = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
>>> A = Matrix([[2, -7], [-1, 4]])
>>> B = Matrix([[-21, 3], [12, -2]])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[0, -2],
[3, -1]])
>>> params
Matrix(0, 2, [])
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params, freevars = A.gauss_jordan_solve(B, freevar=True)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> freevars
[1, 3]
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] https://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
cls = M.__class__
aug = M.hstack(M.copy(), B.copy())
B_cols = B.cols
row, col = aug[:, :-B_cols].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-B_cols], A[:, -B_cols:]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Get index of free symbols (free parameters)
# non-pivots columns are free variables
free_var_index = [c for c in range(A.cols) if c not in pivots]
# Bring to block form
permutation = Matrix(pivots + free_var_index).T
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, :].is_zero_matrix:
raise ValueError("Linear system has no solution")
# Free parameters
# what are current unnumbered free symbol names?
name = uniquely_named_symbol('tau', aug,
compare=lambda i: str(i).rstrip('1234567890'),
modify=lambda s: '_' + s).name
gen = numbered_symbols(name)
tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape(
col - rank, B_cols)
# Full parametric solution
V = A[:rank, free_var_index]
vt = v[:rank, :]
free_sol = tau.vstack(vt - V * tau, tau)
# Undo permutation
sol = zeros(col, B_cols)
for k in range(col):
sol[permutation[k], :] = free_sol[k,:]
sol, tau = cls(sol), cls(tau)
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
def _pinv_solve(M, B, arbitrary_matrix=None):
"""Solve ``Ax = B`` using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = M
A_pinv = M.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{}_:{}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = M.__class__(cols, rows, w).T
return A_pinv.multiply(B) + (eye(A.cols) -
A_pinv.multiply(A)).multiply(arbitrary_matrix)
def _solve(M, rhs, method='GJ'):
"""Solves linear equation where the unique solution exists.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string, optional
If set to ``'GJ'`` or ``'GE'``, the Gauss-Jordan elimination will be
used, which is implemented in the routine ``gauss_jordan_solve``.
If set to ``'LU'``, ``LUsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
It also supports the methods available for special linear systems
For positive definite systems:
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
To use a different method and to compute the solution via the
inverse, use a method defined in the .inv() docstring.
Returns
=======
solutions : Matrix
Vector representing the solution.
Raises
======
ValueError
If there is not a unique solution then a ``ValueError`` will be
raised.
If ``M`` is not square, a ``ValueError`` and a different routine
for solving the system will be suggested.
"""
if method == 'GJ' or method == 'GE':
try:
soln, param = M.gauss_jordan_solve(rhs)
if param:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible. "
"Try ``M.gauss_jordan_solve(rhs)`` to obtain a parametric solution.")
except ValueError:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
return soln
elif method == 'LU':
return M.LUsolve(rhs)
elif method == 'CH':
return M.cholesky_solve(rhs)
elif method == 'QR':
return M.QRsolve(rhs)
elif method == 'LDL':
return M.LDLsolve(rhs)
elif method == 'PINV':
return M.pinv_solve(rhs)
else:
return M.inv(method=method).multiply(rhs)
def _solve_least_squares(M, rhs, method='CH'):
"""Return the least-square fit to the data.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string or boolean, optional
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
Otherwise, the conjugate of ``M`` will be used to create a system
of equations that is passed to ``solve`` along with the hint
defined by ``method``.
Returns
=======
solutions : Matrix
Vector representing the solution.
Examples
========
>>> from sympy.matrices import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return M.cholesky_solve(rhs)
elif method == 'QR':
return M.QRsolve(rhs)
elif method == 'LDL':
return M.LDLsolve(rhs)
elif method == 'PINV':
return M.pinv_solve(rhs)
else:
t = M.H
return (t * M).solve(t * rhs, method=method)
|
211c087102e04a21a48988837382a5ab7016bd6fd14595bdcefd935e101db79a | from collections import defaultdict
from sympy.core import SympifyError, Add
from sympy.core.compatibility import Callable, as_int, is_sequence, reduce
from sympy.core.containers import Dict
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from sympy.functions import Abs
from sympy.utilities.iterables import uniq
from .common import a2idx
from .dense import Matrix
from .matrices import MatrixBase, ShapeError
from .utilities import _iszero
from .decompositions import (
_liupc, _row_structure_symbolic_cholesky, _cholesky_sparse,
_LDLdecomposition_sparse)
from .solvers import (
_lower_triangular_solve_sparse, _upper_triangular_solve_sparse)
class SparseMatrix(MatrixBase):
"""
A sparse matrix (a matrix with a large number of zero elements).
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> SparseMatrix(2, 2, range(4))
Matrix([
[0, 1],
[2, 3]])
>>> SparseMatrix(2, 2, {(1, 1): 2})
Matrix([
[0, 0],
[0, 2]])
A SparseMatrix can be instantiated from a ragged list of lists:
>>> SparseMatrix([[1, 2, 3], [1, 2], [1]])
Matrix([
[1, 2, 3],
[1, 2, 0],
[1, 0, 0]])
For safety, one may include the expected size and then an error
will be raised if the indices of any element are out of range or
(for a flat list) if the total number of elements does not match
the expected shape:
>>> SparseMatrix(2, 2, [1, 2])
Traceback (most recent call last):
...
ValueError: List length (2) != rows*columns (4)
Here, an error is not raised because the list is not flat and no
element is out of range:
>>> SparseMatrix(2, 2, [[1, 2]])
Matrix([
[1, 2],
[0, 0]])
But adding another element to the first (and only) row will cause
an error to be raised:
>>> SparseMatrix(2, 2, [[1, 2, 3]])
Traceback (most recent call last):
...
ValueError: The location (0, 2) is out of designated range: (1, 1)
To autosize the matrix, pass None for rows:
>>> SparseMatrix(None, [[1, 2, 3]])
Matrix([[1, 2, 3]])
>>> SparseMatrix(None, {(1, 1): 1, (3, 3): 3})
Matrix([
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 3]])
Values that are themselves a Matrix are automatically expanded:
>>> SparseMatrix(4, 4, {(1, 1): ones(2)})
Matrix([
[0, 0, 0, 0],
[0, 1, 1, 0],
[0, 1, 1, 0],
[0, 0, 0, 0]])
A ValueError is raised if the expanding matrix tries to overwrite
a different element already present:
>>> SparseMatrix(3, 3, {(0, 0): ones(2), (1, 1): 2})
Traceback (most recent call last):
...
ValueError: collision at (1, 1)
See Also
========
DenseMatrix
MutableSparseMatrix
ImmutableSparseMatrix
"""
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
if len(args) == 1 and isinstance(args[0], MatrixBase):
rows = args[0].rows
cols = args[0].cols
smat = args[0].todok()
return rows, cols, smat
smat = {}
# autosizing
if len(args) == 2 and args[0] is None:
args = [None, None, args[1]]
if len(args) == 3:
r, c = args[:2]
if r is c is None:
rows = cols = None
elif None in (r, c):
raise ValueError(
'Pass rows=None and no cols for autosizing.')
else:
rows, cols = as_int(args[0]), as_int(args[1])
if isinstance(args[2], Callable):
op = args[2]
if None in (rows, cols):
raise ValueError(
"{} and {} must be integers for this "
"specification.".format(rows, cols))
row_indices = [cls._sympify(i) for i in range(rows)]
col_indices = [cls._sympify(j) for j in range(cols)]
for i in row_indices:
for j in col_indices:
value = cls._sympify(op(i, j))
if value != cls.zero:
smat[i, j] = value
return rows, cols, smat
elif isinstance(args[2], (dict, Dict)):
def update(i, j, v):
# update self._smat and make sure there are
# no collisions
if v:
if (i, j) in smat and v != smat[i, j]:
raise ValueError(
"There is a collision at {} for {} and {}."
.format((i, j), v, smat[i, j])
)
smat[i, j] = v
# manual copy, copy.deepcopy() doesn't work
for (r, c), v in args[2].items():
if isinstance(v, MatrixBase):
for (i, j), vv in v.todok().items():
update(r + i, c + j, vv)
elif isinstance(v, (list, tuple)):
_, _, smat = cls._handle_creation_inputs(v, **kwargs)
for i, j in smat:
update(r + i, c + j, smat[i, j])
else:
v = cls._sympify(v)
update(r, c, cls._sympify(v))
elif is_sequence(args[2]):
flat = not any(is_sequence(i) for i in args[2])
if not flat:
_, _, smat = \
cls._handle_creation_inputs(args[2], **kwargs)
else:
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
"The length of the flat list ({}) does not "
"match the specified size ({} * {})."
.format(len(flat_list), rows, cols)
)
for i in range(rows):
for j in range(cols):
value = flat_list[i*cols + j]
value = cls._sympify(value)
if value != cls.zero:
smat[i, j] = value
if rows is None: # autosizing
keys = smat.keys()
rows = max([r for r, _ in keys]) + 1 if keys else 0
cols = max([c for _, c in keys]) + 1 if keys else 0
else:
for i, j in smat.keys():
if i and i >= rows or j and j >= cols:
raise ValueError(
"The location {} is out of the designated range"
"[{}, {}]x[{}, {}]"
.format((i, j), 0, rows - 1, 0, cols - 1)
)
return rows, cols, smat
elif len(args) == 1 and isinstance(args[0], (list, tuple)):
# list of values or lists
v = args[0]
c = 0
for i, row in enumerate(v):
if not isinstance(row, (list, tuple)):
row = [row]
for j, vv in enumerate(row):
if vv != cls.zero:
smat[i, j] = cls._sympify(vv)
c = max(c, len(row))
rows = len(v) if c else 0
cols = c
return rows, cols, smat
else:
# handle full matrix forms with _handle_creation_inputs
rows, cols, mat = super()._handle_creation_inputs(*args)
for i in range(rows):
for j in range(cols):
value = mat[cols*i + j]
if value != cls.zero:
smat[i, j] = value
return rows, cols, smat
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
self_shape = getattr(self, 'shape', None)
other_shape = getattr(other, 'shape', None)
if None in (self_shape, other_shape):
return False
if self_shape != other_shape:
return False
if isinstance(other, SparseMatrix):
return self._smat == other._smat
elif isinstance(other, MatrixBase):
return self._smat == MutableSparseMatrix(other)._smat
def __getitem__(self, key):
if isinstance(key, tuple):
i, j = key
try:
i, j = self.key2ij(key)
return self._smat.get((i, j), S.Zero)
except (TypeError, IndexError):
if isinstance(i, slice):
i = range(self.rows)[i]
elif is_sequence(i):
pass
elif isinstance(i, Expr) and not i.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if i >= self.rows:
raise IndexError('Row index out of bounds')
i = [i]
if isinstance(j, slice):
j = range(self.cols)[j]
elif is_sequence(j):
pass
elif isinstance(j, Expr) and not j.is_number:
from sympy.matrices.expressions.matexpr import MatrixElement
return MatrixElement(self, i, j)
else:
if j >= self.cols:
raise IndexError('Col index out of bounds')
j = [j]
return self.extract(i, j)
# check for single arg, like M[:] or M[3]
if isinstance(key, slice):
lo, hi = key.indices(len(self))[:2]
L = []
for i in range(lo, hi):
m, n = divmod(i, self.cols)
L.append(self._smat.get((m, n), S.Zero))
return L
i, j = divmod(a2idx(key, len(self)), self.cols)
return self._smat.get((i, j), S.Zero)
def __setitem__(self, key, value):
raise NotImplementedError()
def _eval_inverse(self, **kwargs):
return self.inv(method=kwargs.get('method', 'LDL'),
iszerofunc=kwargs.get('iszerofunc', _iszero),
try_block_diag=kwargs.get('try_block_diag', False))
def _eval_Abs(self):
return self.applyfunc(lambda x: Abs(x))
def _eval_add(self, other):
"""If `other` is a SparseMatrix, add efficiently. Otherwise,
do standard addition."""
if not isinstance(other, SparseMatrix):
return self + self._new(other)
smat = {}
zero = self._sympify(0)
for key in set().union(self._smat.keys(), other._smat.keys()):
sum = self._smat.get(key, zero) + other._smat.get(key, zero)
if sum != 0:
smat[key] = sum
return self._new(self.rows, self.cols, smat)
def _eval_col_insert(self, icol, other):
if not isinstance(other, SparseMatrix):
other = MutableSparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if col >= icol:
col += other.cols
new_smat[row, col] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[row, col + icol] = val
return self._new(self.rows, self.cols + other.cols, new_smat)
def _eval_conjugate(self):
smat = {key: val.conjugate() for key,val in self._smat.items()}
return self._new(self.rows, self.cols, smat)
def _eval_extract(self, rowsList, colsList):
urow = list(uniq(rowsList))
ucol = list(uniq(colsList))
smat = {}
if len(urow)*len(ucol) < len(self._smat):
# there are fewer elements requested than there are elements in the matrix
for i, r in enumerate(urow):
for j, c in enumerate(ucol):
smat[i, j] = self._smat.get((r, c), 0)
else:
# most of the request will be zeros so check all of self's entries,
# keeping only the ones that are desired
for rk, ck in self._smat:
if rk in urow and ck in ucol:
smat[urow.index(rk), ucol.index(ck)] = self._smat[rk, ck]
rv = self._new(len(urow), len(ucol), smat)
# rv is nominally correct but there might be rows/cols
# which require duplication
if len(rowsList) != len(urow):
for i, r in enumerate(rowsList):
i_previous = rowsList.index(r)
if i_previous != i:
rv = rv.row_insert(i, rv.row(i_previous))
if len(colsList) != len(ucol):
for i, c in enumerate(colsList):
i_previous = colsList.index(c)
if i_previous != i:
rv = rv.col_insert(i, rv.col(i_previous))
return rv
@classmethod
def _eval_eye(cls, rows, cols):
entries = {(i,i): S.One for i in range(min(rows, cols))}
return cls._new(rows, cols, entries)
def _eval_has(self, *patterns):
# if the matrix has any zeros, see if S.Zero
# has the pattern. If _smat is full length,
# the matrix has no zeros.
zhas = S.Zero.has(*patterns)
if len(self._smat) == self.rows*self.cols:
zhas = False
return any(self[key].has(*patterns) for key in self._smat) or zhas
def _eval_is_Identity(self):
if not all(self[i, i] == 1 for i in range(self.rows)):
return False
return len(self._smat) == self.rows
def _eval_is_symmetric(self, simpfunc):
diff = (self - self.T).applyfunc(simpfunc)
return len(diff.values()) == 0
def _eval_matrix_mul(self, other):
"""Fast multiplication exploiting the sparsity of the matrix."""
if not isinstance(other, SparseMatrix):
other = self._new(other)
# if we made it here, we're both sparse matrices
# create quick lookups for rows and cols
row_lookup = defaultdict(dict)
for (i,j), val in self._smat.items():
row_lookup[i][j] = val
col_lookup = defaultdict(dict)
for (i,j), val in other._smat.items():
col_lookup[j][i] = val
smat = {}
for row in row_lookup.keys():
for col in col_lookup.keys():
# find the common indices of non-zero entries.
# these are the only things that need to be multiplied.
indices = set(col_lookup[col].keys()) & set(row_lookup[row].keys())
if indices:
vec = [row_lookup[row][k]*col_lookup[col][k] for k in indices]
try:
smat[row, col] = Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
smat[row, col] = reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, smat)
def _eval_row_insert(self, irow, other):
if not isinstance(other, SparseMatrix):
other = MutableSparseMatrix(other)
new_smat = {}
# make room for the new rows
for key, val in self._smat.items():
row, col = key
if row >= irow:
row += other.rows
new_smat[row, col] = val
# add other's keys
for key, val in other._smat.items():
row, col = key
new_smat[row + irow, col] = val
return self._new(self.rows + other.rows, self.cols, new_smat)
def _eval_scalar_mul(self, other):
return self.applyfunc(lambda x: x*other)
def _eval_scalar_rmul(self, other):
return self.applyfunc(lambda x: other*x)
def _eval_todok(self):
return self._smat.copy()
def _eval_transpose(self):
"""Returns the transposed SparseMatrix of this SparseMatrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.T
Matrix([
[1, 3],
[2, 4]])
"""
smat = {(j,i): val for (i,j),val in self._smat.items()}
return self._new(self.cols, self.rows, smat)
def _eval_values(self):
return [v for k,v in self._smat.items() if not v.is_zero]
@classmethod
def _eval_zeros(cls, rows, cols):
return cls._new(rows, cols, {})
@property
def _mat(self):
"""Return a list of matrix elements. Some routines
in DenseMatrix use `_mat` directly to speed up operations."""
return list(self)
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> m = SparseMatrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
out = self.copy()
for k, v in self._smat.items():
fv = f(v)
if fv:
out._smat[k] = fv
else:
out._smat.pop(k, None)
return out
def as_immutable(self):
"""Returns an Immutable version of this Matrix."""
from .immutable import ImmutableSparseMatrix
return ImmutableSparseMatrix(self)
def as_mutable(self):
"""Returns a mutable version of this matrix.
Examples
========
>>> from sympy import ImmutableMatrix
>>> X = ImmutableMatrix([[1, 2], [3, 4]])
>>> Y = X.as_mutable()
>>> Y[1, 1] = 5 # Can set values in Y
>>> Y
Matrix([
[1, 2],
[3, 5]])
"""
return MutableSparseMatrix(self)
def col_list(self):
"""Returns a column-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a=SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.CL
[(0, 0, 1), (1, 0, 3), (0, 1, 2), (1, 1, 4)]
See Also
========
sympy.matrices.sparse.MutableSparseMatrix.col_op
sympy.matrices.sparse.SparseMatrix.row_list
"""
return [tuple(k + (self[k],)) for k in sorted(list(self._smat.keys()), key=lambda k: list(reversed(k)))]
def copy(self):
return self._new(self.rows, self.cols, self._smat)
def nnz(self):
"""Returns the number of non-zero elements in Matrix."""
return len(self._smat)
def row_list(self):
"""Returns a row-sorted list of non-zero elements of the matrix.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> a = SparseMatrix(((1, 2), (3, 4)))
>>> a
Matrix([
[1, 2],
[3, 4]])
>>> a.RL
[(0, 0, 1), (0, 1, 2), (1, 0, 3), (1, 1, 4)]
See Also
========
sympy.matrices.sparse.MutableSparseMatrix.row_op
sympy.matrices.sparse.SparseMatrix.col_list
"""
return [tuple(k + (self[k],)) for k in
sorted(list(self._smat.keys()), key=lambda k: list(k))]
def scalar_multiply(self, scalar):
"Scalar element-wise multiplication"
M = self.zeros(*self.shape)
if scalar:
for i in self._smat:
v = scalar*self._smat[i]
if v:
M._smat[i] = v
else:
M._smat.pop(i, None)
return M
def solve_least_squares(self, rhs, method='LDL'):
"""Return the least-square fit to the data.
By default the cholesky_solve routine is used (method='CH'); other
methods of matrix inversion can be used. To find out which are
available, see the docstring of the .inv() method.
Examples
========
>>> from sympy.matrices import SparseMatrix, Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = SparseMatrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
t = self.T
return (t*self).inv(method=method)*t*rhs
def solve(self, rhs, method='LDL'):
"""Return solution to self*soln = rhs using given inversion method.
For a list of possible inversion methods, see the .inv() docstring.
"""
if not self.is_square:
if self.rows < self.cols:
raise ValueError('Under-determined system.')
elif self.rows > self.cols:
raise ValueError('For over-determined system, M, having '
'more rows than columns, try M.solve_least_squares(rhs).')
else:
return self.inv(method=method).multiply(rhs)
RL = property(row_list, None, None, "Alternate faster representation")
CL = property(col_list, None, None, "Alternate faster representation")
def liupc(self):
return _liupc(self)
def row_structure_symbolic_cholesky(self):
return _row_structure_symbolic_cholesky(self)
def cholesky(self, hermitian=True):
return _cholesky_sparse(self, hermitian=hermitian)
def LDLdecomposition(self, hermitian=True):
return _LDLdecomposition_sparse(self, hermitian=hermitian)
def lower_triangular_solve(self, rhs):
return _lower_triangular_solve_sparse(self, rhs)
def upper_triangular_solve(self, rhs):
return _upper_triangular_solve_sparse(self, rhs)
liupc.__doc__ = _liupc.__doc__
row_structure_symbolic_cholesky.__doc__ = _row_structure_symbolic_cholesky.__doc__
cholesky.__doc__ = _cholesky_sparse.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition_sparse.__doc__
lower_triangular_solve.__doc__ = lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = upper_triangular_solve.__doc__
class MutableSparseMatrix(SparseMatrix, MatrixBase):
def __new__(cls, *args, **kwargs):
return cls._new(*args, **kwargs)
@classmethod
def _new(cls, *args, **kwargs):
obj = super().__new__(cls)
rows, cols, smat = cls._handle_creation_inputs(*args, **kwargs)
obj.rows = rows
obj.cols = cols
obj._smat = smat
return obj
def __setitem__(self, key, value):
"""Assign value to position designated by key.
Examples
========
>>> from sympy.matrices import SparseMatrix, ones
>>> M = SparseMatrix(2, 2, {})
>>> M[1] = 1; M
Matrix([
[0, 1],
[0, 0]])
>>> M[1, 1] = 2; M
Matrix([
[0, 1],
[0, 2]])
>>> M = SparseMatrix(2, 2, {})
>>> M[:, 1] = [1, 1]; M
Matrix([
[0, 1],
[0, 1]])
>>> M = SparseMatrix(2, 2, {})
>>> M[1, :] = [[1, 1]]; M
Matrix([
[0, 0],
[1, 1]])
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = SparseMatrix(4, 4, {})
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
rv = self._setitem(key, value)
if rv is not None:
i, j, value = rv
if value:
self._smat[i, j] = value
elif (i, j) in self._smat:
del self._smat[i, j]
def as_mutable(self):
return self.copy()
__hash__ = None # type: ignore
def _eval_col_del(self, k):
newD = {}
for i, j in self._smat:
if j == k:
pass
elif j > k:
newD[i, j - 1] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.cols -= 1
def _eval_row_del(self, k):
newD = {}
for i, j in self._smat:
if i == k:
pass
elif i > k:
newD[i - 1, j] = self._smat[i, j]
else:
newD[i, j] = self._smat[i, j]
self._smat = newD
self.rows -= 1
def col_join(self, other):
"""Returns B augmented beneath A (row-wise joining)::
[A]
[B]
Examples
========
>>> from sympy import SparseMatrix, Matrix, ones
>>> A = SparseMatrix(ones(3))
>>> A
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
>>> B = SparseMatrix.eye(3)
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.col_join(B); C
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C == A.col_join(Matrix(B))
True
Joining along columns is the same as appending rows at the end
of the matrix:
>>> C == A.row_insert(A.rows, Matrix(B))
True
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
A, B = self, other
if not A.cols == B.cols:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[i + A.rows, j] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[i + A.rows, j] = v
A.rows += B.rows
return A
def col_op(self, j, f):
"""In-place operation on col j using two-arg functor whose args are
interpreted as (self[i, j], i) for i in range(self.rows).
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[1, 0] = -1
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
Matrix([
[ 2, 4, 0],
[-1, 0, 0],
[ 0, 0, 2]])
"""
for i in range(self.rows):
v = self._smat.get((i, j), S.Zero)
fv = f(v, i)
if fv:
self._smat[i, j] = fv
elif v:
self._smat.pop((i, j))
def col_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.col_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[2, 0, 1]])
"""
if i > j:
i, j = j, i
rows = self.col_list()
temp = []
for ii, jj, v in rows:
if jj == i:
self._smat.pop((ii, jj))
temp.append((ii, v))
elif jj == j:
self._smat.pop((ii, jj))
self._smat[ii, i] = v
elif jj > j:
break
for k, v in temp:
self._smat[k, j] = v
def copyin_list(self, key, value):
if not is_sequence(value):
raise TypeError("`value` must be of type list or tuple.")
self.copyin_matrix(key, Matrix(value))
def copyin_matrix(self, key, value):
# include this here because it's not part of BaseMatrix
rlo, rhi, clo, chi = self.key2bounds(key)
shape = value.shape
dr, dc = rhi - rlo, chi - clo
if shape != (dr, dc):
raise ShapeError(
"The Matrix `value` doesn't have the same dimensions "
"as the in sub-Matrix given by `key`.")
if not isinstance(value, SparseMatrix):
for i in range(value.rows):
for j in range(value.cols):
self[i + rlo, j + clo] = value[i, j]
else:
if (rhi - rlo)*(chi - clo) < len(self):
for i in range(rlo, rhi):
for j in range(clo, chi):
self._smat.pop((i, j), None)
else:
for i, j, v in self.row_list():
if rlo <= i < rhi and clo <= j < chi:
self._smat.pop((i, j), None)
for k, v in value._smat.items():
i, j = k
self[i + rlo, j + clo] = value[i, j]
def fill(self, value):
"""Fill self with the given value.
Notes
=====
Unless many values are going to be deleted (i.e. set to zero)
this will create a matrix that is slower than a dense matrix in
operations.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.zeros(3); M
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> M.fill(1); M
Matrix([
[1, 1, 1],
[1, 1, 1],
[1, 1, 1]])
"""
if not value:
self._smat = {}
else:
v = self._sympify(value)
self._smat = {(i, j): v
for i in range(self.rows) for j in range(self.cols)}
def row_join(self, other):
"""Returns B appended after A (column-wise augmenting)::
[A B]
Examples
========
>>> from sympy import SparseMatrix, Matrix
>>> A = SparseMatrix(((1, 0, 1), (0, 1, 0), (1, 1, 0)))
>>> A
Matrix([
[1, 0, 1],
[0, 1, 0],
[1, 1, 0]])
>>> B = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1)))
>>> B
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> C = A.row_join(B); C
Matrix([
[1, 0, 1, 1, 0, 0],
[0, 1, 0, 0, 1, 0],
[1, 1, 0, 0, 0, 1]])
>>> C == A.row_join(Matrix(B))
True
Joining at row ends is the same as appending columns at the end
of the matrix:
>>> C == A.col_insert(A.cols, B)
True
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
A, B = self, other
if not A.rows == B.rows:
raise ShapeError()
A = A.copy()
if not isinstance(B, SparseMatrix):
k = 0
b = B._mat
for i in range(B.rows):
for j in range(B.cols):
v = b[k]
if v:
A._smat[i, j + A.cols] = v
k += 1
else:
for (i, j), v in B._smat.items():
A._smat[i, j + A.cols] = v
A.cols += B.cols
return A
def row_op(self, i, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], j)``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
zip_row_op
col_op
"""
for j in range(self.cols):
v = self._smat.get((i, j), S.Zero)
fv = f(v, j)
if fv:
self._smat[i, j] = fv
elif v:
self._smat.pop((i, j))
def row_swap(self, i, j):
"""Swap, in place, columns i and j.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> S = SparseMatrix.eye(3); S[2, 1] = 2
>>> S.row_swap(1, 0); S
Matrix([
[0, 1, 0],
[1, 0, 0],
[0, 2, 1]])
"""
if i > j:
i, j = j, i
rows = self.row_list()
temp = []
for ii, jj, v in rows:
if ii == i:
self._smat.pop((ii, jj))
temp.append((jj, v))
elif ii == j:
self._smat.pop((ii, jj))
self._smat[i, jj] = v
elif ii > j:
break
for k, v in temp:
self._smat[j, k] = v
def zip_row_op(self, i, k, f):
"""In-place operation on row ``i`` using two-arg functor whose args are
interpreted as ``(self[i, j], self[k, j])``.
Examples
========
>>> from sympy.matrices import SparseMatrix
>>> M = SparseMatrix.eye(3)*2
>>> M[0, 1] = -1
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
Matrix([
[2, -1, 0],
[4, 0, 0],
[0, 0, 2]])
See Also
========
row
row_op
col_op
"""
self.row_op(i, lambda v, j: f(v, self[k, j]))
is_zero = False
|
4088134ebd4d4d80b57d2238d4da3019f3d11d42d09cfd10bd81cbc7772b769e | import mpmath as mp
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.compatibility import (
Callable, NotIterable, as_int, is_sequence)
from sympy.core.decorators import deprecated
from sympy.core.expr import Expr
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.core.sympify import _sympify
from sympy.functions import exp, factorial, log
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.polys import cancel
from sympy.printing import sstr
from sympy.printing.defaults import Printable
from sympy.simplify import simplify as _simplify
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import flatten
from sympy.utilities.misc import filldedent
from .common import (
MatrixCommon, MatrixError, NonSquareMatrixError, NonInvertibleMatrixError,
ShapeError)
from .utilities import _iszero, _is_zero_after_expand_mul
from .determinant import (
_find_reasonable_pivot, _find_reasonable_pivot_naive,
_adjugate, _charpoly, _cofactor, _cofactor_matrix, _per,
_det, _det_bareiss, _det_berkowitz, _det_LU, _minor, _minor_submatrix)
from .reductions import _is_echelon, _echelon_form, _rank, _rref
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize
from .eigen import (
_eigenvals, _eigenvects,
_bidiagonalize, _bidiagonal_decomposition,
_is_diagonalizable, _diagonalize,
_is_positive_definite, _is_positive_semidefinite,
_is_negative_definite, _is_negative_semidefinite, _is_indefinite,
_jordan_form, _left_eigenvects, _singular_values)
from .decompositions import (
_rank_decomposition, _cholesky, _LDLdecomposition,
_LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF,
_QRdecomposition)
from .graph import _connected_components, _connected_components_decomposition
from .solvers import (
_diagonal_solve, _lower_triangular_solve, _upper_triangular_solve,
_cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve,
_pinv_solve, _solve, _solve_least_squares)
from .inverse import (
_pinv, _inv_mod, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR,
_inv, _inv_block)
class DeferredVector(Symbol, NotIterable):
"""A vector whose components are deferred (e.g. for use with lambdify)
Examples
========
>>> from sympy import DeferredVector, lambdify
>>> X = DeferredVector( 'X' )
>>> X
X
>>> expr = (X[0] + 2, X[2] + 3)
>>> func = lambdify( X, expr)
>>> func( [1, 2, 3] )
(3, 6)
"""
def __getitem__(self, i):
if i == -0:
i = 0
if i < 0:
raise IndexError('DeferredVector index out of range')
component_name = '%s[%d]' % (self.name, i)
return Symbol(component_name)
def __str__(self):
return sstr(self)
def __repr__(self):
return "DeferredVector('%s')" % self.name
class MatrixDeterminant(MatrixCommon):
"""Provides basic matrix determinant operations. Should not be instantiated
directly. See ``determinant.py`` for their implementations."""
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul):
return _det_bareiss(self, iszerofunc=iszerofunc)
def _eval_det_berkowitz(self):
return _det_berkowitz(self)
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None):
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc)
def _eval_determinant(self): # for expressions.determinant.Determinant
return _det(self)
def adjugate(self, method="berkowitz"):
return _adjugate(self, method=method)
def charpoly(self, x='lambda', simplify=_simplify):
return _charpoly(self, x=x, simplify=simplify)
def cofactor(self, i, j, method="berkowitz"):
return _cofactor(self, i, j, method=method)
def cofactor_matrix(self, method="berkowitz"):
return _cofactor_matrix(self, method=method)
def det(self, method="bareiss", iszerofunc=None):
return _det(self, method=method, iszerofunc=iszerofunc)
def per(self):
return _per(self)
def minor(self, i, j, method="berkowitz"):
return _minor(self, i, j, method=method)
def minor_submatrix(self, i, j):
return _minor_submatrix(self, i, j)
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__
_eval_det_lu.__doc__ = _det_LU.__doc__
_eval_determinant.__doc__ = _det.__doc__
adjugate.__doc__ = _adjugate.__doc__
charpoly.__doc__ = _charpoly.__doc__
cofactor.__doc__ = _cofactor.__doc__
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__
det.__doc__ = _det.__doc__
per.__doc__ = _per.__doc__
minor.__doc__ = _minor.__doc__
minor_submatrix.__doc__ = _minor_submatrix.__doc__
class MatrixReductions(MatrixDeterminant):
"""Provides basic matrix row/column operations. Should not be instantiated
directly. See ``reductions.py`` for some of their implementations."""
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False):
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify,
with_pivots=with_pivots)
@property
def is_echelon(self):
return _is_echelon(self)
def rank(self, iszerofunc=_iszero, simplify=False):
return _rank(self, iszerofunc=iszerofunc, simplify=simplify)
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True,
normalize_last=True):
return _rref(self, iszerofunc=iszerofunc, simplify=simplify,
pivots=pivots, normalize_last=normalize_last)
echelon_form.__doc__ = _echelon_form.__doc__
is_echelon.__doc__ = _is_echelon.__doc__
rank.__doc__ = _rank.__doc__
rref.__doc__ = _rref.__doc__
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"):
"""Validate the arguments for a row/column operation. ``error_str``
can be one of "row" or "col" depending on the arguments being parsed."""
if op not in ["n->kn", "n<->m", "n->n+km"]:
raise ValueError("Unknown {} operation '{}'. Valid col operations "
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op))
# define self_col according to error_str
self_cols = self.cols if error_str == 'col' else self.rows
# normalize and validate the arguments
if op == "n->kn":
col = col if col is not None else col1
if col is None or k is None:
raise ValueError("For a {0} operation 'n->kn' you must provide the "
"kwargs `{0}` and `k`".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
elif op == "n<->m":
# we need two cols to swap. It doesn't matter
# how they were specified, so gather them together and
# remove `None`
cols = {col, k, col1, col2}.difference([None])
if len(cols) > 2:
# maybe the user left `k` by mistake?
cols = {col, col1, col2}.difference([None])
if len(cols) != 2:
raise ValueError("For a {0} operation 'n<->m' you must provide the "
"kwargs `{0}1` and `{0}2`".format(error_str))
col1, col2 = cols
if not 0 <= col1 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col1))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
elif op == "n->n+km":
col = col1 if col is None else col
col2 = col1 if col2 is None else col2
if col is None or col2 is None or k is None:
raise ValueError("For a {0} operation 'n->n+km' you must provide the "
"kwargs `{0}`, `k`, and `{0}2`".format(error_str))
if col == col2:
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must "
"be different.".format(error_str))
if not 0 <= col < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col))
if not 0 <= col2 < self_cols:
raise ValueError("This matrix doesn't have a {} '{}'".format(error_str, col2))
else:
raise ValueError('invalid operation %s' % repr(op))
return op, col, k, col1, col2
def _eval_col_op_multiply_col_by_const(self, col, k):
def entry(i, j):
if j == col:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_swap(self, col1, col2):
def entry(i, j):
if j == col1:
return self[i, col2]
elif j == col2:
return self[i, col1]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2):
def entry(i, j):
if j == col:
return self[i, j] + k * self[i, col2]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_swap(self, row1, row2):
def entry(i, j):
if i == row1:
return self[row2, j]
elif i == row2:
return self[row1, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_multiply_row_by_const(self, row, k):
def entry(i, j):
if i == row:
return k * self[i, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2):
def entry(i, j):
if i == row:
return self[i, j] + k * self[row2, j]
return self[i, j]
return self._new(self.rows, self.cols, entry)
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None):
"""Performs the elementary column operation `op`.
`op` may be one of
* "n->kn" (column n goes to k*n)
* "n<->m" (swap column n and column m)
* "n->n+km" (column n goes to column n + k*column m)
Parameters
==========
op : string; the elementary row operation
col : the column to apply the column operation
k : the multiple to apply in the column operation
col1 : one column of a column swap
col2 : second column of a column swap or column "m" in the column operation
"n->n+km"
"""
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_col_op_multiply_col_by_const(col, k)
if op == "n<->m":
return self._eval_col_op_swap(col1, col2)
if op == "n->n+km":
return self._eval_col_op_add_multiple_to_other_col(col, k, col2)
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None):
"""Performs the elementary row operation `op`.
`op` may be one of
* "n->kn" (row n goes to k*n)
* "n<->m" (swap row n and row m)
* "n->n+km" (row n goes to row n + k*row m)
Parameters
==========
op : string; the elementary row operation
row : the row to apply the row operation
k : the multiple to apply in the row operation
row1 : one row of a row swap
row2 : second row of a row swap or row "m" in the row operation
"n->n+km"
"""
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row")
# now that we've validated, we're all good to dispatch
if op == "n->kn":
return self._eval_row_op_multiply_row_by_const(row, k)
if op == "n<->m":
return self._eval_row_op_swap(row1, row2)
if op == "n->n+km":
return self._eval_row_op_add_multiple_to_other_row(row, k, row2)
class MatrixSubspaces(MatrixReductions):
"""Provides methods relating to the fundamental subspaces of a matrix.
Should not be instantiated directly. See ``subspaces.py`` for their
implementations."""
def columnspace(self, simplify=False):
return _columnspace(self, simplify=simplify)
def nullspace(self, simplify=False, iszerofunc=_iszero):
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc)
def rowspace(self, simplify=False):
return _rowspace(self, simplify=simplify)
# This is a classmethod but is converted to such later in order to allow
# assignment of __doc__ since that does not work for already wrapped
# classmethods in Python 3.6.
def orthogonalize(cls, *vecs, **kwargs):
return _orthogonalize(cls, *vecs, **kwargs)
columnspace.__doc__ = _columnspace.__doc__
nullspace.__doc__ = _nullspace.__doc__
rowspace.__doc__ = _rowspace.__doc__
orthogonalize.__doc__ = _orthogonalize.__doc__
orthogonalize = classmethod(orthogonalize) # type:ignore
class MatrixEigen(MatrixSubspaces):
"""Provides basic matrix eigenvalue/vector operations.
Should not be instantiated directly. See ``eigen.py`` for their
implementations."""
def eigenvals(self, error_when_incomplete=True, **flags):
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags)
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags):
return _eigenvects(self, error_when_incomplete=error_when_incomplete,
iszerofunc=iszerofunc, **flags)
def is_diagonalizable(self, reals_only=False, **kwargs):
return _is_diagonalizable(self, reals_only=reals_only, **kwargs)
def diagonalize(self, reals_only=False, sort=False, normalize=False):
return _diagonalize(self, reals_only=reals_only, sort=sort,
normalize=normalize)
def bidiagonalize(self, upper=True):
return _bidiagonalize(self, upper=upper)
def bidiagonal_decomposition(self, upper=True):
return _bidiagonal_decomposition(self, upper=upper)
@property
def is_positive_definite(self):
return _is_positive_definite(self)
@property
def is_positive_semidefinite(self):
return _is_positive_semidefinite(self)
@property
def is_negative_definite(self):
return _is_negative_definite(self)
@property
def is_negative_semidefinite(self):
return _is_negative_semidefinite(self)
@property
def is_indefinite(self):
return _is_indefinite(self)
def jordan_form(self, calc_transform=True, **kwargs):
return _jordan_form(self, calc_transform=calc_transform, **kwargs)
def left_eigenvects(self, **flags):
return _left_eigenvects(self, **flags)
def singular_values(self):
return _singular_values(self)
eigenvals.__doc__ = _eigenvals.__doc__
eigenvects.__doc__ = _eigenvects.__doc__
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__
diagonalize.__doc__ = _diagonalize.__doc__
is_positive_definite.__doc__ = _is_positive_definite.__doc__
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__
is_negative_definite.__doc__ = _is_negative_definite.__doc__
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__
is_indefinite.__doc__ = _is_indefinite.__doc__
jordan_form.__doc__ = _jordan_form.__doc__
left_eigenvects.__doc__ = _left_eigenvects.__doc__
singular_values.__doc__ = _singular_values.__doc__
bidiagonalize.__doc__ = _bidiagonalize.__doc__
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__
class MatrixCalculus(MatrixCommon):
"""Provides calculus-related matrix operations."""
def diff(self, *args, **kwargs):
"""Calculate the derivative of each element in the matrix.
``args`` will be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.diff(x)
Matrix([
[1, 0],
[0, 0]])
See Also
========
integrate
limit
"""
# XXX this should be handled here rather than in Derivative
from sympy.tensor.array.array_derivatives import ArrayDerivative
kwargs.setdefault('evaluate', True)
deriv = ArrayDerivative(self, *args, evaluate=True)
if not isinstance(self, Basic):
return deriv.as_mutable()
else:
return deriv
def _eval_derivative(self, arg):
return self.applyfunc(lambda x: x.diff(arg))
def integrate(self, *args, **kwargs):
"""Integrate each element of the matrix. ``args`` will
be passed to the ``integrate`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.integrate((x, ))
Matrix([
[x**2/2, x*y],
[ x, 0]])
>>> M.integrate((x, 0, 2))
Matrix([
[2, 2*y],
[2, 0]])
See Also
========
limit
diff
"""
return self.applyfunc(lambda x: x.integrate(*args, **kwargs))
def jacobian(self, X):
"""Calculates the Jacobian matrix (derivative of a vector-valued function).
Parameters
==========
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n).
X : set of x_i's in order, it can be a list or a Matrix
Both ``self`` and X can be a row or a column matrix in any order
(i.e., jacobian() should always work).
Examples
========
>>> from sympy import sin, cos, Matrix
>>> from sympy.abc import rho, phi
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2])
>>> Y = Matrix([rho, phi])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)],
[ 2*rho, 0]])
>>> X = Matrix([rho*cos(phi), rho*sin(phi)])
>>> X.jacobian(Y)
Matrix([
[cos(phi), -rho*sin(phi)],
[sin(phi), rho*cos(phi)]])
See Also
========
hessian
wronskian
"""
if not isinstance(X, MatrixBase):
X = self._new(X)
# Both X and ``self`` can be a row or a column matrix, so we need to make
# sure all valid combinations work, but everything else fails:
if self.shape[0] == 1:
m = self.shape[1]
elif self.shape[1] == 1:
m = self.shape[0]
else:
raise TypeError("``self`` must be a row or a column matrix")
if X.shape[0] == 1:
n = X.shape[1]
elif X.shape[1] == 1:
n = X.shape[0]
else:
raise TypeError("X must be a row or a column matrix")
# m is the number of functions and n is the number of variables
# computing the Jacobian is now easy:
return self._new(m, n, lambda j, i: self[j].diff(X[i]))
def limit(self, *args):
"""Calculate the limit of each element in the matrix.
``args`` will be passed to the ``limit`` function.
Examples
========
>>> from sympy.matrices import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
Matrix([
[2, y],
[1, 0]])
See Also
========
integrate
diff
"""
return self.applyfunc(lambda x: x.limit(*args))
# https://github.com/sympy/sympy/pull/12854
class MatrixDeprecated(MatrixCommon):
"""A class to house deprecated matrix methods."""
def _legacy_array_dot(self, b):
"""Compatibility function for deprecated behavior of ``matrix.dot(vector)``
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if mat.cols == b.rows:
if b.cols != 1:
mat = mat.T
b = b.T
prod = flatten((mat * b).tolist())
return prod
if mat.cols == b.cols:
return mat.dot(b.T)
elif mat.rows == b.rows:
return mat.T.dot(b)
else:
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (
self.shape, b.shape))
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_simplify):
return self.charpoly(x=x)
def berkowitz_det(self):
"""Computes determinant using Berkowitz method.
See Also
========
det
berkowitz
"""
return self.det(method='berkowitz')
def berkowitz_eigenvals(self, **flags):
"""Computes eigenvalues of a Matrix using Berkowitz method.
See Also
========
berkowitz
"""
return self.eigenvals(**flags)
def berkowitz_minors(self):
"""Computes principal minors using Berkowitz method.
See Also
========
berkowitz
"""
sign, minors = self.one, []
for poly in self.berkowitz():
minors.append(sign * poly[-1])
sign = -sign
return tuple(minors)
def berkowitz(self):
from sympy.matrices import zeros
berk = ((1,),)
if not self:
return berk
if not self.is_square:
raise NonSquareMatrixError()
A, N = self, self.rows
transforms = [0] * (N - 1)
for n in range(N, 1, -1):
T, k = zeros(n + 1, n), n - 1
R, C = -A[k, :k], A[:k, k]
A, a = A[:k, :k], -A[k, k]
items = [C]
for i in range(0, n - 2):
items.append(A * items[i])
for i, B in enumerate(items):
items[i] = (R * B)[0, 0]
items = [self.one, a] + items
for i in range(n):
T[i:, i] = items[:n - i + 1]
transforms[k - 1] = T
polys = [self._new([self.one, -A[0, 0]])]
for i, T in enumerate(transforms):
polys.append(T * polys[i])
return berk + tuple(map(tuple, polys))
def cofactorMatrix(self, method="berkowitz"):
return self.cofactor_matrix(method=method)
def det_bareis(self):
return _det_bareiss(self)
def det_LU_decomposition(self):
"""Compute matrix determinant using LU decomposition
Note that this method fails if the LU decomposition itself
fails. In particular, if the matrix has no inverse this method
will fail.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
See Also
========
det
det_bareiss
berkowitz_det
"""
return self.det(method='lu')
def jordan_cell(self, eigenval, n):
return self.jordan_block(size=n, eigenvalue=eigenval)
def jordan_cells(self, calc_transformation=True):
P, J = self.jordan_form()
return P, J.get_diag_blocks()
def minorEntry(self, i, j, method="berkowitz"):
return self.minor(i, j, method=method)
def minorMatrix(self, i, j):
return self.minor_submatrix(i, j)
def permuteBkwd(self, perm):
"""Permute the rows of the matrix with the given permutation in reverse."""
return self.permute_rows(perm, direction='backward')
def permuteFwd(self, perm):
"""Permute the rows of the matrix with the given permutation."""
return self.permute_rows(perm, direction='forward')
class MatrixBase(MatrixDeprecated,
MatrixCalculus,
MatrixEigen,
MatrixCommon,
Printable):
"""Base class for matrix objects."""
# Added just for numpy compatibility
__array_priority__ = 11
is_Matrix = True
_class_priority = 3
_sympify = staticmethod(sympify)
zero = S.Zero
one = S.One
def __array__(self, dtype=object):
from .dense import matrix2numpy
return matrix2numpy(self, dtype=dtype)
def __len__(self):
"""Return the number of elements of ``self``.
Implemented mainly so bool(Matrix()) == False.
"""
return self.rows * self.cols
def _matrix_pow_by_jordan_blocks(self, num):
from sympy.matrices import diag, MutableMatrix
from sympy import binomial
def jordan_cell_power(jc, n):
N = jc.shape[0]
l = jc[0,0]
if l.is_zero:
if N == 1 and n.is_nonnegative:
jc[0,0] = l**n
elif not (n.is_integer and n.is_nonnegative):
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer")
else:
for i in range(N):
jc[0,i] = KroneckerDelta(i, n)
else:
for i in range(N):
bn = binomial(n, i)
if isinstance(bn, binomial):
bn = bn._eval_expand_func()
jc[0,i] = l**(n-i)*bn
for i in range(N):
for j in range(1, N-i):
jc[j,i+j] = jc [j-1,i+j-1]
P, J = self.jordan_form()
jordan_cells = J.get_diag_blocks()
# Make sure jordan_cells matrices are mutable:
jordan_cells = [MutableMatrix(j) for j in jordan_cells]
for j in jordan_cells:
jordan_cell_power(j, num)
return self._new(P.multiply(diag(*jordan_cells))
.multiply(P.inv()))
def __str__(self):
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
return "Matrix(%s)" % str(self.tolist())
def _format_str(self, printer=None):
if not printer:
from sympy.printing.str import StrPrinter
printer = StrPrinter()
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return 'Matrix(%s, %s, [])' % (self.rows, self.cols)
if self.rows == 1:
return "Matrix([%s])" % self.table(printer, rowsep=',\n')
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n')
@classmethod
def irregular(cls, ntop, *matrices, **kwargs):
"""Return a matrix filled by the given matrices which
are listed in order of appearance from left to right, top to
bottom as they first appear in the matrix. They must fill the
matrix completely.
Examples
========
>>> from sympy import ones, Matrix
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3,
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7)
Matrix([
[1, 2, 2, 2, 3, 3],
[1, 2, 2, 2, 3, 3],
[4, 2, 2, 2, 5, 5],
[6, 6, 7, 7, 5, 5]])
"""
from sympy.core.compatibility import as_int
ntop = as_int(ntop)
# make sure we are working with explicit matrices
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i
for i in matrices]
q = list(range(len(b)))
dat = [i.rows for i in b]
active = [q.pop(0) for _ in range(ntop)]
cols = sum([b[i].cols for i in active])
rows = []
while any(dat):
r = []
for a, j in enumerate(active):
r.extend(b[j][-dat[j], :])
dat[j] -= 1
if dat[j] == 0 and q:
active[a] = q.pop(0)
if len(r) != cols:
raise ValueError(filldedent('''
Matrices provided do not appear to fill
the space completely.'''))
rows.append(r)
return cls._new(rows)
@classmethod
def _handle_ndarray(cls, arg):
# NumPy array or matrix or some other object that implements
# __array__. So let's first use this method to get a
# numpy.array() and then make a python list out of it.
arr = arg.__array__()
if len(arr.shape) == 2:
rows, cols = arr.shape[0], arr.shape[1]
flat_list = [cls._sympify(i) for i in arr.ravel()]
return rows, cols, flat_list
elif len(arr.shape) == 1:
flat_list = [cls._sympify(i) for i in arr]
return arr.shape[0], 1, flat_list
else:
raise NotImplementedError(
"SymPy supports just 1D and 2D matrices")
@classmethod
def _handle_creation_inputs(cls, *args, **kwargs):
"""Return the number of rows, cols and flat matrix elements.
Examples
========
>>> from sympy import Matrix, I
Matrix can be constructed as follows:
* from a nested list of iterables
>>> Matrix( ((1, 2+I), (3, 4)) )
Matrix([
[1, 2 + I],
[3, 4]])
* from un-nested iterable (interpreted as a column)
>>> Matrix( [1, 2] )
Matrix([
[1],
[2]])
* from un-nested iterable with dimensions
>>> Matrix(1, 2, [1, 2] )
Matrix([[1, 2]])
* from no arguments (a 0 x 0 matrix)
>>> Matrix()
Matrix(0, 0, [])
* from a rule
>>> Matrix(2, 2, lambda i, j: i/(j + 1) )
Matrix([
[0, 0],
[1, 1/2]])
See Also
========
irregular - filling a matrix with irregular blocks
"""
from sympy.matrices.sparse import SparseMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.utilities.iterables import reshape
flat_list = None
if len(args) == 1:
# Matrix(SparseMatrix(...))
if isinstance(args[0], SparseMatrix):
return args[0].rows, args[0].cols, flatten(args[0].tolist())
# Matrix(Matrix(...))
elif isinstance(args[0], MatrixBase):
return args[0].rows, args[0].cols, args[0]._mat
# Matrix(MatrixSymbol('X', 2, 2))
elif isinstance(args[0], Basic) and args[0].is_Matrix:
return args[0].rows, args[0].cols, args[0].as_explicit()._mat
elif isinstance(args[0], mp.matrix):
M = args[0]
flat_list = [cls._sympify(x) for x in M]
return M.rows, M.cols, flat_list
# Matrix(numpy.ones((2, 2)))
elif hasattr(args[0], "__array__"):
return cls._handle_ndarray(args[0])
# Matrix([1, 2, 3]) or Matrix([[1, 2], [3, 4]])
elif is_sequence(args[0]) \
and not isinstance(args[0], DeferredVector):
dat = list(args[0])
ismat = lambda i: isinstance(i, MatrixBase) and (
evaluate or
isinstance(i, BlockMatrix) or
isinstance(i, MatrixSymbol))
raw = lambda i: is_sequence(i) and not ismat(i)
evaluate = kwargs.get('evaluate', True)
if evaluate:
def do(x):
# make Block and Symbol explicit
if isinstance(x, (list, tuple)):
return type(x)([do(i) for i in x])
if isinstance(x, BlockMatrix) or \
isinstance(x, MatrixSymbol) and \
all(_.is_Integer for _ in x.shape):
return x.as_explicit()
return x
dat = do(dat)
if dat == [] or dat == [[]]:
rows = cols = 0
flat_list = []
elif not any(raw(i) or ismat(i) for i in dat):
# a column as a list of values
flat_list = [cls._sympify(i) for i in dat]
rows = len(flat_list)
cols = 1 if rows else 0
elif evaluate and all(ismat(i) for i in dat):
# a column as a list of matrices
ncol = {i.cols for i in dat if any(i.shape)}
if ncol:
if len(ncol) != 1:
raise ValueError('mismatched dimensions')
flat_list = [_ for i in dat for r in i.tolist() for _ in r]
cols = ncol.pop()
rows = len(flat_list)//cols
else:
rows = cols = 0
flat_list = []
elif evaluate and any(ismat(i) for i in dat):
ncol = set()
flat_list = []
for i in dat:
if ismat(i):
flat_list.extend(
[k for j in i.tolist() for k in j])
if any(i.shape):
ncol.add(i.cols)
elif raw(i):
if i:
ncol.add(len(i))
flat_list.extend(i)
else:
ncol.add(1)
flat_list.append(i)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
cols = ncol.pop()
rows = len(flat_list)//cols
else:
# list of lists; each sublist is a logical row
# which might consist of many rows if the values in
# the row are matrices
flat_list = []
ncol = set()
rows = cols = 0
for row in dat:
if not is_sequence(row) and \
not getattr(row, 'is_Matrix', False):
raise ValueError('expecting list of lists')
if hasattr(row, '__array__'):
if 0 in row.shape:
continue
elif not row:
continue
if evaluate and all(ismat(i) for i in row):
r, c, flatT = cls._handle_creation_inputs(
[i.T for i in row])
T = reshape(flatT, [c])
flat = \
[T[i][j] for j in range(c) for i in range(r)]
r, c = c, r
else:
r = 1
if getattr(row, 'is_Matrix', False):
c = 1
flat = [row]
else:
c = len(row)
flat = [cls._sympify(i) for i in row]
ncol.add(c)
if len(ncol) > 1:
raise ValueError('mismatched dimensions')
flat_list.extend(flat)
rows += r
cols = ncol.pop() if ncol else 0
elif len(args) == 3:
rows = as_int(args[0])
cols = as_int(args[1])
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
# Matrix(2, 2, lambda i, j: i+j)
if len(args) == 3 and isinstance(args[2], Callable):
op = args[2]
flat_list = []
for i in range(rows):
flat_list.extend(
[cls._sympify(op(cls._sympify(i), cls._sympify(j)))
for j in range(cols)])
# Matrix(2, 2, [1, 2, 3, 4])
elif len(args) == 3 and is_sequence(args[2]):
flat_list = args[2]
if len(flat_list) != rows * cols:
raise ValueError(
'List length should be equal to rows*columns')
flat_list = [cls._sympify(i) for i in flat_list]
# Matrix()
elif len(args) == 0:
# Empty Matrix
rows = cols = 0
flat_list = []
if flat_list is None:
raise TypeError(filldedent('''
Data type not understood; expecting list of lists
or lists of values.'''))
return rows, cols, flat_list
def _setitem(self, key, value):
"""Helper to set value at location given by key.
Examples
========
>>> from sympy import Matrix, I, zeros, ones
>>> m = Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m[1, 0] = 9
>>> m
Matrix([
[1, 2 + I],
[9, 4]])
>>> m[1, 0] = [[0, 1]]
To replace row r you assign to position r*m where m
is the number of columns:
>>> M = zeros(4)
>>> m = M.cols
>>> M[3*m] = ones(1, m)*2; M
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[2, 2, 2, 2]])
And to replace column c you can assign to position c:
>>> M[2] = ones(m, 1)*4; M
Matrix([
[0, 0, 4, 0],
[0, 0, 4, 0],
[0, 0, 4, 0],
[2, 2, 4, 2]])
"""
from .dense import Matrix
is_slice = isinstance(key, slice)
i, j = key = self.key2ij(key)
is_mat = isinstance(value, MatrixBase)
if type(i) is slice or type(j) is slice:
if is_mat:
self.copyin_matrix(key, value)
return
if not isinstance(value, Expr) and is_sequence(value):
self.copyin_list(key, value)
return
raise ValueError('unexpected value: %s' % value)
else:
if (not is_mat and
not isinstance(value, Basic) and is_sequence(value)):
value = Matrix(value)
is_mat = True
if is_mat:
if is_slice:
key = (slice(*divmod(i, self.cols)),
slice(*divmod(j, self.cols)))
else:
key = (slice(i, i + value.rows),
slice(j, j + value.cols))
self.copyin_matrix(key, value)
else:
return i, j, self._sympify(value)
return
def add(self, b):
"""Return self + b """
return self + b
def condition_number(self):
"""Returns the condition number of a matrix.
This is the maximum singular value divided by the minimum singular value
Examples
========
>>> from sympy import Matrix, S
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]])
>>> A.condition_number()
100
See Also
========
singular_values
"""
if not self:
return self.zero
singularvalues = self.singular_values()
return Max(*singularvalues) / Min(*singularvalues)
def copy(self):
"""
Returns the copy of a matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.copy()
Matrix([
[1, 2],
[3, 4]])
"""
return self._new(self.rows, self.cols, self._mat)
def cross(self, b):
r"""
Return the cross product of ``self`` and ``b`` relaxing the condition
of compatible dimensions: if each has 3 elements, a matrix of the
same type and shape as ``self`` will be returned. If ``b`` has the same
shape as ``self`` then common identities for the cross product (like
`a \times b = - b \times a`) will hold.
Parameters
==========
b : 3x1 or 1x3 Matrix
See Also
========
dot
multiply
multiply_elementwise
"""
from sympy.matrices.expressions.matexpr import MatrixExpr
if not isinstance(b, MatrixBase) and not isinstance(b, MatrixExpr):
raise TypeError(
"{} must be a Matrix, not {}.".format(b, type(b)))
if not (self.rows * self.cols == b.rows * b.cols == 3):
raise ShapeError("Dimensions incorrect for cross product: %s x %s" %
((self.rows, self.cols), (b.rows, b.cols)))
else:
return self._new(self.rows, self.cols, (
(self[1] * b[2] - self[2] * b[1]),
(self[2] * b[0] - self[0] * b[2]),
(self[0] * b[1] - self[1] * b[0])))
@property
def D(self):
"""Return Dirac conjugate (if ``self.rows == 4``).
Examples
========
>>> from sympy import Matrix, I, eye
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m.D
Matrix([[0, 1 - I, -2, -3]])
>>> m = (eye(4) + I*eye(4))
>>> m[0, 3] = 2
>>> m.D
Matrix([
[1 - I, 0, 0, 0],
[ 0, 1 - I, 0, 0],
[ 0, 0, -1 + I, 0],
[ 2, 0, 0, -1 + I]])
If the matrix does not have 4 rows an AttributeError will be raised
because this property is only defined for matrices with 4 rows.
>>> Matrix(eye(2)).D
Traceback (most recent call last):
...
AttributeError: Matrix has no attribute D.
See Also
========
sympy.matrices.common.MatrixCommon.conjugate: By-element conjugation
sympy.matrices.common.MatrixCommon.H: Hermite conjugation
"""
from sympy.physics.matrices import mgamma
if self.rows != 4:
# In Python 3.2, properties can only return an AttributeError
# so we can't raise a ShapeError -- see commit which added the
# first line of this inline comment. Also, there is no need
# for a message since MatrixBase will raise the AttributeError
raise AttributeError
return self.H * mgamma(0)
def dot(self, b, hermitian=None, conjugate_convention=None):
"""Return the dot or inner product of two vectors of equal length.
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b``
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n.
A scalar is returned.
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``)
to compute the hermitian inner product.
Possible kwargs are ``hermitian`` and ``conjugate_convention``.
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``,
the conjugate of the first vector (``self``) is used. If ``"right"``
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> v = Matrix([1, 1, 1])
>>> M.row(0).dot(v)
6
>>> M.col(0).dot(v)
12
>>> v = [3, 2, 1]
>>> M.row(0).dot(v)
10
>>> from sympy import I
>>> q = Matrix([1*I, 1*I, 1*I])
>>> q.dot(q, hermitian=False)
-3
>>> q.dot(q, hermitian=True)
3
>>> q1 = Matrix([1, 1, 1*I])
>>> q.dot(q1, hermitian=True, conjugate_convention="maths")
1 - 2*I
>>> q.dot(q1, hermitian=True, conjugate_convention="physics")
1 + 2*I
See Also
========
cross
multiply
multiply_elementwise
"""
from .dense import Matrix
if not isinstance(b, MatrixBase):
if is_sequence(b):
if len(b) != self.cols and len(b) != self.rows:
raise ShapeError(
"Dimensions incorrect for dot product: %s, %s" % (
self.shape, len(b)))
return self.dot(Matrix(b))
else:
raise TypeError(
"`b` must be an ordered iterable or Matrix, not %s." %
type(b))
mat = self
if (1 not in mat.shape) or (1 not in b.shape) :
SymPyDeprecationWarning(
feature="Dot product of non row/column vectors",
issue=13815,
deprecated_since_version="1.2",
useinstead="* to take matrix products").warn()
return mat._legacy_array_dot(b)
if len(mat) != len(b):
raise ShapeError("Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape))
n = len(mat)
if mat.shape != (1, n):
mat = mat.reshape(1, n)
if b.shape != (n, 1):
b = b.reshape(n, 1)
# Now ``mat`` is a row vector and ``b`` is a column vector.
# If it so happens that only conjugate_convention is passed
# then automatically set hermitian to True. If only hermitian
# is true but no conjugate_convention is not passed then
# automatically set it to ``"maths"``
if conjugate_convention is not None and hermitian is None:
hermitian = True
if hermitian and conjugate_convention is None:
conjugate_convention = "maths"
if hermitian == True:
if conjugate_convention in ("maths", "left", "math"):
mat = mat.conjugate()
elif conjugate_convention in ("physics", "right"):
b = b.conjugate()
else:
raise ValueError("Unknown conjugate_convention was entered."
" conjugate_convention must be one of the"
" following: math, maths, left, physics or right.")
return (mat * b)[0]
def dual(self):
"""Returns the dual of a matrix, which is:
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l`
Since the levicivita method is anti_symmetric for any pairwise
exchange of indices, the dual of a symmetric matrix is the zero
matrix. Strictly speaking the dual defined here assumes that the
'matrix' `M` is a contravariant anti_symmetric second rank tensor,
so that the dual is a covariant second rank tensor.
"""
from sympy import LeviCivita
from sympy.matrices import zeros
M, n = self[:, :], self.rows
work = zeros(n)
if self.is_symmetric():
return work
for i in range(1, n):
for j in range(1, n):
acum = 0
for k in range(1, n):
acum += LeviCivita(i, j, 0, k) * M[0, k]
work[i, j] = acum
work[j, i] = -acum
for l in range(1, n):
acum = 0
for a in range(1, n):
for b in range(1, n):
acum += LeviCivita(0, l, a, b) * M[a, b]
acum /= 2
work[0, l] = -acum
work[l, 0] = acum
return work
def _eval_matrix_exp_jblock(self):
"""A helper function to compute an exponential of a Jordan block
matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_exp_jblock()
Matrix([[exp(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_exp_jblock()
Matrix([
[exp(lamda), exp(lamda), exp(lamda)/2],
[ 0, exp(lamda), exp(lamda)],
[ 0, 0, exp(lamda)]])
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition
"""
size = self.rows
l = self[0, 0]
exp_l = exp(l)
bands = {i: exp_l / factorial(i) for i in range(size)}
from .sparsetools import banded
return self.__class__(banded(size, bands))
def analytic_func(self, f, x):
"""
Computes f(A) where A is a Square Matrix
and f is an analytic function.
Examples
========
>>> from sympy import Symbol, Matrix, S, log
>>> x = Symbol('x')
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> f = log(x)
>>> m.analytic_func(f, x)
Matrix([
[ 0, log(2)],
[log(2), 0]])
Parameters
==========
f : Expr
Analytic Function
x : Symbol
parameter of f
"""
from sympy import diff
f, x = _sympify(f), _sympify(x)
if not self.is_square:
raise NonSquareMatrixError
if not x.is_symbol:
raise ValueError("{} must be a symbol.".format(x))
if x not in f.free_symbols:
raise ValueError(
"{} must be a parameter of {}.".format(x, f))
if x in self.free_symbols:
raise ValueError(
"{} must not be a parameter of {}.".format(x, self))
eigen = self.eigenvals()
max_mul = max(eigen.values())
derivative = {}
dd = f
for i in range(max_mul - 1):
dd = diff(dd, x)
derivative[i + 1] = dd
n = self.shape[0]
r = self.zeros(n)
f_val = self.zeros(n, 1)
row = 0
for i in eigen:
mul = eigen[i]
f_val[row] = f.subs(x, i)
if f_val[row].is_number and not f_val[row].is_complex:
raise ValueError(
"Cannot evaluate the function because the "
"function {} is not analytic at the given "
"eigenvalue {}".format(f, f_val[row]))
val = 1
for a in range(n):
r[row, a] = val
val *= i
if mul > 1:
coe = [1 for ii in range(n)]
deri = 1
while mul > 1:
row = row + 1
mul -= 1
d_i = derivative[deri].subs(x, i)
if d_i.is_number and not d_i.is_complex:
raise ValueError(
"Cannot evaluate the function because the "
"derivative {} is not analytic at the given "
"eigenvalue {}".format(derivative[deri], d_i))
f_val[row] = d_i
for a in range(n):
if a - deri + 1 <= 0:
r[row, a] = 0
coe[a] = 0
continue
coe[a] = coe[a]*(a - deri + 1)
r[row, a] = coe[a]*pow(i, a - deri)
deri += 1
row += 1
c = r.solve(f_val)
ans = self.zeros(n)
pre = self.eye(n)
for i in range(n):
ans = ans + c[i]*pre
pre *= self
return ans
def exp(self):
"""Return the exponential of a square matrix
Examples
========
>>> from sympy import Symbol, Matrix
>>> t = Symbol('t')
>>> m = Matrix([[0, 1], [-1, 0]]) * t
>>> m.exp()
Matrix([
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2],
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Exponentiation is valid only for square matrices")
try:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed")
blocks = [cell._eval_matrix_exp_jblock() for cell in cells]
from sympy.matrices import diag
from sympy import re
eJ = diag(*blocks)
# n = self.rows
ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None)
if all(value.is_real for value in self.values()):
return type(self)(re(ret))
else:
return type(self)(ret)
def _eval_matrix_log_jblock(self):
"""Helper function to compute logarithm of a jordan block.
Examples
========
>>> from sympy import Symbol, Matrix
>>> l = Symbol('lamda')
A trivial example of 1*1 Jordan block:
>>> m = Matrix.jordan_block(1, l)
>>> m._eval_matrix_log_jblock()
Matrix([[log(lamda)]])
An example of 3*3 Jordan block:
>>> m = Matrix.jordan_block(3, l)
>>> m._eval_matrix_log_jblock()
Matrix([
[log(lamda), 1/lamda, -1/(2*lamda**2)],
[ 0, log(lamda), 1/lamda],
[ 0, 0, log(lamda)]])
"""
size = self.rows
l = self[0, 0]
if l.is_zero:
raise MatrixError(
'Could not take logarithm or reciprocal for the given '
'eigenvalue {}'.format(l))
bands = {0: log(l)}
for i in range(1, size):
bands[i] = -((-l) ** -i) / i
from .sparsetools import banded
return self.__class__(banded(size, bands))
def log(self, simplify=cancel):
"""Return the logarithm of a square matrix
Parameters
==========
simplify : function, bool
The function to simplify the result with.
Default is ``cancel``, which is effective to reduce the
expression growing for taking reciprocals and inverses for
symbolic matrices.
Examples
========
>>> from sympy import S, Matrix
Examples for positive-definite matrices:
>>> m = Matrix([[1, 1], [0, 1]])
>>> m.log()
Matrix([
[0, 1],
[0, 0]])
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]])
>>> m.log()
Matrix([
[ 0, log(2)],
[log(2), 0]])
Examples for non positive-definite matrices:
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]])
>>> m.log()
Matrix([
[ I*pi/2, log(2) - I*pi/2],
[log(2) - I*pi/2, I*pi/2]])
>>> m = Matrix(
... [[0, 0, 0, 1],
... [0, 0, 1, 0],
... [0, 1, 0, 0],
... [1, 0, 0, 0]])
>>> m.log()
Matrix([
[ I*pi/2, 0, 0, -I*pi/2],
[ 0, I*pi/2, -I*pi/2, 0],
[ 0, -I*pi/2, I*pi/2, 0],
[-I*pi/2, 0, 0, I*pi/2]])
"""
if not self.is_square:
raise NonSquareMatrixError(
"Logarithm is valid only for square matrices")
try:
if simplify:
P, J = simplify(self).jordan_form()
else:
P, J = self.jordan_form()
cells = J.get_diag_blocks()
except MatrixError:
raise NotImplementedError(
"Logarithm is implemented only for matrices for which "
"the Jordan normal form can be computed")
blocks = [
cell._eval_matrix_log_jblock()
for cell in cells]
from sympy.matrices import diag
eJ = diag(*blocks)
if simplify:
ret = simplify(P * eJ * simplify(P.inv()))
ret = self.__class__(ret)
else:
ret = P * eJ * P.inv()
return ret
def is_nilpotent(self):
"""Checks if a matrix is nilpotent.
A matrix B is nilpotent if for some integer k, B**k is
a zero matrix.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
True
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]])
>>> a.is_nilpotent()
False
"""
if not self:
return True
if not self.is_square:
raise NonSquareMatrixError(
"Nilpotency is valid only for square matrices")
x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s)
p = self.charpoly(x)
if p.args[0] == x ** self.rows:
return True
return False
def key2bounds(self, keys):
"""Converts a key with potentially mixed types of keys (integer and slice)
into a tuple of ranges and raises an error if any index is out of ``self``'s
range.
See Also
========
key2ij
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
islice, jslice = [isinstance(k, slice) for k in keys]
if islice:
if not self.rows:
rlo = rhi = 0
else:
rlo, rhi = keys[0].indices(self.rows)[:2]
else:
rlo = a2idx_(keys[0], self.rows)
rhi = rlo + 1
if jslice:
if not self.cols:
clo = chi = 0
else:
clo, chi = keys[1].indices(self.cols)[:2]
else:
clo = a2idx_(keys[1], self.cols)
chi = clo + 1
return rlo, rhi, clo, chi
def key2ij(self, key):
"""Converts key into canonical form, converting integers or indexable
items into valid integers for ``self``'s range or returning slices
unchanged.
See Also
========
key2bounds
"""
from sympy.matrices.common import a2idx as a2idx_ # Remove this line after deprecation of a2idx from matrices.py
if is_sequence(key):
if not len(key) == 2:
raise TypeError('key must be a sequence of length 2')
return [a2idx_(i, n) if not isinstance(i, slice) else i
for i, n in zip(key, self.shape)]
elif isinstance(key, slice):
return key.indices(len(self))[:2]
else:
return divmod(a2idx_(key, len(self)), self.cols)
def normalized(self, iszerofunc=_iszero):
"""Return the normalized version of ``self``.
Parameters
==========
iszerofunc : Function, optional
A function to determine whether ``self`` is a zero vector.
The default ``_iszero`` tests to see if each element is
exactly zero.
Returns
=======
Matrix
Normalized vector form of ``self``.
It has the same length as a unit vector. However, a zero vector
will be returned for a vector with norm 0.
Raises
======
ShapeError
If the matrix is not in a vector form.
See Also
========
norm
"""
if self.rows != 1 and self.cols != 1:
raise ShapeError("A Matrix must be a vector to normalize.")
norm = self.norm()
if iszerofunc(norm):
out = self.zeros(self.rows, self.cols)
else:
out = self.applyfunc(lambda i: i / norm)
return out
def norm(self, ord=None):
"""Return the Norm of a Matrix or Vector.
In the simplest case this is the geometric size of the vector
Other norms can be specified by the ord parameter
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm - does not exist
inf maximum row sum max(abs(x))
-inf -- min(abs(x))
1 maximum column sum as below
-1 -- as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other - does not exist sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
Examples
========
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo
>>> x = Symbol('x', real=True)
>>> v = Matrix([cos(x), sin(x)])
>>> trigsimp( v.norm() )
1
>>> v.norm(10)
(sin(x)**10 + cos(x)**10)**(1/10)
>>> A = Matrix([[1, 1], [1, 1]])
>>> A.norm(1) # maximum sum of absolute values of A is 2
2
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm)
2
>>> A.norm(-2) # Inverse spectral norm (smallest singular value)
0
>>> A.norm() # Frobenius Norm
2
>>> A.norm(oo) # Infinity Norm
2
>>> Matrix([1, -2]).norm(oo)
2
>>> Matrix([-1, 2]).norm(-oo)
1
See Also
========
normalized
"""
# Row or Column Vector Norms
vals = list(self.values()) or [0]
if self.rows == 1 or self.cols == 1:
if ord == 2 or ord is None: # Common case sqrt(<x, x>)
return sqrt(Add(*(abs(i) ** 2 for i in vals)))
elif ord == 1: # sum(abs(x))
return Add(*(abs(i) for i in vals))
elif ord is S.Infinity: # max(abs(x))
return Max(*[abs(i) for i in vals])
elif ord is S.NegativeInfinity: # min(abs(x))
return Min(*[abs(i) for i in vals])
# Otherwise generalize the 2-norm, Sum(x_i**ord)**(1/ord)
# Note that while useful this is not mathematically a norm
try:
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord)
except (NotImplementedError, TypeError):
raise ValueError("Expected order to be Number, Symbol, oo")
# Matrix Norms
else:
if ord == 1: # Maximum column sum
m = self.applyfunc(abs)
return Max(*[sum(m.col(i)) for i in range(m.cols)])
elif ord == 2: # Spectral Norm
# Maximum singular value
return Max(*self.singular_values())
elif ord == -2:
# Minimum singular value
return Min(*self.singular_values())
elif ord is S.Infinity: # Infinity Norm - Maximum row sum
m = self.applyfunc(abs)
return Max(*[sum(m.row(i)) for i in range(m.rows)])
elif (ord is None or isinstance(ord,
str) and ord.lower() in
['f', 'fro', 'frobenius', 'vector']):
# Reshape as vector and send back to norm function
return self.vec().norm(ord=2)
else:
raise NotImplementedError("Matrix Norms under development")
def print_nonzero(self, symb="X"):
"""Shows location of non-zero entries for fast shape lookup.
Examples
========
>>> from sympy.matrices import Matrix, eye
>>> m = Matrix(2, 3, lambda i, j: i*3+j)
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5]])
>>> m.print_nonzero()
[ XX]
[XXX]
>>> m = eye(4)
>>> m.print_nonzero("x")
[x ]
[ x ]
[ x ]
[ x]
"""
s = []
for i in range(self.rows):
line = []
for j in range(self.cols):
if self[i, j] == 0:
line.append(" ")
else:
line.append(str(symb))
s.append("[%s]" % ''.join(line))
print('\n'.join(s))
def project(self, v):
"""Return the projection of ``self`` onto the line containing ``v``.
Examples
========
>>> from sympy import Matrix, S, sqrt
>>> V = Matrix([sqrt(3)/2, S.Half])
>>> x = Matrix([[1, 0]])
>>> V.project(x)
Matrix([[sqrt(3)/2, 0]])
>>> V.project(-x)
Matrix([[sqrt(3)/2, 0]])
"""
return v * (self.dot(v) / v.dot(v))
def table(self, printer, rowstart='[', rowend=']', rowsep='\n',
colsep=', ', align='right'):
r"""
String form of Matrix as a table.
``printer`` is the printer to use for on the elements (generally
something like StrPrinter())
``rowstart`` is the string used to start each row (by default '[').
``rowend`` is the string used to end each row (by default ']').
``rowsep`` is the string used to separate rows (by default a newline).
``colsep`` is the string used to separate columns (by default ', ').
``align`` defines how the elements are aligned. Must be one of 'left',
'right', or 'center'. You can also use '<', '>', and '^' to mean the
same thing, respectively.
This is used by the string printer for Matrix.
Examples
========
>>> from sympy import Matrix
>>> from sympy.printing.str import StrPrinter
>>> M = Matrix([[1, 2], [-33, 4]])
>>> printer = StrPrinter()
>>> M.table(printer)
'[ 1, 2]\n[-33, 4]'
>>> print(M.table(printer))
[ 1, 2]
[-33, 4]
>>> print(M.table(printer, rowsep=',\n'))
[ 1, 2],
[-33, 4]
>>> print('[%s]' % M.table(printer, rowsep=',\n'))
[[ 1, 2],
[-33, 4]]
>>> print(M.table(printer, colsep=' '))
[ 1 2]
[-33 4]
>>> print(M.table(printer, align='center'))
[ 1 , 2]
[-33, 4]
>>> print(M.table(printer, rowstart='{', rowend='}'))
{ 1, 2}
{-33, 4}
"""
# Handle zero dimensions:
if self.rows == 0 or self.cols == 0:
return '[]'
# Build table of string representations of the elements
res = []
# Track per-column max lengths for pretty alignment
maxlen = [0] * self.cols
for i in range(self.rows):
res.append([])
for j in range(self.cols):
s = printer._print(self[i, j])
res[-1].append(s)
maxlen[j] = max(len(s), maxlen[j])
# Patch strings together
align = {
'left': 'ljust',
'right': 'rjust',
'center': 'center',
'<': 'ljust',
'>': 'rjust',
'^': 'center',
}[align]
for i, row in enumerate(res):
for j, elem in enumerate(row):
row[j] = getattr(elem, align)(maxlen[j])
res[i] = rowstart + colsep.join(row) + rowend
return rowsep.join(res)
def rank_decomposition(self, iszerofunc=_iszero, simplify=False):
return _rank_decomposition(self, iszerofunc=iszerofunc,
simplify=simplify)
def cholesky(self, hermitian=True):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def LDLdecomposition(self, hermitian=True):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc,
rankcheck=rankcheck)
def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
return _LUdecomposition_Simple(self, iszerofunc=iszerofunc,
simpfunc=simpfunc, rankcheck=rankcheck)
def LUdecompositionFF(self):
return _LUdecompositionFF(self)
def QRdecomposition(self):
return _QRdecomposition(self)
def diagonal_solve(self, rhs):
return _diagonal_solve(self, rhs)
def lower_triangular_solve(self, rhs):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def upper_triangular_solve(self, rhs):
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix')
def cholesky_solve(self, rhs):
return _cholesky_solve(self, rhs)
def LDLsolve(self, rhs):
return _LDLsolve(self, rhs)
def LUsolve(self, rhs, iszerofunc=_iszero):
return _LUsolve(self, rhs, iszerofunc=iszerofunc)
def QRsolve(self, b):
return _QRsolve(self, b)
def gauss_jordan_solve(self, B, freevar=False):
return _gauss_jordan_solve(self, B, freevar=freevar)
def pinv_solve(self, B, arbitrary_matrix=None):
return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix)
def solve(self, rhs, method='GJ'):
return _solve(self, rhs, method=method)
def solve_least_squares(self, rhs, method='CH'):
return _solve_least_squares(self, rhs, method=method)
def pinv(self, method='RD'):
return _pinv(self, method=method)
def inv_mod(self, m):
return _inv_mod(self, m)
def inverse_ADJ(self, iszerofunc=_iszero):
return _inv_ADJ(self, iszerofunc=iszerofunc)
def inverse_BLOCK(self, iszerofunc=_iszero):
return _inv_block(self, iszerofunc=iszerofunc)
def inverse_GE(self, iszerofunc=_iszero):
return _inv_GE(self, iszerofunc=iszerofunc)
def inverse_LU(self, iszerofunc=_iszero):
return _inv_LU(self, iszerofunc=iszerofunc)
def inverse_CH(self, iszerofunc=_iszero):
return _inv_CH(self, iszerofunc=iszerofunc)
def inverse_LDL(self, iszerofunc=_iszero):
return _inv_LDL(self, iszerofunc=iszerofunc)
def inverse_QR(self, iszerofunc=_iszero):
return _inv_QR(self, iszerofunc=iszerofunc)
def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False):
return _inv(self, method=method, iszerofunc=iszerofunc,
try_block_diag=try_block_diag)
def connected_components(self):
return _connected_components(self)
def connected_components_decomposition(self):
return _connected_components_decomposition(self)
rank_decomposition.__doc__ = _rank_decomposition.__doc__
cholesky.__doc__ = _cholesky.__doc__
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__
LUdecomposition.__doc__ = _LUdecomposition.__doc__
LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__
LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__
QRdecomposition.__doc__ = _QRdecomposition.__doc__
diagonal_solve.__doc__ = _diagonal_solve.__doc__
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__
cholesky_solve.__doc__ = _cholesky_solve.__doc__
LDLsolve.__doc__ = _LDLsolve.__doc__
LUsolve.__doc__ = _LUsolve.__doc__
QRsolve.__doc__ = _QRsolve.__doc__
gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__
pinv_solve.__doc__ = _pinv_solve.__doc__
solve.__doc__ = _solve.__doc__
solve_least_squares.__doc__ = _solve_least_squares.__doc__
pinv.__doc__ = _pinv.__doc__
inv_mod.__doc__ = _inv_mod.__doc__
inverse_ADJ.__doc__ = _inv_ADJ.__doc__
inverse_GE.__doc__ = _inv_GE.__doc__
inverse_LU.__doc__ = _inv_LU.__doc__
inverse_CH.__doc__ = _inv_CH.__doc__
inverse_LDL.__doc__ = _inv_LDL.__doc__
inverse_QR.__doc__ = _inv_QR.__doc__
inverse_BLOCK.__doc__ = _inv_block.__doc__
inv.__doc__ = _inv.__doc__
connected_components.__doc__ = _connected_components.__doc__
connected_components_decomposition.__doc__ = \
_connected_components_decomposition.__doc__
@deprecated(
issue=15109,
useinstead="from sympy.matrices.common import classof",
deprecated_since_version="1.3")
def classof(A, B):
from sympy.matrices.common import classof as classof_
return classof_(A, B)
@deprecated(
issue=15109,
deprecated_since_version="1.3",
useinstead="from sympy.matrices.common import a2idx")
def a2idx(j, n=None):
from sympy.matrices.common import a2idx as a2idx_
return a2idx_(j, n)
|
baad9bf7fd06104b405ce00dfeacbfd755ed7fa9fb9db734e5b7239327e51a8e | from sympy.core import S
from sympy.core.relational import Eq, Ne
from sympy.logic.boolalg import BooleanFunction
from sympy.utilities.misc import func_name
class Contains(BooleanFunction):
"""
Asserts that x is an element of the set S
Examples
========
>>> from sympy import Symbol, Integer, S
>>> from sympy.sets.contains import Contains
>>> Contains(Integer(2), S.Integers)
True
>>> Contains(Integer(-2), S.Naturals)
False
>>> i = Symbol('i', integer=True)
>>> Contains(i, S.Naturals)
Contains(i, Naturals)
References
==========
.. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
"""
@classmethod
def eval(cls, x, s):
from sympy.sets.sets import Set
if not isinstance(s, Set):
raise TypeError('expecting Set, not %s' % func_name(s))
ret = s.contains(x)
if not isinstance(ret, Contains) and (
ret in (S.true, S.false) or isinstance(ret, Set)):
return ret
@property
def binary_symbols(self):
return set().union(*[i.binary_symbols
for i in self.args[1].args
if i.is_Boolean or i.is_Symbol or
isinstance(i, (Eq, Ne))])
def as_set(self):
raise NotImplementedError()
|
722921ddef28a058ce2c78601cf647de5ddfb1149f56c0fff689116c5c536590 | from sympy.core import Basic, Integer
import operator
class OmegaPower(Basic):
"""
Represents ordinal exponential and multiplication terms one of the
building blocks of the Ordinal class.
In OmegaPower(a, b) a represents exponent and b represents multiplicity.
"""
def __new__(cls, a, b):
if isinstance(b, int):
b = Integer(b)
if not isinstance(b, Integer) or b <= 0:
raise TypeError("multiplicity must be a positive integer")
if not isinstance(a, Ordinal):
a = Ordinal.convert(a)
return Basic.__new__(cls, a, b)
@property
def exp(self):
return self.args[0]
@property
def mult(self):
return self.args[1]
def _compare_term(self, other, op):
if self.exp == other.exp:
return op(self.mult, other.mult)
else:
return op(self.exp, other.exp)
def __eq__(self, other):
if not isinstance(other, OmegaPower):
try:
other = OmegaPower(0, other)
except TypeError:
return NotImplemented
return self.args == other.args
def __hash__(self):
return Basic.__hash__(self)
def __lt__(self, other):
if not isinstance(other, OmegaPower):
try:
other = OmegaPower(0, other)
except TypeError:
return NotImplemented
return self._compare_term(other, operator.lt)
class Ordinal(Basic):
"""
Represents ordinals in Cantor normal form.
Internally, this class is just a list of instances of OmegaPower
Examples
========
>>> from sympy.sets import Ordinal, OmegaPower
>>> from sympy.sets.ordinals import omega
>>> w = omega
>>> w.is_limit_ordinal
True
>>> Ordinal(OmegaPower(w + 1 ,1), OmegaPower(3, 2))
w**(w + 1) + w**3*2
>>> 3 + w
w
>>> (w + 1) * w
w**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Ordinal_arithmetic
"""
def __new__(cls, *terms):
obj = super().__new__(cls, *terms)
powers = [i.exp for i in obj.args]
if not all(powers[i] >= powers[i+1] for i in range(len(powers) - 1)):
raise ValueError("powers must be in decreasing order")
return obj
@property
def terms(self):
return self.args
@property
def leading_term(self):
if self == ord0:
raise ValueError("ordinal zero has no leading term")
return self.terms[0]
@property
def trailing_term(self):
if self == ord0:
raise ValueError("ordinal zero has no trailing term")
return self.terms[-1]
@property
def is_successor_ordinal(self):
try:
return self.trailing_term.exp == ord0
except ValueError:
return False
@property
def is_limit_ordinal(self):
try:
return not self.trailing_term.exp == ord0
except ValueError:
return False
@property
def degree(self):
return self.leading_term.exp
@classmethod
def convert(cls, integer_value):
if integer_value == 0:
return ord0
return Ordinal(OmegaPower(0, integer_value))
def __eq__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
return self.terms == other.terms
def __hash__(self):
return hash(self.args)
def __lt__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
for term_self, term_other in zip(self.terms, other.terms):
if term_self != term_other:
return term_self < term_other
return len(self.terms) < len(other.terms)
def __le__(self, other):
return (self == other or self < other)
def __gt__(self, other):
return not self <= other
def __ge__(self, other):
return not self < other
def __str__(self):
net_str = ""
plus_count = 0
if self == ord0:
return 'ord0'
for i in self.terms:
if plus_count:
net_str += " + "
if i.exp == ord0:
net_str += str(i.mult)
elif i.exp == 1:
net_str += 'w'
elif len(i.exp.terms) > 1 or i.exp.is_limit_ordinal:
net_str += 'w**(%s)'%i.exp
else:
net_str += 'w**%s'%i.exp
if not i.mult == 1 and not i.exp == ord0:
net_str += '*%s'%i.mult
plus_count += 1
return(net_str)
__repr__ = __str__
def __add__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
if other == ord0:
return self
a_terms = list(self.terms)
b_terms = list(other.terms)
r = len(a_terms) - 1
b_exp = other.degree
while r >= 0 and a_terms[r].exp < b_exp:
r -= 1
if r < 0:
terms = b_terms
elif a_terms[r].exp == b_exp:
sum_term = OmegaPower(b_exp, a_terms[r].mult + other.leading_term.mult)
terms = a_terms[:r] + [sum_term] + b_terms[1:]
else:
terms = a_terms[:r+1] + b_terms
return Ordinal(*terms)
def __radd__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
return other + self
def __mul__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
if ord0 in (self, other):
return ord0
a_exp = self.degree
a_mult = self.leading_term.mult
sum = []
if other.is_limit_ordinal:
for arg in other.terms:
sum.append(OmegaPower(a_exp + arg.exp, arg.mult))
else:
for arg in other.terms[:-1]:
sum.append(OmegaPower(a_exp + arg.exp, arg.mult))
b_mult = other.trailing_term.mult
sum.append(OmegaPower(a_exp, a_mult*b_mult))
sum += list(self.terms[1:])
return Ordinal(*sum)
def __rmul__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
return other * self
def __pow__(self, other):
if not self == omega:
return NotImplemented
return Ordinal(OmegaPower(other, 1))
class OrdinalZero(Ordinal):
"""The ordinal zero.
OrdinalZero can be imported as ``ord0``.
"""
pass
class OrdinalOmega(Ordinal):
"""The ordinal omega which forms the base of all ordinals in cantor normal form.
OrdinalOmega can be imported as ``omega``.
Examples
========
>>> from sympy.sets.ordinals import omega
>>> omega + omega
w*2
"""
def __new__(cls):
return Ordinal.__new__(cls)
@property
def terms(self):
return (OmegaPower(1, 1),)
ord0 = OrdinalZero()
omega = OrdinalOmega()
|
d81651ea31a5160f770e111ad5cf0a5eb544abd72d68c18ca80c77355d63cb33 | from sympy.core import Expr
from sympy.core.decorators import call_highest_priority, _sympifyit
from sympy.sets import ImageSet
from sympy.sets.sets import set_add, set_sub, set_mul, set_div, set_pow, set_function
class SetExpr(Expr):
"""An expression that can take on values of a set
>>> from sympy import Interval, FiniteSet
>>> from sympy.sets.setexpr import SetExpr
>>> a = SetExpr(Interval(0, 5))
>>> b = SetExpr(FiniteSet(1, 10))
>>> (a + b).set
Union(Interval(1, 6), Interval(10, 15))
>>> (2*a + b).set
Interval(1, 20)
"""
_op_priority = 11.0
def __new__(cls, setarg):
return Expr.__new__(cls, setarg)
set = property(lambda self: self.args[0])
def _latex(self, printer):
return r"SetExpr\left({}\right)".format(printer._print(self.set))
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return _setexpr_apply_operation(set_add, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return _setexpr_apply_operation(set_add, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return _setexpr_apply_operation(set_mul, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return _setexpr_apply_operation(set_mul, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return _setexpr_apply_operation(set_sub, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return _setexpr_apply_operation(set_sub, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return _setexpr_apply_operation(set_pow, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
return _setexpr_apply_operation(set_pow, other, self)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return _setexpr_apply_operation(set_div, self, other)
@_sympifyit('other', NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
return _setexpr_apply_operation(set_div, other, self)
def _eval_func(self, func):
# TODO: this could be implemented straight into `imageset`:
res = set_function(func, self.set)
if res is None:
return SetExpr(ImageSet(func, self.set))
return SetExpr(res)
def _setexpr_apply_operation(op, x, y):
if isinstance(x, SetExpr):
x = x.set
if isinstance(y, SetExpr):
y = y.set
out = op(x, y)
return SetExpr(out)
|
569b6bc212c937d7deee517153e7b28dd640d60d2d12ca36a9b6a2db85b3be33 | from sympy.core.decorators import _sympifyit
from sympy.core.parameters import global_parameters
from sympy.core.logic import fuzzy_bool
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from .sets import Set
class PowerSet(Set):
r"""A symbolic object representing a power set.
Parameters
==========
arg : Set
The set to take power of.
evaluate : bool
The flag to control evaluation.
If the evaluation is disabled for finite sets, it can take
advantage of using subset test as a membership test.
Notes
=====
Power set `\mathcal{P}(S)` is defined as a set containing all the
subsets of `S`.
If the set `S` is a finite set, its power set would have
`2^{\left| S \right|}` elements, where `\left| S \right|` denotes
the cardinality of `S`.
Examples
========
>>> from sympy.sets.powerset import PowerSet
>>> from sympy import S, FiniteSet
A power set of a finite set:
>>> PowerSet(FiniteSet(1, 2, 3))
PowerSet(FiniteSet(1, 2, 3))
A power set of an empty set:
>>> PowerSet(S.EmptySet)
PowerSet(EmptySet)
>>> PowerSet(PowerSet(S.EmptySet))
PowerSet(PowerSet(EmptySet))
A power set of an infinite set:
>>> PowerSet(S.Reals)
PowerSet(Reals)
Evaluating the power set of a finite set to its explicit form:
>>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
FiniteSet(FiniteSet(1), FiniteSet(1, 2), FiniteSet(1, 3),
FiniteSet(1, 2, 3), FiniteSet(2), FiniteSet(2, 3),
FiniteSet(3), EmptySet)
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
.. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
"""
def __new__(cls, arg, evaluate=None):
if evaluate is None:
evaluate=global_parameters.evaluate
arg = _sympify(arg)
if not isinstance(arg, Set):
raise ValueError('{} must be a set.'.format(arg))
return super().__new__(cls, arg)
@property
def arg(self):
return self.args[0]
def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
arg = self.arg
if arg.is_FiniteSet:
return arg.powerset()
return None
@_sympifyit('other', NotImplemented)
def _contains(self, other):
if not isinstance(other, Set):
return None
return fuzzy_bool(self.arg.is_superset(other))
def _eval_is_subset(self, other):
if isinstance(other, PowerSet):
return self.arg.is_subset(other.arg)
def __len__(self):
return 2 ** len(self.arg)
def __iter__(self):
from .sets import FiniteSet
found = [S.EmptySet]
yield S.EmptySet
for x in self.arg:
temp = []
x = FiniteSet(x)
for y in found:
new = x + y
yield new
temp.append(new)
found.extend(temp)
|
1c38b92d26940047d072fdaa324d0cf08830c556a42c5b9df17ece352cdd2959 | from functools import reduce
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
from sympy.core.numbers import oo, Integer
from sympy.core.relational import Eq
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Dummy, symbols, Symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And
from sympy.sets.sets import (Set, Interval, Union, FiniteSet,
ProductSet)
from sympy.utilities.misc import filldedent
from sympy.utilities.iterables import cartes
class Rationals(Set, metaclass=Singleton):
"""
Represents the rational numbers. This set is also available as
the Singleton, S.Rationals.
Examples
========
>>> from sympy import S
>>> S.Half in S.Rationals
True
>>> iterable = iter(S.Rationals)
>>> [next(iterable) for i in range(12)]
[0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
"""
is_iterable = True
_inf = S.NegativeInfinity
_sup = S.Infinity
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return False
if other.is_Number:
return other.is_Rational
return other.is_rational
def __iter__(self):
from sympy.core.numbers import igcd, Rational
yield S.Zero
yield S.One
yield S.NegativeOne
d = 2
while True:
for n in range(d):
if igcd(n, d) == 1:
yield Rational(n, d)
yield Rational(d, n)
yield Rational(-n, d)
yield Rational(-d, n)
d += 1
@property
def _boundary(self):
return S.Reals
class Naturals(Set, metaclass=Singleton):
"""
Represents the natural numbers (or counting numbers) which are all
positive integers starting from 1. This set is also available as
the Singleton, S.Naturals.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Naturals)
>>> next(iterable)
1
>>> next(iterable)
2
>>> next(iterable)
3
>>> pprint(S.Naturals.intersect(Interval(0, 10)))
{1, 2, ..., 10}
See Also
========
Naturals0 : non-negative integers (i.e. includes 0, too)
Integers : also includes negative integers
"""
is_iterable = True
_inf = S.One
_sup = S.Infinity
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return False
elif other.is_positive and other.is_integer:
return True
elif other.is_integer is False or other.is_positive is False:
return False
def _eval_is_subset(self, other):
return Range(1, oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(1, oo).is_superset(other)
def __iter__(self):
i = self._inf
while True:
yield i
i = i + 1
@property
def _boundary(self):
return self
def as_relational(self, x):
from sympy.functions.elementary.integers import floor
return And(Eq(floor(x), x), x >= self.inf, x < oo)
class Naturals0(Naturals):
"""Represents the whole numbers which are all the non-negative integers,
inclusive of zero.
See Also
========
Naturals : positive integers; does not include 0
Integers : also includes the negative integers
"""
_inf = S.Zero
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
elif other.is_integer and other.is_nonnegative:
return S.true
elif other.is_integer is False or other.is_nonnegative is False:
return S.false
def _eval_is_subset(self, other):
return Range(oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(oo).is_superset(other)
class Integers(Set, metaclass=Singleton):
"""
Represents all integers: positive, negative and zero. This set is also
available as the Singleton, S.Integers.
Examples
========
>>> from sympy import S, Interval, pprint
>>> 5 in S.Naturals
True
>>> iterable = iter(S.Integers)
>>> next(iterable)
0
>>> next(iterable)
1
>>> next(iterable)
-1
>>> next(iterable)
2
>>> pprint(S.Integers.intersect(Interval(-4, 4)))
{-4, -3, ..., 4}
See Also
========
Naturals0 : non-negative integers
Integers : positive and negative integers and zero
"""
is_iterable = True
is_empty = False
is_finite_set = False
def _contains(self, other):
if not isinstance(other, Expr):
return S.false
return other.is_integer
def __iter__(self):
yield S.Zero
i = S.One
while True:
yield i
yield -i
i = i + 1
@property
def _inf(self):
return S.NegativeInfinity
@property
def _sup(self):
return S.Infinity
@property
def _boundary(self):
return self
def as_relational(self, x):
from sympy.functions.elementary.integers import floor
return And(Eq(floor(x), x), -oo < x, x < oo)
def _eval_is_subset(self, other):
return Range(-oo, oo).is_subset(other)
def _eval_is_superset(self, other):
return Range(-oo, oo).is_superset(other)
class Reals(Interval, metaclass=Singleton):
"""
Represents all real numbers
from negative infinity to positive infinity,
including all integer, rational and irrational numbers.
This set is also available as the Singleton, S.Reals.
Examples
========
>>> from sympy import S, Rational, pi, I
>>> 5 in S.Reals
True
>>> Rational(-1, 2) in S.Reals
True
>>> pi in S.Reals
True
>>> 3*I in S.Reals
False
>>> S.Reals.contains(pi)
True
See Also
========
ComplexRegion
"""
def __new__(cls):
return Interval.__new__(cls, S.NegativeInfinity, S.Infinity)
def __eq__(self, other):
return other == Interval(S.NegativeInfinity, S.Infinity)
def __hash__(self):
return hash(Interval(S.NegativeInfinity, S.Infinity))
class ImageSet(Set):
"""
Image of a set under a mathematical function. The transformation
must be given as a Lambda function which has as many arguments
as the elements of the set upon which it operates, e.g. 1 argument
when acting on the set of integers or 2 arguments when acting on
a complex region.
This function is not normally called directly, but is called
from `imageset`.
Examples
========
>>> from sympy import Symbol, S, pi, Dummy, Lambda
>>> from sympy.sets.sets import FiniteSet, Interval
>>> from sympy.sets.fancysets import ImageSet
>>> x = Symbol('x')
>>> N = S.Naturals
>>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
>>> 4 in squares
True
>>> 5 in squares
False
>>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
FiniteSet(1, 4, 9)
>>> square_iterable = iter(squares)
>>> for i in range(4):
... next(square_iterable)
1
4
9
16
If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
`x` value is in `base_set` or not before passing it as args)
>>> squares.lamda(2)
4
>>> squares.lamda(S(1)/2)
1/4
>>> n = Dummy('n')
>>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
>>> dom = Interval(-1, 1)
>>> dom.intersect(solutions)
FiniteSet(0)
See Also
========
sympy.sets.sets.imageset
"""
def __new__(cls, flambda, *sets):
if not isinstance(flambda, Lambda):
raise ValueError('First argument must be a Lambda')
signature = flambda.signature
if len(signature) != len(sets):
raise ValueError('Incompatible signature')
sets = [_sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Set arguments to ImageSet should of type Set")
if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
raise ValueError("Signature %s does not match sets %s" % (signature, sets))
if flambda is S.IdentityFunction and len(sets) == 1:
return sets[0]
if not set(flambda.variables) & flambda.expr.free_symbols:
is_empty = fuzzy_or(s.is_empty for s in sets)
if is_empty == True:
return S.EmptySet
elif is_empty == False:
return FiniteSet(flambda.expr)
return Basic.__new__(cls, flambda, *sets)
lamda = property(lambda self: self.args[0])
base_sets = property(lambda self: self.args[1:])
@property
def base_set(self):
# XXX: Maybe deprecate this? It is poorly defined in handling
# the multivariate case...
sets = self.base_sets
if len(sets) == 1:
return sets[0]
else:
return ProductSet(*sets).flatten()
@property
def base_pset(self):
return ProductSet(*self.base_sets)
@classmethod
def _check_sig(cls, sig_i, set_i):
if sig_i.is_symbol:
return True
elif isinstance(set_i, ProductSet):
sets = set_i.sets
if len(sig_i) != len(sets):
return False
# Recurse through the signature for nested tuples:
return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
else:
# XXX: Need a better way of checking whether a set is a set of
# Tuples or not. For example a FiniteSet can contain Tuples
# but so can an ImageSet or a ConditionSet. Others like
# Integers, Reals etc can not contain Tuples. We could just
# list the possibilities here... Current code for e.g.
# _contains probably only works for ProductSet.
return True # Give the benefit of the doubt
def __iter__(self):
already_seen = set()
for i in self.base_pset:
val = self.lamda(*i)
if val in already_seen:
continue
else:
already_seen.add(val)
yield val
def _is_multivariate(self):
return len(self.lamda.variables) > 1
def _contains(self, other):
from sympy.solvers.solveset import _solveset_multi
def get_symsetmap(signature, base_sets):
'''Attempt to get a map of symbols to base_sets'''
queue = list(zip(signature, base_sets))
symsetmap = {}
for sig, base_set in queue:
if sig.is_symbol:
symsetmap[sig] = base_set
elif base_set.is_ProductSet:
sets = base_set.sets
if len(sig) != len(sets):
raise ValueError("Incompatible signature")
# Recurse
queue.extend(zip(sig, sets))
else:
# If we get here then we have something like sig = (x, y) and
# base_set = {(1, 2), (3, 4)}. For now we give up.
return None
return symsetmap
def get_equations(expr, candidate):
'''Find the equations relating symbols in expr and candidate.'''
queue = [(expr, candidate)]
for e, c in queue:
if not isinstance(e, Tuple):
yield Eq(e, c)
elif not isinstance(c, Tuple) or len(e) != len(c):
yield False
return
else:
queue.extend(zip(e, c))
# Get the basic objects together:
other = _sympify(other)
expr = self.lamda.expr
sig = self.lamda.signature
variables = self.lamda.variables
base_sets = self.base_sets
# Use dummy symbols for ImageSet parameters so they don't match
# anything in other
rep = {v: Dummy(v.name) for v in variables}
variables = [v.subs(rep) for v in variables]
sig = sig.subs(rep)
expr = expr.subs(rep)
# Map the parts of other to those in the Lambda expr
equations = []
for eq in get_equations(expr, other):
# Unsatisfiable equation?
if eq is False:
return False
equations.append(eq)
# Map the symbols in the signature to the corresponding domains
symsetmap = get_symsetmap(sig, base_sets)
if symsetmap is None:
# Can't factor the base sets to a ProductSet
return None
# Which of the variables in the Lambda signature need to be solved for?
symss = (eq.free_symbols for eq in equations)
variables = set(variables) & reduce(set.union, symss, set())
# Use internal multivariate solveset
variables = tuple(variables)
base_sets = [symsetmap[v] for v in variables]
solnset = _solveset_multi(equations, variables, base_sets)
if solnset is None:
return None
return fuzzy_not(solnset.is_empty)
@property
def is_iterable(self):
return all(s.is_iterable for s in self.base_sets)
def doit(self, **kwargs):
from sympy.sets.setexpr import SetExpr
f = self.lamda
sig = f.signature
if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
base_set = self.base_sets[0]
return SetExpr(base_set)._eval_func(f).set
if all(s.is_FiniteSet for s in self.base_sets):
return FiniteSet(*(f(*a) for a in cartes(*self.base_sets)))
return self
class Range(Set):
"""
Represents a range of integers. Can be called as Range(stop),
Range(start, stop), or Range(start, stop, step); when stop is
not given it defaults to 1.
`Range(stop)` is the same as `Range(0, stop, 1)` and the stop value
(juse as for Python ranges) is not included in the Range values.
>>> from sympy import Range
>>> list(Range(3))
[0, 1, 2]
The step can also be negative:
>>> list(Range(10, 0, -2))
[10, 8, 6, 4, 2]
The stop value is made canonical so equivalent ranges always
have the same args:
>>> Range(0, 10, 3)
Range(0, 12, 3)
Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
set (``Range`` is always a subset of ``Integers``). If the starting point
is infinite, then the final value is ``stop - step``. To iterate such a
range, it needs to be reversed:
>>> from sympy import oo
>>> r = Range(-oo, 1)
>>> r[-1]
0
>>> next(iter(r))
Traceback (most recent call last):
...
TypeError: Cannot iterate over Range with infinite start
>>> next(iter(r.reversed))
0
Although Range is a set (and supports the normal set
operations) it maintains the order of the elements and can
be used in contexts where `range` would be used.
>>> from sympy import Interval
>>> Range(0, 10, 2).intersect(Interval(3, 7))
Range(4, 8, 2)
>>> list(_)
[4, 6]
Although slicing of a Range will always return a Range -- possibly
empty -- an empty set will be returned from any intersection that
is empty:
>>> Range(3)[:0]
Range(0, 0, 1)
>>> Range(3).intersect(Interval(4, oo))
EmptySet
>>> Range(3).intersect(Range(4, oo))
EmptySet
Range will accept symbolic arguments but has very limited support
for doing anything other than displaying the Range:
>>> from sympy import Symbol, pprint
>>> from sympy.abc import i, j, k
>>> Range(i, j, k).start
i
>>> Range(i, j, k).inf
Traceback (most recent call last):
...
ValueError: invalid method for symbolic range
Better success will be had when using integer symbols:
>>> n = Symbol('n', integer=True)
>>> r = Range(n, n + 20, 3)
>>> r.inf
n
>>> pprint(r)
{n, n + 3, ..., n + 17}
"""
is_iterable = True
def __new__(cls, *args):
from sympy.functions.elementary.integers import ceiling
if len(args) == 1:
if isinstance(args[0], range):
raise TypeError(
'use sympify(%s) to convert range to Range' % args[0])
# expand range
slc = slice(*args)
if slc.step == 0:
raise ValueError("step cannot be 0")
start, stop, step = slc.start or 0, slc.stop, slc.step or 1
try:
ok = []
for w in (start, stop, step):
w = sympify(w)
if w in [S.NegativeInfinity, S.Infinity] or (
w.has(Symbol) and w.is_integer != False):
ok.append(w)
elif not w.is_Integer:
raise ValueError
else:
ok.append(w)
except ValueError:
raise ValueError(filldedent('''
Finite arguments to Range must be integers; `imageset` can define
other cases, e.g. use `imageset(i, i/10, Range(3))` to give
[0, 1/10, 1/5].'''))
start, stop, step = ok
null = False
if any(i.has(Symbol) for i in (start, stop, step)):
if start == stop:
null = True
else:
end = stop
elif start.is_infinite:
span = step*(stop - start)
if span is S.NaN or span <= 0:
null = True
elif step.is_Integer and stop.is_infinite and abs(step) != 1:
raise ValueError(filldedent('''
Step size must be %s in this case.''' % (1 if step > 0 else -1)))
else:
end = stop
else:
oostep = step.is_infinite
if oostep:
step = S.One if step > 0 else S.NegativeOne
n = ceiling((stop - start)/step)
if n <= 0:
null = True
elif oostep:
end = start + 1
step = S.One # make it a canonical single step
else:
end = start + n*step
if null:
start = end = S.Zero
step = S.One
return Basic.__new__(cls, start, end, step)
start = property(lambda self: self.args[0])
stop = property(lambda self: self.args[1])
step = property(lambda self: self.args[2])
@property
def reversed(self):
"""Return an equivalent Range in the opposite order.
Examples
========
>>> from sympy import Range
>>> Range(10).reversed
Range(9, -1, -1)
"""
if self.has(Symbol):
_ = self.size # validate
if not self:
return self
return self.func(
self.stop - self.step, self.start - self.step, -self.step)
def _contains(self, other):
if not self:
return S.false
if other.is_infinite:
return S.false
if not other.is_integer:
return other.is_integer
if self.has(Symbol):
try:
_ = self.size # validate
except ValueError:
return
if self.start.is_finite:
ref = self.start
elif self.stop.is_finite:
ref = self.stop
else: # both infinite; step is +/- 1 (enforced by __new__)
return S.true
if self.size == 1:
return Eq(other, self[0])
res = (ref - other) % self.step
if res == S.Zero:
return And(other >= self.inf, other <= self.sup)
elif res.is_Integer: # off sequence
return S.false
else: # symbolic/unsimplified residue modulo step
return None
def __iter__(self):
if self.has(Symbol):
_ = self.size # validate
if self.start in [S.NegativeInfinity, S.Infinity]:
raise TypeError("Cannot iterate over Range with infinite start")
elif self:
i = self.start
step = self.step
while True:
if (step > 0 and not (self.start <= i < self.stop)) or \
(step < 0 and not (self.stop < i <= self.start)):
break
yield i
i += step
def __len__(self):
rv = self.size
if rv is S.Infinity:
raise ValueError('Use .size to get the length of an infinite Range')
return int(rv)
@property
def size(self):
if not self:
return S.Zero
dif = self.stop - self.start
if self.has(Symbol):
if dif.has(Symbol) or self.step.has(Symbol) or (
not self.start.is_integer and not self.stop.is_integer):
raise ValueError('invalid method for symbolic range')
if dif.is_infinite:
return S.Infinity
return Integer(abs(dif//self.step))
@property
def is_finite_set(self):
if self.start.is_integer and self.stop.is_integer:
return True
return self.size.is_finite
def __bool__(self):
return self.start != self.stop
def __getitem__(self, i):
from sympy.functions.elementary.integers import ceiling
ooslice = "cannot slice from the end with an infinite value"
zerostep = "slice step cannot be zero"
infinite = "slicing not possible on range with infinite start"
# if we had to take every other element in the following
# oo, ..., 6, 4, 2, 0
# we might get oo, ..., 4, 0 or oo, ..., 6, 2
ambiguous = "cannot unambiguously re-stride from the end " + \
"with an infinite value"
if isinstance(i, slice):
if self.size.is_finite: # validates, too
start, stop, step = i.indices(self.size)
n = ceiling((stop - start)/step)
if n <= 0:
return Range(0)
canonical_stop = start + n*step
end = canonical_stop - step
ss = step*self.step
return Range(self[start], self[end] + ss, ss)
else: # infinite Range
start = i.start
stop = i.stop
if i.step == 0:
raise ValueError(zerostep)
step = i.step or 1
ss = step*self.step
#---------------------
# handle infinite Range
# i.e. Range(-oo, oo) or Range(oo, -oo, -1)
# --------------------
if self.start.is_infinite and self.stop.is_infinite:
raise ValueError(infinite)
#---------------------
# handle infinite on right
# e.g. Range(0, oo) or Range(0, -oo, -1)
# --------------------
if self.stop.is_infinite:
# start and stop are not interdependent --
# they only depend on step --so we use the
# equivalent reversed values
return self.reversed[
stop if stop is None else -stop + 1:
start if start is None else -start:
step].reversed
#---------------------
# handle infinite on the left
# e.g. Range(oo, 0, -1) or Range(-oo, 0)
# --------------------
# consider combinations of
# start/stop {== None, < 0, == 0, > 0} and
# step {< 0, > 0}
if start is None:
if stop is None:
if step < 0:
return Range(self[-1], self.start, ss)
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step < 0:
return Range(self[-1], self[stop], ss)
else: # > 0
return Range(self.start, self[stop], ss)
elif stop == 0:
if step > 0:
return Range(0)
else: # < 0
raise ValueError(ooslice)
elif stop == 1:
if step > 0:
raise ValueError(ooslice) # infinite singleton
else: # < 0
raise ValueError(ooslice)
else: # > 1
raise ValueError(ooslice)
elif start < 0:
if stop is None:
if step < 0:
return Range(self[start], self.start, ss)
else: # > 0
return Range(self[start], self.stop, ss)
elif stop < 0:
return Range(self[start], self[stop], ss)
elif stop == 0:
if step < 0:
raise ValueError(ooslice)
else: # > 0
return Range(0)
elif stop > 0:
raise ValueError(ooslice)
elif start == 0:
if stop is None:
if step < 0:
raise ValueError(ooslice) # infinite singleton
elif step > 1:
raise ValueError(ambiguous)
else: # == 1
return self
elif stop < 0:
if step > 1:
raise ValueError(ambiguous)
elif step == 1:
return Range(self.start, self[stop], ss)
else: # < 0
return Range(0)
else: # >= 0
raise ValueError(ooslice)
elif start > 0:
raise ValueError(ooslice)
else:
if not self:
raise IndexError('Range index out of range')
if i == 0:
if self.start.is_infinite:
raise ValueError(ooslice)
if self.has(Symbol):
if (self.stop > self.start) == self.step.is_positive and self.step.is_positive is not None:
pass
else:
_ = self.size # validate
return self.start
if i == -1:
if self.stop.is_infinite:
raise ValueError(ooslice)
n = self.stop - self.step
if n.is_Integer or (
n.is_integer and (
(n - self.start).is_nonnegative ==
self.step.is_positive)):
return n
_ = self.size # validate
rv = (self.stop if i < 0 else self.start) + i*self.step
if rv.is_infinite:
raise ValueError(ooslice)
if rv < self.inf or rv > self.sup:
raise IndexError("Range index out of range")
return rv
@property
def _inf(self):
if not self:
raise NotImplementedError
if self.has(Symbol):
if self.step.is_positive:
return self[0]
elif self.step.is_negative:
return self[-1]
_ = self.size # validate
if self.step > 0:
return self.start
else:
return self.stop - self.step
@property
def _sup(self):
if not self:
raise NotImplementedError
if self.has(Symbol):
if self.step.is_positive:
return self[-1]
elif self.step.is_negative:
return self[0]
_ = self.size # validate
if self.step > 0:
return self.stop - self.step
else:
return self.start
@property
def _boundary(self):
return self
def as_relational(self, x):
"""Rewrite a Range in terms of equalities and logic operators. """
from sympy.functions.elementary.integers import floor
if self.size == 1:
return Eq(x, self[0])
else:
return And(
Eq(x, floor(x)),
x >= self.inf if self.inf in self else x > self.inf,
x <= self.sup if self.sup in self else x < self.sup)
converter[range] = lambda r: Range(r.start, r.stop, r.step)
def normalize_theta_set(theta):
"""
Normalize a Real Set `theta` in the Interval [0, 2*pi). It returns
a normalized value of theta in the Set. For Interval, a maximum of
one cycle [0, 2*pi], is returned i.e. for theta equal to [0, 10*pi],
returned normalized value would be [0, 2*pi). As of now intervals
with end points as non-multiples of `pi` is not supported.
Raises
======
NotImplementedError
The algorithms for Normalizing theta Set are not yet
implemented.
ValueError
The input is not valid, i.e. the input is not a real set.
RuntimeError
It is a bug, please report to the github issue tracker.
Examples
========
>>> from sympy.sets.fancysets import normalize_theta_set
>>> from sympy import Interval, FiniteSet, pi
>>> normalize_theta_set(Interval(9*pi/2, 5*pi))
Interval(pi/2, pi)
>>> normalize_theta_set(Interval(-3*pi/2, pi/2))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-pi/2, pi/2))
Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
>>> normalize_theta_set(Interval(-4*pi, 3*pi))
Interval.Ropen(0, 2*pi)
>>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
Interval(pi/2, 3*pi/2)
>>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
FiniteSet(0, pi)
"""
from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
if theta.is_Interval:
interval_len = theta.measure
# one complete circle
if interval_len >= 2*S.Pi:
if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
k = coeff(theta.start)
return Union(Interval(0, k*S.Pi, False, True),
Interval(k*S.Pi, 2*S.Pi, True, True))
return Interval(0, 2*S.Pi, False, True)
k_start, k_end = coeff(theta.start), coeff(theta.end)
if k_start is None or k_end is None:
raise NotImplementedError("Normalizing theta without pi as coefficient is "
"not yet implemented")
new_start = k_start*S.Pi
new_end = k_end*S.Pi
if new_start > new_end:
return Union(Interval(S.Zero, new_end, False, theta.right_open),
Interval(new_start, 2*S.Pi, theta.left_open, True))
else:
return Interval(new_start, new_end, theta.left_open, theta.right_open)
elif theta.is_FiniteSet:
new_theta = []
for element in theta:
k = coeff(element)
if k is None:
raise NotImplementedError('Normalizing theta without pi as '
'coefficient, is not Implemented.')
else:
new_theta.append(k*S.Pi)
return FiniteSet(*new_theta)
elif theta.is_Union:
return Union(*[normalize_theta_set(interval) for interval in theta.args])
elif theta.is_subset(S.Reals):
raise NotImplementedError("Normalizing theta when, it is of type %s is not "
"implemented" % type(theta))
else:
raise ValueError(" %s is not a real set" % (theta))
class ComplexRegion(Set):
"""
Represents the Set of all Complex Numbers. It can represent a
region of Complex Plane in both the standard forms Polar and
Rectangular coordinates.
* Polar Form
Input is in the form of the ProductSet or Union of ProductSets
of the intervals of r and theta, & use the flag polar=True.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
* Rectangular Form
Input is in the form of the ProductSet or Union of ProductSets
of interval of x and y the of the Complex numbers in a Plane.
Default input type is in rectangular form.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets import Interval
>>> from sympy import S, I, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 6)
>>> c = Interval(1, 8)
>>> c1 = ComplexRegion(a*b) # Rectangular Form
>>> c1
CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))
* c1 represents the rectangular region in complex plane
surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
(2, 6), of the four vertices.
>>> c2 = ComplexRegion(Union(a*b, b*c))
>>> c2
CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))
* c2 represents the Union of two rectangular regions in complex
plane. One of them surrounded by the coordinates of c1 and
other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
(4, 8).
>>> 2.5 + 4.5*I in c1
True
>>> 2.5 + 6.5*I in c1
False
>>> r = Interval(0, 1)
>>> theta = Interval(0, 2*S.Pi)
>>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form
>>> c2 # unit Disk
PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))
* c2 represents the region in complex plane inside the
Unit Disk centered at the origin.
>>> 0.5 + 0.5*I in c2
True
>>> 1 + 2*I in c2
False
>>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
>>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
>>> intersection = unit_disk.intersect(upper_half_unit_disk)
>>> intersection
PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
>>> intersection == upper_half_unit_disk
True
See Also
========
CartesianComplexRegion
PolarComplexRegion
Complexes
"""
is_ComplexRegion = True
def __new__(cls, sets, polar=False):
if polar is False:
return CartesianComplexRegion(sets)
elif polar is True:
return PolarComplexRegion(sets)
else:
raise ValueError("polar should be either True or False")
@property
def sets(self):
"""
Return raw input sets to the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.sets
ProductSet(Interval(2, 3), Interval(4, 5))
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.sets
Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
"""
return self.args[0]
@property
def psets(self):
"""
Return a tuple of sets (ProductSets) input of the self.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.psets
(ProductSet(Interval(2, 3), Interval(4, 5)),)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.psets
(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))
"""
if self.sets.is_ProductSet:
psets = ()
psets = psets + (self.sets, )
else:
psets = self.sets.args
return psets
@property
def a_interval(self):
"""
Return the union of intervals of `x` when, self is in
rectangular form, or the union of intervals of `r` when
self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.a_interval
Interval(2, 3)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.a_interval
Union(Interval(2, 3), Interval(4, 5))
"""
a_interval = []
for element in self.psets:
a_interval.append(element.args[0])
a_interval = Union(*a_interval)
return a_interval
@property
def b_interval(self):
"""
Return the union of intervals of `y` when, self is in
rectangular form, or the union of intervals of `theta`
when self is in polar form.
Examples
========
>>> from sympy import Interval, ComplexRegion, Union
>>> a = Interval(2, 3)
>>> b = Interval(4, 5)
>>> c = Interval(1, 7)
>>> C1 = ComplexRegion(a*b)
>>> C1.b_interval
Interval(4, 5)
>>> C2 = ComplexRegion(Union(a*b, b*c))
>>> C2.b_interval
Interval(1, 7)
"""
b_interval = []
for element in self.psets:
b_interval.append(element.args[1])
b_interval = Union(*b_interval)
return b_interval
@property
def _measure(self):
"""
The measure of self.sets.
Examples
========
>>> from sympy import Interval, ComplexRegion, S
>>> a, b = Interval(2, 5), Interval(4, 8)
>>> c = Interval(0, 2*S.Pi)
>>> c1 = ComplexRegion(a*b)
>>> c1.measure
12
>>> c2 = ComplexRegion(a*c, polar=True)
>>> c2.measure
6*pi
"""
return self.sets._measure
@classmethod
def from_real(cls, sets):
"""
Converts given subset of real numbers to a complex region.
Examples
========
>>> from sympy import Interval, ComplexRegion
>>> unit = Interval(0,1)
>>> ComplexRegion.from_real(unit)
CartesianComplexRegion(ProductSet(Interval(0, 1), FiniteSet(0)))
"""
if not sets.is_subset(S.Reals):
raise ValueError("sets must be a subset of the real line")
return CartesianComplexRegion(sets * FiniteSet(0))
def _contains(self, other):
from sympy.functions import arg, Abs
from sympy.core.containers import Tuple
other = sympify(other)
isTuple = isinstance(other, Tuple)
if isTuple and len(other) != 2:
raise ValueError('expecting Tuple of length 2')
# If the other is not an Expression, and neither a Tuple
if not isinstance(other, Expr) and not isinstance(other, Tuple):
return S.false
# self in rectangular form
if not self.polar:
re, im = other if isTuple else other.as_real_imag()
return fuzzy_or(fuzzy_and([
pset.args[0]._contains(re),
pset.args[1]._contains(im)])
for pset in self.psets)
# self in polar form
elif self.polar:
if other.is_zero:
# ignore undefined complex argument
return fuzzy_or(pset.args[0]._contains(S.Zero)
for pset in self.psets)
if isTuple:
r, theta = other
else:
r, theta = Abs(other), arg(other)
if theta.is_real and theta.is_number:
# angles in psets are normalized to [0, 2pi)
theta %= 2*S.Pi
return fuzzy_or(fuzzy_and([
pset.args[0]._contains(r),
pset.args[1]._contains(theta)])
for pset in self.psets)
class CartesianComplexRegion(ComplexRegion):
"""
Set representing a square region of the complex plane.
Z = {z in C | z = x + I*y, x in [Re(z)], y in [Im(z)]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion
>>> from sympy.sets.sets import Interval
>>> from sympy import I
>>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
>>> 2 + 5*I in region
True
>>> 5*I in region
False
See also
========
ComplexRegion
PolarComplexRegion
Complexes
"""
polar = False
variables = symbols('x, y', cls=Dummy)
def __new__(cls, sets):
if sets == S.Reals*S.Reals:
return S.Complexes
if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):
# ** ProductSet of FiniteSets in the Complex Plane. **
# For Cases like ComplexRegion({2, 4}*{3}), It
# would return {2 + 3*I, 4 + 3*I}
# FIXME: This should probably be handled with something like:
# return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
complex_num = []
for x in sets.args[0]:
for y in sets.args[1]:
complex_num.append(x + S.ImaginaryUnit*y)
return FiniteSet(*complex_num)
else:
return Set.__new__(cls, sets)
@property
def expr(self):
x, y = self.variables
return x + S.ImaginaryUnit*y
class PolarComplexRegion(ComplexRegion):
"""
Set representing a polar region of the complex plane.
Z = {z in C | z = r*[cos(theta) + I*sin(theta)], r in [r], theta in [theta]}
Examples
========
>>> from sympy.sets.fancysets import ComplexRegion, Interval
>>> from sympy import oo, pi, I
>>> rset = Interval(0, oo)
>>> thetaset = Interval(0, pi)
>>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
>>> 1 + I in upper_half_plane
True
>>> 1 - I in upper_half_plane
False
See also
========
ComplexRegion
CartesianComplexRegion
Complexes
"""
polar = True
variables = symbols('r, theta', cls=Dummy)
def __new__(cls, sets):
new_sets = []
# sets is Union of ProductSets
if not sets.is_ProductSet:
for k in sets.args:
new_sets.append(k)
# sets is ProductSets
else:
new_sets.append(sets)
# Normalize input theta
for k, v in enumerate(new_sets):
new_sets[k] = ProductSet(v.args[0],
normalize_theta_set(v.args[1]))
sets = Union(*new_sets)
return Set.__new__(cls, sets)
@property
def expr(self):
from sympy.functions.elementary.trigonometric import sin, cos
r, theta = self.variables
return r*(cos(theta) + S.ImaginaryUnit*sin(theta))
class Complexes(CartesianComplexRegion, metaclass=Singleton):
"""
The Set of all complex numbers
Examples
========
>>> from sympy import S, I
>>> S.Complexes
Complexes
>>> 1 + I in S.Complexes
True
See also
========
Reals
ComplexRegion
"""
is_empty = False
is_finite_set = False
# Override property from superclass since Complexes has no args
@property
def sets(self):
return ProductSet(S.Reals, S.Reals)
def __new__(cls):
return Set.__new__(cls)
def __str__(self):
return "S.Complexes"
def __repr__(self):
return "S.Complexes"
|
b0e9ff42d0280165bfd77b4433ec8e6a57670e84e62e91c8cfb1d0fd1d03cf05 | from typing import Optional
from collections import defaultdict
import inspect
from sympy.core.basic import Basic
from sympy.core.compatibility import iterable, ordered, reduce
from sympy.core.containers import Tuple
from sympy.core.decorators import (deprecated, sympify_method_args,
sympify_return)
from sympy.core.evalf import EvalfMixin
from sympy.core.parameters import global_parameters
from sympy.core.expr import Expr
from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
fuzzy_not)
from sympy.core.numbers import Float
from sympy.core.operations import LatticeOp
from sympy.core.relational import Eq, Ne, is_lt
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, converter
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
from sympy.sets.contains import Contains
from sympy.utilities import subsets
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.utilities.iterables import iproduct, sift, roundrobin
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
tfn = defaultdict(lambda: None, {
True: S.true,
S.true: S.true,
False: S.false,
S.false: S.false})
@sympify_method_args
class Set(Basic):
"""
The base class for any kind of set.
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection = None # type: Optional[bool]
is_UniversalSet = None # type: Optional[bool]
is_Complement = None # type: Optional[bool]
is_ComplexRegion = False
is_empty = None # type: FuzzyBool
is_finite_set = None # type: FuzzyBool
@property # type: ignore
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return None
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
infimum = infimum.evalf() # issue #18505
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of 'self' and 'other'.
Examples
========
As a shortcut it is possible to use the '+' operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union(FiniteSet(3), Interval.Lopen(1, 2))
Similarly it is possible to use the '-' operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if 'self' and 'other' are disjoint
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
# If self and other are disjoint then other - self == self
if len(self.sets) != len(other.sets):
return other
# There can be other ways to represent this but this gives:
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
overlaps = []
pairs = list(zip(self.sets, other.sets))
for n in range(len(pairs)):
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
overlaps.append(ProductSet(*sets))
return Union(*overlaps)
elif isinstance(other, Interval):
if isinstance(self, Interval) or isinstance(self, FiniteSet):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif isinstance(other, EmptySet):
return S.EmptySet
elif isinstance(other, FiniteSet):
from sympy.utilities.iterables import sift
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of `self` and `other`.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet)
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns a SymPy value indicating whether ``other`` is contained
in ``self``: ``true`` if it is, ``false`` if it isn't, else
an unevaluated ``Contains`` expression (or, as in the case of
ConditionSet and a union of FiniteSet/Intervals, an expression
indicating the conditions for containment).
Examples
========
>>> from sympy import Interval, S
>>> from sympy.abc import x
>>> Interval(0, 1).contains(0.5)
True
As a shortcut it is possible to use the 'in' operator, but that
will raise an error unless an affirmative true or false is not
obtained.
>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
Traceback (most recent call last):
...
TypeError: did not evaluate to a bool: None
The result of 'in' is a bool, not a SymPy value
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
"""
other = sympify(other, strict=True)
c = self._contains(other)
if isinstance(c, Contains):
return c
if c is None:
return Contains(other, self, evaluate=False)
b = tfn[c]
if b is None:
return c
return b
def _contains(self, other):
raise NotImplementedError(filldedent('''
(%s)._contains(%s) is not defined. This method, when
defined, will receive a sympified object. The method
should return True, False, None or something that
expresses what must be true for the containment of that
object in self to be evaluated. If None is returned
then a generic Contains object will be returned
by the ``contains`` method.''' % (self, other)))
def is_subset(self, other):
"""
Returns True if 'self' is a subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if not isinstance(other, Set):
raise ValueError("Unknown argument '%s'" % other)
# Handle the trivial cases
if self == other:
return True
is_empty = self.is_empty
if is_empty is True:
return True
elif fuzzy_not(is_empty) and other.is_empty:
return False
if self.is_finite_set is False and other.is_finite_set:
return False
# Dispatch on subclass rules
ret = self._eval_is_subset(other)
if ret is not None:
return ret
ret = other._eval_is_superset(self)
if ret is not None:
return ret
# Use pairwise rules from multiple dispatch
from sympy.sets.handlers.issubset import is_subset_sets
ret = is_subset_sets(self, other)
if ret is not None:
return ret
# Fall back on computing the intersection
# XXX: We shouldn't do this. A query like this should be handled
# without evaluating new Set objects. It should be the other way round
# so that the intersect method uses is_subset for evaluation.
if self.intersect(other) == self:
return True
def _eval_is_subset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
def _eval_is_superset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
# This should be deprecated:
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if 'self' is a proper subset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if 'self' is a superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
# This should be deprecated:
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if 'self' is a proper superset of 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
from .powerset import PowerSet
return PowerSet(self)
def powerset(self):
"""
Find the Power set of 'self'.
Examples
========
>>> from sympy import EmptySet, FiniteSet, Interval
A power set of an empty set:
>>> A = EmptySet
>>> A.powerset()
FiniteSet(EmptySet)
A power set of a finite set:
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
A power set of an interval:
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of 'self'
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def boundary(self):
"""
The boundary or frontier of a set
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
FiniteSet(0, 1)
>>> Interval(0, 1, True, False).boundary
FiniteSet(0, 1)
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
A set is open if and only if it has an empty intersection with its
boundary. In particular, a subset A of the reals is open if and only
if each one of its points is contained in an open interval that is a
subset of A.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
"""
return Intersection(self, self.boundary).is_empty
@property
def is_closed(self):
"""
A property method to check whether a set is closed.
A set is closed if its complement is an open set. The closedness of a
subset of the reals is determined with respect to R and its standard
topology.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
@sympify_return([('other', 'Set')], NotImplemented)
def __add__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __or__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __and__(self, other):
return self.intersect(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __mul__(self, other):
return ProductSet(self, other)
@sympify_return([('other', 'Set')], NotImplemented)
def __xor__(self, other):
return SymmetricDifference(self, other)
@sympify_return([('exp', Expr)], NotImplemented)
def __pow__(self, exp):
if not (exp.is_Integer and exp >= 0):
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet(*[self]*exp)
@sympify_return([('other', 'Set')], NotImplemented)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
other = _sympify(other)
c = self._contains(other)
b = tfn[c]
if b is None:
# x in y must evaluate to T or F; to entertain a None
# result with Set use y.contains(x)
raise TypeError('did not evaluate to a bool: %r' % c)
return b
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use '*' operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), FiniteSet(1, 2, 3))
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
The Cartesian product is not commutative or associative e.g.:
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
Notes
=====
- Passes most operations down to the argument sets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
SymPyDeprecationWarning(
feature="ProductSet(iterable)",
useinstead="ProductSet(*iterable)",
issue=17557,
deprecated_since_version="1.5"
).warn()
sets = tuple(sets[0])
sets = [sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Arguments to ProductSet should be of type Set")
# Nullary product of sets is *not* the empty set
if len(sets) == 0:
return FiniteSet(())
if S.EmptySet in sets:
return S.EmptySet
return Basic.__new__(cls, *sets, **assumptions)
@property
def sets(self):
return self.args
def flatten(self):
def _flatten(sets):
for s in sets:
if s.is_ProductSet:
yield from _flatten(s.sets)
else:
yield s
return ProductSet(*_flatten(self.sets))
def _contains(self, element):
"""
'in' operator for ProductSets
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
if element.is_Symbol:
return None
if not isinstance(element, Tuple) or len(element) != len(self.sets):
return False
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
def as_relational(self, *symbols):
symbols = [_sympify(s) for s in symbols]
if len(symbols) != len(self.sets) or not all(
i.is_Symbol for i in symbols):
raise ValueError(
'number of symbols must match the number of sets')
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
@property
def _boundary(self):
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets)))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
return iproduct(*self.sets)
@property
def is_empty(self):
return fuzzy_or(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def _measure(self):
measure = 1
for s in self.sets:
measure *= s.measure
return measure
def __len__(self):
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
def __bool__(self):
return all([bool(s) for s in self.sets])
class Interval(Set, EvalfMixin):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points "start" and "end".
For left_open=True (default left_open is False) the interval
will be open on the left. Similarly, for right_open=True the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- Interval(a, b) with a > b will return the empty set
- Use the evalf() method to turn an Interval into an mpmath
'mpi' interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
# Only allow real intervals
if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if is_lt(end, start):
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start is S.Infinity or start is S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start is S.NegativeInfinity:
left_open = true
if end is S.Infinity:
right_open = true
if start == S.Infinity or end == S.NegativeInfinity:
return S.EmptySet
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of 'self'.
This property takes the same value as the 'inf' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
_inf = left = start
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def end(self):
"""
The right end point of 'self'.
This property takes the same value as the 'sup' property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
_sup = right = end
@property
def left_open(self):
"""
True if 'self' is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if 'self' is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
@property
def is_empty(self):
if self.left_open or self.right_open:
cond = self.start >= self.end # One/both bounds open
else:
cond = self.start > self.end # Both bounds closed
return fuzzy_bool(cond)
@property
def is_finite_set(self):
return self.measure.is_zero
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if (not isinstance(other, Expr) or other is S.NaN
or other.is_real is False):
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if other.is_real is not None:
return other.is_real
d = Dummy()
return self.as_relational(d).subs(d, other)
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
@property
def _measure(self):
return self.end - self.start
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._evalf(prec), self.right._evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
class Union(Set, LatticeOp, EvalfMixin):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
from sympy.functions.elementary.miscellaneous import Min
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
from sympy.functions.elementary.miscellaneous import Max
return Max(*[set.sup for set in self.args])
@property
def is_empty(self):
return fuzzy_and(set.is_empty for set in self.args)
@property
def is_finite_set(self):
return fuzzy_and(set.is_finite_set for set in self.args)
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for set in sets:
if set[0] in sos_list:
continue
else:
sos_list.append(set[0])
sets_list.append(set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def _contains(self, other):
return Or(*[s.contains(other) for s in self.args])
def is_subset(self, other):
return fuzzy_and(s.is_subset(other) for s in self.args)
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if all(isinstance(i, (FiniteSet, Interval)) for i in self.args):
if len(self.args) == 2:
a, b = self.args
if (a.sup == b.inf and a.inf is S.NegativeInfinity
and b.sup is S.Infinity):
return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf)
return Or(*[set.as_relational(symbol) for set in self.args])
raise NotImplementedError('relational of Union with non-Intervals')
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def _eval_evalf(self, prec):
try:
return Union(*(set._eval_evalf(prec) for set in self.args))
except (TypeError, ValueError, NotImplementedError):
import sys
raise (TypeError("Not all sets are evalf-able"),
None,
sys.exc_info()[2])
def __iter__(self):
return roundrobin(*(iter(arg) for arg in self.args))
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = list(ordered(set(_sympify(args))))
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def is_finite_set(self):
if fuzzy_or(arg.is_finite_set for arg in self.args):
return True
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
sets_sift = sift(self.args, lambda x: x.is_iterable)
completed = False
candidates = sets_sift[True] + sets_sift[None]
finite_candidates, others = [], []
for candidate in candidates:
length = None
try:
length = len(candidate)
except TypeError:
others.append(candidate)
if length is not None:
finite_candidates.append(candidate)
finite_candidates.sort(key=len)
for s in finite_candidates + others:
other_sets = set(self.args) - {s}
other = Intersection(*other_sets, evaluate=False)
completed = True
for x in s:
try:
if x in other:
yield x
except TypeError:
completed = False
if completed:
return
if not completed:
if not candidates:
raise TypeError("None of the constituent sets are iterable")
raise TypeError(
"The computation had not completed because of the "
"undecidable set membership is found in every candidates.")
@staticmethod
def _handle_finite_sets(args):
'''Simplify intersection of one or more FiniteSets and other sets'''
# First separate the FiniteSets from the others
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
# Let the caller handle intersection of non-FiniteSets
if not fs_args:
return
# Convert to Python sets and build the set of all elements
fs_sets = [set(fs) for fs in fs_args]
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Extract elements that are definitely in or definitely not in the
# intersection. Here we check contains for all of args.
definite = set()
for e in all_elements:
inall = fuzzy_and(s.contains(e) for s in args)
if inall is True:
definite.add(e)
if inall is not None:
for s in fs_sets:
s.discard(e)
# At this point all elements in all of fs_sets are possibly in the
# intersection. In some cases this is because they are definitely in
# the intersection of the finite sets but it's not clear if they are
# members of others. We might have {m, n}, {m}, and Reals where we
# don't know if m or n is real. We want to remove n here but it is
# possibly in because it might be equal to m. So what we do now is
# extract the elements that are definitely in the remaining finite
# sets iteratively until we end up with {n}, {}. At that point if we
# get any empty set all remaining elements are discarded.
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Need fuzzy containment testing
fs_symsets = [FiniteSet(*s) for s in fs_sets]
while fs_elements:
for e in fs_elements:
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
if infs is True:
definite.add(e)
if infs is not None:
for n, s in enumerate(fs_sets):
# Update Python set and FiniteSet
if e in s:
s.remove(e)
fs_symsets[n] = FiniteSet(*s)
fs_elements.remove(e)
break
# If we completed the for loop without removing anything we are
# done so quit the outer while loop
else:
break
# If any of the sets of remainder elements is empty then we discard
# all of them for the intersection.
if not all(fs_sets):
fs_sets = [set()]
# Here we fold back the definitely included elements into each fs.
# Since they are definitely included they must have been members of
# each FiniteSet to begin with. We could instead fold these in with a
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
if definite:
fs_sets = [fs | definite for fs in fs_sets]
if fs_sets == [set()]:
return S.EmptySet
sets = [FiniteSet(*s) for s in fs_sets]
# Any set in others is redundant if it contains all the elements that
# are in the finite sets so we don't need it in the Intersection
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
others = [o for o in others if not is_redundant(o)]
if others:
rest = Intersection(*others)
# XXX: Maybe this shortcut should be at the beginning. For large
# FiniteSets it could much more efficient to process the other
# sets first...
if rest is S.EmptySet:
return S.EmptySet
# Flatten the Intersection
if rest.is_Intersection:
sets.extend(rest.args)
else:
sets.append(rest)
if len(sets) == 1:
return sets[0]
else:
return Intersection(*sets, evaluate=False)
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set, EvalfMixin):
r"""Represents the set difference or relative complement of a set with
another set.
`A - B = \{x \in A \mid x \notin B\}`
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
FiniteSet(0, 2)
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return S.EmptySet
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
def as_relational(self, symbol):
"""Rewrite a complement in terms of equalities and logic
operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = Not(B.as_relational(symbol))
return And(A_rel, B_rel)
@property
def is_iterable(self):
if self.args[0].is_iterable:
return True
@property
def is_finite_set(self):
A, B = self.args
a_finite = A.is_finite_set
if a_finite is True:
return True
elif a_finite is False and B.is_finite_set:
return False
def __iter__(self):
A, B = self.args
for a in A:
if a not in B:
yield a
else:
continue
class EmptySet(Set, metaclass=Singleton):
"""
Represents the empty set. The empty set is available as a singleton
as S.EmptySet.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_empty = True
is_finite_set = True
is_FiniteSet = True
@property # type: ignore
@deprecated(useinstead="is S.EmptySet or is_empty",
issue=16946, deprecated_since_version="1.5")
def is_EmptySet(self):
return True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _symmetric_difference(self, other):
return other
class UniversalSet(Set, metaclass=Singleton):
"""
Represents the set of all things.
The universal set is available as a singleton as S.UniversalSet
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
is_empty = False
is_finite_set = False
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return S.EmptySet
class FiniteSet(Set, EvalfMixin):
"""
Represents a finite set of discrete numbers
Examples
========
>>> from sympy import FiniteSet
>>> FiniteSet(1, 2, 3, 4)
FiniteSet(1, 2, 3, 4)
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
FiniteSet(1, 2, 3, 4)
>>> f - FiniteSet(2)
FiniteSet(1, 3, 4)
>>> f + FiniteSet(2, 5)
FiniteSet(1, 2, 3, 4, 5)
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
is_empty = False
is_finite_set = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return S.EmptySet
else:
args = list(map(sympify, args))
# keep the form of the first canonical arg
dargs = {}
for i in reversed(list(ordered(args))):
if i.is_Symbol:
dargs[i] = i
else:
try:
dargs[i.as_dummy()] = i
except TypeError:
# e.g. i = class without args like `Interval`
dargs[i] = i
_args_set = set(dargs.values())
args = list(ordered(_args_set, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._args_set = _args_set
return obj
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
# Splitting in sub-intervals is only done for S.Reals;
# other cases that need splitting will first pass through
# Set._complement().
nums, syms = [], []
for m in self.args:
if m.is_number and m.is_real:
nums.append(m)
elif m.is_real == False:
pass # drop non-reals
else:
syms.append(m) # various symbolic expressions
if other == S.Reals and nums != []:
nums.sort()
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []: # no splitting necessary or possible:
if syms:
return Complement(other, FiniteSet(*syms), evaluate=False)
else:
return other
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
The actual test is for mathematical equality (as opposed to
syntactical equality). In the worst case all elements of the
set must be checked.
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
if other in self._args_set:
return True
else:
# evaluate=True is needed to override evaluate=False context;
# we need Eq to do the evaluation
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
for e in self.args)
def _eval_is_subset(self, other):
return fuzzy_and(other._contains(e) for e in self.args)
@property
def _boundary(self):
return self
@property
def _inf(self):
from sympy.functions.elementary.miscellaneous import Min
return Min(*self)
@property
def _sup(self):
from sympy.functions.elementary.miscellaneous import Max
return Max(*self)
@property
def measure(self):
return 0
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
from sympy.core.relational import Eq
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
return FiniteSet(*[elem._evalf(prec) for elem in self])
@property
def _sorted_args(self):
return self.args
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
"""Rewriting method for a finite set to a power set."""
from .powerset import PowerSet
is2pow = lambda n: bool(n and not n & (n - 1))
if not is2pow(len(self)):
return None
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
if not all(fs_test(arg) for arg in args):
return None
biggest = max(args, key=len)
for arg in subsets(biggest.args):
arg_set = FiniteSet(*arg)
if arg_set not in args:
return None
return PowerSet(biggest)
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
converter[set] = lambda x: FiniteSet(*x)
converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
FiniteSet(1, 2, 4, 5)
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def as_relational(self, symbol):
"""Rewrite a symmetric_difference in terms of equalities and
logic operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = B.as_relational(symbol)
return Xor(A_rel, B_rel)
@property
def is_iterable(self):
if all(arg.is_iterable for arg in self.args):
return True
def __iter__(self):
args = self.args
union = roundrobin(*(iter(arg) for arg in args))
for item in union:
count = 0
for s in args:
if item in s:
count += 1
if count % 2 == 1:
yield item
class DisjointUnion(Set):
""" Represents the disjoint union (also known as the external disjoint union)
of a finite number of sets.
Examples
========
>>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
>>> A = FiniteSet(1, 2, 3)
>>> B = Interval(0, 5)
>>> DisjointUnion(A, B)
DisjointUnion(FiniteSet(1, 2, 3), Interval(0, 5))
>>> DisjointUnion(A, B).rewrite(Union)
Union(ProductSet(FiniteSet(1, 2, 3), FiniteSet(0)), ProductSet(Interval(0, 5), FiniteSet(1)))
>>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
>>> DisjointUnion(C, C)
DisjointUnion(FiniteSet(x, y, z), FiniteSet(x, y, z))
>>> DisjointUnion(C, C).rewrite(Union)
ProductSet(FiniteSet(x, y, z), FiniteSet(0, 1))
References
==========
https://en.wikipedia.org/wiki/Disjoint_union
"""
def __new__(cls, *sets):
dj_collection = []
for set_i in sets:
if isinstance(set_i, Set):
dj_collection.append(set_i)
else:
raise TypeError("Invalid input: '%s', input args \
to DisjointUnion must be Sets" % set_i)
obj = Basic.__new__(cls, *dj_collection)
return obj
@property
def sets(self):
return self.args
@property
def is_empty(self):
return fuzzy_and(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def is_iterable(self):
if self.is_empty:
return False
iter_flag = True
for set_i in self.sets:
if not set_i.is_empty:
iter_flag = iter_flag and set_i.is_iterable
return iter_flag
def _eval_rewrite_as_Union(self, *sets):
"""
Rewrites the disjoint union as the union of (``set`` x {``i``})
where ``set`` is the element in ``sets`` at index = ``i``
"""
dj_union = EmptySet()
index = 0
for set_i in sets:
if isinstance(set_i, Set):
cross = ProductSet(set_i, FiniteSet(index))
dj_union = Union(dj_union, cross)
index = index + 1
return dj_union
def _contains(self, element):
"""
'in' operator for DisjointUnion
Examples
========
>>> from sympy import Interval, DisjointUnion
>>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
>>> (0.5, 0) in D
True
>>> (0.5, 1) in D
True
>>> (1.5, 0) in D
False
>>> (1.5, 1) in D
True
Passes operation on to constituent sets
"""
if not isinstance(element, Tuple) or len(element) != 2:
return False
if not element[1].is_Integer:
return False
if element[1] >= len(self.sets) or element[1] < 0:
return False
return element[0] in self.sets[element[1]]
def __iter__(self):
if self.is_iterable:
from sympy.core.numbers import Integer
iters = []
for i, s in enumerate(self.sets):
iters.append(iproduct(s, {Integer(i)}))
return iter(roundrobin(*iters))
else:
raise ValueError("'%s' is not iterable." % self)
def __len__(self):
"""
Returns the length of the disjoint union, i.e., the number of elements in the set.
Examples
========
>>> from sympy import FiniteSet, DisjointUnion, EmptySet
>>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
>>> len(D1)
7
>>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
>>> len(D2)
6
>>> D3 = DisjointUnion(EmptySet, EmptySet)
>>> len(D3)
0
Adds up the lengths of the constituent sets.
"""
if self.is_finite_set:
size = 0
for set in self.sets:
size += len(set)
return size
else:
raise ValueError("'%s' is not a finite set." % self)
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
If this function can't compute the image, it returns an
unevaluated ImageSet object.
.. math::
\{ f(x) \mid x \in \mathrm{self} \}
Examples
========
>>> from sympy import S, Interval, imageset, sin, Lambda
>>> from sympy.abc import x
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from sympy.core import Lambda
from sympy.sets.fancysets import ImageSet
from sympy.sets.setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif callable(f):
nargs = getattr(f, 'nargs', {})
if nargs:
if len(nargs) != 1:
raise NotImplementedError(filldedent('''
This function can take more than 1 arg
but the potentially complicated set input
has not been analyzed at this point to
know its dimensions. TODO
'''))
N = nargs.args[0]
if N == 1:
s = 'x'
else:
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
else:
s = inspect.signature(f).parameters
dexpr = _sympify(f(*[Dummy() for i in s]))
var = tuple(uniquely_named_symbol(
Symbol(i), dexpr) for i in s)
f = Lambda(var, f(*var))
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass,
not \'%s\'.''' % func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
try:
# TypeError if arg count != set dimensions
r = set_function(f, set)
if r is None:
raise TypeError
if not r:
return r
except TypeError:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
# XXX: Maybe this should just be:
# f2 = set.lambda
# fun = Lambda(f2.signature, f(*f2.expr))
# return imageset(fun, *set.base_sets)
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
x = set.lamda.variables[0]
y = f.variables[0]
return imageset(
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
from sympy import exp, log
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - {s}:
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = {new_set}
new_args = (args - {s, t}).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if S.EmptySet in args:
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - {s}
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - {s}:
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - {s, t}).union({new_set})
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from sympy.sets import ImageSet
from sympy import symbols,Lambda
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
|
98274c434252a326212296b7243e25950fb091101ffc4d772b9edfaca5758a6c | from sympy import S
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_bool
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy
from sympy.core.sympify import _sympify
from sympy.logic.boolalg import And, as_Boolean
from sympy.utilities.iterables import sift
from sympy.utilities.exceptions import SymPyDeprecationWarning
from .contains import Contains
from .sets import Set, EmptySet, Union, FiniteSet
adummy = Dummy('conditionset')
class ConditionSet(Set):
"""
Set of elements which satisfies a given condition.
{x | condition(x) is True for x in S}
Examples
========
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
>>> from sympy.abc import x, y, z
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
>>> 2*pi in sin_sols
True
>>> pi/2 in sin_sols
False
>>> 3*pi in sin_sols
False
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
True
If the value is not in the base set, the result is false:
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
False
Notes
=====
Symbols with assumptions should be avoided or else the
condition may evaluate without consideration of the set:
>>> n = Symbol('n', negative=True)
>>> cond = (n > 0); cond
False
>>> ConditionSet(n, cond, S.Integers)
EmptySet
Only free symbols can be changed by using `subs`:
>>> c = ConditionSet(x, x < 1, {x, z})
>>> c.subs(x, y)
ConditionSet(x, x < 1, FiniteSet(y, z))
To check if ``pi`` is in ``c`` use:
>>> pi in c
False
If no base set is specified, the universal set is implied:
>>> ConditionSet(x, x < 1).base_set
UniversalSet
Only symbols or symbol-like expressions can be used:
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
Traceback (most recent call last):
...
ValueError: non-symbol dummy not recognized in condition
When the base set is a ConditionSet, the symbols will be
unified if possible with preference for the outermost symbols:
>>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
ConditionSet(x, (x < y) & (x + y < 2), Integers)
"""
def __new__(cls, sym, condition, base_set=S.UniversalSet):
from sympy.core.function import BadSignatureError
from sympy.utilities.iterables import flatten, has_dups
sym = _sympify(sym)
flat = flatten([sym])
if has_dups(flat):
raise BadSignatureError("Duplicate symbols detected")
base_set = _sympify(base_set)
if not isinstance(base_set, Set):
raise TypeError(
'base set should be a Set object, not %s' % base_set)
condition = _sympify(condition)
if isinstance(condition, FiniteSet):
condition_orig = condition
temp = (Eq(lhs, 0) for lhs in condition)
condition = And(*temp)
SymPyDeprecationWarning(
feature="Using {} for condition".format(condition_orig),
issue=17651,
deprecated_since_version='1.5',
useinstead="{} for condition".format(condition)
).warn()
condition = as_Boolean(condition)
if condition is S.true:
return base_set
if condition is S.false:
return S.EmptySet
if isinstance(base_set, EmptySet):
return base_set
# no simple answers, so now check syms
for i in flat:
if not getattr(i, '_diff_wrt', False):
raise ValueError('`%s` is not symbol-like' % i)
if base_set.contains(sym) is S.false:
raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
know = None
if isinstance(base_set, FiniteSet):
sifted = sift(
base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
if sifted[None]:
know = FiniteSet(*sifted[True])
base_set = FiniteSet(*sifted[None])
else:
return FiniteSet(*sifted[True])
if isinstance(base_set, cls):
s, c, b = base_set.args
def sig(s):
return cls(s, Eq(adummy, 0)).as_dummy().sym
sa, sb = map(sig, (sym, s))
if sa != sb:
raise BadSignatureError('sym does not match sym of base set')
reps = dict(zip(flatten([sym]), flatten([s])))
if s == sym:
condition = And(condition, c)
base_set = b
elif not c.free_symbols & sym.free_symbols:
reps = {v: k for k, v in reps.items()}
condition = And(condition, c.xreplace(reps))
base_set = b
elif not condition.free_symbols & s.free_symbols:
sym = sym.xreplace(reps)
condition = And(condition.xreplace(reps), c)
base_set = b
rv = Basic.__new__(cls, sym, condition, base_set)
return rv if know is None else Union(know, rv)
sym = property(lambda self: self.args[0])
condition = property(lambda self: self.args[1])
base_set = property(lambda self: self.args[2])
@property
def free_symbols(self):
cond_syms = self.condition.free_symbols - self.sym.free_symbols
return cond_syms | self.base_set.free_symbols
@property
def bound_symbols(self):
from sympy.utilities.iterables import flatten
return flatten([self.sym])
def _contains(self, other):
def ok_sig(a, b):
tuples = [isinstance(i, Tuple) for i in (a, b)]
c = tuples.count(True)
if c == 1:
return False
if c == 0:
return True
return len(a) == len(b) and all(
ok_sig(i, j) for i, j in zip(a, b))
if not ok_sig(self.sym, other):
return S.false
try:
return And(
Contains(other, self.base_set),
Lambda((self.sym,), self.condition)(other))
except TypeError:
return Contains(other, self, evaluate=False)
def as_relational(self, other):
f = Lambda(self.sym, self.condition)
if isinstance(self.sym, Tuple):
f = f(*other)
else:
f = f(other)
return And(f, self.base_set.contains(other))
def _eval_subs(self, old, new):
sym, cond, base = self.args
dsym = sym.subs(old, adummy)
insym = dsym.has(adummy)
# prioritize changing a symbol in the base
newbase = base.subs(old, new)
if newbase != base:
if not insym:
cond = cond.subs(old, new)
return self.func(sym, cond, newbase)
if insym:
pass # no change of bound symbols via subs
elif getattr(new, '_diff_wrt', False):
cond = cond.subs(old, new)
else:
pass # let error about the symbol raise from __new__
return self.func(sym, cond, base)
|
b283461565979f7a8ada5ed6b3e51ebe22ed88a0a025a2f61709581e66642c96 | """Implicit plotting module for SymPy
The module implements a data series called ImplicitSeries which is used by
``Plot`` class to plot implicit plots for different backends. The module,
by default, implements plotting using interval arithmetic. It switches to a
fall back algorithm if the expression cannot be plotted using interval arithmetic.
It is also possible to specify to use the fall back algorithm for all plots.
Boolean combinations of expressions cannot be plotted by the fall back
algorithm.
See Also
========
sympy.plotting.plot
References
==========
- Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
Mathematical Formulae with Two Free Variables.
- Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
Arithmetic. Master's thesis. University of Toronto, 1996
"""
from .plot import BaseSeries, Plot
from .experimental_lambdify import experimental_lambdify, vectorized_lambdify
from .intervalmath import interval
from sympy.core.relational import (Equality, GreaterThan, LessThan,
Relational, StrictLessThan, StrictGreaterThan)
from sympy import Eq, Tuple, sympify, Symbol, Dummy
from sympy.external import import_module
from sympy.logic.boolalg import BooleanFunction
from sympy.polys.polyutils import _sort_gens
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import flatten
import warnings
class ImplicitSeries(BaseSeries):
""" Representation for Implicit plot """
is_implicit = True
def __init__(self, expr, var_start_end_x, var_start_end_y,
has_equality, use_interval_math, depth, nb_of_points,
line_color):
super().__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_raster
self.has_equality = has_equality # If the expression has equality, i.e.
#Eq, Greaterthan, LessThan.
self.nb_of_points = nb_of_points
self.use_interval_math = use_interval_math
self.depth = 4 + depth
self.line_color = line_color
def __str__(self):
return ('Implicit equation: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_raster(self):
func = experimental_lambdify((self.var_x, self.var_y), self.expr,
use_interval=True)
xinterval = interval(self.start_x, self.end_x)
yinterval = interval(self.start_y, self.end_y)
try:
func(xinterval, yinterval)
except AttributeError:
# XXX: AttributeError("'list' object has no attribute 'is_real'")
# That needs fixing somehow - we shouldn't be catching
# AttributeError here.
if self.use_interval_math:
warnings.warn("Adaptive meshing could not be applied to the"
" expression. Using uniform meshing.")
self.use_interval_math = False
if self.use_interval_math:
return self._get_raster_interval(func)
else:
return self._get_meshes_grid()
def _get_raster_interval(self, func):
""" Uses interval math to adaptively mesh and obtain the plot"""
k = self.depth
interval_list = []
#Create initial 32 divisions
np = import_module('numpy')
xsample = np.linspace(self.start_x, self.end_x, 33)
ysample = np.linspace(self.start_y, self.end_y, 33)
#Add a small jitter so that there are no false positives for equality.
# Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
#which will draw a rectangle.
jitterx = (np.random.rand(
len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20
jittery = (np.random.rand(
len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20
xsample += jitterx
ysample += jittery
xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1],
xsample[1:])]
yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1],
ysample[1:])]
interval_list = [[x, y] for x in xinter for y in yinter]
plot_list = []
#recursive call refinepixels which subdivides the intervals which are
#neither True nor False according to the expression.
def refine_pixels(interval_list):
""" Evaluates the intervals and subdivides the interval if the
expression is partially satisfied."""
temp_interval_list = []
plot_list = []
for intervals in interval_list:
#Convert the array indices to x and y values
intervalx = intervals[0]
intervaly = intervals[1]
func_eval = func(intervalx, intervaly)
#The expression is valid in the interval. Change the contour
#array values to 1.
if func_eval[1] is False or func_eval[0] is False:
pass
elif func_eval == (True, True):
plot_list.append([intervalx, intervaly])
elif func_eval[1] is None or func_eval[0] is None:
#Subdivide
avgx = intervalx.mid
avgy = intervaly.mid
a = interval(intervalx.start, avgx)
b = interval(avgx, intervalx.end)
c = interval(intervaly.start, avgy)
d = interval(avgy, intervaly.end)
temp_interval_list.append([a, c])
temp_interval_list.append([a, d])
temp_interval_list.append([b, c])
temp_interval_list.append([b, d])
return temp_interval_list, plot_list
while k >= 0 and len(interval_list):
interval_list, plot_list_temp = refine_pixels(interval_list)
plot_list.extend(plot_list_temp)
k = k - 1
#Check whether the expression represents an equality
#If it represents an equality, then none of the intervals
#would have satisfied the expression due to floating point
#differences. Add all the undecided values to the plot.
if self.has_equality:
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
func_eval = func(intervalx, intervaly)
if func_eval[1] and func_eval[0] is not False:
plot_list.append([intervalx, intervaly])
return plot_list, 'fill'
def _get_meshes_grid(self):
"""Generates the mesh for generating a contour.
In the case of equality, ``contour`` function of matplotlib can
be used. In other cases, matplotlib's ``contourf`` is used.
"""
equal = False
if isinstance(self.expr, Equality):
expr = self.expr.lhs - self.expr.rhs
equal = True
elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)):
expr = self.expr.lhs - self.expr.rhs
elif isinstance(self.expr, (LessThan, StrictLessThan)):
expr = self.expr.rhs - self.expr.lhs
else:
raise NotImplementedError("The expression is not supported for "
"plotting in uniform meshed plot.")
np = import_module('numpy')
xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points)
yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points)
x_grid, y_grid = np.meshgrid(xarray, yarray)
func = vectorized_lambdify((self.var_x, self.var_y), expr)
z_grid = func(x_grid, y_grid)
z_grid[np.ma.where(z_grid < 0)] = -1
z_grid[np.ma.where(z_grid > 0)] = 1
if equal:
return xarray, yarray, z_grid, 'contour'
else:
return xarray, yarray, z_grid, 'contourf'
@doctest_depends_on(modules=('matplotlib',))
def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
points=300, line_color="blue", show=True, **kwargs):
"""A plot function to plot implicit equations / inequalities.
Arguments
=========
- ``expr`` : The equation / inequality that is to be plotted.
- ``x_var`` (optional) : symbol to plot on x-axis or tuple giving symbol
and range as ``(symbol, xmin, xmax)``
- ``y_var`` (optional) : symbol to plot on y-axis or tuple giving symbol
and range as ``(symbol, ymin, ymax)``
If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
expression will be assigned in the order they are sorted.
The following keyword arguments can also be used:
- ``adaptive`` Boolean. The default value is set to True. It has to be
set to False if you want to use a mesh grid.
- ``depth`` integer. The depth of recursion for adaptive mesh grid.
Default value is 0. Takes value in the range (0, 4).
- ``points`` integer. The number of points if adaptive mesh grid is not
used. Default value is 300.
- ``show`` Boolean. Default value is True. If set to False, the plot will
not be shown. See ``Plot`` for further information.
- ``title`` string. The title for the plot.
- ``xlabel`` string. The label for the x-axis
- ``ylabel`` string. The label for the y-axis
Aesthetics options:
- ``line_color``: float or string. Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Default value is "Blue"
plot_implicit, by default, uses interval arithmetic to plot functions. If
the expression cannot be plotted using interval arithmetic, it defaults to
a generating a contour using a mesh grid of fixed number of points. By
setting adaptive to False, you can force plot_implicit to use the mesh
grid. The mesh grid method can be effective when adaptive plotting using
interval arithmetic, fails to plot with small line width.
Examples
========
Plot expressions:
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot_implicit, symbols, Eq, And
>>> x, y = symbols('x y')
Without any ranges for the symbols in the expression:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
With the range for the symbols:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p2 = plot_implicit(
... Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3))
With depth of recursion as argument:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p3 = plot_implicit(
... Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth = 2)
Using mesh grid and not using adaptive meshing:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p4 = plot_implicit(
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
... adaptive=False)
Using mesh grid without using adaptive meshing with number of points
specified:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p5 = plot_implicit(
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
... adaptive=False, points=400)
Plotting regions:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p6 = plot_implicit(y > x**2)
Plotting Using boolean conjunctions:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p7 = plot_implicit(And(y > x, y > -x))
When plotting an expression with a single variable (y - 1, for example),
specify the x or the y variable explicitly:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p8 = plot_implicit(y - 1, y_var=y)
>>> p9 = plot_implicit(x - 1, x_var=x)
"""
has_equality = False # Represents whether the expression contains an Equality,
#GreaterThan or LessThan
def arg_expand(bool_expr):
"""
Recursively expands the arguments of an Boolean Function
"""
for arg in bool_expr.args:
if isinstance(arg, BooleanFunction):
arg_expand(arg)
elif isinstance(arg, Relational):
arg_list.append(arg)
arg_list = []
if isinstance(expr, BooleanFunction):
arg_expand(expr)
#Check whether there is an equality in the expression provided.
if any(isinstance(e, (Equality, GreaterThan, LessThan))
for e in arg_list):
has_equality = True
elif not isinstance(expr, Relational):
expr = Eq(expr, 0)
has_equality = True
elif isinstance(expr, (Equality, GreaterThan, LessThan)):
has_equality = True
xyvar = [i for i in (x_var, y_var) if i is not None]
free_symbols = expr.free_symbols
range_symbols = Tuple(*flatten(xyvar)).free_symbols
undeclared = free_symbols - range_symbols
if len(free_symbols & range_symbols) > 2:
raise NotImplementedError("Implicit plotting is not implemented for "
"more than 2 variables")
#Create default ranges if the range is not provided.
default_range = Tuple(-5, 5)
def _range_tuple(s):
if isinstance(s, Symbol):
return Tuple(s) + default_range
if len(s) == 3:
return Tuple(*s)
raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)
if len(xyvar) == 0:
xyvar = list(_sort_gens(free_symbols))
var_start_end_x = _range_tuple(xyvar[0])
x = var_start_end_x[0]
if len(xyvar) != 2:
if x in undeclared or not undeclared:
xyvar.append(Dummy('f(%s)' % x.name))
else:
xyvar.append(undeclared.pop())
var_start_end_y = _range_tuple(xyvar[1])
#Check whether the depth is greater than 4 or less than 0.
if depth > 4:
depth = 4
elif depth < 0:
depth = 0
series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y,
has_equality, adaptive, depth,
points, line_color)
#set the x and y limits
kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
# set the x and y labels
kwargs.setdefault('xlabel', var_start_end_x[0].name)
kwargs.setdefault('ylabel', var_start_end_y[0].name)
p = Plot(series_argument, **kwargs)
if show:
p.show()
return p
|
ac17818c5e11eb78346307641f03f997ad1735eeb839d3f284b389663acd1ee1 | """Plotting module for Sympy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from sympy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_segments``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Don't use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
import warnings
from sympy import sympify, Expr, Tuple, Dummy, Symbol
from sympy.external import import_module
from sympy.core.function import arity
from sympy.core.compatibility import Callable
from sympy.utilities.iterables import is_sequence
from .experimental_lambdify import (vectorized_lambdify, lambdify)
# N.B.
# When changing the minimum module version for matplotlib, please change
# the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
# Backend specific imports - textplot
from sympy.plotting.textplot import textplot
# Global variable
# Set to False when running tests / doctests so that the plots don't show.
_show = True
def unset_show():
"""
Disable show(). For use in the tests.
"""
global _show
_show = False
##############################################################################
# The public interface
##############################################################################
class Plot:
"""The central class of the plotting module.
For interactive work the function ``plot`` is better suited.
This class permits the plotting of sympy expressions using numerous
backends (matplotlib, textplot, the old pyglet module for sympy, Google
charts api, etc).
The figure can contain an arbitrary number of plots of sympy expressions,
lists of coordinates of points, etc. Plot has a private attribute _series that
contains all data series to be plotted (expressions for lines or surfaces,
lists of points, etc (all subclasses of BaseSeries)). Those data series are
instances of classes not imported by ``from sympy import *``.
The customization of the figure is on two levels. Global options that
concern the figure as a whole (eg title, xlabel, scale, etc) and
per-data series options (eg name) and aesthetics (eg. color, point shape,
line type, etc.).
The difference between options and aesthetics is that an aesthetic can be
a function of the coordinates (or parameters in a parametric plot). The
supported values for an aesthetic are:
- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or
parameters)
- a function of three variables (only in nonparametric 3D plots)
Their implementation depends on the backend so they may not work in some
backends.
If the plot is parametric and the arity of the aesthetic function permits
it the aesthetic is calculated over parameters and not over coordinates.
If the arity does not permit calculation over parameters the calculation is
done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use
the parametric plots to plot in polar, spherical and cylindrical
coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:
- title : str
- xlabel : str
- ylabel : str
- legend : bool
- xscale : {'linear', 'log'}
- yscale : {'linear', 'log'}
- axis : bool
- axis_center : tuple of two floats or {'center', 'auto'}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or {'auto'}
- autoscale : bool
- margin : float in [0, 1]
- backend : {'default', 'matplotlib', 'text'}
The per data series options and aesthetics are:
There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
ListSeries, LineOver1DRangeSeries, Parametric2DLineSeries,
Parametric3DLineSeries support the following:
Aesthetics:
- line_color : function which returns a float.
options:
- label : str
- steps : bool
- integers_only : bool
SurfaceOver2DRangeSeries, ParametricSurfaceSeries support the following:
aesthetics:
- surface_color : function which returns a float.
"""
def __init__(self, *args,
title=None, xlabel=None, ylabel=None, aspect_ratio='auto',
xlim=None, ylim=None, axis_center='auto', axis=True,
xscale='linear', yscale='linear', legend=False, autoscale=True,
margin=0, annotations=None, markers=None, rectangles=None,
fill=None, backend='default', **kwargs):
super().__init__()
# Options for the graph as a whole.
# The possible values for each option are described in the docstring of
# Plot. They are based purely on convention, no checking is done.
self.title = title
self.xlabel = xlabel
self.ylabel = ylabel
self.aspect_ratio = aspect_ratio
self.axis_center = axis_center
self.axis = axis
self.xscale = xscale
self.yscale = yscale
self.legend = legend
self.autoscale = autoscale
self.margin = margin
self.annotations = annotations
self.markers = markers
self.rectangles = rectangles
self.fill = fill
# Contains the data objects to be plotted. The backend should be smart
# enough to iterate over this list.
self._series = []
self._series.extend(args)
# The backend type. On every show() a new backend instance is created
# in self._backend which is tightly coupled to the Plot instance
# (thanks to the parent attribute of the backend).
self.backend = plot_backends[backend]
is_real = \
lambda lim: all(getattr(i, 'is_real', True) for i in lim)
is_finite = \
lambda lim: all(getattr(i, 'is_finite', True) for i in lim)
self.xlim = None
self.ylim = None
if xlim:
if not is_real(xlim):
raise ValueError(
"All numbers from xlim={} must be real".format(xlim))
if not is_finite(xlim):
raise ValueError(
"All numbers from xlim={} must be finite".format(xlim))
self.xlim = (float(xlim[0]), float(xlim[1]))
if ylim:
if not is_real(ylim):
raise ValueError(
"All numbers from ylim={} must be real".format(ylim))
if not is_finite(ylim):
raise ValueError(
"All numbers from ylim={} must be finite".format(ylim))
self.ylim = (float(ylim[0]), float(ylim[1]))
def show(self):
# TODO move this to the backend (also for save)
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
series_strs = [('[%d]: ' % i) + str(s)
for i, s in enumerate(self._series)]
return 'Plot object containing:\n' + '\n'.join(series_strs)
def __getitem__(self, index):
return self._series[index]
def __setitem__(self, index, *args):
if len(args) == 1 and isinstance(args[0], BaseSeries):
self._series[index] = args
def __delitem__(self, index):
del self._series[index]
def append(self, arg):
"""Adds an element from a plot's series to an existing plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot's first series object to the first, use the
``append`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
>>> p1.show()
See Also
========
extend
"""
if isinstance(arg, BaseSeries):
self._series.append(arg)
else:
raise TypeError('Must specify element of plot to append.')
def extend(self, arg):
"""Adds all series from another plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot to the first, use the ``extend`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
"""
if isinstance(arg, Plot):
self._series.extend(arg._series)
elif is_sequence(arg):
self._series.extend(arg)
else:
raise TypeError('Expecting Plot or sequence of BaseSeries')
class PlotGrid:
"""This class helps to plot subplots from already created sympy plots
in a single figure.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot, plot3d, PlotGrid
>>> x, y = symbols('x, y')
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
>>> p3 = plot(x**3, (x, -5, 5))
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plotting vertically in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 1 , p1, p2)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plotting horizontally in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(1, 3 , p2, p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Plotting in a grid form:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 2, p1, p2 ,p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[3]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
"""
def __init__(self, nrows, ncolumns, *args, show=True, **kwargs):
"""
Parameters
==========
nrows : The number of rows that should be in the grid of the
required subplot
ncolumns : The number of columns that should be in the grid
of the required subplot
nrows and ncolumns together define the required grid
Arguments
=========
A list of predefined plot objects entered in a row-wise sequence
i.e. plot objects which are to be in the top row of the required
grid are written first, then the second row objects and so on
Keyword arguments
=================
show : Boolean
The default value is set to ``True``. Set show to ``False`` and
the function will not display the subplot. The returned instance
of the ``PlotGrid`` class can then be used to save or display the
plot by calling the ``save()`` and ``show()`` methods
respectively.
"""
self.nrows = nrows
self.ncolumns = ncolumns
self._series = []
self.args = args
for arg in args:
self._series.append(arg._series)
self.backend = DefaultBackend
if show:
self.show()
def show(self):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
plot_strs = [('Plot[%d]:' % i) + str(plot)
for i, plot in enumerate(self.args)]
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
##############################################################################
# Data Series
##############################################################################
#TODO more general way to calculate aesthetics (see get_color_array)
### The base class for all series
class BaseSeries:
"""Base class for the data objects containing stuff to be plotted.
The backend should check if it supports the data series that it's given.
(eg TextBackend supports only LineOver1DRange).
It's the backend responsibility to know how to use the class of
data series that it's given.
Some data series classes are grouped (using a class attribute like is_2Dline)
according to the api they present (based only on convention). The backend is
not obliged to use that api (eg. The LineOver1DRange belongs to the
is_2Dline group and presents the get_points method, but the
TextBackend does not use the get_points method).
"""
# Some flags follow. The rationale for using flags instead of checking base
# classes is that setting multiple flags is simpler than multiple
# inheritance.
is_2Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y, list_y
# - get_segments returning np.array (done in Line2DBaseSeries)
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dsurface = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_contour = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_implicit = False
# Some of the backends expect:
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
# mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
# Different from is_contour as the colormap in backend will be
# different
is_parametric = False
# The calculation of aesthetics expects:
# - get_parameter_points returning one or two np.arrays (1D or 2D)
# used for calculation aesthetics
def __init__(self):
super().__init__()
@property
def is_3D(self):
flags3D = [
self.is_3Dline,
self.is_3Dsurface
]
return any(flags3D)
@property
def is_line(self):
flagslines = [
self.is_2Dline,
self.is_3Dline
]
return any(flagslines)
### 2D lines
class Line2DBaseSeries(BaseSeries):
"""A base class for 2D lines.
- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
"""
is_2Dline = True
_dim = 2
def __init__(self):
super().__init__()
self.label = None
self.steps = False
self.only_integers = False
self.line_color = None
def get_segments(self):
np = import_module('numpy')
points = self.get_points()
if self.steps is True:
x = np.array((points[0], points[0])).T.flatten()[1:]
y = np.array((points[1], points[1])).T.flatten()[:-1]
points = (x, y)
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def get_color_array(self):
np = import_module('numpy')
c = self.line_color
if hasattr(c, '__call__'):
f = np.vectorize(c)
nargs = arity(c)
if nargs == 1 and self.is_parametric:
x = self.get_parameter_points()
return f(centers_of_segments(x))
else:
variables = list(map(centers_of_segments, self.get_points()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else: # only if the line is 3D (otherwise raises an error)
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class List2DSeries(Line2DBaseSeries):
"""Representation for a line consisting of list of points."""
def __init__(self, list_x, list_y):
np = import_module('numpy')
super().__init__()
self.list_x = np.array(list_x)
self.list_y = np.array(list_y)
self.label = 'list'
def __str__(self):
return 'list plot'
def get_points(self):
return (self.list_x, self.list_y)
class LineOver1DRangeSeries(Line2DBaseSeries):
"""Representation for a line consisting of a SymPy expression over a range."""
def __init__(self, expr, var_start_end, **kwargs):
super().__init__()
self.expr = sympify(expr)
self.label = kwargs.get('label', None) or str(self.expr)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
self.xscale = kwargs.get('xscale', 'linear')
def __str__(self):
return 'cartesian line: %s for %s over %s' % (
str(self.expr), str(self.var), str((self.start, self.end)))
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
.. [1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if self.only_integers or not self.adaptive:
return super().get_segments()
else:
f = lambdify([self.var], self.expr)
list_segments = []
np = import_module('numpy')
def sample(p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
random = 0.45 + np.random.rand() * 0.1
if self.xscale == 'log':
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
np.log10(p[0])))
else:
xnew = p[0] + random * (q[0] - p[0])
ynew = f(xnew)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
list_segments.append([p, q])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif p[1] is None and q[1] is None:
if self.xscale == 'log':
xarray = np.logspace(p[0], q[0], 10)
else:
xarray = np.linspace(p[0], q[0], 10)
yarray = list(map(f, xarray))
if any(y is not None for y in yarray):
for i in range(len(yarray) - 1):
if yarray[i] is not None or yarray[i + 1] is not None:
sample([xarray[i], yarray[i]],
[xarray[i + 1], yarray[i + 1]], depth + 1)
# Sample further if one of the end points in None (i.e. a
# complex value) or the three points are not almost collinear.
elif (p[1] is None or q[1] is None or new_point[1] is None
or not flat(p, new_point, q)):
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start = f(self.start)
f_end = f(self.end)
sample(np.array([self.start, f_start]),
np.array([self.end, f_end]), 0)
return list_segments
def get_points(self):
np = import_module('numpy')
if self.only_integers is True:
if self.xscale == 'log':
list_x = np.logspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
list_x = np.linspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
if self.xscale == 'log':
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
else:
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
f = vectorized_lambdify([self.var], self.expr)
list_y = f(list_x)
return (list_x, list_y)
class Parametric2DLineSeries(Line2DBaseSeries):
"""Representation for a line consisting of two parametric sympy expressions
over a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
super().__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.label = kwargs.get('label', None) or \
"(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.var),
str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
list_x = fx(param)
list_y = fy(param)
return (list_x, list_y)
def get_segments(self):
"""
Adaptively gets segments for plotting.
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
[1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if not self.adaptive:
return super().get_segments()
f_x = lambdify([self.var], self.expr_x)
f_y = lambdify([self.var], self.expr_y)
list_segments = []
def sample(param_p, param_q, p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
np = import_module('numpy')
random = 0.45 + np.random.rand() * 0.1
param_new = param_p + random * (param_q - param_p)
xnew = f_x(param_new)
ynew = f_y(param_new)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
list_segments.append([p, q])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif ((p[0] is None and q[1] is None) or
(p[1] is None and q[1] is None)):
param_array = np.linspace(param_p, param_q, 10)
x_array = list(map(f_x, param_array))
y_array = list(map(f_y, param_array))
if any(x is not None and y is not None
for x, y in zip(x_array, y_array)):
for i in range(len(y_array) - 1):
if ((x_array[i] is not None and y_array[i] is not None) or
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
point_a = [x_array[i], y_array[i]]
point_b = [x_array[i + 1], y_array[i + 1]]
sample(param_array[i], param_array[i], point_a,
point_b, depth + 1)
# Sample further if one of the end points in None (i.e. a complex
# value) or the three points are not almost collinear.
elif (p[0] is None or p[1] is None
or q[1] is None or q[0] is None
or not flat(p, new_point, q)):
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
else:
list_segments.append([p, q])
f_start_x = f_x(self.start)
f_start_y = f_y(self.start)
start = [f_start_x, f_start_y]
f_end_x = f_x(self.end)
f_end_y = f_y(self.end)
end = [f_end_x, f_end_y]
sample(self.start, self.end, start, end, 0)
return list_segments
### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
"""A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries."""
is_2Dline = False
is_3Dline = True
_dim = 3
def __init__(self):
super().__init__()
class Parametric3DLineSeries(Line3DBaseSeries):
"""Representation for a 3D line consisting of two parametric sympy
expressions and a range."""
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
super().__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.label = kwargs.get('label', None) or \
"(%s, %s)" % (str(self.expr_x), str(self.expr_y))
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.expr_z),
str(self.var), str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
np = import_module('numpy')
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
fz = vectorized_lambdify([self.var], self.expr_z)
list_x = fx(param)
list_y = fy(param)
list_z = fz(param)
list_x = np.array(list_x, dtype=np.float64)
list_y = np.array(list_y, dtype=np.float64)
list_z = np.array(list_z, dtype=np.float64)
list_x = np.ma.masked_invalid(list_x)
list_y = np.ma.masked_invalid(list_y)
list_z = np.ma.masked_invalid(list_z)
self._xlim = (np.amin(list_x), np.amax(list_x))
self._ylim = (np.amin(list_y), np.amax(list_y))
self._zlim = (np.amin(list_z), np.amax(list_z))
return list_x, list_y, list_z
### Surfaces
class SurfaceBaseSeries(BaseSeries):
"""A base class for 3D surfaces."""
is_3Dsurface = True
def __init__(self):
super().__init__()
self.surface_color = None
def get_color_array(self):
np = import_module('numpy')
c = self.surface_color
if isinstance(c, Callable):
f = np.vectorize(c)
nargs = arity(c)
if self.is_parametric:
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables)
variables = list(map(centers_of_faces, self.get_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else:
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of a sympy expression and 2D
range."""
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
super().__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
self.surface_color = kwargs.get('surface_color', None)
self._xlim = (self.start_x, self.end_x)
self._ylim = (self.start_y, self.end_y)
def __str__(self):
return ('cartesian surface: %s for'
' %s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
mesh_z = f(mesh_x, mesh_y)
mesh_z = np.array(mesh_z, dtype=np.float64)
mesh_z = np.ma.masked_invalid(mesh_z)
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
return mesh_x, mesh_y, mesh_z
class ParametricSurfaceSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of three parametric sympy
expressions and a range."""
is_parametric = True
def __init__(
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
**kwargs):
super().__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.var_u = sympify(var_start_end_u[0])
self.start_u = float(var_start_end_u[1])
self.end_u = float(var_start_end_u[2])
self.var_v = sympify(var_start_end_v[0])
self.start_v = float(var_start_end_v[1])
self.end_v = float(var_start_end_v[2])
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('parametric cartesian surface: (%s, %s, %s) for'
' %s over %s and %s over %s') % (
str(self.expr_x),
str(self.expr_y),
str(self.expr_z),
str(self.var_u),
str((self.start_u, self.end_u)),
str(self.var_v),
str((self.start_v, self.end_v)))
def get_parameter_meshes(self):
np = import_module('numpy')
return np.meshgrid(np.linspace(self.start_u, self.end_u,
num=self.nb_of_points_u),
np.linspace(self.start_v, self.end_v,
num=self.nb_of_points_v))
def get_meshes(self):
np = import_module('numpy')
mesh_u, mesh_v = self.get_parameter_meshes()
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
mesh_x = fx(mesh_u, mesh_v)
mesh_y = fy(mesh_u, mesh_v)
mesh_z = fz(mesh_u, mesh_v)
mesh_x = np.array(mesh_x, dtype=np.float64)
mesh_y = np.array(mesh_y, dtype=np.float64)
mesh_z = np.array(mesh_z, dtype=np.float64)
mesh_x = np.ma.masked_invalid(mesh_x)
mesh_y = np.ma.masked_invalid(mesh_y)
mesh_z = np.ma.masked_invalid(mesh_z)
self._xlim = (np.amin(mesh_x), np.amax(mesh_x))
self._ylim = (np.amin(mesh_y), np.amax(mesh_y))
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
return mesh_x, mesh_y, mesh_z
### Contours
class ContourSeries(BaseSeries):
"""Representation for a contour plot."""
# The code is mostly repetition of SurfaceOver2DRange.
# Presently used in contour_plot function
is_contour = True
def __init__(self, expr, var_start_end_x, var_start_end_y):
super().__init__()
self.nb_of_points_x = 50
self.nb_of_points_y = 50
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_meshes
self._xlim = (self.start_x, self.end_x)
self._ylim = (self.start_y, self.end_y)
def __str__(self):
return ('contour: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
##############################################################################
# Backends
##############################################################################
class BaseBackend:
def __init__(self, parent):
super().__init__()
self.parent = parent
# Don't have to check for the success of importing matplotlib in each case;
# we will only be using this backend if we can successfully import matploblib
class MatplotlibBackend(BaseBackend):
def __init__(self, parent):
super().__init__(parent)
self.matplotlib = import_module('matplotlib',
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
self.plt = self.matplotlib.pyplot
self.cm = self.matplotlib.cm
self.LineCollection = self.matplotlib.collections.LineCollection
aspect = getattr(self.parent, 'aspect_ratio', 'auto')
if aspect != 'auto':
aspect = float(aspect[1]) / aspect[0]
if isinstance(self.parent, Plot):
nrows, ncolumns = 1, 1
series_list = [self.parent._series]
elif isinstance(self.parent, PlotGrid):
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
series_list = self.parent._series
self.ax = []
self.fig = self.plt.figure()
for i, series in enumerate(series_list):
are_3D = [s.is_3D for s in series]
if any(are_3D) and not all(are_3D):
raise ValueError('The matplotlib backend can not mix 2D and 3D.')
elif all(are_3D):
# mpl_toolkits.mplot3d is necessary for
# projection='3d'
mpl_toolkits = import_module('mpl_toolkits', # noqa
import_kwargs={'fromlist': ['mplot3d']})
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect))
elif not any(are_3D):
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect))
self.ax[i].spines['left'].set_position('zero')
self.ax[i].spines['right'].set_color('none')
self.ax[i].spines['bottom'].set_position('zero')
self.ax[i].spines['top'].set_color('none')
self.ax[i].xaxis.set_ticks_position('bottom')
self.ax[i].yaxis.set_ticks_position('left')
def _process_series(self, series, ax, parent):
np = import_module('numpy')
mpl_toolkits = import_module(
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']})
# XXX Workaround for matplotlib issue
# https://github.com/matplotlib/matplotlib/issues/17130
xlims, ylims, zlims = [], [], []
for s in series:
# Create the collections
if s.is_2Dline:
collection = self.LineCollection(s.get_segments())
ax.add_collection(collection)
elif s.is_contour:
ax.contour(*s.get_meshes())
elif s.is_3Dline:
# TODO too complicated, I blame matplotlib
art3d = mpl_toolkits.mplot3d.art3d
collection = art3d.Line3DCollection(s.get_segments())
ax.add_collection(collection)
x, y, z = s.get_points()
xlims.append(s._xlim)
ylims.append(s._ylim)
zlims.append(s._zlim)
elif s.is_3Dsurface:
x, y, z = s.get_meshes()
collection = ax.plot_surface(x, y, z,
cmap=getattr(self.cm, 'viridis', self.cm.jet),
rstride=1, cstride=1, linewidth=0.1)
xlims.append(s._xlim)
ylims.append(s._ylim)
zlims.append(s._zlim)
elif s.is_implicit:
points = s.get_raster()
if len(points) == 2:
# interval math plotting
x, y = _matplotlib_list(points[0])
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
else:
# use contourf or contour depending on whether it is
# an inequality or equality.
# XXX: ``contour`` plots multiple lines. Should be fixed.
ListedColormap = self.matplotlib.colors.ListedColormap
colormap = ListedColormap(["white", s.line_color])
xarray, yarray, zarray, plot_type = points
if plot_type == 'contour':
ax.contour(xarray, yarray, zarray, cmap=colormap)
else:
ax.contourf(xarray, yarray, zarray, cmap=colormap)
else:
raise NotImplementedError(
'{} is not supported in the sympy plotting module '
'with matplotlib backend. Please report this issue.'
.format(ax))
# Customise the collections with the corresponding per-series
# options.
if hasattr(s, 'label'):
collection.set_label(s.label)
if s.is_line and s.line_color:
if isinstance(s.line_color, (float, int)) or isinstance(s.line_color, Callable):
color_array = s.get_color_array()
collection.set_array(color_array)
else:
collection.set_color(s.line_color)
if s.is_3Dsurface and s.surface_color:
if self.matplotlib.__version__ < "1.2.0": # TODO in the distant future remove this check
warnings.warn('The version of matplotlib is too old to use surface coloring.')
elif isinstance(s.surface_color, (float, int)) or isinstance(s.surface_color, Callable):
color_array = s.get_color_array()
color_array = color_array.reshape(color_array.size)
collection.set_array(color_array)
else:
collection.set_color(s.surface_color)
Axes3D = mpl_toolkits.mplot3d.Axes3D
if not isinstance(ax, Axes3D):
ax.autoscale_view(
scalex=ax.get_autoscalex_on(),
scaley=ax.get_autoscaley_on())
else:
# XXX Workaround for matplotlib issue
# https://github.com/matplotlib/matplotlib/issues/17130
if xlims:
xlims = np.array(xlims)
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1]))
ax.set_xlim(xlim)
else:
ax.set_xlim([0, 1])
if ylims:
ylims = np.array(ylims)
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1]))
ax.set_ylim(ylim)
else:
ax.set_ylim([0, 1])
if zlims:
zlims = np.array(zlims)
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1]))
ax.set_zlim(zlim)
else:
ax.set_zlim([0, 1])
# Set global options.
# TODO The 3D stuff
# XXX The order of those is important.
if parent.xscale and not isinstance(ax, Axes3D):
ax.set_xscale(parent.xscale)
if parent.yscale and not isinstance(ax, Axes3D):
ax.set_yscale(parent.yscale)
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
ax.set_autoscale_on(parent.autoscale)
if parent.axis_center:
val = parent.axis_center
if isinstance(ax, Axes3D):
pass
elif val == 'center':
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
elif val == 'auto':
xl, xh = ax.get_xlim()
yl, yh = ax.get_ylim()
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
ax.spines['left'].set_position(pos_left)
ax.spines['bottom'].set_position(pos_bottom)
else:
ax.spines['left'].set_position(('data', val[0]))
ax.spines['bottom'].set_position(('data', val[1]))
if not parent.axis:
ax.set_axis_off()
if parent.legend:
if ax.legend():
ax.legend_.set_visible(parent.legend)
if parent.margin:
ax.set_xmargin(parent.margin)
ax.set_ymargin(parent.margin)
if parent.title:
ax.set_title(parent.title)
if parent.xlabel:
ax.set_xlabel(parent.xlabel, position=(1, 0))
if parent.ylabel:
ax.set_ylabel(parent.ylabel, position=(0, 1))
if parent.annotations:
for a in parent.annotations:
ax.annotate(**a)
if parent.markers:
for marker in parent.markers:
# make a copy of the marker dictionary
# so that it doesn't get altered
m = marker.copy()
args = m.pop('args')
ax.plot(*args, **m)
if parent.rectangles:
for r in parent.rectangles:
rect = self.matplotlib.patches.Rectangle(**r)
ax.add_patch(rect)
if parent.fill:
ax.fill_between(**parent.fill)
# xlim and ylim shoulld always be set at last so that plot limits
# doesn't get altered during the process.
if parent.xlim:
ax.set_xlim(parent.xlim)
if parent.ylim:
ax.set_ylim(parent.ylim)
def process_series(self):
"""
Iterates over every ``Plot`` object and further calls
_process_series()
"""
parent = self.parent
if isinstance(parent, Plot):
series_list = [parent._series]
else:
series_list = parent._series
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
if isinstance(self.parent, PlotGrid):
parent = self.parent.args[i]
self._process_series(series, ax, parent)
def show(self):
self.process_series()
#TODO after fixing https://github.com/ipython/ipython/issues/1255
# you can uncomment the next line and remove the pyplot.show() call
#self.fig.show()
if _show:
self.fig.tight_layout()
self.plt.show()
else:
self.close()
def save(self, path):
self.process_series()
self.fig.savefig(path)
def close(self):
self.plt.close(self.fig)
class TextBackend(BaseBackend):
def __init__(self, parent):
super().__init__(parent)
def show(self):
if not _show:
return
if len(self.parent._series) != 1:
raise ValueError(
'The TextBackend supports only one graph per Plot.')
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
raise ValueError(
'The TextBackend supports only expressions over a 1D range')
else:
ser = self.parent._series[0]
textplot(ser.expr, ser.start, ser.end)
def close(self):
pass
class DefaultBackend(BaseBackend):
def __new__(cls, parent):
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(parent)
else:
return TextBackend(parent)
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
'default': DefaultBackend
}
##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################
def centers_of_segments(array):
np = import_module('numpy')
return np.mean(np.vstack((array[:-1], array[1:])), 0)
def centers_of_faces(array):
np = import_module('numpy')
return np.mean(np.dstack((array[:-1, :-1],
array[1:, :-1],
array[:-1, 1:],
array[:-1, :-1],
)), 2)
def flat(x, y, z, eps=1e-3):
"""Checks whether three points are almost collinear"""
np = import_module('numpy')
# Workaround plotting piecewise (#8577):
# workaround for `lambdify` in `.experimental_lambdify` fails
# to return numerical values in some cases. Lower-level fix
# in `lambdify` is possible.
vector_a = (x - y).astype(np.float)
vector_b = (z - y).astype(np.float)
dot_product = np.dot(vector_a, vector_b)
vector_a_norm = np.linalg.norm(vector_a)
vector_b_norm = np.linalg.norm(vector_b)
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
return abs(cos_theta + 1) < eps
def _matplotlib_list(interval_list):
"""
Returns lists for matplotlib ``fill`` command from a list of bounding
rectangular intervals
"""
xlist = []
ylist = []
if len(interval_list):
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
xlist.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
ylist.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
else:
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
xlist.extend([None, None, None, None])
ylist.extend([None, None, None, None])
return xlist, ylist
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, show=True, **kwargs):
"""Plots a function of a single variable as a curve.
Parameters
==========
args
The first argument is the expression representing the function
of single variable to be plotted.
The last argument is a 3-tuple denoting the range of the free
variable. e.g. ``(x, 0, 5)``
Typical usage examples are in the followings:
- Plotting a single expression with a single range.
``plot(expr, range, **kwargs)``
- Plotting a single expression with the default range (-10, 10).
``plot(expr, **kwargs)``
- Plotting multiple expressions with a single range.
``plot(expr1, expr2, ..., range, **kwargs)``
- Plotting multiple expressions with multiple ranges.
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
It is best practice to specify range explicitly because default
range may change in the future if a more advanced default range
detection algorithm is implemented.
show : bool, optional
The default value is set to ``True``. Set show to ``False`` and
the function will not display the plot. The returned instance of
the ``Plot`` class can then be used to save or display the plot
by calling the ``save()`` and ``show()`` methods respectively.
line_color : float, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
If there are multiple plots, then the same series series are
applied to all the plots. If you want to set these options
separately, you can index the ``Plot`` object returned and set
it.
title : str, optional
Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str, optional
Label for the x-axis.
ylabel : str, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
annotations : list, optional
A list of dictionaries specifying the type of annotation
required. The keys in the dictionary should be equivalent
to the arguments of the matplotlib's annotate() function.
markers : list, optional
A list of dictionaries specifying the type the markers required.
The keys in the dictionary should be equivalent to the arguments
of the matplotlib's plot() function along with the marker
related keyworded arguments.
rectangles : list, optional
A list of dictionaries specifying the dimensions of the
rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the matplotlib's
patches.Rectangle class.
fill : dict, optional
A dictionary specifying the type of color filling required in
the plot. The keys in the dictionary should be equivalent to the
arguments of the matplotlib's fill_between() function.
adaptive : bool, optional
The default value is set to ``True``. Set adaptive to ``False``
and specify ``nb_of_points`` if uniform sampling is required.
The plotting uses an adaptive algorithm which samples
recursively to accurately plot. The adaptive algorithm uses a
random point near the midpoint of two points that has to be
further sampled. Hence the same plots can appear slightly
different.
depth : int, optional
Recursion depth of the adaptive algorithm. A depth of value
``n`` samples a maximum of `2^{n}` points.
If the ``adaptive`` flag is set to ``False``, this will be
ignored.
nb_of_points : int, optional
Used when the ``adaptive`` is set to ``False``. The function
is uniformly sampled at ``nb_of_points`` number of points.
If the ``adaptive`` flag is set to ``True``, this will be
ignored.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
args = list(map(sympify, args))
free = set()
for a in args:
if isinstance(a, Expr):
free |= a.free_symbols
if len(free) > 1:
raise ValueError(
'The same variable should be used in all '
'univariate expressions being plotted.')
x = free.pop() if free else Symbol('x')
kwargs.setdefault('xlabel', x.name)
kwargs.setdefault('ylabel', 'f(%s)' % x.name)
series = []
plot_expr = check_arguments(args, 1, 1)
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, show=True, **kwargs):
"""
Plots a 2D parametric curve.
Parameters
==========
args
Common specifications are:
- Plotting a single parametric curve with a range
``plot_parametric((expr_x, expr_y), range)``
- Plotting multiple parametric curves with the same range
``plot_parametric((expr_x, expr_y), ..., range)``
- Plotting multiple parametric curves with different ranges
``plot_parametric((expr_x, expr_y, range), ...)``
``expr_x`` is the expression representing $x$ component of the
parametric function.
``expr_y`` is the expression representing $y$ component of the
parametric function.
``range`` is a 3-tuple denoting the parameter symbol, start and
stop. For example, ``(u, 0, 5)``.
If the range is not specified, then a default range of (-10, 10)
is used.
However, if the arguments are specified as
``(expr_x, expr_y, range), ...``, you must specify the ranges
for each expressions manually.
Default range may change in the future if a more advanced
algorithm is implemented.
adaptive : bool, optional
Specifies whether to use the adaptive sampling or not.
The default value is set to ``True``. Set adaptive to ``False``
and specify ``nb_of_points`` if uniform sampling is required.
depth : int, optional
The recursion depth of the adaptive algorithm. A depth of
value $n$ samples a maximum of $2^n$ points.
nb_of_points : int, optional
Used when the ``adaptive`` flag is set to ``False``.
Specifies the number of the points used for the uniform
sampling.
line_color : function
A function which returns a float.
Specifies the color of the plot.
See :class:`Plot` for more details.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str, optional
Label for the x-axis.
ylabel : str, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot_parametric
>>> u = symbols('u')
A parametric plot with a single expression:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
A parametric plot with multiple expressions with the same range:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
A parametric plot with multiple expressions with different ranges
for each curve:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
Notes
=====
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the curve. The adaptive algorithm uses a random point
near the midpoint of two points that has to be further sampled.
Hence, repeating the same plot command can give slightly different
results because of the random sampling.
If there are multiple plots, then the same optional arguments are
applied to all the plots drawn in the same canvas. If you want to
set these options separately, you can index the returned ``Plot``
object and set it.
For example, when you specify ``line_color`` once, it would be
applied simultaneously to both series.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import pi
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
If you want to specify the line color for the specific series, you
should index each item and apply the property manually.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p[0].line_color = 'red'
>>> p.show()
See Also
========
Plot, Parametric2DLineSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 2, 1)
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, show=True, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x`` : Expression representing the function along x.
``expr_y`` : Expression representing the function along y.
``expr_z`` : Expression representing the function along z.
``range``: ``(u, 0, 5)``, A 3-tuple denoting the range of the parameter
variable.
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
``nb_of_points``: The range is uniformly sampled at ``nb_of_points``
number of points.
Aesthetics:
``line_color``: function which returns a float. Specifies the color for the
plot. See ``sympy.plotting.Plot`` for more details.
``label``: str
The label to the plot. It will be used when called with ``legend=True``
to denote the function with the given label in the plot.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 3, 1)
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d(*args, show=True, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 1, 2)
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_surface(*args, show=True, **kwargs):
"""
Plots a 3D parametric surface plot.
Usage
=====
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr_x``: Expression representing the function along ``x``.
``expr_y``: Expression representing the function along ``y``.
``expr_z``: Expression representing the function along ``z``.
``range_u``: ``(u, 0, 5)``, A 3-tuple denoting the range of the ``u``
variable.
``range_v``: ``(v, 0, 5)``, A 3-tuple denoting the range of the v
variable.
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
``nb_of_points_u``: int. The ``u`` range is sampled uniformly at
``nb_of_points_v`` of points
``nb_of_points_y``: int. The ``v`` range is sampled uniformly at
``nb_of_points_y`` of points
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 3, 2)
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, show=True, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
``expr`` : Expression representing the function along x.
``range_x``: (x, 0, 5), A 3-tuple denoting the range of the x
variable.
``range_y``: (y, 0, 5), A 3-tuple denoting the range of the y
variable.
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
``nb_of_points_x``: int. The x range is sampled uniformly at
``nb_of_points_x`` of points.
``nb_of_points_y``: int. The y range is sampled uniformly at
``nb_of_points_y`` of points.
Aesthetics:
``surface_color``: Function which returns a float. Specifies the color for
the surface of the plot. See ``sympy.plotting.Plot`` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
``title`` : str. Title of the plot.
See Also
========
Plot, ContourSeries
"""
args = list(map(sympify, args))
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges)
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if not args:
return []
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*[range_expr for range_expr in args[
i:i + nb_of_free_symbols]])
plots = [expr + ranges for expr in exprs]
return plots
else:
# Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
# Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|
886501fa96f3ff825fbccde9823278d51eb00fd4cc4c562df1e234dabd7bef64 | from sympy.core.numbers import Float
from sympy.core.symbol import Dummy
from sympy.utilities.lambdify import lambdify
import math
def is_valid(x):
"""Check if a floating point number is valid"""
if x is None:
return False
if isinstance(x, complex):
return False
return not math.isinf(x) and not math.isnan(x)
def rescale(y, W, H, mi, ma):
"""Rescale the given array `y` to fit into the integer values
between `0` and `H-1` for the values between ``mi`` and ``ma``.
"""
y_new = list()
norm = ma - mi
offset = (ma + mi) / 2
for x in range(W):
if is_valid(y[x]):
normalized = (y[x] - offset) / norm
if not is_valid(normalized):
y_new.append(None)
else:
# XXX There are some test failings because of the
# difference between the python 2 and 3 rounding.
rescaled = Float((normalized*H + H/2) * (H-1)/H).round()
rescaled = int(rescaled)
y_new.append(rescaled)
else:
y_new.append(None)
return y_new
def linspace(start, stop, num):
return [start + (stop - start) * x / (num-1) for x in range(num)]
def textplot_str(expr, a, b, W=55, H=21):
"""Generator for the lines of the plot"""
free = expr.free_symbols
if len(free) > 1:
raise ValueError(
"The expression must have a single variable. (Got {})"
.format(free))
x = free.pop() if free else Dummy()
f = lambdify([x], expr)
a = float(a)
b = float(b)
# Calculate function values
x = linspace(a, b, W)
y = list()
for val in x:
try:
y.append(f(val))
# Not sure what exceptions to catch here or why...
except (ValueError, TypeError, ZeroDivisionError):
y.append(None)
# Normalize height to screen space
y_valid = list(filter(is_valid, y))
if y_valid:
ma = max(y_valid)
mi = min(y_valid)
if ma == mi:
if ma:
mi, ma = sorted([0, 2*ma])
else:
mi, ma = -1, 1
else:
mi, ma = -1, 1
y_range = ma - mi
precision = math.floor(math.log(y_range, 10)) - 1
precision *= -1
mi = round(mi, precision)
ma = round(ma, precision)
y = rescale(y, W, H, mi, ma)
y_bins = linspace(mi, ma, H)
# Draw plot
margin = 7
for h in range(H - 1, -1, -1):
s = [' '] * W
for i in range(W):
if y[i] == h:
if (i == 0 or y[i - 1] == h - 1) and (i == W - 1 or y[i + 1] == h + 1):
s[i] = '/'
elif (i == 0 or y[i - 1] == h + 1) and (i == W - 1 or y[i + 1] == h - 1):
s[i] = '\\'
else:
s[i] = '.'
if h == 0:
for i in range(W):
s[i] = '_'
# Print y values
if h in (0, H//2, H - 1):
prefix = ("%g" % y_bins[h]).rjust(margin)[:margin]
else:
prefix = " "*margin
s = "".join(s)
if h == H//2:
s = s.replace(" ", "-")
yield prefix + " |" + s
# Print x values
bottom = " " * (margin + 2)
bottom += ("%g" % x[0]).ljust(W//2)
if W % 2 == 1:
bottom += ("%g" % x[W//2]).ljust(W//2)
else:
bottom += ("%g" % x[W//2]).ljust(W//2-1)
bottom += "%g" % x[-1]
yield bottom
def textplot(expr, a, b, W=55, H=21):
r"""
Print a crude ASCII art plot of the SymPy expression 'expr' (which
should contain a single symbol, e.g. x or something else) over the
interval [a, b].
Examples
========
>>> from sympy import Symbol, sin
>>> from sympy.plotting import textplot
>>> t = Symbol('t')
>>> textplot(sin(t)*t, 0, 15)
14 | ...
| .
| .
| .
| .
| ...
| / . .
| /
| / .
| . . .
1.5 |----.......--------------------------------------------
|.... \ . .
| \ / .
| .. / .
| \ / .
| ....
| .
| . .
|
| . .
-11 |_______________________________________________________
0 7.5 15
"""
for line in textplot_str(expr, a, b, W, H):
print(line)
|
94978c7437afeced615b702ffe6c722a544243ef16f05f8cdc7cb4a4cca9f122 | """ rewrite of lambdify - This stuff is not stable at all.
It is for internal use in the new plotting module.
It may (will! see the Q'n'A in the source) be rewritten.
It's completely self contained. Especially it does not use lambdarepr.
It does not aim to replace the current lambdify. Most importantly it will never
ever support anything else than sympy expressions (no Matrices, dictionaries
and so on).
"""
import re
from sympy import Symbol, NumberSymbol, I, zoo, oo
from sympy.core.compatibility import exec_
from sympy.utilities.iterables import numbered_symbols
# We parse the expression string into a tree that identifies functions. Then
# we translate the names of the functions and we translate also some strings
# that are not names of functions (all this according to translation
# dictionaries).
# If the translation goes to another module (like numpy) the
# module is imported and 'func' is translated to 'module.func'.
# If a function can not be translated, the inner nodes of that part of the
# tree are not translated. So if we have Integral(sqrt(x)), sqrt is not
# translated to np.sqrt and the Integral does not crash.
# A namespace for all this is generated by crawling the (func, args) tree of
# the expression. The creation of this namespace involves many ugly
# workarounds.
# The namespace consists of all the names needed for the sympy expression and
# all the name of modules used for translation. Those modules are imported only
# as a name (import numpy as np) in order to keep the namespace small and
# manageable.
# Please, if there is a bug, do not try to fix it here! Rewrite this by using
# the method proposed in the last Q'n'A below. That way the new function will
# work just as well, be just as simple, but it wont need any new workarounds.
# If you insist on fixing it here, look at the workarounds in the function
# sympy_expression_namespace and in lambdify.
# Q: Why are you not using python abstract syntax tree?
# A: Because it is more complicated and not much more powerful in this case.
# Q: What if I have Symbol('sin') or g=Function('f')?
# A: You will break the algorithm. We should use srepr to defend against this?
# The problem with Symbol('sin') is that it will be printed as 'sin'. The
# parser will distinguish it from the function 'sin' because functions are
# detected thanks to the opening parenthesis, but the lambda expression won't
# understand the difference if we have also the sin function.
# The solution (complicated) is to use srepr and maybe ast.
# The problem with the g=Function('f') is that it will be printed as 'f' but in
# the global namespace we have only 'g'. But as the same printer is used in the
# constructor of the namespace there will be no problem.
# Q: What if some of the printers are not printing as expected?
# A: The algorithm wont work. You must use srepr for those cases. But even
# srepr may not print well. All problems with printers should be considered
# bugs.
# Q: What about _imp_ functions?
# A: Those are taken care for by evalf. A special case treatment will work
# faster but it's not worth the code complexity.
# Q: Will ast fix all possible problems?
# A: No. You will always have to use some printer. Even srepr may not work in
# some cases. But if the printer does not work, that should be considered a
# bug.
# Q: Is there same way to fix all possible problems?
# A: Probably by constructing our strings ourself by traversing the (func,
# args) tree and creating the namespace at the same time. That actually sounds
# good.
from sympy.external import import_module
import warnings
#TODO debugging output
class vectorized_lambdify:
""" Return a sufficiently smart, vectorized and lambdified function.
Returns only reals.
This function uses experimental_lambdify to created a lambdified
expression ready to be used with numpy. Many of the functions in sympy
are not implemented in numpy so in some cases we resort to python cmath or
even to evalf.
The following translations are tried:
only numpy complex
- on errors raised by sympy trying to work with ndarray:
only python cmath and then vectorize complex128
When using python cmath there is no need for evalf or float/complex
because python cmath calls those.
This function never tries to mix numpy directly with evalf because numpy
does not understand sympy Float. If this is needed one can use the
float_wrap_evalf/complex_wrap_evalf options of experimental_lambdify or
better one can be explicit about the dtypes that numpy works with.
Check numpy bug http://projects.scipy.org/numpy/ticket/1013 to know what
types of errors to expect.
"""
def __init__(self, args, expr):
self.args = args
self.expr = expr
self.np = import_module('numpy')
self.lambda_func_1 = experimental_lambdify(
args, expr, use_np=True)
self.vector_func_1 = self.lambda_func_1
self.lambda_func_2 = experimental_lambdify(
args, expr, use_python_cmath=True)
self.vector_func_2 = self.np.vectorize(
self.lambda_func_2, otypes=[self.np.complex])
self.vector_func = self.vector_func_1
self.failure = False
def __call__(self, *args):
np = self.np
try:
temp_args = (np.array(a, dtype=np.complex) for a in args)
results = self.vector_func(*temp_args)
results = np.ma.masked_where(
np.abs(results.imag) > 1e-7 * np.abs(results),
results.real, copy=False)
return results
except ValueError:
if self.failure:
raise
self.failure = True
self.vector_func = self.vector_func_2
warnings.warn(
'The evaluation of the expression is problematic. '
'We are trying a failback method that may still work. '
'Please report this as a bug.')
return self.__call__(*args)
class lambdify:
"""Returns the lambdified function.
This function uses experimental_lambdify to create a lambdified
expression. It uses cmath to lambdify the expression. If the function
is not implemented in python cmath, python cmath calls evalf on those
functions.
"""
def __init__(self, args, expr):
self.args = args
self.expr = expr
self.lambda_func_1 = experimental_lambdify(
args, expr, use_python_cmath=True, use_evalf=True)
self.lambda_func_2 = experimental_lambdify(
args, expr, use_python_math=True, use_evalf=True)
self.lambda_func_3 = experimental_lambdify(
args, expr, use_evalf=True, complex_wrap_evalf=True)
self.lambda_func = self.lambda_func_1
self.failure = False
def __call__(self, args):
try:
#The result can be sympy.Float. Hence wrap it with complex type.
result = complex(self.lambda_func(args))
if abs(result.imag) > 1e-7 * abs(result):
return None
return result.real
except (ZeroDivisionError, TypeError) as e:
if isinstance(e, ZeroDivisionError):
return None
if self.failure:
raise e
if self.lambda_func == self.lambda_func_1:
self.lambda_func = self.lambda_func_2
return self.__call__(args)
self.failure = True
self.lambda_func = self.lambda_func_3
warnings.warn(
'The evaluation of the expression is problematic. '
'We are trying a failback method that may still work. '
'Please report this as a bug.')
return self.__call__(args)
def experimental_lambdify(*args, **kwargs):
l = Lambdifier(*args, **kwargs)
return l
class Lambdifier:
def __init__(self, args, expr, print_lambda=False, use_evalf=False,
float_wrap_evalf=False, complex_wrap_evalf=False,
use_np=False, use_python_math=False, use_python_cmath=False,
use_interval=False):
self.print_lambda = print_lambda
self.use_evalf = use_evalf
self.float_wrap_evalf = float_wrap_evalf
self.complex_wrap_evalf = complex_wrap_evalf
self.use_np = use_np
self.use_python_math = use_python_math
self.use_python_cmath = use_python_cmath
self.use_interval = use_interval
# Constructing the argument string
# - check
if not all([isinstance(a, Symbol) for a in args]):
raise ValueError('The arguments must be Symbols.')
# - use numbered symbols
syms = numbered_symbols(exclude=expr.free_symbols)
newargs = [next(syms) for _ in args]
expr = expr.xreplace(dict(zip(args, newargs)))
argstr = ', '.join([str(a) for a in newargs])
del syms, newargs, args
# Constructing the translation dictionaries and making the translation
self.dict_str = self.get_dict_str()
self.dict_fun = self.get_dict_fun()
exprstr = str(expr)
newexpr = self.tree2str_translate(self.str2tree(exprstr))
# Constructing the namespaces
namespace = {}
namespace.update(self.sympy_atoms_namespace(expr))
namespace.update(self.sympy_expression_namespace(expr))
# XXX Workaround
# Ugly workaround because Pow(a,Half) prints as sqrt(a)
# and sympy_expression_namespace can not catch it.
from sympy import sqrt
namespace.update({'sqrt': sqrt})
namespace.update({'Eq': lambda x, y: x == y})
namespace.update({'Ne': lambda x, y: x != y})
# End workaround.
if use_python_math:
namespace.update({'math': __import__('math')})
if use_python_cmath:
namespace.update({'cmath': __import__('cmath')})
if use_np:
try:
namespace.update({'np': __import__('numpy')})
except ImportError:
raise ImportError(
'experimental_lambdify failed to import numpy.')
if use_interval:
namespace.update({'imath': __import__(
'sympy.plotting.intervalmath', fromlist=['intervalmath'])})
namespace.update({'math': __import__('math')})
# Construct the lambda
if self.print_lambda:
print(newexpr)
eval_str = 'lambda %s : ( %s )' % (argstr, newexpr)
self.eval_str = eval_str
exec_("from __future__ import division; MYNEWLAMBDA = %s" % eval_str, namespace)
self.lambda_func = namespace['MYNEWLAMBDA']
def __call__(self, *args, **kwargs):
return self.lambda_func(*args, **kwargs)
##############################################################################
# Dicts for translating from sympy to other modules
##############################################################################
###
# builtins
###
# Functions with different names in builtins
builtin_functions_different = {
'Min': 'min',
'Max': 'max',
'Abs': 'abs',
}
# Strings that should be translated
builtin_not_functions = {
'I': '1j',
# 'oo': '1e400',
}
###
# numpy
###
# Functions that are the same in numpy
numpy_functions_same = [
'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'exp', 'log',
'sqrt', 'floor', 'conjugate',
]
# Functions with different names in numpy
numpy_functions_different = {
"acos": "arccos",
"acosh": "arccosh",
"arg": "angle",
"asin": "arcsin",
"asinh": "arcsinh",
"atan": "arctan",
"atan2": "arctan2",
"atanh": "arctanh",
"ceiling": "ceil",
"im": "imag",
"ln": "log",
"Max": "amax",
"Min": "amin",
"re": "real",
"Abs": "abs",
}
# Strings that should be translated
numpy_not_functions = {
'pi': 'np.pi',
'oo': 'np.inf',
'E': 'np.e',
}
###
# python math
###
# Functions that are the same in math
math_functions_same = [
'sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'atan2',
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
'exp', 'log', 'erf', 'sqrt', 'floor', 'factorial', 'gamma',
]
# Functions with different names in math
math_functions_different = {
'ceiling': 'ceil',
'ln': 'log',
'loggamma': 'lgamma'
}
# Strings that should be translated
math_not_functions = {
'pi': 'math.pi',
'E': 'math.e',
}
###
# python cmath
###
# Functions that are the same in cmath
cmath_functions_same = [
'sin', 'cos', 'tan', 'asin', 'acos', 'atan',
'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh',
'exp', 'log', 'sqrt',
]
# Functions with different names in cmath
cmath_functions_different = {
'ln': 'log',
'arg': 'phase',
}
# Strings that should be translated
cmath_not_functions = {
'pi': 'cmath.pi',
'E': 'cmath.e',
}
###
# intervalmath
###
interval_not_functions = {
'pi': 'math.pi',
'E': 'math.e'
}
interval_functions_same = [
'sin', 'cos', 'exp', 'tan', 'atan', 'log',
'sqrt', 'cosh', 'sinh', 'tanh', 'floor',
'acos', 'asin', 'acosh', 'asinh', 'atanh',
'Abs', 'And', 'Or'
]
interval_functions_different = {
'Min': 'imin',
'Max': 'imax',
'ceiling': 'ceil',
}
###
# mpmath, etc
###
#TODO
###
# Create the final ordered tuples of dictionaries
###
# For strings
def get_dict_str(self):
dict_str = dict(self.builtin_not_functions)
if self.use_np:
dict_str.update(self.numpy_not_functions)
if self.use_python_math:
dict_str.update(self.math_not_functions)
if self.use_python_cmath:
dict_str.update(self.cmath_not_functions)
if self.use_interval:
dict_str.update(self.interval_not_functions)
return dict_str
# For functions
def get_dict_fun(self):
dict_fun = dict(self.builtin_functions_different)
if self.use_np:
for s in self.numpy_functions_same:
dict_fun[s] = 'np.' + s
for k, v in self.numpy_functions_different.items():
dict_fun[k] = 'np.' + v
if self.use_python_math:
for s in self.math_functions_same:
dict_fun[s] = 'math.' + s
for k, v in self.math_functions_different.items():
dict_fun[k] = 'math.' + v
if self.use_python_cmath:
for s in self.cmath_functions_same:
dict_fun[s] = 'cmath.' + s
for k, v in self.cmath_functions_different.items():
dict_fun[k] = 'cmath.' + v
if self.use_interval:
for s in self.interval_functions_same:
dict_fun[s] = 'imath.' + s
for k, v in self.interval_functions_different.items():
dict_fun[k] = 'imath.' + v
return dict_fun
##############################################################################
# The translator functions, tree parsers, etc.
##############################################################################
def str2tree(self, exprstr):
"""Converts an expression string to a tree.
Functions are represented by ('func_name(', tree_of_arguments).
Other expressions are (head_string, mid_tree, tail_str).
Expressions that do not contain functions are directly returned.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy import Integral, sin
>>> from sympy.plotting.experimental_lambdify import Lambdifier
>>> str2tree = Lambdifier([x], x).str2tree
>>> str2tree(str(Integral(x, (x, 1, y))))
('', ('Integral(', 'x, (x, 1, y)'), ')')
>>> str2tree(str(x+y))
'x + y'
>>> str2tree(str(x+y*sin(z)+1))
('x + y*', ('sin(', 'z'), ') + 1')
>>> str2tree('sin(y*(y + 1.1) + (sin(y)))')
('', ('sin(', ('y*(y + 1.1) + (', ('sin(', 'y'), '))')), ')')
"""
#matches the first 'function_name('
first_par = re.search(r'(\w+\()', exprstr)
if first_par is None:
return exprstr
else:
start = first_par.start()
end = first_par.end()
head = exprstr[:start]
func = exprstr[start:end]
tail = exprstr[end:]
count = 0
for i, c in enumerate(tail):
if c == '(':
count += 1
elif c == ')':
count -= 1
if count == -1:
break
func_tail = self.str2tree(tail[:i])
tail = self.str2tree(tail[i:])
return (head, (func, func_tail), tail)
@classmethod
def tree2str(cls, tree):
"""Converts a tree to string without translations.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy import sin
>>> from sympy.plotting.experimental_lambdify import Lambdifier
>>> str2tree = Lambdifier([x], x).str2tree
>>> tree2str = Lambdifier([x], x).tree2str
>>> tree2str(str2tree(str(x+y*sin(z)+1)))
'x + y*sin(z) + 1'
"""
if isinstance(tree, str):
return tree
else:
return ''.join(map(cls.tree2str, tree))
def tree2str_translate(self, tree):
"""Converts a tree to string with translations.
Function names are translated by translate_func.
Other strings are translated by translate_str.
"""
if isinstance(tree, str):
return self.translate_str(tree)
elif isinstance(tree, tuple) and len(tree) == 2:
return self.translate_func(tree[0][:-1], tree[1])
else:
return ''.join([self.tree2str_translate(t) for t in tree])
def translate_str(self, estr):
"""Translate substrings of estr using in order the dictionaries in
dict_tuple_str."""
for pattern, repl in self.dict_str.items():
estr = re.sub(pattern, repl, estr)
return estr
def translate_func(self, func_name, argtree):
"""Translate function names and the tree of arguments.
If the function name is not in the dictionaries of dict_tuple_fun then the
function is surrounded by a float((...).evalf()).
The use of float is necessary as np.<function>(sympy.Float(..)) raises an
error."""
if func_name in self.dict_fun:
new_name = self.dict_fun[func_name]
argstr = self.tree2str_translate(argtree)
return new_name + '(' + argstr
elif func_name in ['Eq', 'Ne']:
op = {'Eq': '==', 'Ne': '!='}
return "(lambda x, y: x {} y)({}".format(op[func_name], self.tree2str_translate(argtree))
else:
template = '(%s(%s)).evalf(' if self.use_evalf else '%s(%s'
if self.float_wrap_evalf:
template = 'float(%s)' % template
elif self.complex_wrap_evalf:
template = 'complex(%s)' % template
# Wrapping should only happen on the outermost expression, which
# is the only thing we know will be a number.
float_wrap_evalf = self.float_wrap_evalf
complex_wrap_evalf = self.complex_wrap_evalf
self.float_wrap_evalf = False
self.complex_wrap_evalf = False
ret = template % (func_name, self.tree2str_translate(argtree))
self.float_wrap_evalf = float_wrap_evalf
self.complex_wrap_evalf = complex_wrap_evalf
return ret
##############################################################################
# The namespace constructors
##############################################################################
@classmethod
def sympy_expression_namespace(cls, expr):
"""Traverses the (func, args) tree of an expression and creates a sympy
namespace. All other modules are imported only as a module name. That way
the namespace is not polluted and rests quite small. It probably causes much
more variable lookups and so it takes more time, but there are no tests on
that for the moment."""
if expr is None:
return {}
else:
funcname = str(expr.func)
# XXX Workaround
# Here we add an ugly workaround because str(func(x))
# is not always the same as str(func). Eg
# >>> str(Integral(x))
# "Integral(x)"
# >>> str(Integral)
# "<class 'sympy.integrals.integrals.Integral'>"
# >>> str(sqrt(x))
# "sqrt(x)"
# >>> str(sqrt)
# "<function sqrt at 0x3d92de8>"
# >>> str(sin(x))
# "sin(x)"
# >>> str(sin)
# "sin"
# Either one of those can be used but not all at the same time.
# The code considers the sin example as the right one.
regexlist = [
r'<class \'sympy[\w.]*?.([\w]*)\'>$',
# the example Integral
r'<function ([\w]*) at 0x[\w]*>$', # the example sqrt
]
for r in regexlist:
m = re.match(r, funcname)
if m is not None:
funcname = m.groups()[0]
# End of the workaround
# XXX debug: print funcname
args_dict = {}
for a in expr.args:
if (isinstance(a, Symbol) or
isinstance(a, NumberSymbol) or
a in [I, zoo, oo]):
continue
else:
args_dict.update(cls.sympy_expression_namespace(a))
args_dict.update({funcname: expr.func})
return args_dict
@staticmethod
def sympy_atoms_namespace(expr):
"""For no real reason this function is separated from
sympy_expression_namespace. It can be moved to it."""
atoms = expr.atoms(Symbol, NumberSymbol, I, zoo, oo)
d = {}
for a in atoms:
# XXX debug: print 'atom:' + str(a)
d[str(a)] = a
return d
|
db7b687551b807b3bc5722af5758922d49d686a29f3ef8aa79f11303341186ad | from sympy import (S, Symbol, Interval, exp, Or,
symbols, Eq, cos, And, Tuple, integrate, oo, sin, Sum, Basic, Indexed,
DiracDelta, Lambda, log, pi, FallingFactorial, Rational, Matrix)
from sympy.stats import (Die, Normal, Exponential, FiniteRV, P, E, H, variance,
density, given, independent, dependent, where, pspace, GaussianUnitaryEnsemble,
random_symbols, sample, Geometric, factorial_moment, Binomial, Hypergeometric,
DiscreteUniform, Poisson, characteristic_function, moment_generating_function,
BernoulliProcess, Variance, Expectation, Probability, Covariance, covariance)
from sympy.stats.rv import (IndependentProductPSpace, rs_swap, Density, NamedArgsMixin,
RandomSymbol, sample_iter, PSpace, is_random, RandomIndexedSymbol, RandomMatrixSymbol)
from sympy.testing.pytest import raises, skip, XFAIL, ignore_warnings
from sympy.external import import_module
from sympy.core.numbers import comp
from sympy.stats.frv_types import BernoulliDistribution
def test_where():
X, Y = Die('X'), Die('Y')
Z = Normal('Z', 0, 1)
assert where(Z**2 <= 1).set == Interval(-1, 1)
assert where(Z**2 <= 1).as_boolean() == Interval(-1, 1).as_relational(Z.symbol)
assert where(And(X > Y, Y > 4)).as_boolean() == And(
Eq(X.symbol, 6), Eq(Y.symbol, 5))
assert len(where(X < 3).set) == 2
assert 1 in where(X < 3).set
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
XX = given(X, And(X**2 <= 1, X >= 0))
assert XX.pspace.domain.set == Interval(0, 1)
assert XX.pspace.domain.as_boolean() == \
And(0 <= X.symbol, X.symbol**2 <= 1, -oo < X.symbol, X.symbol < oo)
with raises(TypeError):
XX = given(X, X + 3)
def test_random_symbols():
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
assert set(random_symbols(2*X + 1)) == {X}
assert set(random_symbols(2*X + Y)) == {X, Y}
assert set(random_symbols(2*X + Y.symbol)) == {X}
assert set(random_symbols(2)) == set()
def test_characteristic_function():
# Imports I from sympy
from sympy import I
X = Normal('X',0,1)
Y = DiscreteUniform('Y', [1,2,7])
Z = Poisson('Z', 2)
t = symbols('_t')
P = Lambda(t, exp(-t**2/2))
Q = Lambda(t, exp(7*t*I)/3 + exp(2*t*I)/3 + exp(t*I)/3)
R = Lambda(t, exp(2 * exp(t*I) - 2))
assert characteristic_function(X).dummy_eq(P)
assert characteristic_function(Y).dummy_eq(Q)
assert characteristic_function(Z).dummy_eq(R)
def test_moment_generating_function():
X = Normal('X',0,1)
Y = DiscreteUniform('Y', [1,2,7])
Z = Poisson('Z', 2)
t = symbols('_t')
P = Lambda(t, exp(t**2/2))
Q = Lambda(t, (exp(7*t)/3 + exp(2*t)/3 + exp(t)/3))
R = Lambda(t, exp(2 * exp(t) - 2))
assert moment_generating_function(X).dummy_eq(P)
assert moment_generating_function(Y).dummy_eq(Q)
assert moment_generating_function(Z).dummy_eq(R)
def test_sample_iter():
X = Normal('X',0,1)
Y = DiscreteUniform('Y', [1, 2, 7])
Z = Poisson('Z', 2)
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
expr = X**2 + 3
iterator = sample_iter(expr)
expr2 = Y**2 + 5*Y + 4
iterator2 = sample_iter(expr2)
expr3 = Z**3 + 4
iterator3 = sample_iter(expr3)
def is_iterator(obj):
if (
hasattr(obj, '__iter__') and
(hasattr(obj, 'next') or
hasattr(obj, '__next__')) and
callable(obj.__iter__) and
obj.__iter__() is obj
):
return True
else:
return False
assert is_iterator(iterator)
assert is_iterator(iterator2)
assert is_iterator(iterator3)
def test_pspace():
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
x = Symbol('x')
raises(ValueError, lambda: pspace(5 + 3))
raises(ValueError, lambda: pspace(x < 1))
assert pspace(X) == X.pspace
assert pspace(2*X + 1) == X.pspace
assert pspace(2*X + Y) == IndependentProductPSpace(Y.pspace, X.pspace)
def test_rs_swap():
X = Normal('x', 0, 1)
Y = Exponential('y', 1)
XX = Normal('x', 0, 2)
YY = Normal('y', 0, 3)
expr = 2*X + Y
assert expr.subs(rs_swap((X, Y), (YY, XX))) == 2*XX + YY
def test_RandomSymbol():
X = Normal('x', 0, 1)
Y = Normal('x', 0, 2)
assert X.symbol == Y.symbol
assert X != Y
assert X.name == X.symbol.name
X = Normal('lambda', 0, 1) # make sure we can use protected terms
X = Normal('Lambda', 0, 1) # make sure we can use SymPy terms
def test_RandomSymbol_diff():
X = Normal('x', 0, 1)
assert (2*X).diff(X)
def test_random_symbol_no_pspace():
x = RandomSymbol(Symbol('x'))
assert x.pspace == PSpace()
def test_overlap():
X = Normal('x', 0, 1)
Y = Normal('x', 0, 2)
raises(ValueError, lambda: P(X > Y))
def test_IndependentProductPSpace():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
px = X.pspace
py = Y.pspace
assert pspace(X + Y) == IndependentProductPSpace(px, py)
assert pspace(X + Y) == IndependentProductPSpace(py, px)
def test_E():
assert E(5) == 5
def test_H():
X = Normal('X', 0, 1)
D = Die('D', sides = 4)
G = Geometric('G', 0.5)
assert H(X, X > 0) == -log(2)/2 + S.Half + log(pi)/2
assert H(D, D > 2) == log(2)
assert comp(H(G).evalf().round(2), 1.39)
def test_Sample():
X = Die('X', 6)
Y = Normal('Y', 0, 1)
z = Symbol('z', integer=True)
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert next(sample(X)) in [1, 2, 3, 4, 5, 6]
assert isinstance(next(sample(X + Y)), float)
assert P(X + Y > 0, Y < 0, numsamples=10).is_number
assert E(X + Y, numsamples=10).is_number
assert E(X**2 + Y, numsamples=10).is_number
assert E((X + Y)**2, numsamples=10).is_number
assert variance(X + Y, numsamples=10).is_number
raises(TypeError, lambda: P(Y > z, numsamples=5))
assert P(sin(Y) <= 1, numsamples=10) == 1
assert P(sin(Y) <= 1, cos(Y) < 1, numsamples=10) == 1
assert all(i in range(1, 7) for i in density(X, numsamples=10))
assert all(i in range(4, 7) for i in density(X, X>3, numsamples=10))
@XFAIL
def test_samplingE():
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
Y = Normal('Y', 0, 1)
z = Symbol('z', integer=True)
assert E(Sum(1/z**Y, (z, 1, oo)), Y > 2, numsamples=3).is_number
def test_given():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
A = given(X, True)
B = given(X, Y > 2)
assert X == A == B
def test_factorial_moment():
X = Poisson('X', 2)
Y = Binomial('Y', 2, S.Half)
Z = Hypergeometric('Z', 4, 2, 2)
assert factorial_moment(X, 2) == 4
assert factorial_moment(Y, 2) == S.Half
assert factorial_moment(Z, 2) == Rational(1, 3)
x, y, z, l = symbols('x y z l')
Y = Binomial('Y', 2, y)
Z = Hypergeometric('Z', 10, 2, 3)
assert factorial_moment(Y, l) == y**2*FallingFactorial(
2, l) + 2*y*(1 - y)*FallingFactorial(1, l) + (1 - y)**2*\
FallingFactorial(0, l)
assert factorial_moment(Z, l) == 7*FallingFactorial(0, l)/\
15 + 7*FallingFactorial(1, l)/15 + FallingFactorial(2, l)/15
def test_dependence():
X, Y = Die('X'), Die('Y')
assert independent(X, 2*Y)
assert not dependent(X, 2*Y)
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
assert independent(X, Y)
assert dependent(X, 2*X)
# Create a dependency
XX, YY = given(Tuple(X, Y), Eq(X + Y, 3))
assert dependent(XX, YY)
def test_dependent_finite():
X, Y = Die('X'), Die('Y')
# Dependence testing requires symbolic conditions which currently break
# finite random variables
assert dependent(X, Y + X)
XX, YY = given(Tuple(X, Y), X + Y > 5) # Create a dependency
assert dependent(XX, YY)
def test_normality():
X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
x = Symbol('x', real=True, finite=True)
z = Symbol('z', real=True, finite=True)
dens = density(X - Y, Eq(X + Y, z))
assert integrate(dens(x), (x, -oo, oo)) == 1
def test_Density():
X = Die('X', 6)
d = Density(X)
assert d.doit() == density(X)
def test_NamedArgsMixin():
class Foo(Basic, NamedArgsMixin):
_argnames = 'foo', 'bar'
a = Foo(1, 2)
assert a.foo == 1
assert a.bar == 2
raises(AttributeError, lambda: a.baz)
class Bar(Basic, NamedArgsMixin):
pass
raises(AttributeError, lambda: Bar(1, 2).foo)
def test_density_constant():
assert density(3)(2) == 0
assert density(3)(3) == DiracDelta(0)
def test_real():
x = Normal('x', 0, 1)
assert x.is_real
def test_issue_10052():
X = Exponential('X', 3)
assert P(X < oo) == 1
assert P(X > oo) == 0
assert P(X < 2, X > oo) == 0
assert P(X < oo, X > oo) == 0
assert P(X < oo, X > 2) == 1
assert P(X < 3, X == 2) == 0
raises(ValueError, lambda: P(1))
raises(ValueError, lambda: P(X < 1, 2))
def test_issue_11934():
density = {0: .5, 1: .5}
X = FiniteRV('X', density)
assert E(X) == 0.5
assert P( X>= 2) == 0
def test_issue_8129():
X = Exponential('X', 4)
assert P(X >= X) == 1
assert P(X > X) == 0
assert P(X > X+1) == 0
def test_issue_12237():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
U = P(X > 0, X)
V = P(Y < 0, X)
W = P(X + Y > 0, X)
assert W == P(X + Y > 0, X)
assert U == BernoulliDistribution(S.Half, S.Zero, S.One)
assert V == S.Half
def test_is_random():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 1)
a, b = symbols('a, b')
G = GaussianUnitaryEnsemble('U', 2)
B = BernoulliProcess('B', 0.9)
assert not is_random(a)
assert not is_random(a + b)
assert not is_random(a * b)
assert not is_random(Matrix([a**2, b**2]))
assert is_random(X)
assert is_random(X**2 + Y)
assert is_random(Y + b**2)
assert is_random(Y > 5)
assert is_random(B[3] < 1)
assert is_random(G)
assert is_random(X * Y * B[1])
assert is_random(Matrix([[X, B[2]], [G, Y]]))
assert is_random(Eq(X, 4))
def test_issue_12283():
x = symbols('x')
X = RandomSymbol(x)
Y = RandomSymbol('Y')
Z = RandomMatrixSymbol('Z', 2, 1)
W = RandomMatrixSymbol('W', 2, 1)
RI = RandomIndexedSymbol(Indexed('RI', 3))
assert pspace(Z) == PSpace()
assert pspace(RI) == PSpace()
assert pspace(X) == PSpace()
assert E(X) == Expectation(X)
assert P(Y > 3) == Probability(Y > 3)
assert variance(X) == Variance(X)
assert variance(RI) == Variance(RI)
assert covariance(X, Y) == Covariance(X, Y)
assert covariance(W, Z) == Covariance(W, Z)
def test_issue_6810():
X = Die('X', 6)
Y = Normal('Y', 0, 1)
assert P(Eq(X, 2)) == S(1)/6
assert P(Eq(Y, 0)) == 0
assert P(Or(X > 2, X < 3)) == 1
assert P(And(X > 3, X > 2)) == S(1)/2
|
ed6cc7ecc95712c3d3fc94bf391056d3bdb82d8bb5bb1544370fef9ca8e6dfe0 | from sympy import (FiniteSet, S, Symbol, sqrt, nan, beta, Rational, symbols,
simplify, Eq, cos, And, Tuple, Or, Dict, sympify, binomial,
cancel, exp, I, Piecewise, Sum, Dummy)
from sympy.external import import_module
from sympy.matrices import Matrix
from sympy.stats import (DiscreteUniform, Die, Bernoulli, Coin, Binomial, BetaBinomial,
Hypergeometric, Rademacher, P, E, variance, covariance, skewness,
sample, density, where, FiniteRV, pspace, cdf, correlation, moment,
cmoment, smoment, characteristic_function, moment_generating_function,
quantile, kurtosis, median, coskewness)
from sympy.stats.frv_types import DieDistribution, BinomialDistribution, \
HypergeometricDistribution
from sympy.stats.rv import Density
from sympy.testing.pytest import raises, skip, ignore_warnings
def BayesTest(A, B):
assert P(A, B) == P(And(A, B)) / P(B)
assert P(A, B) == P(B, A) * P(A) / P(B)
def test_discreteuniform():
# Symbolic
a, b, c, t = symbols('a b c t')
X = DiscreteUniform('X', [a, b, c])
assert E(X) == (a + b + c)/3
assert simplify(variance(X)
- ((a**2 + b**2 + c**2)/3 - (a/3 + b/3 + c/3)**2)) == 0
assert P(Eq(X, a)) == P(Eq(X, b)) == P(Eq(X, c)) == S('1/3')
Y = DiscreteUniform('Y', range(-5, 5))
# Numeric
assert E(Y) == S('-1/2')
assert variance(Y) == S('33/4')
assert median(Y) == FiniteSet(-1, 0)
for x in range(-5, 5):
assert P(Eq(Y, x)) == S('1/10')
assert P(Y <= x) == S(x + 6)/10
assert P(Y >= x) == S(5 - x)/10
assert dict(density(Die('D', 6)).items()) == \
dict(density(DiscreteUniform('U', range(1, 7))).items())
assert characteristic_function(X)(t) == exp(I*a*t)/3 + exp(I*b*t)/3 + exp(I*c*t)/3
assert moment_generating_function(X)(t) == exp(a*t)/3 + exp(b*t)/3 + exp(c*t)/3
# issue 18611
raises(ValueError, lambda: DiscreteUniform('Z', [a, a, a, b, b, c]))
def test_dice():
# TODO: Make iid method!
X, Y, Z = Die('X', 6), Die('Y', 6), Die('Z', 6)
a, b, t, p = symbols('a b t p')
assert E(X) == 3 + S.Half
assert variance(X) == Rational(35, 12)
assert E(X + Y) == 7
assert E(X + X) == 7
assert E(a*X + b) == a*E(X) + b
assert variance(X + Y) == variance(X) + variance(Y) == cmoment(X + Y, 2)
assert variance(X + X) == 4 * variance(X) == cmoment(X + X, 2)
assert cmoment(X, 0) == 1
assert cmoment(4*X, 3) == 64*cmoment(X, 3)
assert covariance(X, Y) is S.Zero
assert covariance(X, X + Y) == variance(X)
assert density(Eq(cos(X*S.Pi), 1))[True] == S.Half
assert correlation(X, Y) == 0
assert correlation(X, Y) == correlation(Y, X)
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X + Y, 4) == kurtosis(X + Y)
assert smoment(X, 0) == 1
assert P(X > 3) == S.Half
assert P(2*X > 6) == S.Half
assert P(X > Y) == Rational(5, 12)
assert P(Eq(X, Y)) == P(Eq(X, 1))
assert E(X, X > 3) == 5 == moment(X, 1, 0, X > 3)
assert E(X, Y > 3) == E(X) == moment(X, 1, 0, Y > 3)
assert E(X + Y, Eq(X, Y)) == E(2*X)
assert moment(X, 0) == 1
assert moment(5*X, 2) == 25*moment(X, 2)
assert quantile(X)(p) == Piecewise((nan, (p > 1) | (p < 0)),\
(S.One, p <= Rational(1, 6)), (S(2), p <= Rational(1, 3)), (S(3), p <= S.Half),\
(S(4), p <= Rational(2, 3)), (S(5), p <= Rational(5, 6)), (S(6), p <= 1))
assert P(X > 3, X > 3) is S.One
assert P(X > Y, Eq(Y, 6)) is S.Zero
assert P(Eq(X + Y, 12)) == Rational(1, 36)
assert P(Eq(X + Y, 12), Eq(X, 6)) == Rational(1, 6)
assert density(X + Y) == density(Y + Z) != density(X + X)
d = density(2*X + Y**Z)
assert d[S(22)] == Rational(1, 108) and d[S(4100)] == Rational(1, 216) and S(3130) not in d
assert pspace(X).domain.as_boolean() == Or(
*[Eq(X.symbol, i) for i in [1, 2, 3, 4, 5, 6]])
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert characteristic_function(X)(t) == exp(6*I*t)/6 + exp(5*I*t)/6 + exp(4*I*t)/6 + exp(3*I*t)/6 + exp(2*I*t)/6 + exp(I*t)/6
assert moment_generating_function(X)(t) == exp(6*t)/6 + exp(5*t)/6 + exp(4*t)/6 + exp(3*t)/6 + exp(2*t)/6 + exp(t)/6
assert median(X) == FiniteSet(3, 4)
D = Die('D', 7)
assert median(D) == FiniteSet(4)
# Bayes test for die
BayesTest(X > 3, X + Y < 5)
BayesTest(Eq(X - Y, Z), Z > Y)
BayesTest(X > 3, X > 2)
# arg test for die
raises(ValueError, lambda: Die('X', -1)) # issue 8105: negative sides.
raises(ValueError, lambda: Die('X', 0))
raises(ValueError, lambda: Die('X', 1.5)) # issue 8103: non integer sides.
# symbolic test for die
n, k = symbols('n, k', positive=True)
D = Die('D', n)
dens = density(D).dict
assert dens == Density(DieDistribution(n))
assert set(dens.subs(n, 4).doit().keys()) == {1, 2, 3, 4}
assert set(dens.subs(n, 4).doit().values()) == {Rational(1, 4)}
k = Dummy('k', integer=True)
assert E(D).dummy_eq(
Sum(Piecewise((k/n, k <= n), (0, True)), (k, 1, n)))
assert variance(D).subs(n, 6).doit() == Rational(35, 12)
ki = Dummy('ki')
cumuf = cdf(D)(k)
assert cumuf.dummy_eq(
Sum(Piecewise((1/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, k)))
assert cumuf.subs({n: 6, k: 2}).doit() == Rational(1, 3)
t = Dummy('t')
cf = characteristic_function(D)(t)
assert cf.dummy_eq(
Sum(Piecewise((exp(ki*I*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
assert cf.subs(n, 3).doit() == exp(3*I*t)/3 + exp(2*I*t)/3 + exp(I*t)/3
mgf = moment_generating_function(D)(t)
assert mgf.dummy_eq(
Sum(Piecewise((exp(ki*t)/n, (ki >= 1) & (ki <= n)), (0, True)), (ki, 1, n)))
assert mgf.subs(n, 3).doit() == exp(3*t)/3 + exp(2*t)/3 + exp(t)/3
def test_given():
X = Die('X', 6)
assert density(X, X > 5) == {S(6): S.One}
assert where(X > 2, X > 5).as_boolean() == Eq(X.symbol, 6)
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert next(sample(X, X > 5)) == 6
def test_domains():
X, Y = Die('x', 6), Die('y', 6)
x, y = X.symbol, Y.symbol
# Domains
d = where(X > Y)
assert d.condition == (x > y)
d = where(And(X > Y, Y > 3))
assert d.as_boolean() == Or(And(Eq(x, 5), Eq(y, 4)), And(Eq(x, 6),
Eq(y, 5)), And(Eq(x, 6), Eq(y, 4)))
assert len(d.elements) == 3
assert len(pspace(X + Y).domain.elements) == 36
Z = Die('x', 4)
raises(ValueError, lambda: P(X > Z)) # Two domains with same internal symbol
assert pspace(X + Y).domain.set == FiniteSet(1, 2, 3, 4, 5, 6)**2
assert where(X > 3).set == FiniteSet(4, 5, 6)
assert X.pspace.domain.dict == FiniteSet(
*[Dict({X.symbol: i}) for i in range(1, 7)])
assert where(X > Y).dict == FiniteSet(*[Dict({X.symbol: i, Y.symbol: j})
for i in range(1, 7) for j in range(1, 7) if i > j])
def test_bernoulli():
p, a, b, t = symbols('p a b t')
X = Bernoulli('B', p, a, b)
assert E(X) == a*p + b*(-p + 1)
assert density(X)[a] == p
assert density(X)[b] == 1 - p
assert characteristic_function(X)(t) == p * exp(I * a * t) + (-p + 1) * exp(I * b * t)
assert moment_generating_function(X)(t) == p * exp(a * t) + (-p + 1) * exp(b * t)
X = Bernoulli('B', p, 1, 0)
z = Symbol("z")
assert E(X) == p
assert simplify(variance(X)) == p*(1 - p)
assert E(a*X + b) == a*E(X) + b
assert simplify(variance(a*X + b)) == simplify(a**2 * variance(X))
assert quantile(X)(z) == Piecewise((nan, (z > 1) | (z < 0)), (0, z <= 1 - p), (1, z <= 1))
Y = Bernoulli('Y', Rational(1, 2))
assert median(Y) == FiniteSet(0, 1)
Z = Bernoulli('Z', Rational(2, 3))
assert median(Z) == FiniteSet(1)
raises(ValueError, lambda: Bernoulli('B', 1.5))
raises(ValueError, lambda: Bernoulli('B', -0.5))
#issue 8248
assert X.pspace.compute_expectation(1) == 1
p = Rational(1, 5)
X = Binomial('X', 5, p)
Y = Binomial('Y', 7, 2*p)
Z = Binomial('Z', 9, 3*p)
assert coskewness(Y + Z, X + Y, X + Z).simplify() == 0
assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y).simplify() == \
sqrt(1529)*Rational(12, 16819)
assert coskewness(Y + 2*X + Z, X + 2*Y + Z, X + 2*Z + Y, X < 2).simplify() \
== -sqrt(357451121)*Rational(2812, 4646864573)
def test_cdf():
D = Die('D', 6)
o = S.One
assert cdf(
D) == sympify({1: o/6, 2: o/3, 3: o/2, 4: 2*o/3, 5: 5*o/6, 6: o})
def test_coins():
C, D = Coin('C'), Coin('D')
H, T = symbols('H, T')
assert P(Eq(C, D)) == S.Half
assert density(Tuple(C, D)) == {(H, H): Rational(1, 4), (H, T): Rational(1, 4),
(T, H): Rational(1, 4), (T, T): Rational(1, 4)}
assert dict(density(C).items()) == {H: S.Half, T: S.Half}
F = Coin('F', Rational(1, 10))
assert P(Eq(F, H)) == Rational(1, 10)
d = pspace(C).domain
assert d.as_boolean() == Or(Eq(C.symbol, H), Eq(C.symbol, T))
raises(ValueError, lambda: P(C > D)) # Can't intelligently compare H to T
def test_binomial_verify_parameters():
raises(ValueError, lambda: Binomial('b', .2, .5))
raises(ValueError, lambda: Binomial('b', 3, 1.5))
def test_binomial_numeric():
nvals = range(5)
pvals = [0, Rational(1, 4), S.Half, Rational(3, 4), 1]
for n in nvals:
for p in pvals:
X = Binomial('X', n, p)
assert E(X) == n*p
assert variance(X) == n*p*(1 - p)
if n > 0 and 0 < p < 1:
assert skewness(X) == (1 - 2*p)/sqrt(n*p*(1 - p))
assert kurtosis(X) == 3 + (1 - 6*p*(1 - p))/(n*p*(1 - p))
for k in range(n + 1):
assert P(Eq(X, k)) == binomial(n, k)*p**k*(1 - p)**(n - k)
def test_binomial_quantile():
X = Binomial('X', 50, S.Half)
assert quantile(X)(0.95) == S(31)
assert median(X) == FiniteSet(25)
X = Binomial('X', 5, S.Half)
p = Symbol("p", positive=True)
assert quantile(X)(p) == Piecewise((nan, p > S.One), (S.Zero, p <= Rational(1, 32)),\
(S.One, p <= Rational(3, 16)), (S(2), p <= S.Half), (S(3), p <= Rational(13, 16)),\
(S(4), p <= Rational(31, 32)), (S(5), p <= S.One))
assert median(X) == FiniteSet(2, 3)
def test_binomial_symbolic():
n = 2
p = symbols('p', positive=True)
X = Binomial('X', n, p)
t = Symbol('t')
assert simplify(E(X)) == n*p == simplify(moment(X, 1))
assert simplify(variance(X)) == n*p*(1 - p) == simplify(cmoment(X, 2))
assert cancel(skewness(X) - (1 - 2*p)/sqrt(n*p*(1 - p))) == 0
assert cancel((kurtosis(X)) - (3 + (1 - 6*p*(1 - p))/(n*p*(1 - p)))) == 0
assert characteristic_function(X)(t) == p ** 2 * exp(2 * I * t) + 2 * p * (-p + 1) * exp(I * t) + (-p + 1) ** 2
assert moment_generating_function(X)(t) == p ** 2 * exp(2 * t) + 2 * p * (-p + 1) * exp(t) + (-p + 1) ** 2
# Test ability to change success/failure winnings
H, T = symbols('H T')
Y = Binomial('Y', n, p, succ=H, fail=T)
assert simplify(E(Y) - (n*(H*p + T*(1 - p)))) == 0
# test symbolic dimensions
n = symbols('n')
B = Binomial('B', n, p)
raises(NotImplementedError, lambda: P(B > 2))
assert density(B).dict == Density(BinomialDistribution(n, p, 1, 0))
assert set(density(B).dict.subs(n, 4).doit().keys()) == \
{S.Zero, S.One, S(2), S(3), S(4)}
assert set(density(B).dict.subs(n, 4).doit().values()) == \
{(1 - p)**4, 4*p*(1 - p)**3, 6*p**2*(1 - p)**2, 4*p**3*(1 - p), p**4}
k = Dummy('k', integer=True)
assert E(B > 2).dummy_eq(
Sum(Piecewise((k*p**k*(1 - p)**(-k + n)*binomial(n, k), (k >= 0)
& (k <= n) & (k > 2)), (0, True)), (k, 0, n)))
def test_beta_binomial():
# verify parameters
raises(ValueError, lambda: BetaBinomial('b', .2, 1, 2))
raises(ValueError, lambda: BetaBinomial('b', 2, -1, 2))
raises(ValueError, lambda: BetaBinomial('b', 2, 1, -2))
assert BetaBinomial('b', 2, 1, 1)
# test numeric values
nvals = range(1,5)
alphavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
betavals = [Rational(1, 4), S.Half, Rational(3, 4), 1, 10]
for n in nvals:
for a in alphavals:
for b in betavals:
X = BetaBinomial('X', n, a, b)
assert E(X) == moment(X, 1)
assert variance(X) == cmoment(X, 2)
# test symbolic
n, a, b = symbols('a b n')
assert BetaBinomial('x', n, a, b)
n = 2 # Because we're using for loops, can't do symbolic n
a, b = symbols('a b', positive=True)
X = BetaBinomial('X', n, a, b)
t = Symbol('t')
assert E(X).expand() == moment(X, 1).expand()
assert variance(X).expand() == cmoment(X, 2).expand()
assert skewness(X) == smoment(X, 3)
assert characteristic_function(X)(t) == exp(2*I*t)*beta(a + 2, b)/beta(a, b) +\
2*exp(I*t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
assert moment_generating_function(X)(t) == exp(2*t)*beta(a + 2, b)/beta(a, b) +\
2*exp(t)*beta(a + 1, b + 1)/beta(a, b) + beta(a, b + 2)/beta(a, b)
def test_hypergeometric_numeric():
for N in range(1, 5):
for m in range(0, N + 1):
for n in range(1, N + 1):
X = Hypergeometric('X', N, m, n)
N, m, n = map(sympify, (N, m, n))
assert sum(density(X).values()) == 1
assert E(X) == n * m / N
if N > 1:
assert variance(X) == n*(m/N)*(N - m)/N*(N - n)/(N - 1)
# Only test for skewness when defined
if N > 2 and 0 < m < N and n < N:
assert skewness(X) == simplify((N - 2*m)*sqrt(N - 1)*(N - 2*n)
/ (sqrt(n*m*(N - m)*(N - n))*(N - 2)))
def test_hypergeometric_symbolic():
N, m, n = symbols('N, m, n')
H = Hypergeometric('H', N, m, n)
dens = density(H).dict
expec = E(H > 2)
assert dens == Density(HypergeometricDistribution(N, m, n))
assert dens.subs(N, 5).doit() == Density(HypergeometricDistribution(5, m, n))
assert set(dens.subs({N: 3, m: 2, n: 1}).doit().keys()) == {S.Zero, S.One}
assert set(dens.subs({N: 3, m: 2, n: 1}).doit().values()) == {Rational(1, 3), Rational(2, 3)}
k = Dummy('k', integer=True)
assert expec.dummy_eq(
Sum(Piecewise((k*binomial(m, k)*binomial(N - m, -k + n)
/binomial(N, n), k > 2), (0, True)), (k, 0, n)))
def test_rademacher():
X = Rademacher('X')
t = Symbol('t')
assert E(X) == 0
assert variance(X) == 1
assert density(X)[-1] == S.Half
assert density(X)[1] == S.Half
assert characteristic_function(X)(t) == exp(I*t)/2 + exp(-I*t)/2
assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2
def test_FiniteRV():
F = FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}, check=True)
p = Symbol("p", positive=True)
assert dict(density(F).items()) == {S.One: S.Half, S(2): Rational(1, 4), S(3): Rational(1, 4)}
assert P(F >= 2) == S.Half
assert quantile(F)(p) == Piecewise((nan, p > S.One), (S.One, p <= S.Half),\
(S(2), p <= Rational(3, 4)),(S(3), True))
assert pspace(F).domain.as_boolean() == Or(
*[Eq(F.symbol, i) for i in [1, 2, 3]])
assert F.pspace.domain.set == FiniteSet(1, 2, 3)
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: S.Half, 3: S.Half}, check=True))
raises(ValueError, lambda: FiniteRV('F', {1: S.Half, 2: Rational(-1, 2), 3: S.One}, check=True))
raises(ValueError, lambda: FiniteRV('F', {1: S.One, 2: Rational(3, 2), 3: S.Zero,\
4: Rational(-1, 2), 5: Rational(-3, 4), 6: Rational(-1, 4)}, check=True))
# purposeful invalid pmf but it should not raise since check=False
# see test_drv_types.test_ContinuousRV for explanation
X = FiniteRV('X', {1: 1, 2: 2})
assert E(X) == 5
assert P(X <= 2) + P(X > 2) != 1
def test_density_call():
from sympy.abc import p
x = Bernoulli('x', p)
d = density(x)
assert d(0) == 1 - p
assert d(S.Zero) == 1 - p
assert d(5) == 0
assert 0 in d
assert 5 not in d
assert d(S.Zero) == d[S.Zero]
def test_DieDistribution():
from sympy.abc import x
X = DieDistribution(6)
assert X.pmf(S.Half) is S.Zero
assert X.pmf(x).subs({x: 1}).doit() == Rational(1, 6)
assert X.pmf(x).subs({x: 7}).doit() == 0
assert X.pmf(x).subs({x: -1}).doit() == 0
assert X.pmf(x).subs({x: Rational(1, 3)}).doit() == 0
raises(ValueError, lambda: X.pmf(Matrix([0, 0])))
raises(ValueError, lambda: X.pmf(x**2 - 1))
def test_FinitePSpace():
X = Die('X', 6)
space = pspace(X)
assert space.density == DieDistribution(6)
def test_symbolic_conditions():
B = Bernoulli('B', Rational(1, 4))
D = Die('D', 4)
b, n = symbols('b, n')
Y = P(Eq(B, b))
Z = E(D > n)
assert Y == \
Piecewise((Rational(1, 4), Eq(b, 1)), (0, True)) + \
Piecewise((Rational(3, 4), Eq(b, 0)), (0, True))
assert Z == \
Piecewise((Rational(1, 4), n < 1), (0, True)) + Piecewise((S.Half, n < 2), (0, True)) + \
Piecewise((Rational(3, 4), n < 3), (0, True)) + Piecewise((S.One, n < 4), (0, True))
def test_sample_numpy():
distribs_numpy = [
Binomial("B", 5, 0.4),
]
size = 3
numpy = import_module('numpy')
if not numpy:
skip('Numpy is not installed. Abort tests for _sample_numpy.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for X in distribs_numpy:
samps = next(sample(X, size=size, library='numpy'))
for sam in samps:
assert sam in X.pspace.domain.set
raises(NotImplementedError,
lambda: next(sample(Die("D"), library='numpy')))
raises(NotImplementedError,
lambda: Die("D").pspace.sample(library='tensorflow'))
def test_sample_scipy():
distribs_scipy = [
FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}),
DiscreteUniform("Y", list(range(5))),
Die("D"),
Bernoulli("Be", 0.3),
Binomial("Bi", 5, 0.4),
BetaBinomial("Bb", 2, 1, 1),
Hypergeometric("H", 1, 1, 1),
Rademacher("R")
]
size = 3
numsamples = 5
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for _sample_scipy.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
h_sample = list(sample(Hypergeometric("H", 1, 1, 1), size=size, numsamples=numsamples))
assert len(h_sample) == numsamples
for X in distribs_scipy:
samps = next(sample(X, size=size))
samps2 = next(sample(X, size=(2, 2)))
for sam in samps:
assert sam in X.pspace.domain.set
for i in range(2):
for j in range(2):
assert samps2[i][j] in X.pspace.domain.set
def test_sample_pymc3():
distribs_pymc3 = [
Bernoulli('B', 0.2),
Binomial('N', 5, 0.4)
]
size = 3
pymc3 = import_module('pymc3')
if not pymc3:
skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for X in distribs_pymc3:
samps = next(sample(X, size=size, library='pymc3'))
for sam in samps:
assert sam in X.pspace.domain.set
raises(NotImplementedError,
lambda: next(sample(Die("D"), library='pymc3')))
|
5c88158a0add9c53c6491e6db8e4151d6ff13ce51e78479e75c932fae12deac0 | from sympy import (S, symbols, FiniteSet, Eq, Matrix, MatrixSymbol, Float, And,
ImmutableMatrix, Ne, Lt, Le, Gt, Ge, exp, Not, Rational, Lambda, erf,
Piecewise, factorial, Interval, oo, Contains, sqrt, pi, ceiling,
gamma, lowergamma, Sum, Range, Tuple, ImmutableDenseMatrix, Symbol)
from sympy.stats import (DiscreteMarkovChain, P, TransitionMatrixOf, E,
StochasticStateSpaceOf, variance, ContinuousMarkovChain,
BernoulliProcess, PoissonProcess, WienerProcess,
GammaProcess, sample_stochastic_process)
from sympy.stats.joint_rv import JointDistribution
from sympy.stats.joint_rv_types import JointDistributionHandmade
from sympy.stats.rv import RandomIndexedSymbol
from sympy.stats.symbolic_probability import Probability, Expectation
from sympy.testing.pytest import raises, skip, ignore_warnings
from sympy.external import import_module
from sympy.stats.frv_types import BernoulliDistribution
from sympy.stats.drv_types import PoissonDistribution
from sympy.stats.crv_types import NormalDistribution, GammaDistribution
from sympy.core.symbol import Str
def test_DiscreteMarkovChain():
# pass only the name
X = DiscreteMarkovChain("X")
assert isinstance(X.state_space, Range)
assert X.index_set == S.Naturals0
assert isinstance(X.transition_probabilities, MatrixSymbol)
t = symbols('t', positive=True, integer=True)
assert isinstance(X[t], RandomIndexedSymbol)
assert E(X[0]) == Expectation(X[0])
raises(TypeError, lambda: DiscreteMarkovChain(1))
raises(NotImplementedError, lambda: X(t))
raises(NotImplementedError, lambda: X.communication_classes())
raises(NotImplementedError, lambda: X.canonical_form())
raises(NotImplementedError, lambda: X.decompose())
nz = Symbol('n', integer=True)
TZ = MatrixSymbol('M', nz, nz)
SZ = Range(nz)
YZ = DiscreteMarkovChain('Y', SZ, TZ)
assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1]
raises(ValueError, lambda: sample_stochastic_process(t))
raises(ValueError, lambda: next(sample_stochastic_process(X)))
# pass name and state_space
# any hashable object should be a valid state
# states should be valid as a tuple/set/list/Tuple/Range
sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True)
state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain],
Tuple(1, exp(sym), Str('World'), sympify=False), Range(-1, 5, 2),
[rainy, cloudy, sunny]]
chains = [DiscreteMarkovChain("Y", state_space) for state_space in state_spaces]
for i, Y in enumerate(chains):
assert isinstance(Y.transition_probabilities, MatrixSymbol)
assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(*state_spaces[i])
assert Y.number_of_states == 3
with ignore_warnings(UserWarning): # TODO: Restore tests once warnings are removed
assert P(Eq(Y[2], 1), Eq(Y[0], 2), evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2))
assert E(Y[0]) == Expectation(Y[0])
raises(ValueError, lambda: next(sample_stochastic_process(Y)))
raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1))))
Y = DiscreteMarkovChain("Y", Range(1, t, 2))
assert Y.number_of_states == ceiling((t-1)/2)
# pass name and transition_probabilities
chains = [DiscreteMarkovChain("Y", trans_probs=Matrix([[]])),
DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])),
DiscreteMarkovChain("Y", trans_probs=Matrix([[pi, 1-pi], [sym, 1-sym]]))]
for Z in chains:
assert Z.number_of_states == Z.transition_probabilities.shape[0]
assert isinstance(Z.transition_probabilities, ImmutableDenseMatrix)
# pass name, state_space and transition_probabilities
T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
TS = MatrixSymbol('T', 3, 3)
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS)
assert YS._transient2transient() == None
assert YS._transient2absorbing() == None
assert Y.joint_distribution(1, Y[2], 3) == JointDistribution(Y[1], Y[2], Y[3])
raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol))
assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2)
assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) -
(TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2])).simplify() == 0
assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1))
assert P(Eq(YS[3], 3), Eq(YS[1], 1)) == TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2]
TO = Matrix([[0.25, 0.75, 0],[0, 0.25, 0.75],[0.75, 0, 0.25]])
assert P(Eq(Y[3], 2), Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(0.375, 3)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert E(Y[3], evaluate=False) == Expectation(Y[3])
assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3)
TSO = MatrixSymbol('T', 4, 4)
raises(ValueError, lambda: str(P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO))))
raises(TypeError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M')))
raises(ValueError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4)))
raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6)))
raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1)))
# extended tests for probability queries
TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)),
Eq(Probability(Eq(Y[0], 0)), Rational(1, 4)) & TransitionMatrixOf(Y, TO1)) == Rational(1, 16)
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \
Probability(Eq(Y[0], 0))/4
assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4)
assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) is S.Zero
assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) &
StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) is S.Zero
assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1)) == 0.1*Probability(Eq(Y[0], 0))
# testing properties of Markov chain
TO2 = Matrix([[S.One, 0, 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]])
Y2 = DiscreteMarkovChain('Y', trans_probs=TO2)
Y3 = DiscreteMarkovChain('Y', trans_probs=TO3)
assert Y3._transient2absorbing() == None
raises (ValueError, lambda: Y3.fundamental_matrix())
assert Y2.is_absorbing_chain() == True
assert Y3.is_absorbing_chain() == False
assert Y2.canonical_form() == ([0, 1, 2], TO2)
assert Y3.canonical_form() == ([0, 1, 2], TO3)
assert Y2.decompose() == ([0, 1, 2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3, []), Matrix(0, 0, []))
TO4 = Matrix([[Rational(1, 5), Rational(2, 5), Rational(2, 5)], [Rational(1, 10), S.Half, Rational(2, 5)], [Rational(3, 5), Rational(3, 10), Rational(1, 10)]])
Y4 = DiscreteMarkovChain('Y', trans_probs=TO4)
w = ImmutableMatrix([[Rational(11, 39), Rational(16, 39), Rational(4, 13)]])
assert Y4.limiting_distribution == w
assert Y4.is_regular() == True
assert Y4.is_ergodic() == True
TS1 = MatrixSymbol('T', 3, 3)
Y5 = DiscreteMarkovChain('Y', trans_probs=TS1)
assert Y5.limiting_distribution(w, TO4).doit() == True
assert Y5.stationary_distribution(condition_set=True).subs(TS1, TO4).contains(w).doit() == S.true
TO6 = Matrix([[S.One, 0, 0, 0, 0],[S.Half, 0, S.Half, 0, 0],[0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half], [0, 0, 0, 0, 1]])
Y6 = DiscreteMarkovChain('Y', trans_probs=TO6)
assert Y6._transient2absorbing() == ImmutableMatrix([[S.Half, 0], [0, 0], [0, S.Half]])
assert Y6._transient2transient() == ImmutableMatrix([[0, S.Half, 0], [S.Half, 0, S.Half], [0, S.Half, 0]])
assert Y6.fundamental_matrix() == ImmutableMatrix([[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One], [S.Half, S.One, Rational(3, 2)]])
assert Y6.absorbing_probabilities() == ImmutableMatrix([[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half], [Rational(1, 4), Rational(3, 4)]])
# test for zero-sized matrix functionality
X = DiscreteMarkovChain('X', trans_probs=Matrix([[]]))
assert X.number_of_states == 0
assert X.stationary_distribution() == Matrix([[]])
assert X.communication_classes() == []
assert X.canonical_form() == ([], Matrix([[]]))
assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]]))
assert X.is_regular() == False
assert X.is_ergodic() == False
# test communication_class
# see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing
# tutorial 2.pdf
TO7 = Matrix([[0, 5, 5, 0, 0],
[0, 0, 0, 10, 0],
[5, 0, 5, 0, 0],
[0, 10, 0, 0, 0],
[0, 3, 0, 3, 4]])/10
Y7 = DiscreteMarkovChain('Y', trans_probs=TO7)
tuples = Y7.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([1, 3], [0, 2], [4])
assert recurrence == (True, False, False)
assert periods == (2, 1, 1)
TO8 = Matrix([[0, 0, 0, 10, 0, 0],
[5, 0, 5, 0, 0, 0],
[0, 4, 0, 0, 0, 6],
[10, 0, 0, 0, 0, 0],
[0, 10, 0, 0, 0, 0],
[0, 0, 0, 5, 5, 0]])/10
Y8 = DiscreteMarkovChain('Y', trans_probs=TO8)
tuples = Y8.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([0, 3], [1, 2, 5, 4])
assert recurrence == (True, False)
assert periods == (2, 2)
TO9 = Matrix([[2, 0, 0, 3, 0, 0, 3, 2, 0, 0],
[0, 10, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 2, 2, 0, 0, 0, 0, 0, 3, 3],
[0, 0, 0, 3, 0, 0, 6, 1, 0, 0],
[0, 0, 0, 0, 5, 5, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 10, 0, 0, 0, 0],
[4, 0, 0, 5, 0, 0, 1, 0, 0, 0],
[2, 0, 0, 4, 0, 0, 2, 2, 0, 0],
[3, 0, 1, 0, 0, 0, 0, 0, 4, 2],
[0, 0, 4, 0, 0, 0, 0, 0, 3, 3]])/10
Y9 = DiscreteMarkovChain('Y', trans_probs=TO9)
tuples = Y9.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4])
assert recurrence == (True, True, False, True, False)
assert periods == (1, 1, 1, 1, 1)
# test canonical form
# see https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
# example 11.13
T = Matrix([[1, 0, 0, 0, 0],
[S(1) / 2, 0, S(1) / 2, 0, 0],
[0, S(1) / 2, 0, S(1) / 2, 0],
[0, 0, S(1) / 2, 0, S(1) / 2],
[0, 0, 0, 0, S(1)]])
DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T)
states, A, B, C = DW.decompose()
assert states == [0, 4, 1, 2, 3]
assert A == Matrix([[1, 0], [0, 1]])
assert B == Matrix([[S(1)/2, 0], [0, 0], [0, S(1)/2]])
assert C == Matrix([[0, S(1)/2, 0], [S(1)/2, 0, S(1)/2], [0, S(1)/2, 0]])
states, new_matrix = DW.canonical_form()
assert states == [0, 4, 1, 2, 3]
assert new_matrix == Matrix([[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[S(1)/2, 0, 0, S(1)/2, 0],
[0, 0, S(1)/2, 0, S(1)/2],
[0, S(1)/2, 0, S(1)/2, 0]])
# test regular and ergodic
# https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf
T = Matrix([[0, 4, 0, 0, 0],
[1, 0, 3, 0, 0],
[0, 2, 0, 2, 0],
[0, 0, 3, 0, 1],
[0, 0, 0, 4, 0]])/4
X = DiscreteMarkovChain('X', trans_probs=T)
assert not X.is_regular()
assert X.is_ergodic()
T = Matrix([[0, 1], [1, 0]])
X = DiscreteMarkovChain('X', trans_probs=T)
assert not X.is_regular()
assert X.is_ergodic()
# http://www.math.wisc.edu/~valko/courses/331/MC2.pdf
T = Matrix([[2, 1, 1],
[2, 0, 2],
[1, 1, 2]])/4
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_regular()
assert X.is_ergodic()
# https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf
T = Matrix([[1, 1], [1, 1]])/2
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_regular()
assert X.is_ergodic()
# test is_absorbing_chain
T = Matrix([[0, 1, 0],
[1, 0, 0],
[0, 0, 1]])
X = DiscreteMarkovChain('X', trans_probs=T)
assert not X.is_absorbing_chain()
# https://en.wikipedia.org/wiki/Absorbing_Markov_chain
T = Matrix([[1, 1, 0, 0],
[0, 1, 1, 0],
[1, 0, 0, 1],
[0, 0, 0, 2]])/2
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_absorbing_chain()
T = Matrix([[2, 0, 0, 0, 0],
[1, 0, 1, 0, 0],
[0, 1, 0, 1, 0],
[0, 0, 1, 0, 1],
[0, 0, 0, 0, 2]])/2
X = DiscreteMarkovChain('X', trans_probs=T)
assert X.is_absorbing_chain()
# test custom state space
Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2)
tuples = Y10.communication_classes()
classes, recurrence, periods = list(zip(*tuples))
assert classes == ([1], [2, 3])
assert recurrence == (True, False)
assert periods == (1, 1)
assert Y10.canonical_form() == ([1, 2, 3], TO2)
assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3])
# testing miscellaneous queries
T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
[Rational(1, 3), 0, Rational(2, 3)],
[S.Half, S.Half, 0]])
X = DiscreteMarkovChain('X', [0, 1, 2], T)
assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3)
assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9)
raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T))
# testing miscellaneous queries with different state space
X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T)
assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0),
Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12)
assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3)
assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero
assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3)
a = X.state_space.args[0]
c = X.state_space.args[2]
assert (E(X[1] ** 2, Eq(X[0], 1)) - (a**2/3 + 2*c**2/3)).simplify() == 0
assert (variance(X[1], Eq(X[0], 1)) - (2*(-a/3 + c/3)**2/3 + (2*a/3 - 2*c/3)**2/3)).simplify() == 0
raises(ValueError, lambda: E(X[1], Eq(X[2], 1)))
#testing queries with multiple RandomIndexedSymbols
T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]])
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5)
assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2)
assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.739072, 6)
assert Float(P(Eq(Y[500], Y[240]), Eq(Y[120], 1)), 14) == Float(1 - P(Ne(Y[500], Y[240]), Eq(Y[120], 1)), 14)
assert Float(P(Gt(Y[350], Y[100]), Eq(Y[75], 2)), 14) == Float(1 - P(Le(Y[350], Y[100]), Eq(Y[75], 2)), 14)
assert Float(P(Lt(Y[400], Y[210]), Eq(Y[161], 0)), 14) == Float(1 - P(Ge(Y[400], Y[210]), Eq(Y[161], 0)), 14)
def test_sample_stochastic_process():
if not import_module('scipy'):
skip('SciPy Not installed. Skip sampling tests')
import random
random.seed(0)
numpy = import_module('numpy')
if numpy:
numpy.random.seed(0) # scipy uses numpy to sample so to set its seed
T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]])
Y = DiscreteMarkovChain("Y", [0, 1, 2], T)
for samps in range(10):
assert next(sample_stochastic_process(Y)) in Y.state_space
Z = DiscreteMarkovChain("Z", ['1', 1, 0], T)
for samps in range(10):
assert next(sample_stochastic_process(Z)) in Z.state_space
T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)],
[Rational(1, 3), 0, Rational(2, 3)],
[S.Half, S.Half, 0]])
X = DiscreteMarkovChain('X', [0, 1, 2], T)
for samps in range(10):
assert next(sample_stochastic_process(X)) in X.state_space
W = DiscreteMarkovChain('W', [1, pi, oo], T)
for samps in range(10):
assert next(sample_stochastic_process(W)) in W.state_space
def test_ContinuousMarkovChain():
T1 = Matrix([[S(-2), S(2), S.Zero],
[S.Zero, S.NegativeOne, S.One],
[Rational(3, 2), Rational(3, 2), S(-3)]])
C1 = ContinuousMarkovChain('C', [0, 1, 2], T1)
assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]])
T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]])
C2 = ContinuousMarkovChain('C', [0, 1, 2], T2)
A, t = C2.generator_matrix, symbols('t', positive=True)
assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0],
[S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0],
[S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]])
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1))
assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half
assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1),
Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half)
assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) |
(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)),
Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One
assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half
assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half)
+ (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2))
raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half)))
assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0))
TS1 = MatrixSymbol('G', 3, 3)
CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1)
A = CS1.generator_matrix
assert CS1.transition_probabilities(A)(t) == exp(t*A)
C3 = ContinuousMarkovChain('C', [Symbol('0'), Symbol('1'), Symbol('2')], T2)
assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2)/2 + S.Half
assert P(Eq(C3(1), Symbol('1')), Eq(C3(0), Symbol('1'))) == exp(-2)/2 + S.Half
def test_BernoulliProcess():
B = BernoulliProcess("B", p=0.6, success=1, failure=0)
assert B.state_space == FiniteSet(0, 1)
assert B.index_set == S.Naturals0
assert B.success == 1
assert B.failure == 0
X = BernoulliProcess("X", p=Rational(1,3), success='H', failure='T')
assert X.state_space == FiniteSet('H', 'T')
H, T = symbols("H,T")
assert E(X[1]+X[2]*X[3]) == H**2/9 + 4*H*T/9 + H/3 + 4*T**2/9 + 2*T/3
t, x = symbols('t, x', positive=True, integer=True)
assert isinstance(B[t], RandomIndexedSymbol)
raises(ValueError, lambda: BernoulliProcess("X", p=1.1, success=1, failure=0))
raises(NotImplementedError, lambda: B(t))
raises(IndexError, lambda: B[-3])
assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(Lambda((B[3], B[9]),
Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)), (0, True))
*Piecewise((0.6, Eq(B[9], 1)), (0.4, Eq(B[9], 0)), (0, True))))
assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(Lambda((B[2], B[4]),
Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)), (0, True))
*Piecewise((0.6, Eq(B[4], 1)), (0.4, Eq(B[4], 0)), (0, True))))
# Test for the sum distribution of Bernoulli Process RVs
Y = B[1] + B[2] + B[3]
assert P(Eq(Y, 0)).round(2) == Float(0.06, 1)
assert P(Eq(Y, 2)).round(2) == Float(0.43, 2)
assert P(Eq(Y, 4)).round(2) == 0
assert P(Gt(Y, 1)).round(2) == Float(0.65, 2)
# Test for independency of each Random Indexed variable
assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) == Float(0.06, 1)
assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3)
assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3)
assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2)
assert E(B[2] > 0, Eq(B[1],1) & Eq(B[2],1)).round(2) == Float(0.60,2)
assert E(B[1]) == 0.6
assert P(B[1] > 0).round(2) == Float(0.60, 2)
assert P(B[1] < 1).round(2) == Float(0.40, 2)
assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2)
assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2)
assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2)
assert P(Eq(B[2], 1), B[2] > 0) == 1
assert P(Eq(B[5], 3)) == 0
assert P(Eq(B[1], 1), B[1] < 0) == 0
assert P(B[2] > 0, Eq(B[2], 1)) == 1
assert P(B[2] < 0, Eq(B[2], 1)) == 0
assert P(B[2] > 0, B[2]==7) == 0
assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1)
raises(ValueError, lambda: P(3))
raises(ValueError, lambda: P(B[3] > 0, 3))
# test issue 19456
expr = Sum(B[t], (t, 0, 4))
expr2 = Sum(B[t], (t, 1, 3))
expr3 = Sum(B[t]**2, (t, 1, 3))
assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4]
assert expr2.doit() == Y
assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2
assert B[2*t].free_symbols == {B[2*t], t}
assert B[4].free_symbols == {B[4]}
assert B[x*t].free_symbols == {B[x*t], x, t}
def test_PoissonProcess():
X = PoissonProcess("X", 3)
assert X.state_space == S.Naturals0
assert X.index_set == Interval(0, oo)
assert X.lamda == 3
t, d, x, y = symbols('t d x y', positive=True)
assert isinstance(X(t), RandomIndexedSymbol)
assert X.distribution(X(t)) == PoissonDistribution(3*t)
raises(ValueError, lambda: PoissonProcess("X", -1))
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-5))
assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(Lambda((X(2), X(3)),
6**X(2)*9**X(3)*exp(-15)/(factorial(X(2))*factorial(X(3)))))
assert X.joint_distribution(4, 6) == JointDistributionHandmade(Lambda((X(4), X(6)),
12**X(4)*18**X(6)*exp(-30)/(factorial(X(4))*factorial(X(6)))))
assert P(X(t) < 1) == exp(-3*t)
assert P(Eq(X(t), 0), Contains(t, Interval.Lopen(3, 5))) == exp(-6) # exp(-2*lamda)
res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4)))
assert res == 3*exp(-3)
# Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals
assert P(Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3))
& Contains(y, Interval.Lopen(3, 4))) == res**4
# Return Probability because of overlapping intervals
assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4))) == \
Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4)))
raises(ValueError, lambda: P(Eq(X(t), 2) & Eq(X(d), 3),
Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))) # no bound on d
assert P(Eq(X(3), 2)) == 81*exp(-9)/2
assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0, 5))) == 225*exp(-15)/2
# Check that probability works correctly by adding it to 1
res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5)))
res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5)))
assert res1 == 691*exp(-15)
assert (res1 + res2).simplify() == 1
# Check Not and Or
assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \
Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1
assert P(Eq(X(t), 2) | Ne(X(t), 4), Contains(t, Interval.Ropen(2, 4))) == 1 - 36*exp(-6)
raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d)))
assert E(X(t)) == 3*t # property of the distribution at a given timestamp
assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == 75
assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12
assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2))) == \
Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2)))
# Value Error because of infinite time bound
raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo))))
# Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0
assert E((X(t) + X(d))*(X(t) - X(d)), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2))) == 0
assert E(X(2) + x*E(X(5))) == 15*x + 6
assert E(x*X(1) + y) == 3*x + y
assert P(Eq(X(1), 2) & Eq(X(t), 3), Contains(t, Interval.Lopen(1, 2))) == 81*exp(-6)/4
Y = PoissonProcess("Y", 6)
Z = X + Y
assert Z.lamda == X.lamda + Y.lamda == 9
raises(ValueError, lambda: X + 5) # should be added be only PoissonProcess instance
N, M = Z.split(4, 5)
assert N.lamda == 4
assert M.lamda == 5
raises(ValueError, lambda: Z.split(3, 2)) # 2+3 != 9
raises(ValueError, lambda :P(Eq(X(t), 0), Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0)))
# check if it handles queries with two random variables in one args
res1 = P(Eq(N(3), N(5)))
assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5)))
res2 = P(N(3) > N(1))
assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3)))
assert P(N(3) < N(1)) == 0 # condition is not possible
res3 = P(N(3) <= N(1)) # holds only for Eq(N(3), N(1))
assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3)))
# tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php
X = PoissonProcess('X', 10) # 11.1
assert P(Eq(X(S(1)/3), 3) & Eq(X(1), 10)) == exp(-10)*Rational(8000000000, 11160261)
assert P(Eq(X(1), 1), Eq(X(S(1)/3), 3)) == 0
assert P(Eq(X(1), 10), Eq(X(S(1)/3), 3)) == P(Eq(X(S(2)/3), 7))
X = PoissonProcess('X', 2) # 11.2
assert P(X(S(1)/2) < 1) == exp(-1)
assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4)
assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4)
X = PoissonProcess('X', 3)
assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4)*exp(-6)
# check few properties
assert P(X(2) <= 3, X(1)>=1) == 3*P(Eq(X(1), 0)) + 2*P(Eq(X(1), 1)) + P(Eq(X(1), 2))
assert P(X(2) <= 3, X(1) > 1) == 2*P(Eq(X(1), 0)) + 1*P(Eq(X(1), 1))
assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3))*P(Eq(X(1), 2))
assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1))
def test_WienerProcess():
X = WienerProcess("X")
assert X.state_space == S.Reals
assert X.index_set == Interval(0, oo)
t, d, x, y = symbols('t d x y', positive=True)
assert isinstance(X(t), RandomIndexedSymbol)
assert X.distribution(X(t)) == NormalDistribution(0, sqrt(t))
raises(ValueError, lambda: PoissonProcess("X", -1))
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-2))
assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(
Lambda((X(2), X(3)), sqrt(6)*exp(-X(2)**2/4)*exp(-X(3)**2/6)/(12*pi)))
assert X.joint_distribution(4, 6) == JointDistributionHandmade(
Lambda((X(4), X(6)), sqrt(6)*exp(-X(4)**2/8)*exp(-X(6)**2/12)/(24*pi)))
assert P(X(t) < 3).simplify() == erf(3*sqrt(2)/(2*sqrt(t)))/2 + S(1)/2
assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\
erf(sqrt(2)/2)/2
# Equivalent to P(X(1)>1)**4
assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1),
Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))
& Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\
(1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16
# Contains an overlapping interval so, return Probability
assert P((X(t)< 2) & (X(d)> 3), Contains(t, Interval.Lopen(0, 2))
& Contains(d, Interval.Ropen(2, 4))) == Probability((X(d) > 3) & (X(t) < 2),
Contains(d, Interval.Ropen(2, 4)) & Contains(t, Interval.Lopen(0, 2)))
assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
Contains(d, Interval.Lopen(7, 8))).simplify()) == \
'-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1'
# Distribution has mean 0 at each timestamp
assert E(X(t)) == 0
assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Ropen(1, 2))) == Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2),
Contains(d, Interval.Ropen(1, 2)) & Contains(t, Interval.Lopen(0, 1)))
assert E(X(t) + x*E(X(3))) == 0
def test_GammaProcess_symbolic():
t, d, x, y, g, l = symbols('t d x y g l', positive=True)
X = GammaProcess("X", l, g)
raises(NotImplementedError, lambda: X[t])
raises(IndexError, lambda: X(-1))
assert isinstance(X(t), RandomIndexedSymbol)
assert X.state_space == Interval(0, oo)
assert X.distribution(X(t)) == GammaDistribution(g*t, 1/l)
assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(Lambda(
(X(5), X(3)), l**(8*g)*exp(-l*X(3))*exp(-l*X(5))*X(3)**(3*g - 1)*X(5)**(5*g
- 1)/(gamma(3*g)*gamma(5*g))))
# property of the gamma process at any given timestamp
assert E(X(t)) == g*t/l
assert variance(X(t)).simplify() == g*t/l**2
# Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l
assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1))
& Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \
2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3
assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \
1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3)
def test_GammaProcess_numeric():
t, d, x, y = symbols('t d x y', positive=True)
X = GammaProcess("X", 1, 2)
assert X.state_space == Interval(0, oo)
assert X.index_set == Interval(0, oo)
assert X.lamda == 1
assert X.gamma == 2
raises(ValueError, lambda: GammaProcess("X", -1, 2))
raises(ValueError, lambda: GammaProcess("X", 0, -2))
raises(ValueError, lambda: GammaProcess("X", -1, -2))
# all are independent because of non-overlapping intervals
assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t,
Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x,
Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \
120*exp(-10)
# Check working with Not and Or
assert P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) &
Contains(d, Interval.Lopen(7, 8))).simplify() == -4*exp(-3) + 472*exp(-8)/3 + 1
assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \
-643*exp(-4)/15 + 109*exp(-2)/15 + 1
assert E(X(t)) == 2*t # E(X(t)) == gamma*t/l
assert E(X(2) + x*E(X(5))) == 10*x + 4
|
dd27846b703170faadd314818ab8835ce9383b611d78066783498115a703b36b | from sympy import (S, Symbol, Sum, I, lambdify, re, im, log, simplify, sqrt,
zeta, pi, besseli, Dummy, oo, Piecewise, Rational, beta,
floor, FiniteSet)
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.exponential import exp
from sympy.logic.boolalg import Or
from sympy.sets.fancysets import Range
from sympy.stats import (P, E, variance, density, characteristic_function,
where, moment_generating_function, skewness, cdf,
kurtosis, coskewness)
from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution,
Poisson, Geometric, Hermite, Logarithmic,
NegativeBinomial, Skellam, YuleSimon, Zeta,
DiscreteRV)
from sympy.stats.rv import sample
from sympy.testing.pytest import slow, nocache_fail, raises, skip, ignore_warnings
from sympy.external import import_module
from sympy.stats.symbolic_probability import Expectation
x = Symbol('x')
def test_PoissonDistribution():
l = 3
p = PoissonDistribution(l)
assert abs(p.cdf(10).evalf() - 1) < .001
assert p.expectation(x, x) == l
assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l
def test_Poisson():
l = 3
x = Poisson('x', l)
assert E(x) == l
assert variance(x) == l
assert density(x) == PoissonDistribution(l)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert isinstance(E(x, evaluate=False), Expectation)
assert isinstance(E(2*x, evaluate=False), Expectation)
# issue 8248
assert x.pspace.compute_expectation(1) == 1
@slow
def test_GeometricDistribution():
p = S.One / 5
d = GeometricDistribution(p)
assert d.expectation(x, x) == 1/p
assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2
assert abs(d.cdf(20000).evalf() - 1) < .001
X = Geometric('X', Rational(1, 5))
Y = Geometric('Y', Rational(3, 10))
assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150)
def test_Hermite():
a1 = Symbol("a1", positive=True)
a2 = Symbol("a2", negative=True)
raises(ValueError, lambda: Hermite("H", a1, a2))
a1 = Symbol("a1", negative=True)
a2 = Symbol("a2", positive=True)
raises(ValueError, lambda: Hermite("H", a1, a2))
a1 = Symbol("a1", positive=True)
x = Symbol("x")
H = Hermite("H", a1, a2)
assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1)
+ a2*(exp(2*x) - 1))
assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1)
+ a2*(exp(2*I*x) - 1))
assert E(H) == a1 + 2*a2
H = Hermite("H", a1=5, a2=4)
assert density(H)(2) == 33*exp(-9)/2
assert E(H) == 13
assert variance(H) == 21
assert kurtosis(H) == Rational(464,147)
assert skewness(H) == 37*sqrt(21)/441
def test_Logarithmic():
p = S.Half
x = Logarithmic('x', p)
assert E(x) == -p / ((1 - p) * log(1 - p))
assert variance(x) == -1/log(2)**2 + 2/log(2)
assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert isinstance(E(x, evaluate=False), Expectation)
@nocache_fail
def test_negative_binomial():
r = 5
p = S.One / 3
x = NegativeBinomial('x', r, p)
assert E(x) == p*r / (1-p)
# This hangs when run with the cache disabled:
assert variance(x) == p*r / (1-p)**2
assert E(x**5 + 2*x + 3) == Rational(9207, 4)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert isinstance(E(x, evaluate=False), Expectation)
def test_skellam():
mu1 = Symbol('mu1')
mu2 = Symbol('mu2')
z = Symbol('z')
X = Skellam('x', mu1, mu2)
assert density(X)(z) == (mu1/mu2)**(z/2) * \
exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2))
assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 *
sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2))
assert variance(X).expand() == mu1 + mu2
assert E(X) == mu1 - mu2
assert characteristic_function(X)(z) == exp(
mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z))
assert moment_generating_function(X)(z) == exp(
mu1*exp(z) - mu1 - mu2 + mu2*exp(-z))
def test_yule_simon():
from sympy import S
rho = S(3)
x = YuleSimon('x', rho)
assert simplify(E(x)) == rho / (rho - 1)
assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2))
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert isinstance(E(x, evaluate=False), Expectation)
# To test the cdf function
assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True))
def test_zeta():
s = S(5)
x = Zeta('x', s)
assert E(x) == zeta(s-1) / zeta(s)
assert simplify(variance(x)) == (
zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2
@slow
def test_sample_discrete():
X = Geometric('X', S.Half)
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests')
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert next(sample(X)) in X.pspace.domain.set
samps = next(sample(X, size=2)) # This takes long time if ran without scipy
for samp in samps:
assert samp in X.pspace.domain.set
def test_discrete_probability():
X = Geometric('X', Rational(1, 5))
Y = Poisson('Y', 4)
G = Geometric('e', x)
assert P(Eq(X, 3)) == Rational(16, 125)
assert P(X < 3) == Rational(9, 25)
assert P(X > 3) == Rational(64, 125)
assert P(X >= 3) == Rational(16, 25)
assert P(X <= 3) == Rational(61, 125)
assert P(Ne(X, 3)) == Rational(109, 125)
assert P(Eq(Y, 3)) == 32*exp(-4)/3
assert P(Y < 3) == 13*exp(-4)
assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(Y <= 3) == 71*exp(-4)/3
assert P(Ne(Y, 3)).equals(
13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
assert P(X < S.Infinity) is S.One
assert P(X > S.Infinity) is S.Zero
assert P(G < 3) == x*(2-x)
assert P(Eq(G, 3)) == x*(-x + 1)**2
def test_DiscreteRV():
p = S(1)/2
x = Symbol('x', integer=True, positive=True)
pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution
D = DiscreteRV(x, pdf, set=S.Naturals, check=True)
assert E(D) == E(Geometric('G', S(1)/2)) == 2
assert P(D > 3) == S(1)/8
assert D.pspace.domain.set == S.Naturals
raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True))
# purposeful invalid pmf but it should not raise since check=False
# see test_drv_types.test_ContinuousRV for explanation
X = DiscreteRV(x, 1/x, S.Naturals)
assert P(X < 2) == 1
assert E(X) == oo
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = S('t')
x = S('x')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [
support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf)
test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf)
test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf)
test_cf(Poisson('p', 5), 0, mpmath.inf)
test_cf(YuleSimon('y', 5), 1, mpmath.inf)
test_cf(Zeta('z', 5), 1, mpmath.inf)
def test_moment_generating_functions():
t = S('t')
geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t)
assert geometric_mgf.diff(t).subs(t, 0) == 2
logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t)
assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)
negative_binomial_mgf = moment_generating_function(
NegativeBinomial('n', 5, Rational(1, 3)))(t)
assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2)
poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
assert poisson_mgf.diff(t).subs(t, 0) == 5
skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t)
assert skellam_mgf.diff(t).subs(
t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2))
yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2)
zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))
def test_Or():
X = Geometric('X', S.Half)
P(Or(X < 3, X > 4)) == Rational(13, 16)
P(Or(X > 2, X > 1)) == P(X > 1)
P(Or(X >= 3, X < 3)) == 1
def test_where():
X = Geometric('X', Rational(1, 5))
Y = Poisson('Y', 4)
assert where(X**2 > 4).set == Range(3, S.Infinity, 1)
assert where(X**2 >= 4).set == Range(2, S.Infinity, 1)
assert where(Y**2 < 9).set == Range(0, 3, 1)
assert where(Y**2 <= 9).set == Range(0, 4, 1)
def test_conditional():
X = Geometric('X', Rational(2, 3))
Y = Poisson('Y', 3)
assert P(X > 2, X > 3) == 1
assert P(X > 3, X > 2) == Rational(1, 3)
assert P(Y > 2, Y < 2) == 0
assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2
assert P(Eq(Y, 3), Eq(Y, 2)) == 0
assert P(X < 2, Eq(X, 2)) == 0
assert P(X > 2, Eq(X, 3)) == 1
def test_product_spaces():
X1 = Geometric('X1', S.Half)
X2 = Geometric('X2', Rational(1, 3))
#assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\
# + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))"""
n = Dummy('n')
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert P(X1 + X2 < 3, evaluate=False).rewrite(Sum).dummy_eq(Sum(Piecewise((2**(-n)/4,
n + 2 >= 1), (0, True)), (n, -oo, -1))/3)
#assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\
# """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))"""
assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6,
-X2 + n + 3 >= 1), (0, True)),
(X2, 1, oo), (n, 1, oo)))
# assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\
# """X2 <= 2), (0, True)), (X2, 1, oo))"""
assert P(Eq(X1 + X2, 3)) == Rational(1, 12)
def test_sample_numpy():
distribs_numpy = [
Geometric('G', 0.5),
Poisson('P', 1),
Zeta('Z', 2)
]
size = 3
numpy = import_module('numpy')
if not numpy:
skip('Numpy is not installed. Abort tests for _sample_numpy.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for X in distribs_numpy:
samps = next(sample(X, size=size, library='numpy'))
for sam in samps:
assert sam in X.pspace.domain.set
raises(NotImplementedError,
lambda: next(sample(Skellam('S', 1, 1), library='numpy')))
raises(NotImplementedError,
lambda: Skellam('S', 1, 1).pspace.distribution.sample(library='tensorflow'))
def test_sample_scipy():
p = S(2)/3
x = Symbol('x', integer=True, positive=True)
pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution
distribs_scipy = [
DiscreteRV(x, pdf, set=S.Naturals),
Geometric('G', 0.5),
Logarithmic('L', 0.5),
NegativeBinomial('N', 5, 0.4),
Poisson('P', 1),
Skellam('S', 1, 1),
YuleSimon('Y', 1),
Zeta('Z', 2)
]
size = 3
numsamples = 5
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests for _sample_scipy.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
z_sample = list(sample(Zeta("G", 7), size=size, numsamples=numsamples))
assert len(z_sample) == numsamples
for X in distribs_scipy:
samps = next(sample(X, size=size, library='scipy'))
samps2 = next(sample(X, size=(2, 2), library='scipy'))
for sam in samps:
assert sam in X.pspace.domain.set
for i in range(2):
for j in range(2):
assert samps2[i][j] in X.pspace.domain.set
def test_sample_pymc3():
distribs_pymc3 = [
Geometric('G', 0.5),
Poisson('P', 1),
NegativeBinomial('N', 5, 0.4)
]
size = 3
pymc3 = import_module('pymc3')
if not pymc3:
skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for X in distribs_pymc3:
samps = next(sample(X, size=size, library='pymc3'))
for sam in samps:
assert sam in X.pspace.domain.set
raises(NotImplementedError,
lambda: next(sample(Skellam('S', 1, 1), library='pymc3')))
|
f0ae326421a1123495cee234a343af462a81f8875c127aca3c03e1017ef17eb1 | from sympy import E as e
from sympy import (Symbol, Abs, exp, expint, S, pi, simplify, Interval, erf, erfc, Ne,
EulerGamma, Eq, log, lowergamma, uppergamma, symbols, sqrt, And,
gamma, beta, Piecewise, Integral, sin, cos, tan, sinh, cosh,
besseli, floor, expand_func, Rational, I, re, Lambda, asin,
im, lambdify, hyper, diff, Or, Mul, sign, Dummy, Sum,
factorial, binomial, erfi, besselj, besselk)
from sympy.external import import_module
from sympy.functions.special.error_functions import erfinv
from sympy.functions.special.hyper import meijerg
from sympy.sets.sets import Intersection, FiniteSet
from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median,
given, pspace, cdf, characteristic_function, moment_generating_function,
ContinuousRV, sample, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime,
Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian,
Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma,
GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic,
LogLogistic, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse,
Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT,
Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness,
WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile,
Lomax, BoundedPareto)
from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution
from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain
from sympy.stats.compound_rv import CompoundPSpace
from sympy.stats.symbolic_probability import Probability
from sympy.testing.pytest import raises, XFAIL, slow, skip, ignore_warnings
from sympy.testing.randtest import verify_numerically as tn
oo = S.Infinity
x, y, z = map(Symbol, 'xyz')
def test_single_normal():
mu = Symbol('mu', real=True)
sigma = Symbol('sigma', positive=True)
X = Normal('x', 0, 1)
Y = X*sigma + mu
assert E(Y) == mu
assert variance(Y) == sigma**2
pdf = density(Y)
x = Symbol('x', real=True)
assert (pdf(x) ==
2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma))
assert P(X**2 < 1) == erf(2**S.Half/2)
assert quantile(Y)(x) == Intersection(S.Reals, FiniteSet(sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma) + erfinv(2*x - 1))))
assert E(X, Eq(X, mu)) == mu
assert median(X) == FiniteSet(0)
# issue 8248
assert X.pspace.compute_expectation(1).doit() == 1
def test_conditional_1d():
X = Normal('x', 0, 1)
Y = given(X, X >= 0)
z = Symbol('z')
assert density(Y)(z) == 2 * density(X)(z)
assert Y.pspace.domain.set == Interval(0, oo)
assert E(Y) == sqrt(2) / sqrt(pi)
assert E(X**2) == E(Y**2)
def test_ContinuousDomain():
X = Normal('x', 0, 1)
assert where(X**2 <= 1).set == Interval(-1, 1)
assert where(X**2 <= 1).symbol == X.symbol
where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
raises(ValueError, lambda: where(sin(X) > 1))
Y = given(X, X >= 0)
assert Y.pspace.domain.set == Interval(0, oo)
@slow
def test_multiple_normal():
X, Y = Normal('x', 0, 1), Normal('y', 0, 1)
p = Symbol("p", positive=True)
assert E(X + Y) == 0
assert variance(X + Y) == 2
assert variance(X + X) == 4
assert covariance(X, Y) == 0
assert covariance(2*X + Y, -X) == -2*variance(X)
assert skewness(X) == 0
assert skewness(X + Y) == 0
assert kurtosis(X) == 3
assert kurtosis(X+Y) == 3
assert correlation(X, Y) == 0
assert correlation(X, X + Y) == correlation(X, X - Y)
assert moment(X, 2) == 1
assert cmoment(X, 3) == 0
assert moment(X + Y, 4) == 12
assert cmoment(X, 2) == variance(X)
assert smoment(X*X, 2) == 1
assert smoment(X + Y, 3) == skewness(X + Y)
assert smoment(X + Y, 4) == kurtosis(X + Y)
assert E(X, Eq(X + Y, 0)) == 0
assert variance(X, Eq(X + Y, 0)) == S.Half
assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One)
def test_symbolic():
mu1, mu2 = symbols('mu1 mu2', real=True)
s1, s2 = symbols('sigma1 sigma2', positive=True)
rate = Symbol('lambda', positive=True)
X = Normal('x', mu1, s1)
Y = Normal('y', mu2, s2)
Z = Exponential('z', rate)
a, b, c = symbols('a b c', real=True)
assert E(X) == mu1
assert E(X + Y) == mu1 + mu2
assert E(a*X + b) == a*E(X) + b
assert variance(X) == s1**2
assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y)
assert E(Z) == 1/rate
assert E(a*Z + b) == a*E(Z) + b
assert E(X + a*Z + b) == mu1 + a/rate + b
assert median(X) == FiniteSet(mu1)
def test_cdf():
X = Normal('x', 0, 1)
d = cdf(X)
assert P(X < 1) == d(1).rewrite(erfc)
assert d(0) == S.Half
d = cdf(X, X > 0) # given X>0
assert d(0) == 0
Y = Exponential('y', 10)
d = cdf(Y)
assert d(-5) == 0
assert P(Y > 3) == 1 - d(3)
raises(ValueError, lambda: cdf(X + Y))
Z = Exponential('z', 1)
f = cdf(Z)
assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True))
def test_characteristic_function():
X = Uniform('x', 0, 1)
cf = characteristic_function(X)
assert cf(1) == -I*(-1 + exp(I))
Y = Normal('y', 1, 1)
cf = characteristic_function(Y)
assert cf(0) == 1
assert cf(1) == exp(I - S.Half)
Z = Exponential('z', 5)
cf = characteristic_function(Z)
assert cf(0) == 1
assert cf(1).expand() == Rational(25, 26) + I*Rational(5, 26)
X = GaussianInverse('x', 1, 1)
cf = characteristic_function(X)
assert cf(0) == 1
assert cf(1) == exp(1 - sqrt(1 - 2*I))
X = ExGaussian('x', 0, 1, 1)
cf = characteristic_function(X)
assert cf(0) == 1
assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2
L = Levy('x', 0, 1)
cf = characteristic_function(L)
assert cf(0) == 1
assert cf(1) == exp(-sqrt(2)*sqrt(-I))
def test_moment_generating_function():
t = symbols('t', positive=True)
# Symbolic tests
a, b, c = symbols('a b c')
mgf = moment_generating_function(Beta('x', a, b))(t)
assert mgf == hyper((a,), (a + b,), t)
mgf = moment_generating_function(Chi('x', a))(t)
assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\
hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\
hyper((a/2,), (S.Half,), t**2/2)
mgf = moment_generating_function(ChiSquared('x', a))(t)
assert mgf == (1 - 2*t)**(-a/2)
mgf = moment_generating_function(Erlang('x', a, b))(t)
assert mgf == (1 - t/b)**(-a)
mgf = moment_generating_function(ExGaussian("x", a, b, c))(t)
assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c)
mgf = moment_generating_function(Exponential('x', a))(t)
assert mgf == a/(a - t)
mgf = moment_generating_function(Gamma('x', a, b))(t)
assert mgf == (-b*t + 1)**(-a)
mgf = moment_generating_function(Gumbel('x', a, b))(t)
assert mgf == exp(b*t)*gamma(-a*t + 1)
mgf = moment_generating_function(Gompertz('x', a, b))(t)
assert mgf == b*exp(b)*expint(t/a, b)
mgf = moment_generating_function(Laplace('x', a, b))(t)
assert mgf == exp(a*t)/(-b**2*t**2 + 1)
mgf = moment_generating_function(Logistic('x', a, b))(t)
assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1)
mgf = moment_generating_function(Normal('x', a, b))(t)
assert mgf == exp(a*t + b**2*t**2/2)
mgf = moment_generating_function(Pareto('x', a, b))(t)
assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t)
mgf = moment_generating_function(QuadraticU('x', a, b))(t)
assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - "
"3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)")
mgf = moment_generating_function(RaisedCosine('x', a, b))(t)
assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2))
mgf = moment_generating_function(Rayleigh('x', a))(t)
assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\
*exp(a**2*t**2/2)/2 + 1
mgf = moment_generating_function(Triangular('x', a, b, c))(t)
assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + "
"2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))")
mgf = moment_generating_function(Uniform('x', a, b))(t)
assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b))
mgf = moment_generating_function(UniformSum('x', a))(t)
assert mgf == ((exp(t) - 1)/t)**a
mgf = moment_generating_function(WignerSemicircle('x', a))(t)
assert mgf == 2*besseli(1, a*t)/(a*t)
# Numeric tests
mgf = moment_generating_function(Beta('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2
mgf = moment_generating_function(Chi('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half
)/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,),
(Rational(5, 2),), S.Half)/(3*sqrt(pi))
mgf = moment_generating_function(ChiSquared('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == I
mgf = moment_generating_function(Erlang('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t)
assert mgf.diff(t).subs(t, 2) == -exp(2)
mgf = moment_generating_function(Exponential('x', 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Gamma('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Gumbel('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == EulerGamma + 1
mgf = moment_generating_function(Gompertz('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)),
((0, 0, 0), ()), 1)
mgf = moment_generating_function(Laplace('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == 1
mgf = moment_generating_function(Logistic('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == beta(1, 1)
mgf = moment_generating_function(Normal('x', 0, 1))(t)
assert mgf.diff(t).subs(t, 1) == exp(S.Half)
mgf = moment_generating_function(Pareto('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 0) == expint(1, 0)
mgf = moment_generating_function(QuadraticU('x', 1, 2))(t)
assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2)
mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t)
assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\
(1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2)
mgf = moment_generating_function(Rayleigh('x', 1))(t)
assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2
mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t)
assert mgf.diff(t).subs(t, 1) == -e + exp(3)
mgf = moment_generating_function(Uniform('x', 0, 1))(t)
assert mgf.diff(t).subs(t, 1) == 1
mgf = moment_generating_function(UniformSum('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == 1
mgf = moment_generating_function(WignerSemicircle('x', 1))(t)
assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\
besseli(0, 1)
def test_sample_continuous():
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
assert density(Z)(-1) == 0
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert next(sample(Z)) in Z.pspace.domain.set
sym, val = list(Z.pspace.sample().items())[0]
assert sym == Z and val in Interval(0, oo)
def test_ContinuousRV():
pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution
# X and Y should be equivalent
X = ContinuousRV(x, pdf, check=True)
Y = Normal('y', 0, 1)
assert variance(X) == variance(Y)
assert P(X > 0) == P(Y > 0)
Z = ContinuousRV(z, exp(-z), set=Interval(0, oo))
assert Z.pspace.domain.set == Interval(0, oo)
assert E(Z) == 1
assert P(Z > 5) == exp(-5)
raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True))
# the correct pdf for Gamma(k, theta) but the integral in `check`
# integrates to something equivalent to 1 and not to 1 exactly
_x, k, theta = symbols("x k theta", positive=True)
pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta)
X = ContinuousRV(_x, pdf, set=Interval(0, oo))
Y = Gamma('y', k, theta)
assert (E(X) - E(Y)).simplify() == 0
assert (variance(X) - variance(Y)).simplify() == 0
def test_arcsin():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Arcsin('x', a, b)
assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a)))
assert cdf(X)(x) == Piecewise((0, a > x),
(2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x),
(1, True))
assert pspace(X).domain.set == Interval(a, b)
def test_benini():
alpha = Symbol("alpha", positive=True)
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", positive=True)
X = Benini('x', alpha, beta, sigma)
assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x)
*exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2))
assert pspace(X).domain.set == Interval(sigma, oo)
raises(NotImplementedError, lambda: moment_generating_function(X))
alpha = Symbol("alpha", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
alpha = Symbol("alpha", positive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
beta = Symbol("beta", positive=True)
sigma = Symbol("sigma", nonpositive=True)
raises(ValueError, lambda: Benini('x', alpha, beta, sigma))
def test_beta():
a, b = symbols('alpha beta', positive=True)
B = Beta('x', a, b)
assert pspace(B).domain.set == Interval(0, 1)
assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x)
assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b)
assert simplify(E(B)) == a / (a + b)
assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2)
# Full symbolic solution is too much, test with numeric version
a, b = 1, 2
B = Beta('x', a, b)
assert expand_func(E(B)) == a / S(a + b)
assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1))
assert median(B) == FiniteSet(1 - 1/sqrt(2))
def test_beta_noncentral():
a, b = symbols('a b', positive=True)
c = Symbol('c', nonnegative=True)
_k = Dummy('k')
X = BetaNoncentral('x', a, b, c)
assert pspace(X).domain.set == Interval(0, 1)
dens = density(X)
z = Symbol('z')
res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/
(beta(_k + a, b)*factorial(_k)), (_k, 0, oo))
assert dens(z).dummy_eq(res)
# BetaCentral should not raise if the assumptions
# on the symbols can not be determined
a, b, c = symbols('a b c')
assert BetaNoncentral('x', a, b, c)
a = Symbol('a', positive=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
a = Symbol('a', positive=True)
b = Symbol('b', positive=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
a = Symbol('a', positive=True)
b = Symbol('b', positive=True)
c = Symbol('c', nonnegative=False, real=True)
raises(ValueError, lambda: BetaNoncentral('x', a, b, c))
def test_betaprime():
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", positive=True)
X = BetaPrime('x', alpha, betap)
assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap)
alpha = Symbol("alpha", nonpositive=True)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
alpha = Symbol("alpha", positive=True)
betap = Symbol("beta", nonpositive=True)
raises(ValueError, lambda: BetaPrime('x', alpha, betap))
X = BetaPrime('x', 1, 1)
assert median(X) == FiniteSet(1)
def test_BoundedPareto():
L, H = symbols('L, H', negative=True)
raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
L, H = symbols('L, H', real=False)
raises(ValueError, lambda: BoundedPareto('X', 1, L, H))
L, H = symbols('L, H', positive=True)
raises(ValueError, lambda: BoundedPareto('X', -1, L, H))
X = BoundedPareto('X', 2, L, H)
assert X.pspace.domain.set == Interval(L, H)
assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2))
assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \
+ H**2/(H**2 - L**2), L <= x), (0, True))
assert E(X).simplify() == 2*H*L/(H + L)
X = BoundedPareto('X', 1, 2, 4)
assert E(X).simplify() == log(16)
assert median(X) == FiniteSet(Rational(8, 3))
assert variance(X).simplify() == 8 - 16*log(2)**2
def test_cauchy():
x0 = Symbol("x0", real=True)
gamma = Symbol("gamma", positive=True)
p = Symbol("p", positive=True)
X = Cauchy('x', x0, gamma)
# Tests the characteristic function
assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0)
raises(NotImplementedError, lambda: moment_generating_function(X))
assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0
x1 = Symbol("x1", real=False)
raises(ValueError, lambda: Cauchy('x', x1, gamma))
gamma = Symbol("gamma", nonpositive=True)
raises(ValueError, lambda: Cauchy('x', x0, gamma))
assert median(X) == FiniteSet(x0)
def test_chi():
from sympy import I
k = Symbol("k", integer=True)
X = Chi('x', k)
assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2)
# Tests the characteristic function
assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
(S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2)
# Tests the moment generating function
assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,),
(S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: Chi('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: Chi('x', k))
def test_chi_noncentral():
k = Symbol("k", integer=True)
l = Symbol("l")
X = ChiNoncentral("x", k, l)
assert density(X)(x) == (x**k*l*(x*l)**(-k/2)*
exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l))
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", nonpositive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
k = Symbol("k", integer=False)
l = Symbol("l", positive=True)
raises(ValueError, lambda: ChiNoncentral('x', k, l))
def test_chi_squared():
k = Symbol("k", integer=True)
X = ChiSquared('x', k)
# Tests the characteristic function
assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2))
assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2)
assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True))
assert E(X) == k
assert variance(X) == 2*k
X = ChiSquared('x', 15)
assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2)
k = Symbol("k", integer=True, positive=False)
raises(ValueError, lambda: ChiSquared('x', k))
k = Symbol("k", integer=False, positive=True)
raises(ValueError, lambda: ChiSquared('x', k))
def test_dagum():
p = Symbol("p", positive=True)
b = Symbol("b", positive=True)
a = Symbol("a", positive=True)
X = Dagum('x', p, a, b)
assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x
assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0),
(0, True))
p = Symbol("p", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
p = Symbol("p", positive=True)
b = Symbol("b", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
b = Symbol("b", positive=True)
a = Symbol("a", nonpositive=True)
raises(ValueError, lambda: Dagum('x', p, a, b))
X = Dagum('x', 1 , 1, 1)
assert median(X) == FiniteSet(1)
def test_erlang():
k = Symbol("k", integer=True, positive=True)
l = Symbol("l", positive=True)
X = Erlang("x", k, l)
assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k)
assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0),
(0, True))
def test_exgaussian():
m, z = symbols("m, z")
s, l = symbols("s, l", positive=True)
X = ExGaussian("x", m, s, l)
assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\
erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2
# Note: actual_output simplifies to expected_output.
# Ideally cdf(X)(z) would return expected_output
# expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half
u = l*(z - m)
v = l*s
GaussianCDF1 = cdf(Normal('x', 0, v))(u)
GaussianCDF2 = cdf(Normal('x', v**2, v))(u)
actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2))
assert cdf(X)(z) == actual_output
# assert simplify(actual_output) == expected_output
assert variance(X).expand() == s**2 + l**(-2)
assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l *
sqrt(s**2 + l**(-2)))
def test_exponential():
rate = Symbol('lambda', positive=True)
X = Exponential('x', rate)
p = Symbol("p", positive=True, real=True, finite=True)
assert E(X) == 1/rate
assert variance(X) == 1/rate**2
assert skewness(X) == 2
assert skewness(X) == smoment(X, 3)
assert kurtosis(X) == 9
assert kurtosis(X) == smoment(X, 4)
assert smoment(2*X, 4) == smoment(X, 4)
assert moment(X, 3) == 3*2*1/rate**3
assert P(X > 0) is S.One
assert P(X > 1) == exp(-rate)
assert P(X > 10) == exp(-10*rate)
assert quantile(X)(p) == -log(1-p)/rate
assert where(X <= 1).set == Interval(0, 1)
Y = Exponential('y', 1)
assert median(Y) == FiniteSet(log(2))
#Test issue 9970
z = Dummy('z')
assert P(X > z) == exp(-z*rate)
assert P(X < z) == 0
#Test issue 10076 (Distribution with interval(0,oo))
x = Symbol('x')
_z = Dummy('_z')
b = SingleContinuousPSpace(x, ExponentialDistribution(2))
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
expected1 = Integral(2*exp(-2*_z), (_z, 3, oo))
assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1)
expected2 = Integral(2*exp(-2*_z), (_z, 0, 4))
assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2)
Y = Exponential('y', 2*rate)
assert coskewness(X, X, X) == skewness(X)
assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \
4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2)))
assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \
sqrt(170)*Rational(9, 85)
def test_exponential_power():
mu = Symbol('mu')
z = Symbol('z')
alpha = Symbol('alpha', positive=True)
beta = Symbol('beta', positive=True)
X = ExponentialPower('x', mu, alpha, beta)
assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha)
** beta)/(2*alpha*gamma(1/beta))
assert cdf(X)(z) == S.Half + lowergamma(1/beta,
(Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\
(2*gamma(1/beta))
def test_f_distribution():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FDistribution("x", d1, d2)
assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2))
/(x*beta(d1/2, d2/2)))
raises(NotImplementedError, lambda: moment_generating_function(X))
d1 = Symbol("d1", nonpositive=True)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d1))
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", nonpositive=True)
raises(ValueError, lambda: FDistribution('x', d1, d2))
d2 = Symbol("d2", positive=True, integer=False)
raises(ValueError, lambda: FDistribution('x', d1, d2))
def test_fisher_z():
d1 = Symbol("d1", positive=True)
d2 = Symbol("d2", positive=True)
X = FisherZ("x", d1, d2)
assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2)
**(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2))
def test_frechet():
a = Symbol("a", positive=True)
s = Symbol("s", positive=True)
m = Symbol("m", real=True)
X = Frechet("x", a, s=s, m=m)
assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s
assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True))
@slow
def test_gamma():
k = Symbol("k", positive=True)
theta = Symbol("theta", positive=True)
X = Gamma('x', k, theta)
# Tests characteristic function
assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k))
assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k)
assert cdf(X, meijerg=True)(z) == Piecewise(
(-k*lowergamma(k, 0)/gamma(k + 1) +
k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0),
(0, True))
# assert simplify(variance(X)) == k*theta**2 # handled numerically below
assert E(X) == moment(X, 1)
k, theta = symbols('k theta', positive=True)
X = Gamma('x', k, theta)
assert E(X) == k*theta
assert variance(X) == k*theta**2
assert skewness(X).expand() == 2/sqrt(k)
assert kurtosis(X).expand() == 3 + 6/k
Y = Gamma('y', 2*k, 3*theta)
assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \
2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \
/(sqrt(k**2 + 18)*sqrt(theta**2 + 18))
def test_gamma_inverse():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = GammaInverse("x", a, b)
assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a)
assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True))
assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \
* besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a)
raises(NotImplementedError, lambda: moment_generating_function(X))
def test_sampling_gamma_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of gamma inverse.')
X = GammaInverse("x", 1, 1)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert next(sample(X)) in X.pspace.domain.set
def test_gompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = Gompertz("x", b, eta)
assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x))
assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_gumbel():
beta = Symbol("beta", positive=True)
mu = Symbol("mu")
x = Symbol("x")
y = Symbol("y")
X = Gumbel("x", beta, mu)
Y = Gumbel("y", beta, mu, minimum=True)
assert density(X)(x).expand() == \
exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta
assert density(Y)(y).expand() == \
exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta
assert cdf(X)(x).expand() == \
exp(-exp(mu/beta)*exp(-x/beta))
assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1)
def test_kumaraswamy():
a = Symbol("a", positive=True)
b = Symbol("b", positive=True)
X = Kumaraswamy("x", a, b)
assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1)
assert cdf(X)(x) == Piecewise((0, x < 0),
(-(-x**a + 1)**b + 1, x <= 1),
(1, True))
def test_laplace():
mu = Symbol("mu")
b = Symbol("b", positive=True)
X = Laplace('x', mu, b)
#Tests characteristic_function
assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1))
assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b)
assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x),
(-exp((mu - x)/b)/2 + 1, True))
X = Laplace('x', [1, 2], [[1, 0], [0, 1]])
assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution)
def test_levy():
mu = Symbol("mu", real=True)
c = Symbol("c", positive=True)
X = Levy('x', mu, c)
assert X.pspace.domain.set == Interval(mu, oo)
assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half))
assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu))))
raises(NotImplementedError, lambda: moment_generating_function(X))
mu = Symbol("mu", real=False)
raises(ValueError, lambda: Levy('x',mu,c))
c = Symbol("c", nonpositive=True)
raises(ValueError, lambda: Levy('x',mu,c))
mu = Symbol("mu", real=True)
raises(ValueError, lambda: Levy('x',mu,c))
def test_logistic():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
p = Symbol("p", positive=True)
X = Logistic('x', mu, s)
#Tests characteristics_function
assert characteristic_function(X)(x) == \
(Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True)))
assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2)
assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1)
assert quantile(X)(p) == mu - s*log(-S.One + 1/p)
def test_loglogistic():
a, b = symbols('a b')
assert LogLogistic('x', a, b)
a = Symbol('a', negative=True)
b = Symbol('b', positive=True)
raises(ValueError, lambda: LogLogistic('x', a, b))
a = Symbol('a', positive=True)
b = Symbol('b', negative=True)
raises(ValueError, lambda: LogLogistic('x', a, b))
a, b, z, p = symbols('a b z p', positive=True)
X = LogLogistic('x', a, b)
assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2)
assert cdf(X)(z) == 1/(1 + (z/a)**(-b))
assert quantile(X)(p) == a*(p/(1 - p))**(1/b)
# Expectation
assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True))
b = symbols('b', prime=True) # b > 1
X = LogLogistic('x', a, b)
assert E(X) == pi*a/(b*sin(pi/b))
X = LogLogistic('x', 1, 2)
assert median(X) == FiniteSet(1)
def test_lognormal():
mean = Symbol('mu', real=True)
std = Symbol('sigma', positive=True)
X = LogNormal('x', mean, std)
# The sympy integrator can't do this too well
#assert E(X) == exp(mean+std**2/2)
#assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2)
# Right now, only density function and sampling works
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for i in range(3):
X = LogNormal('x', i, 1)
assert next(sample(X)) in X.pspace.domain.set
size = 5
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
samps = next(sample(X, size=size))
for samp in samps:
assert samp in X.pspace.domain.set
# The sympy integrator can't do this too well
#assert E(X) ==
raises(NotImplementedError, lambda: moment_generating_function(X))
mu = Symbol("mu", real=True)
sigma = Symbol("sigma", positive=True)
X = LogNormal('x', mu, sigma)
assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2
/(2*sigma**2))/(2*x*sqrt(pi)*sigma))
# Tests cdf
assert cdf(X)(x) == Piecewise(
(erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2
+ S(1)/2, x > 0), (0, True))
X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1
assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi))
def test_Lomax():
a, l = symbols('a, l', negative=True)
raises(ValueError, lambda: Lomax('X', a , l))
a, l = symbols('a, l', real=False)
raises(ValueError, lambda: Lomax('X', a , l))
a, l = symbols('a, l', positive=True)
X = Lomax('X', a, l)
assert X.pspace.domain.set == Interval(0, oo)
assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l
assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True))
a = 3
X = Lomax('X', a, l)
assert E(X) == l/2
assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3)))
assert variance(X) == 3*l**2/4
def test_maxwell():
a = Symbol("a", positive=True)
X = Maxwell('x', a)
assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/
(sqrt(pi)*a**3))
assert E(X) == 2*sqrt(2)*a/sqrt(pi)
assert variance(X) == -8*a**2/pi + 3*a**2
assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a)
assert diff(cdf(X)(x), x) == density(X)(x)
def test_Moyal():
mu = Symbol('mu',real=False)
sigma = Symbol('sigma', real=True, positive=True)
raises(ValueError, lambda: Moyal('M',mu, sigma))
mu = Symbol('mu', real=True)
sigma = Symbol('sigma', real=True, negative=True)
raises(ValueError, lambda: Moyal('M',mu, sigma))
sigma = Symbol('sigma', real=True, positive=True)
M = Moyal('M', mu, sigma)
assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2
- (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma)
assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2)
assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \
*gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi)
assert E(M) == mu + EulerGamma*sigma + sigma*log(2)
assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \
*gamma(-sigma*z + Rational(1, 2))/sqrt(pi)
def test_nakagami():
mu = Symbol("mu", positive=True)
omega = Symbol("omega", positive=True)
X = Nakagami('x', mu, omega)
assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu)
*exp(-x**2*mu/omega)/gamma(mu))
assert simplify(E(X)) == (sqrt(mu)*sqrt(omega)
*gamma(mu + S.Half)/gamma(mu + 1))
assert simplify(variance(X)) == (
omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1)))
assert cdf(X)(x) == Piecewise(
(lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0),
(0, True))
X = Nakagami('x',1 ,1)
assert median(X) == FiniteSet(sqrt(log(2)))
def test_gaussian_inverse():
# test for symbolic parameters
a, b = symbols('a b')
assert GaussianInverse('x', a, b)
# Inverse Gaussian distribution is also known as Wald distribution
# `GaussianInverse` can also be referred by the name `Wald`
a, b, z = symbols('a b z')
X = Wald('x', a, b)
assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
a, b = symbols('a b', positive=True)
z = Symbol('z', positive=True)
X = GaussianInverse('x', a, b)
assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi))
assert E(X) == a
assert variance(X).expand() == a**3/b
assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\
erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half
a = symbols('a', nonpositive=True)
raises(ValueError, lambda: GaussianInverse('x', a, b))
a = symbols('a', positive=True)
b = symbols('b', nonpositive=True)
raises(ValueError, lambda: GaussianInverse('x', a, b))
def test_sampling_gaussian_inverse():
scipy = import_module('scipy')
if not scipy:
skip('Scipy not installed. Abort tests for sampling of Gaussian inverse.')
X = GaussianInverse("x", 1, 1)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert next(sample(X, library='scipy')) in X.pspace.domain.set
def test_pareto():
xm, beta = symbols('xm beta', positive=True)
alpha = beta + 5
X = Pareto('x', xm, alpha)
dens = density(X)
#Tests cdf function
assert cdf(X)(x) == \
Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True))
#Tests characteristic_function
assert characteristic_function(X)(x) == \
((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm))
assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha)
assert simplify(E(X)) == alpha*xm/(alpha-1)
# computation of taylor series for MGF still too slow
#assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2))
def test_pareto_numeric():
xm, beta = 3, 2
alpha = beta + 5
X = Pareto('x', xm, alpha)
assert E(X) == alpha*xm/S(alpha - 1)
assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2))
assert median(X) == FiniteSet(3*2**Rational(1, 7))
# Skewness tests too slow. Try shortcutting function?
def test_PowerFunction():
alpha = Symbol("alpha", nonpositive=True)
a, b = symbols('a, b', real=True)
raises (ValueError, lambda: PowerFunction('x', alpha, a, b))
a, b = symbols('a, b', real=False)
raises (ValueError, lambda: PowerFunction('x', alpha, a, b))
alpha = Symbol("alpha", positive=True)
a, b = symbols('a, b', real=True)
raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2))
X = PowerFunction('X', 2, a, b)
assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2
assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) -
2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True))
X = PowerFunction('X', 2, 0, 1)
assert density(X)(z) == 2*z
assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True))
assert E(X) == Rational(2,3)
assert P(X < 0) == 0
assert P(X < 1) == 1
assert median(X) == FiniteSet(1/sqrt(2))
def test_raised_cosine():
mu = Symbol("mu", real=True)
s = Symbol("s", positive=True)
X = RaisedCosine("x", mu, s)
assert pspace(X).domain.set == Interval(mu - s, mu + s)
#Tests characteristics_function
assert characteristic_function(X)(x) == \
Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True))
assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s),
And(x <= mu + s, mu - s <= x)), (0, True)))
def test_rayleigh():
sigma = Symbol("sigma", positive=True)
X = Rayleigh('x', sigma)
#Tests characteristic_function
assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1)
assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2
assert E(X) == sqrt(2)*sqrt(pi)*sigma/2
assert variance(X) == -pi*sigma**2/2 + 2*sigma**2
assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2))
assert diff(cdf(X)(x), x) == density(X)(x)
def test_reciprocal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = Reciprocal('x', a, b)
assert density(X)(x) == 1/(x*(-log(a) + log(b)))
assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True))
X = Reciprocal('x', 5, 30)
assert E(X) == 25/(log(30) - log(5))
assert P(X < 4) == S.Zero
assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5))
a = symbols('a', nonpositive=True)
raises(ValueError, lambda: Reciprocal('x', a, b))
a = symbols('a', positive=True)
b = symbols('b', positive=True)
raises(ValueError, lambda: Reciprocal('x', a + b, a))
def test_shiftedgompertz():
b = Symbol("b", positive=True)
eta = Symbol("eta", positive=True)
X = ShiftedGompertz("x", b, eta)
assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x))
def test_studentt():
nu = Symbol("nu", positive=True)
X = StudentT('x', nu)
assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2))
assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half),
(Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
raises(NotImplementedError, lambda: moment_generating_function(X))
def test_trapezoidal():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
c = Symbol("c", real=True)
d = Symbol("d", real=True)
X = Trapezoidal('x', a, b, c, d)
assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)),
(2/(-a - b + c + d), (b <= x) & (x < c)),
((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)),
(0, True))
X = Trapezoidal('x', 0, 1, 2, 3)
assert E(X) == Rational(3, 2)
assert variance(X) == Rational(5, 12)
assert P(X < 2) == Rational(3, 4)
assert median(X) == FiniteSet(Rational(3, 2))
def test_triangular():
a = Symbol("a")
b = Symbol("b")
c = Symbol("c")
X = Triangular('x', a, b, c)
assert pspace(X).domain.set == Interval(a, b)
assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), "
"(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))")
#Tests moment_generating_function
assert moment_generating_function(X)(x).expand() == \
((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand()
assert str(characteristic_function(X)(x)) == \
'(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))'
def test_quadratic_u():
a = Symbol("a", real=True)
b = Symbol("b", real=True)
X = QuadraticU("x", a, b)
Y = QuadraticU("x", 1, 2)
assert pspace(X).domain.set == Interval(a, b)
# Tests _moment_generating_function
assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1)
assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2
assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I))
assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3,
And(x <= b, a <= x)), (0, True)))
def test_uniform():
l = Symbol('l', real=True)
w = Symbol('w', positive=True)
X = Uniform('x', l, l + w)
assert E(X) == l + w/2
assert variance(X).expand() == w**2/12
# With numbers all is well
X = Uniform('x', 3, 5)
assert P(X < 3) == 0 and P(X > 5) == 0
assert P(X < 4) == P(X > 4) == S.Half
assert median(X) == FiniteSet(4)
z = Symbol('z')
p = density(X)(z)
assert p.subs(z, 3.7) == S.Half
assert p.subs(z, -1) == 0
assert p.subs(z, 6) == 0
c = cdf(X)
assert c(2) == 0 and c(3) == 0
assert c(Rational(7, 2)) == Rational(1, 4)
assert c(5) == 1 and c(6) == 1
@XFAIL
def test_uniform_P():
""" This stopped working because SingleContinuousPSpace.compute_density no
longer calls integrate on a DiracDelta but rather just solves directly.
integrate used to call UniformDistribution.expectation which special-cased
subsed out the Min and Max terms that Uniform produces
I decided to regress on this class for general cleanliness (and I suspect
speed) of the algorithm.
"""
l = Symbol('l', real=True)
w = Symbol('w', positive=True)
X = Uniform('x', l, l + w)
assert P(X < l) == 0 and P(X > l + w) == 0
def test_uniformsum():
n = Symbol("n", integer=True)
_k = Dummy("k")
x = Symbol("x")
X = UniformSum('x', n)
res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1)
assert density(X)(x).dummy_eq(res)
#Tests set functions
assert X.pspace.domain.set == Interval(0, n)
#Tests the characteristic_function
assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n
#Tests the moment_generating_function
assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n
def test_von_mises():
mu = Symbol("mu")
k = Symbol("k", positive=True)
X = VonMises("x", mu, k)
assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k))
def test_weibull():
a, b = symbols('a b', positive=True)
# FIXME: simplify(E(X)) seems to hang without extended_positive=True
# On a Linux machine this had a rapid memory leak...
# a, b = symbols('a b', positive=True)
X = Weibull('x', a, b)
assert E(X).expand() == a * gamma(1 + 1/b)
assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand()
assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2)
assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\
6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2
def test_weibull_numeric():
# Test for integers and rationals
a = 1
bvals = [S.Half, 1, Rational(3, 2), 5]
for b in bvals:
X = Weibull('x', a, b)
assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b)))
assert simplify(variance(X)) == simplify(
a**2 * gamma(1 + 2/S(b)) - E(X)**2)
# Not testing Skew... it's slow with int/frac values > 3/2
def test_wignersemicircle():
R = Symbol("R", positive=True)
X = WignerSemicircle('x', R)
assert pspace(X).domain.set == Interval(-R, R)
assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2)
assert E(X) == 0
#Tests ChiNoncentralDistribution
assert characteristic_function(X)(x) == \
Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True))
def test_prefab_sampling():
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests')
N = Normal('X', 0, 1)
L = LogNormal('L', 0, 1)
E = Exponential('Ex', 1)
P = Pareto('P', 1, 3)
W = Weibull('W', 1, 1)
U = Uniform('U', 0, 1)
B = Beta('B', 2, 5)
G = Gamma('G', 1, 3)
variables = [N, L, E, P, W, U, B, G]
niter = 10
size = 5
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for var in variables:
for _ in range(niter):
assert next(sample(var)) in var.pspace.domain.set
samps = next(sample(var, size=size))
for samp in samps:
assert samp in var.pspace.domain.set
def test_input_value_assertions():
a, b = symbols('a b')
p, q = symbols('p q', positive=True)
m, n = symbols('m n', positive=False, real=True)
raises(ValueError, lambda: Normal('x', 3, 0))
raises(ValueError, lambda: Normal('x', m, n))
Normal('X', a, p) # No error raised
raises(ValueError, lambda: Exponential('x', m))
Exponential('Ex', p) # No error raised
for fn in [Pareto, Weibull, Beta, Gamma]:
raises(ValueError, lambda: fn('x', m, p))
raises(ValueError, lambda: fn('x', p, n))
fn('x', p, q) # No error raised
def test_unevaluated():
X = Normal('x', 0, 1)
k = Dummy('k')
expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo))
expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo))
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1)
assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1)
assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2)
assert P(X > 0, X**2 < 1) == S.Half
def test_probability_unevaluated():
T = Normal('T', 30, 3)
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
assert type(P(T > 33, evaluate=False)) == Probability
def test_density_unevaluated():
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 2)
assert isinstance(density(X+Y, evaluate=False)(z), Integral)
def test_NormalDistribution():
nd = NormalDistribution(0, 1)
x = Symbol('x')
assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half
assert nd.expectation(1, x) == 1
assert nd.expectation(x, x) == 0
assert nd.expectation(x**2, x) == 1
#Test issue 10076
a = SingleContinuousPSpace(x, NormalDistribution(2, 4))
_z = Dummy('_z')
expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1))
assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True
expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo))
assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True
b = SingleContinuousPSpace(x, NormalDistribution(1, 9))
expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo))
assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True
expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6))
assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True
def test_random_parameters():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert density(meas, evaluate=False)(z)
assert isinstance(pspace(meas), CompoundPSpace)
X = Normal('x', [1, 2], [[1, 0], [0, 1]])
assert isinstance(pspace(X).distribution, MultivariateNormalDistribution)
assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi))
def test_random_parameters_given():
mu = Normal('mu', 2, 3)
meas = Normal('T', mu, 1)
assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1)
def test_conjugate_priors():
mu = Normal('mu', 2, 3)
x = Normal('x', mu, 1)
assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)),
Mul)
def test_difficult_univariate():
""" Since using solve in place of deltaintegrate we're able to perform
substantially more complex density computations on single continuous random
variables """
x = Normal('x', 0, 1)
assert density(x**3)
assert density(exp(x**2))
assert density(log(x))
def test_issue_10003():
X = Exponential('x', 3)
G = Gamma('g', 1, 2)
assert P(X < -1) is S.Zero
assert P(G < -1) is S.Zero
@slow
def test_precomputed_cdf():
x = symbols("x", real=True)
mu = symbols("mu", real=True)
sigma, xm, alpha = symbols("sigma xm alpha", positive=True)
n = symbols("n", integer=True, positive=True)
distribs = [
Normal("X", mu, sigma),
Pareto("P", xm, alpha),
ChiSquared("C", n),
Exponential("E", sigma),
# LogNormal("L", mu, sigma),
]
for X in distribs:
compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x))
compdiff = simplify(compdiff.rewrite(erfc))
assert compdiff == 0
@slow
def test_precomputed_characteristic_functions():
import mpmath
def test_cf(dist, support_lower_limit, support_upper_limit):
pdf = density(dist)
t = Symbol('t')
# first function is the hardcoded CF of the distribution
cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')
# second function is the Fourier transform of the density function
f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10)
# compare the two functions at various points
for test_point in [2, 5, 8, 11]:
n1 = cf1(test_point)
n2 = cf2(test_point)
assert abs(re(n1) - re(n2)) < 1e-12
assert abs(im(n1) - im(n2)) < 1e-12
test_cf(Beta('b', 1, 2), 0, 1)
test_cf(Chi('c', 3), 0, mpmath.inf)
test_cf(ChiSquared('c', 2), 0, mpmath.inf)
test_cf(Exponential('e', 6), 0, mpmath.inf)
test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf)
test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf)
test_cf(RaisedCosine('r', 3, 1), 2, 4)
test_cf(Rayleigh('r', 0.5), 0, mpmath.inf)
test_cf(Uniform('u', -1, 1), -1, 1)
test_cf(WignerSemicircle('w', 3), -3, 3)
def test_long_precomputed_cdf():
x = symbols("x", real=True)
distribs = [
Arcsin("A", -5, 9),
Dagum("D", 4, 10, 3),
Erlang("E", 14, 5),
Frechet("F", 2, 6, -3),
Gamma("G", 2, 7),
GammaInverse("GI", 3, 5),
Kumaraswamy("K", 6, 8),
Laplace("LA", -5, 4),
Logistic("L", -6, 7),
Nakagami("N", 2, 7),
StudentT("S", 4)
]
for distr in distribs:
for _ in range(5):
assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0)
US = UniformSum("US", 5)
pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1)
cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1)
assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0)
def test_issue_13324():
X = Uniform('X', 0, 1)
assert E(X, X > S.Half) == Rational(3, 4)
assert E(X, X > 0) == S.Half
def test_FiniteSet_prob():
E = Exponential('E', 3)
N = Normal('N', 5, 7)
assert P(Eq(E, 1)) is S.Zero
assert P(Eq(N, 2)) is S.Zero
assert P(Eq(N, x)) is S.Zero
def test_prob_neq():
E = Exponential('E', 4)
X = ChiSquared('X', 4)
assert P(Ne(E, 2)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 4)) == 1
assert P(Ne(X, 5)) == 1
assert P(Ne(E, x)) == 1
def test_union():
N = Normal('N', 3, 2)
assert simplify(P(N**2 - N > 2)) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
assert simplify(P(N**2 - 4 > 0)) == \
-erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2)
def test_Or():
N = Normal('N', 0, 1)
assert simplify(P(Or(N > 2, N < 1))) == \
-erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2)
assert P(Or(N < 0, N < 1)) == P(N < 1)
assert P(Or(N > 0, N < 0)) == 1
def test_conditional_eq():
E = Exponential('E', 1)
assert P(Eq(E, 1), Eq(E, 1)) == 1
assert P(Eq(E, 1), Eq(E, 2)) == 0
assert P(E > 1, Eq(E, 2)) == 1
assert P(E < 1, Eq(E, 2)) == 0
def test_ContinuousDistributionHandmade():
x = Symbol('x')
z = Dummy('z')
dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)),
(S.Half, (x>=2)&(x<3)), (0, True)))
dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3))
space = SingleContinuousPSpace(z, dens)
assert dens.pdf == Lambda(x, Piecewise((1/2, (x >= 0) & (x < 1)),
(0, (x >= 1) & (x < 2)), (1/2, (x >= 2) & (x < 3)), (0, True)))
assert median(space.value) == Interval(1, 2)
assert E(space.value) == Rational(3, 2)
assert variance(space.value) == Rational(13, 12)
def test_sample_numpy():
distribs_numpy = [
Beta("B", 1, 1),
Normal("N", 0, 1),
Gamma("G", 2, 7),
Exponential("E", 2),
LogNormal("LN", 0, 1),
Pareto("P", 1, 1),
ChiSquared("CS", 2),
Uniform("U", 0, 1)
]
size = 3
numpy = import_module('numpy')
if not numpy:
skip('Numpy is not installed. Abort tests for _sample_numpy.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for X in distribs_numpy:
samps = next(sample(X, size=size, library='numpy'))
for sam in samps:
assert sam in X.pspace.domain.set
raises(NotImplementedError,
lambda: next(sample(Chi("C", 1), library='numpy')))
raises(NotImplementedError,
lambda: Chi("C", 1).pspace.distribution.sample(library='tensorflow'))
def test_sample_scipy():
distribs_scipy = [
Beta("B", 1, 1),
BetaPrime("BP", 1, 1),
Cauchy("C", 1, 1),
Chi("C", 1),
Normal("N", 0, 1),
Gamma("G", 2, 7),
GammaInverse("GI", 1, 1),
GaussianInverse("GUI", 1, 1),
Exponential("E", 2),
LogNormal("LN", 0, 1),
Pareto("P", 1, 1),
StudentT("S", 2),
ChiSquared("CS", 2),
Uniform("U", 0, 1)
]
size = 3
numsamples = 5
scipy = import_module('scipy')
if not scipy:
skip('Scipy is not installed. Abort tests for _sample_scipy.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
g_sample = list(sample(Gamma("G", 2, 7), size=size, numsamples=numsamples))
assert len(g_sample) == numsamples
for X in distribs_scipy:
samps = next(sample(X, size=size, library='scipy'))
samps2 = next(sample(X, size=(2, 2), library='scipy'))
for sam in samps:
assert sam in X.pspace.domain.set
for i in range(2):
for j in range(2):
assert samps2[i][j] in X.pspace.domain.set
def test_sample_pymc3():
distribs_pymc3 = [
Beta("B", 1, 1),
Cauchy("C", 1, 1),
Normal("N", 0, 1),
Gamma("G", 2, 7),
GaussianInverse("GI", 1, 1),
Exponential("E", 2),
LogNormal("LN", 0, 1),
Pareto("P", 1, 1),
ChiSquared("CS", 2),
Uniform("U", 0, 1)
]
size = 3
pymc3 = import_module('pymc3')
if not pymc3:
skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
else:
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
for X in distribs_pymc3:
samps = next(sample(X, size=size, library='pymc3'))
for sam in samps:
assert sam in X.pspace.domain.set
raises(NotImplementedError,
lambda: next(sample(Chi("C", 1), library='pymc3')))
def test_issue_16318():
#test compute_expectation function of the SingleContinuousDomain
N = SingleContinuousDomain(x, Interval(0, 1))
raises (ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))
|
f870182e0fce9d3f9550f166d815f59160ad24f739a952224a29e195ea7f7272 | from typing import Dict, Tuple
from sympy.ntheory import qs
from sympy.ntheory.qs import SievePolynomial, \
_generate_factor_base, _initialize_first_polynomial, _initialize_ith_poly, \
_gen_sieve_array, _check_smoothness, _trial_division_stage, _gauss_mod_2, \
_build_matrix, _find_factor
assert qs(10009202107, 100, 10000) == {100043, 100049}
assert qs(211107295182713951054568361 , 1000, 10000) == {13791315212531, 15307263442931}
assert qs(980835832582657*990377764891511, 3000, 50000) == {980835832582657, 990377764891511}
assert qs(18640889198609*20991129234731, 1000, 50000) == {18640889198609, 20991129234731}
n = 10009202107
M = 50
#a = 10, b = 15, modified_coeff = [a**2, 2*a*b, b**2 - N]
sieve_poly = SievePolynomial([100, 1600, -10009195707], 10, 80)
assert sieve_poly.eval(10) == -10009169707
assert sieve_poly.eval(5) == -10009185207
idx_1000, idx_5000, factor_base = _generate_factor_base(2000, n)
assert idx_1000 == 82
assert [factor_base[i].prime for i in range(15)] == [2, 3, 7, 11, 17, 19, 29, 31,\
43, 59, 61, 67, 71, 73, 79]
assert [factor_base[i].tmem_p for i in range(15)] == [1, 1, 3, 5, 3, 6, 6, 14, 1,\
16, 24, 22, 18, 22, 15]
assert [factor_base[i].log_p for i in range(5)] == [710, 1125, 1993, 2455, 2901]
g, B = _initialize_first_polynomial(n, M, factor_base, idx_1000, idx_5000, seed=0)
assert g.a == 1133107
assert g.b == 682543
assert B == [272889, 409654]
assert [factor_base[i].soln1 for i in range(15)] == [0, 0, 3, 7, 13, 0, 8, 19,\
9, 43, 27, 25, 63, 29, 19]
assert [factor_base[i].soln2 for i in range(15)] == [0, 1, 1, 3, 12, 16, 15, 6,\
15, 1, 56, 55, 61, 58, 16]
assert [factor_base[i].a_inv for i in range(15)] == [1, 1, 5, 7, 3, 5, 26, 6,\
40, 5, 21, 45, 4, 1, 8]
assert [factor_base[i].b_ainv for i in range(5)] == [[0, 0], [0, 2], [3, 0],\
[3, 9], [13, 13]]
g_1 = _initialize_ith_poly(n, factor_base, 1, g, B)
assert g_1.a == 1133107
assert g_1.b == 136765
sieve_array = _gen_sieve_array(M, factor_base)
assert sieve_array[0:5] == [8424, 13603, 1835, 5335, 710]
assert _check_smoothness(9645, factor_base) == (5, False)
assert _check_smoothness(210313, factor_base)[0][0:15] == [0, 0, 0, 0, 0, 0, 0,\
0, 0, 1, 0, 0, 1, 0, 1]
assert _check_smoothness(210313, factor_base)[1] == True
partial_relations = {} # type: Dict[int, Tuple[int, int]]
smooth_relation, partial_relation = _trial_division_stage(n, M, factor_base,\
sieve_array, sieve_poly,\
partial_relations, ERROR_TERM=25*2**10)
assert partial_relations == {8699: (440, -10009008507),
166741: (490, -10008962007),
131449: (530, -10008921207),
6653: (550, -10008899607)}
assert [smooth_relation[i][0] for i in range(5)] == [-250, -670615476700,\
-45211565844500, -231723037747200, -1811665537200]
assert [smooth_relation[i][1] for i in range(5)] == [-10009139607, 1133094251961,\
5302606761, 53804049849, 1950723889]
assert smooth_relation[0][2][0:15] == [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert _gauss_mod_2([[0, 0, 1], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]) ==\
([[[0, 1, 1], 3], [[0, 1, 1], 4]], [True, True, True, False, False], [[0, 0, 1],\
[1, 0, 0], [0, 1, 0], [0, 1, 1], [0, 1, 1]])
N=1817
smooth_relations = [(2455024, 637, [0, 0, 0, 1]),
(-27993000, 81536, [0, 1, 0, 1]),
(11461840, 12544, [0, 0, 0, 0]),
(149, 20384, [0, 1, 0, 1]),
(-31138074, 19208, [0, 1, 0, 0])]
matrix = _build_matrix(smooth_relations)
assert matrix == [[0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 0, 0], [0, 1, 0, 1], [0, 1, 0, 0]]
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
assert dependent_row == [[[0, 0, 0, 0], 2], [[0, 1, 0, 0], 3]]
assert mark == [True, True, False, False, True]
assert gauss_matrix == [[0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 1]]
factor = _find_factor(dependent_row, mark, gauss_matrix, 0, smooth_relations, N)
assert factor == 23
|
0146f9c94e162c2f6518306b2fd3940a0264672df51e30c06ff0a617ddc1e2f9 | from sympy import Symbol, O, Add
x = Symbol('x')
l = list(x**i for i in range(1000))
l.append(O(x**1001))
def timeit_order_1x():
_ = Add(*l)
|
f8a0141306160db054b547a1d7be8f5747fcad75a138e2e98226435eead1c884 | from sympy import Symbol, limit, oo
x = Symbol('x')
def timeit_limit_1x():
limit(1/x, x, oo)
|
ca4dda5ce1181b55c620f57a70290c6dda7be8ee1b95bc6d77d9f14866211266 | from sympy import (Symbol, Rational, Order, exp, ln, log, nan, oo, O, pi, I,
S, Integral, sin, cos, sqrt, conjugate, expand, transpose, symbols,
Function, Add)
from sympy.core.expr import unchanged
from sympy.testing.pytest import raises
from sympy.abc import w, x, y, z
def test_caching_bug():
#needs to be a first test, so that all caches are clean
#cache it
O(w)
#and test that this won't raise an exception
O(w**(-1/x/log(3)*log(5)), w)
def test_free_symbols():
assert Order(1).free_symbols == set()
assert Order(x).free_symbols == {x}
assert Order(1, x).free_symbols == {x}
assert Order(x*y).free_symbols == {x, y}
assert Order(x, x, y).free_symbols == {x, y}
def test_simple_1():
o = Rational(0)
assert Order(2*x) == Order(x)
assert Order(x)*3 == Order(x)
assert -28*Order(x) == Order(x)
assert Order(Order(x)) == Order(x)
assert Order(Order(x), y) == Order(Order(x), x, y)
assert Order(-23) == Order(1)
assert Order(exp(x)) == Order(1, x)
assert Order(exp(1/x)).expr == exp(1/x)
assert Order(x*exp(1/x)).expr == x*exp(1/x)
assert Order(x**(o/3)).expr == x**(o/3)
assert Order(x**(o*Rational(5, 3))).expr == x**(o*Rational(5, 3))
assert Order(x**2 + x + y, x) == O(1, x)
assert Order(x**2 + x + y, y) == O(1, y)
raises(ValueError, lambda: Order(exp(x), x, x))
raises(TypeError, lambda: Order(x, 2 - x))
def test_simple_2():
assert Order(2*x)*x == Order(x**2)
assert Order(2*x)/x == Order(1, x)
assert Order(2*x)*x*exp(1/x) == Order(x**2*exp(1/x))
assert (Order(2*x)*x*exp(1/x)/ln(x)**3).expr == x**2*exp(1/x)*ln(x)**-3
def test_simple_3():
assert Order(x) + x == Order(x)
assert Order(x) + 2 == 2 + Order(x)
assert Order(x) + x**2 == Order(x)
assert Order(x) + 1/x == 1/x + Order(x)
assert Order(1/x) + 1/x**2 == 1/x**2 + Order(1/x)
assert Order(x) + exp(1/x) == Order(x) + exp(1/x)
def test_simple_4():
assert Order(x)**2 == Order(x**2)
def test_simple_5():
assert Order(x) + Order(x**2) == Order(x)
assert Order(x) + Order(x**-2) == Order(x**-2)
assert Order(x) + Order(1/x) == Order(1/x)
def test_simple_6():
assert Order(x) - Order(x) == Order(x)
assert Order(x) + Order(1) == Order(1)
assert Order(x) + Order(x**2) == Order(x)
assert Order(1/x) + Order(1) == Order(1/x)
assert Order(x) + Order(exp(1/x)) == Order(exp(1/x))
assert Order(x**3) + Order(exp(2/x)) == Order(exp(2/x))
assert Order(x**-3) + Order(exp(2/x)) == Order(exp(2/x))
def test_simple_7():
assert 1 + O(1) == O(1)
assert 2 + O(1) == O(1)
assert x + O(1) == O(1)
assert 1/x + O(1) == 1/x + O(1)
def test_simple_8():
assert O(sqrt(-x)) == O(sqrt(x))
assert O(x**2*sqrt(x)) == O(x**Rational(5, 2))
assert O(x**3*sqrt(-(-x)**3)) == O(x**Rational(9, 2))
assert O(x**Rational(3, 2)*sqrt((-x)**3)) == O(x**3)
assert O(x*(-2*x)**(I/2)) == O(x*(-x)**(I/2))
def test_as_expr_variables():
assert Order(x).as_expr_variables(None) == (x, ((x, 0),))
assert Order(x).as_expr_variables(((x, 0),)) == (x, ((x, 0),))
assert Order(y).as_expr_variables(((x, 0),)) == (y, ((x, 0), (y, 0)))
assert Order(y).as_expr_variables(((x, 0), (y, 0))) == (y, ((x, 0), (y, 0)))
def test_contains_0():
assert Order(1, x).contains(Order(1, x))
assert Order(1, x).contains(Order(1))
assert Order(1).contains(Order(1, x)) is False
def test_contains_1():
assert Order(x).contains(Order(x))
assert Order(x).contains(Order(x**2))
assert not Order(x**2).contains(Order(x))
assert not Order(x).contains(Order(1/x))
assert not Order(1/x).contains(Order(exp(1/x)))
assert not Order(x).contains(Order(exp(1/x)))
assert Order(1/x).contains(Order(x))
assert Order(exp(1/x)).contains(Order(x))
assert Order(exp(1/x)).contains(Order(1/x))
assert Order(exp(1/x)).contains(Order(exp(1/x)))
assert Order(exp(2/x)).contains(Order(exp(1/x)))
assert not Order(exp(1/x)).contains(Order(exp(2/x)))
def test_contains_2():
assert Order(x).contains(Order(y)) is None
assert Order(x).contains(Order(y*x))
assert Order(y*x).contains(Order(x))
assert Order(y).contains(Order(x*y))
assert Order(x).contains(Order(y**2*x))
def test_contains_3():
assert Order(x*y**2).contains(Order(x**2*y)) is None
assert Order(x**2*y).contains(Order(x*y**2)) is None
def test_contains_4():
assert Order(sin(1/x**2)).contains(Order(cos(1/x**2))) is None
assert Order(cos(1/x**2)).contains(Order(sin(1/x**2))) is None
def test_contains():
assert Order(1, x) not in Order(1)
assert Order(1) in Order(1, x)
raises(TypeError, lambda: Order(x*y**2) in Order(x**2*y))
def test_add_1():
assert Order(x + x) == Order(x)
assert Order(3*x - 2*x**2) == Order(x)
assert Order(1 + x) == Order(1, x)
assert Order(1 + 1/x) == Order(1/x)
assert Order(ln(x) + 1/ln(x)) == Order(ln(x))
assert Order(exp(1/x) + x) == Order(exp(1/x))
assert Order(exp(1/x) + 1/x**20) == Order(exp(1/x))
def test_ln_args():
assert O(log(x)) + O(log(2*x)) == O(log(x))
assert O(log(x)) + O(log(x**3)) == O(log(x))
assert O(log(x*y)) + O(log(x) + log(y)) == O(log(x*y))
def test_multivar_0():
assert Order(x*y).expr == x*y
assert Order(x*y**2).expr == x*y**2
assert Order(x*y, x).expr == x
assert Order(x*y**2, y).expr == y**2
assert Order(x*y*z).expr == x*y*z
assert Order(x/y).expr == x/y
assert Order(x*exp(1/y)).expr == x*exp(1/y)
assert Order(exp(x)*exp(1/y)).expr == exp(1/y)
def test_multivar_0a():
assert Order(exp(1/x)*exp(1/y)).expr == exp(1/x + 1/y)
def test_multivar_1():
assert Order(x + y).expr == x + y
assert Order(x + 2*y).expr == x + y
assert (Order(x + y) + x).expr == (x + y)
assert (Order(x + y) + x**2) == Order(x + y)
assert (Order(x + y) + 1/x) == 1/x + Order(x + y)
assert Order(x**2 + y*x).expr == x**2 + y*x
def test_multivar_2():
assert Order(x**2*y + y**2*x, x, y).expr == x**2*y + y**2*x
def test_multivar_mul_1():
assert Order(x + y)*x == Order(x**2 + y*x, x, y)
def test_multivar_3():
assert (Order(x) + Order(y)).args in [
(Order(x), Order(y)),
(Order(y), Order(x))]
assert Order(x) + Order(y) + Order(x + y) == Order(x + y)
assert (Order(x**2*y) + Order(y**2*x)).args in [
(Order(x*y**2), Order(y*x**2)),
(Order(y*x**2), Order(x*y**2))]
assert (Order(x**2*y) + Order(y*x)) == Order(x*y)
def test_issue_3468():
y = Symbol('y', negative=True)
z = Symbol('z', complex=True)
# check that Order does not modify assumptions about symbols
Order(x)
Order(y)
Order(z)
assert x.is_positive is None
assert y.is_positive is False
assert z.is_positive is None
def test_leading_order():
assert (x + 1 + 1/x**5).extract_leading_order(x) == ((1/x**5, O(1/x**5)),)
assert (1 + 1/x).extract_leading_order(x) == ((1/x, O(1/x)),)
assert (1 + x).extract_leading_order(x) == ((1, O(1, x)),)
assert (1 + x**2).extract_leading_order(x) == ((1, O(1, x)),)
assert (2 + x**2).extract_leading_order(x) == ((2, O(1, x)),)
assert (x + x**2).extract_leading_order(x) == ((x, O(x)),)
def test_leading_order2():
assert set((2 + pi + x**2).extract_leading_order(x)) == {(pi, O(1, x)),
(S(2), O(1, x))}
assert set((2*x + pi*x + x**2).extract_leading_order(x)) == {(2*x, O(x)),
(x*pi, O(x))}
def test_order_leadterm():
assert O(x**2)._eval_as_leading_term(x) == O(x**2)
def test_order_symbols():
e = x*y*sin(x)*Integral(x, (x, 1, 2))
assert O(e) == O(x**2*y, x, y)
assert O(e, x) == O(x**2)
def test_nan():
assert O(nan) is nan
assert not O(x).contains(nan)
def test_O1():
assert O(1, x) * x == O(x)
assert O(1, y) * x == O(1, y)
def test_getn():
# other lines are tested incidentally by the suite
assert O(x).getn() == 1
assert O(x/log(x)).getn() == 1
assert O(x**2/log(x)**2).getn() == 2
assert O(x*log(x)).getn() == 1
raises(NotImplementedError, lambda: (O(x) + O(y)).getn())
def test_diff():
assert O(x**2).diff(x) == O(x)
def test_getO():
assert (x).getO() is None
assert (x).removeO() == x
assert (O(x)).getO() == O(x)
assert (O(x)).removeO() == 0
assert (z + O(x) + O(y)).getO() == O(x) + O(y)
assert (z + O(x) + O(y)).removeO() == z
raises(NotImplementedError, lambda: (O(x) + O(y)).getn())
def test_leading_term():
from sympy import digamma
assert O(1/digamma(1/x)) == O(1/log(x))
def test_eval():
assert Order(x).subs(Order(x), 1) == 1
assert Order(x).subs(x, y) == Order(y)
assert Order(x).subs(y, x) == Order(x)
assert Order(x).subs(x, x + y) == Order(x + y, (x, -y))
assert (O(1)**x).is_Pow
def test_issue_4279():
a, b = symbols('a b')
assert O(a, a, b) + O(1, a, b) == O(1, a, b)
assert O(b, a, b) + O(1, a, b) == O(1, a, b)
assert O(a + b, a, b) + O(1, a, b) == O(1, a, b)
assert O(1, a, b) + O(a, a, b) == O(1, a, b)
assert O(1, a, b) + O(b, a, b) == O(1, a, b)
assert O(1, a, b) + O(a + b, a, b) == O(1, a, b)
def test_issue_4855():
assert 1/O(1) != O(1)
assert 1/O(x) != O(1/x)
assert 1/O(x, (x, oo)) != O(1/x, (x, oo))
f = Function('f')
assert 1/O(f(x)) != O(1/x)
def test_order_conjugate_transpose():
x = Symbol('x', real=True)
y = Symbol('y', imaginary=True)
assert conjugate(Order(x)) == Order(conjugate(x))
assert conjugate(Order(y)) == Order(conjugate(y))
assert conjugate(Order(x**2)) == Order(conjugate(x)**2)
assert conjugate(Order(y**2)) == Order(conjugate(y)**2)
assert transpose(Order(x)) == Order(transpose(x))
assert transpose(Order(y)) == Order(transpose(y))
assert transpose(Order(x**2)) == Order(transpose(x)**2)
assert transpose(Order(y**2)) == Order(transpose(y)**2)
def test_order_noncommutative():
A = Symbol('A', commutative=False)
assert Order(A + A*x, x) == Order(1, x)
assert (A + A*x)*Order(x) == Order(x)
assert (A*x)*Order(x) == Order(x**2, x)
assert expand((1 + Order(x))*A*A*x) == A*A*x + Order(x**2, x)
assert expand((A*A + Order(x))*x) == A*A*x + Order(x**2, x)
assert expand((A + Order(x))*A*x) == A*A*x + Order(x**2, x)
def test_issue_6753():
assert (1 + x**2)**10000*O(x) == O(x)
def test_order_at_infinity():
assert Order(1 + x, (x, oo)) == Order(x, (x, oo))
assert Order(3*x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo))*3 == Order(x, (x, oo))
assert -28*Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(Order(x, (x, oo)), (x, oo)) == Order(x, (x, oo))
assert Order(Order(x, (x, oo)), (y, oo)) == Order(x, (x, oo), (y, oo))
assert Order(3, (x, oo)) == Order(1, (x, oo))
assert Order(x**2 + x + y, (x, oo)) == O(x**2, (x, oo))
assert Order(x**2 + x + y, (y, oo)) == O(y, (y, oo))
assert Order(2*x, (x, oo))*x == Order(x**2, (x, oo))
assert Order(2*x, (x, oo))/x == Order(1, (x, oo))
assert Order(2*x, (x, oo))*x*exp(1/x) == Order(x**2*exp(1/x), (x, oo))
assert Order(2*x, (x, oo))*x*exp(1/x)/ln(x)**3 == Order(x**2*exp(1/x)*ln(x)**-3, (x, oo))
assert Order(x, (x, oo)) + 1/x == 1/x + Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + 1 == 1 + Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + x == x + Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + x**2 == x**2 + Order(x, (x, oo))
assert Order(1/x, (x, oo)) + 1/x**2 == 1/x**2 + Order(1/x, (x, oo)) == Order(1/x, (x, oo))
assert Order(x, (x, oo)) + exp(1/x) == exp(1/x) + Order(x, (x, oo))
assert Order(x, (x, oo))**2 == Order(x**2, (x, oo))
assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
assert Order(x, (x, oo)) + Order(x**-2, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + Order(1/x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) - Order(x, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + Order(1, (x, oo)) == Order(x, (x, oo))
assert Order(x, (x, oo)) + Order(x**2, (x, oo)) == Order(x**2, (x, oo))
assert Order(1/x, (x, oo)) + Order(1, (x, oo)) == Order(1, (x, oo))
assert Order(x, (x, oo)) + Order(exp(1/x), (x, oo)) == Order(x, (x, oo))
assert Order(x**3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(x**3, (x, oo))
assert Order(x**-3, (x, oo)) + Order(exp(2/x), (x, oo)) == Order(exp(2/x), (x, oo))
# issue 7207
assert Order(exp(x), (x, oo)).expr == Order(2*exp(x), (x, oo)).expr == exp(x)
assert Order(y**x, (x, oo)).expr == Order(2*y**x, (x, oo)).expr == exp(log(y)*x)
# issue 19545
assert Order(1/x - 3/(3*x + 2), (x, oo)).expr == x**(-2)
def test_mixing_order_at_zero_and_infinity():
assert (Order(x, (x, 0)) + Order(x, (x, oo))).is_Add
assert Order(x, (x, 0)) + Order(x, (x, oo)) == Order(x, (x, oo)) + Order(x, (x, 0))
assert Order(Order(x, (x, oo))) == Order(x, (x, oo))
# not supported (yet)
raises(NotImplementedError, lambda: Order(x, (x, 0))*Order(x, (x, oo)))
raises(NotImplementedError, lambda: Order(x, (x, oo))*Order(x, (x, 0)))
raises(NotImplementedError, lambda: Order(Order(x, (x, oo)), y))
raises(NotImplementedError, lambda: Order(Order(x), (x, oo)))
def test_order_at_some_point():
assert Order(x, (x, 1)) == Order(1, (x, 1))
assert Order(2*x - 2, (x, 1)) == Order(x - 1, (x, 1))
assert Order(-x + 1, (x, 1)) == Order(x - 1, (x, 1))
assert Order(x - 1, (x, 1))**2 == Order((x - 1)**2, (x, 1))
assert Order(x - 2, (x, 2)) - O(x - 2, (x, 2)) == Order(x - 2, (x, 2))
def test_order_subs_limits():
# issue 3333
assert (1 + Order(x)).subs(x, 1/x) == 1 + Order(1/x, (x, oo))
assert (1 + Order(x)).limit(x, 0) == 1
# issue 5769
assert ((x + Order(x**2))/x).limit(x, 0) == 1
assert Order(x**2).subs(x, y - 1) == Order((y - 1)**2, (y, 1))
assert Order(10*x**2, (x, 2)).subs(x, y - 1) == Order(1, (y, 3))
def test_issue_9351():
assert exp(x).series(x, 10, 1) == exp(10) + Order(x - 10, (x, 10))
def test_issue_9192():
assert O(1)*O(1) == O(1)
assert O(1)**O(1) == O(1)
def test_performance_of_adding_order():
l = list(x**i for i in range(1000))
l.append(O(x**1001))
assert Add(*l).subs(x,1) == O(1)
def test_issue_14622():
assert (x**(-4) + x**(-3) + x**(-1) + O(x**(-6), (x, oo))).as_numer_denom() == (
x**4 + x**5 + x**7 + O(x**2, (x, oo)), x**8)
assert (x**3 + O(x**2, (x, oo))).is_Add
assert O(x**2, (x, oo)).contains(x**3) is False
assert O(x, (x, oo)).contains(O(x, (x, 0))) is None
assert O(x, (x, 0)).contains(O(x, (x, oo))) is None
raises(NotImplementedError, lambda: O(x**3).contains(x**w))
def test_issue_15539():
assert O(1/x**2 + 1/x**4, (x, -oo)) == O(1/x**2, (x, -oo))
assert O(1/x**4 + exp(x), (x, -oo)) == O(1/x**4, (x, -oo))
assert O(1/x**4 + exp(-x), (x, -oo)) == O(exp(-x), (x, -oo))
assert O(1/x, (x, oo)).subs(x, -x) == O(-1/x, (x, -oo))
def test_issue_18606():
assert unchanged(Order, 0)
|
60ebfd19c9ca44d5ee6182fa7cb285980482577707b252a2b873e92610e4cfa1 | from itertools import product as cartes
from sympy import (
limit, exp, oo, log, sqrt, Limit, sin, floor, cos, ceiling,
atan, Abs, gamma, Symbol, S, pi, Integral, Rational, I,
tan, cot, integrate, Sum, sign, Function, subfactorial, symbols,
binomial, simplify, frac, Float, sec, zoo, fresnelc, fresnels,
acos, erf, erfc, erfi, LambertW, factorial, digamma, uppergamma,
Ei, EulerGamma, asin, atanh, acot, acoth, asec, acsc, cbrt, besselk)
from sympy.calculus.util import AccumBounds
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.series.limits import heuristics
from sympy.series.order import Order
from sympy.testing.pytest import XFAIL, raises
from sympy.abc import x, y, z, k
n = Symbol('n', integer=True, positive=True)
def test_basic1():
assert limit(x, x, oo) is oo
assert limit(x, x, -oo) is -oo
assert limit(-x, x, oo) is -oo
assert limit(x**2, x, -oo) is oo
assert limit(-x**2, x, oo) is -oo
assert limit(x*log(x), x, 0, dir="+") == 0
assert limit(1/x, x, oo) == 0
assert limit(exp(x), x, oo) is oo
assert limit(-exp(x), x, oo) is -oo
assert limit(exp(x)/x, x, oo) is oo
assert limit(1/x - exp(-x), x, oo) == 0
assert limit(x + 1/x, x, oo) is oo
assert limit(x - x**2, x, oo) is -oo
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1
assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0)
assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-')
assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((x + y + 1)**oo, x, 0, dir='-')
assert limit(y/x/log(x), x, 0) == -oo*sign(y)
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo
assert limit(gamma(1/x + 3), x, oo) == 2
assert limit(S.NaN, x, -oo) is S.NaN
assert limit(Order(2)*x, x, S.NaN) is S.NaN
assert limit(1/(x - 1), x, 1, dir="+") is oo
assert limit(1/(x - 1), x, 1, dir="-") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="-") is oo
assert limit(1/sin(x), x, pi, dir="+") is -oo
assert limit(1/sin(x), x, pi, dir="-") is oo
assert limit(1/cos(x), x, pi/2, dir="+") is -oo
assert limit(1/cos(x), x, pi/2, dir="-") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo
# test bi-directional limits
assert limit(sin(x)/x, x, 0, dir="+-") == 1
assert limit(x**2, x, 0, dir="+-") == 0
assert limit(1/x**2, x, 0, dir="+-") is oo
# test failing bi-directional limits
assert limit(1/x, x, 0, dir="+-") is zoo
# approaching 0
# from dir="+"
assert limit(1 + 1/x, x, 0) is oo
# from dir='-'
# Add
assert limit(1 + 1/x, x, 0, dir='-') is -oo
# Pow
assert limit(x**(-2), x, 0, dir='-') is oo
assert limit(x**(-3), x, 0, dir='-') is -oo
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I
assert limit(x**2, x, 0, dir='-') == 0
assert limit(sqrt(x), x, 0, dir='-') == 0
assert limit(x**-pi, x, 0, dir='-') == oo*sign((-1)**(-pi))
assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0)
def test_basic2():
assert limit(x**x, x, 0, dir="+") == 1
assert limit((exp(x) - 1)/x, x, 0) == 1
assert limit(1 + 1/x, x, oo) == 1
assert limit(-exp(1/x), x, oo) == -1
assert limit(x + exp(-x), x, oo) is oo
assert limit(x + exp(-x**2), x, oo) is oo
assert limit(x + exp(-exp(x)), x, oo) is oo
assert limit(13 + 1/x - exp(-x), x, oo) == 13
def test_basic3():
assert limit(1/x, x, 0, dir="+") is oo
assert limit(1/x, x, 0, dir="-") is -oo
def test_basic4():
assert limit(2*x + y*x, x, 0) == 0
assert limit(2*x + y*x, x, 1) == 2 + y
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9
def test_basic5():
class my(Function):
@classmethod
def eval(cls, arg):
if arg is S.Infinity:
return S.NaN
assert limit(my(x), x, oo) == Limit(my(x), x, oo)
def test_issue_3885():
assert limit(x*y + x*z, z, 2) == x*(y + 2)
def test_Limit():
assert Limit(sin(x)/x, x, 0) != 1
assert Limit(sin(x)/x, x, 0).doit() == 1
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-'))
def test_floor():
assert limit(floor(x), x, -2, "+") == -2
assert limit(floor(x), x, -2, "-") == -3
assert limit(floor(x), x, -1, "+") == -1
assert limit(floor(x), x, -1, "-") == -2
assert limit(floor(x), x, 0, "+") == 0
assert limit(floor(x), x, 0, "-") == -1
assert limit(floor(x), x, 1, "+") == 1
assert limit(floor(x), x, 1, "-") == 0
assert limit(floor(x), x, 2, "+") == 2
assert limit(floor(x), x, 2, "-") == 1
assert limit(floor(x), x, 248, "+") == 248
assert limit(floor(x), x, 248, "-") == 247
def test_floor_requires_robust_assumptions():
assert limit(floor(sin(x)), x, 0, "+") == 0
assert limit(floor(sin(x)), x, 0, "-") == -1
assert limit(floor(cos(x)), x, 0, "+") == 0
assert limit(floor(cos(x)), x, 0, "-") == 0
assert limit(floor(5 + sin(x)), x, 0, "+") == 5
assert limit(floor(5 + sin(x)), x, 0, "-") == 4
assert limit(floor(5 + cos(x)), x, 0, "+") == 5
assert limit(floor(5 + cos(x)), x, 0, "-") == 5
def test_ceiling():
assert limit(ceiling(x), x, -2, "+") == -1
assert limit(ceiling(x), x, -2, "-") == -2
assert limit(ceiling(x), x, -1, "+") == 0
assert limit(ceiling(x), x, -1, "-") == -1
assert limit(ceiling(x), x, 0, "+") == 1
assert limit(ceiling(x), x, 0, "-") == 0
assert limit(ceiling(x), x, 1, "+") == 2
assert limit(ceiling(x), x, 1, "-") == 1
assert limit(ceiling(x), x, 2, "+") == 3
assert limit(ceiling(x), x, 2, "-") == 2
assert limit(ceiling(x), x, 248, "+") == 249
assert limit(ceiling(x), x, 248, "-") == 248
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
def test_atan():
x = Symbol("x", real=True)
assert limit(atan(x)*sin(1/x), x, 0) == 0
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2
def test_abs():
assert limit(abs(x), x, 0) == 0
assert limit(abs(sin(x)), x, 0) == 0
assert limit(abs(cos(x)), x, 0) == 1
assert limit(abs(sin(x + 1)), x, 0) == sin(1)
def test_heuristic():
x = Symbol("x", real=True)
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2)
def test_issue_3871():
z = Symbol("z", positive=True)
f = -1/z*exp(-z*x)
assert limit(f, x, oo) == 0
assert f.limit(x, oo) == 0
def test_exponential():
n = Symbol('n')
x = Symbol('x', real=True)
assert limit((1 + x/n)**n, n, oo) == exp(x)
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2)
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2)
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2)
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1
assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3'))
def test_exponential2():
n = Symbol('n')
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x)
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() is oo
def test_AccumBounds():
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2)
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3)
# not the exact bound
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2)
# test for issue #9934
t1 = Mul(S.Half, 1/(-1 + cos(1)), Add(AccumBounds(-3, 1), cos(1)))
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1
t2 = Mul(S.Half, Add(AccumBounds(-2, 2), sin(1)), 1/(-cos(1) + 1))
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo)
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo)
# Possible improvement: AccumBounds(0, 1)
@XFAIL
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
def test_issue_2929():
assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0
def test_issue_3792():
assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half)
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1))
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1)
def test_issue_4090():
assert limit(1/(x + 3), x, 2) == Rational(1, 5)
assert limit(1/(x + pi), x, 2) == S.One/(2 + pi)
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi)
def test_issue_4547():
assert limit(cot(x), x, 0, dir='+') is oo
assert limit(cot(x), x, pi/2, dir='+') == 0
def test_issue_5164():
assert limit(x**0.5, x, oo) == oo**0.5 is oo
assert limit(x**0.5, x, 16) == S(16)**0.5
assert limit(x**0.5, x, 0) == 0
assert limit(x**(-0.5), x, oo) == 0
assert limit(x**(-0.5), x, 4) == S(4)**(-0.5)
def test_issue_14793():
expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \
log(factorial(x)) + S(1)/(12*x))*x**3
assert limit(expr, x, oo) == S(1)/360
def test_issue_5183():
# using list(...) so py.test can recalculate values
tests = list(cartes([x, -x],
[-1, 1],
[2, 3, S.Half, Rational(2, 3)],
['-', '+']))
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
0, 0, 0, 0, 0, 0, 0, 0,
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
0, 0, 0, 0, 0, 0, 0, 0)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
y, s, e, d = args
eq = y**(s*e)
try:
assert limit(eq, x, 0, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, d, limit(eq, x, 0, dir=d))
else:
assert None
def test_issue_5184():
assert limit(sin(x)/x, x, oo) == 0
assert limit(atan(x), x, oo) == pi/2
assert limit(gamma(x), x, oo) is oo
assert limit(cos(x)/x, x, oo) == 0
assert limit(gamma(x), x, S.Half) == sqrt(pi)
r = Symbol('r', real=True)
assert limit(r*sin(1/r), r, 0) == 0
def test_issue_5229():
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0
def test_issue_4546():
# using list(...) so py.test can recalculate values
tests = list(cartes([cot, tan],
[-pi/2, 0, pi/2, pi, pi*Rational(3, 2)],
['-', '+']))
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
f, l, d = args
eq = f(x)
try:
assert limit(eq, x, l, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, l, d, limit(eq, x, l, dir=d))
else:
assert None
def test_issue_3934():
assert limit((1 + x**log(3))**(1/x), x, 0) == 1
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5
def test_calculate_series():
# needs gruntz calculate_series to go to n = 32
assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1
# needs gruntz calculate_series to go to n = 128
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1
def test_issue_5955():
assert limit((x**16)/(1 + x**16), x, oo) == 1
assert limit((x**100)/(1 + x**100), x, oo) == 1
assert limit((x**1885)/(1 + x**1885), x, oo) == 1
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1
def test_newissue():
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1
def test_extended_real_line():
assert limit(x - oo, x, oo) is -oo
assert limit(oo - x, x, -oo) is oo
assert limit(x**2/(x - 5) - oo, x, oo) is -oo
assert limit(1/(x + sin(x)) - oo, x, 0) is -oo
assert limit(oo/x, x, oo) is oo
assert limit(x - oo + 1/x, x, oo) is -oo
assert limit(x - oo + 1/x, x, 0) is -oo
@XFAIL
def test_order_oo():
x = Symbol('x', positive=True)
assert Order(x)*oo != Order(1, x)
assert limit(oo/(x**2 - 4), x, oo) is oo
def test_issue_5436():
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo))
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo))
def test_Limit_dir():
raises(TypeError, lambda: Limit(x, x, 0, dir=0))
raises(ValueError, lambda: Limit(x, x, 0, dir='0'))
def test_polynomial():
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1
def test_rational():
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z)
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z)
def test_issue_5740():
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
def test_issue_6366():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert limit(r, x, 1) == n/2
def test_factorial():
from sympy import factorial, E
f = factorial(x)
assert limit(f, x, oo) is oo
assert limit(x/f, x, oo) == 0
# see Stirling's approximation:
# https://en.wikipedia.org/wiki/Stirling's_approximation
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
assert limit(f, x, -oo) == factorial(-oo)
assert limit(f, x, x**2) == factorial(x**2)
assert limit(f, x, -x**2) == factorial(-x**2)
def test_issue_6560():
e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) +
35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1)))
assert limit(e, y, oo) == (5*x**3 + 3*x**2 - 3*x - 1)/4
@XFAIL
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c +
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
raises(NotImplementedError, lambda: limit(expr, n, oo))
assert limit(expr.subs(c, m), n, oo) == 1
assert limit(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_7088():
a = Symbol('a')
assert limit(sqrt(x/(x + a)), x, oo) == 1
def test_branch_cuts():
assert limit(asin(I*x + 2), x, 0) == pi - asin(2)
assert limit(asin(I*x + 2), x, 0, '-') == asin(2)
assert limit(asin(I*x - 2), x, 0) == -asin(2)
assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2)
assert limit(acos(I*x + 2), x, 0) == -acos(2)
assert limit(acos(I*x + 2), x, 0, '-') == acos(2)
assert limit(acos(I*x - 2), x, 0) == acos(-2)
assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2)
assert limit(atan(x + 2*I), x, 0) == I*atanh(2)
assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2)
assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2)
assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2)
assert limit(atan(1/x), x, 0) == pi/2
assert limit(atan(1/x), x, 0, '-') == -pi/2
assert limit(atan(x), x, oo) == pi/2
assert limit(atan(x), x, -oo) == -pi/2
assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2)
assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2)
assert limit(acot(x), x, 0) == pi/2
assert limit(acot(x), x, 0, '-') == -pi/2
assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2)
assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2)
assert limit(log(I*x - 1), x, 0) == I*pi
assert limit(log(I*x - 1), x, 0, '-') == -I*pi
assert limit(log(-I*x - 1), x, 0) == -I*pi
assert limit(log(-I*x - 1), x, 0, '-') == I*pi
assert limit(sqrt(I*x - 1), x, 0) == I
assert limit(sqrt(I*x - 1), x, 0, '-') == -I
assert limit(sqrt(-I*x - 1), x, 0) == -I
assert limit(sqrt(-I*x - 1), x, 0, '-') == I
assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3)
assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3)
def test_issue_6364():
a = Symbol('a')
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2)
assert limit(e, z, 0).simplify() == 2/cos(2*a)
def test_issue_4099():
a = Symbol('a')
assert limit(a/x, x, 0) == oo*sign(a)
assert limit(-a/x, x, 0) == -oo*sign(a)
assert limit(-a*x, x, oo) == -oo*sign(a)
assert limit(a*x, x, oo) == oo*sign(a)
def test_issue_4503():
dx = Symbol('dx')
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \
exp(x)/(2*sqrt(exp(x) + 1))
def test_issue_8208():
assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0
def test_issue_8229():
assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0
def test_issue_8433():
d, t = symbols('d t', positive=True)
assert limit(erf(1 - t/d), t, oo) == -1
def test_issue_8481():
k = Symbol('k', integer=True, nonnegative=True)
lamda = Symbol('lamda', real=True, positive=True)
limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0
def test_issue_8730():
assert limit(subfactorial(x), x, oo) is oo
def test_issue_9558():
assert limit(sin(x)**15, x, 0, '-') == 0
def test_issue_10801():
# make sure limits work with binomial
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi
def test_issue_10976():
s, x = symbols('s x', real=True)
assert limit(erf(s*x)/erf(s), s, 0) == x
def test_issue_9041():
assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1
def test_issue_9205():
x, y, a = symbols('x, y, a')
assert Limit(x, x, a).free_symbols == {a}
assert Limit(x, x, a, '-').free_symbols == {a}
assert Limit(x + y, x + y, a).free_symbols == {a}
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a}
def test_issue_9471():
assert limit(((27**(log(n,3)))/n**3),n,oo) == 1
assert limit(((27**(log(n,3)+1))/n**3),n,oo) == 27
def test_issue_11496():
assert limit(erfc(log(1/x)), x, oo) == 2
def test_issue_11879():
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1)
def test_limit_with_Float():
k = symbols("k")
assert limit(1.0 ** k, k, oo) == 1
assert limit(0.3*1.0**k, k, oo) == Float(0.3)
def test_issue_10610():
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3)
def test_issue_6599():
assert limit((n + cos(n))/n, n, oo) == 1
def test_issue_12398():
assert limit(Abs(log(x)/x**3), x, oo) == 0
assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3
def test_issue_12555():
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo
def test_issue_12769():
r, z, x = symbols('r z x', real=True)
a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True)
fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \
F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \
2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \
2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \
2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1)
assert fx.subs(K, F0).cancel().together() == limit(fx, K, F0).together()
def test_issue_13332():
assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) *
(6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36)
def test_issue_12564():
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo
assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, oo) is oo
assert limit(((x + sin(x))**2).expand(), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, -oo) is oo
assert limit(((x + sin(x))**2).expand(), x, -oo) is oo
def test_issue_14456():
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit())
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit())
def test_issue_14411():
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo
def test_issue_13382():
assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2
def test_issue_13403():
assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x ,oo) == 1
def test_issue_13416():
assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x ,oo) == 1
def test_issue_13462():
assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x*(x - 2)*(x - 1)/24
def test_issue_13750():
a = Symbol('a')
assert limit(erf(a - x), x, oo) == -1
assert limit(erf(sqrt(x) - x), x, oo) == -1
def test_issue_14514():
assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1
def test_issue_14574():
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == Rational(5, 2)
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == Rational(-1, 2)
assert limit(4*fresnelc(x), x, -oo) == -2
def test_issue_14377():
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo))
def test_issue_15146():
e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \
2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3)
assert limit(e, x, oo) == S(1)/3
def test_issue_15202():
e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1)
assert limit(e, x, oo) == exp(1)
e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x)
assert limit(e, x, oo) == 10
def test_issue_15282():
assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000
def test_issue_15984():
assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-').doit() == 0
def test_issue_13571():
assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1
def test_issue_13575():
assert limit(acos(erfi(x)), x, 1).cancel() == acos(-I*erf(I))
def test_issue_17325():
assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1
assert Limit(x**2, x, 0, dir="+-").doit() == 0
assert Limit(1/x**2, x, 0, dir="+-").doit() is oo
assert Limit(1/x, x, 0, dir="+-").doit() is zoo
def test_issue_10978():
assert LambertW(x).limit(x, 0) == 0
@XFAIL
def test_issue_14313_comment():
assert limit(floor(n/2), n, oo) is oo
@XFAIL
def test_issue_15323():
d = ((1 - 1/x)**x).diff(x)
assert limit(d, x, 1, dir='+') == 1
def test_issue_12571():
assert limit(-LambertW(-log(x))/log(x), x, 1) == 1
def test_issue_14590():
assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1)
def test_issue_14393():
a, b = symbols('a b')
assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a)*y**b/a
def test_issue_14556():
assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1)
def test_issue_14811():
assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo
def test_issue_14874():
assert limit(besselk(0, x), x, oo) == 0
def test_issue_16222():
assert limit(exp(x), x, 1000000000) == exp(1000000000)
def test_issue_16714():
assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1))
def test_issue_16722():
z = symbols('z', positive=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
z = symbols('z', positive=True, integer=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
def test_issue_17431():
assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) *
(n + 2) * factorial(n) / (n + 1), n, oo) == 0
assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1))
, n, oo) == 0
assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0
def test_issue_17671():
assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
def test_issue_17751():
a, b, c, x = symbols('a b c x', positive=True)
assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2)
def test_issue_17792():
assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi)
def test_issue_18306():
assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1
def test_issue_18378():
assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3
def test_issue_18399():
assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo
assert limit((-x)**x, x, oo) is zoo
def test_issue_18442():
assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-')
def test_issue_18452():
assert limit(abs(log(x))**x, x, 0) == 1
assert limit(abs(log(x))**x, x, 0, "-") == 1
def test_issue_18482():
assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1)
def test_issue_18501():
assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo
def test_issue_18508():
assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2)
def test_issue_18969():
a, b = symbols('a b', positive=True)
assert limit(LambertW(a), a, b) == LambertW(b)
assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b))
def test_issue_18992():
assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1)
def test_issue_18997():
assert limit(Abs(log(x)), x, 0) == oo
assert limit(Abs(log(Abs(x))), x, 0) == oo
def test_issue_19026():
x = Symbol('x', positive=True)
assert limit(Abs(log(x) + 1)/log(x), x, oo) == 1
def test_issue_19067():
x = Symbol('x')
assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1
def test_issue_19586():
assert limit(x**(2**x*3**(-x)), x, oo) == 1
def test_issue_13715():
n = Symbol('n')
p = Symbol('p', zero=True)
assert limit(n + p, n, 0) == p
def test_issue_15055():
assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1
def test_issue_16708():
m, vi = symbols('m vi', positive=True)
B, ti, d = symbols('B ti d')
assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi
def test_issue_19739():
assert limit((-S(1)/4)**x, x, oo) == 0
def test_issue_19766():
assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2
def test_issue_19770():
m = Symbol('m')
# the result is not 0 for non-real m
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', real=True)
# can be improved to give the correct result 0
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', nonzero=True)
assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1)
assert limit(cos(m*x)/x, x, oo) == 0
|
5dbc1babb6f47b32c62c7a9887e5631f8d85acc0f510e70f0424924262d2d49c | from sympy import (
Abs, acos, Add, asin, atan, Basic, binomial, besselsimp,
cos, cosh, count_ops, csch, diff, E,
Eq, erf, exp, exp_polar, expand, expand_multinomial, factor,
factorial, Float, Function, gamma, GoldenRatio, hyper,
hypersimp, I, Integral, integrate, KroneckerDelta, log, logcombine, Lt,
Matrix, MatrixSymbol, Mul, nsimplify, oo, pi, Piecewise, posify, rad,
Rational, S, separatevars, signsimp, simplify, sign, sin,
sinc, sinh, solve, sqrt, Sum, Symbol, symbols, sympify, tan,
zoo)
from sympy.core.mul import _keep_coeff
from sympy.core.expr import unchanged
from sympy.simplify.simplify import nthroot, inversecombine
from sympy.testing.pytest import XFAIL, slow
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i
def test_issue_7263():
assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \
673.447451402970) < 1e-12
def test_factorial_simplify():
# There are more tests in test_factorials.py.
x = Symbol('x')
assert simplify(factorial(x)/x) == gamma(x)
assert simplify(factorial(factorial(x))) == factorial(factorial(x))
def test_simplify_expr():
x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A')
f = Function('f')
assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])
e = 1/x + 1/y
assert e != (x + y)/(x*y)
assert simplify(e) == (x + y)/(x*y)
e = A**2*s**4/(4*pi*k*m**3)
assert simplify(e) == e
e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x)
assert simplify(e) == 0
e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2
assert simplify(e) == -2*y
e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2
assert simplify(e) == -2*y
e = (x + x*y)/x
assert simplify(e) == 1 + y
e = (f(x) + y*f(x))/f(x)
assert simplify(e) == 1 + y
e = (2 * (1/n - cos(n * pi)/n))/pi
assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2
e = integrate(1/(x**3 + 1), x).diff(x)
assert simplify(e) == 1/(x**3 + 1)
e = integrate(x/(x**2 + 3*x + 1), x).diff(x)
assert simplify(e) == x/(x**2 + 3*x + 1)
f = Symbol('f')
A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv()
assert simplify((A*Matrix([0, f]))[1] -
(-f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2)))) == 0
f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t)
assert simplify(f) == (y + a*z)/(z + t)
# issue 10347
expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1)
/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2
+ y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 +
y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*
(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt(
(-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 -
1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*(
y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*
(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2
*y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 -
1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2
+ 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2
+ 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(
z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2*
y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(
-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt((
-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 -
1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2
+ x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin(
z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2)
**2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 -
1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2
- 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)
**2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 -
1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos(
z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1)
)*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)
) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(
z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*(
y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*(
x**2 - y**2)*(y**2 - 1))
assert simplify(expr) == 2*x/(a**2*(x**2 - y**2))
#issue 17631
assert simplify('((-1/2)*Boole(True)*Boole(False)-1)*Boole(True)') == \
Mul(sympify('(2 + Boole(True)*Boole(False))'), sympify('-Boole(True)/2'))
A, B = symbols('A,B', commutative=False)
assert simplify(A*B - B*A) == A*B - B*A
assert simplify(A/(1 + y/x)) == x*A/(x + y)
assert simplify(A*(1/x + 1/y)) == A/x + A/y #(x + y)*A/(x*y)
assert simplify(log(2) + log(3)) == log(6)
assert simplify(log(2*x) - log(2)) == log(x)
assert simplify(hyper([], [], x)) == exp(x)
def test_issue_3557():
f_1 = x*a + y*b + z*c - 1
f_2 = x*d + y*e + z*f - 1
f_3 = x*g + y*h + z*i - 1
solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False)
assert simplify(solutions[y]) == \
(a*i + c*d + f*g - a*f - c*g - d*i)/ \
(a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g)
def test_simplify_other():
assert simplify(sin(x)**2 + cos(x)**2) == 1
assert simplify(gamma(x + 1)/gamma(x)) == x
assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x
assert simplify(
Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1)
nc = symbols('nc', commutative=False)
assert simplify(x + x*nc) == x*(1 + nc)
# issue 6123
# f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2)
# ans = integrate(f, (k, -oo, oo), conds='none')
ans = I*(-pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))*erf(x*exp(I*pi*Rational(-3, 4))/
(2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))/
(2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \
(-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))
assert simplify(ans) == -(-1)**Rational(3, 4)*sqrt(pi)/sqrt(t)
# issue 6370
assert simplify(2**(2 + x)/4) == 2**x
def test_simplify_complex():
cosAsExp = cos(x)._eval_rewrite_as_exp(x)
tanAsExp = tan(x)._eval_rewrite_as_exp(x)
assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341
# issue 10124
assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1),
-sin(1)], [sin(1), cos(1)]])
def test_simplify_ratio():
# roots of x**3-3*x+5
roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - '
'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))',
'1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + '
'(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)',
'-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)']
for r in roots:
r = S(r)
assert count_ops(simplify(r, ratio=1)) <= count_ops(r)
# If ratio=oo, simplify() is always applied:
assert simplify(r, ratio=oo) is not r
def test_simplify_measure():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
assert measure1(simplify(expr, measure=measure1)) <= measure1(expr)
assert measure2(simplify(expr, measure=measure2)) <= measure2(expr)
expr2 = Eq(sin(x)**2 + cos(x)**2, 1)
assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2)
assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2)
def test_simplify_rational():
expr = 2**x*2.**y
assert simplify(expr, rational = True) == 2**(x+y)
assert simplify(expr, rational = None) == 2.0**(x+y)
assert simplify(expr, rational = False) == expr
def test_simplify_issue_1308():
assert simplify(exp(Rational(-1, 2)) + exp(Rational(-3, 2))) == \
(1 + E)*exp(Rational(-3, 2))
def test_issue_5652():
assert simplify(E + exp(-E)) == exp(-E) + E
n = symbols('n', commutative=False)
assert simplify(n + n**(-n)) == n + n**(-n)
def test_simplify_fail1():
x = Symbol('x')
y = Symbol('y')
e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y)
assert simplify(e) == 1 / (-2*y)
def test_nthroot():
assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3
q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2)
assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2)
expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15)
assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15)
q = 1 + sqrt(2) + sqrt(3) + sqrt(5)
assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q
q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10)
assert nthroot(expand_multinomial(q**5), 5, 8) == q
q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6)
assert nthroot(expand_multinomial(q**3), 3) == q
assert nthroot(expand_multinomial(q**6), 6) == q
def test_nthroot1():
q = 1 + sqrt(2) + sqrt(3) + S.One/10**20
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
q = 1 + sqrt(2) + sqrt(3) + S.One/10**30
p = expand_multinomial(q**5)
assert nthroot(p, 5) == q
def test_separatevars():
x, y, z, n = symbols('x,y,z,n')
assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y)
assert separatevars(x*z + x*y*z) == x*z*(1 + y)
assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y)
assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \
x*(sin(y) + y**2)*sin(x)
assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x)
assert separatevars((x*(y + 1))**z).is_Pow # != x**z*(1 + y)**z
assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1)
assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \
y*exp(x/cos(n))*exp(-z/cos(n))/pi
assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2
# issue 4858
p = Symbol('p', positive=True)
assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x)
assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x))
assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \
p*sqrt(y)*sqrt(1 + x)
# issue 4865
assert separatevars(sqrt(x*y)).is_Pow
assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y)
# issue 4957
# any type sequence for symbols is fine
assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \
{'coeff': 1, x: 2*x + 2, y: y}
# separable
assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \
{'coeff': y, x: 2*x + 2}
assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True) == \
{'coeff': 1, x: 2*x + 2, y: y}
assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \
{'coeff': y*(2*x + 2)}
# not separable
assert separatevars(3, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=()) is None
assert separatevars(2*x + y, dict=True) is None
assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y}
# issue 4808
n, m = symbols('n,m', commutative=False)
assert separatevars(m + n*m) == (1 + n)*m
assert separatevars(x + x*n) == x*(1 + n)
# issue 4910
f = Function('f')
assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x)
# a noncommutable object present
eq = x*(1 + hyper((), (), y*z))
assert separatevars(eq) == eq
s = separatevars(abs(x*y))
assert s == abs(x)*abs(y) and s.is_Mul
z = cos(1)**2 + sin(1)**2 - 1
a = abs(x*z)
s = separatevars(a)
assert not a.is_Mul and s.is_Mul and s == abs(x)*abs(z)
s = separatevars(abs(x*y*z))
assert s == abs(x)*abs(y)*abs(z)
# abs(x+y)/abs(z) would be better but we test this here to
# see that it doesn't raise
assert separatevars(abs((x+y)/z)) == abs((x+y)/z)
def test_separatevars_advanced_factor():
x, y, z = symbols('x,y,z')
assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \
(log(x) + 1)*(log(y) + 1)
assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) -
x*exp(y)*log(z) + x*exp(y) + exp(y)) == \
-((x + 1)*(log(z) - 1)*(exp(y) + 1))
x, y = symbols('x,y', positive=True)
assert separatevars(1 + log(x**log(y)) + log(x*y)) == \
(log(x) + 1)*(log(y) + 1)
def test_hypersimp():
n, k = symbols('n,k', integer=True)
assert hypersimp(factorial(k), k) == k + 1
assert hypersimp(factorial(k**2), k) is None
assert hypersimp(1/factorial(k), k) == 1/(k + 1)
assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2
assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1)
assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1)
term = (4*k + 1)*factorial(k)/factorial(2*k + 1)
assert hypersimp(term, k) == S.Half*((4*k + 5)/(3 + 14*k + 8*k**2))
term = 1/((2*k - 1)*factorial(2*k + 1))
assert hypersimp(term, k) == (k - S.Half)/((k + 1)*(2*k + 1)*(2*k + 3))
term = binomial(n, k)*(-1)**k/factorial(k)
assert hypersimp(term, k) == (k - n)/(k + 1)**2
def test_nsimplify():
x = Symbol("x")
assert nsimplify(0) == 0
assert nsimplify(-1) == -1
assert nsimplify(1) == 1
assert nsimplify(1 + x) == 1 + x
assert nsimplify(2.7) == Rational(27, 10)
assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2
assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
assert nsimplify(exp(pi*I*Rational(5, 3), evaluate=False)) == \
sympify('1/2 - sqrt(3)*I/2')
assert nsimplify(sin(pi*Rational(3, 5), evaluate=False)) == \
sympify('sqrt(sqrt(5)/8 + 5/8)')
assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
sqrt(pi) + sqrt(pi)/2*I
assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
2**Rational(1, 3)
assert nsimplify(x + .5, rational=True) == S.Half + x
assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
assert nsimplify(log(3).n(), rational=True) == \
sympify('109861228866811/100000000000000')
assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8
assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
-pi/4 - log(2) + Rational(7, 4)
assert nsimplify(x/7.0) == x/7
assert nsimplify(pi/1e2) == pi/100
assert nsimplify(pi/1e2, rational=False) == pi/100.0
assert nsimplify(pi/1e-7) == 10000000*pi
assert not nsimplify(
factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float)
e = x**0.0
assert e.is_Pow and nsimplify(x**0.0) == 1
assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
assert nsimplify(-203.1) == Rational(-2031, 10)
assert nsimplify(.2, tolerance=0) == Rational(1, 5)
assert nsimplify(-.2, tolerance=0) == Rational(-1, 5)
assert nsimplify(.2222, tolerance=0) == Rational(1111, 5000)
assert nsimplify(-.2222, tolerance=0) == Rational(-1111, 5000)
# issue 7211, PR 4112
assert nsimplify(S(2e-8)) == Rational(1, 50000000)
# issue 7322 direct test
assert nsimplify(1e-42, rational=True) != 0
# issue 10336
inf = Float('inf')
infs = (-oo, oo, inf, -inf)
for zi in infs:
ans = sign(zi)*oo
assert nsimplify(zi) == ans
assert nsimplify(zi + x) == x + ans
assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333)
# Make sure nsimplify on expressions uses full precision
assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x
def test_issue_9448():
tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))")
assert nsimplify(tmp) == S.Half
def test_extract_minus_sign():
x = Symbol("x")
y = Symbol("y")
a = Symbol("a")
b = Symbol("b")
assert simplify(-x/-y) == x/y
assert simplify(-x/y) == -x/y
assert simplify(x/y) == x/y
assert simplify(x/-y) == -x/y
assert simplify(-x/0) == zoo*x
assert simplify(Rational(-5, 0)) is zoo
assert simplify(-a*x/(-y - b)) == a*x/(b + y)
def test_diff():
x = Symbol("x")
y = Symbol("y")
f = Function("f")
g = Function("g")
assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0
assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0
assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0
assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0
def test_logcombine_1():
x, y = symbols("x,y")
a = Symbol("a")
z, w = symbols("z,w", positive=True)
b = Symbol("b", real=True)
assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y)
assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2)
assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z)
assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x)
assert logcombine(b*log(z) - log(w)) == log(z**b/w)
assert logcombine(log(x)*log(z)) == log(x)*log(z)
assert logcombine(log(w)*log(x)) == log(w)*log(x)
assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)),
cos(log(z**2/w**b))]
assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \
log(log(x/y)/z)
assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x)
assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \
(x**2 + log(x/y))/(x*y)
# the following could also give log(z*x**log(y**2)), what we
# are testing is that a canonical result is obtained
assert logcombine(log(x)*2*log(y) + log(z), force=True) == \
log(z*y**log(x**2))
assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)*
sqrt(y)**3), force=True) == (
x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**Rational(2, 3)*y**Rational(3, 2))
assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \
acos(-log(x/y))*gamma(-log(x/y))
assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \
log(z**log(w**2))*log(x) + log(w*z)
assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3)
assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6)
assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3)
# a single unknown can combine
assert logcombine(log(x) + log(2)) == log(2*x)
eq = log(abs(x)) + log(abs(y))
assert logcombine(eq) == eq
reps = {x: 0, y: 0}
assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps)
def test_logcombine_complex_coeff():
i = Integral((sin(x**2) + cos(x**3))/x, x)
assert logcombine(i, force=True) == i
assert logcombine(i + 2*log(x), force=True) == \
i + log(x**2)
def test_issue_5950():
x, y = symbols("x,y", positive=True)
assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False)
assert logcombine(log(x) - log(y)) == log(x/y)
assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \
log(Rational(3,4), evaluate=False)
def test_posify():
from sympy.abc import x
assert str(posify(
x +
Symbol('p', positive=True) +
Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'
eq, rep = posify(1/x)
assert log(eq).expand().subs(rep) == -log(x)
assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'
x = symbols('x')
p = symbols('p', positive=True)
n = symbols('n', negative=True)
orig = [x, n, p]
modified, reps = posify(orig)
assert str(modified) == '[_x, n, p]'
assert [w.subs(reps) for w in modified] == orig
assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
'Sum(_x**(-n), (n, 1, 3))'
# issue 16438
k = Symbol('k', finite=True)
eq, rep = posify(k)
assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False,
'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True,
'nonnegative': True, 'negative': False, 'complex': True, 'finite': True,
'infinite': False, 'extended_real':True, 'extended_negative': False,
'extended_nonnegative': True, 'extended_nonpositive': False,
'extended_nonzero': True, 'extended_positive': True}
def test_issue_4194():
# simplify should call cancel
from sympy.abc import x, y
f = Function('f')
assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2
@XFAIL
def test_simplify_float_vs_integer():
# Test for issue 4473:
# https://github.com/sympy/sympy/issues/4473
assert simplify(x**2.0 - x**2) == 0
assert simplify(x**2 - x**2.0) == 0
def test_as_content_primitive():
assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y)
assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y)
assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y))
assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y))
# although the _as_content_primitive methods do not alter the underlying structure,
# the as_content_primitive function will touch up the expression and join
# bases that would otherwise have not been joined.
assert (x*(2 + 2*x)*(3*x + 3)**2).as_content_primitive() == \
(18, x*(x + 1)**3)
assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(2, x + 3*y*(y + 1) + 1)
assert ((2 + 6*x)**2).as_content_primitive() == \
(4, (3*x + 1)**2)
assert ((2 + 6*x)**(2*y)).as_content_primitive() == \
(1, (_keep_coeff(S(2), (3*x + 1)))**(2*y))
assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \
(1, 10*x + 6*y*(y + 1) + 5)
assert (5*(x*(1 + y)) + 2*x*(3 + 3*y)).as_content_primitive() == \
(11, x*(y + 1))
assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \
(121, x**2*(y + 1)**2)
assert (y**2).as_content_primitive() == \
(1, y**2)
assert (S.Infinity).as_content_primitive() == (1, oo)
eq = x**(2 + y)
assert (eq).as_content_primitive() == (1, eq)
assert (S.Half**(2 + x)).as_content_primitive() == (Rational(1, 4), 2**-x)
assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
(Rational(1, 4), (Rational(-1, 2))**x)
assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
(Rational(1, 4), Rational(-1, 2)**x)
assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2))
assert (3**((1 + y)/2)).as_content_primitive() == \
(1, 3**(Mul(S.Half, 1 + y, evaluate=False)))
assert (5**Rational(3, 4)).as_content_primitive() == (1, 5**Rational(3, 4))
assert (5**Rational(7, 4)).as_content_primitive() == (5, 5**Rational(3, 4))
assert Add(z*Rational(5, 7), 0.5*x, y*Rational(3, 2), evaluate=False).as_content_primitive() == \
(Rational(1, 14), 7.0*x + 21*y + 10*z)
assert (2**Rational(3, 4) + 2**Rational(1, 4)*sqrt(3)).as_content_primitive(radical=True) == \
(1, 2**Rational(1, 4)*(sqrt(2) + sqrt(3)))
def test_signsimp():
e = x*(-x + 1) + x*(x - 1)
assert signsimp(Eq(e, 0)) is S.true
assert Abs(x - 1) == Abs(1 - x)
assert signsimp(y - x) == y - x
assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)
def test_besselsimp():
from sympy import besselj, besseli, cosh, cosine_transform, bessely
assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
besselj(y, z)
assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
besselj(a, 2*sqrt(x))
assert besselsimp(sqrt(2)*sqrt(pi)*x**Rational(1, 4)*exp(I*pi/4)*exp(-I*pi*a/2) *
besseli(Rational(-1, 2), sqrt(x)*exp_polar(I*pi/2)) *
besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
besselj(a, sqrt(x)) * cos(sqrt(x))
assert besselsimp(besseli(Rational(-1, 2), z)) == \
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
exp(-I*pi*a/2)*besselj(a, z)
assert cosine_transform(1/t*sin(a/t), t, y) == \
sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2
assert besselsimp(x**2*(a*(-2*besselj(5*I, x) + besselj(-2 + 5*I, x) +
besselj(2 + 5*I, x)) + b*(-2*bessely(5*I, x) + bessely(-2 + 5*I, x) +
bessely(2 + 5*I, x)))/4 + x*(a*(besselj(-1 + 5*I, x)/2 - besselj(1 + 5*I, x)/2)
+ b*(bessely(-1 + 5*I, x)/2 - bessely(1 + 5*I, x)/2)) + (x**2 + 25)*(a*besselj(5*I, x)
+ b*bessely(5*I, x))) == 0
assert besselsimp(81*x**2*(a*(besselj(Rational(-5, 3), 9*x) - 2*besselj(Rational(1, 3), 9*x) + besselj(Rational(7, 3), 9*x))
+ b*(bessely(Rational(-5, 3), 9*x) - 2*bessely(Rational(1, 3), 9*x) + bessely(Rational(7, 3), 9*x)))/4 + x*(a*(9*besselj(Rational(-2, 3), 9*x)/2
- 9*besselj(Rational(4, 3), 9*x)/2) + b*(9*bessely(Rational(-2, 3), 9*x)/2 - 9*bessely(Rational(4, 3), 9*x)/2)) +
(81*x**2 - Rational(1, 9))*(a*besselj(Rational(1, 3), 9*x) + b*bessely(Rational(1, 3), 9*x))) == 0
assert besselsimp(besselj(a-1,x) + besselj(a+1, x) - 2*a*besselj(a, x)/x) == 0
assert besselsimp(besselj(a-1,x) + besselj(a+1, x) + besselj(a, x)) == (2*a + x)*besselj(a, x)/x
assert besselsimp(x**2* besselj(a,x) + x**3*besselj(a+1, x) + besselj(a+2, x)) == \
2*a*x*besselj(a + 1, x) + x**3*besselj(a + 1, x) - x**2*besselj(a + 2, x) + 2*x*besselj(a + 1, x) + besselj(a + 2, x)
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
s1 = simplify(e1)
s2 = simplify(e2)
s3 = simplify(e3)
assert simplify(Piecewise((e1, x < e2), (e3, True))) == \
Piecewise((s1, x < s2), (s3, True))
def test_polymorphism():
class A(Basic):
def _eval_simplify(x, **kwargs):
return S.One
a = A(5, 2)
assert simplify(a) == 1
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert simplify(I*sqrt(n1)) == -sqrt(-n1)
def test_issue_6811():
eq = (x + 2*y)*(2*x + 2)
assert simplify(eq) == (x + 1)*(x + 2*y)*2
# reject the 2-arg Mul -- these are a headache for test writing
assert simplify(eq.expand()) == \
2*x**2 + 4*x*y + 2*x + 4*y
def test_issue_6920():
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
# wrap in f to show that the change happens wherever ei occurs
f = Function('f')
assert [simplify(f(ei)).args[0] for ei in e] == ok
def test_issue_7001():
from sympy.abc import r, R
assert simplify(-(r*Piecewise((pi*Rational(4, 3), r <= R),
(-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((pi*r*Rational(4, 3), r <= R),
(4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \
Piecewise((-1, r <= R), (0, True))
def test_inequality_no_auto_simplify():
# no simplify on creation but can be simplified
lhs = cos(x)**2 + sin(x)**2
rhs = 2
e = Lt(lhs, rhs, evaluate=False)
assert e is not S.true
assert simplify(e)
def test_issue_9398():
from sympy import Number, cancel
assert cancel(1e-14) != 0
assert cancel(1e-14*I) != 0
assert simplify(1e-14) != 0
assert simplify(1e-14*I) != 0
assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0
assert cancel(1e-20) != 0
assert cancel(1e-20*I) != 0
assert simplify(1e-20) != 0
assert simplify(1e-20*I) != 0
assert cancel(1e-100) != 0
assert cancel(1e-100*I) != 0
assert simplify(1e-100) != 0
assert simplify(1e-100*I) != 0
f = Float("1e-1000")
assert cancel(f) != 0
assert cancel(f*I) != 0
assert simplify(f) != 0
assert simplify(f*I) != 0
def test_issue_9324_simplify():
M = MatrixSymbol('M', 10, 10)
e = M[0, 0] + M[5, 4] + 1304
assert simplify(e) == e
def test_issue_13474():
x = Symbol('x')
assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))
def test_simplify_function_inverse():
# "inverse" attribute does not guarantee that f(g(x)) is x
# so this simplification should not happen automatically.
# See issue #12140
x, y = symbols('x, y')
g = Function('g')
class f(Function):
def inverse(self, argindex=1):
return g
assert simplify(f(g(x))) == f(g(x))
assert inversecombine(f(g(x))) == x
assert simplify(f(g(x)), inverse=True) == x
assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1
assert simplify(f(g(x, y)), inverse=True) == f(g(x, y))
assert unchanged(asin, sin(x))
assert simplify(asin(sin(x))) == asin(sin(x))
assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x
assert simplify(log(exp(x))) == log(exp(x))
assert simplify(log(exp(x)), inverse=True) == x
assert simplify(log(exp(x), 2), inverse=True) == x/log(2)
assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2)
def test_clear_coefficients():
from sympy.simplify.simplify import clear_coefficients
assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), Rational(1, 6))
assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + Rational(1, 6))
assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
assert clear_coefficients(S(3), x) == (0, x - 3)
assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)
def test_nc_simplify():
from sympy.simplify.simplify import nc_simplify
from sympy.matrices.expressions import MatPow, Identity
from sympy.core import Pow
from functools import reduce
a, b, c, d = symbols('a b c d', commutative = False)
x = Symbol('x')
A = MatrixSymbol("A", x, x)
B = MatrixSymbol("B", x, x)
C = MatrixSymbol("C", x, x)
D = MatrixSymbol("D", x, x)
subst = {a: A, b: B, c: C, d:D}
funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y }
def _to_matrix(expr):
if expr in subst:
return subst[expr]
if isinstance(expr, Pow):
return MatPow(_to_matrix(expr.args[0]), expr.args[1])
elif isinstance(expr, (Add, Mul)):
return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args])
else:
return expr*Identity(x)
def _check(expr, simplified, deep=True, matrix=True):
assert nc_simplify(expr, deep=deep) == simplified
assert expand(expr) == expand(simplified)
if matrix:
m_simp = _to_matrix(simplified).doit(inv_expand=False)
assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp
_check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2)
_check(a*b*(a*b)**-2*a*b, 1)
_check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False)
_check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3)
_check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2)
_check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3)
_check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3)
_check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2)
_check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2)
_check(b**-1*a**-1*(a*b)**2, a*b)
_check(a**-1*b*c**-1, (c*b**-1*a)**-1)
expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2
for _ in range(10):
expr *= a*b
_check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10)
_check((a*b*a*b)**2, (a*b*a*b)**2, deep=False)
_check(a*b*(c*d)**2, a*b*(c*d)**2)
expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1
assert nc_simplify(expr) == (1-c)**-1
# commutative expressions should be returned without an error
assert nc_simplify(2*x**2) == 2*x**2
def test_issue_15965():
A = Sum(z*x**y, (x, 1, a))
anew = z*Sum(x**y, (x, 1, a))
B = Integral(x*y, x)
bdo = x**2*y/2
assert simplify(A + B) == anew + bdo
assert simplify(A) == anew
assert simplify(B) == bdo
assert simplify(B, doit=False) == y*Integral(x, x)
def test_issue_17137():
assert simplify(cos(x)**I) == cos(x)**I
assert simplify(cos(x)**(2 + 3*I)) == cos(x)**(2 + 3*I)
def test_issue_7971():
z = Integral(x, (x, 1, 1))
assert z != 0
assert simplify(z) is S.Zero
@slow
def test_issue_17141_slow():
# Should not give RecursionError
assert simplify((2**acos(I+1)**2).rewrite('log')) == 2**((pi + 2*I*log(-1 +
sqrt(1 - 2*I) + I))**2/4)
def test_issue_17141():
# Check that there is no RecursionError
assert simplify(x**(1 / acos(I))) == x**(2/(pi - 2*I*log(1 + sqrt(2))))
assert simplify(acos(-I)**2*acos(I)**2) == \
log(1 + sqrt(2))**4 + pi**2*log(1 + sqrt(2))**2/2 + pi**4/16
assert simplify(2**acos(I)**2) == 2**((pi - 2*I*log(1 + sqrt(2)))**2/4)
p = 2**acos(I+1)**2
assert simplify(p) == p
def test_simplify_kroneckerdelta():
i, j = symbols("i j")
K = KroneckerDelta
assert simplify(K(i, j)) == K(i, j)
assert simplify(K(0, j)) == K(0, j)
assert simplify(K(i, 0)) == K(i, 0)
assert simplify(K(0, j).rewrite(Piecewise) * K(1, j)) == 0
assert simplify(K(1, i) + Piecewise((1, Eq(j, 2)), (0, True))) == K(1, i) + K(2, j)
# issue 17214
assert simplify(K(0, j) * K(1, j)) == 0
n = Symbol('n', integer=True)
assert simplify(K(0, n) * K(1, n)) == 0
M = Matrix(4, 4, lambda i, j: K(j - i, n) if i <= j else 0)
assert simplify(M**2) == Matrix([[K(0, n), 0, K(1, n), 0],
[0, K(0, n), 0, K(1, n)],
[0, 0, K(0, n), 0],
[0, 0, 0, K(0, n)]])
def test_issue_17292():
assert simplify(abs(x)/abs(x**2)) == 1/abs(x)
# this is bigger than the issue: check that deep processing works
assert simplify(5*abs((x**2 - 1)/(x - 1))) == 5*Abs(x + 1)
def test_issue_19484():
assert simplify(sign(x) * Abs(x)) == x
e = x + sign(x + x**3)
assert simplify(Abs(x + x**3)*e) == x**3 + x*Abs(x**3 + x) + x
e = x**2 + sign(x**3 + 1)
assert simplify(Abs(x**3 + 1) * e) == x**3 + x**2*Abs(x**3 + 1) + 1
f = Function('f')
e = x + sign(x + f(x)**3)
assert simplify(Abs(x + f(x)**3) * e) == x*Abs(x + f(x)**3) + x + f(x)**3
|
758aea82970eecfedbf649b4e89f686a58180219aa23d302cf3eff68de809678 | from sympy.core.symbol import symbols
from sympy.printing import ccode
from sympy.codegen.ast import Declaration, Variable, float64, int64, String, CodeBlock
from sympy.codegen.cnodes import (
alignof, CommaOperator, goto, Label, PreDecrement, PostDecrement, PreIncrement, PostIncrement,
sizeof, union, struct
)
x, y = symbols('x y')
def test_alignof():
ax = alignof(x)
assert ccode(ax) == 'alignof(x)'
assert ax.func(*ax.args) == ax
def test_CommaOperator():
expr = CommaOperator(PreIncrement(x), 2*x)
assert ccode(expr) == '(++(x), 2*x)'
assert expr.func(*expr.args) == expr
def test_goto_Label():
s = 'early_exit'
g = goto(s)
assert g.func(*g.args) == g
assert g != goto('foobar')
assert ccode(g) == 'goto early_exit'
l1 = Label(s)
assert ccode(l1) == 'early_exit:'
assert l1 == Label('early_exit')
assert l1 != Label('foobar')
body = [PreIncrement(x)]
l2 = Label(s, body)
assert l2.name == String("early_exit")
assert l2.body == CodeBlock(PreIncrement(x))
assert ccode(l2) == ("early_exit:\n"
"++(x);")
body = [PreIncrement(x), PreDecrement(y)]
l2 = Label(s, body)
assert l2.name == String("early_exit")
assert l2.body == CodeBlock(PreIncrement(x), PreDecrement(y))
assert ccode(l2) == ("early_exit:\n"
"{\n ++(x);\n --(y);\n}")
def test_PreDecrement():
p = PreDecrement(x)
assert p.func(*p.args) == p
assert ccode(p) == '--(x)'
def test_PostDecrement():
p = PostDecrement(x)
assert p.func(*p.args) == p
assert ccode(p) == '(x)--'
def test_PreIncrement():
p = PreIncrement(x)
assert p.func(*p.args) == p
assert ccode(p) == '++(x)'
def test_PostIncrement():
p = PostIncrement(x)
assert p.func(*p.args) == p
assert ccode(p) == '(x)++'
def test_sizeof():
typename = 'unsigned int'
sz = sizeof(typename)
assert ccode(sz) == 'sizeof(%s)' % typename
assert sz.func(*sz.args) == sz
assert not sz.is_Atom
assert sz.atoms() == {String('unsigned int'), String('sizeof')}
def test_struct():
vx, vy = Variable(x, type=float64), Variable(y, type=float64)
s = struct('vec2', [vx, vy])
assert s.func(*s.args) == s
assert s == struct('vec2', (vx, vy))
assert s != struct('vec2', (vy, vx))
assert str(s.name) == 'vec2'
assert len(s.declarations) == 2
assert all(isinstance(arg, Declaration) for arg in s.declarations)
assert ccode(s) == (
"struct vec2 {\n"
" double x;\n"
" double y;\n"
"}")
def test_union():
vx, vy = Variable(x, type=float64), Variable(y, type=int64)
u = union('dualuse', [vx, vy])
assert u.func(*u.args) == u
assert u == union('dualuse', (vx, vy))
assert str(u.name) == 'dualuse'
assert len(u.declarations) == 2
assert all(isinstance(arg, Declaration) for arg in u.declarations)
assert ccode(u) == (
"union dualuse {\n"
" double x;\n"
" int64_t y;\n"
"}")
|
40d857ffee34d0b4bc123a1a787c9f0aa1d5f4bda2fb90296f9629e7727b87c5 | import os
import tempfile
from sympy import Symbol, symbols
from sympy.codegen.ast import (
Assignment, Print, Declaration, FunctionDefinition, Return, real,
FunctionCall, Variable, Element, integer
)
from sympy.codegen.fnodes import (
allocatable, ArrayConstructor, isign, dsign, cmplx, kind, literal_dp,
Program, Module, use, Subroutine, dimension, assumed_extent, ImpliedDoLoop,
intent_out, size, Do, SubroutineCall, sum_, array, bind_C
)
from sympy.codegen.futils import render_as_module
from sympy.core.expr import unchanged
from sympy.external import import_module
from sympy.printing import fcode
from sympy.utilities._compilation import has_fortran, compile_run_strings, compile_link_import_strings
from sympy.utilities._compilation.util import may_xfail
from sympy.testing.pytest import skip, XFAIL
cython = import_module('cython')
np = import_module('numpy')
def test_size():
x = Symbol('x', real=True)
sx = size(x)
assert fcode(sx, source_format='free') == 'size(x)'
@may_xfail
def test_size_assumed_shape():
if not has_fortran():
skip("No fortran compiler found.")
a = Symbol('a', real=True)
body = [Return((sum_(a**2)/size(a))**.5)]
arr = array(a, dim=[':'], intent='in')
fd = FunctionDefinition(real, 'rms', [arr], body)
render_as_module([fd], 'mod_rms')
(stdout, stderr), info = compile_run_strings([
('rms.f90', render_as_module([fd], 'mod_rms')),
('main.f90', (
'program myprog\n'
'use mod_rms, only: rms\n'
'real*8, dimension(4), parameter :: x = [4, 2, 2, 2]\n'
'print *, dsqrt(7d0) - rms(x)\n'
'end program\n'
))
], clean=True)
assert '0.00000' in stdout
assert stderr == ''
assert info['exit_status'] == os.EX_OK
@XFAIL # https://github.com/sympy/sympy/issues/20265
@may_xfail
def test_ImpliedDoLoop():
if not has_fortran():
skip("No fortran compiler found.")
a, i = symbols('a i', integer=True)
idl = ImpliedDoLoop(i**3, i, -3, 3, 2)
ac = ArrayConstructor([-28, idl, 28])
a = array(a, dim=[':'], attrs=[allocatable])
prog = Program('idlprog', [
a.as_Declaration(),
Assignment(a, ac),
Print([a])
])
fsrc = fcode(prog, standard=2003, source_format='free')
(stdout, stderr), info = compile_run_strings([('main.f90', fsrc)], clean=True)
for numstr in '-28 -27 -1 1 27 28'.split():
assert numstr in stdout
assert stderr == ''
assert info['exit_status'] == os.EX_OK
@may_xfail
def test_Program():
x = Symbol('x', real=True)
vx = Variable.deduced(x, 42)
decl = Declaration(vx)
prnt = Print([x, x+1])
prog = Program('foo', [decl, prnt])
if not has_fortran():
skip("No fortran compiler found.")
(stdout, stderr), info = compile_run_strings([('main.f90', fcode(prog, standard=90))], clean=True)
assert '42' in stdout
assert '43' in stdout
assert stderr == ''
assert info['exit_status'] == os.EX_OK
@may_xfail
def test_Module():
x = Symbol('x', real=True)
v_x = Variable.deduced(x)
sq = FunctionDefinition(real, 'sqr', [v_x], [Return(x**2)])
mod_sq = Module('mod_sq', [], [sq])
sq_call = FunctionCall('sqr', [42.])
prg_sq = Program('foobar', [
use('mod_sq', only=['sqr']),
Print(['"Square of 42 = "', sq_call])
])
if not has_fortran():
skip("No fortran compiler found.")
(stdout, stderr), info = compile_run_strings([
('mod_sq.f90', fcode(mod_sq, standard=90)),
('main.f90', fcode(prg_sq, standard=90))
], clean=True)
assert '42' in stdout
assert str(42**2) in stdout
assert stderr == ''
@XFAIL # https://github.com/sympy/sympy/issues/20265
@may_xfail
def test_Subroutine():
# Code to generate the subroutine in the example from
# http://www.fortran90.org/src/best-practices.html#arrays
r = Symbol('r', real=True)
i = Symbol('i', integer=True)
v_r = Variable.deduced(r, attrs=(dimension(assumed_extent), intent_out))
v_i = Variable.deduced(i)
v_n = Variable('n', integer)
do_loop = Do([
Assignment(Element(r, [i]), literal_dp(1)/i**2)
], i, 1, v_n)
sub = Subroutine("f", [v_r], [
Declaration(v_n),
Declaration(v_i),
Assignment(v_n, size(r)),
do_loop
])
x = Symbol('x', real=True)
v_x3 = Variable.deduced(x, attrs=[dimension(3)])
mod = Module('mymod', definitions=[sub])
prog = Program('foo', [
use(mod, only=[sub]),
Declaration(v_x3),
SubroutineCall(sub, [v_x3]),
Print([sum_(v_x3), v_x3])
])
if not has_fortran():
skip("No fortran compiler found.")
(stdout, stderr), info = compile_run_strings([
('a.f90', fcode(mod, standard=90)),
('b.f90', fcode(prog, standard=90))
], clean=True)
ref = [1.0/i**2 for i in range(1, 4)]
assert str(sum(ref))[:-3] in stdout
for _ in ref:
assert str(_)[:-3] in stdout
assert stderr == ''
def test_isign():
x = Symbol('x', integer=True)
assert unchanged(isign, 1, x)
assert fcode(isign(1, x), standard=95, source_format='free') == 'isign(1, x)'
def test_dsign():
x = Symbol('x')
assert unchanged(dsign, 1, x)
assert fcode(dsign(literal_dp(1), x), standard=95, source_format='free') == 'dsign(1d0, x)'
def test_cmplx():
x = Symbol('x')
assert unchanged(cmplx, 1, x)
def test_kind():
x = Symbol('x')
assert unchanged(kind, x)
def test_literal_dp():
assert fcode(literal_dp(0), source_format='free') == '0d0'
@may_xfail
def test_bind_C():
if not has_fortran():
skip("No fortran compiler found.")
if not cython:
skip("Cython not found.")
if not np:
skip("NumPy not found.")
a = Symbol('a', real=True)
s = Symbol('s', integer=True)
body = [Return((sum_(a**2)/s)**.5)]
arr = array(a, dim=[s], intent='in')
fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')])
f_mod = render_as_module([fd], 'mod_rms')
with tempfile.TemporaryDirectory() as folder:
mod, info = compile_link_import_strings([
('rms.f90', f_mod),
('_rms.pyx', (
"#cython: language_level={}\n".format("3") +
"cdef extern double rms(double*, int*)\n"
"def py_rms(double[::1] x):\n"
" cdef int s = x.size\n"
" return rms(&x[0], &s)\n"))
], build_dir=folder)
assert abs(mod.py_rms(np.array([2., 4., 2., 2.])) - 7**0.5) < 1e-14
|
52e1a1b8611ebc2d8a1287781a5e53d1d18557ddd40bd49d1b6ba1af6579242a | from sympy import symbols, IndexedBase, Identity, cos, Inverse
from sympy.codegen.array_utils import (CodegenArrayContraction,
CodegenArrayTensorProduct, CodegenArrayDiagonal,
CodegenArrayPermuteDims, CodegenArrayElementwiseAdd,
_codegen_array_parse, _recognize_matrix_expression, _RecognizeMatOp,
_RecognizeMatMulLines, _unfold_recognized_expr,
parse_indexed_expression, recognize_matrix_expression,
parse_matrix_expression)
from sympy import MatrixSymbol, Sum
from sympy.combinatorics import Permutation
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices import Trace, MatAdd, MatMul, Transpose
from sympy.testing.pytest import raises
A, B = symbols("A B", cls=IndexedBase)
i, j, k, l, m, n = symbols("i j k l m n")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
P = MatrixSymbol("P", k, k)
Q = MatrixSymbol("Q", k, k)
def test_codegen_array_contraction_construction():
cg = CodegenArrayContraction(A)
assert cg == A
s = Sum(A[i]*B[i], (i, 0, 3))
cg = parse_indexed_expression(s)
assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1))
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (1, 0))
assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(A, B), (0, 1))
expr = M*N
result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2))
assert parse_matrix_expression(expr) == result
elem = expr[i, j]
assert parse_indexed_expression(elem) == result
expr = M*N*M
result = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, M), (1, 2), (3, 4))
assert parse_matrix_expression(expr) == result
elem = expr[i, j]
result = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5))
cg = parse_indexed_expression(elem)
cg = cg.sort_args_by_name()
assert cg == result
def test_codegen_array_contraction_indices_types():
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 0), (0, 1)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)]
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 1), (1, 0)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)]
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (1, 4), (2, 5))
indtup = cg._get_contraction_tuples()
assert indtup == [[(0, 1), (2, 0)], [(1, 0), (2, 1)]]
assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 4), (2, 5)]
def test_codegen_array_recognize_matrix_mul_lines():
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M), (0, 1))
assert recognize_matrix_expression(cg) == Trace(M)
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 1), (2, 3))
assert recognize_matrix_expression(cg) == Trace(M)*Trace(N)
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2))
assert recognize_matrix_expression(cg) == Trace(M*N)
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 2), (1, 3))
assert recognize_matrix_expression(cg) == Trace(M*N.T)
cg = parse_indexed_expression((M*N*P)[i,j])
assert recognize_matrix_expression(cg) == M*N*P
cg = parse_matrix_expression(M*N*P)
assert recognize_matrix_expression(cg) == M*N*P
cg = parse_indexed_expression((M*N.T*P)[i,j])
assert recognize_matrix_expression(cg) == M*N.T*P
cg = parse_matrix_expression(M*N.T*P)
assert recognize_matrix_expression(cg) == M*N.T*P
cg = CodegenArrayContraction(CodegenArrayTensorProduct(M,N,P,Q), (1, 2), (5, 6))
assert recognize_matrix_expression(cg) == [M*N, P*Q]
expr = -2*M*N
elem = expr[i, j]
cg = parse_indexed_expression(elem)
assert recognize_matrix_expression(cg) == -2*M*N
def test_codegen_array_flatten():
# Flatten nested CodegenArrayTensorProduct objects:
expr1 = CodegenArrayTensorProduct(M, N)
expr2 = CodegenArrayTensorProduct(P, Q)
expr = CodegenArrayTensorProduct(expr1, expr2)
assert expr == CodegenArrayTensorProduct(M, N, P, Q)
assert expr.args == (M, N, P, Q)
# Flatten mixed CodegenArrayTensorProduct and CodegenArrayContraction objects:
cg1 = CodegenArrayContraction(expr1, (1, 2))
cg2 = CodegenArrayContraction(expr2, (0, 3))
expr = CodegenArrayTensorProduct(cg1, cg2)
assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 2), (4, 7))
expr = CodegenArrayTensorProduct(M, cg1)
assert expr == CodegenArrayContraction(CodegenArrayTensorProduct(M, M, N), (3, 4))
# Flatten nested CodegenArrayContraction objects:
cgnested = CodegenArrayContraction(cg1, (0, 1))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (0, 3), (1, 2))
cgnested = CodegenArrayContraction(CodegenArrayTensorProduct(cg1, cg2), (0, 3))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 6), (1, 2), (4, 7))
cg3 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cgnested = CodegenArrayContraction(cg3, (0, 1))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 5), (1, 3), (2, 4))
cgnested = CodegenArrayContraction(cg3, (0, 3), (1, 2))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6))
cg4 = CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = CodegenArrayContraction(cg4, (0, 1))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7))
cgnested = CodegenArrayContraction(cg4, (0, 1), (2, 3))
assert cgnested == CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6))
cg = CodegenArrayDiagonal(cg4)
assert cg == cg4
assert isinstance(cg, type(cg4))
# Flatten nested CodegenArrayDiagonal objects:
cg1 = CodegenArrayDiagonal(expr1, (1, 2))
cg2 = CodegenArrayDiagonal(expr2, (0, 3))
cg3 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4))
cg4 = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7))
cgnested = CodegenArrayDiagonal(cg1, (0, 1))
assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2), (0, 3))
cgnested = CodegenArrayDiagonal(cg3, (1, 2))
assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 3), (2, 4), (5, 6))
cgnested = CodegenArrayDiagonal(cg4, (1, 2))
assert cgnested == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P, Q), (1, 5), (3, 7), (2, 4))
def test_codegen_array_parse():
expr = M[i, j]
assert _codegen_array_parse(expr) == (M, (i, j))
expr = M[i, j]*N[k, l]
assert _codegen_array_parse(expr) == (CodegenArrayTensorProduct(M, N), (i, j, k, l))
expr = M[i, j]*N[j, k]
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k, j))
expr = Sum(M[i, j]*N[j, k], (j, 0, k-1))
assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), (i, k))
expr = M[i, j] + N[i, j]
assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, N), (i, j))
expr = M[i, j] + N[j, i]
assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(N, Permutation([1,0]))), (i, j))
expr = M[i, j] + M[j, i]
assert _codegen_array_parse(expr) == (CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, Permutation([1,0]))), (i, j))
expr = (M*N*P)[i, j]
assert _codegen_array_parse(expr) == (CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j))
expr = expr.function # Disregard summation in previous expression
ret1, ret2 = _codegen_array_parse(expr)
assert ret1 == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4))
assert str(ret2) == "(i, j, _i_1, _i_2)"
expr = KroneckerDelta(i, j)*M[i, k]
assert _codegen_array_parse(expr) == (M, ({i, j}, k))
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l]
assert _codegen_array_parse(expr) == (M, ({i, j, k}, l))
expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd(
CodegenArrayTensorProduct(M, N),
CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
), (1, 2)), (i, l, frozenset({j, k})))
expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(CodegenArrayElementwiseAdd(
CodegenArrayTensorProduct(M, N),
CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
), (1, 2)), (i, l, frozenset({j, m, k})))
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n)
assert _codegen_array_parse(expr) == (M, ({i,j,k,m,n}, 0))
expr = M[i, i]
assert _codegen_array_parse(expr) == (CodegenArrayDiagonal(M, (0, 1)), (i,))
def test_codegen_array_diagonal():
cg = CodegenArrayDiagonal(M, (1, 0))
assert cg == CodegenArrayDiagonal(M, (0, 1))
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (4, 1), (2, 0))
assert cg == CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N, P), (1, 4), (0, 2))
def test_codegen_recognize_matrix_expression():
expr = CodegenArrayElementwiseAdd(M, CodegenArrayPermuteDims(M, [1, 0]))
rec = _recognize_matrix_expression(expr)
assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [M])])
assert _unfold_recognized_expr(rec) == M + Transpose(M)
expr = M[i,j] + N[i,j]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [M, N])
assert _unfold_recognized_expr(rec) == M + N
expr = M[i,j] + N[j,i]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [M, _RecognizeMatOp(Transpose, [N])])
assert _unfold_recognized_expr(rec) == M + N.T
expr = M[i,j]*N[k,l] + N[i,j]*M[k,l]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [_RecognizeMatMulLines([M, N]), _RecognizeMatMulLines([N, M])])
#assert _unfold_recognized_expr(rec) == TensorProduct(M, N) + TensorProduct(N, M) maybe?
expr = (M*N*P)[i, j]
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatMulLines([_RecognizeMatOp(MatMul, [M, N, P])])
assert _unfold_recognized_expr(rec) == M*N*P
expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1))
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatMul, [M, N, P])
assert _unfold_recognized_expr(rec) == M*N*P
expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1))
p1, p2 = _codegen_array_parse(expr)
rec = _recognize_matrix_expression(p1)
assert rec == _RecognizeMatOp(MatAdd, [
_RecognizeMatOp(MatMul, [M, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), N]),
_RecognizeMatOp(MatMul, [N, _RecognizeMatOp(MatAdd, [P, _RecognizeMatOp(Transpose, [P])]), M])
])
assert _unfold_recognized_expr(rec) == M*(P + P.T)*N + N*(P + P.T)*M
def test_codegen_array_shape():
expr = CodegenArrayTensorProduct(M, N, P, Q)
assert expr.shape == (k, k, k, k, k, k, k, k)
Z = MatrixSymbol("Z", m, n)
expr = CodegenArrayTensorProduct(M, Z)
assert expr.shape == (k, k, m, n)
expr2 = CodegenArrayContraction(expr, (0, 1))
assert expr2.shape == (m, n)
expr2 = CodegenArrayDiagonal(expr, (0, 1))
assert expr2.shape == (m, n, k)
exprp = CodegenArrayPermuteDims(expr, [2, 1, 3, 0])
assert exprp.shape == (m, k, n, k)
expr3 = CodegenArrayTensorProduct(N, Z)
expr2 = CodegenArrayElementwiseAdd(expr, expr3)
assert expr2.shape == (k, k, m, n)
# Contraction along axes with discordant dimensions:
raises(ValueError, lambda: CodegenArrayContraction(expr, (1, 2)))
# Also diagonal needs the same dimensions:
raises(ValueError, lambda: CodegenArrayDiagonal(expr, (1, 2)))
def test_codegen_array_parse_out_of_bounds():
expr = Sum(M[i, i], (i, 0, 4))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, i], (i, 0, k))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, i], (i, 1, k-1))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, j]*N[j,m], (j, 0, 4))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, j]*N[j,m], (j, 0, k))
raises(ValueError, lambda: parse_indexed_expression(expr))
expr = Sum(M[i, j]*N[j,m], (j, 1, k-1))
raises(ValueError, lambda: parse_indexed_expression(expr))
def test_codegen_permutedims_sink():
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [0, 1, 3, 2])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0]))
assert recognize_matrix_expression(sunk) == [M, N.T]
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))
assert recognize_matrix_expression(sunk) == [M.T, N.T]
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [3, 2, 1, 0])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(N, [1, 0]), CodegenArrayPermuteDims(M, [1, 0]))
assert recognize_matrix_expression(sunk) == [N.T, M.T]
cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2)), [1, 0])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [[0, 3]]), (1, 2))
cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 0, 3, 2])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayTensorProduct(CodegenArrayPermuteDims(M, [1, 0]), CodegenArrayPermuteDims(N, [1, 0]))
cg = CodegenArrayPermuteDims(CodegenArrayContraction(CodegenArrayTensorProduct(M, N, P), (1, 2), (3, 4)), [1, 0])
sunk = cg.nest_permutation()
assert sunk == CodegenArrayContraction(CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N, P), [[0, 5]]), (1, 2), (3, 4))
def test_parsing_of_matrix_expressions():
expr = M*N
assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, N), (1, 2))
expr = Transpose(M)
assert parse_matrix_expression(expr) == CodegenArrayPermuteDims(M, [1, 0])
expr = M*Transpose(N)
assert parse_matrix_expression(expr) == CodegenArrayContraction(CodegenArrayTensorProduct(M, CodegenArrayPermuteDims(N, [1, 0])), (1, 2))
expr = 3*M*N
res = parse_matrix_expression(expr)
rexpr = recognize_matrix_expression(res)
assert expr == rexpr
expr = 3*M + N*M.T*M + 4*k*N
res = parse_matrix_expression(expr)
rexpr = recognize_matrix_expression(res)
assert expr == rexpr
expr = Inverse(M)*N
rexpr = recognize_matrix_expression(parse_matrix_expression(expr))
assert expr == rexpr
expr = M**2
rexpr = recognize_matrix_expression(parse_matrix_expression(expr))
assert expr == rexpr
expr = M*(2*N + 3*M)
res = parse_matrix_expression(expr)
rexpr = recognize_matrix_expression(res)
assert expr.expand() == rexpr.doit()
expr = Trace(M)
result = CodegenArrayContraction(M, (0, 1))
assert parse_matrix_expression(expr) == result
def test_special_matrices():
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
expr = a.T*b
elem = expr[0, 0]
cg = parse_indexed_expression(elem)
assert cg == CodegenArrayContraction(CodegenArrayTensorProduct(a, b), (0, 2))
assert recognize_matrix_expression(cg) == a.T*b
def test_push_indices_up_and_down():
indices = list(range(10))
contraction_indices = [(0, 6), (2, 8)]
assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13)
assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5)
assert CodegenArrayDiagonal._push_indices_down(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, 7, 9, 10, 11)
assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, 2, 3, 4, 5, None, 6, None, 7)
contraction_indices = [(1, 2), (7, 8)]
assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13)
assert CodegenArrayContraction._push_indices_up(contraction_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5)
assert CodegenArrayContraction._push_indices_down(contraction_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13)
assert CodegenArrayDiagonal._push_indices_up(contraction_indices, indices) == (0, 1, None, 2, 3, 4, 5, 6, None, 7)
def test_recognize_diagonalized_vectors():
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
X = MatrixSymbol("X", k, k)
x = MatrixSymbol("x", k, 1)
I1 = Identity(1)
I = Identity(k)
# Check matrix recognition over trivial dimensions:
cg = CodegenArrayTensorProduct(a, b)
assert recognize_matrix_expression(cg) == a*b.T
cg = CodegenArrayTensorProduct(I1, a, b)
assert recognize_matrix_expression(cg) == a*I1*b.T
# Recognize trace inside a tensor product:
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, B, C), (0, 3), (1, 2))
assert recognize_matrix_expression(cg) == Trace(A*B)*C
# Transform diagonal operator to contraction:
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (1, 2))
assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (1, 2))
assert recognize_matrix_expression(cg) == A*DiagMatrix(a)
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(a, b), (0, 2))
assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(a), b), (0, 2))
assert recognize_matrix_expression(cg).doit() == DiagMatrix(a)*b
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(A, a), (0, 2))
assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a)), (0, 2))
assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a)
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, I1), (0, 2), (3, 5))
assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), I1), (0, 2))
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(I, x, A, B), (1, 2), (5, 6))
assert cg.transform_to_product() == CodegenArrayDiagonal(CodegenArrayContraction(CodegenArrayTensorProduct(I, DiagMatrix(x), A, B), (1, 2)), (3, 4))
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I1), (1, 2))
assert isinstance(cg, CodegenArrayDiagonal)
assert cg.diagonal_indices == ((1, 2),)
assert recognize_matrix_expression(cg) == x
cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(x, I), (0, 2))
assert cg.transform_to_product() == CodegenArrayContraction(CodegenArrayTensorProduct(DiagMatrix(x), I), (0, 2))
assert recognize_matrix_expression(cg).doit() == DiagMatrix(x)
cg = CodegenArrayDiagonal(x, (1,))
assert cg == x
# Ignore identity matrices with contractions:
cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, A, I, I), (0, 2), (1, 3), (5, 7))
assert cg.split_multiple_contractions() == cg
assert recognize_matrix_expression(cg) == Trace(A)*I
cg = CodegenArrayContraction(CodegenArrayTensorProduct(Trace(A) * I, I, I), (1, 5), (3, 4))
assert cg.split_multiple_contractions() == cg
assert recognize_matrix_expression(cg).doit() == Trace(A)*I
# Add DiagMatrix when required:
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a), (1, 2))
assert cg.split_multiple_contractions() == cg
assert recognize_matrix_expression(cg) == A*a
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (1, 2, 4))
assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (1, 2), (3, 4))
assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*B
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, B), (0, 2, 4))
assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), B), (0, 2), (3, 4))
assert recognize_matrix_expression(cg) == A.T*DiagMatrix(a)*B
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, b, a.T, B), (0, 2, 4, 7, 9))
assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), DiagMatrix(b),
DiagMatrix(a), B),
(0, 2), (3, 4), (5, 7), (6, 9))
assert recognize_matrix_expression(cg).doit() == A.T*DiagMatrix(a)*DiagMatrix(b)*DiagMatrix(a)*B.T
cg = CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2, 4))
assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(I1, I1, I1), (1, 2), (3, 4))
assert recognize_matrix_expression(cg).doit() == Identity(1)
cg = CodegenArrayContraction(CodegenArrayTensorProduct(I, I, I, I, A), (1, 2, 8), (5, 6, 9))
assert recognize_matrix_expression(cg.split_multiple_contractions()).doit() == A
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8))
assert cg.split_multiple_contractions() == CodegenArrayContraction(CodegenArrayTensorProduct(A, DiagMatrix(a), C, DiagMatrix(a), B), (1, 2), (3, 4), (5, 6), (7, 8))
assert recognize_matrix_expression(cg) == A*DiagMatrix(a)*C*DiagMatrix(a)*B
cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
assert cg.split_multiple_contractions().dummy_eq(CodegenArrayContraction(CodegenArrayTensorProduct(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2), (3, 8), (5, 6), (7, 9)))
assert recognize_matrix_expression(cg).dummy_eq(MatMul(a, I1, (a.T*b).applyfunc(cos), Transpose(I1), b.T))
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
assert cg.split_multiple_contractions().dummy_eq(CodegenArrayContraction(
CodegenArrayTensorProduct(A.T, DiagMatrix(a), b, b.T, (A*X*b).applyfunc(cos)),
(1, 2), (3, 8), (5, 6, 9)))
# assert recognize_matrix_expression(cg)
# Check no overlap of lines:
cg = CodegenArrayContraction(CodegenArrayTensorProduct(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7))
assert cg.split_multiple_contractions() == cg
cg = CodegenArrayContraction(CodegenArrayTensorProduct(a, b, A), (0, 2, 4), (1, 3))
assert cg.split_multiple_contractions() == cg
|
625207fcc654bbffdd851fcbce0260f48b61d9de0097e021a3f8238c03f6fb60 | from typing import Tuple
from sympy.core.add import Add
from sympy.core.basic import sympify, cacheit
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul
from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool
from sympy.core.numbers import igcdex, Rational, pi
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh,
coth, HyperbolicFunction, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.sets.sets import FiniteSet
from sympy.utilities.iterables import numbered_symbols
###############################################################################
########################## TRIGONOMETRIC FUNCTIONS ############################
###############################################################################
class TrigonometricFunction(Function):
"""Base class for trigonometric functions. """
unbranched = True
_singularities = (S.ComplexInfinity,)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
pi_coeff = _pi_coeff(self.args[0])
if pi_coeff is not None and pi_coeff.is_rational:
return True
else:
return s.is_algebraic
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.args[0].expand(deep, **hints), S.Zero)
else:
return (self.args[0], S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def _period(self, general_period, symbol=None):
f = expand_mul(self.args[0])
if symbol is None:
symbol = tuple(f.free_symbols)[0]
if not f.has(symbol):
return S.Zero
if f == symbol:
return general_period
if symbol in f.free_symbols:
if f.is_Mul:
g, h = f.as_independent(symbol)
if h == symbol:
return general_period/abs(g)
if f.is_Add:
a, h = f.as_independent(symbol)
g, h = h.as_independent(symbol, as_Add=False)
if h == symbol:
return general_period/abs(g)
raise NotImplementedError("Use the periodicity function instead.")
def _peeloff_pi(arg):
"""
Split ARG into two parts, a "rest" and a multiple of pi/2.
This assumes ARG to be an Add.
The multiple of pi returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel
>>> from sympy import pi
>>> from sympy.abc import x, y
>>> peel(x + pi/2)
(x, pi/2)
>>> peel(x + 2*pi/3 + pi*y)
(x + pi*y + pi/6, pi/2)
"""
pi_coeff = S.Zero
rest_terms = []
for a in Add.make_args(arg):
K = a.coeff(S.Pi)
if K and K.is_rational:
pi_coeff += K
else:
rest_terms.append(a)
if pi_coeff is S.Zero:
return arg, S.Zero
m1 = (pi_coeff % S.Half)*S.Pi
m2 = pi_coeff*S.Pi - m1
final_coeff = m2 / S.Pi
if final_coeff.is_integer or ((2*final_coeff).is_integer
and final_coeff.is_even is False):
return Add(*(rest_terms + [m1])), m2
return arg, S.Zero
def _pi_coeff(arg, cycles=1):
"""
When arg is a Number times pi (e.g. 3*pi/2) then return the Number
normalized to be in the range [0, 2], else None.
When an even multiple of pi is encountered, if it is multiplying
something with known parity then the multiple is returned as 0 otherwise
as 2.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _pi_coeff as coeff
>>> from sympy import pi, Dummy
>>> from sympy.abc import x
>>> coeff(3*x*pi)
3*x
>>> coeff(11*pi/7)
11/7
>>> coeff(-11*pi/7)
3/7
>>> coeff(4*pi)
0
>>> coeff(5*pi)
1
>>> coeff(5.0*pi)
1
>>> coeff(5.5*pi)
3/2
>>> coeff(2 + pi)
>>> coeff(2*Dummy(integer=True)*pi)
2
>>> coeff(2*Dummy(even=True)*pi)
0
"""
arg = sympify(arg)
if arg is S.Pi:
return S.One
elif not arg:
return S.Zero
elif arg.is_Mul:
cx = arg.coeff(S.Pi)
if cx:
c, x = cx.as_coeff_Mul() # pi is not included as coeff
if c.is_Float:
# recast exact binary fractions to Rationals
f = abs(c) % 1
if f != 0:
p = -int(round(log(f, 2).evalf()))
m = 2**p
cm = c*m
i = int(cm)
if i == cm:
c = Rational(i, m)
cx = c*x
else:
c = Rational(int(c))
cx = c*x
if x.is_integer:
c2 = c % 2
if c2 == 1:
return x
elif not c2:
if x.is_even is not None: # known parity
return S.Zero
return S(2)
else:
return c2*x
return cx
elif arg.is_zero:
return S.Zero
class sin(TrigonometricFunction):
"""
The sine function.
Returns the sine of x (measured in radians).
Explanation
===========
This function will evaluate automatically in the
case x/pi is some rational number [4]_. For example,
if x is a multiple of pi, pi/2, pi/3, pi/4 and pi/6.
Examples
========
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
See Also
========
csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sin
.. [4] http://mathworld.wolfram.com/TrigonometryAngles.html
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return cos(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/(2*S.Pi))
if min is not S.NegativeInfinity:
min = min - d*2*S.Pi
if max is not S.Infinity:
max = max - d*2*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \
is not S.EmptySet and \
AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2),
S.Pi*Rational(7, 2))) is not S.EmptySet:
return AccumBounds(-1, 1)
elif AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(5, 2))) \
is not S.EmptySet:
return AccumBounds(Min(sin(min), sin(max)), 1)
elif AccumBounds(min, max).intersection(FiniteSet(S.Pi*Rational(3, 2), S.Pi*Rational(8, 2))) \
is not S.EmptySet:
return AccumBounds(-1, Max(sin(min), sin(max)))
else:
return AccumBounds(Min(sin(min), sin(max)),
Max(sin(min), sin(max)))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*sinh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.NegativeOne**(pi_coeff - S.Half)
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# https://github.com/sympy/sympy/issues/6048
# transform a sine to a cosine, to avoid redundant code
if pi_coeff.is_Rational:
x = pi_coeff % 2
if x > 1:
return -cls((x % 1)*S.Pi)
if 2*x > 1:
return cls((1 - x)*S.Pi)
narg = ((pi_coeff + Rational(3, 2)) % 2)*S.Pi
result = cos(narg)
if not isinstance(result, cos):
return result
if pi_coeff*S.Pi != arg:
return cls(pi_coeff*S.Pi)
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return sin(m)*cos(x) + cos(m)*sin(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, asin):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return x/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return y/sqrt(x**2 + y**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/(sqrt(1 + 1/x**2)*x)
if isinstance(arg, acsc):
x = arg.args[0]
return 1/x
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return (-1)**(n//2)*x**(n)/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) - exp(-arg*I))/(2*I)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*x**-I/2 - I*x**I /2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(arg - S.Pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)
return 2*tan_half/(1 + tan_half**2)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)
return 2*cot_half/(1 + cot_half**2)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self.rewrite(cos).rewrite(pow)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self.rewrite(cos).rewrite(sqrt)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/csc(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg - S.Pi/2, evaluate=False)
def _eval_rewrite_as_sinc(self, arg, **kwargs):
return arg*sinc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (sin(re)*cosh(im), cos(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy import expand_mul
from sympy.functions.special.polynomials import chebyshevt, chebyshevu
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
else:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return (-1)**((n - 1)/2)*chebyshevt(n, sin(x))
else:
return expand_mul((-1)**(n/2 - 1)*cos(x)*chebyshevu(n -
1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
if not arg.subs(x, 0).is_finite:
return self
else:
return self.func(arg)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
class cos(TrigonometricFunction):
"""
The cosine function.
Returns the cosine of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
See Also
========
sin, csc, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cos
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return -sin(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.special.polynomials import chebyshevt
from sympy.calculus.util import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg is S.Infinity or arg is S.NegativeInfinity:
# In this case it is better to return AccumBounds(-1, 1)
# rather than returning S.NaN, since AccumBounds(-1, 1)
# preserves the information that sin(oo) is between
# -1 and 1, where S.NaN does not do that.
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return sin(arg + S.Pi/2)
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_extended_real and arg.is_finite is False:
return AccumBounds(-1, 1)
if arg.could_extract_minus_sign():
return cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return cosh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return (S.NegativeOne)**pi_coeff
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
# cosine formula #####################
# https://github.com/sympy/sympy/issues/6048
# explicit calculations are performed for
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120
# Some other exact values like cos(k pi/240) can be
# calculated using a partial-fraction decomposition
# by calling cos( X ).rewrite(sqrt)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
}
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
return -cls(narg)
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
a, b = p*S.Pi/table2[q][0], p*S.Pi/table2[q][1]
nvala, nvalb = cls(a), cls(b)
if None == nvala or None == nvalb:
return None
return nvala*nvalb + cls(S.Pi/2 - a)*cls(S.Pi/2 - b)
if q > 12:
return None
if q in cst_table_some:
cts = cst_table_some[pi_coeff.q]
return chebyshevt(pi_coeff.p, cts).expand()
if 0 == q % 2:
narg = (pi_coeff*2)*S.Pi
nval = cls(narg)
if None == nval:
return None
x = (2*pi_coeff + 1)/2
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x)))
return sign_cos*sqrt( (1 + nval)/2 )
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
return cos(m)*cos(x) - sin(m)*sin(x)
if arg.is_zero:
return S.One
if isinstance(arg, acos):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return x/sqrt(x**2 + y**2)
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x ** 2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/sqrt(1 + 1/x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)
if isinstance(arg, asec):
x = arg.args[0]
return 1/x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return (-1)**(n//2)*x**(n)/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) + exp(-arg*I))/2
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return x**I/2 + x**-I/2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return sin(arg + S.Pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)**2
return (1 - tan_half)/(1 + tan_half)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/sin(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)**2
return (cot_half - 1)/(cot_half + 1)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._eval_rewrite_as_sqrt(arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.special.polynomials import chebyshevt
def migcdex(x):
# recursive calcuation of gcd and linear combination
# for a sequence of integers.
# Given (x1, x2, x3)
# Returns (y1, y1, y3, g)
# such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0
# Note, that this is only one such linear combination.
if len(x) == 1:
return (1, x[0])
if len(x) == 2:
return igcdex(x[0], x[-1])
g = migcdex(x[1:])
u, v, h = igcdex(x[0], g[-1])
return tuple([u] + [v*i for i in g[0:-1] ] + [h])
def ipartfrac(r, factors=None):
from sympy.ntheory import factorint
if isinstance(r, int):
return r
if not isinstance(r, Rational):
raise TypeError("r is not rational")
n = r.q
if 2 > r.q*r.q:
return r.q
if None == factors:
a = [n//x**y for x, y in factorint(r.q).items()]
else:
a = [n//x for x in factors]
if len(a) == 1:
return [ r ]
h = migcdex(a)
ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ]
assert r == sum(ans)
return ans
pi_coeff = _pi_coeff(arg)
if pi_coeff is None:
return None
if pi_coeff.is_integer:
# it was unevaluated
return self.func(pi_coeff*S.Pi)
if not pi_coeff.is_Rational:
return None
def _cospi257():
""" Express cos(pi/257) explicitly as a function of radicals
Based upon the equations in
http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
See also http://www.susqu.edu/brakke/constructions/257-gon.m.txt
"""
def f1(a, b):
return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2
def f2(a, b):
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(-1, 256)
z1, z3 = f1(t1, 64)
z2, z4 = f1(t2, 64)
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1)/4,
17: sqrt((15 + sqrt(17))/32 + sqrt(2)*(sqrt(17 - sqrt(17)) +
sqrt(sqrt(2)*(-8*sqrt(17 + sqrt(17)) - (1 - sqrt(17))
*sqrt(17 - sqrt(17))) + 6*sqrt(17) + 34))/32),
257: _cospi257()
# 65537 is the only other known Fermat prime and the very
# large expression is intentionally omitted from SymPy; see
# http://www.susqu.edu/brakke/constructions/65537-gon.m.txt
}
def _fermatCoords(n):
# if n can be factored in terms of Fermat primes with
# multiplicity of each being 1, return those primes, else
# False
primes = []
for p_i in cst_table_some:
quotient, remainder = divmod(n, p_i)
if remainder == 0:
n = quotient
primes.append(p_i)
if n == 1:
return tuple(primes)
return False
if pi_coeff.q in cst_table_some:
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q])
if pi_coeff.q < 257:
rv = rv.expand()
return rv
if not pi_coeff.q % 2: # recursively remove factors of 2
pico2 = pi_coeff*2
nval = cos(pico2*S.Pi).rewrite(sqrt)
x = (pico2 + 1)/2
sign_cos = -1 if int(x) % 2 else 1
return sign_cos*sqrt( (1 + nval)/2 )
FC = _fermatCoords(pi_coeff.q)
if FC:
decomp = ipartfrac(pi_coeff, FC)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls.rewrite(sqrt)
else:
decomp = ipartfrac(pi_coeff)
X = [(x[1], x[0]*S.Pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/sec(arg).rewrite(csc)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
return (cos(re)*cosh(im), -sin(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt
arg = self.args[0]
x = None
if arg.is_Add: # TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return cx*cy - sx*sy
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer:
return chebyshevt(coeff, cos(terms))
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return cos(arg)
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + S.Pi/2)/S.Pi
if n.is_integer:
lt = (arg - n*S.Pi + S.Pi/2).as_leading_term(x)
return ((-1)**n)*lt
if not x0.is_finite:
return self
return self.func(x0)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
class tan(TrigonometricFunction):
"""
The tangent function.
Returns the tangent of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
See Also
========
sin, csc, cos, sec, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Tan
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.One + self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atan
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/S.Pi)
if min is not S.NegativeInfinity:
min = min - d*S.Pi
if max is not S.Infinity:
max = max - d*S.Pi
if AccumBounds(min, max).intersection(FiniteSet(S.Pi/2, S.Pi*Rational(3, 2))):
return AccumBounds(S.NegativeInfinity, S.Infinity)
else:
return AccumBounds(tan(min), tan(max))
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*tanh(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % q
# ensure simplified results are returned for n*pi/5, n*pi/10
table10 = {
1: sqrt(1 - 2*sqrt(5)/5),
2: sqrt(5 - 2*sqrt(5)),
3: sqrt(1 + 2*sqrt(5)/5),
4: sqrt(5 + 2*sqrt(5))
}
if q == 5 or q == 10:
n = 10*p/q
if n > 5:
n = 10 - n
return -table10[n]
else:
return table10[n]
if not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return 1/sresult - cresult/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (nvala - nvalb)/(1 + nvala*nvalb)
narg = ((pi_coeff + S.Half) % 1 - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if cresult == 0:
return S.ComplexInfinity
return (sresult/cresult)
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
tanm = tan(m)
if tanm is S.ComplexInfinity:
return -cot(x)
else: # tanm == 0
return tan(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, atan):
return arg.args[0]
if isinstance(arg, atan2):
y, x = arg.args
return y/x
if isinstance(arg, asin):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acot):
x = arg.args[0]
return 1/x
if isinstance(arg, acsc):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a, b = ((n - 1)//2), 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**a*b*(b - 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)*2/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return Function._eval_nseries(self, x, n=n, logx=logx)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*(x**-I - x**I)/(x**-I + x**I)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) + cosh(2*im)
return (sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
TX = []
for x in arg.args:
tx = tan(x, evaluate=False)._eval_expand_trig()
TX.append(tx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n + 1):
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, TX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((1 + I*z)**coeff).expand()
return (im(P)/re(P)).subs([(z, tan(terms))])
return tan(arg)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
def _eval_rewrite_as_sin(self, x, **kwargs):
return 2*sin(x)**2/sin(2*x)
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x - S.Pi/2, evaluate=False)/cos(x)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return 1/cot(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
sin_in_sec_form = sin(arg).rewrite(sec)
cos_in_sec_form = cos(arg).rewrite(sec)
return sin_in_sec_form/cos_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
sin_in_csc_form = sin(arg).rewrite(csc)
cos_in_csc_form = cos(arg).rewrite(csc)
return sin_in_csc_form/cos_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0)
n = x0/S.Pi
if n.is_integer:
lt = (arg - n*S.Pi).as_leading_term(x)
return lt if n.is_even else -1/lt
if not x0.is_finite:
return self
return self.func(x0)
def _eval_is_extended_real(self):
# FIXME: currently tan(pi/2) return zoo
return self.args[0].is_extended_real
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
class cot(TrigonometricFunction):
"""
The cotangent function.
Returns the cotangent of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
See Also
========
sin, csc, cos, sec, tan
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cot
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.NegativeOne - self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acot
@classmethod
def eval(cls, arg):
from sympy.calculus.util import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
if arg.is_zero:
return S.ComplexInfinity
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return -tan(arg + S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit*coth(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.ComplexInfinity
if not pi_coeff.is_Rational:
narg = pi_coeff*S.Pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if pi_coeff.q == 5 or pi_coeff.q == 10:
return tan(S.Pi/2 - arg)
if pi_coeff.q > 2 and not pi_coeff.q % 2:
narg = pi_coeff*S.Pi*2
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
return 1/sresult + cresult/sresult
table2 = {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
q = pi_coeff.q
p = pi_coeff.p % q
if q in table2:
nvala, nvalb = cls(p*S.Pi/table2[q][0]), cls(p*S.Pi/table2[q][1])
if None == nvala or None == nvalb:
return None
return (1 + nvala*nvalb)/(nvalb - nvala)
narg = (((pi_coeff + S.Half) % 1) - S.Half)*S.Pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - S.Pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return cresult/sresult
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
cotm = cot(m)
if cotm is S.ComplexInfinity:
return cot(x)
else: # cotm == 0
return -tan(x)
if arg.is_zero:
return S.ComplexInfinity
if isinstance(arg, acot):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/x
if isinstance(arg, atan2):
y, x = arg.args
return x/y
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acos):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
if isinstance(arg, asec):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return (-1)**((n + 1)//2)*2**(n + 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)/S.Pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
denom = cos(2*re) - cosh(2*im)
return (-sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
if isinstance(arg, TrigonometricFunction) or isinstance(arg, HyperbolicFunction):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return -I*(x**-I + x**I)/(x**-I - x**I)
def _eval_rewrite_as_sin(self, x, **kwargs):
return sin(2*x)/(2*(sin(x)**2))
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x)/cos(x - S.Pi/2, evaluate=False)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/sin(arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return 1/tan(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
cos_in_sec_form = cos(arg).rewrite(sec)
sin_in_sec_form = sin(arg).rewrite(sec)
return cos_in_sec_form/sin_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
cos_in_csc_form = cos(arg).rewrite(csc)
sin_in_csc_form = sin(arg).rewrite(csc)
return cos_in_csc_form/sin_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, cdir=0):
from sympy import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_expand_trig(self, **hints):
from sympy import im, re
arg = self.args[0]
x = None
if arg.is_Add:
from sympy import symmetric_poly
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, CX)))
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((z + I)**coeff).expand()
return (re(P)/im(P)).subs([(z, cot(terms))])
return cot(arg)
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_subs(self, old, new):
arg = self.args[0]
argnew = arg.subs(old, new)
if arg != argnew and (argnew/S.Pi).is_integer:
return S.ComplexInfinity
return cot(argnew)
class ReciprocalTrigonometricFunction(TrigonometricFunction):
"""Base class for reciprocal functions of trigonometric functions. """
_reciprocal_of = None # mandatory, to be defined in subclass
_singularities = (S.ComplexInfinity,)
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x)
# TODO refactor into TrigonometricFunction common parts of
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc.
# optional, to be defined in subclasses:
_is_even = None # type: FuzzyBool
_is_odd = None # type: FuzzyBool
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
pi_coeff = _pi_coeff(arg)
if (pi_coeff is not None
and not (2*pi_coeff).is_integer
and pi_coeff.is_Rational):
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*S.Pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*S.Pi
if cls._is_odd:
return cls(narg)
elif cls._is_even:
return -cls(narg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
t = cls._reciprocal_of.eval(arg)
if t is None:
return t
elif any(isinstance(i, cos) for i in (t, -t)):
return (1/t).rewrite(sec)
elif any(isinstance(i, sin) for i in (t, -t)):
return (1/t).rewrite(csc)
else:
return 1/t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _period(self, symbol):
f = expand_mul(self.args[0])
return self._reciprocal_of(f).period(symbol)
def fdiff(self, argindex=1):
return -self._calculate_reciprocal("fdiff", argindex)/self**2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep,
**hints)
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0])._eval_is_extended_real()
def _eval_as_leading_term(self, x, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
def _eval_nseries(self, x, n, logx, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx)
class sec(ReciprocalTrigonometricFunction):
"""
The secant function.
Returns the secant of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
See Also
========
sin, csc, cos, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sec
"""
_reciprocal_of = cos
_is_even = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half_sq = cot(arg/2)**2
return (cot_half_sq + 1)/(cot_half_sq - 1)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1/cos(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/(cos(arg)*sin(arg))
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/cos(arg).rewrite(sin))
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/cos(arg).rewrite(tan))
def _eval_rewrite_as_csc(self, arg, **kwargs):
return csc(pi/2 - arg, evaluate=False)
def fdiff(self, argindex=1):
if argindex == 1:
return tan(self.args[0])*sec(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_complex and (arg/pi - S.Half).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
# Reference Formula:
# http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/
from sympy.functions.combinatorial.numbers import euler
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
k = n//2
return (-1)**k*euler(2*k)/factorial(2*k)*x**(2*k)
def _eval_as_leading_term(self, x, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + S.Pi/2)/S.Pi
if n.is_integer:
lt = (arg - n*S.Pi + S.Pi/2).as_leading_term(x)
return ((-1)**n)/lt
return self.func(x0)
class csc(ReciprocalTrigonometricFunction):
"""
The cosecant function.
Returns the cosecant of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import csc
>>> from sympy.abc import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
See Also
========
sin, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Csc
"""
_reciprocal_of = sin
_is_odd = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/sin(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/(sin(arg)*cos(arg))
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(arg/2)
return (1 + cot_half**2)/(2*cot_half)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return 1/sin(arg).rewrite(cos)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(pi/2 - arg, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/sin(arg).rewrite(tan))
def fdiff(self, argindex=1):
if argindex == 1:
return -cot(self.args[0])*csc(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
from sympy import bernoulli
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = n//2 + 1
return ((-1)**(k - 1)*2*(2**(2*k - 1) - 1)*
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k))
class sinc(Function):
r"""
Represents an unnormalized sinc function:
.. math::
\operatorname{sinc}(x) =
\begin{cases}
\frac{\sin x}{x} & \qquad x \neq 0 \\
1 & \qquad x = 0
\end{cases}
Examples
========
>>> from sympy import sinc, oo, jn
>>> from sympy.abc import x
>>> sinc(x)
sinc(x)
* Automated Evaluation
>>> sinc(0)
1
>>> sinc(oo)
0
* Differentiation
>>> sinc(x).diff()
Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, 0)), (0, True))
* Series Expansion
>>> sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)
* As zero'th order spherical Bessel Function
>>> sinc(x).rewrite(jn)
jn(0, x)
See also
========
sin
References
==========
.. [1] https://en.wikipedia.org/wiki/Sinc_function
"""
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
x = self.args[0]
if argindex == 1:
return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
if arg.is_Number:
if arg in [S.Infinity, S.NegativeInfinity]:
return S.Zero
elif arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.NaN
if arg.could_extract_minus_sign():
return cls(-arg)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
if fuzzy_not(arg.is_zero):
return S.Zero
elif (2*pi_coeff).is_integer:
return S.NegativeOne**(pi_coeff - S.Half)/arg
def _eval_nseries(self, x, n, logx, cdir=0):
x = self.args[0]
return (sin(x)/x)._eval_nseries(x, n, logx)
def _eval_rewrite_as_jn(self, arg, **kwargs):
from sympy.functions.special.bessel import jn
return jn(0, arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true))
###############################################################################
########################### TRIGONOMETRIC INVERSES ############################
###############################################################################
class InverseTrigonometricFunction(Function):
"""Base class for inverse trigonometric functions."""
_singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: Tuple[Expr, ...]
@staticmethod
def _asin_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/2: S.Pi/3,
sqrt(2)/2: S.Pi/4,
1/sqrt(2): S.Pi/4,
sqrt((5 - sqrt(5))/8): S.Pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/4: S.Pi/5,
sqrt((5 + sqrt(5))/8): S.Pi*Rational(2, 5),
sqrt(2)*sqrt(5 + sqrt(5))/4: S.Pi*Rational(2, 5),
S.Half: S.Pi/6,
sqrt(2 - sqrt(2))/2: S.Pi/8,
sqrt(S.Half - sqrt(2)/4): S.Pi/8,
sqrt(2 + sqrt(2))/2: S.Pi*Rational(3, 8),
sqrt(S.Half + sqrt(2)/4): S.Pi*Rational(3, 8),
(sqrt(5) - 1)/4: S.Pi/10,
(1 - sqrt(5))/4: -S.Pi/10,
(sqrt(5) + 1)/4: S.Pi*Rational(3, 10),
sqrt(6)/4 - sqrt(2)/4: S.Pi/12,
-sqrt(6)/4 + sqrt(2)/4: -S.Pi/12,
(sqrt(3) - 1)/sqrt(8): S.Pi/12,
(1 - sqrt(3))/sqrt(8): -S.Pi/12,
sqrt(6)/4 + sqrt(2)/4: S.Pi*Rational(5, 12),
(1 + sqrt(3))/sqrt(8): S.Pi*Rational(5, 12)
}
@staticmethod
def _atan_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/3: S.Pi/6,
1/sqrt(3): S.Pi/6,
sqrt(3): S.Pi/3,
sqrt(2) - 1: S.Pi/8,
1 - sqrt(2): -S.Pi/8,
1 + sqrt(2): S.Pi*Rational(3, 8),
sqrt(5 - 2*sqrt(5)): S.Pi/5,
sqrt(5 + 2*sqrt(5)): S.Pi*Rational(2, 5),
sqrt(1 - 2*sqrt(5)/5): S.Pi/10,
sqrt(1 + 2*sqrt(5)/5): S.Pi*Rational(3, 10),
2 - sqrt(3): S.Pi/12,
-2 + sqrt(3): -S.Pi/12,
2 + sqrt(3): S.Pi*Rational(5, 12)
}
@staticmethod
def _acsc_table():
# Keys for which could_extract_minus_sign()
# will obviously return True are omitted.
return {
2*sqrt(3)/3: S.Pi/3,
sqrt(2): S.Pi/4,
sqrt(2 + 2*sqrt(5)/5): S.Pi/5,
1/sqrt(Rational(5, 8) - sqrt(5)/8): S.Pi/5,
sqrt(2 - 2*sqrt(5)/5): S.Pi*Rational(2, 5),
1/sqrt(Rational(5, 8) + sqrt(5)/8): S.Pi*Rational(2, 5),
2: S.Pi/6,
sqrt(4 + 2*sqrt(2)): S.Pi/8,
2/sqrt(2 - sqrt(2)): S.Pi/8,
sqrt(4 - 2*sqrt(2)): S.Pi*Rational(3, 8),
2/sqrt(2 + sqrt(2)): S.Pi*Rational(3, 8),
1 + sqrt(5): S.Pi/10,
sqrt(5) - 1: S.Pi*Rational(3, 10),
-(sqrt(5) - 1): S.Pi*Rational(-3, 10),
sqrt(6) + sqrt(2): S.Pi/12,
sqrt(6) - sqrt(2): S.Pi*Rational(5, 12),
-(sqrt(6) - sqrt(2)): S.Pi*Rational(-5, 12)
}
class asin(InverseTrigonometricFunction):
"""
The inverse sine function.
Returns the arcsine of x in radians.
Explanation
===========
``asin(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
A purely imaginary argument will lead to an asinh expression.
Examples
========
>>> from sympy import asin, oo
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
>>> asin(-oo)
oo*I
>>> asin(oo)
-oo*I
See Also
========
sin, csc, cos, sec, tan, cot
acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self._eval_is_extended_real() and self.args[0].is_positive
def _eval_is_negative(self):
return self._eval_is_extended_real() and self.args[0].is_negative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.Infinity*S.ImaginaryUnit
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Pi/2
elif arg is S.NegativeOne:
return -S.Pi/2
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return asin_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*asinh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, sin):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acos(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return R/F*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
if x0 is S.ComplexInfinity:
return I*log(arg.as_leading_term(x))
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 < S.NegativeOne:
return -S.Pi - self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 > S.One:
return S.Pi - self.func(x0)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #asin
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else S.Pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else -S.Pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 < S.NegativeOne:
return -S.Pi - res
elif im(cdir) > 0 and arg0.is_real and arg0 > S.One:
return S.Pi - res
return res
def _eval_rewrite_as_acos(self, x, **kwargs):
return S.Pi/2 - acos(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return 2*atan(x/(1 + sqrt(1 - x**2)))
def _eval_rewrite_as_log(self, x, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return acsc(1/arg)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sin
class acos(InverseTrigonometricFunction):
"""
The inverse cosine function.
Returns the arc cosine of x (measured in radians).
Examples
========
``acos(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when
the result is a rational multiple of pi (see the eval class method).
``acos(zoo)`` evaluates to ``zoo``
(see note in :class:`sympy.functions.elementary.trigonometric.asec`)
A purely imaginary argument will be rewritten to asinh.
Examples
========
>>> from sympy import acos, oo
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(oo)
oo*I
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg.is_zero:
return S.Pi/2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return pi/2 - asin_table[arg]
elif -arg in asin_table:
return pi/2 + asin_table[-arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return pi/2 - asin(arg)
if isinstance(arg, cos):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asin(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R/F*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 == 1:
return sqrt(2)*sqrt((S.One - arg).as_leading_term(x))
if x0 is S.ComplexInfinity:
return I*log(arg.as_leading_term(x))
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 < S.NegativeOne:
return 2*S.Pi - self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 > S.One:
return -self.func(x0)
return self.func(x0)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def _eval_is_nonnegative(self):
return self._eval_is_extended_real()
def _eval_nseries(self, x, n, logx, cdir=0): #acos
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else S.Pi + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 < S.NegativeOne:
return 2*S.Pi - res
elif im(cdir) > 0 and arg0.is_real and arg0 > S.One:
return -res
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return S.Pi/2 + S.ImaginaryUnit*\
log(S.ImaginaryUnit*x + sqrt(1 - x**2))
def _eval_rewrite_as_asin(self, x, **kwargs):
return S.Pi/2 - asin(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return atan(sqrt(1 - x**2)/x) + (S.Pi/2)*(1 - x*sqrt(1/x**2))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cos
def _eval_rewrite_as_acot(self, arg, **kwargs):
return S.Pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(1/arg)
def _eval_conjugate(self):
z = self.args[0]
r = self.func(self.args[0].conjugate())
if z.is_extended_real is False:
return r
elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive:
return r
class atan(InverseTrigonometricFunction):
"""
The inverse tangent function.
Returns the arc tangent of x (measured in radians).
Explanation
===========
``atan(x)`` will evaluate automatically in the cases
``oo``, ``-oo``, ``0``, ``1``, ``-1`` and for some instances when the
result is a rational multiple of pi (see the eval class method).
Examples
========
>>> from sympy import atan, oo
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan
"""
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_extended_positive
def _eval_is_nonnegative(self):
return self.args[0].is_extended_nonnegative
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_is_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Pi/2
elif arg is S.NegativeInfinity:
return -S.Pi/2
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Pi/4
elif arg is S.NegativeOne:
return -S.Pi/4
if arg is S.ComplexInfinity:
from sympy.calculus.util import AccumBounds
return AccumBounds(-S.Pi/2, S.Pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
return atan_table[arg]
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return S.ImaginaryUnit*atanh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, tan):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - acot(arg)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n - 1)//2)*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import im, re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
if x0 is S.ComplexInfinity:
return acot(1/arg)._eval_as_leading_term(x, cdir=cdir)
if cdir != 0:
cdir = arg.dir(x, cdir)
if re(cdir) < 0 and re(x0).is_zero and im(x0) > S.One:
return self.func(x0) - S.Pi
elif re(cdir) > 0 and re(x0).is_zero and im(x0) < S.NegativeOne:
return self.func(x0) + S.Pi
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #atan
from sympy import im, re
arg0 = self.args[0].subs(x, 0)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if arg0 is S.ComplexInfinity:
if re(cdir) > 0:
return res - S.Pi
return res
if re(cdir) < 0 and re(arg0).is_zero and im(arg0) > S.One:
return res - S.Pi
elif re(cdir) > 0 and re(arg0).is_zero and im(arg0) < S.NegativeOne:
return res + S.Pi
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x)
- log(S.One + S.ImaginaryUnit*x))
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (-S.Pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super()._eval_aseries(n, args0, x, logx)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tan
def _eval_rewrite_as_asin(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - asin(1/sqrt(1 + arg**2)))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return acot(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acsc(sqrt(1 + arg**2)))
class acot(InverseTrigonometricFunction):
r"""
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians).
Explanation
===========
``acot(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``zoo``, ``0``, ``1``, ``-1`` and for some instances when the result is a
rational multiple of pi (see the eval class method).
A purely imaginary argument will lead to an ``acoth`` expression.
``acot(x)`` has a branch cut along `(-i, i)`, hence it is discontinuous
at 0. Its range for real ``x`` is `(-\frac{\pi}{2}, \frac{\pi}{2}]`.
Examples
========
>>> from sympy import acot, sqrt
>>> acot(0)
pi/2
>>> acot(1)
pi/4
>>> acot(sqrt(3) - 2)
-5*pi/12
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, atan2
References
==========
.. [1] http://dlmf.nist.gov/4.23
.. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot
"""
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_nonnegative
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.Pi/ 2
elif arg is S.One:
return S.Pi/4
elif arg is S.NegativeOne:
return -S.Pi/4
if arg is S.ComplexInfinity:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
ang = pi/2 - atan_table[arg]
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
i_coeff = arg.as_coefficient(S.ImaginaryUnit)
if i_coeff is not None:
return -S.ImaginaryUnit*acoth(i_coeff)
if arg.is_zero:
return S.Pi*S.Half
if isinstance(arg, cot):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi;
return ang
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - atan(arg)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.Pi/2 # FIX THIS
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return (-1)**((n + 1)//2)*x**n/n
def _eval_as_leading_term(self, x, cdir=0):
from sympy import im, re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
if cdir != 0:
cdir = arg.dir(x, cdir)
if x0.is_zero:
if re(cdir) < 0:
return self.func(x0) - S.Pi
return self.func(x0)
if re(cdir) > 0 and re(x0).is_zero and im(x0) > S.Zero and im(x0) < S.One:
return self.func(x0) + S.Pi
if re(cdir) < 0 and re(x0).is_zero and im(x0) < S.Zero and im(x0) > S.NegativeOne:
return self.func(x0) - S.Pi
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #acot
from sympy import im, re
arg0 = self.args[0].subs(x, 0)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if arg0.is_zero:
if re(cdir) < 0:
return res - S.Pi
return res
if re(cdir) > 0 and re(arg0).is_zero and im(arg0) > S.Zero and im(arg0) < S.One:
return res + S.Pi
if re(cdir) < 0 and re(arg0).is_zero and im(arg0) < S.Zero and im(arg0) > S.NegativeOne:
return res - S.Pi
return res
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (S.Pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (S.Pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x)
- log(1 + S.ImaginaryUnit/x))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cot
def _eval_rewrite_as_asin(self, arg, **kwargs):
return (arg*sqrt(1/arg**2)*
(S.Pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1))))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1))
def _eval_rewrite_as_atan(self, arg, **kwargs):
return atan(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*(S.Pi/2 - acsc(sqrt((1 + arg**2)/arg**2)))
class asec(InverseTrigonometricFunction):
r"""
The inverse secant function.
Returns the arc secant of x (measured in radians).
Explanation
===========
``asec(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
``asec(x)`` has branch cut in the interval [-1, 1]. For complex arguments,
it can be defined [4]_ as
.. math::
\operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z}
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For
negative branch cut, the limit
.. math::
\lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z}
simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which
ultimately evaluates to ``zoo``.
As ``acos(x)`` = ``asec(1/x)``, a similar argument can be given for
``acos(x)``.
Examples
========
>>> from sympy import asec, oo
>>> asec(1)
0
>>> asec(-1)
pi
>>> asec(0)
zoo
>>> asec(-oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec
.. [4] http://reference.wolfram.com/language/ref/ArcSec.html
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return S.Pi
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Pi/2
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return pi/2 - acsc_table[arg]
elif -arg in acsc_table:
return pi/2 + acsc_table[-arg]
if isinstance(arg, sec):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acsc(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sec
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 == 1:
return sqrt(2)*sqrt((arg - S.One).as_leading_term(x))
if x0.is_zero:
return I*log(arg.as_leading_term(x))
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 > S.Zero and x0 < S.One:
return -self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 < S.Zero and x0 > S.NegativeOne:
return 2*S.Pi - self.func(x0)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #asec
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 > S.Zero and arg0 < S.One:
return -res
elif im(cdir) > 0 and arg0.is_real and arg0 < S.Zero and arg0 > S.NegativeOne:
return 2*S.Pi - res
return res
def _eval_is_extended_real(self):
x = self.args[0]
if x.is_extended_real is False:
return False
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative))
def _eval_rewrite_as_log(self, arg, **kwargs):
return S.Pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return S.Pi/2 - asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*atan(arg + sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(-S.Pi/2 + 2*acot(arg - sqrt(arg**2 - 1)))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return S.Pi/2 - acsc(arg)
class acsc(InverseTrigonometricFunction):
"""
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).
Explanation
===========
``acsc(x)`` will evaluate automatically in the cases ``oo``, ``-oo``,
``0``, ``1``, ``-1`` and for some instances when the result is a rational
multiple of pi (see the eval class method).
Examples
========
>>> from sympy import acsc, oo
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
>>> acsc(oo)
0
>>> acsc(-oo) == acsc(oo)
True
>>> acsc(0)
zoo
See Also
========
sin, csc, cos, sec, tan, cot
asin, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Pi/2
elif arg is S.NegativeOne:
return -S.Pi/2
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return acsc_table[arg]
if isinstance(arg, csc):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asec(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csc
def _eval_as_leading_term(self, x, cdir=0):
from sympy import I, im, log
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return I*log(arg.as_leading_term(x))
if x0 is S.ComplexInfinity:
return arg.as_leading_term(x)
if cdir != 0:
cdir = arg.dir(x, cdir)
if im(cdir) < 0 and x0.is_real and x0 > S.Zero and x0 < S.One:
return S.Pi - self.func(x0)
elif im(cdir) > 0 and x0.is_real and x0 < S.Zero and x0 > S.NegativeOne:
return -S.Pi - self.func(x0)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): #acsc
from sympy import Dummy, im, O
arg0 = self.args[0].subs(x, 0)
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
if cdir != 0:
cdir = self.args[0].dir(x, cdir)
if im(cdir) < 0 and arg0.is_real and arg0 > S.Zero and arg0 < S.One:
return S.Pi - res
elif im(cdir) > 0 and arg0.is_real and arg0 < S.Zero and arg0 > S.NegativeOne:
return -S.Pi - res
return res
def _eval_rewrite_as_log(self, arg, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
def _eval_rewrite_as_asin(self, arg, **kwargs):
return asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return S.Pi/2 - acos(1/arg)
def _eval_rewrite_as_atan(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - atan(sqrt(arg**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(S.Pi/2 - acot(1/sqrt(arg**2 - 1)))
def _eval_rewrite_as_asec(self, arg, **kwargs):
return S.Pi/2 - asec(arg)
class atan2(InverseTrigonometricFunction):
r"""
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking
two arguments `y` and `x`. Signs of both `y` and `x` are considered to
determine the appropriate quadrant of `\operatorname{atan}(y/x)`.
The range is `(-\pi, \pi]`. The complete definition reads as follows:
.. math::
\operatorname{atan2}(y, x) =
\begin{cases}
\arctan\left(\frac y x\right) & \qquad x > 0 \\
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0 , x < 0 \\
\arctan\left(\frac y x\right) - \pi& \qquad y < 0 , x < 0 \\
+\frac{\pi}{2} & \qquad y > 0 , x = 0 \\
-\frac{\pi}{2} & \qquad y < 0 , x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}
Attention: Note the role reversal of both arguments. The `y`-coordinate
is the first argument and the `x`-coordinate the second.
If either `x` or `y` is complex:
.. math::
\operatorname{atan2}(y, x) =
-i\log\left(\frac{x + iy}{\sqrt{x**2 + y**2}}\right)
Examples
========
Going counter-clock wise around the origin we find the
following angles:
>>> from sympy import atan2
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
which are all correct. Compare this to the results of the ordinary
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)`
>>> from sympy import atan, S
>>> atan(S(1)/-1)
-pi/4
>>> atan2(1, -1)
3*pi/4
where only the `\operatorname{atan2}` function reurns what we expect.
We can differentiate the function with respect to both arguments:
>>> from sympy import diff
>>> from sympy.abc import x, y
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
We can express the `\operatorname{atan2}` function in terms of
complex logarithms:
>>> from sympy import log
>>> atan2(y, x).rewrite(log)
-I*log((x + I*y)/sqrt(x**2 + y**2))
and in terms of `\operatorname(atan)`:
>>> from sympy import atan
>>> atan2(y, x).rewrite(atan)
Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True))
but note that this form is undefined on the negative real axis.
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] https://en.wikipedia.org/wiki/Atan2
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2
"""
@classmethod
def eval(cls, y, x):
from sympy import Heaviside, im, re
if x is S.NegativeInfinity:
if y.is_zero:
# Special case y = 0 because we define Heaviside(0) = 1/2
return S.Pi
return 2*S.Pi*(Heaviside(re(y))) - S.Pi
elif x is S.Infinity:
return S.Zero
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number:
x = im(x)
y = im(y)
if x.is_extended_real and y.is_extended_real:
if x.is_positive:
return atan(y/x)
elif x.is_negative:
if y.is_negative:
return atan(y/x) - S.Pi
elif y.is_nonnegative:
return atan(y/x) + S.Pi
elif x.is_zero:
if y.is_positive:
return S.Pi/2
elif y.is_negative:
return -S.Pi/2
elif y.is_zero:
return S.NaN
if y.is_zero:
if x.is_extended_nonzero:
return S.Pi*(S.One - Heaviside(x))
if x.is_number:
return Piecewise((S.Pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
if x.is_number and y.is_number:
return -S.ImaginaryUnit*log(
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_log(self, y, x, **kwargs):
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_atan(self, y, x, **kwargs):
from sympy import re
return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
(pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
def _eval_rewrite_as_arg(self, y, x, **kwargs):
from sympy import arg
if x.is_extended_real and y.is_extended_real:
return arg(x + y*S.ImaginaryUnit)
n = x + S.ImaginaryUnit*y
d = x**2 + y**2
return arg(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d)))
def _eval_is_extended_real(self):
return self.args[0].is_extended_real and self.args[1].is_extended_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def fdiff(self, argindex):
y, x = self.args
if argindex == 1:
# Diff wrt y
return x/(x**2 + y**2)
elif argindex == 2:
# Diff wrt x
return -y/(x**2 + y**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
y, x = self.args
if x.is_extended_real and y.is_extended_real:
return super()._eval_evalf(prec)
|
cfaa9613f01e2e5b1aef3e5f1acbac3bbfe16722ec448c7a68a13e870fa44656 | from sympy import Basic, Expr
from sympy.core import Add, S
from sympy.core.evalf import get_integer_part, PrecisionExhausted
from sympy.core.function import Function
from sympy.core.logic import fuzzy_or
from sympy.core.numbers import Integer
from sympy.core.relational import Gt, Lt, Ge, Le, Relational, is_eq
from sympy.core.symbol import Symbol
from sympy.core.sympify import _sympify
from sympy.multipledispatch import dispatch
###############################################################################
######################### FLOOR and CEILING FUNCTIONS #########################
###############################################################################
class RoundFunction(Function):
"""The base class for rounding functions."""
@classmethod
def eval(cls, arg):
from sympy import im
v = cls._eval_number(arg)
if v is not None:
return v
if arg.is_integer or arg.is_finite is False:
return arg
if arg.is_imaginary or (S.ImaginaryUnit*arg).is_real:
i = im(arg)
if not i.has(S.ImaginaryUnit):
return cls(i)*S.ImaginaryUnit
return cls(arg, evaluate=False)
# Integral, numerical, symbolic part
ipart = npart = spart = S.Zero
# Extract integral (or complex integral) terms
terms = Add.make_args(arg)
for t in terms:
if t.is_integer or (t.is_imaginary and im(t).is_integer):
ipart += t
elif t.has(Symbol):
spart += t
else:
npart += t
if not (npart or spart):
return ipart
# Evaluate npart numerically if independent of spart
if npart and (
not spart or
npart.is_real and (spart.is_imaginary or (S.ImaginaryUnit*spart).is_real) or
npart.is_imaginary and spart.is_real):
try:
r, i = get_integer_part(
npart, cls._dir, {}, return_ints=True)
ipart += Integer(r) + Integer(i)*S.ImaginaryUnit
npart = S.Zero
except (PrecisionExhausted, NotImplementedError):
pass
spart += npart
if not spart:
return ipart
elif spart.is_imaginary or (S.ImaginaryUnit*spart).is_real:
return ipart + cls(im(spart), evaluate=False)*S.ImaginaryUnit
elif isinstance(spart, (floor, ceiling)):
return ipart + spart
else:
return ipart + cls(spart, evaluate=False)
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_real(self):
return self.args[0].is_real
def _eval_is_integer(self):
return self.args[0].is_real
class floor(RoundFunction):
"""
Floor is a univariate function which returns the largest integer
value not greater than its argument. This implementation
generalizes floor to complex numbers by taking the floor of the
real and imaginary parts separately.
Examples
========
>>> from sympy import floor, E, I, S, Float, Rational
>>> floor(17)
17
>>> floor(Rational(23, 10))
2
>>> floor(2*E)
5
>>> floor(-Float(0.567))
-1
>>> floor(-I/2)
-I
>>> floor(S(5)/2 + 5*I/2)
2 + 2*I
See Also
========
sympy.functions.elementary.integers.ceiling
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] http://mathworld.wolfram.com/FloorFunction.html
"""
_dir = -1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.floor()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[0]
def _eval_nseries(self, x, n, logx, cdir=0):
r = self.subs(x, 0)
args = self.args[0]
args0 = args.subs(x, 0)
if args0 == r:
direction = (args - args0).leadterm(x)[0]
if direction.is_positive:
return r
else:
return r - 1
else:
return r
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_nonnegative(self):
return self.args[0].is_nonnegative
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return -ceiling(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg - frac(arg)
def __le__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] < other + 1
if other.is_number and other.is_real:
return self.args[0] < ceiling(other)
if self.args[0] == other and other.is_real:
return S.true
if other is S.Infinity and self.is_finite:
return S.true
return Le(self, other, evaluate=False)
def __ge__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] >= other
if other.is_number and other.is_real:
return self.args[0] >= ceiling(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Ge(self, other, evaluate=False)
def __gt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] >= other + 1
if other.is_number and other.is_real:
return self.args[0] >= ceiling(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Gt(self, other, evaluate=False)
def __lt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] < other
if other.is_number and other.is_real:
return self.args[0] < ceiling(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.Infinity and self.is_finite:
return S.true
return Lt(self, other, evaluate=False)
@dispatch(floor, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return is_eq(lhs.rewrite(ceiling), rhs) or \
is_eq(lhs.rewrite(frac),rhs)
class ceiling(RoundFunction):
"""
Ceiling is a univariate function which returns the smallest integer
value not less than its argument. This implementation
generalizes ceiling to complex numbers by taking the ceiling of the
real and imaginary parts separately.
Examples
========
>>> from sympy import ceiling, E, I, S, Float, Rational
>>> ceiling(17)
17
>>> ceiling(Rational(23, 10))
3
>>> ceiling(2*E)
6
>>> ceiling(-Float(0.567))
0
>>> ceiling(I/2)
I
>>> ceiling(S(5)/2 + 5*I/2)
3 + 3*I
See Also
========
sympy.functions.elementary.integers.floor
References
==========
.. [1] "Concrete mathematics" by Graham, pp. 87
.. [2] http://mathworld.wolfram.com/CeilingFunction.html
"""
_dir = 1
@classmethod
def _eval_number(cls, arg):
if arg.is_Number:
return arg.ceiling()
elif any(isinstance(i, j)
for i in (arg, -arg) for j in (floor, ceiling)):
return arg
if arg.is_NumberSymbol:
return arg.approximation_interval(Integer)[1]
def _eval_nseries(self, x, n, logx, cdir=0):
r = self.subs(x, 0)
args = self.args[0]
args0 = args.subs(x, 0)
if args0 == r:
direction = (args - args0).leadterm(x)[0]
if direction.is_positive:
return r + 1
else:
return r
else:
return r
def _eval_rewrite_as_floor(self, arg, **kwargs):
return -floor(-arg)
def _eval_rewrite_as_frac(self, arg, **kwargs):
return arg + frac(-arg)
def _eval_is_positive(self):
return self.args[0].is_positive
def _eval_is_nonpositive(self):
return self.args[0].is_nonpositive
def __lt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] <= other - 1
if other.is_number and other.is_real:
return self.args[0] <= floor(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.Infinity and self.is_finite:
return S.true
return Lt(self, other, evaluate=False)
def __gt__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] > other
if other.is_number and other.is_real:
return self.args[0] > floor(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Gt(self, other, evaluate=False)
def __ge__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] > other - 1
if other.is_number and other.is_real:
return self.args[0] > floor(other)
if self.args[0] == other and other.is_real:
return S.true
if other is S.NegativeInfinity and self.is_finite:
return S.true
return Ge(self, other, evaluate=False)
def __le__(self, other):
other = S(other)
if self.args[0].is_real:
if other.is_integer:
return self.args[0] <= other
if other.is_number and other.is_real:
return self.args[0] <= floor(other)
if self.args[0] == other and other.is_real:
return S.false
if other is S.Infinity and self.is_finite:
return S.true
return Le(self, other, evaluate=False)
@dispatch(ceiling, Basic) # type:ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
return is_eq(lhs.rewrite(floor), rhs) or is_eq(lhs.rewrite(frac),rhs)
class frac(Function):
r"""Represents the fractional part of x
For real numbers it is defined [1]_ as
.. math::
x - \left\lfloor{x}\right\rfloor
Examples
========
>>> from sympy import Symbol, frac, Rational, floor, I
>>> frac(Rational(4, 3))
1/3
>>> frac(-Rational(4, 3))
2/3
returns zero for integer arguments
>>> n = Symbol('n', integer=True)
>>> frac(n)
0
rewrite as floor
>>> x = Symbol('x')
>>> frac(x).rewrite(floor)
x - floor(x)
for complex arguments
>>> r = Symbol('r', real=True)
>>> t = Symbol('t', real=True)
>>> frac(t + I*r)
I*frac(r) + frac(t)
See Also
========
sympy.functions.elementary.integers.floor
sympy.functions.elementary.integers.ceiling
References
===========
.. [1] https://en.wikipedia.org/wiki/Fractional_part
.. [2] http://mathworld.wolfram.com/FractionalPart.html
"""
@classmethod
def eval(cls, arg):
from sympy import AccumBounds, im
def _eval(arg):
if arg is S.Infinity or arg is S.NegativeInfinity:
return AccumBounds(0, 1)
if arg.is_integer:
return S.Zero
if arg.is_number:
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
else:
return arg - floor(arg)
return cls(arg, evaluate=False)
terms = Add.make_args(arg)
real, imag = S.Zero, S.Zero
for t in terms:
# Two checks are needed for complex arguments
# see issue-7649 for details
if t.is_imaginary or (S.ImaginaryUnit*t).is_real:
i = im(t)
if not i.has(S.ImaginaryUnit):
imag += i
else:
real += t
else:
real += t
real = _eval(real)
imag = _eval(imag)
return real + S.ImaginaryUnit*imag
def _eval_rewrite_as_floor(self, arg, **kwargs):
return arg - floor(arg)
def _eval_rewrite_as_ceiling(self, arg, **kwargs):
return arg + ceiling(-arg)
def _eval_is_finite(self):
return True
def _eval_is_real(self):
return self.args[0].is_extended_real
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_integer
def _eval_is_zero(self):
return fuzzy_or([self.args[0].is_zero, self.args[0].is_integer])
def _eval_is_negative(self):
return False
def __ge__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other <= 0
if other.is_extended_nonpositive:
return S.true
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return not(res)
return Ge(self, other, evaluate=False)
def __gt__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other < 0
res = self._value_one_or_more(other)
if res is not None:
return not(res)
# Check if other >= 1
if other.is_extended_negative:
return S.true
return Gt(self, other, evaluate=False)
def __le__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other < 0
if other.is_extended_negative:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return res
return Le(self, other, evaluate=False)
def __lt__(self, other):
if self.is_extended_real:
other = _sympify(other)
# Check if other <= 0
if other.is_extended_nonpositive:
return S.false
# Check if other >= 1
res = self._value_one_or_more(other)
if res is not None:
return res
return Lt(self, other, evaluate=False)
def _value_one_or_more(self, other):
if other.is_extended_real:
if other.is_number:
res = other >= 1
if res and not isinstance(res, Relational):
return S.true
if other.is_integer and other.is_positive:
return S.true
@dispatch(frac, Basic) # type:ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if (lhs.rewrite(floor) == rhs) or \
(lhs.rewrite(ceiling) == rhs):
return True
# Check if other < 0
if rhs.is_extended_negative:
return False
# Check if other >= 1
res = lhs._value_one_or_more(rhs)
if res is not None:
return False
|
cd32c3d3ea0d76fffd1d6be19b85da79ba2f0dfb362c52c0fe5d2432482da738 | from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
from sympy.core.expr import Expr
from sympy.core.exprtools import factor_terms
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
AppliedUndef)
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import pi, I, oo
from sympy.core.relational import Eq
from sympy.functions.elementary.exponential import exp, exp_polar, log
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import atan, atan2
###############################################################################
######################### REAL and IMAGINARY PARTS ############################
###############################################################################
class re(Function):
"""
Returns real part of expression. This function performs only
elementary analysis and so it will fail to decompose properly
more complicated expressions. If completely simplified result
is needed then use Basic.as_real_imag() or perform complex
expansion on instance of this function.
Examples
========
>>> from sympy import re, im, I, E, symbols
>>> x, y = symbols('x y', real=True)
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
>>> re(5 + I + 2)
7
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Real part of expression.
See Also
========
im
"""
is_extended_real = True
unbranched = True # implicitly works on the projection to C
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return arg
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real:
return S.Zero
elif arg.is_Matrix:
return arg.as_real_imag()[0]
elif arg.is_Function and isinstance(arg, conjugate):
return re(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
elif not term.has(S.ImaginaryUnit) and term.is_extended_real:
excluded.append(term)
else:
# Try to do some advanced expansion. If
# impossible, don't try to do re(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[0])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) - im(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Returns the real number with a zero imaginary part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return re(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* im(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_im(self, arg, **kwargs):
return self.args[0] - S.ImaginaryUnit*im(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
# is_imaginary implies nonzero
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
def _sage_(self):
import sage.all as sage
return sage.real_part(self.args[0]._sage_())
class im(Function):
"""
Returns imaginary part of expression. This function performs only
elementary analysis and so it will fail to decompose properly more
complicated expressions. If completely simplified result is needed then
use Basic.as_real_imag() or perform complex expansion on instance of
this function.
Examples
========
>>> from sympy import re, im, E, I
>>> from sympy.abc import x, y
>>> im(2*E)
0
>>> im(2*I + 17)
2
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
>>> im(2 + 3*I)
3
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Imaginary part of expression.
See Also
========
re
"""
is_extended_real = True
unbranched = True # implicitly works on the projection to C
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return S.Zero
elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_extended_real:
return -S.ImaginaryUnit * arg
elif arg.is_Matrix:
return arg.as_real_imag()[1]
elif arg.is_Function and isinstance(arg, conjugate):
return -im(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(S.ImaginaryUnit)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
else:
excluded.append(coeff)
elif term.has(S.ImaginaryUnit) or not term.is_extended_real:
# Try to do some advanced expansion. If
# impossible, don't try to do im(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[1])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) + re(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Return the imaginary part with a zero real part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return im(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -S.ImaginaryUnit \
* re(Derivative(self.args[0], x, evaluate=True))
def _sage_(self):
import sage.all as sage
return sage.imag_part(self.args[0]._sage_())
def _eval_rewrite_as_re(self, arg, **kwargs):
return -S.ImaginaryUnit*(self.args[0] - re(self.args[0]))
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
return self.args[0].is_extended_real
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
###############################################################################
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
###############################################################################
class sign(Function):
"""
Returns the complex sign of an expression:
Explanation
===========
If the expression is real the sign will be:
* 1 if expression is positive
* 0 if expression is equal to zero
* -1 if expression is negative
If the expression is imaginary the sign will be:
* I if im(expression) is positive
* -I if im(expression) is negative
Otherwise an unevaluated expression will be returned. When evaluated, the
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
Examples
========
>>> from sympy.functions import sign
>>> from sympy.core.numbers import I
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
Parameters
==========
arg : Expr
Real or imaginary expression.
Returns
=======
expr : Expr
Complex sign of expression.
See Also
========
Abs, conjugate
"""
is_complex = True
_singularities = True
def doit(self, **hints):
if self.args[0].is_zero is False:
return self.args[0] / Abs(self.args[0])
return self
@classmethod
def eval(cls, arg):
# handle what we can
if arg.is_Mul:
c, args = arg.as_coeff_mul()
unk = []
s = sign(c)
for a in args:
if a.is_extended_negative:
s = -s
elif a.is_extended_positive:
pass
else:
if a.is_imaginary:
ai = im(a)
if ai.is_comparable: # i.e. a = I*real
s *= S.ImaginaryUnit
if ai.is_extended_negative:
# can't use sign(ai) here since ai might not be
# a Number
s = -s
else:
unk.append(a)
else:
unk.append(a)
if c is S.One and len(unk) == len(args):
return None
return s * cls(arg._new_rawargs(*unk))
if arg is S.NaN:
return S.NaN
if arg.is_zero: # it may be an Expr that is zero
return S.Zero
if arg.is_extended_positive:
return S.One
if arg.is_extended_negative:
return S.NegativeOne
if arg.is_Function:
if isinstance(arg, sign):
return arg
if arg.is_imaginary:
if arg.is_Pow and arg.exp is S.Half:
# we catch this because non-trivial sqrt args are not expanded
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
return S.ImaginaryUnit
arg2 = -S.ImaginaryUnit * arg
if arg2.is_extended_positive:
return S.ImaginaryUnit
if arg2.is_extended_negative:
return -S.ImaginaryUnit
def _eval_Abs(self):
if fuzzy_not(self.args[0].is_zero):
return S.One
def _eval_conjugate(self):
return sign(conjugate(self.args[0]))
def _eval_derivative(self, x):
if self.args[0].is_extended_real:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(self.args[0])
elif self.args[0].is_imaginary:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(-S.ImaginaryUnit * self.args[0])
def _eval_is_nonnegative(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_nonpositive(self):
if self.args[0].is_nonpositive:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_power(self, other):
if (
fuzzy_not(self.args[0].is_zero) and
other.is_integer and
other.is_even
):
return S.One
def _sage_(self):
import sage.all as sage
return sage.sgn(self.args[0]._sage_())
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return Heaviside(arg, H0=S(1)/2) * 2 - 1
def _eval_rewrite_as_Abs(self, arg, **kwargs):
return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True))
def _eval_simplify(self, **kwargs):
return self.func(factor_terms(self.args[0])) # XXX include doit?
class Abs(Function):
"""
Return the absolute value of the argument.
Explanation
===========
This is an extension of the built-in function abs() to accept symbolic
values. If you pass a SymPy expression to the built-in abs(), it will
pass it automatically to Abs().
Examples
========
>>> from sympy import Abs, Symbol, S, I
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>>> Abs(-x)
Abs(x)
>>> Abs(x**2)
x**2
>>> abs(-x) # The Python built-in
Abs(x)
>>> Abs(3*x + 2*I)
sqrt(9*x**2 + 4)
>>> Abs(8*I)
8
Note that the Python built-in will return either an Expr or int depending on
the argument::
>>> type(abs(-1))
<... 'int'>
>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
Abs will always return a sympy object.
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Absolute value returned can be an expression or integer depending on
input arg.
See Also
========
sign, conjugate
"""
is_extended_real = True
is_extended_negative = False
is_extended_nonnegative = True
unbranched = True
_singularities = True # non-holomorphic
def fdiff(self, argindex=1):
"""
Get the first derivative of the argument to Abs().
"""
if argindex == 1:
return sign(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.simplify.simplify import signsimp
from sympy.core.function import expand_mul
from sympy.core.power import Pow
if hasattr(arg, '_eval_Abs'):
obj = arg._eval_Abs()
if obj is not None:
return obj
if not isinstance(arg, Expr):
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
# handle what we can
arg = signsimp(arg, evaluate=False)
n, d = arg.as_numer_denom()
if d.free_symbols and not n.free_symbols:
return cls(n)/cls(d)
if arg.is_Mul:
known = []
unk = []
for t in arg.args:
if t.is_Pow and t.exp.is_integer and t.exp.is_negative:
bnew = cls(t.base)
if isinstance(bnew, cls):
unk.append(t)
else:
known.append(Pow(bnew, t.exp))
else:
tnew = cls(t)
if isinstance(tnew, cls):
unk.append(t)
else:
known.append(tnew)
known = Mul(*known)
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
return known*unk
if arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.Infinity
if arg.is_Pow:
base, exponent = arg.as_base_exp()
if base.is_extended_real:
if exponent.is_integer:
if exponent.is_even:
return arg
if base is S.NegativeOne:
return S.One
return Abs(base)**exponent
if base.is_extended_nonnegative:
return base**re(exponent)
if base.is_extended_negative:
return (-base)**re(exponent)*exp(-S.Pi*im(exponent))
return
elif not base.has(Symbol): # complex base
# express base**exponent as exp(exponent*log(base))
a, b = log(base).as_real_imag()
z = a + I*b
return exp(re(exponent*z))
if isinstance(arg, exp):
return exp(re(arg.args[0]))
if isinstance(arg, AppliedUndef):
return
if arg.is_Add and arg.has(S.Infinity, S.NegativeInfinity):
if any(a.is_infinite for a in arg.as_real_imag()):
return S.Infinity
if arg.is_zero:
return S.Zero
if arg.is_extended_nonnegative:
return arg
if arg.is_extended_nonpositive:
return -arg
if arg.is_imaginary:
arg2 = -S.ImaginaryUnit * arg
if arg2.is_extended_nonnegative:
return arg2
# reject result if all new conjugates are just wrappers around
# an expression that was already in the arg
conj = signsimp(arg.conjugate(), evaluate=False)
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
return
if arg != conj and arg != -conj:
ignore = arg.atoms(Abs)
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None]
if not unk or not all(conj.has(conjugate(u)) for u in unk):
return sqrt(expand_mul(arg*conj))
def _eval_is_real(self):
if self.args[0].is_finite:
return True
def _eval_is_integer(self):
if self.args[0].is_extended_real:
return self.args[0].is_integer
def _eval_is_extended_nonzero(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_zero(self):
return self._args[0].is_zero
def _eval_is_extended_positive(self):
is_z = self.is_zero
if is_z is not None:
return not is_z
def _eval_is_rational(self):
if self.args[0].is_extended_real:
return self.args[0].is_rational
def _eval_is_even(self):
if self.args[0].is_extended_real:
return self.args[0].is_even
def _eval_is_odd(self):
if self.args[0].is_extended_real:
return self.args[0].is_odd
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_power(self, exponent):
if self.args[0].is_extended_real and exponent.is_integer:
if exponent.is_even:
return self.args[0]**exponent
elif exponent is not S.NegativeOne and exponent.is_Integer:
return self.args[0]**(exponent - 1)*self
return
def _eval_nseries(self, x, n, logx, cdir=0):
direction = self.args[0].leadterm(x)[0]
if direction.has(log(x)):
direction = direction.subs(log(x), logx)
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
when = Eq(direction, 0)
return Piecewise(
((s.subs(direction, 0)), when),
(sign(direction)*s, True),
)
def _sage_(self):
import sage.all as sage
return sage.abs_symbolic(self.args[0]._sage_())
def _eval_derivative(self, x):
if self.args[0].is_extended_real or self.args[0].is_imaginary:
return Derivative(self.args[0], x, evaluate=True) \
* sign(conjugate(self.args[0]))
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
x, evaluate=True)) / Abs(self.args[0])
return rv.rewrite(sign)
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
# Note this only holds for real arg (since Heaviside is not defined
# for complex arguments).
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return arg*(Heaviside(arg) - Heaviside(-arg))
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((arg, arg >= 0), (-arg, True))
elif arg.is_imaginary:
return Piecewise((I*arg, I*arg >= 0), (-I*arg, True))
def _eval_rewrite_as_sign(self, arg, **kwargs):
return arg/sign(arg)
def _eval_rewrite_as_conjugate(self, arg, **kwargs):
return (arg*conjugate(arg))**S.Half
class arg(Function):
"""
Returns the argument (in radians) of a complex number. For a positive
number, the argument is always 0.
Examples
========
>>> from sympy.functions import arg
>>> from sympy import I, sqrt
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
>>> arg(sqrt(3)/2 + I/2)
pi/6
>>> arg(4 + 3*I)
atan(3/4)
>>> arg(0.8 + 0.6*I)
0.643501108793284
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
value : Expr
Returns arc tangent of arg measured in radians.
"""
is_extended_real = True
is_real = True
is_finite = True
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if isinstance(arg, exp_polar):
return periodic_argument(arg, oo)
if not arg.is_Atom:
c, arg_ = factor_terms(arg).as_coeff_Mul()
if arg_.is_Mul:
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
sign(a) for a in arg_.args])
arg_ = sign(c)*arg_
else:
arg_ = arg
if arg_.atoms(AppliedUndef):
return
x, y = arg_.as_real_imag()
rv = atan2(y, x)
if rv.is_number:
return rv
if arg_ != arg:
return cls(arg_, evaluate=False)
def _eval_derivative(self, t):
x, y = self.args[0].as_real_imag()
return (x * Derivative(y, t, evaluate=True) - y *
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
def _eval_rewrite_as_atan2(self, arg, **kwargs):
x, y = self.args[0].as_real_imag()
return atan2(y, x)
class conjugate(Function):
"""
Returns the `complex conjugate` Ref[1] of an argument.
In mathematics, the complex conjugate of a complex number
is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number
:math:`a + ib` (where a and b are real numbers) is :math:`a - ib`
Examples
========
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
>>> conjugate(3 + 2*I)
3 - 2*I
>>> conjugate(5 - I)
5 + I
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
arg : Expr
Complex conjugate of arg as real, imaginary or mixed expression.
See Also
========
sign, Abs
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
"""
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
obj = arg._eval_conjugate()
if obj is not None:
return obj
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
def _eval_adjoint(self):
return transpose(self.args[0])
def _eval_conjugate(self):
return self.args[0]
def _eval_derivative(self, x):
if x.is_real:
return conjugate(Derivative(self.args[0], x, evaluate=True))
elif x.is_imaginary:
return -conjugate(Derivative(self.args[0], x, evaluate=True))
def _eval_transpose(self):
return adjoint(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
class transpose(Function):
"""
Linear map transposition.
Examples
========
>>> from sympy.functions import transpose
>>> from sympy.matrices import MatrixSymbol
>>> from sympy import Matrix
>>> A = MatrixSymbol('A', 25, 9)
>>> transpose(A)
A.T
>>> B = MatrixSymbol('B', 9, 22)
>>> transpose(B)
B.T
>>> transpose(A*B)
B.T*A.T
>>> M = Matrix([[4, 5], [2, 1], [90, 12]])
>>> M
Matrix([
[ 4, 5],
[ 2, 1],
[90, 12]])
>>> transpose(M)
Matrix([
[4, 2, 90],
[5, 1, 12]])
Parameters
==========
arg : Matrix
Matrix or matrix expression to take the transpose of.
Returns
=======
value : Matrix
Transpose of arg.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_transpose()
if obj is not None:
return obj
def _eval_adjoint(self):
return conjugate(self.args[0])
def _eval_conjugate(self):
return adjoint(self.args[0])
def _eval_transpose(self):
return self.args[0]
class adjoint(Function):
"""
Conjugate transpose or Hermite conjugation.
Examples
========
>>> from sympy import adjoint
>>> from sympy.matrices import MatrixSymbol
>>> A = MatrixSymbol('A', 10, 5)
>>> adjoint(A)
Adjoint(A)
Parameters
==========
arg : Matrix
Matrix or matrix expression to take the adjoint of.
Returns
=======
value : Matrix
Represents the conjugate transpose or Hermite
conjugation of arg.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_adjoint()
if obj is not None:
return obj
obj = arg._eval_transpose()
if obj is not None:
return conjugate(obj)
def _eval_adjoint(self):
return self.args[0]
def _eval_conjugate(self):
return transpose(self.args[0])
def _eval_transpose(self):
return conjugate(self.args[0])
def _latex(self, printer, exp=None, *args):
arg = printer._print(self.args[0])
tex = r'%s^{\dagger}' % arg
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if printer._use_unicode:
pform = pform**prettyForm('\N{DAGGER}')
else:
pform = pform**prettyForm('+')
return pform
###############################################################################
############### HANDLING OF POLAR NUMBERS #####################################
###############################################################################
class polar_lift(Function):
"""
Lift argument to the Riemann surface of the logarithm, using the
standard branch.
Examples
========
>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
>>> polar_lift(4*x)
4*polar_lift(x)
>>> polar_lift(4*p)
4*p
Parameters
==========
arg : Expr
Real or complex expression.
See Also
========
sympy.functions.elementary.exponential.exp_polar
periodic_argument
"""
is_polar = True
is_comparable = False # Cannot be evalf'd.
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.complexes import arg as argument
if arg.is_number:
ar = argument(arg)
# In general we want to affirm that something is known,
# e.g. `not ar.has(argument) and not ar.has(atan)`
# but for now we will just be more restrictive and
# see that it has evaluated to one of the known values.
if ar in (0, pi/2, -pi/2, pi):
return exp_polar(I*ar)*abs(arg)
if arg.is_Mul:
args = arg.args
else:
args = [arg]
included = []
excluded = []
positive = []
for arg in args:
if arg.is_polar:
included += [arg]
elif arg.is_positive:
positive += [arg]
else:
excluded += [arg]
if len(excluded) < len(args):
if excluded:
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
elif included:
return Mul(*(included + positive))
else:
return Mul(*positive)*exp_polar(0)
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
return self.args[0]._eval_evalf(prec)
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
class periodic_argument(Function):
"""
Represent the argument on a quotient of the Riemann surface of the
logarithm. That is, given a period $P$, always return a value in
(-P/2, P/2], by using exp(P*I) == 1.
Examples
========
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(10*I*pi), 2*pi)
0
>>> periodic_argument(exp_polar(5*I*pi), 4*pi)
pi
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
Parameters
==========
ar : Expr
A polar number.
period : ExprT
The period $P$.
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
principal_branch
"""
@classmethod
def _getunbranched(cls, ar):
if ar.is_Mul:
args = ar.args
else:
args = [ar]
unbranched = 0
for a in args:
if not a.is_polar:
unbranched += arg(a)
elif isinstance(a, exp_polar):
unbranched += a.exp.as_real_imag()[1]
elif a.is_Pow:
re, im = a.exp.as_real_imag()
unbranched += re*unbranched_argument(
a.base) + im*log(abs(a.base))
elif isinstance(a, polar_lift):
unbranched += arg(a.args[0])
else:
return None
return unbranched
@classmethod
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the Riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
if not period.is_extended_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if isinstance(ar, polar_lift) and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
if unbranched.has(periodic_argument, atan2, atan):
return None
if period == oo:
return unbranched
if period != oo:
n = ceiling(unbranched/period - S.Half)*period
if not n.has(ceiling):
return unbranched - n
def _eval_evalf(self, prec):
z, period = self.args
if period == oo:
unbranched = periodic_argument._getunbranched(z)
if unbranched is None:
return self
return unbranched._eval_evalf(prec)
ub = periodic_argument(z, oo)._eval_evalf(prec)
return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec)
def unbranched_argument(arg):
'''
Returns periodic argument of arg with period as infinity.
Examples
========
>>> from sympy import exp_polar, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp_polar(15*I*pi))
15*pi
>>> unbranched_argument(exp_polar(7*I*pi))
7*pi
See also
========
periodic_argument
'''
return periodic_argument(arg, oo)
class principal_branch(Function):
"""
Represent a polar number reduced to its principal branch on a quotient
of the Riemann surface of the logarithm.
Explanation
===========
This is a function of two arguments. The first argument is a polar
number `z`, and the second one a positive real number or infinity, `p`.
The result is "z mod exp_polar(I*p)".
Examples
========
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
Parameters
==========
x : Expr
A polar number.
period : Expr
Positive real number or infinity.
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
periodic_argument
"""
is_polar = True
is_comparable = False # cannot always be evalf'd
@classmethod
def eval(self, x, period):
from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol
if isinstance(x, polar_lift):
return principal_branch(x.args[0], period)
if period == oo:
return x
ub = periodic_argument(x, oo)
barg = periodic_argument(x, period)
if ub != barg and not ub.has(periodic_argument) \
and not barg.has(periodic_argument):
pl = polar_lift(x)
def mr(expr):
if not isinstance(expr, Symbol):
return polar_lift(expr)
return expr
pl = pl.replace(polar_lift, mr)
# Recompute unbranched argument
ub = periodic_argument(pl, oo)
if not pl.has(polar_lift):
if ub != barg:
res = exp_polar(I*(barg - ub))*pl
else:
res = pl
if not res.is_polar and not res.has(exp_polar):
res *= exp_polar(0)
return res
if not x.free_symbols:
c, m = x, ()
else:
c, m = x.as_coeff_mul(*x.free_symbols)
others = []
for y in m:
if y.is_positive:
c *= y
else:
others += [y]
m = tuple(others)
arg = periodic_argument(c, period)
if arg.has(periodic_argument):
return None
if arg.is_number and (unbranched_argument(c) != arg or
(arg == 0 and m != () and c != 1)):
if arg == 0:
return abs(c)*principal_branch(Mul(*m), period)
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
and m == ():
return exp_polar(arg*I)*abs(c)
def _eval_evalf(self, prec):
from sympy import exp, pi, I
z, period = self.args
p = periodic_argument(z, period)._eval_evalf(prec)
if abs(p) > pi or p == -pi:
return self # Cannot evalf for this argument.
return (abs(z)*exp(I*p))._eval_evalf(prec)
def _polarify(eq, lift, pause=False):
from sympy import Integral
if eq.is_polar:
return eq
if eq.is_number and not pause:
return polar_lift(eq)
if isinstance(eq, Symbol) and not pause and lift:
return polar_lift(eq)
elif eq.is_Atom:
return eq
elif eq.is_Add:
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
if lift:
return polar_lift(r)
return r
elif eq.is_Function:
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
elif isinstance(eq, Integral):
# Don't lift the integration variable
func = _polarify(eq.function, lift, pause=pause)
limits = []
for limit in eq.args[1:]:
var = _polarify(limit[0], lift=False, pause=pause)
rest = _polarify(limit[1:], lift=lift, pause=pause)
limits.append((var,) + rest)
return Integral(*((func,) + tuple(limits)))
else:
return eq.func(*[_polarify(arg, lift, pause=pause)
if isinstance(arg, Expr) else arg for arg in eq.args])
def polarify(eq, subs=True, lift=False):
"""
Turn all numbers in eq into their polar equivalents (under the standard
choice of argument).
Note that no attempt is made to guess a formal convention of adding
polar numbers, expressions like 1 + x will generally not be altered.
Note also that this function does not promote exp(x) to exp_polar(x).
If ``subs`` is True, all symbols which are not already polar will be
substituted for polar dummies; in this case the function behaves much
like posify.
If ``lift`` is True, both addition statements and non-polar symbols are
changed to their polar_lift()ed versions.
Note that lift=True implies subs=False.
Examples
========
>>> from sympy import polarify, sin, I
>>> from sympy.abc import x, y
>>> expr = (-x)**y
>>> expr.expand()
(-x)**y
>>> polarify(expr)
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
>>> polarify(expr)[0].expand()
_x**_y*exp_polar(_y*I*pi)
>>> polarify(x, lift=True)
polar_lift(x)
>>> polarify(x*(1+y), lift=True)
polar_lift(x)*polar_lift(y + 1)
Adds are treated carefully:
>>> polarify(1 + sin((1 + I)*x))
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
"""
if lift:
subs = False
eq = _polarify(sympify(eq), lift)
if not subs:
return eq
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def _unpolarify(eq, exponents_only, pause=False):
if not isinstance(eq, Basic) or eq.is_Atom:
return eq
if not pause:
if isinstance(eq, exp_polar):
return exp(_unpolarify(eq.exp, exponents_only))
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
return _unpolarify(eq.args[0], exponents_only)
if (
eq.is_Add or eq.is_Mul or eq.is_Boolean or
eq.is_Relational and (
eq.rel_op in ('==', '!=') and 0 in eq.args or
eq.rel_op not in ('==', '!='))
):
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
if isinstance(eq, polar_lift):
return _unpolarify(eq.args[0], exponents_only)
if eq.is_Pow:
expo = _unpolarify(eq.exp, exponents_only)
base = _unpolarify(eq.base, exponents_only,
not (expo.is_integer and not pause))
return base**expo
if eq.is_Function and getattr(eq.func, 'unbranched', False):
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
for x in eq.args])
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
def unpolarify(eq, subs={}, exponents_only=False):
"""
If p denotes the projection from the Riemann surface of the logarithm to
the complex line, return a simplified version eq' of `eq` such that
p(eq') == p(eq).
Also apply the substitution subs in the end. (This is a convenience, since
``unpolarify``, in a certain sense, undoes polarify.)
Examples
========
>>> from sympy import unpolarify, polar_lift, sin, I
>>> unpolarify(polar_lift(I + 2))
2 + I
>>> unpolarify(sin(polar_lift(I + 7)))
sin(7 + I)
"""
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs != {}:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
|
bf1d3e703df2d42984c619225fc6d481066d647dd6b612926ee025bee321f3f6 | from sympy import zeros, eye, Symbol, solve_linear_system
N = 8
M = zeros(N, N + 1)
M[:, :N] = eye(N)
S = [Symbol('A%i' % i) for i in range(N)]
def timeit_linsolve_trivial():
solve_linear_system(M, *S)
|
532c7d2bf2c02f83668f70b97c35d8185e5ec7b7b800c69ddf2f74970c871763 | from sympy.core.add import Add
from sympy.core.assumptions import check_assumptions
from sympy.core.containers import Tuple
from sympy.core.compatibility import as_int, is_sequence, ordered
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.numbers import igcdex, ilcm, igcd
from sympy.core.power import integer_nthroot, isqrt
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.ntheory.factor_ import (
divisors, factorint, multiplicity, perfect_power)
from sympy.ntheory.generate import nextprime
from sympy.ntheory.primetest import is_square, isprime
from sympy.ntheory.residue_ntheory import sqrt_mod
from sympy.polys.polyerrors import GeneratorsNeeded
from sympy.polys.polytools import Poly, factor_list
from sympy.simplify.simplify import signsimp
from sympy.solvers.solveset import solveset_real
from sympy.utilities import default_sort_key, numbered_symbols
from sympy.utilities.misc import filldedent
# these are imported with 'from sympy.solvers.diophantine import *
__all__ = ['diophantine', 'classify_diop']
class DiophantineSolutionSet(set):
"""
Container for a set of solutions to a particular diophantine equation.
The base representation is a set of tuples representing each of the solutions.
Parameters
==========
symbols : list
List of free symbols in the original equation.
parameters: list (optional)
List of parameters to be used in the solution.
Examples
========
Adding solutions:
>>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet
>>> from sympy.abc import x, y, t, u
>>> s1 = DiophantineSolutionSet([x, y], [t, u])
>>> s1
set()
>>> s1.add((2, 3))
>>> s1.add((-1, u))
>>> s1
{(-1, u), (2, 3)}
>>> s2 = DiophantineSolutionSet([x, y], [t, u])
>>> s2.add((3, 4))
>>> s1.update(*s2)
>>> s1
{(-1, u), (2, 3), (3, 4)}
Conversion of solutions into dicts:
>>> list(s1.dict_iterator())
[{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}]
Substituting values:
>>> s3 = DiophantineSolutionSet([x, y], [t, u])
>>> s3.add((t**2, t + u))
>>> s3
{(t**2, t + u)}
>>> s3.subs({t: 2, u: 3})
{(4, 5)}
>>> s3.subs(t, -1)
{(1, u - 1)}
>>> s3.subs(t, 3)
{(9, u + 3)}
Evaluation at specific values. Positional arguments are given in the same order as the parameters:
>>> s3(-2, 3)
{(4, 1)}
>>> s3(5)
{(25, u + 5)}
>>> s3(None, 2)
{(t**2, t + 2)}
"""
def __init__(self, symbols_seq, parameters=None):
super().__init__()
if not is_sequence(symbols_seq):
raise ValueError("Symbols must be given as a sequence.")
self.symbols = tuple(symbols_seq)
if parameters is None:
self.parameters = symbols('%s1:%i' % ('t', len(self.symbols) + 1), integer=True)
else:
self.parameters = tuple(parameters)
def add(self, solution):
if len(solution) != len(self.symbols):
raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution)))
super().add(Tuple(*solution))
def update(self, *solutions):
for solution in solutions:
self.add(solution)
def dict_iterator(self):
for solution in ordered(self):
yield dict(zip(self.symbols, solution))
def subs(self, *args, **kwargs):
result = DiophantineSolutionSet(self.symbols, self.parameters)
for solution in self:
result.add(solution.subs(*args, **kwargs))
return result
def __call__(self, *args):
if len(args) > len(self.parameters):
raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args)))
return self.subs(zip(self.parameters, args))
class DiophantineEquationType:
"""
Internal representation of a particular diophantine equation type.
Parameters
==========
equation
The diophantine equation that is being solved.
free_symbols: list (optional)
The symbols being solved for.
Attributes
==========
total_degree
The maximum of the degrees of all terms in the equation
homogeneous
Does the equation contain a term of degree 0
homogeneous_order
Does the equation contain any coefficient that is in the symbols being solved for
dimension
The number of symbols being solved for
"""
name = None # type: str
def __init__(self, equation, free_symbols=None):
self.equation = _sympify(equation).expand(force=True)
if free_symbols is not None:
self.free_symbols = free_symbols
else:
self.free_symbols = list(self.equation.free_symbols)
if not self.free_symbols:
raise ValueError('equation should have 1 or more free symbols')
self.free_symbols.sort(key=default_sort_key)
self.coeff = self.equation.as_coefficients_dict()
if not all(_is_int(c) for c in self.coeff.values()):
raise TypeError("Coefficients should be Integers")
self.total_degree = Poly(self.equation).total_degree()
self.homogeneous = 1 not in self.coeff
self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols))
self.dimension = len(self.free_symbols)
def matches(self):
"""
Determine whether the given equation can be matched to the particular equation type.
"""
return False
class Univariate(DiophantineEquationType):
name = 'univariate'
def matches(self):
return self.dimension == 1
class Linear(DiophantineEquationType):
name = 'linear'
def matches(self):
return self.total_degree == 1
class BinaryQuadratic(DiophantineEquationType):
name = 'binary_quadratic'
def matches(self):
return self.total_degree == 2 and self.dimension == 2
class InhomogeneousTernaryQuadratic(DiophantineEquationType):
name = 'inhomogeneous_ternary_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
return not self.homogeneous_order
class HomogeneousTernaryQuadraticNormal(DiophantineEquationType):
name = 'homogeneous_ternary_quadratic_normal'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
if not self.homogeneous_order:
return False
nonzero = [k for k in self.coeff if self.coeff[k]]
return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)
class HomogeneousTernaryQuadratic(DiophantineEquationType):
name = 'homogeneous_ternary_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
if not self.homogeneous_order:
return False
nonzero = [k for k in self.coeff if self.coeff[k]]
return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols))
class InhomogeneousGeneralQuadratic(DiophantineEquationType):
name = 'inhomogeneous_general_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return True
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in self.coeff): # cross terms
return not self.homogeneous
return False
class HomogeneousGeneralQuadratic(DiophantineEquationType):
name = 'homogeneous_general_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in self.coeff): # cross terms
return self.homogeneous
return False
class GeneralSumOfSquares(DiophantineEquationType):
name = 'general_sum_of_squares'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
if any(k.is_Mul for k in self.coeff):
return False
return all(self.coeff[k] == 1 for k in self.coeff if k != 1)
class GeneralPythagorean(DiophantineEquationType):
name = 'general_pythagorean'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
if any(k.is_Mul for k in self.coeff):
return False
if all(self.coeff[k] == 1 for k in self.coeff if k != 1):
return False
if not all(is_square(abs(self.coeff[k])) for k in self.coeff):
return False
# all but one has the same sign
# e.g. 4*x**2 + y**2 - 4*z**2
return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2
class CubicThue(DiophantineEquationType):
name = 'cubic_thue'
def matches(self):
return self.total_degree == 3 and self.dimension == 2
class GeneralSumOfEvenPowers(DiophantineEquationType):
name = 'general_sum_of_even_powers'
def matches(self):
if not self.total_degree > 3:
return False
if self.total_degree % 2 != 0:
return False
if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1):
return False
return all(self.coeff[k] == 1 for k in self.coeff if k != 1)
# these types are known (but not necessarily handled)
# note that order is important here (in the current solver state)
all_diop_classes = [
Linear,
Univariate,
BinaryQuadratic,
InhomogeneousTernaryQuadratic,
HomogeneousTernaryQuadraticNormal,
HomogeneousTernaryQuadratic,
InhomogeneousGeneralQuadratic,
HomogeneousGeneralQuadratic,
GeneralSumOfSquares,
GeneralPythagorean,
CubicThue,
GeneralSumOfEvenPowers,
]
diop_known = {diop_class.name for diop_class in all_diop_classes}
def _is_int(i):
try:
as_int(i)
return True
except ValueError:
pass
def _sorted_tuple(*i):
return tuple(sorted(i))
def _remove_gcd(*x):
try:
g = igcd(*x)
except ValueError:
fx = list(filter(None, x))
if len(fx) < 2:
return x
g = igcd(*[i.as_content_primitive()[0] for i in fx])
except TypeError:
raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)')
if g == 1:
return x
return tuple([i//g for i in x])
def _rational_pq(a, b):
# return `(numer, denom)` for a/b; sign in numer and gcd removed
return _remove_gcd(sign(b)*a, abs(b))
def _nint_or_floor(p, q):
# return nearest int to p/q; in case of tie return floor(p/q)
w, r = divmod(p, q)
if abs(r) <= abs(q)//2:
return w
return w + 1
def _odd(i):
return i % 2 != 0
def _even(i):
return i % 2 == 0
def diophantine(eq, param=symbols("t", integer=True), syms=None,
permute=False):
"""
Simplify the solution procedure of diophantine equation ``eq`` by
converting it into a product of terms which should equal zero.
For example, when solving, `x^2 - y^2 = 0` this is treated as
`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
independently and combined. Each term is solved by calling
``diop_solve()``. (Although it is possible to call ``diop_solve()``
directly, one must be careful to pass an equation in the correct
form and to interpret the output correctly; ``diophantine()`` is
the public-facing function to use in general.)
Output of ``diophantine()`` is a set of tuples. The elements of the
tuple are the solutions for each variable in the equation and
are arranged according to the alphabetic ordering of the variables.
e.g. For an equation with two variables, `a` and `b`, the first
element of the tuple is the solution for `a` and the second for `b`.
Usage
=====
``diophantine(eq, t, syms)``: Solve the diophantine
equation ``eq``.
``t`` is the optional parameter to be used by ``diop_solve()``.
``syms`` is an optional list of symbols which determines the
order of the elements in the returned tuple.
By default, only the base solution is returned. If ``permute`` is set to
True then permutations of the base solution and/or permutations of the
signs of the values will be returned when applicable.
>>> from sympy.solvers.diophantine import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (3*t_0 - 4, -t_0)}
See Also
========
diop_solve()
sympy.utilities.iterables.permute_signs
sympy.utilities.iterables.signed_permutations
"""
from sympy.utilities.iterables import (
subsets, permute_signs, signed_permutations)
eq = _sympify(eq)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
try:
var = list(eq.expand(force=True).free_symbols)
var.sort(key=default_sort_key)
if syms:
if not is_sequence(syms):
raise TypeError(
'syms should be given as a sequence, e.g. a list')
syms = [i for i in syms if i in var]
if syms != var:
dict_sym_index = dict(zip(syms, range(len(syms))))
return {tuple([t[dict_sym_index[i]] for i in var])
for t in diophantine(eq, param, permute=permute)}
n, d = eq.as_numer_denom()
if n.is_number:
return set()
if not d.is_number:
dsol = diophantine(d)
good = diophantine(n) - dsol
return {s for s in good if _mexpand(d.subs(zip(var, s)))}
else:
eq = n
eq = factor_terms(eq)
assert not eq.is_number
eq = eq.as_independent(*var, as_Add=False)[1]
p = Poly(eq)
assert not any(g.is_number for g in p.gens)
eq = p.as_expr()
assert eq.is_polynomial()
except (GeneratorsNeeded, AssertionError):
raise TypeError(filldedent('''
Equation should be a polynomial with Rational coefficients.'''))
# permute only sign
do_permute_signs = False
# permute sign and values
do_permute_signs_var = False
# permute few signs
permute_few_signs = False
try:
# if we know that factoring should not be attempted, skip
# the factoring step
v, c, t = classify_diop(eq)
# check for permute sign
if permute:
len_var = len(v)
permute_signs_for = [
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name]
permute_signs_check = [
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
BinaryQuadratic.name]
if t in permute_signs_for:
do_permute_signs_var = True
elif t in permute_signs_check:
# if all the variables in eq have even powers
# then do_permute_sign = True
if len_var == 3:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y), (x, z), (y, z)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul)
# if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then
# `xy_coeff` => True and do_permute_sign => False.
# Means no permuted solution.
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any([xy_coeff, x_coeff]):
# means only x**2, y**2, z**2, const is present
do_permute_signs = True
elif not x_coeff:
permute_few_signs = True
elif len_var == 2:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul)
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any([xy_coeff, x_coeff]):
# means only x**2, y**2 and const is present
# so we can get more soln by permuting this soln.
do_permute_signs = True
elif not x_coeff:
# when coeff(x), coeff(y) is not present then signs of
# x, y can be permuted such that their sign are same
# as sign of x*y.
# e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val)
# 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val)
permute_few_signs = True
if t == 'general_sum_of_squares':
# trying to factor such expressions will sometimes hang
terms = [(eq, 1)]
else:
raise TypeError
except (TypeError, NotImplementedError):
fl = factor_list(eq)
if fl[0].is_Rational and fl[0] != 1:
return diophantine(eq/fl[0], param=param, syms=syms, permute=permute)
terms = fl[1]
sols = set()
for term in terms:
base, _ = term
var_t, _, eq_type = classify_diop(base, _dict=False)
_, base = signsimp(base, evaluate=False).as_coeff_Mul()
solution = diop_solve(base, param)
if eq_type in [
Linear.name,
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
GeneralPythagorean.name]:
sols.add(merge_solution(var, var_t, solution))
elif eq_type in [
BinaryQuadratic.name,
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name,
Univariate.name]:
for sol in solution:
sols.add(merge_solution(var, var_t, sol))
else:
raise NotImplementedError('unhandled type: %s' % eq_type)
# remove null merge results
if () in sols:
sols.remove(())
null = tuple([0]*len(var))
# if there is no solution, return trivial solution
if not sols and eq.subs(zip(var, null)).is_zero:
sols.add(null)
final_soln = set()
for sol in sols:
if all(_is_int(s) for s in sol):
if do_permute_signs:
permuted_sign = set(permute_signs(sol))
final_soln.update(permuted_sign)
elif permute_few_signs:
lst = list(permute_signs(sol))
lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst))
permuted_sign = set(lst)
final_soln.update(permuted_sign)
elif do_permute_signs_var:
permuted_sign_var = set(signed_permutations(sol))
final_soln.update(permuted_sign_var)
else:
final_soln.add(sol)
else:
final_soln.add(sol)
return final_soln
def merge_solution(var, var_t, solution):
"""
This is used to construct the full solution from the solutions of sub
equations.
For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`,
solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are
found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But
we should introduce a value for z when we output the solution for the
original equation. This function converts `(t, t)` into `(t, t, n_{1})`
where `n_{1}` is an integer parameter.
"""
sol = []
if None in solution:
return ()
solution = iter(solution)
params = numbered_symbols("n", integer=True, start=1)
for v in var:
if v in var_t:
sol.append(next(solution))
else:
sol.append(next(params))
for val, symb in zip(sol, var):
if check_assumptions(val, **symb.assumptions0) is False:
return tuple()
return tuple(sol)
def diop_solve(eq, param=symbols("t", integer=True)):
"""
Solves the diophantine equation ``eq``.
Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses
``classify_diop()`` to determine the type of the equation and calls
the appropriate solver function.
Use of ``diophantine()`` is recommended over other helper functions.
``diop_solve()`` can return either a set or a tuple depending on the
nature of the equation.
Usage
=====
``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t``
as a parameter if needed.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_solve
>>> from sympy.abc import x, y, z, w
>>> diop_solve(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
>>> diop_solve(4*x + 3*y - 4*z + 5)
(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
>>> diop_solve(x + 3*y - 4*z + w - 6)
(t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6)
>>> diop_solve(x**2 + y**2 - 5)
{(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}
See Also
========
diophantine()
"""
var, coeff, eq_type = classify_diop(eq, _dict=False)
if eq_type == Linear.name:
return diop_linear(eq, param)
elif eq_type == BinaryQuadratic.name:
return diop_quadratic(eq, param)
elif eq_type == HomogeneousTernaryQuadratic.name:
return diop_ternary_quadratic(eq, parameterize=True)
elif eq_type == HomogeneousTernaryQuadraticNormal.name:
return diop_ternary_quadratic_normal(eq, parameterize=True)
elif eq_type == GeneralPythagorean.name:
return diop_general_pythagorean(eq, param)
elif eq_type == Univariate.name:
return diop_univariate(eq)
elif eq_type == GeneralSumOfSquares.name:
return diop_general_sum_of_squares(eq, limit=S.Infinity)
elif eq_type == GeneralSumOfEvenPowers.name:
return diop_general_sum_of_even_powers(eq, limit=S.Infinity)
if eq_type is not None and eq_type not in diop_known:
raise ValueError(filldedent('''
Alhough this type of equation was identified, it is not yet
handled. It should, however, be listed in `diop_known` at the
top of this file. Developers should see comments at the end of
`classify_diop`.
''')) # pragma: no cover
else:
raise NotImplementedError(
'No solver has been written for %s.' % eq_type)
def classify_diop(eq, _dict=True):
# docstring supplied externally
matched = False
diop_type = None
for diop_class in all_diop_classes:
diop_type = diop_class(eq)
if diop_type.matches():
matched = True
break
if matched:
return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name
# new diop type instructions
# --------------------------
# if this error raises and the equation *can* be classified,
# * it should be identified in the if-block above
# * the type should be added to the diop_known
# if a solver can be written for it,
# * a dedicated handler should be written (e.g. diop_linear)
# * it should be passed to that handler in diop_solve
raise NotImplementedError(filldedent('''
This equation is not yet recognized or else has not been
simplified sufficiently to put it in a form recognized by
diop_classify().'''))
classify_diop.func_doc = ( # type: ignore
'''
Helper routine used by diop_solve() to find information about ``eq``.
Returns a tuple containing the type of the diophantine equation
along with the variables (free symbols) and their coefficients.
Variables are returned as a list and coefficients are returned
as a dict with the key being the respective term and the constant
term is keyed to 1. The type is one of the following:
* %s
Usage
=====
``classify_diop(eq)``: Return variables, coefficients and type of the
``eq``.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``_dict`` is for internal use: when True (default) a dict is returned,
otherwise a defaultdict which supplies 0 for missing keys is returned.
Examples
========
>>> from sympy.solvers.diophantine import classify_diop
>>> from sympy.abc import x, y, z, w, t
>>> classify_diop(4*x + 6*y - 4)
([x, y], {1: -4, x: 4, y: 6}, 'linear')
>>> classify_diop(x + 3*y -4*z + 5)
([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear')
>>> classify_diop(x**2 + y**2 - x*y + x + 5)
([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic')
''' % ('\n * '.join(sorted(diop_known))))
def diop_linear(eq, param=symbols("t", integer=True)):
"""
Solves linear diophantine equations.
A linear diophantine equation is an equation of the form `a_{1}x_{1} +
a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.
Usage
=====
``diop_linear(eq)``: Returns a tuple containing solutions to the
diophantine equation ``eq``. Values in the tuple is arranged in the same
order as the sorted variables.
Details
=======
``eq`` is a linear diophantine equation which is assumed to be zero.
``param`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_linear
>>> from sympy.abc import x, y, z
>>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0
(3*t_0 - 5, 2*t_0 - 5)
Here x = -3*t_0 - 5 and y = -2*t_0 - 5
>>> diop_linear(2*x - 3*y - 4*z -3)
(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)
See Also
========
diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(),
diop_general_sum_of_squares()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == Linear.name:
result = _diop_linear(var, coeff, param)
if param is None:
result = result(*[0]*len(result.parameters))
if len(result) > 0:
return list(result)[0]
else:
return tuple([None] * len(result.parameters))
def _diop_linear(var, coeff, param):
"""
Solves diophantine equations of the form:
a_0*x_0 + a_1*x_1 + ... + a_n*x_n == c
Note that no solution exists if gcd(a_0, ..., a_n) doesn't divide c.
"""
if 1 in coeff:
# negate coeff[] because input is of the form: ax + by + c == 0
# but is used as: ax + by == -c
c = -coeff[1]
else:
c = 0
# Some solutions will have multiple free variables in their solutions.
if param is None:
params = [symbols('t')]*len(var)
else:
temp = str(param) + "_%i"
params = [symbols(temp % i, integer=True) for i in range(len(var))]
result = DiophantineSolutionSet(var, params)
if len(var) == 1:
q, r = divmod(c, coeff[var[0]])
if not r:
result.add((q,))
return result
else:
return result
'''
base_solution_linear() can solve diophantine equations of the form:
a*x + b*y == c
We break down multivariate linear diophantine equations into a
series of bivariate linear diophantine equations which can then
be solved individually by base_solution_linear().
Consider the following:
a_0*x_0 + a_1*x_1 + a_2*x_2 == c
which can be re-written as:
a_0*x_0 + g_0*y_0 == c
where
g_0 == gcd(a_1, a_2)
and
y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0
This leaves us with two binary linear diophantine equations.
For the first equation:
a == a_0
b == g_0
c == c
For the second:
a == a_1/g_0
b == a_2/g_0
c == the solution we find for y_0 in the first equation.
The arrays A and B are the arrays of integers used for
'a' and 'b' in each of the n-1 bivariate equations we solve.
'''
A = [coeff[v] for v in var]
B = []
if len(var) > 2:
B.append(igcd(A[-2], A[-1]))
A[-2] = A[-2] // B[0]
A[-1] = A[-1] // B[0]
for i in range(len(A) - 3, 0, -1):
gcd = igcd(B[0], A[i])
B[0] = B[0] // gcd
A[i] = A[i] // gcd
B.insert(0, gcd)
B.append(A[-1])
'''
Consider the trivariate linear equation:
4*x_0 + 6*x_1 + 3*x_2 == 2
This can be re-written as:
4*x_0 + 3*y_0 == 2
where
y_0 == 2*x_1 + x_2
(Note that gcd(3, 6) == 3)
The complete integral solution to this equation is:
x_0 == 2 + 3*t_0
y_0 == -2 - 4*t_0
where 't_0' is any integer.
Now that we have a solution for 'x_0', find 'x_1' and 'x_2':
2*x_1 + x_2 == -2 - 4*t_0
We can then solve for '-2' and '-4' independently,
and combine the results:
2*x_1a + x_2a == -2
x_1a == 0 + t_0
x_2a == -2 - 2*t_0
2*x_1b + x_2b == -4*t_0
x_1b == 0*t_0 + t_1
x_2b == -4*t_0 - 2*t_1
==>
x_1 == t_0 + t_1
x_2 == -2 - 6*t_0 - 2*t_1
where 't_0' and 't_1' are any integers.
Note that:
4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2
for any integral values of 't_0', 't_1'; as required.
This method is generalised for many variables, below.
'''
solutions = []
for i in range(len(B)):
tot_x, tot_y = [], []
for j, arg in enumerate(Add.make_args(c)):
if arg.is_Integer:
# example: 5 -> k = 5
k, p = arg, S.One
pnew = params[0]
else: # arg is a Mul or Symbol
# example: 3*t_1 -> k = 3
# example: t_0 -> k = 1
k, p = arg.as_coeff_Mul()
pnew = params[params.index(p) + 1]
sol = sol_x, sol_y = base_solution_linear(k, A[i], B[i], pnew)
if p is S.One:
if None in sol:
return result
else:
# convert a + b*pnew -> a*p + b*pnew
if isinstance(sol_x, Add):
sol_x = sol_x.args[0]*p + sol_x.args[1]
if isinstance(sol_y, Add):
sol_y = sol_y.args[0]*p + sol_y.args[1]
tot_x.append(sol_x)
tot_y.append(sol_y)
solutions.append(Add(*tot_x))
c = Add(*tot_y)
solutions.append(c)
if param is None:
# just keep the additive constant (i.e. replace t with 0)
solutions = [i.as_coeff_Add()[0] for i in solutions]
result.add(solutions)
return result
def base_solution_linear(c, a, b, t=None):
"""
Return the base solution for the linear equation, `ax + by = c`.
Used by ``diop_linear()`` to find the base solution of a linear
Diophantine equation. If ``t`` is given then the parametrized solution is
returned.
Usage
=====
``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients
in `ax + by = c` and ``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import base_solution_linear
>>> from sympy.abc import t
>>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5
(-5, 5)
>>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0
(0, 0)
>>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5
(3*t - 5, 5 - 2*t)
>>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0
(7*t, -5*t)
"""
a, b, c = _remove_gcd(a, b, c)
if c == 0:
if t is not None:
if b < 0:
t = -t
return (b*t , -a*t)
else:
return (0, 0)
else:
x0, y0, d = igcdex(abs(a), abs(b))
x0 *= sign(a)
y0 *= sign(b)
if divisible(c, d):
if t is not None:
if b < 0:
t = -t
return (c*x0 + b*t, c*y0 - a*t)
else:
return (c*x0, c*y0)
else:
return (None, None)
def diop_univariate(eq):
"""
Solves a univariate diophantine equations.
A univariate diophantine equation is an equation of the form
`a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x` is an integer variable.
Usage
=====
``diop_univariate(eq)``: Returns a set containing solutions to the
diophantine equation ``eq``.
Details
=======
``eq`` is a univariate diophantine equation which is assumed to be zero.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_univariate
>>> from sympy.abc import x
>>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0
{(2,), (3,)}
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == Univariate.name:
return {(int(i),) for i in solveset_real(
eq, var[0]).intersect(S.Integers)}
def divisible(a, b):
"""
Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise.
"""
return not a % b
def diop_quadratic(eq, param=symbols("t", integer=True)):
"""
Solves quadratic diophantine equations.
i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a
set containing the tuples `(x, y)` which contains the solutions. If there
are no solutions then `(None, None)` is returned.
Usage
=====
``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine
equation. ``param`` is used to indicate the parameter to be used in the
solution.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``param`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, t
>>> from sympy.solvers.diophantine.diophantine import diop_quadratic
>>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)
{(-1, -1)}
References
==========
.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
Available: http://www.alpertron.com.ar/METHODS.HTM
.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
Available: http://www.jpr2718.org/ax2p.pdf
See Also
========
diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(),
diop_general_pythagorean()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return set(_diop_quadratic(var, coeff, param))
def _diop_quadratic(var, coeff, t):
u = Symbol('u', integer=True)
x, y = var
A = coeff[x**2]
B = coeff[x*y]
C = coeff[y**2]
D = coeff[x]
E = coeff[y]
F = coeff[S.One]
A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)]
# (1) Simple-Hyperbolic case: A = C = 0, B != 0
# In this case equation can be converted to (Bx + E)(By + D) = DE - BF
# We consider two cases; DE - BF = 0 and DE - BF != 0
# More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb
result = DiophantineSolutionSet(var, [t, u])
discr = B**2 - 4*A*C
if A == 0 and C == 0 and B != 0:
if D*E - B*F == 0:
q, r = divmod(E, B)
if not r:
result.add((-q, t))
q, r = divmod(D, B)
if not r:
result.add((t, -q))
else:
div = divisors(D*E - B*F)
div = div + [-term for term in div]
for d in div:
x0, r = divmod(d - E, B)
if not r:
q, r = divmod(D*E - B*F, d)
if not r:
y0, r = divmod(q - D, B)
if not r:
result.add((x0, y0))
# (2) Parabolic case: B**2 - 4*A*C = 0
# There are two subcases to be considered in this case.
# sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0
# More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol
elif discr == 0:
if A == 0:
s = _diop_quadratic([y, x], coeff, t)
for soln in s:
result.add((soln[1], soln[0]))
else:
g = sign(A)*igcd(A, C)
a = A // g
c = C // g
e = sign(B/A)
sqa = isqrt(a)
sqc = isqrt(c)
_c = e*sqc*D - sqa*E
if not _c:
z = symbols("z", real=True)
eq = sqa*g*z**2 + D*z + sqa*F
roots = solveset_real(eq, z).intersect(S.Integers)
for root in roots:
ans = diop_solve(sqa*x + e*sqc*y - root)
result.add((ans[0], ans[1]))
elif _is_int(c):
solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t\
- (e*sqc*g*u**2 + E*u + e*sqc*F) // _c
solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \
+ (sqa*g*u**2 + D*u + sqa*F) // _c
for z0 in range(0, abs(_c)):
# Check if the coefficients of y and x obtained are integers or not
if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and
divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)):
result.add((solve_x(z0), solve_y(z0)))
# (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper
# by John P. Robertson.
# http://www.jpr2718.org/ax2p.pdf
elif is_square(discr):
if A != 0:
r = sqrt(discr)
u, v = symbols("u, v", integer=True)
eq = _mexpand(
4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) +
2*A*4*A*E*(u - v) + 4*A*r*4*A*F)
solution = diop_solve(eq, t)
for s0, t0 in solution:
num = B*t0 + r*s0 + r*t0 - B*s0
x_0 = S(num)/(4*A*r)
y_0 = S(s0 - t0)/(2*r)
if isinstance(s0, Symbol) or isinstance(t0, Symbol):
if check_param(x_0, y_0, 4*A*r, t) != (None, None):
ans = check_param(x_0, y_0, 4*A*r, t)
result.add((ans[0], ans[1]))
elif x_0.is_Integer and y_0.is_Integer:
if is_solution_quad(var, coeff, x_0, y_0):
result.add((x_0, y_0))
else:
s = _diop_quadratic(var[::-1], coeff, t) # Interchange x and y
while s:
result.add(s.pop()[::-1]) # and solution <--------+
# (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0
else:
P, Q = _transformation_to_DN(var, coeff)
D, N = _find_DN(var, coeff)
solns_pell = diop_DN(D, N)
if D < 0:
for x0, y0 in solns_pell:
for x in [-x0, x0]:
for y in [-y0, y0]:
s = P*Matrix([x, y]) + Q
try:
result.add([as_int(_) for _ in s])
except ValueError:
pass
else:
# In this case equation can be transformed into a Pell equation
solns_pell = set(solns_pell)
for X, Y in list(solns_pell):
solns_pell.add((-X, -Y))
a = diop_DN(D, 1)
T = a[0][0]
U = a[0][1]
if all(_is_int(_) for _ in P[:4] + Q[:2]):
for r, s in solns_pell:
_a = (r + s*sqrt(D))*(T + U*sqrt(D))**t
_b = (r - s*sqrt(D))*(T - U*sqrt(D))**t
x_n = _mexpand(S(_a + _b)/2)
y_n = _mexpand(S(_a - _b)/(2*sqrt(D)))
s = P*Matrix([x_n, y_n]) + Q
result.add(s)
else:
L = ilcm(*[_.q for _ in P[:4] + Q[:2]])
k = 1
T_k = T
U_k = U
while (T_k - 1) % L != 0 or U_k % L != 0:
T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T
k += 1
for X, Y in solns_pell:
for i in range(k):
if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q):
_a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t
_b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t
Xt = S(_a + _b)/2
Yt = S(_a - _b)/(2*sqrt(D))
s = P*Matrix([Xt, Yt]) + Q
result.add(s)
X, Y = X*T + D*U*Y, X*U + Y*T
return result
def is_solution_quad(var, coeff, u, v):
"""
Check whether `(u, v)` is solution to the quadratic binary diophantine
equation with the variable list ``var`` and coefficient dictionary
``coeff``.
Not intended for use by normal users.
"""
reps = dict(zip(var, (u, v)))
eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()])
return _mexpand(eq) == 0
def diop_DN(D, N, t=symbols("t", integer=True)):
"""
Solves the equation `x^2 - Dy^2 = N`.
Mainly concerned with the case `D > 0, D` is not a perfect square,
which is the same as the generalized Pell equation. The LMM
algorithm [1]_ is used to solve this equation.
Returns one solution tuple, (`x, y)` for each class of the solutions.
Other solutions of the class can be constructed according to the
values of ``D`` and ``N``.
Usage
=====
``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and
``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_DN
>>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4
[(3, 1), (393, 109), (36, 10)]
The output can be interpreted as follows: There are three fundamental
solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109)
and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means
that `x = 3` and `y = 1`.
>>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1
[(49299, 1570)]
See Also
========
find_DN(), diop_bf_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Pages 16 - 17. [online], Available:
http://www.jpr2718.org/pell.pdf
"""
if D < 0:
if N == 0:
return [(0, 0)]
elif N < 0:
return []
elif N > 0:
sol = []
for d in divisors(square_factor(N)):
sols = cornacchia(1, -D, N // d**2)
if sols:
for x, y in sols:
sol.append((d*x, d*y))
if D == -1:
sol.append((d*y, d*x))
return sol
elif D == 0:
if N < 0:
return []
if N == 0:
return [(0, t)]
sN, _exact = integer_nthroot(N, 2)
if _exact:
return [(sN, t)]
else:
return []
else: # D > 0
sD, _exact = integer_nthroot(D, 2)
if _exact:
if N == 0:
return [(sD*t, t)]
else:
sol = []
for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1):
try:
sq, _exact = integer_nthroot(D*y**2 + N, 2)
except ValueError:
_exact = False
if _exact:
sol.append((sq, y))
return sol
elif 1 < N**2 < D:
# It is much faster to call `_special_diop_DN`.
return _special_diop_DN(D, N)
else:
if N == 0:
return [(0, 0)]
elif abs(N) == 1:
pqa = PQa(0, 1, D)
j = 0
G = []
B = []
for i in pqa:
a = i[2]
G.append(i[5])
B.append(i[4])
if j != 0 and a == 2*sD:
break
j = j + 1
if _odd(j):
if N == -1:
x = G[j - 1]
y = B[j - 1]
else:
count = j
while count < 2*j - 1:
i = next(pqa)
G.append(i[5])
B.append(i[4])
count += 1
x = G[count]
y = B[count]
else:
if N == 1:
x = G[j - 1]
y = B[j - 1]
else:
return []
return [(x, y)]
else:
fs = []
sol = []
div = divisors(N)
for d in div:
if divisible(N, d**2):
fs.append(d)
for f in fs:
m = N // f**2
zs = sqrt_mod(D, abs(m), all_roots=True)
zs = [i for i in zs if i <= abs(m) // 2 ]
if abs(m) != 2:
zs = zs + [-i for i in zs if i] # omit dupl 0
for z in zs:
pqa = PQa(z, abs(m), D)
j = 0
G = []
B = []
for i in pqa:
G.append(i[5])
B.append(i[4])
if j != 0 and abs(i[1]) == 1:
r = G[j-1]
s = B[j-1]
if r**2 - D*s**2 == m:
sol.append((f*r, f*s))
elif diop_DN(D, -1) != []:
a = diop_DN(D, -1)
sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0])))
break
j = j + 1
if j == length(z, abs(m), D):
break
return sol
def _special_diop_DN(D, N):
"""
Solves the equation `x^2 - Dy^2 = N` for the special case where
`1 < N**2 < D` and `D` is not a perfect square.
It is better to call `diop_DN` rather than this function, as
the former checks the condition `1 < N**2 < D`, and calls the latter only
if appropriate.
Usage
=====
WARNING: Internal method. Do not call directly!
``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import _special_diop_DN
>>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3
[(7, 2), (137, 38)]
The output can be interpreted as follows: There are two fundamental
solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and
(137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means
that `x = 7` and `y = 2`.
>>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20
[(445, 9), (17625560, 356454), (698095554475, 14118073569)]
See Also
========
diop_DN()
References
==========
.. [1] Section 4.4.4 of the following book:
Quadratic Diophantine Equations, T. Andreescu and D. Andrica,
Springer, 2015.
"""
# The following assertion was removed for efficiency, with the understanding
# that this method is not called directly. The parent method, `diop_DN`
# is responsible for performing the appropriate checks.
#
# assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1])
sqrt_D = sqrt(D)
F = [(N, 1)]
f = 2
while True:
f2 = f**2
if f2 > abs(N):
break
n, r = divmod(N, f2)
if r == 0:
F.append((n, f))
f += 1
P = 0
Q = 1
G0, G1 = 0, 1
B0, B1 = 1, 0
solutions = []
i = 0
while True:
a = floor((P + sqrt_D) / Q)
P = a*Q - P
Q = (D - P**2) // Q
G2 = a*G1 + G0
B2 = a*B1 + B0
for n, f in F:
if G2**2 - D*B2**2 == n:
solutions.append((f*G2, f*B2))
i += 1
if Q == 1 and i % 2 == 0:
break
G0, G1 = G1, G2
B0, B1 = B1, B2
return solutions
def cornacchia(a, b, m):
r"""
Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`.
Uses the algorithm due to Cornacchia. The method only finds primitive
solutions, i.e. ones with `\gcd(x, y) = 1`. So this method can't be used to
find the solutions of `x^2 + y^2 = 20` since the only solution to former is
`(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the
solutions with `x \leq y` are found. For more details, see the References.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import cornacchia
>>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35
{(2, 3), (4, 1)}
>>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25
{(4, 3)}
References
===========
.. [1] A. Nitaj, "L'algorithme de Cornacchia"
.. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's
method, [online], Available:
http://www.numbertheory.org/php/cornacchia.html
See Also
========
sympy.utilities.iterables.signed_permutations
"""
sols = set()
a1 = igcdex(a, m)[0]
v = sqrt_mod(-b*a1, m, all_roots=True)
if not v:
return None
for t in v:
if t < m // 2:
continue
u, r = t, m
while True:
u, r = r, u % r
if a*r**2 < m:
break
m1 = m - a*r**2
if m1 % b == 0:
m1 = m1 // b
s, _exact = integer_nthroot(m1, 2)
if _exact:
if a == b and r < s:
r, s = s, r
sols.add((int(r), int(s)))
return sols
def PQa(P_0, Q_0, D):
r"""
Returns useful information needed to solve the Pell equation.
There are six sequences of integers defined related to the continued
fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`},
{`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns
these values as a 6-tuple in the same order as mentioned above. Refer [1]_
for more detailed information.
Usage
=====
``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding
to `P_{0}`, `Q_{0}` and `D` in the continued fraction
`\\frac{P_{0} + \sqrt{D}}{Q_{0}}`.
Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import PQa
>>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4
>>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0)
(13, 4, 3, 3, 1, -1)
>>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1)
(-1, 1, 1, 4, 1, 3)
References
==========
.. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P.
Robertson, July 31, 2004, Pages 4 - 8. http://www.jpr2718.org/pell.pdf
"""
A_i_2 = B_i_1 = 0
A_i_1 = B_i_2 = 1
G_i_2 = -P_0
G_i_1 = Q_0
P_i = P_0
Q_i = Q_0
while True:
a_i = floor((P_i + sqrt(D))/Q_i)
A_i = a_i*A_i_1 + A_i_2
B_i = a_i*B_i_1 + B_i_2
G_i = a_i*G_i_1 + G_i_2
yield P_i, Q_i, a_i, A_i, B_i, G_i
A_i_1, A_i_2 = A_i, A_i_1
B_i_1, B_i_2 = B_i, B_i_1
G_i_1, G_i_2 = G_i, G_i_1
P_i = a_i*Q_i - P_i
Q_i = (D - P_i**2)/Q_i
def diop_bf_DN(D, N, t=symbols("t", integer=True)):
r"""
Uses brute force to solve the equation, `x^2 - Dy^2 = N`.
Mainly concerned with the generalized Pell equation which is the case when
`D > 0, D` is not a perfect square. For more information on the case refer
[1]_. Let `(t, u)` be the minimal positive solution of the equation
`x^2 - Dy^2 = 1`. Then this method requires
`\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small.
Usage
=====
``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in
`x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_bf_DN
>>> diop_bf_DN(13, -4)
[(3, 1), (-3, 1), (36, 10)]
>>> diop_bf_DN(986, 1)
[(49299, 1570)]
See Also
========
diop_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 15. http://www.jpr2718.org/pell.pdf
"""
D = as_int(D)
N = as_int(N)
sol = []
a = diop_DN(D, 1)
u = a[0][0]
if abs(N) == 1:
return diop_DN(D, N)
elif N > 1:
L1 = 0
L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1
elif N < -1:
L1, _exact = integer_nthroot(-int(N/D), 2)
if not _exact:
L1 += 1
L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1
else: # N = 0
if D < 0:
return [(0, 0)]
elif D == 0:
return [(0, t)]
else:
sD, _exact = integer_nthroot(D, 2)
if _exact:
return [(sD*t, t), (-sD*t, t)]
else:
return [(0, 0)]
for y in range(L1, L2):
try:
x, _exact = integer_nthroot(N + D*y**2, 2)
except ValueError:
_exact = False
if _exact:
sol.append((x, y))
if not equivalent(x, y, -x, y, D, N):
sol.append((-x, y))
return sol
def equivalent(u, v, r, s, D, N):
"""
Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N`
belongs to the same equivalence class and False otherwise.
Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same
equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by
`N`. See reference [1]_. No test is performed to test whether `(u, v)` and
`(r, s)` are actually solutions to the equation. User should take care of
this.
Usage
=====
``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions
of the equation `x^2 - Dy^2 = N` and all parameters involved are integers.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import equivalent
>>> equivalent(18, 5, -18, -5, 13, -1)
True
>>> equivalent(3, 1, -18, 393, 109, -4)
False
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 12. http://www.jpr2718.org/pell.pdf
"""
return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N)
def length(P, Q, D):
r"""
Returns the (length of aperiodic part + length of periodic part) of
continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`.
It is important to remember that this does NOT return the length of the
periodic part but the sum of the lengths of the two parts as mentioned
above.
Usage
=====
``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to
the continued fraction `\\frac{P + \sqrt{D}}{Q}`.
Details
=======
``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction,
`\\frac{P + \sqrt{D}}{Q}`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import length
>>> length(-2 , 4, 5) # (-2 + sqrt(5))/4
3
>>> length(-5, 4, 17) # (-5 + sqrt(17))/4
4
See Also
========
sympy.ntheory.continued_fraction.continued_fraction_periodic
"""
from sympy.ntheory.continued_fraction import continued_fraction_periodic
v = continued_fraction_periodic(P, Q, D)
if type(v[-1]) is list:
rpt = len(v[-1])
nonrpt = len(v) - 1
else:
rpt = 0
nonrpt = len(v)
return rpt + nonrpt
def transformation_to_DN(eq):
"""
This function transforms general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`
to more easy to deal with `X^2 - DY^2 = N` form.
This is used to solve the general quadratic equation by transforming it to
the latter form. Refer [1]_ for more detailed information on the
transformation. This function returns a tuple (A, B) where A is a 2 X 2
matrix and B is a 2 X 1 matrix such that,
Transpose([x y]) = A * Transpose([X Y]) + B
Usage
=====
``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be
transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import transformation_to_DN
>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
>>> A
Matrix([
[1/26, 3/26],
[ 0, 1/13]])
>>> B
Matrix([
[-6/13],
[-4/13]])
A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B.
Substituting these values for `x` and `y` and a bit of simplifying work
will give an equation of the form `x^2 - Dy^2 = N`.
>>> from sympy.abc import X, Y
>>> from sympy import Matrix, simplify
>>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x
>>> u
X/26 + 3*Y/26 - 6/13
>>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y
>>> v
Y/13 - 4/13
Next we will substitute these formulas for `x` and `y` and do
``simplify()``.
>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v))))
>>> eq
X**2/676 - Y**2/52 + 17/13
By multiplying the denominator appropriately, we can get a Pell equation
in the standard form.
>>> eq * 676
X**2 - 13*Y**2 + 884
If only the final equation is needed, ``find_DN()`` can be used.
See Also
========
find_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return _transformation_to_DN(var, coeff)
def _transformation_to_DN(var, coeff):
x, y = var
a = coeff[x**2]
b = coeff[x*y]
c = coeff[y**2]
d = coeff[x]
e = coeff[y]
f = coeff[1]
a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)]
X, Y = symbols("X, Y", integer=True)
if b:
B, C = _rational_pq(2*a, b)
A, T = _rational_pq(a, B**2)
# eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B
coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0
else:
if d:
B, C = _rational_pq(2*a, d)
A, T = _rational_pq(a, B**2)
# eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2
coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0])
else:
if e:
B, C = _rational_pq(2*c, e)
A, T = _rational_pq(c, B**2)
# eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2
coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B])
else:
# TODO: pre-simplification: Not necessary but may simplify
# the equation.
return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0])
def find_DN(eq):
"""
This function returns a tuple, `(D, N)` of the simplified form,
`x^2 - Dy^2 = N`, corresponding to the general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`.
Solving the general quadratic is then equivalent to solving the equation
`X^2 - DY^2 = N` and transforming the solutions by using the transformation
matrices returned by ``transformation_to_DN()``.
Usage
=====
``find_DN(eq)``: where ``eq`` is the quadratic to be transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import find_DN
>>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
(13, -884)
Interpretation of the output is that we get `X^2 -13Y^2 = -884` after
transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned
by ``transformation_to_DN()``.
See Also
========
transformation_to_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return _find_DN(var, coeff)
def _find_DN(var, coeff):
x, y = var
X, Y = symbols("X, Y", integer=True)
A, B = _transformation_to_DN(var, coeff)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1]
simplified = _mexpand(eq.subs(zip((x, y), (u, v))))
coeff = simplified.as_coefficients_dict()
return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2]
def check_param(x, y, a, t):
"""
If there is a number modulo ``a`` such that ``x`` and ``y`` are both
integers, then return a parametric representation for ``x`` and ``y``
else return (None, None).
Here ``x`` and ``y`` are functions of ``t``.
"""
from sympy.simplify.simplify import clear_coefficients
if x.is_number and not x.is_Integer:
return (None, None)
if y.is_number and not y.is_Integer:
return (None, None)
m, n = symbols("m, n", integer=True)
c, p = (m*x + n*y).as_content_primitive()
if a % c.q:
return (None, None)
# clear_coefficients(mx + b, R)[1] -> (R - b)/m
eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1]
junk, eq = eq.as_content_primitive()
return diop_solve(eq, t)
def diop_ternary_quadratic(eq, parameterize=False):
"""
Solves the general quadratic ternary form,
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Returns a tuple `(x, y, z)` which is a base solution for the above
equation. If there are no solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution
to ``eq``.
Details
=======
``eq`` should be an homogeneous expression of degree two in three variables
and it is assumed to be zero.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic
>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
(28, 45, 105)
>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
(9, 1, 5)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
sol = _diop_ternary_quadratic(var, coeff)
if len(sol) > 0:
x_0, y_0, z_0 = list(sol)[0]
else:
x_0, y_0, z_0 = None, None, None
if parameterize:
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
return x_0, y_0, z_0
def _diop_ternary_quadratic(_var, coeff):
x, y, z = _var
var = [x, y, z]
# Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the
# coefficients A, B, C are non-zero.
# There are infinitely many solutions for the equation.
# Ex: (0, 0, t), (0, t, 0), (t, 0, 0)
# Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather
# unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by
# using methods for binary quadratic diophantine equations. Let's select the
# solution which minimizes |x| + |z|
result = DiophantineSolutionSet(var)
def unpack_sol(sol):
if len(sol) > 0:
return list(sol)[0]
return None, None, None
if not any(coeff[i**2] for i in var):
if coeff[x*z]:
sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z)
s = sols.pop()
min_sum = abs(s[0]) + abs(s[1])
for r in sols:
m = abs(r[0]) + abs(r[1])
if m < min_sum:
s = r
min_sum = m
result.add(_remove_gcd(s[0], -coeff[x*z], s[1]))
return result
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
if x_0 is not None:
result.add((x_0, y_0, z_0))
return result
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
if coeff[x*y] or coeff[x*z]:
# Apply the transformation x --> X - (B*y + C*z)/(2*A)
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = dict()
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff))
if x_0 is None:
return result
p, q = _rational_pq(B*y_0 + C*z_0, 2*A)
x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q
elif coeff[z*y] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
A = coeff[x**2]
E = coeff[y*z]
b, a = _rational_pq(-E, A)
x_0, y_0, z_0 = b, a, b
else:
# Ax**2 + E*y*z + F*z**2 = 0
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
# Ax**2 + D*y**2 + F*z**2 = 0, C may be zero
x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff))
if x_0 is None:
return result
result.add(_remove_gcd(x_0, y_0, z_0))
return result
def transformation_to_normal(eq):
"""
Returns the transformation Matrix that converts a general ternary
quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`)
to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is
not used in solving ternary quadratics; it is only implemented for
the sake of completeness.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
return _transformation_to_normal(var, coeff)
def _transformation_to_normal(var, coeff):
_var = list(var) # copy
x, y, z = var
if not any(coeff[i**2] for i in var):
# https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065
a = coeff[x*y]
b = coeff[y*z]
c = coeff[x*z]
swap = False
if not a: # b can't be 0 or else there aren't 3 vars
swap = True
a, b = b, a
T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1)))
if swap:
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
# Apply the transformation x --> X - (B*Y + C*Z)/(2*A)
if coeff[x*y] != 0 or coeff[x*z] != 0:
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = dict()
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
T_0 = _transformation_to_normal(_var, _coeff)
return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0
elif coeff[y*z] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
# Apply transformation y -> Y + Z ans z -> Y - Z
return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1])
else:
# Ax**2 + E*y*z + F*z**2 = 0
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
else:
return Matrix.eye(3)
def parametrize_ternary_quadratic(eq):
"""
Returns the parametrized general solution for the ternary quadratic
equation ``eq`` which has the form
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Examples
========
>>> from sympy import Tuple, ordered
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic
The parametrized solution may be returned with three parameters:
>>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2)
(p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)
There might also be only two parameters:
>>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2)
(2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2)
Notes
=====
Consider ``p`` and ``q`` in the previous 2-parameter
solution and observe that more than one solution can be represented
by a given pair of parameters. If `p` and ``q`` are not coprime, this is
trivially true since the common factor will also be a common factor of the
solution values. But it may also be true even when ``p`` and
``q`` are coprime:
>>> sol = Tuple(*_)
>>> p, q = ordered(sol.free_symbols)
>>> sol.subs([(p, 3), (q, 2)])
(6, 12, 12)
>>> sol.subs([(q, 1), (p, 1)])
(-1, 2, 2)
>>> sol.subs([(q, 0), (p, 1)])
(2, -4, 4)
>>> sol.subs([(q, 1), (p, 0)])
(-3, -6, 6)
Except for sign and a common factor, these are equivalent to
the solution of (1, 2, 2).
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0]
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
def _parametrize_ternary_quadratic(solution, _var, coeff):
# called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0
assert 1 not in coeff
x_0, y_0, z_0 = solution
v = list(_var) # copy
if x_0 is None:
return (None, None, None)
if solution.count(0) >= 2:
# if there are 2 zeros the equation reduces
# to k*X**2 == 0 where X is x, y, or z so X must
# be zero, too. So there is only the trivial
# solution.
return (None, None, None)
if x_0 == 0:
v[0], v[1] = v[1], v[0]
y_p, x_p, z_p = _parametrize_ternary_quadratic(
(y_0, x_0, z_0), v, coeff)
return x_p, y_p, z_p
x, y, z = v
r, p, q = symbols("r, p, q", integer=True)
eq = sum(k*v for k, v in coeff.items())
eq_1 = _mexpand(eq.subs(zip(
(x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q))))
A, B = eq_1.as_independent(r, as_Add=True)
x = A*x_0
y = (A*y_0 - _mexpand(B/r*p))
z = (A*z_0 - _mexpand(B/r*q))
return _remove_gcd(x, y, z)
def diop_ternary_quadratic_normal(eq, parameterize=False):
"""
Solves the quadratic ternary diophantine equation,
`ax^2 + by^2 + cz^2 = 0`.
Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the
equation will be a quadratic binary or univariate equation. If solvable,
returns a tuple `(x, y, z)` that satisfies the given equation. If the
equation does not have integer solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form
`ax^2 + by^2 + cz^2 = 0`.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal
>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
(4, 9, 1)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == HomogeneousTernaryQuadraticNormal.name:
sol = _diop_ternary_quadratic_normal(var, coeff)
if len(sol) > 0:
x_0, y_0, z_0 = list(sol)[0]
else:
x_0, y_0, z_0 = None, None, None
if parameterize:
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
return x_0, y_0, z_0
def _diop_ternary_quadratic_normal(var, coeff):
x, y, z = var
a = coeff[x**2]
b = coeff[y**2]
c = coeff[z**2]
try:
assert len([k for k in coeff if coeff[k]]) == 3
assert all(coeff[i**2] for i in var)
except AssertionError:
raise ValueError(filldedent('''
coeff dict is not consistent with assumption of this routine:
coefficients should be those of an expression in the form
a*x**2 + b*y**2 + c*z**2 where a*b*c != 0.'''))
(sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \
sqf_normal(a, b, c, steps=True)
A = -a_2*c_2
B = -b_2*c_2
result = DiophantineSolutionSet(var)
# If following two conditions are satisfied then there are no solutions
if A < 0 and B < 0:
return result
if (
sqrt_mod(-b_2*c_2, a_2) is None or
sqrt_mod(-c_2*a_2, b_2) is None or
sqrt_mod(-a_2*b_2, c_2) is None):
return result
z_0, x_0, y_0 = descent(A, B)
z_0, q = _rational_pq(z_0, abs(c_2))
x_0 *= q
y_0 *= q
x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0)
# Holzer reduction
if sign(a) == sign(b):
x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2))
elif sign(a) == sign(c):
x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2))
else:
y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2))
x_0 = reconstruct(b_1, c_1, x_0)
y_0 = reconstruct(a_1, c_1, y_0)
z_0 = reconstruct(a_1, b_1, z_0)
sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c)
x_0 = abs(x_0*sq_lcm//sqf_of_a)
y_0 = abs(y_0*sq_lcm//sqf_of_b)
z_0 = abs(z_0*sq_lcm//sqf_of_c)
result.add(_remove_gcd(x_0, y_0, z_0))
return result
def sqf_normal(a, b, c, steps=False):
"""
Return `a', b', c'`, the coefficients of the square-free normal
form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise
prime. If `steps` is True then also return three tuples:
`sq`, `sqf`, and `(a', b', c')` where `sq` contains the square
factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`;
`sqf` contains the values of `a`, `b` and `c` after removing
both the `gcd(a, b, c)` and the square factors.
The solutions for `ax^2 + by^2 + cz^2 = 0` can be
recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sqf_normal
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
(11, 1, 5)
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
((3, 1, 7), (5, 55, 11), (11, 1, 5))
References
==========
.. [1] Legendre's Theorem, Legrange's Descent,
http://public.csusm.edu/aitken_html/notes/legendre.pdf
See Also
========
reconstruct()
"""
ABC = _remove_gcd(a, b, c)
sq = tuple(square_factor(i) for i in ABC)
sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)])
pc = igcd(A, B)
A /= pc
B /= pc
pa = igcd(B, C)
B /= pa
C /= pa
pb = igcd(A, C)
A /= pb
B /= pb
A *= pa
B *= pb
C *= pc
if steps:
return (sq, sqf, (A, B, C))
else:
return A, B, C
def square_factor(a):
r"""
Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square
free. `a` can be given as an integer or a dictionary of factors.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import square_factor
>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1}) # -18
3
See Also
========
sympy.ntheory.factor_.core
"""
f = a if isinstance(a, dict) else factorint(a)
return Mul(*[p**(e//2) for p, e in f.items()])
def reconstruct(A, B, z):
"""
Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2`
from the `z` value of a solution of the square-free normal form of the
equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square
free and `gcd(a', b', c') == 1`.
"""
f = factorint(igcd(A, B))
for p, e in f.items():
if e != 1:
raise ValueError('a and b should be square-free')
z *= p
return z
def ldescent(A, B):
"""
Return a non-trivial solution to `w^2 = Ax^2 + By^2` using
Lagrange's method; return None if there is no such solution.
.
Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a
tuple `(w_0, x_0, y_0)` which is a solution to the above equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import ldescent
>>> ldescent(1, 1) # w^2 = x^2 + y^2
(1, 1, 0)
>>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2
(2, -1, 0)
This means that `x = -1, y = 0` and `w = 2` is a solution to the equation
`w^2 = 4x^2 - 7y^2`
>>> ldescent(5, -1) # w^2 = 5x^2 - y^2
(2, 1, -1)
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
[online], Available:
http://eprints.nottingham.ac.uk/60/1/kvxefz87.pdf
"""
if abs(A) > abs(B):
w, y, x = ldescent(B, A)
return w, x, y
if A == 1:
return (1, 1, 0)
if B == 1:
return (1, 0, 1)
if B == -1: # and A == -1
return
r = sqrt_mod(A, B)
Q = (r**2 - A) // B
if Q == 0:
B_0 = 1
d = 0
else:
div = divisors(Q)
B_0 = None
for i in div:
sQ, _exact = integer_nthroot(abs(Q) // i, 2)
if _exact:
B_0, d = sign(Q)*i, sQ
break
if B_0 is not None:
W, X, Y = ldescent(A, B_0)
return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d))
def descent(A, B):
"""
Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2`
using Lagrange's descent method with lattice-reduction. `A` and `B`
are assumed to be valid for such a solution to exist.
This is faster than the normal Lagrange's descent algorithm because
the Gaussian reduction is used.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import descent
>>> descent(3, 1) # x**2 = 3*y**2 + z**2
(1, 0, 1)
`(x, y, z) = (1, 0, 1)` is a solution to the above equation.
>>> descent(41, -113)
(-16, -3, 1)
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
if abs(A) > abs(B):
x, y, z = descent(B, A)
return x, z, y
if B == 1:
return (1, 0, 1)
if A == 1:
return (1, 1, 0)
if B == -A:
return (0, 1, 1)
if B == A:
x, z, y = descent(-1, A)
return (A*y, z, x)
w = sqrt_mod(A, B)
x_0, z_0 = gaussian_reduce(w, A, B)
t = (x_0**2 - A*z_0**2) // B
t_2 = square_factor(t)
t_1 = t // t_2**2
x_1, z_1, y_1 = descent(A, t_1)
return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1)
def gaussian_reduce(w, a, b):
r"""
Returns a reduced solution `(x, z)` to the congruence
`X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal.
Details
=======
Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)`
References
==========
.. [1] Gaussian lattice Reduction [online]. Available:
http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
u = (0, 1)
v = (1, 0)
if dot(u, v, w, a, b) < 0:
v = (-v[0], -v[1])
if norm(u, w, a, b) < norm(v, w, a, b):
u, v = v, u
while norm(u, w, a, b) > norm(v, w, a, b):
k = dot(u, v, w, a, b) // dot(v, v, w, a, b)
u, v = v, (u[0]- k*v[0], u[1]- k*v[1])
u, v = v, u
if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b):
c = v
else:
c = (u[0] - v[0], u[1] - v[1])
return c[0]*w + b*c[1], c[0]
def dot(u, v, w, a, b):
r"""
Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and
`v = (v_{1}, v_{2})` which is defined in order to reduce solution of
the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`.
"""
u_1, u_2 = u
v_1, v_2 = v
return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1
def norm(u, w, a, b):
r"""
Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product
defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}`
where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`.
"""
u_1, u_2 = u
return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b))
def holzer(x, y, z, a, b, c):
r"""
Simplify the solution `(x, y, z)` of the equation
`ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to
a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`.
The algorithm is an interpretation of Mordell's reduction as described
on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in
reference [2]_.
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
.. [2] Diophantine Equations, L. J. Mordell, page 48.
"""
if _odd(c):
k = 2*c
else:
k = c//2
small = a*b*c
step = 0
while True:
t1, t2, t3 = a*x**2, b*y**2, c*z**2
# check that it's a solution
if t1 + t2 != t3:
if step == 0:
raise ValueError('bad starting solution')
break
x_0, y_0, z_0 = x, y, z
if max(t1, t2, t3) <= small:
# Holzer condition
break
uv = u, v = base_solution_linear(k, y_0, -x_0)
if None in uv:
break
p, q = -(a*u*x_0 + b*v*y_0), c*z_0
r = Rational(p, q)
if _even(c):
w = _nint_or_floor(p, q)
assert abs(w - r) <= S.Half
else:
w = p//q # floor
if _odd(a*u + b*v + c*w):
w += 1
assert abs(w - r) <= S.One
A = (a*u**2 + b*v**2 + c*w**2)
B = (a*u*x_0 + b*v*y_0 + c*w*z_0)
x = Rational(x_0*A - 2*u*B, k)
y = Rational(y_0*A - 2*v*B, k)
z = Rational(z_0*A - 2*w*B, k)
assert all(i.is_Integer for i in (x, y, z))
step += 1
return tuple([int(i) for i in (x_0, y_0, z_0)])
def diop_general_pythagorean(eq, param=symbols("m", integer=True)):
"""
Solves the general pythagorean equation,
`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.
Returns a tuple which contains a parametrized solution to the equation,
sorted in the same order as the input variables.
Usage
=====
``diop_general_pythagorean(eq, param)``: where ``eq`` is a general
pythagorean equation which is assumed to be zero and ``param`` is the base
parameter used to construct other parameters by subscripting.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
>>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)
(10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralPythagorean.name:
return list(_diop_general_pythagorean(var, coeff, param))[0]
def _diop_general_pythagorean(var, coeff, t):
if sign(coeff[var[0]**2]) + sign(coeff[var[1]**2]) + sign(coeff[var[2]**2]) < 0:
for key in coeff.keys():
coeff[key] = -coeff[key]
n = len(var)
index = 0
for i, v in enumerate(var):
if sign(coeff[v**2]) == -1:
index = i
m = symbols('%s1:%i' % (t, n), integer=True)
ith = sum(m_i**2 for m_i in m)
L = [ith - 2*m[n - 2]**2]
L.extend([2*m[i]*m[n-2] for i in range(n - 2)])
sol = L[:index] + [ith] + L[index:]
lcm = 1
for i, v in enumerate(var):
if i == index or (index > 0 and i == 0) or (index == 0 and i == 1):
lcm = ilcm(lcm, sqrt(abs(coeff[v**2])))
else:
s = sqrt(coeff[v**2])
lcm = ilcm(lcm, s if _odd(s) else s//2)
for i, v in enumerate(var):
sol[i] = (lcm*sol[i]) / sqrt(abs(coeff[v**2]))
result = DiophantineSolutionSet(var)
result.add(sol)
return result
def diop_general_sum_of_squares(eq, limit=1):
r"""
Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Details
=======
When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
no solutions. Refer [1]_ for more details.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
{(15, 22, 22, 24, 24)}
Reference
=========
.. [1] Representing an integer as a sum of three squares, [online],
Available:
http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralSumOfSquares.name:
return set(_diop_general_sum_of_squares(var, -int(coeff[1]), limit))
def _diop_general_sum_of_squares(var, k, limit=1):
# solves Eq(sum(i**2 for i in var), k)
n = len(var)
if n < 3:
raise ValueError('n must be greater than 2')
result = DiophantineSolutionSet(var)
if k < 0 or limit < 1:
return result
sign = [-1 if x.is_nonpositive else 1 for x in var]
negs = sign.count(-1) != 0
took = 0
for t in sum_of_squares(k, n, zeros=True):
if negs:
result.add([sign[i]*j for i, j in enumerate(t)])
else:
result.add(t)
took += 1
if took == limit:
break
return result
def diop_general_sum_of_even_powers(eq, limit=1):
"""
Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
where `e` is an even, integer power.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers
>>> from sympy.abc import a, b
>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
{(2, 3)}
See Also
========
power_representation
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralSumOfEvenPowers.name:
for k in coeff.keys():
if k.is_Pow and coeff[k]:
p = k.exp
return set(_diop_general_sum_of_even_powers(var, p, -coeff[1], limit))
def _diop_general_sum_of_even_powers(var, p, n, limit=1):
# solves Eq(sum(i**2 for i in var), n)
k = len(var)
result = DiophantineSolutionSet(var)
if n < 0 or limit < 1:
return result
sign = [-1 if x.is_nonpositive else 1 for x in var]
negs = sign.count(-1) != 0
took = 0
for t in power_representation(n, p, k):
if negs:
result.add([sign[i]*j for i, j in enumerate(t)])
else:
result.add(t)
took += 1
if took == limit:
break
return result
## Functions below this comment can be more suitably grouped under
## an Additive number theory module rather than the Diophantine
## equation module.
def partition(n, k=None, zeros=False):
"""
Returns a generator that can be used to generate partitions of an integer
`n`.
A partition of `n` is a set of positive integers which add up to `n`. For
example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned
as a tuple. If ``k`` equals None, then all possible partitions are returned
irrespective of their size, otherwise only the partitions of size ``k`` are
returned. If the ``zero`` parameter is set to True then a suitable
number of zeros are added at the end of every partition of size less than
``k``.
``zero`` parameter is considered only if ``k`` is not None. When the
partitions are over, the last `next()` call throws the ``StopIteration``
exception, so this function should always be used inside a try - except
block.
Details
=======
``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size
of the partition which is also positive integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import partition
>>> f = partition(5)
>>> next(f)
(1, 1, 1, 1, 1)
>>> next(f)
(1, 1, 1, 2)
>>> g = partition(5, 3)
>>> next(g)
(1, 1, 3)
>>> next(g)
(1, 2, 2)
>>> g = partition(5, 3, zeros=True)
>>> next(g)
(0, 0, 5)
"""
from sympy.utilities.iterables import ordered_partitions
if not zeros or k is None:
for i in ordered_partitions(n, k):
yield tuple(i)
else:
for m in range(1, k + 1):
for i in ordered_partitions(n, m):
i = tuple(i)
yield (0,)*(k - len(i)) + i
def prime_as_sum_of_two_squares(p):
"""
Represent a prime `p` as a unique sum of two squares; this can
only be done if the prime is congruent to 1 mod 4.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares
>>> prime_as_sum_of_two_squares(7) # can't be done
>>> prime_as_sum_of_two_squares(5)
(1, 2)
Reference
=========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if not p % 4 == 1:
return
if p % 8 == 5:
b = 2
else:
b = 3
while pow(b, (p - 1) // 2, p) == 1:
b = nextprime(b)
b = pow(b, (p - 1) // 4, p)
a = p
while b**2 > p:
a, b = b, a % b
return (int(a % b), int(b)) # convert from long
def sum_of_three_squares(n):
r"""
Returns a 3-tuple `(a, b, c)` such that `a^2 + b^2 + c^2 = n` and
`a, b, c \geq 0`.
Returns None if `n = 4^a(8m + 7)` for some `a, m \in Z`. See
[1]_ for more details.
Usage
=====
``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares
>>> sum_of_three_squares(44542)
(18, 37, 207)
References
==========
.. [1] Representing a number as a sum of three squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0),
85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15),
526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36),
2986: (21, 32, 39), 9634: (56, 57, 57)}
v = 0
if n == 0:
return (0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
return
if n in special.keys():
x, y, z = special[n]
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
s, _exact = integer_nthroot(n, 2)
if _exact:
return (2**v*s, 0, 0)
x = None
if n % 8 == 3:
s = s if _odd(s) else s - 1
for x in range(s, -1, -2):
N = (n - x**2) // 2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z))
return
if n % 8 == 2 or n % 8 == 6:
s = s if _odd(s) else s - 1
else:
s = s - 1 if _odd(s) else s
for x in range(s, -1, -2):
N = n - x**2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
def sum_of_four_squares(n):
r"""
Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`.
Here `a, b, c, d \geq 0`.
Usage
=====
``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares
>>> sum_of_four_squares(3456)
(8, 8, 32, 48)
>>> sum_of_four_squares(1294585930293)
(0, 1234, 2161, 1137796)
References
==========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if n == 0:
return (0, 0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
d = 2
n = n - 4
elif n % 8 == 6 or n % 8 == 2:
d = 1
n = n - 1
else:
d = 0
x, y, z = sum_of_three_squares(n)
return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z)
def power_representation(n, p, k, zeros=False):
r"""
Returns a generator for finding k-tuples of integers,
`(n_{1}, n_{2}, . . . n_{k})`, such that
`n = n_{1}^p + n_{2}^p + . . . n_{k}^p`.
Usage
=====
``power_representation(n, p, k, zeros)``: Represent non-negative number
``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the
solutions is allowed to contain zeros.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import power_representation
Represent 1729 as a sum of two cubes:
>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)
If the flag `zeros` is True, the solution may contain tuples with
zeros; any such solutions will be generated after the solutions
without zeros:
>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]
For even `p` the `permute_sign` function can be used to get all
signed values:
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12)]
All possible signed permutations can also be obtained:
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
"""
n, p, k = [as_int(i) for i in (n, p, k)]
if n < 0:
if p % 2:
for t in power_representation(-n, p, k, zeros):
yield tuple(-i for i in t)
return
if p < 1 or k < 1:
raise ValueError(filldedent('''
Expecting positive integers for `(p, k)`, but got `(%s, %s)`'''
% (p, k)))
if n == 0:
if zeros:
yield (0,)*k
return
if k == 1:
if p == 1:
yield (n,)
else:
be = perfect_power(n)
if be:
b, e = be
d, r = divmod(e, p)
if not r:
yield (b**d,)
return
if p == 1:
for t in partition(n, k, zeros=zeros):
yield t
return
if p == 2:
feasible = _can_do_sum_of_squares(n, k)
if not feasible:
return
if not zeros and n > 33 and k >= 5 and k <= n and n - k in (
13, 10, 7, 5, 4, 2, 1):
'''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online].
Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf'''
return
if feasible is not True: # it's prime and k == 2
yield prime_as_sum_of_two_squares(n)
return
if k == 2 and p > 2:
be = perfect_power(n)
if be and be[1] % p == 0:
return # Fermat: a**n + b**n = c**n has no solution for n > 2
if n >= k:
a = integer_nthroot(n - (k - 1), p)[0]
for t in pow_rep_recursive(a, k, n, [], p):
yield tuple(reversed(t))
if zeros:
a = integer_nthroot(n, p)[0]
for i in range(1, k):
for t in pow_rep_recursive(a, i, n, [], p):
yield tuple(reversed(t + (0,) * (k - i)))
sum_of_powers = power_representation
def pow_rep_recursive(n_i, k, n_remaining, terms, p):
if k == 0 and n_remaining == 0:
yield tuple(terms)
else:
if n_i >= 1 and k > 0:
yield from pow_rep_recursive(n_i - 1, k, n_remaining, terms, p)
residual = n_remaining - pow(n_i, p)
if residual >= 0:
yield from pow_rep_recursive(n_i, k - 1, residual, terms + [n_i], p)
def sum_of_squares(n, k, zeros=False):
"""Return a generator that yields the k-tuples of nonnegative
values, the squares of which sum to n. If zeros is False (default)
then the solution will not contain zeros. The nonnegative
elements of a tuple are sorted.
* If k == 1 and n is square, (n,) is returned.
* If k == 2 then n can only be written as a sum of squares if
every prime in the factorization of n that has the form
4*k + 3 has an even multiplicity. If n is prime then
it can only be written as a sum of two squares if it is
in the form 4*k + 1.
* if k == 3 then n can be written as a sum of squares if it does
not have the form 4**m*(8*k + 7).
* all integers can be written as the sum of 4 squares.
* if k > 4 then n can be partitioned and each partition can
be written as a sum of 4 squares; if n is not evenly divisible
by 4 then n can be written as a sum of squares only if the
an additional partition can be written as sum of squares.
For example, if k = 6 then n is partitioned into two parts,
the first being written as a sum of 4 squares and the second
being written as a sum of 2 squares -- which can only be
done if the condition above for k = 2 can be met, so this will
automatically reject certain partitions of n.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_squares
>>> list(sum_of_squares(25, 2))
[(3, 4)]
>>> list(sum_of_squares(25, 2, True))
[(3, 4), (0, 5)]
>>> list(sum_of_squares(25, 4))
[(1, 2, 2, 4)]
See Also
========
sympy.utilities.iterables.signed_permutations
"""
yield from power_representation(n, 2, k, zeros)
def _can_do_sum_of_squares(n, k):
"""Return True if n can be written as the sum of k squares,
False if it can't, or 1 if k == 2 and n is prime (in which
case it *can* be written as a sum of two squares). A False
is returned only if it can't be written as k-squares, even
if 0s are allowed.
"""
if k < 1:
return False
if n < 0:
return False
if n == 0:
return True
if k == 1:
return is_square(n)
if k == 2:
if n in (1, 2):
return True
if isprime(n):
if n % 4 == 1:
return 1 # signal that it was prime
return False
else:
f = factorint(n)
for p, m in f.items():
# we can proceed iff no prime factor in the form 4*k + 3
# has an odd multiplicity
if (p % 4 == 3) and m % 2:
return False
return True
if k == 3:
if (n//4**multiplicity(4, n)) % 8 == 7:
return False
# every number can be written as a sum of 4 squares; for k > 4 partitions
# can be 0
return True
|
b68d8c103b32ec71754316ab9174da06dd47314332292c4cc359b03d423cb6a3 | r"""
This module contains :py:meth:`~sympy.solvers.ode.dsolve` and different helper
functions that it uses.
:py:meth:`~sympy.solvers.ode.dsolve` solves ordinary differential equations.
See the docstring on the various functions for their uses. Note that partial
differential equations support is in ``pde.py``. Note that hint functions
have docstrings describing their various methods, but they are intended for
internal use. Use ``dsolve(ode, func, hint=hint)`` to solve an ODE using a
specific hint. See also the docstring on
:py:meth:`~sympy.solvers.ode.dsolve`.
**Functions in this module**
These are the user functions in this module:
- :py:meth:`~sympy.solvers.ode.dsolve` - Solves ODEs.
- :py:meth:`~sympy.solvers.ode.classify_ode` - Classifies ODEs into
possible hints for :py:meth:`~sympy.solvers.ode.dsolve`.
- :py:meth:`~sympy.solvers.ode.checkodesol` - Checks if an equation is the
solution to an ODE.
- :py:meth:`~sympy.solvers.ode.homogeneous_order` - Returns the
homogeneous order of an expression.
- :py:meth:`~sympy.solvers.ode.infinitesimals` - Returns the infinitesimals
of the Lie group of point transformations of an ODE, such that it is
invariant.
- :py:meth:`~sympy.solvers.ode.checkinfsol` - Checks if the given infinitesimals
are the actual infinitesimals of a first order ODE.
These are the non-solver helper functions that are for internal use. The
user should use the various options to
:py:meth:`~sympy.solvers.ode.dsolve` to obtain the functionality provided
by these functions:
- :py:meth:`~sympy.solvers.ode.ode.odesimp` - Does all forms of ODE
simplification.
- :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity` - A key function for
comparing solutions by simplicity.
- :py:meth:`~sympy.solvers.ode.constantsimp` - Simplifies arbitrary
constants.
- :py:meth:`~sympy.solvers.ode.ode.constant_renumber` - Renumber arbitrary
constants.
- :py:meth:`~sympy.solvers.ode.ode._handle_Integral` - Evaluate unevaluated
Integrals.
See also the docstrings of these functions.
**Currently implemented solver methods**
The following methods are implemented for solving ordinary differential
equations. See the docstrings of the various hint functions for more
information on each (run ``help(ode)``):
- 1st order separable differential equations.
- 1st order differential equations whose coefficients or `dx` and `dy` are
functions homogeneous of the same order.
- 1st order exact differential equations.
- 1st order linear differential equations.
- 1st order Bernoulli differential equations.
- Power series solutions for first order differential equations.
- Lie Group method of solving first order differential equations.
- 2nd order Liouville differential equations.
- Power series solutions for second order differential equations
at ordinary and regular singular points.
- `n`\th order differential equation that can be solved with algebraic
rearrangement and integration.
- `n`\th order linear homogeneous differential equation with constant
coefficients.
- `n`\th order linear inhomogeneous differential equation with constant
coefficients using the method of undetermined coefficients.
- `n`\th order linear inhomogeneous differential equation with constant
coefficients using the method of variation of parameters.
**Philosophy behind this module**
This module is designed to make it easy to add new ODE solving methods without
having to mess with the solving code for other methods. The idea is that
there is a :py:meth:`~sympy.solvers.ode.classify_ode` function, which takes in
an ODE and tells you what hints, if any, will solve the ODE. It does this
without attempting to solve the ODE, so it is fast. Each solving method is a
hint, and it has its own function, named ``ode_<hint>``. That function takes
in the ODE and any match expression gathered by
:py:meth:`~sympy.solvers.ode.classify_ode` and returns a solved result. If
this result has any integrals in it, the hint function will return an
unevaluated :py:class:`~sympy.integrals.integrals.Integral` class.
:py:meth:`~sympy.solvers.ode.dsolve`, which is the user wrapper function
around all of this, will then call :py:meth:`~sympy.solvers.ode.ode.odesimp` on
the result, which, among other things, will attempt to solve the equation for
the dependent variable (the function we are solving for), simplify the
arbitrary constants in the expression, and evaluate any integrals, if the hint
allows it.
**How to add new solution methods**
If you have an ODE that you want :py:meth:`~sympy.solvers.ode.dsolve` to be
able to solve, try to avoid adding special case code here. Instead, try
finding a general method that will solve your ODE, as well as others. This
way, the :py:mod:`~sympy.solvers.ode` module will become more robust, and
unhindered by special case hacks. WolphramAlpha and Maple's
DETools[odeadvisor] function are two resources you can use to classify a
specific ODE. It is also better for a method to work with an `n`\th order ODE
instead of only with specific orders, if possible.
To add a new method, there are a few things that you need to do. First, you
need a hint name for your method. Try to name your hint so that it is
unambiguous with all other methods, including ones that may not be implemented
yet. If your method uses integrals, also include a ``hint_Integral`` hint.
If there is more than one way to solve ODEs with your method, include a hint
for each one, as well as a ``<hint>_best`` hint. Your ``ode_<hint>_best()``
function should choose the best using min with ``ode_sol_simplicity`` as the
key argument. See
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`, for example.
The function that uses your method will be called ``ode_<hint>()``, so the
hint must only use characters that are allowed in a Python function name
(alphanumeric characters and the underscore '``_``' character). Include a
function for every hint, except for ``_Integral`` hints
(:py:meth:`~sympy.solvers.ode.dsolve` takes care of those automatically).
Hint names should be all lowercase, unless a word is commonly capitalized
(such as Integral or Bernoulli). If you have a hint that you do not want to
run with ``all_Integral`` that doesn't have an ``_Integral`` counterpart (such
as a best hint that would defeat the purpose of ``all_Integral``), you will
need to remove it manually in the :py:meth:`~sympy.solvers.ode.dsolve` code.
See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for
guidelines on writing a hint name.
Determine *in general* how the solutions returned by your method compare with
other methods that can potentially solve the same ODEs. Then, put your hints
in the :py:data:`~sympy.solvers.ode.allhints` tuple in the order that they
should be called. The ordering of this tuple determines which hints are
default. Note that exceptions are ok, because it is easy for the user to
choose individual hints with :py:meth:`~sympy.solvers.ode.dsolve`. In
general, ``_Integral`` variants should go at the end of the list, and
``_best`` variants should go before the various hints they apply to. For
example, the ``undetermined_coefficients`` hint comes before the
``variation_of_parameters`` hint because, even though variation of parameters
is more general than undetermined coefficients, undetermined coefficients
generally returns cleaner results for the ODEs that it can solve than
variation of parameters does, and it does not require integration, so it is
much faster.
Next, you need to have a match expression or a function that matches the type
of the ODE, which you should put in :py:meth:`~sympy.solvers.ode.classify_ode`
(if the match function is more than just a few lines, like
:py:meth:`~sympy.solvers.ode.ode._undetermined_coefficients_match`, it should go
outside of :py:meth:`~sympy.solvers.ode.classify_ode`). It should match the
ODE without solving for it as much as possible, so that
:py:meth:`~sympy.solvers.ode.classify_ode` remains fast and is not hindered by
bugs in solving code. Be sure to consider corner cases. For example, if your
solution method involves dividing by something, make sure you exclude the case
where that division will be 0.
In most cases, the matching of the ODE will also give you the various parts
that you need to solve it. You should put that in a dictionary (``.match()``
will do this for you), and add that as ``matching_hints['hint'] = matchdict``
in the relevant part of :py:meth:`~sympy.solvers.ode.classify_ode`.
:py:meth:`~sympy.solvers.ode.classify_ode` will then send this to
:py:meth:`~sympy.solvers.ode.dsolve`, which will send it to your function as
the ``match`` argument. Your function should be named ``ode_<hint>(eq, func,
order, match)`. If you need to send more information, put it in the ``match``
dictionary. For example, if you had to substitute in a dummy variable in
:py:meth:`~sympy.solvers.ode.classify_ode` to match the ODE, you will need to
pass it to your function using the `match` dict to access it. You can access
the independent variable using ``func.args[0]``, and the dependent variable
(the function you are trying to solve for) as ``func.func``. If, while trying
to solve the ODE, you find that you cannot, raise ``NotImplementedError``.
:py:meth:`~sympy.solvers.ode.dsolve` will catch this error with the ``all``
meta-hint, rather than causing the whole routine to fail.
Add a docstring to your function that describes the method employed. Like
with anything else in SymPy, you will need to add a doctest to the docstring,
in addition to real tests in ``test_ode.py``. Try to maintain consistency
with the other hint functions' docstrings. Add your method to the list at the
top of this docstring. Also, add your method to ``ode.rst`` in the
``docs/src`` directory, so that the Sphinx docs will pull its docstring into
the main SymPy documentation. Be sure to make the Sphinx documentation by
running ``make html`` from within the doc directory to verify that the
docstring formats correctly.
If your solution method involves integrating, use :py:obj:`~.Integral` instead of
:py:meth:`~sympy.core.expr.Expr.integrate`. This allows the user to bypass
hard/slow integration by using the ``_Integral`` variant of your hint. In
most cases, calling :py:meth:`sympy.core.basic.Basic.doit` will integrate your
solution. If this is not the case, you will need to write special code in
:py:meth:`~sympy.solvers.ode.ode._handle_Integral`. Arbitrary constants should be
symbols named ``C1``, ``C2``, and so on. All solution methods should return
an equality instance. If you need an arbitrary number of arbitrary constants,
you can use ``constants = numbered_symbols(prefix='C', cls=Symbol, start=1)``.
If it is possible to solve for the dependent function in a general way, do so.
Otherwise, do as best as you can, but do not call solve in your
``ode_<hint>()`` function. :py:meth:`~sympy.solvers.ode.ode.odesimp` will attempt
to solve the solution for you, so you do not need to do that. Lastly, if your
ODE has a common simplification that can be applied to your solutions, you can
add a special case in :py:meth:`~sympy.solvers.ode.ode.odesimp` for it. For
example, solutions returned from the ``1st_homogeneous_coeff`` hints often
have many :obj:`~sympy.functions.elementary.exponential.log` terms, so
:py:meth:`~sympy.solvers.ode.ode.odesimp` calls
:py:meth:`~sympy.simplify.simplify.logcombine` on them (it also helps to write
the arbitrary constant as ``log(C1)`` instead of ``C1`` in this case). Also
consider common ways that you can rearrange your solution to have
:py:meth:`~sympy.solvers.ode.constantsimp` take better advantage of it. It is
better to put simplification in :py:meth:`~sympy.solvers.ode.ode.odesimp` than in
your method, because it can then be turned off with the simplify flag in
:py:meth:`~sympy.solvers.ode.dsolve`. If you have any extraneous
simplification in your function, be sure to only run it using ``if
match.get('simplify', True):``, especially if it can be slow or if it can
reduce the domain of the solution.
Finally, as with every contribution to SymPy, your method will need to be
tested. Add a test for each method in ``test_ode.py``. Follow the
conventions there, i.e., test the solver using ``dsolve(eq, f(x),
hint=your_hint)``, and also test the solution using
:py:meth:`~sympy.solvers.ode.checkodesol` (you can put these in a separate
tests and skip/XFAIL if it runs too slow/doesn't work). Be sure to call your
hint specifically in :py:meth:`~sympy.solvers.ode.dsolve`, that way the test
won't be broken simply by the introduction of another matching hint. If your
method works for higher order (>1) ODEs, you will need to run ``sol =
constant_renumber(sol, 'C', 1, order)`` for each solution, where ``order`` is
the order of the ODE. This is because ``constant_renumber`` renumbers the
arbitrary constants by printing order, which is platform dependent. Try to
test every corner case of your solver, including a range of orders if it is a
`n`\th order solver, but if your solver is slow, such as if it involves hard
integration, try to keep the test run time down.
Feel free to refactor existing hints to avoid duplicating code or creating
inconsistencies. If you can show that your method exactly duplicates an
existing method, including in the simplicity and speed of obtaining the
solutions, then you can remove the old, less general method. The existing
code is tested extensively in ``test_ode.py``, so if anything is broken, one
of those tests will surely fail.
"""
from collections import defaultdict
from itertools import islice
from sympy.functions import hyper
from sympy.core import Add, S, Mul, Pow, oo, Rational
from sympy.core.compatibility import ordered, iterable
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.function import (Function, Derivative, AppliedUndef, diff,
expand, expand_mul, Subs, _mexpand)
from sympy.core.multidimensional import vectorize
from sympy.core.numbers import NaN, zoo, Number
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Wild, Dummy, symbols
from sympy.core.sympify import sympify
from sympy.logic.boolalg import (BooleanAtom, BooleanTrue,
BooleanFalse)
from sympy.functions import cos, cosh, exp, im, log, re, sin, sinh, sqrt, \
atan2, conjugate, cbrt, besselj, bessely, airyai, airybi
from sympy.functions.combinatorial.factorials import factorial
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import wronskian
from sympy.polys import (Poly, RootOf, rootof, terms_gcd,
PolynomialError, lcm, roots, gcd)
from sympy.polys.polytools import cancel, degree, div
from sympy.series import Order
from sympy.series.series import series
from sympy.simplify import (collect, logcombine, powsimp, # type: ignore
separatevars, simplify, trigsimp, posify, cse)
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import collect_const
from sympy.solvers import checksol, solve
from sympy.solvers.pde import pdsolve
from sympy.utilities import numbered_symbols, default_sort_key, sift
from sympy.utilities.iterables import uniq
from sympy.solvers.deutils import _preprocess, ode_order, _desolve
from .subscheck import sub_func_doit
#: This is a list of hints in the order that they should be preferred by
#: :py:meth:`~sympy.solvers.ode.classify_ode`. In general, hints earlier in the
#: list should produce simpler solutions than those later in the list (for
#: ODEs that fit both). For now, the order of this list is based on empirical
#: observations by the developers of SymPy.
#:
#: The hint used by :py:meth:`~sympy.solvers.ode.dsolve` for a specific ODE
#: can be overridden (see the docstring).
#:
#: In general, ``_Integral`` hints are grouped at the end of the list, unless
#: there is a method that returns an unevaluable integral most of the time
#: (which go near the end of the list anyway). ``default``, ``all``,
#: ``best``, and ``all_Integral`` meta-hints should not be included in this
#: list, but ``_best`` and ``_Integral`` hints should be included.
allhints = (
"factorable",
"nth_algebraic",
"separable",
"1st_exact",
"1st_linear",
"Bernoulli",
"Riccati_special_minus2",
"1st_homogeneous_coeff_best",
"1st_homogeneous_coeff_subs_indep_div_dep",
"1st_homogeneous_coeff_subs_dep_div_indep",
"almost_linear",
"linear_coefficients",
"separable_reduced",
"1st_power_series",
"lie_group",
"nth_linear_constant_coeff_homogeneous",
"nth_linear_euler_eq_homogeneous",
"nth_linear_constant_coeff_undetermined_coefficients",
"nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients",
"nth_linear_constant_coeff_variation_of_parameters",
"nth_linear_euler_eq_nonhomogeneous_variation_of_parameters",
"Liouville",
"2nd_linear_airy",
"2nd_linear_bessel",
"2nd_hypergeometric",
"2nd_hypergeometric_Integral",
"nth_order_reducible",
"2nd_power_series_ordinary",
"2nd_power_series_regular",
"nth_algebraic_Integral",
"separable_Integral",
"1st_exact_Integral",
"1st_linear_Integral",
"Bernoulli_Integral",
"1st_homogeneous_coeff_subs_indep_div_dep_Integral",
"1st_homogeneous_coeff_subs_dep_div_indep_Integral",
"almost_linear_Integral",
"linear_coefficients_Integral",
"separable_reduced_Integral",
"nth_linear_constant_coeff_variation_of_parameters_Integral",
"nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral",
"Liouville_Integral",
)
lie_heuristics = (
"abaco1_simple",
"abaco1_product",
"abaco2_similar",
"abaco2_unique_unknown",
"abaco2_unique_general",
"linear",
"function_sum",
"bivariate",
"chi"
)
def get_numbered_constants(eq, num=1, start=1, prefix='C'):
"""
Returns a list of constants that do not occur
in eq already.
"""
ncs = iter_numbered_constants(eq, start, prefix)
Cs = [next(ncs) for i in range(num)]
return (Cs[0] if num == 1 else tuple(Cs))
def iter_numbered_constants(eq, start=1, prefix='C'):
"""
Returns an iterator of constants that do not occur
in eq already.
"""
if isinstance(eq, (Expr, Eq)):
eq = [eq]
elif not iterable(eq):
raise ValueError("Expected Expr or iterable but got %s" % eq)
atom_set = set().union(*[i.free_symbols for i in eq])
func_set = set().union(*[i.atoms(Function) for i in eq])
if func_set:
atom_set |= {Symbol(str(f.func)) for f in func_set}
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set)
def dsolve(eq, func=None, hint="default", simplify=True,
ics= None, xi=None, eta=None, x0=0, n=6, **kwargs):
r"""
Solves any (supported) kind of ordinary differential equation and
system of ordinary differential equations.
For single ordinary differential equation
=========================================
It is classified under this when number of equation in ``eq`` is one.
**Usage**
``dsolve(eq, f(x), hint)`` -> Solve ordinary differential equation
``eq`` for function ``f(x)``, using method ``hint``.
**Details**
``eq`` can be any supported ordinary differential equation (see the
:py:mod:`~sympy.solvers.ode` docstring for supported methods).
This can either be an :py:class:`~sympy.core.relational.Equality`,
or an expression, which is assumed to be equal to ``0``.
``f(x)`` is a function of one variable whose derivatives in that
variable make up the ordinary differential equation ``eq``. In
many cases it is not necessary to provide this; it will be
autodetected (and an error raised if it couldn't be detected).
``hint`` is the solving method that you want dsolve to use. Use
``classify_ode(eq, f(x))`` to get all of the possible hints for an
ODE. The default hint, ``default``, will use whatever hint is
returned first by :py:meth:`~sympy.solvers.ode.classify_ode`. See
Hints below for more options that you can use for hint.
``simplify`` enables simplification by
:py:meth:`~sympy.solvers.ode.ode.odesimp`. See its docstring for more
information. Turn this off, for example, to disable solving of
solutions for ``func`` or simplification of arbitrary constants.
It will still integrate with this hint. Note that the solution may
contain more arbitrary constants than the order of the ODE with
this option enabled.
``xi`` and ``eta`` are the infinitesimal functions of an ordinary
differential equation. They are the infinitesimals of the Lie group
of point transformations for which the differential equation is
invariant. The user can specify values for the infinitesimals. If
nothing is specified, ``xi`` and ``eta`` are calculated using
:py:meth:`~sympy.solvers.ode.infinitesimals` with the help of various
heuristics.
``ics`` is the set of initial/boundary conditions for the differential equation.
It should be given in the form of ``{f(x0): x1, f(x).diff(x).subs(x, x2):
x3}`` and so on. For power series solutions, if no initial
conditions are specified ``f(0)`` is assumed to be ``C0`` and the power
series solution is calculated about 0.
``x0`` is the point about which the power series solution of a differential
equation is to be evaluated.
``n`` gives the exponent of the dependent variable up to which the power series
solution of a differential equation is to be evaluated.
**Hints**
Aside from the various solving methods, there are also some meta-hints
that you can pass to :py:meth:`~sympy.solvers.ode.dsolve`:
``default``:
This uses whatever hint is returned first by
:py:meth:`~sympy.solvers.ode.classify_ode`. This is the
default argument to :py:meth:`~sympy.solvers.ode.dsolve`.
``all``:
To make :py:meth:`~sympy.solvers.ode.dsolve` apply all
relevant classification hints, use ``dsolve(ODE, func,
hint="all")``. This will return a dictionary of
``hint:solution`` terms. If a hint causes dsolve to raise the
``NotImplementedError``, value of that hint's key will be the
exception object raised. The dictionary will also include
some special keys:
- ``order``: The order of the ODE. See also
:py:meth:`~sympy.solvers.deutils.ode_order` in
``deutils.py``.
- ``best``: The simplest hint; what would be returned by
``best`` below.
- ``best_hint``: The hint that would produce the solution
given by ``best``. If more than one hint produces the best
solution, the first one in the tuple returned by
:py:meth:`~sympy.solvers.ode.classify_ode` is chosen.
- ``default``: The solution that would be returned by default.
This is the one produced by the hint that appears first in
the tuple returned by
:py:meth:`~sympy.solvers.ode.classify_ode`.
``all_Integral``:
This is the same as ``all``, except if a hint also has a
corresponding ``_Integral`` hint, it only returns the
``_Integral`` hint. This is useful if ``all`` causes
:py:meth:`~sympy.solvers.ode.dsolve` to hang because of a
difficult or impossible integral. This meta-hint will also be
much faster than ``all``, because
:py:meth:`~sympy.core.expr.Expr.integrate` is an expensive
routine.
``best``:
To have :py:meth:`~sympy.solvers.ode.dsolve` try all methods
and return the simplest one. This takes into account whether
the solution is solvable in the function, whether it contains
any Integral classes (i.e. unevaluatable integrals), and
which one is the shortest in size.
See also the :py:meth:`~sympy.solvers.ode.classify_ode` docstring for
more info on hints, and the :py:mod:`~sympy.solvers.ode` docstring for
a list of all supported hints.
**Tips**
- You can declare the derivative of an unknown function this way:
>>> from sympy import Function, Derivative
>>> from sympy.abc import x # x is the independent variable
>>> f = Function("f")(x) # f is a function of x
>>> # f_ will be the derivative of f with respect to x
>>> f_ = Derivative(f, x)
- See ``test_ode.py`` for many tests, which serves also as a set of
examples for how to use :py:meth:`~sympy.solvers.ode.dsolve`.
- :py:meth:`~sympy.solvers.ode.dsolve` always returns an
:py:class:`~sympy.core.relational.Equality` class (except for the
case when the hint is ``all`` or ``all_Integral``). If possible, it
solves the solution explicitly for the function being solved for.
Otherwise, it returns an implicit solution.
- Arbitrary constants are symbols named ``C1``, ``C2``, and so on.
- Because all solutions should be mathematically equivalent, some
hints may return the exact same result for an ODE. Often, though,
two different hints will return the same solution formatted
differently. The two should be equivalent. Also note that sometimes
the values of the arbitrary constants in two different solutions may
not be the same, because one constant may have "absorbed" other
constants into it.
- Do ``help(ode.ode_<hintname>)`` to get help more information on a
specific hint, where ``<hintname>`` is the name of a hint without
``_Integral``.
For system of ordinary differential equations
=============================================
**Usage**
``dsolve(eq, func)`` -> Solve a system of ordinary differential
equations ``eq`` for ``func`` being list of functions including
`x(t)`, `y(t)`, `z(t)` where number of functions in the list depends
upon the number of equations provided in ``eq``.
**Details**
``eq`` can be any supported system of ordinary differential equations
This can either be an :py:class:`~sympy.core.relational.Equality`,
or an expression, which is assumed to be equal to ``0``.
``func`` holds ``x(t)`` and ``y(t)`` being functions of one variable which
together with some of their derivatives make up the system of ordinary
differential equation ``eq``. It is not necessary to provide this; it
will be autodetected (and an error raised if it couldn't be detected).
**Hints**
The hints are formed by parameters returned by classify_sysode, combining
them give hints name used later for forming method name.
Examples
========
>>> from sympy import Function, dsolve, Eq, Derivative, sin, cos, symbols
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(Derivative(f(x), x, x) + 9*f(x), f(x))
Eq(f(x), C1*sin(3*x) + C2*cos(3*x))
>>> eq = sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x)
>>> dsolve(eq, hint='1st_exact')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> dsolve(eq, hint='almost_linear')
[Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))]
>>> t = symbols('t')
>>> x, y = symbols('x, y', cls=Function)
>>> eq = (Eq(Derivative(x(t),t), 12*t*x(t) + 8*y(t)), Eq(Derivative(y(t),t), 21*x(t) + 7*t*y(t)))
>>> dsolve(eq)
[Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t)),
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(8*exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)**2, t) +
exp(Integral(7*t, t))*exp(Integral(12*t, t))/x0(t)))]
>>> eq = (Eq(Derivative(x(t),t),x(t)*y(t)*sin(t)), Eq(Derivative(y(t),t),y(t)**2*sin(t)))
>>> dsolve(eq)
{Eq(x(t), -exp(C1)/(C2*exp(C1) - cos(t))), Eq(y(t), -1/(C1 - cos(t)))}
"""
if iterable(eq):
from sympy.solvers.ode.systems import dsolve_system
# This may have to be changed in future
# when we have weakly and strongly
# connected components. This have to
# changed to show the systems that haven't
# been solved.
try:
sol = dsolve_system(eq, funcs=func, ics=ics, doit=True)
return sol[0] if len(sol) == 1 else sol
except NotImplementedError:
pass
match = classify_sysode(eq, func)
eq = match['eq']
order = match['order']
func = match['func']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
# keep highest order term coefficient positive
for i in range(len(eq)):
for func_ in func:
if isinstance(func_, list):
pass
else:
if eq[i].coeff(diff(func[i],t,ode_order(eq[i], func[i]))).is_negative:
eq[i] = -eq[i]
match['eq'] = eq
if len(set(order.values()))!=1:
raise ValueError("It solves only those systems of equations whose orders are equal")
match['order'] = list(order.values())[0]
def recur_len(l):
return sum(recur_len(item) if isinstance(item,list) else 1 for item in l)
if recur_len(func) != len(eq):
raise ValueError("dsolve() and classify_sysode() work with "
"number of functions being equal to number of equations")
if match['type_of_equation'] is None:
raise NotImplementedError
else:
if match['is_linear'] == True:
solvefunc = globals()['sysode_linear_%(no_of_equation)seq_order%(order)s' % match]
else:
solvefunc = globals()['sysode_nonlinear_%(no_of_equation)seq_order%(order)s' % match]
sols = solvefunc(match)
if ics:
constants = Tuple(*sols).free_symbols - Tuple(*eq).free_symbols
solved_constants = solve_ics(sols, func, constants, ics)
return [sol.subs(solved_constants) for sol in sols]
return sols
else:
given_hint = hint # hint given by the user
# See the docstring of _desolve for more details.
hints = _desolve(eq, func=func,
hint=hint, simplify=True, xi=xi, eta=eta, type='ode', ics=ics,
x0=x0, n=n, **kwargs)
eq = hints.pop('eq', eq)
all_ = hints.pop('all', False)
if all_:
retdict = {}
failed_hints = {}
gethints = classify_ode(eq, dict=True)
orderedhints = gethints['ordered_hints']
for hint in hints:
try:
rv = _helper_simplify(eq, hint, hints[hint], simplify)
except NotImplementedError as detail:
failed_hints[hint] = detail
else:
retdict[hint] = rv
func = hints[hint]['func']
retdict['best'] = min(list(retdict.values()), key=lambda x:
ode_sol_simplicity(x, func, trysolving=not simplify))
if given_hint == 'best':
return retdict['best']
for i in orderedhints:
if retdict['best'] == retdict.get(i, None):
retdict['best_hint'] = i
break
retdict['default'] = gethints['default']
retdict['order'] = gethints['order']
retdict.update(failed_hints)
return retdict
else:
# The key 'hint' stores the hint needed to be solved for.
hint = hints['hint']
return _helper_simplify(eq, hint, hints, simplify, ics=ics)
def _helper_simplify(eq, hint, match, simplify=True, ics=None, **kwargs):
r"""
Helper function of dsolve that calls the respective
:py:mod:`~sympy.solvers.ode` functions to solve for the ordinary
differential equations. This minimizes the computation in calling
:py:meth:`~sympy.solvers.deutils._desolve` multiple times.
"""
r = match
func = r['func']
order = r['order']
match = r[hint]
if isinstance(match, SingleODESolver):
solvefunc = match
elif hint.endswith('_Integral'):
solvefunc = globals()['ode_' + hint[:-len('_Integral')]]
else:
solvefunc = globals()['ode_' + hint]
free = eq.free_symbols
cons = lambda s: s.free_symbols.difference(free)
if simplify:
# odesimp() will attempt to integrate, if necessary, apply constantsimp(),
# attempt to solve for func, and apply any other hint specific
# simplifications
if isinstance(solvefunc, SingleODESolver):
sols = solvefunc.get_general_solution()
else:
sols = solvefunc(eq, func, order, match)
if iterable(sols):
rv = [odesimp(eq, s, func, hint) for s in sols]
else:
rv = odesimp(eq, sols, func, hint)
else:
# We still want to integrate (you can disable it separately with the hint)
if isinstance(solvefunc, SingleODESolver):
exprs = solvefunc.get_general_solution(simplify=False)
else:
match['simplify'] = False # Some hints can take advantage of this option
exprs = solvefunc(eq, func, order, match)
if isinstance(exprs, list):
rv = [_handle_Integral(expr, func, hint) for expr in exprs]
else:
rv = _handle_Integral(exprs, func, hint)
if isinstance(rv, list):
rv = _remove_redundant_solutions(eq, rv, order, func.args[0])
if len(rv) == 1:
rv = rv[0]
if ics and not 'power_series' in hint:
if isinstance(rv, (Expr, Eq)):
solved_constants = solve_ics([rv], [r['func']], cons(rv), ics)
rv = rv.subs(solved_constants)
else:
rv1 = []
for s in rv:
try:
solved_constants = solve_ics([s], [r['func']], cons(s), ics)
except ValueError:
continue
rv1.append(s.subs(solved_constants))
if len(rv1) == 1:
return rv1[0]
rv = rv1
return rv
def solve_ics(sols, funcs, constants, ics):
"""
Solve for the constants given initial conditions
``sols`` is a list of solutions.
``funcs`` is a list of functions.
``constants`` is a list of constants.
``ics`` is the set of initial/boundary conditions for the differential
equation. It should be given in the form of ``{f(x0): x1,
f(x).diff(x).subs(x, x2): x3}`` and so on.
Returns a dictionary mapping constants to values.
``solution.subs(constants)`` will replace the constants in ``solution``.
Example
=======
>>> # From dsolve(f(x).diff(x) - f(x), f(x))
>>> from sympy import symbols, Eq, exp, Function
>>> from sympy.solvers.ode.ode import solve_ics
>>> f = Function('f')
>>> x, C1 = symbols('x C1')
>>> sols = [Eq(f(x), C1*exp(x))]
>>> funcs = [f(x)]
>>> constants = [C1]
>>> ics = {f(0): 2}
>>> solved_constants = solve_ics(sols, funcs, constants, ics)
>>> solved_constants
{C1: 2}
>>> sols[0].subs(solved_constants)
Eq(f(x), 2*exp(x))
"""
# Assume ics are of the form f(x0): value or Subs(diff(f(x), x, n), (x,
# x0)): value (currently checked by classify_ode). To solve, replace x
# with x0, f(x0) with value, then solve for constants. For f^(n)(x0),
# differentiate the solution n times, so that f^(n)(x) appears.
x = funcs[0].args[0]
diff_sols = []
subs_sols = []
diff_variables = set()
for funcarg, value in ics.items():
if isinstance(funcarg, AppliedUndef):
x0 = funcarg.args[0]
matching_func = [f for f in funcs if f.func == funcarg.func][0]
S = sols
elif isinstance(funcarg, (Subs, Derivative)):
if isinstance(funcarg, Subs):
# Make sure it stays a subs. Otherwise subs below will produce
# a different looking term.
funcarg = funcarg.doit()
if isinstance(funcarg, Subs):
deriv = funcarg.expr
x0 = funcarg.point[0]
variables = funcarg.expr.variables
matching_func = deriv
elif isinstance(funcarg, Derivative):
deriv = funcarg
x0 = funcarg.variables[0]
variables = (x,)*len(funcarg.variables)
matching_func = deriv.subs(x0, x)
if variables not in diff_variables:
for sol in sols:
if sol.has(deriv.expr.func):
diff_sols.append(Eq(sol.lhs.diff(*variables), sol.rhs.diff(*variables)))
diff_variables.add(variables)
S = diff_sols
else:
raise NotImplementedError("Unrecognized initial condition")
for sol in S:
if sol.has(matching_func):
sol2 = sol
sol2 = sol2.subs(x, x0)
sol2 = sol2.subs(funcarg, value)
# This check is necessary because of issue #15724
if not isinstance(sol2, BooleanAtom) or not subs_sols:
subs_sols = [s for s in subs_sols if not isinstance(s, BooleanAtom)]
subs_sols.append(sol2)
# TODO: Use solveset here
try:
solved_constants = solve(subs_sols, constants, dict=True)
except NotImplementedError:
solved_constants = []
# XXX: We can't differentiate between the solution not existing because of
# invalid initial conditions, and not existing because solve is not smart
# enough. If we could use solveset, this might be improvable, but for now,
# we use NotImplementedError in this case.
if not solved_constants:
raise ValueError("Couldn't solve for initial conditions")
if solved_constants == True:
raise ValueError("Initial conditions did not produce any solutions for constants. Perhaps they are degenerate.")
if len(solved_constants) > 1:
raise NotImplementedError("Initial conditions produced too many solutions for constants")
return solved_constants[0]
def classify_ode(eq, func=None, dict=False, ics=None, *, prep=True, xi=None, eta=None, n=None, **kwargs):
r"""
Returns a tuple of possible :py:meth:`~sympy.solvers.ode.dsolve`
classifications for an ODE.
The tuple is ordered so that first item is the classification that
:py:meth:`~sympy.solvers.ode.dsolve` uses to solve the ODE by default. In
general, classifications at the near the beginning of the list will
produce better solutions faster than those near the end, thought there are
always exceptions. To make :py:meth:`~sympy.solvers.ode.dsolve` use a
different classification, use ``dsolve(ODE, func,
hint=<classification>)``. See also the
:py:meth:`~sympy.solvers.ode.dsolve` docstring for different meta-hints
you can use.
If ``dict`` is true, :py:meth:`~sympy.solvers.ode.classify_ode` will
return a dictionary of ``hint:match`` expression terms. This is intended
for internal use by :py:meth:`~sympy.solvers.ode.dsolve`. Note that
because dictionaries are ordered arbitrarily, this will most likely not be
in the same order as the tuple.
You can get help on different hints by executing
``help(ode.ode_hintname)``, where ``hintname`` is the name of the hint
without ``_Integral``.
See :py:data:`~sympy.solvers.ode.allhints` or the
:py:mod:`~sympy.solvers.ode` docstring for a list of all supported hints
that can be returned from :py:meth:`~sympy.solvers.ode.classify_ode`.
Notes
=====
These are remarks on hint names.
``_Integral``
If a classification has ``_Integral`` at the end, it will return the
expression with an unevaluated :py:class:`~.Integral`
class in it. Note that a hint may do this anyway if
:py:meth:`~sympy.core.expr.Expr.integrate` cannot do the integral,
though just using an ``_Integral`` will do so much faster. Indeed, an
``_Integral`` hint will always be faster than its corresponding hint
without ``_Integral`` because
:py:meth:`~sympy.core.expr.Expr.integrate` is an expensive routine.
If :py:meth:`~sympy.solvers.ode.dsolve` hangs, it is probably because
:py:meth:`~sympy.core.expr.Expr.integrate` is hanging on a tough or
impossible integral. Try using an ``_Integral`` hint or
``all_Integral`` to get it return something.
Note that some hints do not have ``_Integral`` counterparts. This is
because :py:func:`~sympy.integrals.integrals.integrate` is not used in
solving the ODE for those method. For example, `n`\th order linear
homogeneous ODEs with constant coefficients do not require integration
to solve, so there is no
``nth_linear_homogeneous_constant_coeff_Integrate`` hint. You can
easily evaluate any unevaluated
:py:class:`~sympy.integrals.integrals.Integral`\s in an expression by
doing ``expr.doit()``.
Ordinals
Some hints contain an ordinal such as ``1st_linear``. This is to help
differentiate them from other hints, as well as from other methods
that may not be implemented yet. If a hint has ``nth`` in it, such as
the ``nth_linear`` hints, this means that the method used to applies
to ODEs of any order.
``indep`` and ``dep``
Some hints contain the words ``indep`` or ``dep``. These reference
the independent variable and the dependent function, respectively. For
example, if an ODE is in terms of `f(x)`, then ``indep`` will refer to
`x` and ``dep`` will refer to `f`.
``subs``
If a hints has the word ``subs`` in it, it means the the ODE is solved
by substituting the expression given after the word ``subs`` for a
single dummy variable. This is usually in terms of ``indep`` and
``dep`` as above. The substituted expression will be written only in
characters allowed for names of Python objects, meaning operators will
be spelled out. For example, ``indep``/``dep`` will be written as
``indep_div_dep``.
``coeff``
The word ``coeff`` in a hint refers to the coefficients of something
in the ODE, usually of the derivative terms. See the docstring for
the individual methods for more info (``help(ode)``). This is
contrast to ``coefficients``, as in ``undetermined_coefficients``,
which refers to the common name of a method.
``_best``
Methods that have more than one fundamental way to solve will have a
hint for each sub-method and a ``_best`` meta-classification. This
will evaluate all hints and return the best, using the same
considerations as the normal ``best`` meta-hint.
Examples
========
>>> from sympy import Function, classify_ode, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> classify_ode(Eq(f(x).diff(x), 0), f(x))
('nth_algebraic',
'separable',
'1st_linear',
'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group', 'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral', 'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
>>> classify_ode(f(x).diff(x, 2) + 3*f(x).diff(x) + 2*f(x) - 4)
('nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
"""
ics = sympify(ics)
if func and len(func.args) != 1:
raise ValueError("dsolve() and classify_ode() only "
"work with functions of one variable, not %s" % func)
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
# Some methods want the unprocessed equation
eq_orig = eq
if prep or func is None:
eq, func_ = _preprocess(eq, func)
if func is None:
func = func_
x = func.args[0]
f = func.func
y = Dummy('y')
terms = n
order = ode_order(eq, f(x))
# hint:matchdict or hint:(tuple of matchdicts)
# Also will contain "default":<default hint> and "order":order items.
matching_hints = {"order": order}
df = f(x).diff(x)
a = Wild('a', exclude=[f(x)])
d = Wild('d', exclude=[df, f(x).diff(x, 2)])
e = Wild('e', exclude=[df])
k = Wild('k', exclude=[df])
n = Wild('n', exclude=[x, f(x), df])
c1 = Wild('c1', exclude=[x])
a3 = Wild('a3', exclude=[f(x), df, f(x).diff(x, 2)])
b3 = Wild('b3', exclude=[f(x), df, f(x).diff(x, 2)])
c3 = Wild('c3', exclude=[f(x), df, f(x).diff(x, 2)])
r3 = {'xi': xi, 'eta': eta} # Used for the lie_group hint
boundary = {} # Used to extract initial conditions
C1 = Symbol("C1")
# Preprocessing to get the initial conditions out
if ics is not None:
for funcarg in ics:
# Separating derivatives
if isinstance(funcarg, (Subs, Derivative)):
# f(x).diff(x).subs(x, 0) is a Subs, but f(x).diff(x).subs(x,
# y) is a Derivative
if isinstance(funcarg, Subs):
deriv = funcarg.expr
old = funcarg.variables[0]
new = funcarg.point[0]
elif isinstance(funcarg, Derivative):
deriv = funcarg
# No information on this. Just assume it was x
old = x
new = funcarg.variables[0]
if (isinstance(deriv, Derivative) and isinstance(deriv.args[0],
AppliedUndef) and deriv.args[0].func == f and
len(deriv.args[0].args) == 1 and old == x and not
new.has(x) and all(i == deriv.variables[0] for i in
deriv.variables) and not ics[funcarg].has(f)):
dorder = ode_order(deriv, x)
temp = 'f' + str(dorder)
boundary.update({temp: new, temp + 'val': ics[funcarg]})
else:
raise ValueError("Enter valid boundary conditions for Derivatives")
# Separating functions
elif isinstance(funcarg, AppliedUndef):
if (funcarg.func == f and len(funcarg.args) == 1 and
not funcarg.args[0].has(x) and not ics[funcarg].has(f)):
boundary.update({'f0': funcarg.args[0], 'f0val': ics[funcarg]})
else:
raise ValueError("Enter valid boundary conditions for Function")
else:
raise ValueError("Enter boundary conditions of the form ics={f(point}: value, f(x).diff(x, order).subs(x, point): value}")
# Any ODE that can be solved with a combination of algebra and
# integrals e.g.:
# d^3/dx^3(x y) = F(x)
ode = SingleODEProblem(eq_orig, func, x, prep=prep)
solvers = {
NthAlgebraic: ('nth_algebraic',),
FirstLinear: ('1st_linear',),
AlmostLinear: ('almost_linear',),
Bernoulli: ('Bernoulli',),
Factorable: ('factorable',),
RiccatiSpecial: ('Riccati_special_minus2',),
}
for solvercls in solvers:
solver = solvercls(ode)
if solver.matches():
for hints in solvers[solvercls]:
matching_hints[hints] = solver
if solvercls.has_integral:
matching_hints[hints + "_Integral"] = solver
eq = expand(eq)
# Precondition to try remove f(x) from highest order derivative
reduced_eq = None
if eq.is_Add:
deriv_coef = eq.coeff(f(x).diff(x, order))
if deriv_coef not in (1, 0):
r = deriv_coef.match(a*f(x)**c1)
if r and r[c1]:
den = f(x)**r[c1]
reduced_eq = Add(*[arg/den for arg in eq.args])
if not reduced_eq:
reduced_eq = eq
if order == 1:
# NON-REDUCED FORM OF EQUATION matches
r = collect(eq, df, exact=True).match(d + e * df)
if r:
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = r[d].subs(f(x), y)
r[e] = r[e].subs(f(x), y)
# FIRST ORDER POWER SERIES WHICH NEEDS INITIAL CONDITIONS
# TODO: Hint first order series should match only if d/e is analytic.
# For now, only d/e and (d/e).diff(arg) is checked for existence at
# at a given point.
# This is currently done internally in ode_1st_power_series.
point = boundary.get('f0', 0)
value = boundary.get('f0val', C1)
check = cancel(r[d]/r[e])
check1 = check.subs({x: point, y: value})
if not check1.has(oo) and not check1.has(zoo) and \
not check1.has(NaN) and not check1.has(-oo):
check2 = (check1.diff(x)).subs({x: point, y: value})
if not check2.has(oo) and not check2.has(zoo) and \
not check2.has(NaN) and not check2.has(-oo):
rseries = r.copy()
rseries.update({'terms': terms, 'f0': point, 'f0val': value})
matching_hints["1st_power_series"] = rseries
r3.update(r)
## Exact Differential Equation: P(x, y) + Q(x, y)*y' = 0 where
# dP/dy == dQ/dx
try:
if r[d] != 0:
numerator = simplify(r[d].diff(y) - r[e].diff(x))
# The following few conditions try to convert a non-exact
# differential equation into an exact one.
# References : Differential equations with applications
# and historical notes - George E. Simmons
if numerator:
# If (dP/dy - dQ/dx) / Q = f(x)
# then exp(integral(f(x))*equation becomes exact
factor = simplify(numerator/r[e])
variables = factor.free_symbols
if len(variables) == 1 and x == variables.pop():
factor = exp(Integral(factor).doit())
r[d] *= factor
r[e] *= factor
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
else:
# If (dP/dy - dQ/dx) / -P = f(y)
# then exp(integral(f(y))*equation becomes exact
factor = simplify(-numerator/r[d])
variables = factor.free_symbols
if len(variables) == 1 and y == variables.pop():
factor = exp(Integral(factor).doit())
r[d] *= factor
r[e] *= factor
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
else:
matching_hints["1st_exact"] = r
matching_hints["1st_exact_Integral"] = r
except NotImplementedError:
# Differentiating the coefficients might fail because of things
# like f(2*x).diff(x). See issue 4624 and issue 4719.
pass
# Any first order ODE can be ideally solved by the Lie Group
# method
matching_hints["lie_group"] = r3
# This match is used for several cases below; we now collect on
# f(x) so the matching works.
r = collect(reduced_eq, df, exact=True).match(d + e*df)
if r:
# Using r[d] and r[e] without any modification for hints
# linear-coefficients and separable-reduced.
num, den = r[d], r[e] # ODE = d/e + df
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = num.subs(f(x), y)
r[e] = den.subs(f(x), y)
## Separable Case: y' == P(y)*Q(x)
r[d] = separatevars(r[d])
r[e] = separatevars(r[e])
# m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y'
m1 = separatevars(r[d], dict=True, symbols=(x, y))
m2 = separatevars(r[e], dict=True, symbols=(x, y))
if m1 and m2:
r1 = {'m1': m1, 'm2': m2, 'y': y}
matching_hints["separable"] = r1
matching_hints["separable_Integral"] = r1
## First order equation with homogeneous coefficients:
# dy/dx == F(y/x) or dy/dx == F(x/y)
ordera = homogeneous_order(r[d], x, y)
if ordera is not None:
orderb = homogeneous_order(r[e], x, y)
if ordera == orderb:
# u1=y/x and u2=x/y
u1 = Dummy('u1')
u2 = Dummy('u2')
s = "1st_homogeneous_coeff_subs"
s1 = s + "_dep_div_indep"
s2 = s + "_indep_div_dep"
if simplify((r[d] + u1*r[e]).subs({x: 1, y: u1})) != 0:
matching_hints[s1] = r
matching_hints[s1 + "_Integral"] = r
if simplify((r[e] + u2*r[d]).subs({x: u2, y: 1})) != 0:
matching_hints[s2] = r
matching_hints[s2 + "_Integral"] = r
if s1 in matching_hints and s2 in matching_hints:
matching_hints["1st_homogeneous_coeff_best"] = r
## Linear coefficients of the form
# y'+ F((a*x + b*y + c)/(a'*x + b'y + c')) = 0
# that can be reduced to homogeneous form.
F = num/den
params = _linear_coeff_match(F, func)
if params:
xarg, yarg = params
u = Dummy('u')
t = Dummy('t')
# Dummy substitution for df and f(x).
dummy_eq = reduced_eq.subs(((df, t), (f(x), u)))
reps = ((x, x + xarg), (u, u + yarg), (t, df), (u, f(x)))
dummy_eq = simplify(dummy_eq.subs(reps))
# get the re-cast values for e and d
r2 = collect(expand(dummy_eq), [df, f(x)]).match(e*df + d)
if r2:
orderd = homogeneous_order(r2[d], x, f(x))
if orderd is not None:
ordere = homogeneous_order(r2[e], x, f(x))
if orderd == ordere:
# Match arguments are passed in such a way that it
# is coherent with the already existing homogeneous
# functions.
r2[d] = r2[d].subs(f(x), y)
r2[e] = r2[e].subs(f(x), y)
r2.update({'xarg': xarg, 'yarg': yarg,
'd': d, 'e': e, 'y': y})
matching_hints["linear_coefficients"] = r2
matching_hints["linear_coefficients_Integral"] = r2
## Equation of the form y' + (y/x)*H(x^n*y) = 0
# that can be reduced to separable form
factor = simplify(x/f(x)*num/den)
# Try representing factor in terms of x^n*y
# where n is lowest power of x in factor;
# first remove terms like sqrt(2)*3 from factor.atoms(Mul)
num, dem = factor.as_numer_denom()
num = expand(num)
dem = expand(dem)
def _degree(expr, x):
# Made this function to calculate the degree of
# x in an expression. If expr will be of form
# x**p*y, (wheare p can be variables/rationals) then it
# will return p.
for val in expr:
if val.has(x):
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
return (val.as_base_exp()[1])
elif val == x:
return (val.as_base_exp()[1])
else:
return _degree(val.args, x)
return 0
def _powers(expr):
# this function will return all the different relative power of x w.r.t f(x).
# expr = x**p * f(x)**q then it will return {p/q}.
pows = set()
if isinstance(expr, Add):
exprs = expr.atoms(Add)
elif isinstance(expr, Mul):
exprs = expr.atoms(Mul)
elif isinstance(expr, Pow):
exprs = expr.atoms(Pow)
else:
exprs = {expr}
for arg in exprs:
if arg.has(x):
_, u = arg.as_independent(x, f(x))
pow = _degree((u.subs(f(x), y), ), x)/_degree((u.subs(f(x), y), ), y)
pows.add(pow)
return pows
pows = _powers(num)
pows.update(_powers(dem))
pows = list(pows)
if(len(pows)==1) and pows[0]!=zoo:
t = Dummy('t')
r2 = {'t': t}
num = num.subs(x**pows[0]*f(x), t)
dem = dem.subs(x**pows[0]*f(x), t)
test = num/dem
free = test.free_symbols
if len(free) == 1 and free.pop() == t:
r2.update({'power' : pows[0], 'u' : test})
matching_hints['separable_reduced'] = r2
matching_hints["separable_reduced_Integral"] = r2
elif order == 2:
# Liouville ODE in the form
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98
s = d*f(x).diff(x, 2) + e*df**2 + k*df
r = reduced_eq.match(s)
if r and r[d] != 0:
y = Dummy('y')
g = simplify(r[e]/r[d]).subs(f(x), y)
h = simplify(r[k]/r[d]).subs(f(x), y)
if y in h.free_symbols or x in g.free_symbols:
pass
else:
r = {'g': g, 'h': h, 'y': y}
matching_hints["Liouville"] = r
matching_hints["Liouville_Integral"] = r
# Homogeneous second order differential equation of the form
# a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3
# It has a definite power series solution at point x0 if, b3/a3 and c3/a3
# are analytic at x0.
deq = a3*(f(x).diff(x, 2)) + b3*df + c3*f(x)
r = collect(reduced_eq,
[f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
ordinary = False
if r:
if not all([r[key].is_polynomial() for key in r]):
n, d = reduced_eq.as_numer_denom()
reduced_eq = expand(n)
r = collect(reduced_eq,
[f(x).diff(x, 2), f(x).diff(x), f(x)]).match(deq)
if r and r[a3] != 0:
p = cancel(r[b3]/r[a3]) # Used below
q = cancel(r[c3]/r[a3]) # Used below
point = kwargs.get('x0', 0)
check = p.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
check = q.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
ordinary = True
r.update({'a3': a3, 'b3': b3, 'c3': c3, 'x0': point, 'terms': terms})
matching_hints["2nd_power_series_ordinary"] = r
# Checking if the differential equation has a regular singular point
# at x0. It has a regular singular point at x0, if (b3/a3)*(x - x0)
# and (c3/a3)*((x - x0)**2) are analytic at x0.
if not ordinary:
p = cancel((x - point)*p)
check = p.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
q = cancel(((x - point)**2)*q)
check = q.subs(x, point)
if not check.has(oo, NaN, zoo, -oo):
coeff_dict = {'p': p, 'q': q, 'x0': point, 'terms': terms}
matching_hints["2nd_power_series_regular"] = coeff_dict
# For Hypergeometric solutions.
_r = {}
_r.update(r)
rn = match_2nd_hypergeometric(_r, func)
if rn:
matching_hints["2nd_hypergeometric"] = rn
matching_hints["2nd_hypergeometric_Integral"] = rn
# If the ODE has regular singular point at x0 and is of the form
# Eq((x)**2*Derivative(y(x), x, x) + x*Derivative(y(x), x) +
# (a4**2*x**(2*p)-n**2)*y(x) thus Bessel's equation
rn = match_2nd_linear_bessel(r, f(x))
if rn:
matching_hints["2nd_linear_bessel"] = rn
# If the ODE is ordinary and is of the form of Airy's Equation
# Eq(x**2*Derivative(y(x),x,x)-(ax+b)*y(x))
if p.is_zero:
a4 = Wild('a4', exclude=[x,f(x),df])
b4 = Wild('b4', exclude=[x,f(x),df])
rn = q.match(a4+b4*x)
if rn and rn[b4] != 0:
rn = {'b':rn[a4],'m':rn[b4]}
matching_hints["2nd_linear_airy"] = rn
if order > 0:
# Any ODE that can be solved with a substitution and
# repeated integration e.g.:
# `d^2/dx^2(y) + x*d/dx(y) = constant
#f'(x) must be finite for this to work
r = _nth_order_reducible_match(reduced_eq, func)
if r:
matching_hints['nth_order_reducible'] = r
# nth order linear ODE
# a_n(x)y^(n) + ... + a_1(x)y' + a_0(x)y = F(x) = b
r = _nth_linear_match(reduced_eq, func, order)
# Constant coefficient case (a_i is constant for all i)
if r and not any(r[i].has(x) for i in r if i >= 0):
# Inhomogeneous case: F(x) is not identically 0
if r[-1]:
eq_homogeneous = Add(eq,-r[-1])
undetcoeff = _undetermined_coefficients_match(r[-1], x, func, eq_homogeneous)
s = "nth_linear_constant_coeff_variation_of_parameters"
matching_hints[s] = r
matching_hints[s + "_Integral"] = r
if undetcoeff['test']:
r['trialset'] = undetcoeff['trialset']
matching_hints[
"nth_linear_constant_coeff_undetermined_coefficients"
] = r
# Homogeneous case: F(x) is identically 0
else:
matching_hints["nth_linear_constant_coeff_homogeneous"] = r
# nth order Euler equation a_n*x**n*y^(n) + ... + a_1*x*y' + a_0*y = F(x)
#In case of Homogeneous euler equation F(x) = 0
def _test_term(coeff, order):
r"""
Linear Euler ODEs have the form K*x**order*diff(y(x),x,order) = F(x),
where K is independent of x and y(x), order>= 0.
So we need to check that for each term, coeff == K*x**order from
some K. We have a few cases, since coeff may have several
different types.
"""
if order < 0:
raise ValueError("order should be greater than 0")
if coeff == 0:
return True
if order == 0:
if x in coeff.free_symbols:
return False
return True
if coeff.is_Mul:
if coeff.has(f(x)):
return False
return x**order in coeff.args
elif coeff.is_Pow:
return coeff.as_base_exp() == (x, order)
elif order == 1:
return x == coeff
return False
# Find coefficient for highest derivative, multiply coefficients to
# bring the equation into Euler form if possible
r_rescaled = None
if r is not None:
coeff = r[order]
factor = x**order / coeff
r_rescaled = {i: factor*r[i] for i in r if i != 'trialset'}
# XXX: Mixing up the trialset with the coefficients is error-prone.
# These should be separated as something like r['coeffs'] and
# r['trialset']
if r_rescaled and not any(not _test_term(r_rescaled[i], i) for i in
r_rescaled if i != 'trialset' and i >= 0):
if not r_rescaled[-1]:
matching_hints["nth_linear_euler_eq_homogeneous"] = r_rescaled
else:
matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"] = r_rescaled
matching_hints["nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral"] = r_rescaled
e, re = posify(r_rescaled[-1].subs(x, exp(x)))
undetcoeff = _undetermined_coefficients_match(e.subs(re), x)
if undetcoeff['test']:
r_rescaled['trialset'] = undetcoeff['trialset']
matching_hints["nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"] = r_rescaled
# Order keys based on allhints.
retlist = [i for i in allhints if i in matching_hints]
if dict:
# Dictionaries are ordered arbitrarily, so make note of which
# hint would come first for dsolve(). Use an ordered dict in Py 3.
matching_hints["default"] = retlist[0] if retlist else None
matching_hints["ordered_hints"] = tuple(retlist)
return matching_hints
else:
return tuple(retlist)
def equivalence(max_num_pow, dem_pow):
# this function is made for checking the equivalence with 2F1 type of equation.
# max_num_pow is the value of maximum power of x in numerator
# and dem_pow is list of powers of different factor of form (a*x b).
# reference from table 1 in paper - "Non-Liouvillian solutions for second order
# linear ODEs" by L. Chan, E.S. Cheb-Terrab.
# We can extend it for 1F1 and 0F1 type also.
if max_num_pow == 2:
if dem_pow in [[2, 2], [2, 2, 2]]:
return "2F1"
elif max_num_pow == 1:
if dem_pow in [[1, 2, 2], [2, 2, 2], [1, 2], [2, 2]]:
return "2F1"
elif max_num_pow == 0:
if dem_pow in [[1, 1, 2], [2, 2], [1 ,2, 2], [1, 1], [2], [1, 2], [2, 2]]:
return "2F1"
return None
def equivalence_hypergeometric(A, B, func):
from sympy import factor
# This method for finding the equivalence is only for 2F1 type.
# We can extend it for 1F1 and 0F1 type also.
x = func.args[0]
# making given equation in normal form
I1 = factor(cancel(A.diff(x)/2 + A**2/4 - B))
# computing shifted invariant(J1) of the equation
J1 = factor(cancel(x**2*I1 + S(1)/4))
num, dem = J1.as_numer_denom()
num = powdenest(expand(num))
dem = powdenest(expand(dem))
pow_num = set()
pow_dem = set()
# this function will compute the different powers of variable(x) in J1.
# then it will help in finding value of k. k is power of x such that we can express
# J1 = x**k * J0(x**k) then all the powers in J0 become integers.
def _power_counting(num):
_pow = {0}
for val in num:
if val.has(x):
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
_pow.add(val.as_base_exp()[1])
elif val == x:
_pow.add(val.as_base_exp()[1])
else:
_pow.update(_power_counting(val.args))
return _pow
pow_num = _power_counting((num, ))
pow_dem = _power_counting((dem, ))
pow_dem.update(pow_num)
_pow = pow_dem
k = gcd(_pow)
# computing I0 of the given equation
I0 = powdenest(simplify(factor(((J1/k**2) - S(1)/4)/((x**k)**2))), force=True)
I0 = factor(cancel(powdenest(I0.subs(x, x**(S(1)/k)), force=True)))
num, dem = I0.as_numer_denom()
max_num_pow = max(_power_counting((num, )))
dem_args = dem.args
sing_point = []
dem_pow = []
# calculating singular point of I0.
for arg in dem_args:
if arg.has(x):
if isinstance(arg, Pow):
# (x-a)**n
dem_pow.append(arg.as_base_exp()[1])
sing_point.append(list(roots(arg.as_base_exp()[0], x).keys())[0])
else:
# (x-a) type
dem_pow.append(arg.as_base_exp()[1])
sing_point.append(list(roots(arg, x).keys())[0])
dem_pow.sort()
# checking if equivalence is exists or not.
if equivalence(max_num_pow, dem_pow) == "2F1":
return {'I0':I0, 'k':k, 'sing_point':sing_point, 'type':"2F1"}
else:
return None
def ode_2nd_hypergeometric(eq, func, order, match):
from sympy.simplify.hyperexpand import hyperexpand
from sympy import factor
x = func.args[0]
C0, C1 = get_numbered_constants(eq, num=2)
a = match['a']
b = match['b']
c = match['c']
A = match['A']
# B = match['B']
sol = None
if match['type'] == "2F1":
if c.is_integer == False:
sol = C0*hyper([a, b], [c], x) + C1*hyper([a-c+1, b-c+1], [2-c], x)*x**(1-c)
elif c == 1:
y2 = Integral(exp(Integral((-(a+b+1)*x + c)/(x**2-x), x))/(hyperexpand(hyper([a, b], [c], x))**2), x)*hyper([a, b], [c], x)
sol = C0*hyper([a, b], [c], x) + C1*y2
elif (c-a-b).is_integer == False:
sol = C0*hyper([a, b], [1+a+b-c], 1-x) + C1*hyper([c-a, c-b], [1+c-a-b], 1-x)*(1-x)**(c-a-b)
if sol is None:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the hypergeometric method")
# applying transformation in the solution
subs = match['mobius']
dtdx = simplify(1/(subs.diff(x)))
_B = ((a + b + 1)*x - c).subs(x, subs)*dtdx
_B = factor(_B + ((x**2 -x).subs(x, subs))*(dtdx.diff(x)*dtdx))
_A = factor((x**2 - x).subs(x, subs)*(dtdx**2))
e = exp(logcombine(Integral(cancel(_B/(2*_A)), x), force=True))
sol = sol.subs(x, match['mobius'])
sol = sol.subs(x, x**match['k'])
e = e.subs(x, x**match['k'])
if not A.is_zero:
e1 = Integral(A/2, x)
e1 = exp(logcombine(e1, force=True))
sol = cancel((e/e1)*x**((-match['k']+1)/2))*sol
sol = Eq(func, sol)
return sol
sol = cancel((e)*x**((-match['k']+1)/2))*sol
sol = Eq(func, sol)
return sol
def match_2nd_2F1_hypergeometric(I, k, sing_point, func):
from sympy import factor
x = func.args[0]
a = Wild("a")
b = Wild("b")
c = Wild("c")
t = Wild("t")
s = Wild("s")
r = Wild("r")
alpha = Wild("alpha")
beta = Wild("beta")
gamma = Wild("gamma")
delta = Wild("delta")
rn = {'type':None}
# I0 of the standerd 2F1 equation.
I0 = ((a-b+1)*(a-b-1)*x**2 + 2*((1-a-b)*c + 2*a*b)*x + c*(c-2))/(4*x**2*(x-1)**2)
if sing_point != [0, 1]:
# If singular point is [0, 1] then we have standerd equation.
eqs = []
sing_eqs = [-beta/alpha, -delta/gamma, (delta-beta)/(alpha-gamma)]
# making equations for the finding the mobius transformation
for i in range(3):
if i<len(sing_point):
eqs.append(Eq(sing_eqs[i], sing_point[i]))
else:
eqs.append(Eq(1/sing_eqs[i], 0))
# solving above equations for the mobius transformation
_beta = -alpha*sing_point[0]
_delta = -gamma*sing_point[1]
_gamma = alpha
if len(sing_point) == 3:
_gamma = (_beta + sing_point[2]*alpha)/(sing_point[2] - sing_point[1])
mob = (alpha*x + beta)/(gamma*x + delta)
mob = mob.subs(beta, _beta)
mob = mob.subs(delta, _delta)
mob = mob.subs(gamma, _gamma)
mob = cancel(mob)
t = (beta - delta*x)/(gamma*x - alpha)
t = cancel(((t.subs(beta, _beta)).subs(delta, _delta)).subs(gamma, _gamma))
else:
mob = x
t = x
# applying mobius transformation in I to make it into I0.
I = I.subs(x, t)
I = I*(t.diff(x))**2
I = factor(I)
dict_I = {x**2:0, x:0, 1:0}
I0_num, I0_dem = I0.as_numer_denom()
# collecting coeff of (x**2, x), of the standerd equation.
# substituting (a-b) = s, (a+b) = r
dict_I0 = {x**2:s**2 - 1, x:(2*(1-r)*c + (r+s)*(r-s)), 1:c*(c-2)}
# collecting coeff of (x**2, x) from I0 of the given equation.
dict_I.update(collect(expand(cancel(I*I0_dem)), [x**2, x], evaluate=False))
eqs = []
# We are comparing the coeff of powers of different x, for finding the values of
# parameters of standerd equation.
for key in [x**2, x, 1]:
eqs.append(Eq(dict_I[key], dict_I0[key]))
# We can have many possible roots for the equation.
# I am selecting the root on the basis that when we have
# standard equation eq = x*(x-1)*f(x).diff(x, 2) + ((a+b+1)*x-c)*f(x).diff(x) + a*b*f(x)
# then root should be a, b, c.
_c = 1 - factor(sqrt(1+eqs[2].lhs))
if not _c.has(Symbol):
_c = min(list(roots(eqs[2], c)))
_s = factor(sqrt(eqs[0].lhs + 1))
_r = _c - factor(sqrt(_c**2 + _s**2 + eqs[1].lhs - 2*_c))
_a = (_r + _s)/2
_b = (_r - _s)/2
rn = {'a':simplify(_a), 'b':simplify(_b), 'c':simplify(_c), 'k':k, 'mobius':mob, 'type':"2F1"}
return rn
def match_2nd_hypergeometric(r, func):
x = func.args[0]
a3 = Wild('a3', exclude=[func, func.diff(x), func.diff(x, 2)])
b3 = Wild('b3', exclude=[func, func.diff(x), func.diff(x, 2)])
c3 = Wild('c3', exclude=[func, func.diff(x), func.diff(x, 2)])
A = cancel(r[b3]/r[a3])
B = cancel(r[c3]/r[a3])
d = equivalence_hypergeometric(A, B, func)
rn = None
if d:
if d['type'] == "2F1":
rn = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func)
if rn is not None:
rn.update({'A':A, 'B':B})
# We can extend it for 1F1 and 0F1 type also.
return rn
def match_2nd_linear_bessel(r, func):
from sympy.polys.polytools import factor
# eq = a3*f(x).diff(x, 2) + b3*f(x).diff(x) + c3*f(x)
f = func
x = func.args[0]
df = f.diff(x)
a = Wild('a', exclude=[f,df])
b = Wild('b', exclude=[x, f,df])
a4 = Wild('a4', exclude=[x,f,df])
b4 = Wild('b4', exclude=[x,f,df])
c4 = Wild('c4', exclude=[x,f,df])
d4 = Wild('d4', exclude=[x,f,df])
a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)])
b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)])
c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)])
# leading coeff of f(x).diff(x, 2)
coeff = factor(r[a3]).match(a4*(x-b)**b4)
if coeff:
# if coeff[b4] = 0 means constant coefficient
if coeff[b4] == 0:
return None
point = coeff[b]
else:
return None
if point:
r[a3] = simplify(r[a3].subs(x, x+point))
r[b3] = simplify(r[b3].subs(x, x+point))
r[c3] = simplify(r[c3].subs(x, x+point))
# making a3 in the form of x**2
r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4])))
# checking if b3 is of form c*(x-b)
coeff1 = factor(r[b3]).match(a4*(x))
if coeff1 is None:
return None
# c3 maybe of very complex form so I am simply checking (a - b) form
# if yes later I will match with the standerd form of bessel in a and b
# a, b are wild variable defined above.
_coeff2 = r[c3].match(a - b)
if _coeff2 is None:
return None
# matching with standerd form for c3
coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4))
if coeff2 is None:
return None
if _coeff2[b] == 0:
coeff2[d4] = 0
else:
coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4]
rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]}
rn['c4'] = coeff1[a4]
rn['b4'] = point
return rn
def classify_sysode(eq, funcs=None, **kwargs):
r"""
Returns a dictionary of parameter names and values that define the system
of ordinary differential equations in ``eq``.
The parameters are further used in
:py:meth:`~sympy.solvers.ode.dsolve` for solving that system.
Some parameter names and values are:
'is_linear' (boolean), which tells whether the given system is linear.
Note that "linear" here refers to the operator: terms such as ``x*diff(x,t)`` are
nonlinear, whereas terms like ``sin(t)*diff(x,t)`` are still linear operators.
'func' (list) contains the :py:class:`~sympy.core.function.Function`s that
appear with a derivative in the ODE, i.e. those that we are trying to solve
the ODE for.
'order' (dict) with the maximum derivative for each element of the 'func'
parameter.
'func_coeff' (dict or Matrix) with the coefficient for each triple ``(equation number,
function, order)```. The coefficients are those subexpressions that do not
appear in 'func', and hence can be considered constant for purposes of ODE
solving. The value of this parameter can also be a Matrix if the system of ODEs are
linear first order of the form X' = AX where X is the vector of dependent variables.
Here, this function returns the coefficient matrix A.
'eq' (list) with the equations from ``eq``, sympified and transformed into
expressions (we are solving for these expressions to be zero).
'no_of_equations' (int) is the number of equations (same as ``len(eq)``).
'type_of_equation' (string) is an internal classification of the type of
ODE.
'is_constant' (boolean), which tells if the system of ODEs is constant coefficient
or not. This key is temporary addition for now and is in the match dict only when
the system of ODEs is linear first order constant coefficient homogeneous. So, this
key's value is True for now if it is available else it doesn't exist.
'is_homogeneous' (boolean), which tells if the system of ODEs is homogeneous. Like the
key 'is_constant', this key is a temporary addition and it is True since this key value
is available only when the system is linear first order constant coefficient homogeneous.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode-toc1.htm
-A. D. Polyanin and A. V. Manzhirov, Handbook of Mathematics for Engineers and Scientists
Examples
========
>>> from sympy import Function, Eq, symbols, diff
>>> from sympy.solvers.ode.ode import classify_sysode
>>> from sympy.abc import t
>>> f, x, y = symbols('f, x, y', cls=Function)
>>> k, l, m, n = symbols('k, l, m, n', Integer=True)
>>> x1 = diff(x(t), t) ; y1 = diff(y(t), t)
>>> x2 = diff(x(t), t, t) ; y2 = diff(y(t), t, t)
>>> eq = (Eq(x1, 12*x(t) - 6*y(t)), Eq(y1, 11*x(t) + 3*y(t)))
>>> classify_sysode(eq)
{'eq': [-12*x(t) + 6*y(t) + Derivative(x(t), t), -11*x(t) - 3*y(t) + Derivative(y(t), t)], 'func': [x(t), y(t)],
'func_coeff': {(0, x(t), 0): -12, (0, x(t), 1): 1, (0, y(t), 0): 6, (0, y(t), 1): 0, (1, x(t), 0): -11, (1, x(t), 1): 0, (1, y(t), 0): -3, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2, 'order': {x(t): 1, y(t): 1}, 'type_of_equation': None}
>>> eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t) + 2), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
>>> classify_sysode(eq)
{'eq': [-t**2*y(t) - 5*t*x(t) + Derivative(x(t), t) - 2, t**2*x(t) - 5*t*y(t) + Derivative(y(t), t)],
'func': [x(t), y(t)], 'func_coeff': {(0, x(t), 0): -5*t, (0, x(t), 1): 1, (0, y(t), 0): -t**2, (0, y(t), 1): 0,
(1, x(t), 0): t**2, (1, x(t), 1): 0, (1, y(t), 0): -5*t, (1, y(t), 1): 1}, 'is_linear': True, 'no_of_equation': 2,
'order': {x(t): 1, y(t): 1}, 'type_of_equation': None}
"""
# Sympify equations and convert iterables of equations into
# a list of equations
def _sympify(eq):
return list(map(sympify, eq if iterable(eq) else [eq]))
eq, funcs = (_sympify(w) for w in [eq, funcs])
for i, fi in enumerate(eq):
if isinstance(fi, Equality):
eq[i] = fi.lhs - fi.rhs
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
matching_hints = {"no_of_equation":i+1}
matching_hints['eq'] = eq
if i==0:
raise ValueError("classify_sysode() works for systems of ODEs. "
"For scalar ODEs, classify_ode should be used")
# find all the functions if not given
order = dict()
if funcs==[None]:
funcs = _extract_funcs(eq)
funcs = list(set(funcs))
if len(funcs) != len(eq):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
# This logic of list of lists in funcs to
# be replaced later.
func_dict = dict()
for func in funcs:
if not order.get(func, False):
max_order = 0
for i, eqs_ in enumerate(eq):
order_ = ode_order(eqs_,func)
if max_order < order_:
max_order = order_
eq_no = i
if eq_no in func_dict:
func_dict[eq_no] = [func_dict[eq_no], func]
else:
func_dict[eq_no] = func
order[func] = max_order
funcs = [func_dict[i] for i in range(len(func_dict))]
matching_hints['func'] = funcs
for func in funcs:
if isinstance(func, list):
for func_elem in func:
if len(func_elem.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
else:
if func and len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# find the order of all equation in system of odes
matching_hints["order"] = order
# find coefficients of terms f(t), diff(f(t),t) and higher derivatives
# and similarly for other functions g(t), diff(g(t),t) in all equations.
# Here j denotes the equation number, funcs[l] denotes the function about
# which we are talking about and k denotes the order of function funcs[l]
# whose coefficient we are calculating.
def linearity_check(eqs, j, func, is_linear_):
for k in range(order[func] + 1):
func_coef[j, func, k] = collect(eqs.expand(), [diff(func, t, k)]).coeff(diff(func, t, k))
if is_linear_ == True:
if func_coef[j, func, k] == 0:
if k == 0:
coef = eqs.as_independent(func, as_Add=True)[1]
for xr in range(1, ode_order(eqs,func) + 1):
coef -= eqs.as_independent(diff(func, t, xr), as_Add=True)[1]
if coef != 0:
is_linear_ = False
else:
if eqs.as_independent(diff(func, t, k), as_Add=True)[1]:
is_linear_ = False
else:
for func_ in funcs:
if isinstance(func_, list):
for elem_func_ in func_:
dep = func_coef[j, func, k].as_independent(elem_func_, as_Add=True)[1]
if dep != 0:
is_linear_ = False
else:
dep = func_coef[j, func, k].as_independent(func_, as_Add=True)[1]
if dep != 0:
is_linear_ = False
return is_linear_
func_coef = {}
is_linear = True
for j, eqs in enumerate(eq):
for func in funcs:
if isinstance(func, list):
for func_elem in func:
is_linear = linearity_check(eqs, j, func_elem, is_linear)
else:
is_linear = linearity_check(eqs, j, func, is_linear)
matching_hints['func_coeff'] = func_coef
matching_hints['is_linear'] = is_linear
if len(set(order.values())) == 1:
order_eq = list(matching_hints['order'].values())[0]
if matching_hints['is_linear'] == True:
if matching_hints['no_of_equation'] == 2:
if order_eq == 1:
type_of_equation = check_linear_2eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
# If the equation doesn't match up with any of the
# general case solvers in systems.py and the number
# of equations is greater than 2, then NotImplementedError
# should be raised.
else:
type_of_equation = None
else:
if matching_hints['no_of_equation'] == 2:
if order_eq == 1:
type_of_equation = check_nonlinear_2eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
elif matching_hints['no_of_equation'] == 3:
if order_eq == 1:
type_of_equation = check_nonlinear_3eq_order1(eq, funcs, func_coef)
else:
type_of_equation = None
else:
type_of_equation = None
else:
type_of_equation = None
matching_hints['type_of_equation'] = type_of_equation
return matching_hints
def check_linear_2eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
r = dict()
# for equations Eq(a1*diff(x(t),t), b1*x(t) + c1*y(t) + d1)
# and Eq(a2*diff(y(t),t), b2*x(t) + c2*y(t) + d2)
r['a1'] = fc[0,x(t),1] ; r['a2'] = fc[1,y(t),1]
r['b1'] = -fc[0,x(t),0]/fc[0,x(t),1] ; r['b2'] = -fc[1,x(t),0]/fc[1,y(t),1]
r['c1'] = -fc[0,y(t),0]/fc[0,x(t),1] ; r['c2'] = -fc[1,y(t),0]/fc[1,y(t),1]
forcing = [S.Zero,S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t)):
forcing[i] += j
if not (forcing[0].has(t) or forcing[1].has(t)):
# We can handle homogeneous case and simple constant forcings
r['d1'] = forcing[0]
r['d2'] = forcing[1]
else:
# Issue #9244: nonhomogeneous linear systems are not supported
return None
# Conditions to check for type 6 whose equations are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and
# Eq(diff(y(t),t), a*[f(t) + a*h(t)]x(t) + a*[g(t) - h(t)]*y(t))
p = 0
q = 0
p1 = cancel(r['b2']/(cancel(r['b2']/r['c2']).as_numer_denom()[0]))
p2 = cancel(r['b1']/(cancel(r['b1']/r['c1']).as_numer_denom()[0]))
for n, i in enumerate([p1, p2]):
for j in Mul.make_args(collect_const(i)):
if not j.has(t):
q = j
if q and n==0:
if ((r['b2']/j - r['b1'])/(r['c1'] - r['c2']/j)) == j:
p = 1
elif q and n==1:
if ((r['b1']/j - r['b2'])/(r['c2'] - r['c1']/j)) == j:
p = 2
# End of condition for type 6
if r['d1']!=0 or r['d2']!=0:
return None
else:
if all(not r[k].has(t) for k in 'a1 a2 b1 b2 c1 c2'.split()):
return None
else:
r['b1'] = r['b1']/r['a1'] ; r['b2'] = r['b2']/r['a2']
r['c1'] = r['c1']/r['a1'] ; r['c2'] = r['c2']/r['a2']
if p:
return "type6"
else:
# Equations for type 7 are Eq(diff(x(t),t), f(t)*x(t) + g(t)*y(t)) and Eq(diff(y(t),t), h(t)*x(t) + p(t)*y(t))
return "type7"
def check_nonlinear_2eq_order1(eq, func, func_coef):
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
f = Wild('f')
g = Wild('g')
u, v = symbols('u, v', cls=Dummy)
def check_type(x, y):
r1 = eq[0].match(t*diff(x(t),t) - x(t) + f)
r2 = eq[1].match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t)
r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t)
if not (r1 and r2):
r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f)
r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t)
r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t)
if r1 and r2 and not (r1[f].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t) \
or r2[g].subs(diff(x(t),t),u).subs(diff(y(t),t),v).has(t)):
return 'type5'
else:
return None
for func_ in func:
if isinstance(func_, list):
x = func[0][0].func
y = func[0][1].func
eq_type = check_type(x, y)
if not eq_type:
eq_type = check_type(y, x)
return eq_type
x = func[0].func
y = func[1].func
fc = func_coef
n = Wild('n', exclude=[x(t),y(t)])
f1 = Wild('f1', exclude=[v,t])
f2 = Wild('f2', exclude=[v,t])
g1 = Wild('g1', exclude=[u,t])
g2 = Wild('g2', exclude=[u,t])
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
r = eq[0].match(diff(x(t),t) - x(t)**n*f)
if r:
g = (diff(y(t),t) - eq[1])/r[f]
if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)):
return 'type1'
r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f)
if r:
g = (diff(y(t),t) - eq[1])/r[f]
if r and not (g.has(x(t)) or g.subs(y(t),v).has(t) or r[f].subs(x(t),u).subs(y(t),v).has(t)):
return 'type2'
g = Wild('g')
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
if r1 and r2 and not (r1[f].subs(x(t),u).subs(y(t),v).has(t) or \
r2[g].subs(x(t),u).subs(y(t),v).has(t)):
return 'type3'
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
num, den = (
(r1[f].subs(x(t),u).subs(y(t),v))/
(r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom()
R1 = num.match(f1*g1)
R2 = den.match(f2*g2)
# phi = (r1[f].subs(x(t),u).subs(y(t),v))/num
if R1 and R2:
return 'type4'
return None
def check_nonlinear_2eq_order2(eq, func, func_coef):
return None
def check_nonlinear_3eq_order1(eq, func, func_coef):
x = func[0].func
y = func[1].func
z = func[2].func
fc = func_coef
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
u, v, w = symbols('u, v, w', cls=Dummy)
a = Wild('a', exclude=[x(t), y(t), z(t), t])
b = Wild('b', exclude=[x(t), y(t), z(t), t])
c = Wild('c', exclude=[x(t), y(t), z(t), t])
f = Wild('f')
F1 = Wild('F1')
F2 = Wild('F2')
F3 = Wild('F3')
for i in range(3):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
r1 = eq[0].match(diff(x(t),t) - a*y(t)*z(t))
r2 = eq[1].match(diff(y(t),t) - b*z(t)*x(t))
r3 = eq[2].match(diff(z(t),t) - c*x(t)*y(t))
if r1 and r2 and r3:
num1, den1 = r1[a].as_numer_denom()
num2, den2 = r2[b].as_numer_denom()
num3, den3 = r3[c].as_numer_denom()
if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]):
return 'type1'
r = eq[0].match(diff(x(t),t) - y(t)*z(t)*f)
if r:
r1 = collect_const(r[f]).match(a*f)
r2 = ((diff(y(t),t) - eq[1])/r1[f]).match(b*z(t)*x(t))
r3 = ((diff(z(t),t) - eq[2])/r1[f]).match(c*x(t)*y(t))
if r1 and r2 and r3:
num1, den1 = r1[a].as_numer_denom()
num2, den2 = r2[b].as_numer_denom()
num3, den3 = r3[c].as_numer_denom()
if solve([num1*u-den1*(v-w), num2*v-den2*(w-u), num3*w-den3*(u-v)],[u, v]):
return 'type2'
r = eq[0].match(diff(x(t),t) - (F2-F3))
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = eq[1].match(diff(y(t),t) - a*r1[F3] + r1[c]*F1)
if r2:
r3 = (eq[2] == diff(z(t),t) - r1[b]*r2[F1] + r2[a]*r1[F2])
if r1 and r2 and r3:
return 'type3'
r = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3)
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = (diff(y(t),t) - eq[1]).match(a*x(t)*r1[F3] - r1[c]*z(t)*F1)
if r2:
r3 = (diff(z(t),t) - eq[2] == r1[b]*y(t)*r2[F1] - r2[a]*x(t)*r1[F2])
if r1 and r2 and r3:
return 'type4'
r = (diff(x(t),t) - eq[0]).match(x(t)*(F2 - F3))
if r:
r1 = collect_const(r[F2]).match(c*F2)
r1.update(collect_const(r[F3]).match(b*F3))
if r1:
if eq[1].has(r1[F2]) and not eq[1].has(r1[F3]):
r1[F2], r1[F3] = r1[F3], r1[F2]
r1[c], r1[b] = -r1[b], -r1[c]
r2 = (diff(y(t),t) - eq[1]).match(y(t)*(a*r1[F3] - r1[c]*F1))
if r2:
r3 = (diff(z(t),t) - eq[2] == z(t)*(r1[b]*r2[F1] - r2[a]*r1[F2]))
if r1 and r2 and r3:
return 'type5'
return None
def check_nonlinear_3eq_order2(eq, func, func_coef):
return None
@vectorize(0)
def odesimp(ode, eq, func, hint):
r"""
Simplifies solutions of ODEs, including trying to solve for ``func`` and
running :py:meth:`~sympy.solvers.ode.constantsimp`.
It may use knowledge of the type of solution that the hint returns to
apply additional simplifications.
It also attempts to integrate any :py:class:`~sympy.integrals.integrals.Integral`\s
in the expression, if the hint is not an ``_Integral`` hint.
This function should have no effect on expressions returned by
:py:meth:`~sympy.solvers.ode.dsolve`, as
:py:meth:`~sympy.solvers.ode.dsolve` already calls
:py:meth:`~sympy.solvers.ode.ode.odesimp`, but the individual hint functions
do not call :py:meth:`~sympy.solvers.ode.ode.odesimp` (because the
:py:meth:`~sympy.solvers.ode.dsolve` wrapper does). Therefore, this
function is designed for mainly internal use.
Examples
========
>>> from sympy import sin, symbols, dsolve, pprint, Function
>>> from sympy.solvers.ode.ode import odesimp
>>> x , u2, C1= symbols('x,u2,C1')
>>> f = Function('f')
>>> eq = dsolve(x*f(x).diff(x) - f(x) - x*sin(f(x)/x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral',
... simplify=False)
>>> pprint(eq, wrap_line=False)
x
----
f(x)
/
|
| / 1 \
| -|u2 + -------|
| | /1 \|
| | sin|--||
| \ \u2//
log(f(x)) = log(C1) + | ---------------- d(u2)
| 2
| u2
|
/
>>> pprint(odesimp(eq, f(x), 1, {C1},
... hint='1st_homogeneous_coeff_subs_indep_div_dep'
... )) #doctest: +SKIP
x
--------- = C1
/f(x)\
tan|----|
\2*x /
"""
x = func.args[0]
f = func.func
C1 = get_numbered_constants(eq, num=1)
constants = eq.free_symbols - ode.free_symbols
# First, integrate if the hint allows it.
eq = _handle_Integral(eq, func, hint)
if hint.startswith("nth_linear_euler_eq_nonhomogeneous"):
eq = simplify(eq)
if not isinstance(eq, Equality):
raise TypeError("eq should be an instance of Equality")
# Second, clean up the arbitrary constants.
# Right now, nth linear hints can put as many as 2*order constants in an
# expression. If that number grows with another hint, the third argument
# here should be raised accordingly, or constantsimp() rewritten to handle
# an arbitrary number of constants.
eq = constantsimp(eq, constants)
# Lastly, now that we have cleaned up the expression, try solving for func.
# When CRootOf is implemented in solve(), we will want to return a CRootOf
# every time instead of an Equality.
# Get the f(x) on the left if possible.
if eq.rhs == func and not eq.lhs.has(func):
eq = [Eq(eq.rhs, eq.lhs)]
# make sure we are working with lists of solutions in simplified form.
if eq.lhs == func and not eq.rhs.has(func):
# The solution is already solved
eq = [eq]
# special simplification of the rhs
if hint.startswith("nth_linear_constant_coeff"):
# Collect terms to make the solution look nice.
# This is also necessary for constantsimp to remove unnecessary
# terms from the particular solution from variation of parameters
#
# Collect is not behaving reliably here. The results for
# some linear constant-coefficient equations with repeated
# roots do not properly simplify all constants sometimes.
# 'collectterms' gives different orders sometimes, and results
# differ in collect based on that order. The
# sort-reverse trick fixes things, but may fail in the
# future. In addition, collect is splitting exponentials with
# rational powers for no reason. We have to do a match
# to fix this using Wilds.
#
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms.sort(key=default_sort_key)
collectterms.reverse()
assert len(eq) == 1 and eq[0].lhs == f(x)
sol = eq[0].rhs
sol = expand_mul(sol)
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x))
sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x))
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x))
del collectterms
# Collect is splitting exponentials with rational powers for
# no reason. We call powsimp to fix.
sol = powsimp(sol)
eq[0] = Eq(f(x), sol)
else:
# The solution is not solved, so try to solve it
try:
floats = any(i.is_Float for i in eq.atoms(Number))
eqsol = solve(eq, func, force=True, rational=False if floats else None)
if not eqsol:
raise NotImplementedError
except (NotImplementedError, PolynomialError):
eq = [eq]
else:
def _expand(expr):
numer, denom = expr.as_numer_denom()
if denom.is_Add:
return expr
else:
return powsimp(expr.expand(), combine='exp', deep=True)
# XXX: the rest of odesimp() expects each ``t`` to be in a
# specific normal form: rational expression with numerator
# expanded, but with combined exponential functions (at
# least in this setup all tests pass).
eq = [Eq(f(x), _expand(t)) for t in eqsol]
# special simplification of the lhs.
if hint.startswith("1st_homogeneous_coeff"):
for j, eqi in enumerate(eq):
newi = logcombine(eqi, force=True)
if isinstance(newi.lhs, log) and newi.rhs == 0:
newi = Eq(newi.lhs.args[0]/C1, C1)
eq[j] = newi
# We cleaned up the constants before solving to help the solve engine with
# a simpler expression, but the solved expression could have introduced
# things like -C1, so rerun constantsimp() one last time before returning.
for i, eqi in enumerate(eq):
eq[i] = constantsimp(eqi, constants)
eq[i] = constant_renumber(eq[i], ode.free_symbols)
# If there is only 1 solution, return it;
# otherwise return the list of solutions.
if len(eq) == 1:
eq = eq[0]
return eq
def ode_sol_simplicity(sol, func, trysolving=True):
r"""
Returns an extended integer representing how simple a solution to an ODE
is.
The following things are considered, in order from most simple to least:
- ``sol`` is solved for ``func``.
- ``sol`` is not solved for ``func``, but can be if passed to solve (e.g.,
a solution returned by ``dsolve(ode, func, simplify=False``).
- If ``sol`` is not solved for ``func``, then base the result on the
length of ``sol``, as computed by ``len(str(sol))``.
- If ``sol`` has any unevaluated :py:class:`~sympy.integrals.integrals.Integral`\s,
this will automatically be considered less simple than any of the above.
This function returns an integer such that if solution A is simpler than
solution B by above metric, then ``ode_sol_simplicity(sola, func) <
ode_sol_simplicity(solb, func)``.
Currently, the following are the numbers returned, but if the heuristic is
ever improved, this may change. Only the ordering is guaranteed.
+----------------------------------------------+-------------------+
| Simplicity | Return |
+==============================================+===================+
| ``sol`` solved for ``func`` | ``-2`` |
+----------------------------------------------+-------------------+
| ``sol`` not solved for ``func`` but can be | ``-1`` |
+----------------------------------------------+-------------------+
| ``sol`` is not solved nor solvable for | ``len(str(sol))`` |
| ``func`` | |
+----------------------------------------------+-------------------+
| ``sol`` contains an | ``oo`` |
| :obj:`~sympy.integrals.integrals.Integral` | |
+----------------------------------------------+-------------------+
``oo`` here means the SymPy infinity, which should compare greater than
any integer.
If you already know :py:meth:`~sympy.solvers.solvers.solve` cannot solve
``sol``, you can use ``trysolving=False`` to skip that step, which is the
only potentially slow step. For example,
:py:meth:`~sympy.solvers.ode.dsolve` with the ``simplify=False`` flag
should do this.
If ``sol`` is a list of solutions, if the worst solution in the list
returns ``oo`` it returns that, otherwise it returns ``len(str(sol))``,
that is, the length of the string representation of the whole list.
Examples
========
This function is designed to be passed to ``min`` as the key argument,
such as ``min(listofsolutions, key=lambda i: ode_sol_simplicity(i,
f(x)))``.
>>> from sympy import symbols, Function, Eq, tan, Integral
>>> from sympy.solvers.ode.ode import ode_sol_simplicity
>>> x, C1, C2 = symbols('x, C1, C2')
>>> f = Function('f')
>>> ode_sol_simplicity(Eq(f(x), C1*x**2), f(x))
-2
>>> ode_sol_simplicity(Eq(x**2 + f(x), C1), f(x))
-1
>>> ode_sol_simplicity(Eq(f(x), C1*Integral(2*x, x)), f(x))
oo
>>> eq1 = Eq(f(x)/tan(f(x)/(2*x)), C1)
>>> eq2 = Eq(f(x)/tan(f(x)/(2*x) + f(x)), C2)
>>> [ode_sol_simplicity(eq, f(x)) for eq in [eq1, eq2]]
[28, 35]
>>> min([eq1, eq2], key=lambda i: ode_sol_simplicity(i, f(x)))
Eq(f(x)/tan(f(x)/(2*x)), C1)
"""
# TODO: if two solutions are solved for f(x), we still want to be
# able to get the simpler of the two
# See the docstring for the coercion rules. We check easier (faster)
# things here first, to save time.
if iterable(sol):
# See if there are Integrals
for i in sol:
if ode_sol_simplicity(i, func, trysolving=trysolving) == oo:
return oo
return len(str(sol))
if sol.has(Integral):
return oo
# Next, try to solve for func. This code will change slightly when CRootOf
# is implemented in solve(). Probably a CRootOf solution should fall
# somewhere between a normal solution and an unsolvable expression.
# First, see if they are already solved
if sol.lhs == func and not sol.rhs.has(func) or \
sol.rhs == func and not sol.lhs.has(func):
return -2
# We are not so lucky, try solving manually
if trysolving:
try:
sols = solve(sol, func)
if not sols:
raise NotImplementedError
except NotImplementedError:
pass
else:
return -1
# Finally, a naive computation based on the length of the string version
# of the expression. This may favor combined fractions because they
# will not have duplicate denominators, and may slightly favor expressions
# with fewer additions and subtractions, as those are separated by spaces
# by the printer.
# Additional ideas for simplicity heuristics are welcome, like maybe
# checking if a equation has a larger domain, or if constantsimp has
# introduced arbitrary constants numbered higher than the order of a
# given ODE that sol is a solution of.
return len(str(sol))
def _extract_funcs(eqs):
from sympy.core.basic import preorder_traversal
funcs = []
for eq in eqs:
derivs = [node for node in preorder_traversal(eq) if isinstance(node, Derivative)]
func = []
for d in derivs:
func += list(d.atoms(AppliedUndef))
for func_ in func:
funcs.append(func_)
funcs = list(uniq(funcs))
return funcs
def _get_constant_subexpressions(expr, Cs):
Cs = set(Cs)
Ces = []
def _recursive_walk(expr):
expr_syms = expr.free_symbols
if expr_syms and expr_syms.issubset(Cs):
Ces.append(expr)
else:
if expr.func == exp:
expr = expr.expand(mul=True)
if expr.func in (Add, Mul):
d = sift(expr.args, lambda i : i.free_symbols.issubset(Cs))
if len(d[True]) > 1:
x = expr.func(*d[True])
if not x.is_number:
Ces.append(x)
elif isinstance(expr, Integral):
if expr.free_symbols.issubset(Cs) and \
all(len(x) == 3 for x in expr.limits):
Ces.append(expr)
for i in expr.args:
_recursive_walk(i)
return
_recursive_walk(expr)
return Ces
def __remove_linear_redundancies(expr, Cs):
cnts = {i: expr.count(i) for i in Cs}
Cs = [i for i in Cs if cnts[i] > 0]
def _linear(expr):
if isinstance(expr, Add):
xs = [i for i in Cs if expr.count(i)==cnts[i] \
and 0 == expr.diff(i, 2)]
d = {}
for x in xs:
y = expr.diff(x)
if y not in d:
d[y]=[]
d[y].append(x)
for y in d:
if len(d[y]) > 1:
d[y].sort(key=str)
for x in d[y][1:]:
expr = expr.subs(x, 0)
return expr
def _recursive_walk(expr):
if len(expr.args) != 0:
expr = expr.func(*[_recursive_walk(i) for i in expr.args])
expr = _linear(expr)
return expr
if isinstance(expr, Equality):
lhs, rhs = [_recursive_walk(i) for i in expr.args]
f = lambda i: isinstance(i, Number) or i in Cs
if isinstance(lhs, Symbol) and lhs in Cs:
rhs, lhs = lhs, rhs
if lhs.func in (Add, Symbol) and rhs.func in (Add, Symbol):
dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f)
drhs = sift([rhs] if isinstance(rhs, AtomicExpr) else rhs.args, f)
for i in [True, False]:
for hs in [dlhs, drhs]:
if i not in hs:
hs[i] = [0]
# this calculation can be simplified
lhs = Add(*dlhs[False]) - Add(*drhs[False])
rhs = Add(*drhs[True]) - Add(*dlhs[True])
elif lhs.func in (Mul, Symbol) and rhs.func in (Mul, Symbol):
dlhs = sift([lhs] if isinstance(lhs, AtomicExpr) else lhs.args, f)
if True in dlhs:
if False not in dlhs:
dlhs[False] = [1]
lhs = Mul(*dlhs[False])
rhs = rhs/Mul(*dlhs[True])
return Eq(lhs, rhs)
else:
return _recursive_walk(expr)
@vectorize(0)
def constantsimp(expr, constants):
r"""
Simplifies an expression with arbitrary constants in it.
This function is written specifically to work with
:py:meth:`~sympy.solvers.ode.dsolve`, and is not intended for general use.
Simplification is done by "absorbing" the arbitrary constants into other
arbitrary constants, numbers, and symbols that they are not independent
of.
The symbols must all have the same name with numbers after it, for
example, ``C1``, ``C2``, ``C3``. The ``symbolname`` here would be
'``C``', the ``startnumber`` would be 1, and the ``endnumber`` would be 3.
If the arbitrary constants are independent of the variable ``x``, then the
independent symbol would be ``x``. There is no need to specify the
dependent function, such as ``f(x)``, because it already has the
independent symbol, ``x``, in it.
Because terms are "absorbed" into arbitrary constants and because
constants are renumbered after simplifying, the arbitrary constants in
expr are not necessarily equal to the ones of the same name in the
returned result.
If two or more arbitrary constants are added, multiplied, or raised to the
power of each other, they are first absorbed together into a single
arbitrary constant. Then the new constant is combined into other terms if
necessary.
Absorption of constants is done with limited assistance:
1. terms of :py:class:`~sympy.core.add.Add`\s are collected to try join
constants so `e^x (C_1 \cos(x) + C_2 \cos(x))` will simplify to `e^x
C_1 \cos(x)`;
2. powers with exponents that are :py:class:`~sympy.core.add.Add`\s are
expanded so `e^{C_1 + x}` will be simplified to `C_1 e^x`.
Use :py:meth:`~sympy.solvers.ode.ode.constant_renumber` to renumber constants
after simplification or else arbitrary numbers on constants may appear,
e.g. `C_1 + C_3 x`.
In rare cases, a single constant can be "simplified" into two constants.
Every differential equation solution should have as many arbitrary
constants as the order of the differential equation. The result here will
be technically correct, but it may, for example, have `C_1` and `C_2` in
an expression, when `C_1` is actually equal to `C_2`. Use your discretion
in such situations, and also take advantage of the ability to use hints in
:py:meth:`~sympy.solvers.ode.dsolve`.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.ode.ode import constantsimp
>>> C1, C2, C3, x, y = symbols('C1, C2, C3, x, y')
>>> constantsimp(2*C1*x, {C1, C2, C3})
C1*x
>>> constantsimp(C1 + 2 + x, {C1, C2, C3})
C1 + x
>>> constantsimp(C1*C2 + 2 + C2 + C3*x, {C1, C2, C3})
C1 + C3*x
"""
# This function works recursively. The idea is that, for Mul,
# Add, Pow, and Function, if the class has a constant in it, then
# we can simplify it, which we do by recursing down and
# simplifying up. Otherwise, we can skip that part of the
# expression.
Cs = constants
orig_expr = expr
constant_subexprs = _get_constant_subexpressions(expr, Cs)
for xe in constant_subexprs:
xes = list(xe.free_symbols)
if not xes:
continue
if all([expr.count(c) == xe.count(c) for c in xes]):
xes.sort(key=str)
expr = expr.subs(xe, xes[0])
# try to perform common sub-expression elimination of constant terms
try:
commons, rexpr = cse(expr)
commons.reverse()
rexpr = rexpr[0]
for s in commons:
cs = list(s[1].atoms(Symbol))
if len(cs) == 1 and cs[0] in Cs and \
cs[0] not in rexpr.atoms(Symbol) and \
not any(cs[0] in ex for ex in commons if ex != s):
rexpr = rexpr.subs(s[0], cs[0])
else:
rexpr = rexpr.subs(*s)
expr = rexpr
except IndexError:
pass
expr = __remove_linear_redundancies(expr, Cs)
def _conditional_term_factoring(expr):
new_expr = terms_gcd(expr, clear=False, deep=True, expand=False)
# we do not want to factor exponentials, so handle this separately
if new_expr.is_Mul:
infac = False
asfac = False
for m in new_expr.args:
if isinstance(m, exp):
asfac = True
elif m.is_Add:
infac = any(isinstance(fi, exp) for t in m.args
for fi in Mul.make_args(t))
if asfac and infac:
new_expr = expr
break
return new_expr
expr = _conditional_term_factoring(expr)
# call recursively if more simplification is possible
if orig_expr != expr:
return constantsimp(expr, Cs)
return expr
def constant_renumber(expr, variables=None, newconstants=None):
r"""
Renumber arbitrary constants in ``expr`` to use the symbol names as given
in ``newconstants``. In the process, this reorders expression terms in a
standard way.
If ``newconstants`` is not provided then the new constant names will be
``C1``, ``C2`` etc. Otherwise ``newconstants`` should be an iterable
giving the new symbols to use for the constants in order.
The ``variables`` argument is a list of non-constant symbols. All other
free symbols found in ``expr`` are assumed to be constants and will be
renumbered. If ``variables`` is not given then any numbered symbol
beginning with ``C`` (e.g. ``C1``) is assumed to be a constant.
Symbols are renumbered based on ``.sort_key()``, so they should be
numbered roughly in the order that they appear in the final, printed
expression. Note that this ordering is based in part on hashes, so it can
produce different results on different machines.
The structure of this function is very similar to that of
:py:meth:`~sympy.solvers.ode.constantsimp`.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.ode.ode import constant_renumber
>>> x, C1, C2, C3 = symbols('x,C1:4')
>>> expr = C3 + C2*x + C1*x**2
>>> expr
C1*x**2 + C2*x + C3
>>> constant_renumber(expr)
C1 + C2*x + C3*x**2
The ``variables`` argument specifies which are constants so that the
other symbols will not be renumbered:
>>> constant_renumber(expr, [C1, x])
C1*x**2 + C2 + C3*x
The ``newconstants`` argument is used to specify what symbols to use when
replacing the constants:
>>> constant_renumber(expr, [x], newconstants=symbols('E1:4'))
E1 + E2*x + E3*x**2
"""
# System of expressions
if isinstance(expr, (set, list, tuple)):
return type(expr)(constant_renumber(Tuple(*expr),
variables=variables, newconstants=newconstants))
# Symbols in solution but not ODE are constants
if variables is not None:
variables = set(variables)
free_symbols = expr.free_symbols
constantsymbols = list(free_symbols - variables)
# Any Cn is a constant...
else:
variables = set()
isconstant = lambda s: s.startswith('C') and s[1:].isdigit()
constantsymbols = [sym for sym in expr.free_symbols if isconstant(sym.name)]
# Find new constants checking that they aren't already in the ODE
if newconstants is None:
iter_constants = numbered_symbols(start=1, prefix='C', exclude=variables)
else:
iter_constants = (sym for sym in newconstants if sym not in variables)
constants_found = []
# make a mapping to send all constantsymbols to S.One and use
# that to make sure that term ordering is not dependent on
# the indexed value of C
C_1 = [(ci, S.One) for ci in constantsymbols]
sort_key=lambda arg: default_sort_key(arg.subs(C_1))
def _constant_renumber(expr):
r"""
We need to have an internal recursive function
"""
# For system of expressions
if isinstance(expr, Tuple):
renumbered = [_constant_renumber(e) for e in expr]
return Tuple(*renumbered)
if isinstance(expr, Equality):
return Eq(
_constant_renumber(expr.lhs),
_constant_renumber(expr.rhs))
if type(expr) not in (Mul, Add, Pow) and not expr.is_Function and \
not expr.has(*constantsymbols):
# Base case, as above. Hope there aren't constants inside
# of some other class, because they won't be renumbered.
return expr
elif expr.is_Piecewise:
return expr
elif expr in constantsymbols:
if expr not in constants_found:
constants_found.append(expr)
return expr
elif expr.is_Function or expr.is_Pow:
return expr.func(
*[_constant_renumber(x) for x in expr.args])
else:
sortedargs = list(expr.args)
sortedargs.sort(key=sort_key)
return expr.func(*[_constant_renumber(x) for x in sortedargs])
expr = _constant_renumber(expr)
# Don't renumber symbols present in the ODE.
constants_found = [c for c in constants_found if c not in variables]
# Renumbering happens here
subs_dict = {var: cons for var, cons in zip(constants_found, iter_constants)}
expr = expr.subs(subs_dict, simultaneous=True)
return expr
def _handle_Integral(expr, func, hint):
r"""
Converts a solution with Integrals in it into an actual solution.
For most hints, this simply runs ``expr.doit()``.
"""
# XXX: This global y hack should be removed
global y
x = func.args[0]
f = func.func
if hint == "1st_exact":
sol = (expr.doit()).subs(y, f(x))
del y
elif hint == "1st_exact_Integral":
sol = Eq(Subs(expr.lhs, y, f(x)), expr.rhs)
del y
elif hint == "nth_linear_constant_coeff_homogeneous":
sol = expr
elif not hint.endswith("_Integral"):
sol = expr.doit()
else:
sol = expr
return sol
# FIXME: replace the general solution in the docstring with
# dsolve(equation, hint='1st_exact_Integral'). You will need to be able
# to have assumptions on P and Q that dP/dy = dQ/dx.
def ode_1st_exact(eq, func, order, match):
r"""
Solves 1st order exact ordinary differential equations.
A 1st order differential equation is called exact if it is the total
differential of a function. That is, the differential equation
.. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0
is exact if there is some function `F(x, y)` such that `P(x, y) =
\partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can
be shown that a necessary and sufficient condition for a first order ODE
to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`.
Then, the solution will be as given below::
>>> from sympy import Function, Eq, Integral, symbols, pprint
>>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1')
>>> P, Q, F= map(Function, ['P', 'Q', 'F'])
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
... Integral(Q(x0, t), (t, y0, y))), C1))
x y
/ /
| |
F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1
| |
/ /
x0 y0
Where the first partials of `P` and `Q` exist and are continuous in a
simply connected region.
A note: SymPy currently has no way to represent inert substitution on an
expression, so the hint ``1st_exact_Integral`` will return an integral
with `dy`. This is supposed to represent the function that you are
solving for.
Examples
========
>>> from sympy import Function, dsolve, cos, sin
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
... f(x), hint='1st_exact')
Eq(x*cos(f(x)) + f(x)**3/3, C1)
References
==========
- https://en.wikipedia.org/wiki/Exact_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 73
# indirect doctest
"""
x = func.args[0]
r = match # d+e*diff(f(x),x)
e = r[r['e']]
d = r[r['d']]
# XXX: This global y hack should be removed
global y # This is the only way to pass dummy y to _handle_Integral
y = r['y']
C1 = get_numbered_constants(eq, num=1)
# Refer Joel Moses, "Symbolic Integration - The Stormy Decade",
# Communications of the ACM, Volume 14, Number 8, August 1971, pp. 558
# which gives the method to solve an exact differential equation.
sol = Integral(d, x) + Integral((e - (Integral(d, x).diff(y))), y)
return Eq(sol, C1)
def ode_1st_homogeneous_coeff_best(eq, func, order, match):
r"""
Returns the best solution to an ODE from the two hints
``1st_homogeneous_coeff_subs_dep_div_indep`` and
``1st_homogeneous_coeff_subs_indep_div_dep``.
This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`
and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`
docstrings for more information on these hints. Note that there is no
``ode_1st_homogeneous_coeff_best_Integral`` hint.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_best', simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
# There are two substitutions that solve the equation, u1=y/x and u2=x/y
# They produce different integrals, so try them both and see which
# one is easier.
sol1 = ode_1st_homogeneous_coeff_subs_indep_div_dep(eq,
func, order, match)
sol2 = ode_1st_homogeneous_coeff_subs_dep_div_indep(eq,
func, order, match)
simplify = match.get('simplify', True)
if simplify:
# why is odesimp called here? Should it be at the usual spot?
sol1 = odesimp(eq, sol1, func, "1st_homogeneous_coeff_subs_indep_div_dep")
sol2 = odesimp(eq, sol2, func, "1st_homogeneous_coeff_subs_dep_div_indep")
return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, func,
trysolving=not simplify))
def ode_1st_homogeneous_coeff_subs_dep_div_indep(eq, func, order, match):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_1 = \frac{\text{<dependent
variable>}}{\text{<independent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential
equation into an equation separable in the variables `x` and `u`. If
`h(u_1)` is the function that results from making the substitution `u_1 =
f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is::
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
>>> pprint(genform)
/f(x)\ /f(x)\ d
g|----| + h|----|*--(f(x))
\ x / \ x / dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
f(x)
----
x
/
|
| -h(u1)
log(x) = C1 + | ---------------- d(u1)
| u1*h(u1) + g(u1)
|
/
Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`.
See also the docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`.
Examples
========
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False))
/ 3 \
|3*f(x) f (x)|
log|------ + -----|
| x 3 |
\ x /
log(x) = log(C1) - -------------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
x = func.args[0]
f = func.func
u = Dummy('u')
u1 = Dummy('u1') # u1 == f(x)/x
r = match # d+e*diff(f(x),x)
C1 = get_numbered_constants(eq, num=1)
xarg = match.get('xarg', 0)
yarg = match.get('yarg', 0)
int = Integral(
(-r[r['e']]/(r[r['d']] + u1*r[r['e']])).subs({x: 1, r['y']: u1}),
(u1, None, f(x)/x))
sol = logcombine(Eq(log(x), int + log(C1)), force=True)
sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x))))
return sol
def ode_1st_homogeneous_coeff_subs_indep_div_dep(eq, func, order, match):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_2 = \frac{\text{<independent
variable>}}{\text{<dependent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential
equation into an equation separable in the variables `y` and `u_2`. If
`h(u_2)` is the function that results from making the substitution `u_2 =
x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
>>> pprint(genform)
/ x \ / x \ d
g|----| + h|----|*--(f(x))
\f(x)/ \f(x)/ dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'))
x
----
f(x)
/
|
| -g(u2)
| ---------------- d(u2)
| u2*g(u2) + h(u2)
|
/
<BLANKLINE>
f(x) = C1*e
Where `u_2 g(u_2) + h(u_2) \ne 0` and `f(x) \ne 0`.
See also the docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`.
Examples
========
>>> from sympy import Function, pprint, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep',
... simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
x = func.args[0]
f = func.func
u = Dummy('u')
u2 = Dummy('u2') # u2 == x/f(x)
r = match # d+e*diff(f(x),x)
C1 = get_numbered_constants(eq, num=1)
xarg = match.get('xarg', 0) # If xarg present take xarg, else zero
yarg = match.get('yarg', 0) # If yarg present take yarg, else zero
int = Integral(
simplify(
(-r[r['d']]/(r[r['e']] + u2*r[r['d']])).subs({x: u2, r['y']: 1})),
(u2, None, x/f(x)))
sol = logcombine(Eq(log(f(x)), int + log(C1)), force=True)
sol = sol.subs(f(x), u).subs(((u, u - yarg), (x, x - xarg), (u, f(x))))
return sol
# XXX: Should this function maybe go somewhere else?
def homogeneous_order(eq, *symbols):
r"""
Returns the order `n` if `g` is homogeneous and ``None`` if it is not
homogeneous.
Determines if a function is homogeneous and if so of what order. A
function `f(x, y, \cdots)` is homogeneous of order `n` if `f(t x, t y,
\cdots) = t^n f(x, y, \cdots)`.
If the function is of two variables, `F(x, y)`, then `f` being homogeneous
of any order is equivalent to being able to rewrite `F(x, y)` as `G(x/y)`
or `H(y/x)`. This fact is used to solve 1st order ordinary differential
equations whose coefficients are homogeneous of the same order (see the
docstrings of
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep` and
:py:meth:`~sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`).
Symbols can be functions, but every argument of the function must be a
symbol, and the arguments of the function that appear in the expression
must match those given in the list of symbols. If a declared function
appears with different arguments than given in the list of symbols,
``None`` is returned.
Examples
========
>>> from sympy import Function, homogeneous_order, sqrt
>>> from sympy.abc import x, y
>>> f = Function('f')
>>> homogeneous_order(f(x), f(x)) is None
True
>>> homogeneous_order(f(x,y), f(y, x), x, y) is None
True
>>> homogeneous_order(f(x), f(x), x)
1
>>> homogeneous_order(x**2*f(x)/sqrt(x**2+f(x)**2), x, f(x))
2
>>> homogeneous_order(x**2+f(x), x, f(x)) is None
True
"""
if not symbols:
raise ValueError("homogeneous_order: no symbols were given.")
symset = set(symbols)
eq = sympify(eq)
# The following are not supported
if eq.has(Order, Derivative):
return None
# These are all constants
if (eq.is_Number or
eq.is_NumberSymbol or
eq.is_number
):
return S.Zero
# Replace all functions with dummy variables
dum = numbered_symbols(prefix='d', cls=Dummy)
newsyms = set()
for i in [j for j in symset if getattr(j, 'is_Function')]:
iargs = set(i.args)
if iargs.difference(symset):
return None
else:
dummyvar = next(dum)
eq = eq.subs(i, dummyvar)
symset.remove(i)
newsyms.add(dummyvar)
symset.update(newsyms)
if not eq.free_symbols & symset:
return None
# assuming order of a nested function can only be equal to zero
if isinstance(eq, Function):
return None if homogeneous_order(
eq.args[0], *tuple(symset)) != 0 else S.Zero
# make the replacement of x with x*t and see if t can be factored out
t = Dummy('t', positive=True) # It is sufficient that t > 0
eqs = separatevars(eq.subs([(i, t*i) for i in symset]), [t], dict=True)[t]
if eqs is S.One:
return S.Zero # there was no term with only t
i, d = eqs.as_independent(t, as_Add=False)
b, e = d.as_base_exp()
if b == t:
return e
def ode_Liouville(eq, func, order, match):
r"""
Solves 2nd order Liouville differential equations.
The general form of a Liouville ODE is
.. math:: \frac{d^2 y}{dx^2} + g(y) \left(\!
\frac{dy}{dx}\!\right)^2 + h(x)
\frac{dy}{dx}\text{.}
The general solution is:
>>> from sympy import Function, dsolve, Eq, pprint, diff
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 +
... h(x)*diff(f(x),x), 0)
>>> pprint(genform)
2 2
/d \ d d
g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0
\dx / dx 2
dx
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'))
f(x)
/ /
| |
| / | /
| | | |
| - | h(x) dx | | g(y) dy
| | | |
| / | /
C1 + C2* | e dx + | e dy = 0
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
... diff(f(x), x)/x, f(x), hint='Liouville'))
________________ ________________
[f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ]
References
==========
- Goldstein and Braun, "Advanced Methods for the Solution of Differential
Equations", pp. 98
- http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville
# indirect doctest
"""
# Liouville ODE:
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x, 2))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98, as well as
# http://www.maplesoft.com/support/help/view.aspx?path=odeadvisor/Liouville
x = func.args[0]
f = func.func
r = match # f(x).diff(x, 2) + g*f(x).diff(x)**2 + h*f(x).diff(x)
y = r['y']
C1, C2 = get_numbered_constants(eq, num=2)
int = Integral(exp(Integral(r['g'], y)), (y, None, f(x)))
sol = Eq(int + C1*Integral(exp(-Integral(r['h'], x)), x) + C2, 0)
return sol
def ode_2nd_power_series_ordinary(eq, func, order, match):
r"""
Gives a power series solution to a second order homogeneous differential
equation with polynomial coefficients at an ordinary point. A homogeneous
differential equation is of the form
.. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0
For simplicity it is assumed that `P(x)`, `Q(x)` and `R(x)` are polynomials,
it is sufficient that `\frac{Q(x)}{P(x)}` and `\frac{R(x)}{P(x)}` exists at
`x_{0}`. A recurrence relation is obtained by substituting `y` as `\sum_{n=0}^\infty a_{n}x^{n}`,
in the differential equation, and equating the nth term. Using this relation
various terms can be generated.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) + f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_ordinary'))
/ 4 2 \ / 2\
|x x | | x | / 6\
f(x) = C2*|-- - -- + 1| + C1*x*|1 - --| + O\x /
\24 2 / \ 6 /
References
==========
- http://tutorial.math.lamar.edu/Classes/DE/SeriesSolutions.aspx
- George E. Simmons, "Differential Equations with Applications and
Historical Notes", p.p 176 - 184
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
n = Dummy("n", integer=True)
s = Wild("s")
k = Wild("k", exclude=[x])
x0 = match.get('x0')
terms = match.get('terms', 5)
p = match[match['a3']]
q = match[match['b3']]
r = match[match['c3']]
seriesdict = {}
recurr = Function("r")
# Generating the recurrence relation which works this way:
# for the second order term the summation begins at n = 2. The coefficients
# p is multiplied with an*(n - 1)*(n - 2)*x**n-2 and a substitution is made such that
# the exponent of x becomes n.
# For example, if p is x, then the second degree recurrence term is
# an*(n - 1)*(n - 2)*x**n-1, substituting (n - 1) as n, it transforms to
# an+1*n*(n - 1)*x**n.
# A similar process is done with the first order and zeroth order term.
coefflist = [(recurr(n), r), (n*recurr(n), q), (n*(n - 1)*recurr(n), p)]
for index, coeff in enumerate(coefflist):
if coeff[1]:
f2 = powsimp(expand((coeff[1]*(x - x0)**(n - index)).subs(x, x + x0)))
if f2.is_Add:
addargs = f2.args
else:
addargs = [f2]
for arg in addargs:
powm = arg.match(s*x**k)
term = coeff[0]*powm[s]
if not powm[k].is_Symbol:
term = term.subs(n, n - powm[k].as_independent(n)[0])
startind = powm[k].subs(n, index)
# Seeing if the startterm can be reduced further.
# If it vanishes for n lesser than startind, it is
# equal to summation from n.
if startind:
for i in reversed(range(startind)):
if not term.subs(n, i):
seriesdict[term] = i
else:
seriesdict[term] = i + 1
break
else:
seriesdict[term] = S.Zero
# Stripping of terms so that the sum starts with the same number.
teq = S.Zero
suminit = seriesdict.values()
rkeys = seriesdict.keys()
req = Add(*rkeys)
if any(suminit):
maxval = max(suminit)
for term in seriesdict:
val = seriesdict[term]
if val != maxval:
for i in range(val, maxval):
teq += term.subs(n, val)
finaldict = {}
if teq:
fargs = teq.atoms(AppliedUndef)
if len(fargs) == 1:
finaldict[fargs.pop()] = 0
else:
maxf = max(fargs, key = lambda x: x.args[0])
sol = solve(teq, maxf)
if isinstance(sol, list):
sol = sol[0]
finaldict[maxf] = sol
# Finding the recurrence relation in terms of the largest term.
fargs = req.atoms(AppliedUndef)
maxf = max(fargs, key = lambda x: x.args[0])
minf = min(fargs, key = lambda x: x.args[0])
if minf.args[0].is_Symbol:
startiter = 0
else:
startiter = -minf.args[0].as_independent(n)[0]
lhs = maxf
rhs = solve(req, maxf)
if isinstance(rhs, list):
rhs = rhs[0]
# Checking how many values are already present
tcounter = len([t for t in finaldict.values() if t])
for _ in range(tcounter, terms - 3): # Assuming c0 and c1 to be arbitrary
check = rhs.subs(n, startiter)
nlhs = lhs.subs(n, startiter)
nrhs = check.subs(finaldict)
finaldict[nlhs] = nrhs
startiter += 1
# Post processing
series = C0 + C1*(x - x0)
for term in finaldict:
if finaldict[term]:
fact = term.args[0]
series += (finaldict[term].subs([(recurr(0), C0), (recurr(1), C1)])*(
x - x0)**fact)
series = collect(expand_mul(series), [C0, C1]) + Order(x**terms)
return Eq(f(x), series)
def ode_2nd_linear_airy(eq, func, order, match):
r"""
Gives solution of the Airy differential equation
.. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0
in terms of Airy special functions airyai and airybi.
Examples
========
>>> from sympy import dsolve, Function
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) - x*f(x)
>>> dsolve(eq)
Eq(f(x), C1*airyai(x) + C2*airybi(x))
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
b = match['b']
m = match['m']
if m.is_positive:
arg = - b/cbrt(m)**2 - cbrt(m)*x
elif m.is_negative:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
else:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
return Eq(f(x), C0*airyai(arg) + C1*airybi(arg))
def ode_2nd_power_series_regular(eq, func, order, match):
r"""
Gives a power series solution to a second order homogeneous differential
equation with polynomial coefficients at a regular point. A second order
homogeneous differential equation is of the form
.. math :: P(x)\frac{d^2y}{dx^2} + Q(x)\frac{dy}{dx} + R(x) = 0
A point is said to regular singular at `x0` if `x - x0\frac{Q(x)}{P(x)}`
and `(x - x0)^{2}\frac{R(x)}{P(x)}` are analytic at `x0`. For simplicity
`P(x)`, `Q(x)` and `R(x)` are assumed to be polynomials. The algorithm for
finding the power series solutions is:
1. Try expressing `(x - x0)P(x)` and `((x - x0)^{2})Q(x)` as power series
solutions about x0. Find `p0` and `q0` which are the constants of the
power series expansions.
2. Solve the indicial equation `f(m) = m(m - 1) + m*p0 + q0`, to obtain the
roots `m1` and `m2` of the indicial equation.
3. If `m1 - m2` is a non integer there exists two series solutions. If
`m1 = m2`, there exists only one solution. If `m1 - m2` is an integer,
then the existence of one solution is confirmed. The other solution may
or may not exist.
The power series solution is of the form `x^{m}\sum_{n=0}^\infty a_{n}x^{n}`. The
coefficients are determined by the following recurrence relation.
`a_{n} = -\frac{\sum_{k=0}^{n-1} q_{n-k} + (m + k)p_{n-k}}{f(m + n)}`. For the case
in which `m1 - m2` is an integer, it can be seen from the recurrence relation
that for the lower root `m`, when `n` equals the difference of both the
roots, the denominator becomes zero. So if the numerator is not equal to zero,
a second series solution exists.
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = x*(f(x).diff(x, 2)) + 2*(f(x).diff(x)) + x*f(x)
>>> pprint(dsolve(eq, hint='2nd_power_series_regular'))
/ 6 4 2 \
| x x x |
/ 4 2 \ C1*|- --- + -- - -- + 1|
| x x | \ 720 24 2 / / 6\
f(x) = C2*|--- - -- + 1| + ------------------------ + O\x /
\120 6 / x
References
==========
- George E. Simmons, "Differential Equations with Applications and
Historical Notes", p.p 176 - 184
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
m = Dummy("m") # for solving the indicial equation
x0 = match.get('x0')
terms = match.get('terms', 5)
p = match['p']
q = match['q']
# Generating the indicial equation
indicial = []
for term in [p, q]:
if not term.has(x):
indicial.append(term)
else:
term = series(term, n=1, x0=x0)
if isinstance(term, Order):
indicial.append(S.Zero)
else:
for arg in term.args:
if not arg.has(x):
indicial.append(arg)
break
p0, q0 = indicial
sollist = solve(m*(m - 1) + m*p0 + q0, m)
if sollist and isinstance(sollist, list) and all(
[sol.is_real for sol in sollist]):
serdict1 = {}
serdict2 = {}
if len(sollist) == 1:
# Only one series solution exists in this case.
m1 = m2 = sollist.pop()
if terms-m1-1 <= 0:
return Eq(f(x), Order(terms))
serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0)
else:
m1 = sollist[0]
m2 = sollist[1]
if m1 < m2:
m1, m2 = m2, m1
# Irrespective of whether m1 - m2 is an integer or not, one
# Frobenius series solution exists.
serdict1 = _frobenius(terms-m1-1, m1, p0, q0, p, q, x0, x, C0)
if not (m1 - m2).is_integer:
# Second frobenius series solution exists.
serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1)
else:
# Check if second frobenius series solution exists.
serdict2 = _frobenius(terms-m2-1, m2, p0, q0, p, q, x0, x, C1, check=m1)
if serdict1:
finalseries1 = C0
for key in serdict1:
power = int(key.name[1:])
finalseries1 += serdict1[key]*(x - x0)**power
finalseries1 = (x - x0)**m1*finalseries1
finalseries2 = S.Zero
if serdict2:
for key in serdict2:
power = int(key.name[1:])
finalseries2 += serdict2[key]*(x - x0)**power
finalseries2 += C1
finalseries2 = (x - x0)**m2*finalseries2
return Eq(f(x), collect(finalseries1 + finalseries2,
[C0, C1]) + Order(x**terms))
def ode_2nd_linear_bessel(eq, func, order, match):
r"""
Gives solution of the Bessel differential equation
.. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x)
if n is integer then the solution is of the form Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x)) as both the solutions are linearly independent else if
n is a fraction then the solution is of the form Eq(f(x), C0 besselj(n,x)
+ C1 besselj(-n,x)) which can also transform into Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x)).
Examples
========
>>> from sympy.abc import x
>>> from sympy import Symbol
>>> v = Symbol('v', positive=True)
>>> from sympy.solvers.ode import dsolve
>>> from sympy import Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y
>>> dsolve(genform)
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x))
References
==========
https://www.math24.net/bessel-differential-equation/
"""
x = func.args[0]
f = func.func
C0, C1 = get_numbered_constants(eq, num=2)
n = match['n']
a4 = match['a4']
c4 = match['c4']
d4 = match['d4']
b4 = match['b4']
n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2)
return Eq(f(x), ((x**(Rational(1-c4,2)))*(C0*besselj(n/d4,a4*x**d4/d4)
+ C1*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))
def _frobenius(n, m, p0, q0, p, q, x0, x, c, check=None):
r"""
Returns a dict with keys as coefficients and values as their values in terms of C0
"""
n = int(n)
# In cases where m1 - m2 is not an integer
m2 = check
d = Dummy("d")
numsyms = numbered_symbols("C", start=0)
numsyms = [next(numsyms) for i in range(n + 1)]
serlist = []
for ser in [p, q]:
# Order term not present
if ser.is_polynomial(x) and Poly(ser, x).degree() <= n:
if x0:
ser = ser.subs(x, x + x0)
dict_ = Poly(ser, x).as_dict()
# Order term present
else:
tseries = series(ser, x=x0, n=n+1)
# Removing order
dict_ = Poly(list(ordered(tseries.args))[: -1], x).as_dict()
# Fill in with zeros, if coefficients are zero.
for i in range(n + 1):
if (i,) not in dict_:
dict_[(i,)] = S.Zero
serlist.append(dict_)
pseries = serlist[0]
qseries = serlist[1]
indicial = d*(d - 1) + d*p0 + q0
frobdict = {}
for i in range(1, n + 1):
num = c*(m*pseries[(i,)] + qseries[(i,)])
for j in range(1, i):
sym = Symbol("C" + str(j))
num += frobdict[sym]*((m + j)*pseries[(i - j,)] + qseries[(i - j,)])
# Checking for cases when m1 - m2 is an integer. If num equals zero
# then a second Frobenius series solution cannot be found. If num is not zero
# then set constant as zero and proceed.
if m2 is not None and i == m2 - m:
if num:
return False
else:
frobdict[numsyms[i]] = S.Zero
else:
frobdict[numsyms[i]] = -num/(indicial.subs(d, m+i))
return frobdict
def _nth_order_reducible_match(eq, func):
r"""
Matches any differential equation that can be rewritten with a smaller
order. Only derivatives of ``func`` alone, wrt a single variable,
are considered, and only in them should ``func`` appear.
"""
# ODE only handles functions of 1 variable so this affirms that state
assert len(func.args) == 1
x = func.args[0]
vc = [d.variable_count[0] for d in eq.atoms(Derivative)
if d.expr == func and len(d.variable_count) == 1]
ords = [c for v, c in vc if v == x]
if len(ords) < 2:
return
smallest = min(ords)
# make sure func does not appear outside of derivatives
D = Dummy()
if eq.subs(func.diff(x, smallest), D).has(func):
return
return {'n': smallest}
def ode_nth_order_reducible(eq, func, order, match):
r"""
Solves ODEs that only involve derivatives of the dependent variable using
a substitution of the form `f^n(x) = g(x)`.
For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be
transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and
`f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If
that gives an explicit solution for `g` then `f` is found simply by
integration.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0)
>>> dsolve(eq, f(x), hint='nth_order_reducible')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))
"""
x = func.args[0]
f = func.func
n = match['n']
# get a unique function name for g
names = [a.name for a in eq.atoms(AppliedUndef)]
while True:
name = Dummy().name
if name not in names:
g = Function(name)
break
w = f(x).diff(x, n)
geq = eq.subs(w, g(x))
gsol = dsolve(geq, g(x))
if not isinstance(gsol, list):
gsol = [gsol]
# Might be multiple solutions to the reduced ODE:
fsol = []
for gsoli in gsol:
fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times
fsol.append(fsoli)
if len(fsol) == 1:
fsol = fsol[0]
return fsol
def _remove_redundant_solutions(eq, solns, order, var):
r"""
Remove redundant solutions from the set of solutions.
This function is needed because otherwise dsolve can return
redundant solutions. As an example consider:
eq = Eq((f(x).diff(x, 2))*f(x).diff(x), 0)
There are two ways to find solutions to eq. The first is to solve f(x).diff(x, 2) = 0
leading to solution f(x)=C1 + C2*x. The second is to solve the equation f(x).diff(x) = 0
leading to the solution f(x) = C1. In this particular case we then see
that the second solution is a special case of the first and we don't
want to return it.
This does not always happen. If we have
eq = Eq((f(x)**2-4)*(f(x).diff(x)-4), 0)
then we get the algebraic solution f(x) = [-2, 2] and the integral solution
f(x) = x + C1 and in this case the two solutions are not equivalent wrt
initial conditions so both should be returned.
"""
def is_special_case_of(soln1, soln2):
return _is_special_case_of(soln1, soln2, eq, order, var)
unique_solns = []
for soln1 in solns:
for soln2 in unique_solns[:]:
if is_special_case_of(soln1, soln2):
break
elif is_special_case_of(soln2, soln1):
unique_solns.remove(soln2)
else:
unique_solns.append(soln1)
return unique_solns
def _is_special_case_of(soln1, soln2, eq, order, var):
r"""
True if soln1 is found to be a special case of soln2 wrt some value of the
constants that appear in soln2. False otherwise.
"""
# The solutions returned by dsolve may be given explicitly or implicitly.
# We will equate the sol1=(soln1.rhs - soln1.lhs), sol2=(soln2.rhs - soln2.lhs)
# of the two solutions.
#
# Since this is supposed to hold for all x it also holds for derivatives.
# For an order n ode we should be able to differentiate
# each solution n times to get n+1 equations.
#
# We then try to solve those n+1 equations for the integrations constants
# in sol2. If we can find a solution that doesn't depend on x then it
# means that some value of the constants in sol1 is a special case of
# sol2 corresponding to a particular choice of the integration constants.
# In case the solution is in implicit form we subtract the sides
soln1 = soln1.rhs - soln1.lhs
soln2 = soln2.rhs - soln2.lhs
# Work for the series solution
if soln1.has(Order) and soln2.has(Order):
if soln1.getO() == soln2.getO():
soln1 = soln1.removeO()
soln2 = soln2.removeO()
else:
return False
elif soln1.has(Order) or soln2.has(Order):
return False
constants1 = soln1.free_symbols.difference(eq.free_symbols)
constants2 = soln2.free_symbols.difference(eq.free_symbols)
constants1_new = get_numbered_constants(Tuple(soln1, soln2), len(constants1))
if len(constants1) == 1:
constants1_new = {constants1_new}
for c_old, c_new in zip(constants1, constants1_new):
soln1 = soln1.subs(c_old, c_new)
# n equations for sol1 = sol2, sol1'=sol2', ...
lhs = soln1
rhs = soln2
eqns = [Eq(lhs, rhs)]
for n in range(1, order):
lhs = lhs.diff(var)
rhs = rhs.diff(var)
eq = Eq(lhs, rhs)
eqns.append(eq)
# BooleanTrue/False awkwardly show up for trivial equations
if any(isinstance(eq, BooleanFalse) for eq in eqns):
return False
eqns = [eq for eq in eqns if not isinstance(eq, BooleanTrue)]
try:
constant_solns = solve(eqns, constants2)
except NotImplementedError:
return False
# Sometimes returns a dict and sometimes a list of dicts
if isinstance(constant_solns, dict):
constant_solns = [constant_solns]
# after solving the issue 17418, maybe we don't need the following checksol code.
for constant_soln in constant_solns:
for eq in eqns:
eq=eq.rhs-eq.lhs
if checksol(eq, constant_soln) is not True:
return False
# If any solution gives all constants as expressions that don't depend on
# x then there exists constants for soln2 that give soln1
for constant_soln in constant_solns:
if not any(c.has(var) for c in constant_soln.values()):
return True
return False
def _nth_linear_match(eq, func, order):
r"""
Matches a differential equation to the linear form:
.. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0
Returns a dict of order:coeff terms, where order is the order of the
derivative on each term, and coeff is the coefficient of that derivative.
The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is
not linear. This function assumes that ``func`` has already been checked
to be good.
Examples
========
>>> from sympy import Function, cos, sin
>>> from sympy.abc import x
>>> from sympy.solvers.ode.ode import _nth_linear_match
>>> f = Function('f')
>>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
... sin(x), f(x), 3)
{-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1}
>>> _nth_linear_match(f(x).diff(x, 3) + 2*f(x).diff(x) +
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) -
... sin(f(x)), f(x), 3) == None
True
"""
x = func.args[0]
one_x = {x}
terms = {i: S.Zero for i in range(-1, order + 1)}
for i in Add.make_args(eq):
if not i.has(func):
terms[-1] += i
else:
c, f = i.as_independent(func)
if (isinstance(f, Derivative)
and set(f.variables) == one_x
and f.args[0] == func):
terms[f.derivative_count] += c
elif f == func:
terms[len(f.args[1:])] += c
else:
return None
return terms
def ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear homogeneous variable-coefficient
Cauchy-Euler equidimensional ordinary differential equation.
This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `f(x) = x^r`, and deriving a characteristic equation
for `r`. When there are repeated roots, we include extra terms of the
form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration
constant, `r` is a root of the characteristic equation, and `k` ranges
over the multiplicity of `r`. In the cases where the roots are complex,
solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))`
are returned, based on expansions with Euler's formula. The general
solution is the sum of the terms found. If SymPy cannot find exact roots
to the characteristic equation, a
:py:obj:`~.ComplexRootOf` instance will be returned
instead.
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x),
... hint='nth_linear_euler_eq_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), sqrt(x)*(C1 + C2*log(x)))
Note that because this method does not involve integration, there is no
``nth_linear_euler_eq_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
corresponding to the fundamental solution set, for use with non
homogeneous solution methods like variation of parameters and
undetermined coefficients. Note that, though the solutions should be
linearly independent, this function does not explicitly check that. You
can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear
independence. Also, ``assert len(sollist) == order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x)
>>> pprint(dsolve(eq, f(x),
... hint='nth_linear_euler_eq_homogeneous'))
2
f(x) = x *(C1 + C2*x)
References
==========
- https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation
- C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and
Engineers", Springer 1999, pp. 12
# indirect doctest
"""
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms = []
x = func.args[0]
f = func.func
r = match
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if not isinstance(i, str) and i >= 0:
chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
chareq = Poly(chareq, symbol)
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
constants.reverse()
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
gsol = S.Zero
# We need keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
ln = log
for root, multiplicity in charroots.items():
for i in range(multiplicity):
if isinstance(root, RootOf):
gsol += (x**root) * constants.pop()
if multiplicity != 1:
raise ValueError("Value should be 1")
collectterms = [(0, root, 0)] + collectterms
elif root.is_real:
gsol += ln(x)**i*(x**root) * constants.pop()
collectterms = [(i, root, 0)] + collectterms
else:
reroot = re(root)
imroot = im(root)
gsol += ln(x)**i * (x**reroot) * (
constants.pop() * sin(abs(imroot)*ln(x))
+ constants.pop() * cos(imroot*ln(x)))
# Preserve ordering (multiplicity, real part, imaginary part)
# It will be assumed implicitly when constructing
# fundamental solution sets.
collectterms = [(i, reroot, imroot)] + collectterms
if returns == 'sol':
return Eq(f(x), gsol)
elif returns in ('list' 'both'):
# HOW TO TEST THIS CODE? (dsolve does not pass 'returns' through)
# Create a list of (hopefully) linearly independent solutions
gensols = []
# Keep track of when to use sin or cos for nonzero imroot
for i, reroot, imroot in collectterms:
if imroot == 0:
gensols.append(ln(x)**i*x**reroot)
else:
sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x))
if sin_form in gensols:
cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x))
gensols.append(cos_form)
else:
gensols.append(sin_form)
if returns == 'list':
return gensols
else:
return {'sol': Eq(f(x), gsol), 'list': gensols}
else:
raise ValueError('Unknown value for key "returns".')
def ode_nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using undetermined coefficients.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `x = exp(t)`, and deriving a characteristic equation
of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can
be then solved by nth_linear_constant_coeff_undetermined_coefficients if
g(exp(t)) has finite number of linearly independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
After replacement of x by exp(t), this method works by creating a trial function
from the expression and all of its linear independent derivatives and
substituting them into the original ODE. The coefficients for each term
will be a system of linear equations, which are be solved for and
substituted, giving the solution. If any of the trial functions are linearly
dependent on the solution to the homogeneous equation, they are multiplied
by sufficient `x` to make them linearly independent.
Examples
========
>>> from sympy import dsolve, Function, Derivative, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand()
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4)
"""
x = func.args[0]
f = func.func
r = match
chareq, eq, symbol = S.Zero, S.Zero, Dummy('x')
for i in r.keys():
if not isinstance(i, str) and i >= 0:
chareq += (r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
for i in range(1,degree(Poly(chareq, symbol))+1):
eq += chareq.coeff(symbol**i)*diff(f(x), x, i)
if chareq.as_coeff_add(symbol)[0]:
eq += chareq.as_coeff_add(symbol)[0]*f(x)
e, re = posify(r[-1].subs(x, exp(x)))
eq += e.subs(re)
match = _nth_linear_match(eq, f(x), ode_order(eq, f(x)))
eq_homogeneous = Add(eq,-match[-1])
match['trialset'] = _undetermined_coefficients_match(match[-1], x, func, eq_homogeneous)['trialset']
return ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match).subs(x, log(x)).subs(f(log(x)), f(x)).expand()
def ode_nth_linear_euler_eq_nonhomogeneous_variation_of_parameters(eq, func, order, match, returns='sol'):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using variation of parameters.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by multiplying eq given below with `a_n x^{n}`
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation, but sometimes SymPy cannot simplify the
Wronskian well enough to integrate it. If this method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it doesn't use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, Derivative
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand()
Eq(f(x), C1*x + C2*x**2 + x**4/6)
"""
x = func.args[0]
f = func.func
r = match
gensol = ode_nth_linear_euler_eq_homogeneous(eq, func, order, match, returns='both')
match.update(gensol)
r[-1] = r[-1]/r[ode_order(eq, f(x))]
sol = _solve_variation_of_parameters(eq, func, order, match)
return Eq(f(x), r['sol'].rhs + (sol.rhs - r['sol'].rhs)*r[ode_order(eq, f(x))])
def _linear_coeff_match(expr, func):
r"""
Helper function to match hint ``linear_coefficients``.
Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2
f(x) + c_2)` where the following conditions hold:
1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals;
2. `c_1` or `c_2` are not equal to zero;
3. `a_2 b_1 - a_1 b_2` is not equal to zero.
Return ``xarg``, ``yarg`` where
1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)`
2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)`
Examples
========
>>> from sympy import Function
>>> from sympy.abc import x
>>> from sympy.solvers.ode.ode import _linear_coeff_match
>>> from sympy.functions.elementary.trigonometric import sin
>>> f = Function('f')
>>> _linear_coeff_match((
... (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)), f(x))
(1/9, 22/9)
>>> _linear_coeff_match(
... sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1)), f(x))
(19/27, 2/27)
>>> _linear_coeff_match(sin(f(x)/x), f(x))
"""
f = func.func
x = func.args[0]
def abc(eq):
r'''
Internal function of _linear_coeff_match
that returns Rationals a, b, c
if eq is a*x + b*f(x) + c, else None.
'''
eq = _mexpand(eq)
c = eq.as_independent(x, f(x), as_Add=True)[0]
if not c.is_Rational:
return
a = eq.coeff(x)
if not a.is_Rational:
return
b = eq.coeff(f(x))
if not b.is_Rational:
return
if eq == a*x + b*f(x) + c:
return a, b, c
def match(arg):
r'''
Internal function of _linear_coeff_match that returns Rationals a1,
b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x)
+ c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is
non-zero, else None.
'''
n, d = arg.together().as_numer_denom()
m = abc(n)
if m is not None:
a1, b1, c1 = m
m = abc(d)
if m is not None:
a2, b2, c2 = m
d = a2*b1 - a1*b2
if (c1 or c2) and d:
return a1, b1, c1, a2, b2, c2, d
m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and
len(fi.args) == 1 and not fi.args[0].is_Function] or {expr}
m1 = match(m.pop())
if m1 and all(match(mi) == m1 for mi in m):
a1, b1, c1, a2, b2, c2, denom = m1
return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom
def ode_linear_coefficients(eq, func, order, match):
r"""
Solves a differential equation with linear coefficients.
The general form of a differential equation with linear coefficients is
.. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y +
c_2}\!\right) = 0\text{,}
where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2
- a_2 b_1 \ne 0`.
This can be solved by substituting:
.. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2}
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1
b_2}\text{.}
This substitution reduces the equation to a homogeneous differential
equation.
See Also
========
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_best`
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_indep_div_dep`
:meth:`sympy.solvers.ode.ode.ode_1st_homogeneous_coeff_subs_dep_div_indep`
Examples
========
>>> from sympy import Function, pprint
>>> from sympy.solvers.ode.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> df = f(x).diff(x)
>>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1)
>>> dsolve(eq, hint='linear_coefficients')
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
>>> pprint(dsolve(eq, hint='linear_coefficients'))
___________ ___________
/ 2 / 2
[f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1]
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
return ode_1st_homogeneous_coeff_best(eq, func, order, match)
def ode_separable_reduced(eq, func, order, match):
r"""
Solves a differential equation that can be reduced to the separable form.
The general form of this equation is
.. math:: y' + (y/x) H(x^n y) = 0\text{}.
This can be solved by substituting `u(y) = x^n y`. The equation then
reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} -
\frac{1}{x} = 0`.
The general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x, n
>>> f, g = map(Function, ['f', 'g'])
>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x))
>>> pprint(genform)
/ n \
d f(x)*g\x *f(x)/
--(f(x)) + ---------------
dx x
>>> pprint(dsolve(genform, hint='separable_reduced'))
n
x *f(x)
/
|
| 1
| ------------ dy = C1 + log(x)
| y*(n - g(y))
|
/
See Also
========
:meth:`sympy.solvers.ode.ode.ode_separable`
Examples
========
>>> from sympy import Function, pprint
>>> from sympy.solvers.ode.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = (x - x**2*f(x))*d - f(x)
>>> dsolve(eq, hint='separable_reduced')
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
>>> pprint(dsolve(eq, hint='separable_reduced'))
___________ ___________
/ 2 / 2
1 - \/ C1*x + 1 \/ C1*x + 1 + 1
[f(x) = ------------------, f(x) = ------------------]
x x
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
# Arguments are passed in a way so that they are coherent with the
# ode_separable function
x = func.args[0]
f = func.func
y = Dummy('y')
u = match['u'].subs(match['t'], y)
ycoeff = 1/(y*(match['power'] - u))
m1 = {y: 1, x: -1/x, 'coeff': 1}
m2 = {y: ycoeff, x: 1, 'coeff': 1}
r = {'m1': m1, 'm2': m2, 'y': y, 'hint': x**match['power']*f(x)}
return ode_separable(eq, func, order, r)
def ode_1st_power_series(eq, func, order, match):
r"""
The power series solution is a method which gives the Taylor series expansion
to the solution of a differential equation.
For a first order differential equation `\frac{dy}{dx} = h(x, y)`, a power
series solution exists at a point `x = x_{0}` if `h(x, y)` is analytic at `x_{0}`.
The solution is given by
.. math:: y(x) = y(x_{0}) + \sum_{n = 1}^{\infty} \frac{F_{n}(x_{0},b)(x - x_{0})^n}{n!},
where `y(x_{0}) = b` is the value of y at the initial value of `x_{0}`.
To compute the values of the `F_{n}(x_{0},b)` the following algorithm is
followed, until the required number of terms are generated.
1. `F_1 = h(x_{0}, b)`
2. `F_{n+1} = \frac{\partial F_{n}}{\partial x} + \frac{\partial F_{n}}{\partial y}F_{1}`
Examples
========
>>> from sympy import Function, pprint, exp
>>> from sympy.solvers.ode.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = exp(x)*(f(x).diff(x)) - f(x)
>>> pprint(dsolve(eq, hint='1st_power_series'))
3 4 5
C1*x C1*x C1*x / 6\
f(x) = C1 + C1*x - ----- + ----- + ----- + O\x /
6 24 60
References
==========
- Travis W. Walker, Analytic power series technique for solving first-order
differential equations, p.p 17, 18
"""
x = func.args[0]
y = match['y']
f = func.func
h = -match[match['d']]/match[match['e']]
point = match.get('f0')
value = match.get('f0val')
terms = match.get('terms')
# First term
F = h
if not h:
return Eq(f(x), value)
# Initialization
series = value
if terms > 1:
hc = h.subs({x: point, y: value})
if hc.has(oo) or hc.has(NaN) or hc.has(zoo):
# Derivative does not exist, not analytic
return Eq(f(x), oo)
elif hc:
series += hc*(x - point)
for factcount in range(2, terms):
Fnew = F.diff(x) + F.diff(y)*h
Fnewc = Fnew.subs({x: point, y: value})
# Same logic as above
if Fnewc.has(oo) or Fnewc.has(NaN) or Fnewc.has(-oo) or Fnewc.has(zoo):
return Eq(f(x), oo)
series += Fnewc*((x - point)**factcount)/factorial(factcount)
F = Fnew
series += Order(x**terms)
return Eq(f(x), series)
def ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='sol'):
r"""
Solves an `n`\th order linear homogeneous differential equation with
constant coefficients.
This is an equation of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = 0\text{.}
These equations can be solved in a general manner, by taking the roots of
the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m +
a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms,
for each where `C_n` is an arbitrary constant, `r` is a root of the
characteristic equation and `i` is one of each from 0 to the multiplicity
of the root - 1 (for example, a root 3 of multiplicity 2 would create the
terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded
for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`.
Complex roots always come in conjugate pairs in polynomials with real
coefficients, so the two roots will be represented (after simplifying the
constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`.
If SymPy cannot find exact roots to the characteristic equation, a
:py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return
instead.
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0))
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1)))
+ C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1)))
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3)))
+ C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3))))
Note that because this method does not involve integration, there is no
``nth_linear_constant_coeff_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
for use with non homogeneous solution methods like variation of
parameters and undetermined coefficients. Note that, though the
solutions should be linearly independent, this function does not
explicitly check that. You can do ``assert simplify(wronskian(sollist))
!= 0`` to check for linear independence. Also, ``assert len(sollist) ==
order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) -
... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous'))
x -2*x
f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation section:
Nonhomogeneous_equation_with_constant_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 211
# indirect doctest
"""
x = func.args[0]
f = func.func
r = match
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if type(i) == str or i < 0:
pass
else:
chareq += r[i]*symbol**i
chareq = Poly(chareq, symbol)
# Can't just call roots because it doesn't return rootof for unsolveable
# polynomials.
chareqroots = roots(chareq, multiple=True)
if len(chareqroots) != order:
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
chareq_is_complex = not all([i.is_real for i in chareq.all_coeffs()])
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
# We need to keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
#
# XXX: This global collectterms hack should be removed.
global collectterms
collectterms = []
gensols = []
conjugate_roots = [] # used to prevent double-use of conjugate roots
# Loop over roots in theorder provided by roots/rootof...
for root in chareqroots:
# but don't repoeat multiple roots.
if root not in charroots:
continue
multiplicity = charroots.pop(root)
for i in range(multiplicity):
if chareq_is_complex:
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
continue
reroot = re(root)
imroot = im(root)
if imroot.has(atan2) and reroot.has(atan2):
# Remove this condition when re and im stop returning
# circular atan2 usages.
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
else:
if root in conjugate_roots:
collectterms = [(i, reroot, imroot)] + collectterms
continue
if imroot == 0:
gensols.append(x**i*exp(reroot*x))
collectterms = [(i, reroot, 0)] + collectterms
continue
conjugate_roots.append(conjugate(root))
gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x))
gensols.append(x**i*exp(reroot*x) * cos( imroot * x))
# This ordering is important
collectterms = [(i, reroot, imroot)] + collectterms
if returns == 'list':
return gensols
elif returns in ('sol' 'both'):
gsol = Add(*[i*j for (i, j) in zip(constants, gensols)])
if returns == 'sol':
return Eq(f(x), gsol)
else:
return {'sol': Eq(f(x), gsol), 'list': gensols}
else:
raise ValueError('Unknown value for key "returns".')
def ode_nth_linear_constant_coeff_undetermined_coefficients(eq, func, order, match):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of undetermined coefficients.
This method works on differential equations of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = P(x)\text{,}
where `P(x)` is a function that has a finite number of linearly
independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
This method works by creating a trial function from the expression and all
of its linear independent derivatives and substituting them into the
original ODE. The coefficients for each term will be a system of linear
equations, which are be solved for and substituted, giving the solution.
If any of the trial functions are linearly dependent on the solution to
the homogeneous equation, they are multiplied by sufficient `x` to make
them linearly independent.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
... 4*exp(-x)*x**2 + cos(2*x), f(x),
... hint='nth_linear_constant_coeff_undetermined_coefficients'))
/ / 3\\
| | x || -x 4*sin(2*x) 3*cos(2*x)
f(x) = |C1 + x*|C2 + --||*e - ---------- + ----------
\ \ 3 // 25 25
References
==========
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 221
# indirect doctest
"""
gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='both')
match.update(gensol)
return _solve_undetermined_coefficients(eq, func, order, match)
def _solve_undetermined_coefficients(eq, func, order, match):
r"""
Helper function for the method of undetermined coefficients.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_undetermined_coefficients`
docstring for more information on this method.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation, such as the list
returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='list')``.
``sol``
The general solution, such as the solution returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``.
``trialset``
The set of trial functions as returned by
``_undetermined_coefficients_match()['trialset']``.
"""
x = func.args[0]
f = func.func
r = match
coeffs = numbered_symbols('a', cls=Dummy)
coefflist = []
gensols = r['list']
gsol = r['sol']
trialset = r['trialset']
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply" +
" undetermined coefficients to " + str(eq) +
" (number of terms != order)")
trialfunc = 0
for i in trialset:
c = next(coeffs)
coefflist.append(c)
trialfunc += c*i
eqs = sub_func_doit(eq, f(x), trialfunc)
coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1))))
eqs = _mexpand(eqs)
for i in Add.make_args(eqs):
s = separatevars(i, dict=True, symbols=[x])
if coeffsdict.get(s[x]):
coeffsdict[s[x]] += s['coeff']
else:
coeffsdict[s[x]] = s['coeff']
coeffvals = solve(list(coeffsdict.values()), coefflist)
if not coeffvals:
raise NotImplementedError(
"Could not solve `%s` using the "
"method of undetermined coefficients "
"(unable to solve for coefficients)." % eq)
psol = trialfunc.subs(coeffvals)
return Eq(f(x), gsol.rhs + psol)
def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero):
r"""
Returns a trial function match if undetermined coefficients can be applied
to ``expr``, and ``None`` otherwise.
A trial expression can be found for an expression for use with the method
of undetermined coefficients if the expression is an
additive/multiplicative combination of constants, polynomials in `x` (the
independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and
`e^{a x}` terms (in other words, it has a finite number of linearly
independent derivatives).
Note that you may still need to multiply each term returned here by
sufficient `x` to make it linearly independent with the solutions to the
homogeneous equation.
This is intended for internal use by ``undetermined_coefficients`` hints.
SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of
only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So,
for example, you will need to manually convert `\sin^2(x)` into `[1 +
\cos(2 x)]/2` to properly apply the method of undetermined coefficients on
it.
Examples
========
>>> from sympy import log, exp
>>> from sympy.solvers.ode.ode import _undetermined_coefficients_match
>>> from sympy.abc import x
>>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
{'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}}
>>> _undetermined_coefficients_match(log(x), x)
{'test': False}
"""
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1)
retdict = {}
def _test_term(expr, x):
r"""
Test if ``expr`` fits the proper form for undetermined coefficients.
"""
if not expr.has(x):
return True
elif expr.is_Add:
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Mul:
if expr.has(sin, cos):
foundtrig = False
# Make sure that there is only one trig function in the args.
# See the docstring.
for i in expr.args:
if i.has(sin, cos):
if foundtrig:
return False
else:
foundtrig = True
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Function:
if expr.func in (sin, cos, exp, sinh, cosh):
if expr.args[0].match(a*x + b):
return True
else:
return False
else:
return False
elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \
expr.exp >= 0:
return True
elif expr.is_Pow and expr.base.is_number:
if expr.exp.match(a*x + b):
return True
else:
return False
elif expr.is_Symbol or expr.is_number:
return True
else:
return False
def _get_trial_set(expr, x, exprs=set()):
r"""
Returns a set of trial terms for undetermined coefficients.
The idea behind undetermined coefficients is that the terms expression
repeat themselves after a finite number of derivatives, except for the
coefficients (they are linearly dependent). So if we collect these,
we should have the terms of our trial function.
"""
def _remove_coefficient(expr, x):
r"""
Returns the expression without a coefficient.
Similar to expr.as_independent(x)[1], except it only works
multiplicatively.
"""
term = S.One
if expr.is_Mul:
for i in expr.args:
if i.has(x):
term *= i
elif expr.has(x):
term = expr
return term
expr = expand_mul(expr)
if expr.is_Add:
for term in expr.args:
if _remove_coefficient(term, x) in exprs:
pass
else:
exprs.add(_remove_coefficient(term, x))
exprs = exprs.union(_get_trial_set(term, x, exprs))
else:
term = _remove_coefficient(expr, x)
tmpset = exprs.union({term})
oldset = set()
while tmpset != oldset:
# If you get stuck in this loop, then _test_term is probably
# broken
oldset = tmpset.copy()
expr = expr.diff(x)
term = _remove_coefficient(expr, x)
if term.is_Add:
tmpset = tmpset.union(_get_trial_set(term, x, tmpset))
else:
tmpset.add(term)
exprs = tmpset
return exprs
def is_homogeneous_solution(term):
r""" This function checks whether the given trialset contains any root
of homogenous equation"""
return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero
retdict['test'] = _test_term(expr, x)
if retdict['test']:
# Try to generate a list of trial solutions that will have the
# undetermined coefficients. Note that if any of these are not linearly
# independent with any of the solutions to the homogeneous equation,
# then they will need to be multiplied by sufficient x to make them so.
# This function DOES NOT do that (it doesn't even look at the
# homogeneous equation).
temp_set = set()
for i in Add.make_args(expr):
act = _get_trial_set(i,x)
if eq_homogeneous is not S.Zero:
while any(is_homogeneous_solution(ts) for ts in act):
act = {x*ts for ts in act}
temp_set = temp_set.union(act)
retdict['trialset'] = temp_set
return retdict
def ode_nth_linear_constant_coeff_variation_of_parameters(eq, func, order, match):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of variation of parameters.
This method works on any differential equations of the form
.. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0
f(x) = P(x)\text{.}
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, P(x)]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation with constant coefficients, but sometimes
SymPy cannot simplify the Wronskian well enough to integrate it. If this
method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it doesn't use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) +
... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
... hint='nth_linear_constant_coeff_variation_of_parameters'))
/ / / x*log(x) 11*x\\\ x
f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e
\ \ \ 6 36 ///
References
==========
- https://en.wikipedia.org/wiki/Variation_of_parameters
- http://planetmath.org/VariationOfParameters
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 233
# indirect doctest
"""
gensol = ode_nth_linear_constant_coeff_homogeneous(eq, func, order, match,
returns='both')
match.update(gensol)
return _solve_variation_of_parameters(eq, func, order, match)
def _solve_variation_of_parameters(eq, func, order, match):
r"""
Helper function for the method of variation of parameters and nonhomogeneous euler eq.
See the
:py:meth:`~sympy.solvers.ode.ode.ode_nth_linear_constant_coeff_variation_of_parameters`
docstring for more information on this method.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation, such as the list
returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='list')``.
``sol``
The general solution, such as the solution returned by
``ode_nth_linear_constant_coeff_homogeneous(returns='sol')``.
"""
x = func.args[0]
f = func.func
r = match
psol = 0
gensols = r['list']
gsol = r['sol']
wr = wronskian(gensols, x)
if r.get('simplify', True):
wr = simplify(wr) # We need much better simplification for
# some ODEs. See issue 4662, for example.
# To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1
wr = trigsimp(wr, deep=True, recursive=True)
if not wr:
# The wronskian will be 0 iff the solutions are not linearly
# independent.
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " + str(eq) + " (Wronskian == 0)")
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " +
str(eq) + " (number of terms != order)")
negoneterm = (-1)**(order)
for i in gensols:
psol += negoneterm*Integral(wronskian([sol for sol in gensols if sol != i], x)*r[-1]/wr, x)*i/r[order]
negoneterm *= -1
if r.get('simplify', True):
psol = simplify(psol)
psol = trigsimp(psol, deep=True)
return Eq(f(x), gsol.rhs + psol)
def ode_separable(eq, func, order, match):
r"""
Solves separable 1st order differential equations.
This is any differential equation that can be written as `P(y)
\tfrac{dy}{dx} = Q(x)`. The solution can then just be found by
rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`.
This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back
end, so if a separable equation is not caught by this solver, it is most
likely the fault of that function.
:py:meth:`~sympy.simplify.simplify.separatevars` is
smart enough to do most expansion and factoring necessary to convert a
separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The
general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
>>> pprint(genform)
d
a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x))
dx
>>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
f(x)
/ /
| |
| b(y) | c(x)
| ---- dy = C1 + | ---- dx
| d(y) | a(x)
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
... hint='separable', simplify=False))
/ 2 \ 2
log\3*f (x) - 1/ x
---------------- = C1 + --
6 2
References
==========
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 52
# indirect doctest
"""
x = func.args[0]
f = func.func
C1 = get_numbered_constants(eq, num=1)
r = match # {'m1':m1, 'm2':m2, 'y':y}
u = r.get('hint', f(x)) # get u from separable_reduced else get f(x)
return Eq(Integral(r['m2']['coeff']*r['m2'][r['y']]/r['m1'][r['y']],
(r['y'], None, u)), Integral(-r['m1']['coeff']*r['m1'][x]/
r['m2'][x], x) + C1)
def checkinfsol(eq, infinitesimals, func=None, order=None):
r"""
This function is used to check if the given infinitesimals are the
actual infinitesimals of the given first order differential equation.
This method is specific to the Lie Group Solver of ODEs.
As of now, it simply checks, by substituting the infinitesimals in the
partial differential equation.
.. math:: \frac{\partial \eta}{\partial x} + \left(\frac{\partial \eta}{\partial y}
- \frac{\partial \xi}{\partial x}\right)*h
- \frac{\partial \xi}{\partial y}*h^{2}
- \xi\frac{\partial h}{\partial x} - \eta\frac{\partial h}{\partial y} = 0
where `\eta`, and `\xi` are the infinitesimals and `h(x,y) = \frac{dy}{dx}`
The infinitesimals should be given in the form of a list of dicts
``[{xi(x, y): inf, eta(x, y): inf}]``, corresponding to the
output of the function infinitesimals. It returns a list
of values of the form ``[(True/False, sol)]`` where ``sol`` is the value
obtained after substituting the infinitesimals in the PDE. If it
is ``True``, then ``sol`` would be 0.
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
if not func:
eq, func = _preprocess(eq)
variables = func.args
if len(variables) != 1:
raise ValueError("ODE's have only one independent variable")
else:
x = variables[0]
if not order:
order = ode_order(eq, func)
if order != 1:
raise NotImplementedError("Lie groups solver has been implemented "
"only for first order differential equations")
else:
df = func.diff(x)
a = Wild('a', exclude = [df])
b = Wild('b', exclude = [df])
match = collect(expand(eq), df).match(a*df + b)
if match:
h = -simplify(match[b]/match[a])
else:
try:
sol = solve(eq, df)
except NotImplementedError:
raise NotImplementedError("Infinitesimals for the "
"first order ODE could not be found")
else:
h = sol[0] # Find infinitesimals for one solution
y = Dummy('y')
h = h.subs(func, y)
xi = Function('xi')(x, y)
eta = Function('eta')(x, y)
dxi = Function('xi')(x, func)
deta = Function('eta')(x, func)
pde = (eta.diff(x) + (eta.diff(y) - xi.diff(x))*h -
(xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)))
soltup = []
for sol in infinitesimals:
tsol = {xi: S(sol[dxi]).subs(func, y),
eta: S(sol[deta]).subs(func, y)}
sol = simplify(pde.subs(tsol).doit())
if sol:
soltup.append((False, sol.subs(y, func)))
else:
soltup.append((True, 0))
return soltup
def _ode_lie_group_try_heuristic(eq, heuristic, func, match, inf):
xi = Function("xi")
eta = Function("eta")
f = func.func
x = func.args[0]
y = match['y']
h = match['h']
tempsol = []
if not inf:
try:
inf = infinitesimals(eq, hint=heuristic, func=func, order=1, match=match)
except ValueError:
return None
for infsim in inf:
xiinf = (infsim[xi(x, func)]).subs(func, y)
etainf = (infsim[eta(x, func)]).subs(func, y)
# This condition creates recursion while using pdsolve.
# Since the first step while solving a PDE of form
# a*(f(x, y).diff(x)) + b*(f(x, y).diff(y)) + c = 0
# is to solve the ODE dy/dx = b/a
if simplify(etainf/xiinf) == h:
continue
rpde = f(x, y).diff(x)*xiinf + f(x, y).diff(y)*etainf
r = pdsolve(rpde, func=f(x, y)).rhs
s = pdsolve(rpde - 1, func=f(x, y)).rhs
newcoord = [_lie_group_remove(coord) for coord in [r, s]]
r = Dummy("r")
s = Dummy("s")
C1 = Symbol("C1")
rcoord = newcoord[0]
scoord = newcoord[-1]
try:
sol = solve([r - rcoord, s - scoord], x, y, dict=True)
if sol == []:
continue
except NotImplementedError:
continue
else:
sol = sol[0]
xsub = sol[x]
ysub = sol[y]
num = simplify(scoord.diff(x) + scoord.diff(y)*h)
denom = simplify(rcoord.diff(x) + rcoord.diff(y)*h)
if num and denom:
diffeq = simplify((num/denom).subs([(x, xsub), (y, ysub)]))
sep = separatevars(diffeq, symbols=[r, s], dict=True)
if sep:
# Trying to separate, r and s coordinates
deq = integrate((1/sep[s]), s) + C1 - integrate(sep['coeff']*sep[r], r)
# Substituting and reverting back to original coordinates
deq = deq.subs([(r, rcoord), (s, scoord)])
try:
sdeq = solve(deq, y)
except NotImplementedError:
tempsol.append(deq)
else:
return [Eq(f(x), sol) for sol in sdeq]
elif denom: # (ds/dr) is zero which means s is constant
return [Eq(f(x), solve(scoord - C1, y)[0])]
elif num: # (dr/ds) is zero which means r is constant
return [Eq(f(x), solve(rcoord - C1, y)[0])]
# If nothing works, return solution as it is, without solving for y
if tempsol:
return [Eq(sol.subs(y, f(x)), 0) for sol in tempsol]
return None
def _ode_lie_group( s, func, order, match):
heuristics = lie_heuristics
inf = {}
f = func.func
x = func.args[0]
df = func.diff(x)
xi = Function("xi")
eta = Function("eta")
xis = match['xi']
etas = match['eta']
y = match.pop('y', None)
if y:
h = -simplify(match[match['d']]/match[match['e']])
y = y
else:
y = Dummy("y")
h = s.subs(func, y)
if xis is not None and etas is not None:
inf = [{xi(x, f(x)): S(xis), eta(x, f(x)): S(etas)}]
if checkinfsol(Eq(df, s), inf, func=f(x), order=1)[0][0]:
heuristics = ["user_defined"] + list(heuristics)
match = {'h': h, 'y': y}
# This is done so that if any heuristic raises a ValueError
# another heuristic can be used.
sol = None
for heuristic in heuristics:
sol = _ode_lie_group_try_heuristic(Eq(df, s), heuristic, func, match, inf)
if sol:
return sol
return sol
def ode_lie_group(eq, func, order, match):
r"""
This hint implements the Lie group method of solving first order differential
equations. The aim is to convert the given differential equation from the
given coordinate system into another coordinate system where it becomes
invariant under the one-parameter Lie group of translations. The converted
ODE can be easily solved by quadrature. It makes use of the
:py:meth:`sympy.solvers.ode.infinitesimals` function which returns the
infinitesimals of the transformation.
The coordinates `r` and `s` can be found by solving the following Partial
Differential Equations.
.. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y}
= 0
.. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y}
= 1
The differential equation becomes separable in the new coordinate system
.. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} +
h(x, y)\frac{\partial s}{\partial y}}{
\frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}}
After finding the solution by integration, it is then converted back to the original
coordinate system by substituting `r` and `s` in terms of `x` and `y` again.
Examples
========
>>> from sympy import Function, dsolve, exp, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x),
... hint='lie_group'))
/ 2\ 2
| x | -x
f(x) = |C1 + --|*e
\ 2 /
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
x = func.args[0]
df = func.diff(x)
try:
eqsol = solve(eq, df)
except NotImplementedError:
eqsol = []
desols = []
for s in eqsol:
sol = _ode_lie_group(s, func, order, match=match)
if sol:
desols.extend(sol)
if desols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the lie group method")
return desols
def _lie_group_remove(coords):
r"""
This function is strictly meant for internal use by the Lie group ODE solving
method. It replaces arbitrary functions returned by pdsolve as follows:
1] If coords is an arbitrary function, then its argument is returned.
2] An arbitrary function in an Add object is replaced by zero.
3] An arbitrary function in a Mul object is replaced by one.
4] If there is no arbitrary function coords is returned unchanged.
Examples
========
>>> from sympy.solvers.ode.ode import _lie_group_remove
>>> from sympy import Function
>>> from sympy.abc import x, y
>>> F = Function("F")
>>> eq = x**2*y
>>> _lie_group_remove(eq)
x**2*y
>>> eq = F(x**2*y)
>>> _lie_group_remove(eq)
x**2*y
>>> eq = x*y**2 + F(x**3)
>>> _lie_group_remove(eq)
x*y**2
>>> eq = (F(x**3) + y)*x**4
>>> _lie_group_remove(eq)
x**4*y
"""
if isinstance(coords, AppliedUndef):
return coords.args[0]
elif coords.is_Add:
subfunc = coords.atoms(AppliedUndef)
if subfunc:
for func in subfunc:
coords = coords.subs(func, 0)
return coords
elif coords.is_Pow:
base, expr = coords.as_base_exp()
base = _lie_group_remove(base)
expr = _lie_group_remove(expr)
return base**expr
elif coords.is_Mul:
mulargs = []
coordargs = coords.args
for arg in coordargs:
if not isinstance(coords, AppliedUndef):
mulargs.append(_lie_group_remove(arg))
return Mul(*mulargs)
return coords
def infinitesimals(eq, func=None, order=None, hint='default', match=None):
r"""
The infinitesimal functions of an ordinary differential equation, `\xi(x,y)`
and `\eta(x,y)`, are the infinitesimals of the Lie group of point transformations
for which the differential equation is invariant. So, the ODE `y'=f(x,y)`
would admit a Lie group `x^*=X(x,y;\varepsilon)=x+\varepsilon\xi(x,y)`,
`y^*=Y(x,y;\varepsilon)=y+\varepsilon\eta(x,y)` such that `(y^*)'=f(x^*, y^*)`.
A change of coordinates, to `r(x,y)` and `s(x,y)`, can be performed so this Lie group
becomes the translation group, `r^*=r` and `s^*=s+\varepsilon`.
They are tangents to the coordinate curves of the new system.
Consider the transformation `(x, y) \to (X, Y)` such that the
differential equation remains invariant. `\xi` and `\eta` are the tangents to
the transformed coordinates `X` and `Y`, at `\varepsilon=0`.
.. math:: \left(\frac{\partial X(x,y;\varepsilon)}{\partial\varepsilon
}\right)|_{\varepsilon=0} = \xi,
\left(\frac{\partial Y(x,y;\varepsilon)}{\partial\varepsilon
}\right)|_{\varepsilon=0} = \eta,
The infinitesimals can be found by solving the following PDE:
>>> from sympy import Function, Eq, pprint
>>> from sympy.abc import x, y
>>> xi, eta, h = map(Function, ['xi', 'eta', 'h'])
>>> h = h(x, y) # dy/dx = h
>>> eta = eta(x, y)
>>> xi = xi(x, y)
>>> genform = Eq(eta.diff(x) + (eta.diff(y) - xi.diff(x))*h
... - (xi.diff(y))*h**2 - xi*(h.diff(x)) - eta*(h.diff(y)), 0)
>>> pprint(genform)
/d d \ d 2 d
|--(eta(x, y)) - --(xi(x, y))|*h(x, y) - eta(x, y)*--(h(x, y)) - h (x, y)*--(x
\dy dx / dy dy
<BLANKLINE>
d d
i(x, y)) - xi(x, y)*--(h(x, y)) + --(eta(x, y)) = 0
dx dx
Solving the above mentioned PDE is not trivial, and can be solved only by
making intelligent assumptions for `\xi` and `\eta` (heuristics). Once an
infinitesimal is found, the attempt to find more heuristics stops. This is done to
optimise the speed of solving the differential equation. If a list of all the
infinitesimals is needed, ``hint`` should be flagged as ``all``, which gives
the complete list of infinitesimals. If the infinitesimals for a particular
heuristic needs to be found, it can be passed as a flag to ``hint``.
Examples
========
>>> from sympy import Function
>>> from sympy.solvers.ode.ode import infinitesimals
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x) - x**2*f(x)
>>> infinitesimals(eq)
[{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0}]
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
if isinstance(eq, Equality):
eq = eq.lhs - eq.rhs
if not func:
eq, func = _preprocess(eq)
variables = func.args
if len(variables) != 1:
raise ValueError("ODE's have only one independent variable")
else:
x = variables[0]
if not order:
order = ode_order(eq, func)
if order != 1:
raise NotImplementedError("Infinitesimals for only "
"first order ODE's have been implemented")
else:
df = func.diff(x)
# Matching differential equation of the form a*df + b
a = Wild('a', exclude = [df])
b = Wild('b', exclude = [df])
if match: # Used by lie_group hint
h = match['h']
y = match['y']
else:
match = collect(expand(eq), df).match(a*df + b)
if match:
h = -simplify(match[b]/match[a])
else:
try:
sol = solve(eq, df)
except NotImplementedError:
raise NotImplementedError("Infinitesimals for the "
"first order ODE could not be found")
else:
h = sol[0] # Find infinitesimals for one solution
y = Dummy("y")
h = h.subs(func, y)
u = Dummy("u")
hx = h.diff(x)
hy = h.diff(y)
hinv = ((1/h).subs([(x, u), (y, x)])).subs(u, y) # Inverse ODE
match = {'h': h, 'func': func, 'hx': hx, 'hy': hy, 'y': y, 'hinv': hinv}
if hint == 'all':
xieta = []
for heuristic in lie_heuristics:
function = globals()['lie_heuristic_' + heuristic]
inflist = function(match, comp=True)
if inflist:
xieta.extend([inf for inf in inflist if inf not in xieta])
if xieta:
return xieta
else:
raise NotImplementedError("Infinitesimals could not be found for "
"the given ODE")
elif hint == 'default':
for heuristic in lie_heuristics:
function = globals()['lie_heuristic_' + heuristic]
xieta = function(match, comp=False)
if xieta:
return xieta
raise NotImplementedError("Infinitesimals could not be found for"
" the given ODE")
elif hint not in lie_heuristics:
raise ValueError("Heuristic not recognized: " + hint)
else:
function = globals()['lie_heuristic_' + hint]
xieta = function(match, comp=True)
if xieta:
return xieta
else:
raise ValueError("Infinitesimals could not be found using the"
" given heuristic")
def lie_heuristic_abaco1_simple(match, comp=False):
r"""
The first heuristic uses the following four sets of
assumptions on `\xi` and `\eta`
.. math:: \xi = 0, \eta = f(x)
.. math:: \xi = 0, \eta = f(y)
.. math:: \xi = f(x), \eta = 0
.. math:: \xi = f(y), \eta = 0
The success of this heuristic is determined by algebraic factorisation.
For the first assumption `\xi = 0` and `\eta` to be a function of `x`, the PDE
.. math:: \frac{\partial \eta}{\partial x} + (\frac{\partial \eta}{\partial y}
- \frac{\partial \xi}{\partial x})*h
- \frac{\partial \xi}{\partial y}*h^{2}
- \xi*\frac{\partial h}{\partial x} - \eta*\frac{\partial h}{\partial y} = 0
reduces to `f'(x) - f\frac{\partial h}{\partial y} = 0`
If `\frac{\partial h}{\partial y}` is a function of `x`, then this can usually
be integrated easily. A similar idea is applied to the other 3 assumptions as well.
References
==========
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
Solving of First Order ODEs Using Symmetry Methods, pp. 8
"""
xieta = []
y = match['y']
h = match['h']
func = match['func']
x = func.args[0]
hx = match['hx']
hy = match['hy']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
hysym = hy.free_symbols
if y not in hysym:
try:
fx = exp(integrate(hy, x))
except NotImplementedError:
pass
else:
inf = {xi: S.Zero, eta: fx}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = hy/h
facsym = factor.free_symbols
if x not in facsym:
try:
fy = exp(integrate(factor, y))
except NotImplementedError:
pass
else:
inf = {xi: S.Zero, eta: fy.subs(y, func)}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = -hx/h
facsym = factor.free_symbols
if y not in facsym:
try:
fx = exp(integrate(factor, x))
except NotImplementedError:
pass
else:
inf = {xi: fx, eta: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
factor = -hx/(h**2)
facsym = factor.free_symbols
if x not in facsym:
try:
fy = exp(integrate(factor, y))
except NotImplementedError:
pass
else:
inf = {xi: fy.subs(y, func), eta: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_abaco1_product(match, comp=False):
r"""
The second heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = 0, \xi = f(x)*g(y)
.. math:: \eta = f(x)*g(y), \xi = 0
The first assumption of this heuristic holds good if
`\frac{1}{h^{2}}\frac{\partial^2}{\partial x \partial y}\log(h)` is
separable in `x` and `y`, then the separated factors containing `x`
is `f(x)`, and `g(y)` is obtained by
.. math:: e^{\int f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)\,dy}
provided `f\frac{\partial}{\partial x}\left(\frac{1}{f*h}\right)` is a function
of `y` only.
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
satisfies. After obtaining `f(x)` and `g(y)`, the coordinates are again
interchanged, to get `\eta` as `f(x)*g(y)`
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 7 - pp. 8
"""
xieta = []
y = match['y']
h = match['h']
hinv = match['hinv']
func = match['func']
x = func.args[0]
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
inf = separatevars(((log(h).diff(y)).diff(x))/h**2, dict=True, symbols=[x, y])
if inf and inf['coeff']:
fx = inf[x]
gy = simplify(fx*((1/(fx*h)).diff(x)))
gysyms = gy.free_symbols
if x not in gysyms:
gy = exp(integrate(gy, y))
inf = {eta: S.Zero, xi: (fx*gy).subs(y, func)}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
u1 = Dummy("u1")
inf = separatevars(((log(hinv).diff(y)).diff(x))/hinv**2, dict=True, symbols=[x, y])
if inf and inf['coeff']:
fx = inf[x]
gy = simplify(fx*((1/(fx*hinv)).diff(x)))
gysyms = gy.free_symbols
if x not in gysyms:
gy = exp(integrate(gy, y))
etaval = fx*gy
etaval = (etaval.subs([(x, u1), (y, x)])).subs(u1, y)
inf = {eta: etaval.subs(y, func), xi: S.Zero}
if not comp:
return [inf]
if comp and inf not in xieta:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_bivariate(match, comp=False):
r"""
The third heuristic assumes the infinitesimals `\xi` and `\eta`
to be bi-variate polynomials in `x` and `y`. The assumption made here
for the logic below is that `h` is a rational function in `x` and `y`
though that may not be necessary for the infinitesimals to be
bivariate polynomials. The coefficients of the infinitesimals
are found out by substituting them in the PDE and grouping similar terms
that are polynomials and since they form a linear system, solve and check
for non trivial solutions. The degree of the assumed bivariates
are increased till a certain maximum value.
References
==========
- Lie Groups and Differential Equations
pp. 327 - pp. 329
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
if h.is_rational_function():
# The maximum degree that the infinitesimals can take is
# calculated by this technique.
etax, etay, etad, xix, xiy, xid = symbols("etax etay etad xix xiy xid")
ipde = etax + (etay - xix)*h - xiy*h**2 - xid*hx - etad*hy
num, denom = cancel(ipde).as_numer_denom()
deg = Poly(num, x, y).total_degree()
deta = Function('deta')(x, y)
dxi = Function('dxi')(x, y)
ipde = (deta.diff(x) + (deta.diff(y) - dxi.diff(x))*h - (dxi.diff(y))*h**2
- dxi*hx - deta*hy)
xieq = Symbol("xi0")
etaeq = Symbol("eta0")
for i in range(deg + 1):
if i:
xieq += Add(*[
Symbol("xi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
etaeq += Add(*[
Symbol("eta_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
pden, denom = (ipde.subs({dxi: xieq, deta: etaeq}).doit()).as_numer_denom()
pden = expand(pden)
# If the individual terms are monomials, the coefficients
# are grouped
if pden.is_polynomial(x, y) and pden.is_Add:
polyy = Poly(pden, x, y).as_dict()
if polyy:
symset = xieq.free_symbols.union(etaeq.free_symbols) - {x, y}
soldict = solve(polyy.values(), *symset)
if isinstance(soldict, list):
soldict = soldict[0]
if any(soldict.values()):
xired = xieq.subs(soldict)
etared = etaeq.subs(soldict)
# Scaling is done by substituting one for the parameters
# This can be any number except zero.
dict_ = {sym: 1 for sym in symset}
inf = {eta: etared.subs(dict_).subs(y, func),
xi: xired.subs(dict_).subs(y, func)}
return [inf]
def lie_heuristic_chi(match, comp=False):
r"""
The aim of the fourth heuristic is to find the function `\chi(x, y)`
that satisfies the PDE `\frac{d\chi}{dx} + h\frac{d\chi}{dx}
- \frac{\partial h}{\partial y}\chi = 0`.
This assumes `\chi` to be a bivariate polynomial in `x` and `y`. By intuition,
`h` should be a rational function in `x` and `y`. The method used here is
to substitute a general binomial for `\chi` up to a certain maximum degree
is reached. The coefficients of the polynomials, are calculated by by collecting
terms of the same order in `x` and `y`.
After finding `\chi`, the next step is to use `\eta = \xi*h + \chi`, to
determine `\xi` and `\eta`. This can be done by dividing `\chi` by `h`
which would give `-\xi` as the quotient and `\eta` as the remainder.
References
==========
- E.S Cheb-Terrab, L.G.S Duarte and L.A,C.P da Mota, Computer Algebra
Solving of First Order ODEs Using Symmetry Methods, pp. 8
"""
h = match['h']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
if h.is_rational_function():
schi, schix, schiy = symbols("schi, schix, schiy")
cpde = schix + h*schiy - hy*schi
num, denom = cancel(cpde).as_numer_denom()
deg = Poly(num, x, y).total_degree()
chi = Function('chi')(x, y)
chix = chi.diff(x)
chiy = chi.diff(y)
cpde = chix + h*chiy - hy*chi
chieq = Symbol("chi")
for i in range(1, deg + 1):
chieq += Add(*[
Symbol("chi_" + str(power) + "_" + str(i - power))*x**power*y**(i - power)
for power in range(i + 1)])
cnum, cden = cancel(cpde.subs({chi : chieq}).doit()).as_numer_denom()
cnum = expand(cnum)
if cnum.is_polynomial(x, y) and cnum.is_Add:
cpoly = Poly(cnum, x, y).as_dict()
if cpoly:
solsyms = chieq.free_symbols - {x, y}
soldict = solve(cpoly.values(), *solsyms)
if isinstance(soldict, list):
soldict = soldict[0]
if any(soldict.values()):
chieq = chieq.subs(soldict)
dict_ = {sym: 1 for sym in solsyms}
chieq = chieq.subs(dict_)
# After finding chi, the main aim is to find out
# eta, xi by the equation eta = xi*h + chi
# One method to set xi, would be rearranging it to
# (eta/h) - xi = (chi/h). This would mean dividing
# chi by h would give -xi as the quotient and eta
# as the remainder. Thanks to Sean Vig for suggesting
# this method.
xic, etac = div(chieq, h)
inf = {eta: etac.subs(y, func), xi: -xic.subs(y, func)}
return [inf]
def lie_heuristic_function_sum(match, comp=False):
r"""
This heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = 0, \xi = f(x) + g(y)
.. math:: \eta = f(x) + g(y), \xi = 0
The first assumption of this heuristic holds good if
.. math:: \frac{\partial}{\partial y}[(h\frac{\partial^{2}}{
\partial x^{2}}(h^{-1}))^{-1}]
is separable in `x` and `y`,
1. The separated factors containing `y` is `\frac{\partial g}{\partial y}`.
From this `g(y)` can be determined.
2. The separated factors containing `x` is `f''(x)`.
3. `h\frac{\partial^{2}}{\partial x^{2}}(h^{-1})` equals
`\frac{f''(x)}{f(x) + g(y)}`. From this `f(x)` can be determined.
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first
assumption satisfies. After obtaining `f(x)` and `g(y)`, the coordinates
are again interchanged, to get `\eta` as `f(x) + g(y)`.
For both assumptions, the constant factors are separated among `g(y)`
and `f''(x)`, such that `f''(x)` obtained from 3] is the same as that
obtained from 2]. If not possible, then this heuristic fails.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 7 - pp. 8
"""
xieta = []
h = match['h']
func = match['func']
hinv = match['hinv']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
for odefac in [h, hinv]:
factor = odefac*((1/odefac).diff(x, 2))
sep = separatevars((1/factor).diff(y), dict=True, symbols=[x, y])
if sep and sep['coeff'] and sep[x].has(x) and sep[y].has(y):
k = Dummy("k")
try:
gy = k*integrate(sep[y], y)
except NotImplementedError:
pass
else:
fdd = 1/(k*sep[x]*sep['coeff'])
fx = simplify(fdd/factor - gy)
check = simplify(fx.diff(x, 2) - fdd)
if fx:
if not check:
fx = fx.subs(k, 1)
gy = (gy/k)
else:
sol = solve(check, k)
if sol:
sol = sol[0]
fx = fx.subs(k, sol)
gy = (gy/k)*sol
else:
continue
if odefac == hinv: # Inverse ODE
fx = fx.subs(x, y)
gy = gy.subs(y, x)
etaval = factor_terms(fx + gy)
if etaval.is_Mul:
etaval = Mul(*[arg for arg in etaval.args if arg.has(x, y)])
if odefac == hinv: # Inverse ODE
inf = {eta: etaval.subs(y, func), xi : S.Zero}
else:
inf = {xi: etaval.subs(y, func), eta : S.Zero}
if not comp:
return [inf]
else:
xieta.append(inf)
if xieta:
return xieta
def lie_heuristic_abaco2_similar(match, comp=False):
r"""
This heuristic uses the following two assumptions on `\xi` and `\eta`
.. math:: \eta = g(x), \xi = f(x)
.. math:: \eta = f(y), \xi = g(y)
For the first assumption,
1. First `\frac{\frac{\partial h}{\partial y}}{\frac{\partial^{2} h}{
\partial yy}}` is calculated. Let us say this value is A
2. If this is constant, then `h` is matched to the form `A(x) + B(x)e^{
\frac{y}{C}}` then, `\frac{e^{\int \frac{A(x)}{C} \,dx}}{B(x)}` gives `f(x)`
and `A(x)*f(x)` gives `g(x)`
3. Otherwise `\frac{\frac{\partial A}{\partial X}}{\frac{\partial A}{
\partial Y}} = \gamma` is calculated. If
a] `\gamma` is a function of `x` alone
b] `\frac{\gamma\frac{\partial h}{\partial y} - \gamma'(x) - \frac{
\partial h}{\partial x}}{h + \gamma} = G` is a function of `x` alone.
then, `e^{\int G \,dx}` gives `f(x)` and `-\gamma*f(x)` gives `g(x)`
The second assumption holds good if `\frac{dy}{dx} = h(x, y)` is rewritten as
`\frac{dy}{dx} = \frac{1}{h(y, x)}` and the same properties of the first assumption
satisfies. After obtaining `f(x)` and `g(x)`, the coordinates are again
interchanged, to get `\xi` as `f(x^*)` and `\eta` as `g(y^*)`
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
hinv = match['hinv']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
factor = cancel(h.diff(y)/h.diff(y, 2))
factorx = factor.diff(x)
factory = factor.diff(y)
if not factor.has(x) and not factor.has(y):
A = Wild('A', exclude=[y])
B = Wild('B', exclude=[y])
C = Wild('C', exclude=[x, y])
match = h.match(A + B*exp(y/C))
try:
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
except NotImplementedError:
pass
else:
gx = match[A]*tau
return [{xi: tau, eta: gx}]
else:
gamma = cancel(factorx/factory)
if not gamma.has(y):
tauint = cancel((gamma*hy - gamma.diff(x) - hx)/(h + gamma))
if not tauint.has(y):
try:
tau = exp(integrate(tauint, x))
except NotImplementedError:
pass
else:
gx = -tau*gamma
return [{xi: tau, eta: gx}]
factor = cancel(hinv.diff(y)/hinv.diff(y, 2))
factorx = factor.diff(x)
factory = factor.diff(y)
if not factor.has(x) and not factor.has(y):
A = Wild('A', exclude=[y])
B = Wild('B', exclude=[y])
C = Wild('C', exclude=[x, y])
match = h.match(A + B*exp(y/C))
try:
tau = exp(-integrate(match[A]/match[C]), x)/match[B]
except NotImplementedError:
pass
else:
gx = match[A]*tau
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
else:
gamma = cancel(factorx/factory)
if not gamma.has(y):
tauint = cancel((gamma*hinv.diff(y) - gamma.diff(x) - hinv.diff(x))/(
hinv + gamma))
if not tauint.has(y):
try:
tau = exp(integrate(tauint, x))
except NotImplementedError:
pass
else:
gx = -tau*gamma
return [{eta: tau.subs(x, func), xi: gx.subs(x, func)}]
def lie_heuristic_abaco2_unique_unknown(match, comp=False):
r"""
This heuristic assumes the presence of unknown functions or known functions
with non-integer powers.
1. A list of all functions and non-integer powers containing x and y
2. Loop over each element `f` in the list, find `\frac{\frac{\partial f}{\partial x}}{
\frac{\partial f}{\partial x}} = R`
If it is separable in `x` and `y`, let `X` be the factors containing `x`. Then
a] Check if `\xi = X` and `\eta = -\frac{X}{R}` satisfy the PDE. If yes, then return
`\xi` and `\eta`
b] Check if `\xi = \frac{-R}{X}` and `\eta = -\frac{1}{X}` satisfy the PDE.
If yes, then return `\xi` and `\eta`
If not, then check if
a] :math:`\xi = -R,\eta = 1`
b] :math:`\xi = 1, \eta = -\frac{1}{R}`
are solutions.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
funclist = []
for atom in h.atoms(Pow):
base, exp = atom.as_base_exp()
if base.has(x) and base.has(y):
if not exp.is_Integer:
funclist.append(atom)
for function in h.atoms(AppliedUndef):
syms = function.free_symbols
if x in syms and y in syms:
funclist.append(function)
for f in funclist:
frac = cancel(f.diff(y)/f.diff(x))
sep = separatevars(frac, dict=True, symbols=[x, y])
if sep and sep['coeff']:
xitry1 = sep[x]
etatry1 = -1/(sep[y]*sep['coeff'])
pde1 = etatry1.diff(y)*h - xitry1.diff(x)*h - xitry1*hx - etatry1*hy
if not simplify(pde1):
return [{xi: xitry1, eta: etatry1.subs(y, func)}]
xitry2 = 1/etatry1
etatry2 = 1/xitry1
pde2 = etatry2.diff(x) - (xitry2.diff(y))*h**2 - xitry2*hx - etatry2*hy
if not simplify(expand(pde2)):
return [{xi: xitry2.subs(y, func), eta: etatry2}]
else:
etatry = -1/frac
pde = etatry.diff(x) + etatry.diff(y)*h - hx - etatry*hy
if not simplify(pde):
return [{xi: S.One, eta: etatry.subs(y, func)}]
xitry = -frac
pde = -xitry.diff(x)*h -xitry.diff(y)*h**2 - xitry*hx -hy
if not simplify(expand(pde)):
return [{xi: xitry.subs(y, func), eta: S.One}]
def lie_heuristic_abaco2_unique_general(match, comp=False):
r"""
This heuristic finds if infinitesimals of the form `\eta = f(x)`, `\xi = g(y)`
without making any assumptions on `h`.
The complete sequence of steps is given in the paper mentioned below.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
A = hx.diff(y)
B = hy.diff(y) + hy**2
C = hx.diff(x) - hx**2
if not (A and B and C):
return
Ax = A.diff(x)
Ay = A.diff(y)
Axy = Ax.diff(y)
Axx = Ax.diff(x)
Ayy = Ay.diff(y)
D = simplify(2*Axy + hx*Ay - Ax*hy + (hx*hy + 2*A)*A)*A - 3*Ax*Ay
if not D:
E1 = simplify(3*Ax**2 + ((hx**2 + 2*C)*A - 2*Axx)*A)
if E1:
E2 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
if not E2:
E3 = simplify(
E1*((28*Ax + 4*hx*A)*A**3 - E1*(hy*A + Ay)) - E1.diff(x)*8*A**4)
if not E3:
etaval = cancel((4*A**3*(Ax - hx*A) + E1*(hy*A - Ay))/(S(2)*A*E1))
if x not in etaval:
try:
etaval = exp(integrate(etaval, y))
except NotImplementedError:
pass
else:
xival = -4*A**3*etaval/E1
if y not in xival:
return [{xi: xival, eta: etaval.subs(y, func)}]
else:
E1 = simplify((2*Ayy + (2*B - hy**2)*A)*A - 3*Ay**2)
if E1:
E2 = simplify(
4*A**3*D - D**2 + E1*((2*Axx - (hx**2 + 2*C)*A)*A - 3*Ax**2))
if not E2:
E3 = simplify(
-(A*D)*E1.diff(y) + ((E1.diff(x) - hy*D)*A + 3*Ay*D +
(A*hx - 3*Ax)*E1)*E1)
if not E3:
etaval = cancel(((A*hx - Ax)*E1 - (Ay + A*hy)*D)/(S(2)*A*D))
if x not in etaval:
try:
etaval = exp(integrate(etaval, y))
except NotImplementedError:
pass
else:
xival = -E1*etaval/D
if y not in xival:
return [{xi: xival, eta: etaval.subs(y, func)}]
def lie_heuristic_linear(match, comp=False):
r"""
This heuristic assumes
1. `\xi = ax + by + c` and
2. `\eta = fx + gy + h`
After substituting the following assumptions in the determining PDE, it
reduces to
.. math:: f + (g - a)h - bh^{2} - (ax + by + c)\frac{\partial h}{\partial x}
- (fx + gy + c)\frac{\partial h}{\partial y}
Solving the reduced PDE obtained, using the method of characteristics, becomes
impractical. The method followed is grouping similar terms and solving the system
of linear equations obtained. The difference between the bivariate heuristic is that
`h` need not be a rational function in this case.
References
==========
- E.S. Cheb-Terrab, A.D. Roche, Symmetries and First Order
ODE Patterns, pp. 10 - pp. 12
"""
h = match['h']
hx = match['hx']
hy = match['hy']
func = match['func']
x = func.args[0]
y = match['y']
xi = Function('xi')(x, func)
eta = Function('eta')(x, func)
coeffdict = {}
symbols = numbered_symbols("c", cls=Dummy)
symlist = [next(symbols) for _ in islice(symbols, 6)]
C0, C1, C2, C3, C4, C5 = symlist
pde = C3 + (C4 - C0)*h - (C0*x + C1*y + C2)*hx - (C3*x + C4*y + C5)*hy - C1*h**2
pde, denom = pde.as_numer_denom()
pde = powsimp(expand(pde))
if pde.is_Add:
terms = pde.args
for term in terms:
if term.is_Mul:
rem = Mul(*[m for m in term.args if not m.has(x, y)])
xypart = term/rem
if xypart not in coeffdict:
coeffdict[xypart] = rem
else:
coeffdict[xypart] += rem
else:
if term not in coeffdict:
coeffdict[term] = S.One
else:
coeffdict[term] += S.One
sollist = coeffdict.values()
soldict = solve(sollist, symlist)
if soldict:
if isinstance(soldict, list):
soldict = soldict[0]
subval = soldict.values()
if any(t for t in subval):
onedict = dict(zip(symlist, [1]*6))
xival = C0*x + C1*func + C2
etaval = C3*x + C4*func + C5
xival = xival.subs(soldict)
etaval = etaval.subs(soldict)
xival = xival.subs(onedict)
etaval = etaval.subs(onedict)
return [{xi: xival, eta: etaval}]
def sysode_linear_2eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
func = match_['func']
fc = match_['func_coeff']
eq = match_['eq']
r = dict()
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
# for equations Eq(a1*diff(x(t),t), a*x(t) + b*y(t) + k1)
# and Eq(a2*diff(x(t),t), c*x(t) + d*y(t) + k2)
r['a'] = -fc[0,x(t),0]/fc[0,x(t),1]
r['c'] = -fc[1,x(t),0]/fc[1,y(t),1]
r['b'] = -fc[0,y(t),0]/fc[0,x(t),1]
r['d'] = -fc[1,y(t),0]/fc[1,y(t),1]
forcing = [S.Zero,S.Zero]
for i in range(2):
for j in Add.make_args(eq[i]):
if not j.has(x(t), y(t)):
forcing[i] += j
if not (forcing[0].has(t) or forcing[1].has(t)):
r['k1'] = forcing[0]
r['k2'] = forcing[1]
else:
raise NotImplementedError("Only homogeneous problems are supported" +
" (and constant inhomogeneity)")
if match_['type_of_equation'] == 'type6':
sol = _linear_2eq_order1_type6(x, y, t, r, eq)
if match_['type_of_equation'] == 'type7':
sol = _linear_2eq_order1_type7(x, y, t, r, eq)
return sol
def _linear_2eq_order1_type6(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = a [f(t) + a h(t)] x + a [g(t) - h(t)] y
This is solved by first multiplying the first equation by `-a` and adding
it to the second equation to obtain
.. math:: y' - a x' = -a h(t) (y - a x)
Setting `U = y - ax` and integrating the equation we arrive at
.. math:: y - ax = C_1 e^{-a \int h(t) \,dt}
and on substituting the value of y in first equation give rise to first order ODEs. After solving for
`x`, we can obtain `y` by substituting the value of `x` in second equation.
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
p = 0
q = 0
p1 = cancel(r['c']/cancel(r['c']/r['d']).as_numer_denom()[0])
p2 = cancel(r['a']/cancel(r['a']/r['b']).as_numer_denom()[0])
for n, i in enumerate([p1, p2]):
for j in Mul.make_args(collect_const(i)):
if not j.has(t):
q = j
if q!=0 and n==0:
if ((r['c']/j - r['a'])/(r['b'] - r['d']/j)) == j:
p = 1
s = j
break
if q!=0 and n==1:
if ((r['a']/j - r['c'])/(r['d'] - r['b']/j)) == j:
p = 2
s = j
break
if p == 1:
equ = diff(x(t),t) - r['a']*x(t) - r['b']*(s*x(t) + C1*exp(-s*Integral(r['b'] - r['d']/s, t)))
hint1 = classify_ode(equ)[1]
sol1 = dsolve(equ, hint=hint1+'_Integral').rhs
sol2 = s*sol1 + C1*exp(-s*Integral(r['b'] - r['d']/s, t))
elif p ==2:
equ = diff(y(t),t) - r['c']*y(t) - r['d']*s*y(t) + C1*exp(-s*Integral(r['d'] - r['b']/s, t))
hint1 = classify_ode(equ)[1]
sol2 = dsolve(equ, hint=hint1+'_Integral').rhs
sol1 = s*sol2 + C1*exp(-s*Integral(r['d'] - r['b']/s, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def _linear_2eq_order1_type7(x, y, t, r, eq):
r"""
The equations of this type of ode are .
.. math:: x' = f(t) x + g(t) y
.. math:: y' = h(t) x + p(t) y
Differentiating the first equation and substituting the value of `y`
from second equation will give a second-order linear equation
.. math:: g x'' - (fg + gp + g') x' + (fgp - g^{2} h + f g' - f' g) x = 0
This above equation can be easily integrated if following conditions are satisfied.
1. `fgp - g^{2} h + f g' - f' g = 0`
2. `fgp - g^{2} h + f g' - f' g = ag, fg + gp + g' = bg`
If first condition is satisfied then it is solved by current dsolve solver and in second case it becomes
a constant coefficient differential equation which is also solved by current solver.
Otherwise if the above condition fails then,
a particular solution is assumed as `x = x_0(t)` and `y = y_0(t)`
Then the general solution is expressed as
.. math:: x = C_1 x_0(t) + C_2 x_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt
.. math:: y = C_1 y_0(t) + C_2 [\frac{F(t) P(t)}{x_0(t)} + y_0(t) \int \frac{g(t) F(t) P(t)}{x_0^{2}(t)} \,dt]
where C1 and C2 are arbitrary constants and
.. math:: F(t) = e^{\int f(t) \,dt} , P(t) = e^{\int p(t) \,dt}
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
e1 = r['a']*r['b']*r['c'] - r['b']**2*r['c'] + r['a']*diff(r['b'],t) - diff(r['a'],t)*r['b']
e2 = r['a']*r['c']*r['d'] - r['b']*r['c']**2 + diff(r['c'],t)*r['d'] - r['c']*diff(r['d'],t)
m1 = r['a']*r['b'] + r['b']*r['d'] + diff(r['b'],t)
m2 = r['a']*r['c'] + r['c']*r['d'] + diff(r['c'],t)
if e1 == 0:
sol1 = dsolve(r['b']*diff(x(t),t,t) - m1*diff(x(t),t)).rhs
sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs
elif e2 == 0:
sol2 = dsolve(r['c']*diff(y(t),t,t) - m2*diff(y(t),t)).rhs
sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs
elif not (e1/r['b']).has(t) and not (m1/r['b']).has(t):
sol1 = dsolve(diff(x(t),t,t) - (m1/r['b'])*diff(x(t),t) - (e1/r['b'])*x(t)).rhs
sol2 = dsolve(diff(y(t),t) - r['c']*sol1 - r['d']*y(t)).rhs
elif not (e2/r['c']).has(t) and not (m2/r['c']).has(t):
sol2 = dsolve(diff(y(t),t,t) - (m2/r['c'])*diff(y(t),t) - (e2/r['c'])*y(t)).rhs
sol1 = dsolve(diff(x(t),t) - r['a']*x(t) - r['b']*sol2).rhs
else:
x0 = Function('x0')(t) # x0 and y0 being particular solutions
y0 = Function('y0')(t)
F = exp(Integral(r['a'],t))
P = exp(Integral(r['d'],t))
sol1 = C1*x0 + C2*x0*Integral(r['b']*F*P/x0**2, t)
sol2 = C1*y0 + C2*(F*P/x0 + y0*Integral(r['b']*F*P/x0**2, t))
return [Eq(x(t), sol1), Eq(y(t), sol2)]
def sysode_nonlinear_2eq_order1(match_):
func = match_['func']
eq = match_['eq']
fc = match_['func_coeff']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
if match_['type_of_equation'] == 'type5':
sol = _nonlinear_2eq_order1_type5(func, t, eq)
return sol
x = func[0].func
y = func[1].func
for i in range(2):
eqs = 0
for terms in Add.make_args(eq[i]):
eqs += terms/fc[i,func[i],1]
eq[i] = eqs
if match_['type_of_equation'] == 'type1':
sol = _nonlinear_2eq_order1_type1(x, y, t, eq)
elif match_['type_of_equation'] == 'type2':
sol = _nonlinear_2eq_order1_type2(x, y, t, eq)
elif match_['type_of_equation'] == 'type3':
sol = _nonlinear_2eq_order1_type3(x, y, t, eq)
elif match_['type_of_equation'] == 'type4':
sol = _nonlinear_2eq_order1_type4(x, y, t, eq)
return sol
def _nonlinear_2eq_order1_type1(x, y, t, eq):
r"""
Equations:
.. math:: x' = x^n F(x,y)
.. math:: y' = g(y) F(x,y)
Solution:
.. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2
where
if `n \neq 1`
.. math:: \varphi = [C_1 + (1-n) \int \frac{1}{g(y)} \,dy]^{\frac{1}{1-n}}
if `n = 1`
.. math:: \varphi = C_1 e^{\int \frac{1}{g(y)} \,dy}
where `C_1` and `C_2` are arbitrary constants.
"""
C1, C2 = get_numbered_constants(eq, num=2)
n = Wild('n', exclude=[x(t),y(t)])
f = Wild('f')
u, v = symbols('u, v')
r = eq[0].match(diff(x(t),t) - x(t)**n*f)
g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v)
F = r[f].subs(x(t),u).subs(y(t),v)
n = r[n]
if n!=1:
phi = (C1 + (1-n)*Integral(1/g, v))**(1/(1-n))
else:
phi = C1*exp(Integral(1/g, v))
phi = phi.doit()
sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v)
sol = []
for sols in sol2:
sol.append(Eq(x(t),phi.subs(v, sols)))
sol.append(Eq(y(t), sols))
return sol
def _nonlinear_2eq_order1_type2(x, y, t, eq):
r"""
Equations:
.. math:: x' = e^{\lambda x} F(x,y)
.. math:: y' = g(y) F(x,y)
Solution:
.. math:: x = \varphi(y), \int \frac{1}{g(y) F(\varphi(y),y)} \,dy = t + C_2
where
if `\lambda \neq 0`
.. math:: \varphi = -\frac{1}{\lambda} log(C_1 - \lambda \int \frac{1}{g(y)} \,dy)
if `\lambda = 0`
.. math:: \varphi = C_1 + \int \frac{1}{g(y)} \,dy
where `C_1` and `C_2` are arbitrary constants.
"""
C1, C2 = get_numbered_constants(eq, num=2)
n = Wild('n', exclude=[x(t),y(t)])
f = Wild('f')
u, v = symbols('u, v')
r = eq[0].match(diff(x(t),t) - exp(n*x(t))*f)
g = ((diff(y(t),t) - eq[1])/r[f]).subs(y(t),v)
F = r[f].subs(x(t),u).subs(y(t),v)
n = r[n]
if n:
phi = -1/n*log(C1 - n*Integral(1/g, v))
else:
phi = C1 + Integral(1/g, v)
phi = phi.doit()
sol2 = solve(Integral(1/(g*F.subs(u,phi)), v).doit() - t - C2, v)
sol = []
for sols in sol2:
sol.append(Eq(x(t),phi.subs(v, sols)))
sol.append(Eq(y(t), sols))
return sol
def _nonlinear_2eq_order1_type3(x, y, t, eq):
r"""
Autonomous system of general form
.. math:: x' = F(x,y)
.. math:: y' = G(x,y)
Assuming `y = y(x, C_1)` where `C_1` is an arbitrary constant is the general
solution of the first-order equation
.. math:: F(x,y) y'_x = G(x,y)
Then the general solution of the original system of equations has the form
.. math:: \int \frac{1}{F(x,y(x,C_1))} \,dx = t + C_1
"""
C1, C2, C3, C4 = get_numbered_constants(eq, num=4)
v = Function('v')
u = Symbol('u')
f = Wild('f')
g = Wild('g')
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
F = r1[f].subs(x(t), u).subs(y(t), v(u))
G = r2[g].subs(x(t), u).subs(y(t), v(u))
sol2r = dsolve(Eq(diff(v(u), u), G/F))
if isinstance(sol2r, Expr):
sol2r = [sol2r]
for sol2s in sol2r:
sol1 = solve(Integral(1/F.subs(v(u), sol2s.rhs), u).doit() - t - C2, u)
sol = []
for sols in sol1:
sol.append(Eq(x(t), sols))
sol.append(Eq(y(t), (sol2s.rhs).subs(u, sols)))
return sol
def _nonlinear_2eq_order1_type4(x, y, t, eq):
r"""
Equation:
.. math:: x' = f_1(x) g_1(y) \phi(x,y,t)
.. math:: y' = f_2(x) g_2(y) \phi(x,y,t)
First integral:
.. math:: \int \frac{f_2(x)}{f_1(x)} \,dx - \int \frac{g_1(y)}{g_2(y)} \,dy = C
where `C` is an arbitrary constant.
On solving the first integral for `x` (resp., `y` ) and on substituting the
resulting expression into either equation of the original solution, one
arrives at a first-order equation for determining `y` (resp., `x` ).
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v = symbols('u, v')
U, V = symbols('U, V', cls=Function)
f = Wild('f')
g = Wild('g')
f1 = Wild('f1', exclude=[v,t])
f2 = Wild('f2', exclude=[v,t])
g1 = Wild('g1', exclude=[u,t])
g2 = Wild('g2', exclude=[u,t])
r1 = eq[0].match(diff(x(t),t) - f)
r2 = eq[1].match(diff(y(t),t) - g)
num, den = (
(r1[f].subs(x(t),u).subs(y(t),v))/
(r2[g].subs(x(t),u).subs(y(t),v))).as_numer_denom()
R1 = num.match(f1*g1)
R2 = den.match(f2*g2)
phi = (r1[f].subs(x(t),u).subs(y(t),v))/num
F1 = R1[f1]; F2 = R2[f2]
G1 = R1[g1]; G2 = R2[g2]
sol1r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, u)
sol2r = solve(Integral(F2/F1, u).doit() - Integral(G1/G2,v).doit() - C1, v)
sol = []
for sols in sol1r:
sol.append(Eq(y(t), dsolve(diff(V(t),t) - F2.subs(u,sols).subs(v,V(t))*G2.subs(v,V(t))*phi.subs(u,sols).subs(v,V(t))).rhs))
for sols in sol2r:
sol.append(Eq(x(t), dsolve(diff(U(t),t) - F1.subs(u,U(t))*G1.subs(v,sols).subs(u,U(t))*phi.subs(v,sols).subs(u,U(t))).rhs))
return set(sol)
def _nonlinear_2eq_order1_type5(func, t, eq):
r"""
Clairaut system of ODEs
.. math:: x = t x' + F(x',y')
.. math:: y = t y' + G(x',y')
The following are solutions of the system
`(i)` straight lines:
.. math:: x = C_1 t + F(C_1, C_2), y = C_2 t + G(C_1, C_2)
where `C_1` and `C_2` are arbitrary constants;
`(ii)` envelopes of the above lines;
`(iii)` continuously differentiable lines made up from segments of the lines
`(i)` and `(ii)`.
"""
C1, C2 = get_numbered_constants(eq, num=2)
f = Wild('f')
g = Wild('g')
def check_type(x, y):
r1 = eq[0].match(t*diff(x(t),t) - x(t) + f)
r2 = eq[1].match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = eq[0].match(diff(x(t),t) - x(t)/t + f/t)
r2 = eq[1].match(diff(y(t),t) - y(t)/t + g/t)
if not (r1 and r2):
r1 = (-eq[0]).match(t*diff(x(t),t) - x(t) + f)
r2 = (-eq[1]).match(t*diff(y(t),t) - y(t) + g)
if not (r1 and r2):
r1 = (-eq[0]).match(diff(x(t),t) - x(t)/t + f/t)
r2 = (-eq[1]).match(diff(y(t),t) - y(t)/t + g/t)
return [r1, r2]
for func_ in func:
if isinstance(func_, list):
x = func[0][0].func
y = func[0][1].func
[r1, r2] = check_type(x, y)
if not (r1 and r2):
[r1, r2] = check_type(y, x)
x, y = y, x
x1 = diff(x(t),t); y1 = diff(y(t),t)
return {Eq(x(t), C1*t + r1[f].subs(x1,C1).subs(y1,C2)), Eq(y(t), C2*t + r2[g].subs(x1,C1).subs(y1,C2))}
def sysode_nonlinear_3eq_order1(match_):
x = match_['func'][0].func
y = match_['func'][1].func
z = match_['func'][2].func
eq = match_['eq']
t = list(list(eq[0].atoms(Derivative))[0].atoms(Symbol))[0]
if match_['type_of_equation'] == 'type1':
sol = _nonlinear_3eq_order1_type1(x, y, z, t, eq)
if match_['type_of_equation'] == 'type2':
sol = _nonlinear_3eq_order1_type2(x, y, z, t, eq)
if match_['type_of_equation'] == 'type3':
sol = _nonlinear_3eq_order1_type3(x, y, z, t, eq)
if match_['type_of_equation'] == 'type4':
sol = _nonlinear_3eq_order1_type4(x, y, z, t, eq)
if match_['type_of_equation'] == 'type5':
sol = _nonlinear_3eq_order1_type5(x, y, z, t, eq)
return sol
def _nonlinear_3eq_order1_type1(x, y, z, t, eq):
r"""
Equations:
.. math:: a x' = (b - c) y z, \enspace b y' = (c - a) z x, \enspace c z' = (a - b) x y
First Integrals:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
.. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2
where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and
`z` and on substituting the resulting expressions into the first equation of the
system, we arrives at a separable first-order equation on `x`. Similarly doing that
for other two equations, we will arrive at first order equation on `y` and `z` too.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0401.pdf
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
r = (diff(x(t),t) - eq[0]).match(p*y(t)*z(t))
r.update((diff(y(t),t) - eq[1]).match(q*z(t)*x(t)))
r.update((diff(z(t),t) - eq[2]).match(s*x(t)*y(t)))
n1, d1 = r[p].as_numer_denom()
n2, d2 = r[q].as_numer_denom()
n3, d3 = r[s].as_numer_denom()
val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, d3*u-d3*v-n3*w],[u,v])
vals = [val[v], val[u]]
c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1])
b = vals[0].subs(w, c)
a = vals[1].subs(w, c)
y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b)))
z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c)))
z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c)))
x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a)))
x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a)))
y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b)))
sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x)
sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y)
sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z)
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type2(x, y, z, t, eq):
r"""
Equations:
.. math:: a x' = (b - c) y z f(x, y, z, t)
.. math:: b y' = (c - a) z x f(x, y, z, t)
.. math:: c z' = (a - b) x y f(x, y, z, t)
First Integrals:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
.. math:: a^{2} x^{2} + b^{2} y^{2} + c^{2} z^{2} = C_2
where `C_1` and `C_2` are arbitrary constants. On solving the integrals for `y` and
`z` and on substituting the resulting expressions into the first equation of the
system, we arrives at a first-order differential equations on `x`. Similarly doing
that for other two equations we will arrive at first order equation on `y` and `z`.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0402.pdf
"""
C1, C2 = get_numbered_constants(eq, num=2)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
f = Wild('f')
r1 = (diff(x(t),t) - eq[0]).match(y(t)*z(t)*f)
r = collect_const(r1[f]).match(p*f)
r.update(((diff(y(t),t) - eq[1])/r[f]).match(q*z(t)*x(t)))
r.update(((diff(z(t),t) - eq[2])/r[f]).match(s*x(t)*y(t)))
n1, d1 = r[p].as_numer_denom()
n2, d2 = r[q].as_numer_denom()
n3, d3 = r[s].as_numer_denom()
val = solve([n1*u-d1*v+d1*w, d2*u+n2*v-d2*w, -d3*u+d3*v+n3*w],[u,v])
vals = [val[v], val[u]]
c = lcm(vals[0].as_numer_denom()[1], vals[1].as_numer_denom()[1])
a = vals[0].subs(w, c)
b = vals[1].subs(w, c)
y_x = sqrt(((c*C1-C2) - a*(c-a)*x(t)**2)/(b*(c-b)))
z_x = sqrt(((b*C1-C2) - a*(b-a)*x(t)**2)/(c*(b-c)))
z_y = sqrt(((a*C1-C2) - b*(a-b)*y(t)**2)/(c*(a-c)))
x_y = sqrt(((c*C1-C2) - b*(c-b)*y(t)**2)/(a*(c-a)))
x_z = sqrt(((b*C1-C2) - c*(b-c)*z(t)**2)/(a*(b-a)))
y_z = sqrt(((a*C1-C2) - c*(a-c)*z(t)**2)/(b*(a-b)))
sol1 = dsolve(a*diff(x(t),t) - (b-c)*y_x*z_x*r[f])
sol2 = dsolve(b*diff(y(t),t) - (c-a)*z_y*x_y*r[f])
sol3 = dsolve(c*diff(z(t),t) - (a-b)*x_z*y_z*r[f])
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type3(x, y, z, t, eq):
r"""
Equations:
.. math:: x' = c F_2 - b F_3, \enspace y' = a F_3 - c F_1, \enspace z' = b F_1 - a F_2
where `F_n = F_n(x, y, z, t)`.
1. First Integral:
.. math:: a x + b y + c z = C_1,
where C is an arbitrary constant.
2. If we assume function `F_n` to be independent of `t`,i.e, `F_n` = `F_n (x, y, z)`
Then, on eliminating `t` and `z` from the first two equation of the system, one
arrives at the first-order equation
.. math:: \frac{dy}{dx} = \frac{a F_3 (x, y, z) - c F_1 (x, y, z)}{c F_2 (x, y, z) -
b F_3 (x, y, z)}
where `z = \frac{1}{c} (C_1 - a x - b y)`
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0404.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
fu, fv, fw = symbols('u, v, w', cls=Function)
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = (diff(x(t), t) - eq[0]).match(F2-F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t), t) - eq[1]).match(p*r[F3] - r[s]*F1))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t), u).subs(y(t),v).subs(z(t), w)
F2 = r[F2].subs(x(t), u).subs(y(t),v).subs(z(t), w)
F3 = r[F3].subs(x(t), u).subs(y(t),v).subs(z(t), w)
z_xy = (C1-a*u-b*v)/c
y_zx = (C1-a*u-c*w)/b
x_yz = (C1-b*v-c*w)/a
y_x = dsolve(diff(fv(u),u) - ((a*F3-c*F1)/(c*F2-b*F3)).subs(w,z_xy).subs(v,fv(u))).rhs
z_x = dsolve(diff(fw(u),u) - ((b*F1-a*F2)/(c*F2-b*F3)).subs(v,y_zx).subs(w,fw(u))).rhs
z_y = dsolve(diff(fw(v),v) - ((b*F1-a*F2)/(a*F3-c*F1)).subs(u,x_yz).subs(w,fw(v))).rhs
x_y = dsolve(diff(fu(v),v) - ((c*F2-b*F3)/(a*F3-c*F1)).subs(w,z_xy).subs(u,fu(v))).rhs
y_z = dsolve(diff(fv(w),w) - ((a*F3-c*F1)/(b*F1-a*F2)).subs(u,x_yz).subs(v,fv(w))).rhs
x_z = dsolve(diff(fu(w),w) - ((c*F2-b*F3)/(b*F1-a*F2)).subs(v,y_zx).subs(u,fu(w))).rhs
sol1 = dsolve(diff(fu(t),t) - (c*F2 - b*F3).subs(v,y_x).subs(w,z_x).subs(u,fu(t))).rhs
sol2 = dsolve(diff(fv(t),t) - (a*F3 - c*F1).subs(u,x_y).subs(w,z_y).subs(v,fv(t))).rhs
sol3 = dsolve(diff(fw(t),t) - (b*F1 - a*F2).subs(u,x_z).subs(v,y_z).subs(w,fw(t))).rhs
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type4(x, y, z, t, eq):
r"""
Equations:
.. math:: x' = c z F_2 - b y F_3, \enspace y' = a x F_3 - c z F_1, \enspace z' = b y F_1 - a x F_2
where `F_n = F_n (x, y, z, t)`
1. First integral:
.. math:: a x^{2} + b y^{2} + c z^{2} = C_1
where `C` is an arbitrary constant.
2. Assuming the function `F_n` is independent of `t`: `F_n = F_n (x, y, z)`. Then on
eliminating `t` and `z` from the first two equations of the system, one arrives at
the first-order equation
.. math:: \frac{dy}{dx} = \frac{a x F_3 (x, y, z) - c z F_1 (x, y, z)}
{c z F_2 (x, y, z) - b y F_3 (x, y, z)}
where `z = \pm \sqrt{\frac{1}{c} (C_1 - a x^{2} - b y^{2})}`
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0405.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = eq[0].match(diff(x(t),t) - z(t)*F2 + y(t)*F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t),t) - eq[1]).match(p*x(t)*r[F3] - r[s]*z(t)*F1))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t),u).subs(y(t),v).subs(z(t),w)
F2 = r[F2].subs(x(t),u).subs(y(t),v).subs(z(t),w)
F3 = r[F3].subs(x(t),u).subs(y(t),v).subs(z(t),w)
x_yz = sqrt((C1 - b*v**2 - c*w**2)/a)
y_zx = sqrt((C1 - c*w**2 - a*u**2)/b)
z_xy = sqrt((C1 - a*u**2 - b*v**2)/c)
y_x = dsolve(diff(v(u),u) - ((a*u*F3-c*w*F1)/(c*w*F2-b*v*F3)).subs(w,z_xy).subs(v,v(u))).rhs
z_x = dsolve(diff(w(u),u) - ((b*v*F1-a*u*F2)/(c*w*F2-b*v*F3)).subs(v,y_zx).subs(w,w(u))).rhs
z_y = dsolve(diff(w(v),v) - ((b*v*F1-a*u*F2)/(a*u*F3-c*w*F1)).subs(u,x_yz).subs(w,w(v))).rhs
x_y = dsolve(diff(u(v),v) - ((c*w*F2-b*v*F3)/(a*u*F3-c*w*F1)).subs(w,z_xy).subs(u,u(v))).rhs
y_z = dsolve(diff(v(w),w) - ((a*u*F3-c*w*F1)/(b*v*F1-a*u*F2)).subs(u,x_yz).subs(v,v(w))).rhs
x_z = dsolve(diff(u(w),w) - ((c*w*F2-b*v*F3)/(b*v*F1-a*u*F2)).subs(v,y_zx).subs(u,u(w))).rhs
sol1 = dsolve(diff(u(t),t) - (c*w*F2 - b*v*F3).subs(v,y_x).subs(w,z_x).subs(u,u(t))).rhs
sol2 = dsolve(diff(v(t),t) - (a*u*F3 - c*w*F1).subs(u,x_y).subs(w,z_y).subs(v,v(t))).rhs
sol3 = dsolve(diff(w(t),t) - (b*v*F1 - a*u*F2).subs(u,x_z).subs(v,y_z).subs(w,w(t))).rhs
return [sol1, sol2, sol3]
def _nonlinear_3eq_order1_type5(x, y, z, t, eq):
r"""
.. math:: x' = x (c F_2 - b F_3), \enspace y' = y (a F_3 - c F_1), \enspace z' = z (b F_1 - a F_2)
where `F_n = F_n (x, y, z, t)` and are arbitrary functions.
First Integral:
.. math:: \left|x\right|^{a} \left|y\right|^{b} \left|z\right|^{c} = C_1
where `C` is an arbitrary constant. If the function `F_n` is independent of `t`,
then, by eliminating `t` and `z` from the first two equations of the system, one
arrives at a first-order equation.
References
==========
-http://eqworld.ipmnet.ru/en/solutions/sysode/sode0406.pdf
"""
C1 = get_numbered_constants(eq, num=1)
u, v, w = symbols('u, v, w')
fu, fv, fw = symbols('u, v, w', cls=Function)
p = Wild('p', exclude=[x(t), y(t), z(t), t])
q = Wild('q', exclude=[x(t), y(t), z(t), t])
s = Wild('s', exclude=[x(t), y(t), z(t), t])
F1, F2, F3 = symbols('F1, F2, F3', cls=Wild)
r1 = eq[0].match(diff(x(t), t) - x(t)*F2 + x(t)*F3)
r = collect_const(r1[F2]).match(s*F2)
r.update(collect_const(r1[F3]).match(q*F3))
if eq[1].has(r[F2]) and not eq[1].has(r[F3]):
r[F2], r[F3] = r[F3], r[F2]
r[s], r[q] = -r[q], -r[s]
r.update((diff(y(t), t) - eq[1]).match(y(t)*(p*r[F3] - r[s]*F1)))
a = r[p]; b = r[q]; c = r[s]
F1 = r[F1].subs(x(t), u).subs(y(t), v).subs(z(t), w)
F2 = r[F2].subs(x(t), u).subs(y(t), v).subs(z(t), w)
F3 = r[F3].subs(x(t), u).subs(y(t), v).subs(z(t), w)
x_yz = (C1*v**-b*w**-c)**-a
y_zx = (C1*w**-c*u**-a)**-b
z_xy = (C1*u**-a*v**-b)**-c
y_x = dsolve(diff(fv(u), u) - ((v*(a*F3 - c*F1))/(u*(c*F2 - b*F3))).subs(w, z_xy).subs(v, fv(u))).rhs
z_x = dsolve(diff(fw(u), u) - ((w*(b*F1 - a*F2))/(u*(c*F2 - b*F3))).subs(v, y_zx).subs(w, fw(u))).rhs
z_y = dsolve(diff(fw(v), v) - ((w*(b*F1 - a*F2))/(v*(a*F3 - c*F1))).subs(u, x_yz).subs(w, fw(v))).rhs
x_y = dsolve(diff(fu(v), v) - ((u*(c*F2 - b*F3))/(v*(a*F3 - c*F1))).subs(w, z_xy).subs(u, fu(v))).rhs
y_z = dsolve(diff(fv(w), w) - ((v*(a*F3 - c*F1))/(w*(b*F1 - a*F2))).subs(u, x_yz).subs(v, fv(w))).rhs
x_z = dsolve(diff(fu(w), w) - ((u*(c*F2 - b*F3))/(w*(b*F1 - a*F2))).subs(v, y_zx).subs(u, fu(w))).rhs
sol1 = dsolve(diff(fu(t), t) - (u*(c*F2 - b*F3)).subs(v, y_x).subs(w, z_x).subs(u, fu(t))).rhs
sol2 = dsolve(diff(fv(t), t) - (v*(a*F3 - c*F1)).subs(u, x_y).subs(w, z_y).subs(v, fv(t))).rhs
sol3 = dsolve(diff(fw(t), t) - (w*(b*F1 - a*F2)).subs(u, x_z).subs(v, y_z).subs(w, fw(t))).rhs
return [sol1, sol2, sol3]
#This import is written at the bottom to avoid circular imports.
from .single import (NthAlgebraic, Factorable, FirstLinear, AlmostLinear,
Bernoulli, SingleODEProblem, SingleODESolver, RiccatiSpecial)
|
059bbfe7cfbd9f3f42aee7d6b1d020aec85ce3d2de28b591f6136f29b57e47c1 | #
# This is the module for ODE solver classes for single ODEs.
#
import typing
if typing.TYPE_CHECKING:
from typing import ClassVar
from typing import Dict, Type
from typing import Iterator, List, Optional
from sympy.core import S
from sympy.core.exprtools import factor_terms
from sympy.core.expr import Expr
from sympy.core.function import AppliedUndef, Derivative, Function, expand
from sympy.core.numbers import Float
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Dummy, Wild
from sympy.core.mul import Mul
from sympy.functions import exp, sqrt, tan, log
from sympy.integrals import Integral
from sympy.polys.polytools import cancel, factor
from sympy.simplify.simplify import simplify
from sympy.simplify.radsimp import fraction
from sympy.utilities import numbered_symbols
from sympy.solvers.solvers import solve
from sympy.solvers.deutils import ode_order, _preprocess
class ODEMatchError(NotImplementedError):
"""Raised if a SingleODESolver is asked to solve an ODE it does not match"""
pass
def cached_property(func):
'''Decorator to cache property method'''
attrname = '_' + func.__name__
def propfunc(self):
val = getattr(self, attrname, None)
if val is None:
val = func(self)
setattr(self, attrname, val)
return val
return property(propfunc)
class SingleODEProblem:
"""Represents an ordinary differential equation (ODE)
This class is used internally in the by dsolve and related
functions/classes so that properties of an ODE can be computed
efficiently.
Examples
========
This class is used internally by dsolve. To instantiate an instance
directly first define an ODE problem:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)
Now you can create a SingleODEProblem instance and query its properties:
>>> from sympy.solvers.ode.single import SingleODEProblem
>>> problem = SingleODEProblem(f(x).diff(x), f(x), x)
>>> problem.eq
Derivative(f(x), x)
>>> problem.func
f(x)
>>> problem.sym
x
"""
# Instance attributes:
eq = None # type: Expr
func = None # type: AppliedUndef
sym = None # type: Symbol
_order = None # type: int
_eq_expanded = None # type: Expr
_eq_preprocessed = None # type: Expr
def __init__(self, eq, func, sym, prep=True):
assert isinstance(eq, Expr)
assert isinstance(func, AppliedUndef)
assert isinstance(sym, Symbol)
assert isinstance(prep, bool)
self.eq = eq
self.func = func
self.sym = sym
self.prep = prep
@cached_property
def order(self) -> int:
return ode_order(self.eq, self.func)
@cached_property
def eq_preprocessed(self) -> Expr:
return self._get_eq_preprocessed()
@cached_property
def eq_expanded(self) -> Expr:
return expand(self.eq_preprocessed)
def _get_eq_preprocessed(self) -> Expr:
if self.prep:
process_eq, process_func = _preprocess(self.eq, self.func)
if process_func != self.func:
raise ValueError
else:
process_eq = self.eq
return process_eq
def get_numbered_constants(self, num=1, start=1, prefix='C') -> List[Symbol]:
"""
Returns a list of constants that do not occur
in eq already.
"""
ncs = self.iter_numbered_constants(start, prefix)
Cs = [next(ncs) for i in range(num)]
return Cs
def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]:
"""
Returns an iterator of constants that do not occur
in eq already.
"""
atom_set = self.eq.free_symbols
func_set = self.eq.atoms(Function)
if func_set:
atom_set |= {Symbol(str(f.func)) for f in func_set}
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set)
# TODO: Add methods that can be used by many ODE solvers:
# order
# is_linear()
# get_linear_coefficients()
# eq_prepared (the ODE in prepared form)
class SingleODESolver:
"""
Base class for Single ODE solvers.
Subclasses should implement the _matches and _get_general_solution
methods. This class is not intended to be instantiated directly but its
subclasses are as part of dsolve.
Examples
========
You can use a subclass of SingleODEProblem to solve a particular type of
ODE. We first define a particular ODE problem:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)
Now we solve this problem using the NthAlgebraic solver which is a
subclass of SingleODESolver:
>>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem
>>> problem = SingleODEProblem(eq, f(x), x)
>>> solver = NthAlgebraic(problem)
>>> solver.get_general_solution()
[Eq(f(x), _C*x + _C)]
The normal way to solve an ODE is to use dsolve (which would use
NthAlgebraic and other solvers internally). When using dsolve a number of
other things are done such as evaluating integrals, simplifying the
solution and renumbering the constants:
>>> from sympy import dsolve
>>> dsolve(eq, hint='nth_algebraic')
Eq(f(x), C1 + C2*x)
"""
# Subclasses should store the hint name (the argument to dsolve) in this
# attribute
hint = None # type: ClassVar[str]
# Subclasses should define this to indicate if they support an _Integral
# hint.
has_integral = None # type: ClassVar[bool]
# The ODE to be solved
ode_problem = None # type: SingleODEProblem
# Cache whether or not the equation has matched the method
_matched = None # type: Optional[bool]
# Subclasses should store in this attribute the list of order(s) of ODE
# that subclass can solve or leave it to None if not specific to any order
order = None # type: Optional[list]
def __init__(self, ode_problem):
self.ode_problem = ode_problem
def matches(self) -> bool:
if self.order is not None and self.ode_problem.order not in self.order:
self._matched = False
return self._matched
if self._matched is None:
self._matched = self._matches()
return self._matched
def get_general_solution(self, *, simplify: bool = True) -> List[Equality]:
if not self.matches():
msg = "%s solver can not solve:\n%s"
raise ODEMatchError(msg % (self.hint, self.ode_problem.eq))
return self._get_general_solution()
def _matches(self) -> bool:
msg = "Subclasses of SingleODESolver should implement matches."
raise NotImplementedError(msg)
def _get_general_solution(self, *, simplify: bool = True) -> List[Equality]:
msg = "Subclasses of SingleODESolver should implement get_general_solution."
raise NotImplementedError(msg)
class SinglePatternODESolver(SingleODESolver):
'''Superclass for ODE solvers based on pattern matching'''
def wilds(self):
prob = self.ode_problem
f = prob.func.func
x = prob.sym
order = prob.order
return self._wilds(f, x, order)
def wilds_match(self):
match = self._wilds_match
return [match.get(w, S.Zero) for w in self.wilds()]
def _matches(self):
eq = self.ode_problem.eq_expanded
f = self.ode_problem.func.func
x = self.ode_problem.sym
order = self.ode_problem.order
df = f(x).diff(x)
if order != 1:
return False
pattern = self._equation(f(x), x, 1)
if not pattern.coeff(df).has(Wild):
eq = expand(eq / eq.coeff(df))
eq = eq.collect(f(x), func = cancel)
self._wilds_match = match = eq.match(pattern)
if match is not None:
return self._verify(f(x))
return False
def _verify(self, fx) -> bool:
return True
def _wilds(self, f, x, order):
msg = "Subclasses of SingleODESolver should implement _wilds"
raise NotImplementedError(msg)
def _equation(self, fx, x, order):
msg = "Subclasses of SingleODESolver should implement _equation"
raise NotImplementedError(msg)
class NthAlgebraic(SingleODESolver):
r"""
Solves an `n`\th order ordinary differential equation using algebra and
integrals.
There is no general form for the kind of equation that this can solve. The
the equation is solved algebraically treating differentiation as an
invertible algebraic function.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0)
>>> dsolve(eq, f(x), hint='nth_algebraic')
[Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
Note that this solver can return algebraic solutions that do not have any
integration constants (f(x) = 0 in the above example).
"""
hint = 'nth_algebraic'
has_integral = True # nth_algebraic_Integral hint
def _matches(self):
r"""
Matches any differential equation that nth_algebraic can solve. Uses
`sympy.solve` but teaches it how to integrate derivatives.
This involves calling `sympy.solve` and does most of the work of finding a
solution (apart from evaluating the integrals).
"""
eq = self.ode_problem.eq
func = self.ode_problem.func
var = self.ode_problem.sym
# Derivative that solve can handle:
diffx = self._get_diffx(var)
# Replace derivatives wrt the independent variable with diffx
def replace(eq, var):
def expand_diffx(*args):
differand, diffs = args[0], args[1:]
toreplace = differand
for v, n in diffs:
for _ in range(n):
if v == var:
toreplace = diffx(toreplace)
else:
toreplace = Derivative(toreplace, v)
return toreplace
return eq.replace(Derivative, expand_diffx)
# Restore derivatives in solution afterwards
def unreplace(eq, var):
return eq.replace(diffx, lambda e: Derivative(e, var))
subs_eqn = replace(eq, var)
try:
# turn off simplification to protect Integrals that have
# _t instead of fx in them and would otherwise factor
# as t_*Integral(1, x)
solns = solve(subs_eqn, func, simplify=False)
except NotImplementedError:
solns = []
solns = [simplify(unreplace(soln, var)) for soln in solns]
solns = [Equality(func, soln) for soln in solns]
self.solutions = solns
return len(solns) != 0
def _get_general_solution(self, *, simplify: bool = True):
return self.solutions
# This needs to produce an invertible function but the inverse depends
# which variable we are integrating with respect to. Since the class can
# be stored in cached results we need to ensure that we always get the
# same class back for each particular integration variable so we store these
# classes in a global dict:
_diffx_stored = {} # type: Dict[Symbol, Type[Function]]
@staticmethod
def _get_diffx(var):
diffcls = NthAlgebraic._diffx_stored.get(var, None)
if diffcls is None:
# A class that behaves like Derivative wrt var but is "invertible".
class diffx(Function):
def inverse(self):
# don't use integrate here because fx has been replaced by _t
# in the equation; integrals will not be correct while solve
# is at work.
return lambda expr: Integral(expr, var) + Dummy('C')
diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx)
return diffcls
class FirstLinear(SinglePatternODESolver):
r"""
Solves 1st order linear differential equations.
These are differential equations of the form
.. math:: dy/dx + P(x) y = Q(x)\text{.}
These kinds of differential equations can be solved in a general way. The
integrating factor `e^{\int P(x) \,dx}` will turn the equation into a
separable equation. The general solution is::
>>> from sympy import Function, dsolve, Eq, pprint, diff, sin
>>> from sympy.abc import x
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
>>> pprint(genform)
d
P(x)*f(x) + --(f(x)) = Q(x)
dx
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'))
/ / \
| | |
| | / | /
| | | | |
| | | P(x) dx | - | P(x) dx
| | | | |
| | / | /
f(x) = |C1 + | Q(x)*e dx|*e
| | |
\ / /
Examples
========
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)),
... f(x), '1st_linear'))
f(x) = x*(C1 - cos(x))
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 92
# indirect doctest
"""
hint = '1st_linear'
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x)])
Q = Wild('Q', exclude=[f(x), f(x).diff(x)])
return P, Q
def _equation(self, fx, x, order):
P, Q = self.wilds()
return fx.diff(x) + P*fx - Q
def _get_general_solution(self, *, simplify: bool = True):
P, Q = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)),x))
* exp(-Integral(P, x))))
return [gensol]
class AlmostLinear(SinglePatternODESolver):
r"""
Solves an almost-linear differential equation.
The general form of an almost linear differential equation is
.. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x)
Here `f(x)` is the function to be solved for (the dependent variable).
The substitution `g(f(x)) = u(x)` leads to a linear differential equation
for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved
for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving
`g(f(x)) = u(x)`.
See Also
========
:meth:`sympy.solvers.ode.single.FirstLinear`
Examples
========
>>> from sympy import Function, pprint, sin, cos
>>> from sympy.solvers.ode import dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = x*d + x*f(x) + 1
>>> dsolve(eq, f(x), hint='almost_linear')
Eq(f(x), (C1 - Ei(x))*exp(-x))
>>> pprint(dsolve(eq, f(x), hint='almost_linear'))
-x
f(x) = (C1 - Ei(x))*e
>>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1
>>> pprint(example)
d
sin(f(x)) + cos(f(x))*--(f(x)) + 1
dx
>>> pprint(dsolve(example, f(x), hint='almost_linear'))
/ -x \ / -x \
[f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/]
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
hint = "almost_linear"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x).diff(x)])
Q = Wild('Q', exclude=[f(x).diff(x)])
return P, Q
def _equation(self, fx, x, order):
P, Q = self.wilds()
return P*fx.diff(x) + Q
def _verify(self, fx):
a, b = self.wilds_match()
c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b)
# a, b and c are the function a(x), b(x) and c(x) respectively.
# c(x) is obtained by separating out b as terms with and without fx i.e, l(y)
# The following conditions checks if the given equation is an almost-linear differential equation using the fact that
# a(x)*(l(y))' / l(y)' is independent of l(y)
if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx):
self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y)
self.ax = a / self.ly.diff(fx)
self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral
self.bx = factor_terms(b) / self.ly
return True
return False
def _get_general_solution(self, *, simplify: bool = True):
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)),x))
* exp(-Integral(self.bx/self.ax, x))))
return [gensol]
class Bernoulli(SinglePatternODESolver):
r"""
Solves Bernoulli differential equations.
These are equations of the form
.. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.}
The substitution `w = 1/y^{1-n}` will transform an equation of this form
into one that is linear (see the docstring of
:py:meth:`~sympy.solvers.ode.single.FirstLinear`). The general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x, n
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
>>> pprint(genform)
d n
P(x)*f(x) + --(f(x)) = Q(x)*f (x)
dx
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110)
-1
-----
n - 1
// / / \ \
|| | | | |
|| | / | / | / |
|| | | | | | | |
|| | (1 - n)* | P(x) dx | (1 - n)* | P(x) dx | (n - 1)* | P(x) dx|
|| | | | | | | |
|| | / | / | / |
f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e |
|| | | | |
\\ / / / /
Note that the equation is separable when `n = 1` (see the docstring of
:py:meth:`~sympy.solvers.ode.ode.ode_separable`).
>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
... hint='separable_Integral'))
f(x)
/
| /
| 1 |
| - dy = C1 + | (-P(x) + Q(x)) dx
| y |
| /
/
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
... f(x), hint='Bernoulli'))
1
f(x) = -----------------
C1*x + log(x) + 1
References
==========
- https://en.wikipedia.org/wiki/Bernoulli_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 95
# indirect doctest
"""
hint = "Bernoulli"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x)])
Q = Wild('Q', exclude=[f(x)])
n = Wild('n', exclude=[x, f(x), f(x).diff(x)])
return P, Q, n
def _equation(self, fx, x, order):
P, Q, n = self.wilds()
return fx.diff(x) + P*fx - Q*fx**n
def _get_general_solution(self, *, simplify: bool = True):
P, Q, n = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
if n==1:
gensol = Eq(log(fx), (
C1 + Integral((-P + Q),x)
))
else:
gensol = Eq(fx**(1-n), (
(C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x))
* exp(Integral(P, x)), x)
) * exp(-(1 - n)*Integral(P, x)))
)
return [gensol]
class Factorable(SingleODESolver):
r"""
Solves equations having a solvable factor.
This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It
will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the
list of solutions.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x))
>>> pprint(dsolve(eq, f(x)))
-x
[f(x) = 2, f(x) = -2, f(x) = C1*e ]
"""
hint = "factorable"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq
f = self.ode_problem.func.func
x = self.ode_problem.sym
order =self.ode_problem.order
df = f(x).diff(x)
self.eqs = []
eq = eq.collect(f(x), func = cancel)
eq = fraction(factor(eq))[0]
factors = Mul.make_args(factor(eq))
roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0]
if len(roots)>1 or roots[0][1]>1:
for base,expo in roots:
if base.has(f(x)):
self.eqs.append(base)
if len(self.eqs)>0:
return True
roots = solve(eq, df)
if len(roots)>0:
self.eqs = [(df - root) for root in roots]
if len(self.eqs)==1:
if order>1:
return False
if self.eqs[0].has(Float):
return False
return fraction(factor(self.eqs[0]))[0]-eq!=0
return True
return False
def _get_general_solution(self, *, simplify: bool = True):
func = self.ode_problem.func.func
x = self.ode_problem.sym
eqns = self.eqs
sols = []
for eq in eqns:
try:
sol = dsolve(eq, func(x))
except NotImplementedError:
continue
else:
if isinstance(sol, list):
sols.extend(sol)
else:
sols.append(sol)
if sols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the factorable group method")
return sols
class RiccatiSpecial(SinglePatternODESolver):
r"""
The general Riccati equation has the form
.. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.}
While it does not have a general solution [1], the "special" form, `dy/dx
= a y^2 - b x^c`, does have solutions in many cases [2]. This routine
returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained
by using a suitable change of variables to reduce it to the special form
and is valid when neither `a` nor `b` are zero and either `c` or `d` is
zero.
>>> from sympy.abc import x, a, b, c, d
>>> from sympy.solvers.ode import dsolve, checkodesol
>>> from sympy import pprint, Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2)
>>> sol = dsolve(genform, y)
>>> pprint(sol, wrap_line=False)
/ / __________________ \\
| __________________ | / 2 ||
| / 2 | \/ 4*b*d - (a + c) *log(x)||
-|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------||
\ \ 2*a //
f(x) = ------------------------------------------------------------------------
2*b*x
>>> checkodesol(genform, sol, order=1)[0]
True
References
==========
1. http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati
2. http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf -
http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf
"""
hint = "Riccati_special_minus2"
has_integral = False
order = [1]
def _wilds(self, f, x, order):
a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0])
b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0])
c = Wild('c', exclude=[x, f(x), f(x).diff(x)])
d = Wild('d', exclude=[x, f(x), f(x).diff(x)])
return a, b, c, d
def _equation(self, fx, x, order):
a, b, c, d = self.wilds()
return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2
def _get_general_solution(self, *, simplify: bool = True):
a, b, c, d = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
mu = sqrt(4*d*b - (a - c)**2)
gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x))
return [gensol]
# Avoid circular import:
from .ode import dsolve
|
89011420e21bf22ef019fa73f05120029ec8a0bb90964a68a8eb9103b4907b33 | from sympy.core import Add, Mul, S
from sympy.core.containers import Tuple
from sympy.core.compatibility import iterable
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import I
from sympy.core.relational import Eq, Equality
from sympy.core.symbol import Dummy, Symbol
from sympy.core.function import (expand_mul, expand, Derivative,
AppliedUndef, Function, Subs)
from sympy.functions import (exp, im, cos, sin, re, Piecewise,
piecewise_fold, sqrt, log)
from sympy.functions.combinatorial.factorials import factorial
from sympy.matrices import zeros, Matrix, NonSquareMatrixError, MatrixBase, eye
from sympy.polys import Poly, together
from sympy.simplify import collect, radsimp, signsimp
from sympy.simplify.powsimp import powdenest, powsimp
from sympy.simplify.ratsimp import ratsimp
from sympy.simplify.simplify import simplify
from sympy.sets.sets import FiniteSet
from sympy.solvers.deutils import ode_order
from sympy.solvers.solveset import NonlinearError, solveset
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import ordered
from sympy.utilities.misc import filldedent
from sympy.integrals.integrals import Integral, integrate
def _get_func_order(eqs, funcs):
return {func: max(ode_order(eq, func) for eq in eqs) for func in funcs}
class ODEOrderError(ValueError):
"""Raised by linear_ode_to_matrix if the system has the wrong order"""
pass
class ODENonlinearError(NonlinearError):
"""Raised by linear_ode_to_matrix if the system is nonlinear"""
pass
def _simpsol(soleq):
lhs = soleq.lhs
sol = soleq.rhs
sol = powsimp(sol)
gens = list(sol.atoms(exp))
p = Poly(sol, *gens, expand=False)
gens = [factor_terms(g) for g in gens]
if not gens:
gens = p.gens
syms = [Symbol('C1'), Symbol('C2')]
terms = []
for coeff, monom in zip(p.coeffs(), p.monoms()):
coeff = piecewise_fold(coeff)
if type(coeff) is Piecewise:
coeff = Piecewise(*((ratsimp(coef).collect(syms), cond) for coef, cond in coeff.args))
else:
coeff = ratsimp(coeff).collect(syms)
monom = Mul(*(g ** i for g, i in zip(gens, monom)))
terms.append(coeff * monom)
return Eq(lhs, Add(*terms))
def _solsimp(e, t):
no_t, has_t = powsimp(expand_mul(e)).as_independent(t)
no_t = ratsimp(no_t)
has_t = has_t.replace(exp, lambda a: exp(factor_terms(a)))
return no_t + has_t
def simpsol(sol, wrt1, wrt2, doit=True):
"""Simplify solutions from dsolve_system."""
# The parameter sol is the solution as returned by dsolve (list of Eq).
#
# The parameters wrt1 and wrt2 are lists of symbols to be collected for
# with those in wrt1 being collected for first. This allows for collecting
# on any factors involving the independent variable before collecting on
# the integration constants or vice versa using e.g.:
#
# sol = simpsol(sol, [t], [C1, C2]) # t first, constants after
# sol = simpsol(sol, [C1, C2], [t]) # constants first, t after
#
# If doit=True (default) then simpsol will begin by evaluating any
# unevaluated integrals. Since many integrals will appear multiple times
# in the solutions this is done intelligently by computing each integral
# only once.
#
# The strategy is to first perform simple cancellation with factor_terms
# and then multiply out all brackets with expand_mul. This gives an Add
# with many terms.
#
# We split each term into two multiplicative factors dep and coeff where
# all factors that involve wrt1 are in dep and any constant factors are in
# coeff e.g.
# sqrt(2)*C1*exp(t) -> ( exp(t) , sqrt(2)*C1 )
#
# The dep factors are simplified using powsimp to combine expanded
# exponential factors e.g.
# exp(a*t)*exp(b*t) -> exp(t*(a+b))
#
# We then collect coefficients for all terms having the same (simplified)
# dep. The coefficients are then simplified using together and ratsimp and
# lastly by recursively applying the same transformation to the
# coefficients to collect on wrt2.
#
# Finally the result is recombined into an Add and signsimp is used to
# normalise any minus signs.
def simprhs(rhs, rep, wrt1, wrt2):
"""Simplify the rhs of an ODE solution"""
if rep:
rhs = rhs.subs(rep)
rhs = factor_terms(rhs)
rhs = simp_coeff_dep(rhs, wrt1, wrt2)
rhs = signsimp(rhs)
return rhs
def simp_coeff_dep(expr, wrt1, wrt2=None):
"""Split rhs into terms, split terms into dep and coeff and collect on dep"""
add_dep_terms = lambda e: e.is_Add and e.has(*wrt1)
expandable = lambda e: e.is_Mul and any(map(add_dep_terms, e.args))
expand_func = lambda e: expand_mul(e, deep=False)
expand_mul_mod = lambda e: e.replace(expandable, expand_func)
terms = Add.make_args(expand_mul_mod(expr))
dc = {}
for term in terms:
coeff, dep = term.as_independent(*wrt1, as_Add=False)
# Collect together the coefficients for terms that have the same
# dependence on wrt1 (after dep is normalised using simpdep).
dep = simpdep(dep, wrt1)
# See if the dependence on t cancels out...
if dep is not S.One:
dep2 = factor_terms(dep)
if not dep2.has(*wrt1):
coeff *= dep2
dep = S.One
if dep not in dc:
dc[dep] = coeff
else:
dc[dep] += coeff
# Apply the method recursively to the coefficients but this time
# collecting on wrt2 rather than wrt2.
termpairs = ((simpcoeff(c, wrt2), d) for d, c in dc.items())
if wrt2 is not None:
termpairs = ((simp_coeff_dep(c, wrt2), d) for c, d in termpairs)
return Add(*(c * d for c, d in termpairs))
def simpdep(term, wrt1):
"""Normalise factors involving t with powsimp and recombine exp"""
def canonicalise(a):
# Using factor_terms here isn't quite right because it leads to things
# like exp(t*(1+t)) that we don't want. We do want to cancel factors
# and pull out a common denominator but ideally the numerator would be
# expressed as a standard form polynomial in t so we expand_mul
# and collect afterwards.
a = factor_terms(a)
num, den = a.as_numer_denom()
num = expand_mul(num)
num = collect(num, wrt1)
return num / den
term = powsimp(term)
rep = {e: exp(canonicalise(e.args[0])) for e in term.atoms(exp)}
term = term.subs(rep)
return term
def simpcoeff(coeff, wrt2):
"""Bring to a common fraction and cancel with ratsimp"""
coeff = together(coeff)
if coeff.is_polynomial():
# Calling ratsimp can be expensive. The main reason is to simplify
# sums of terms with irrational denominators so we limit ourselves
# to the case where the expression is polynomial in any symbols.
# Maybe there's a better approach...
coeff = ratsimp(radsimp(coeff))
# collect on secondary variables first and any remaining symbols after
if wrt2 is not None:
syms = list(wrt2) + list(ordered(coeff.free_symbols - set(wrt2)))
else:
syms = list(ordered(coeff.free_symbols))
coeff = collect(coeff, syms)
coeff = together(coeff)
return coeff
# There are often repeated integrals. Collect unique integrals and
# evaluate each once and then substitute into the final result to replace
# all occurrences in each of the solution equations.
if doit:
integrals = set().union(*(s.atoms(Integral) for s in sol))
rep = {i: factor_terms(i).doit() for i in integrals}
else:
rep = {}
sol = [Eq(s.lhs, simprhs(s.rhs, rep, wrt1, wrt2)) for s in sol]
return sol
def linodesolve_type(A, t, b=None):
r"""
Helper function that determines the type of the system of ODEs for solving with :obj:`sympy.solvers.ode.systems.linodesolve()`
Explanation
===========
This function takes in the coefficient matrix and/or the non-homogeneous term
and returns the type of the equation that can be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`.
If the system is constant coefficient homogeneous, then "type1" is returned
If the system is constant coefficient non-homogeneous, then "type2" is returned
If the system is non-constant coefficient homogeneous, then "type3" is returned
If the system is non-constant coefficient non-homogeneous, then "type4" is returned
If the system has a non-constant coefficient matrix which can be factorized into constant
coefficient matrix, then "type5" or "type6" is returned for when the system is homogeneous or
non-homogeneous respectively.
Note that, if the system of ODEs is of "type3" or "type4", then along with the type,
the commutative antiderivative of the coefficient matrix is also returned.
If the system cannot be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`, then
NotImplementedError is raised.
Parameters
==========
A : Matrix
Coefficient matrix of the system of ODEs
b : Matrix or None
Non-homogeneous term of the system. The default value is None.
If this argument is None, then the system is assumed to be homogeneous.
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import linodesolve_type
>>> t = symbols("t")
>>> A = Matrix([[1, 1], [2, 3]])
>>> b = Matrix([t, 1])
>>> linodesolve_type(A, t)
{'antiderivative': None, 'type_of_equation': 'type1'}
>>> linodesolve_type(A, t, b=b)
{'antiderivative': None, 'type_of_equation': 'type2'}
>>> A_t = Matrix([[1, t], [-t, 1]])
>>> linodesolve_type(A_t, t)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type3'}
>>> linodesolve_type(A_t, t, b=b)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type4'}
>>> A_non_commutative = Matrix([[1, t], [t, -1]])
>>> linodesolve_type(A_non_commutative, t)
Traceback (most recent call last):
...
NotImplementedError:
The system doesn't have a commutative antiderivative, it can't be
solved by linodesolve.
Returns
=======
Dict
Raises
======
NotImplementedError
When the coefficient matrix doesn't have a commutative antiderivative
See Also
========
linodesolve: Function for which linodesolve_type gets the information
"""
match = {}
is_non_constant = not _matrix_is_constant(A, t)
is_non_homogeneous = not (b is None or b.is_zero_matrix)
type = "type{}".format(int("{}{}".format(int(is_non_constant), int(is_non_homogeneous)), 2) + 1)
B = None
match.update({"type_of_equation": type, "antiderivative": B})
if is_non_constant:
B, is_commuting = _is_commutative_anti_derivative(A, t)
if not is_commuting:
raise NotImplementedError(filldedent('''
The system doesn't have a commutative antiderivative, it can't be solved
by linodesolve.
'''))
match['antiderivative'] = B
match.update(_first_order_type5_6_subs(A, t, b=b))
return match
def _first_order_type5_6_subs(A, t, b=None):
match = {}
factor_terms = _factor_matrix(A, t)
is_homogeneous = b is None or b.is_zero_matrix
if factor_terms is not None:
t_ = Symbol("{}_".format(t))
F_t = integrate(factor_terms[0], t)
inverse = solveset(Eq(t_, F_t), t)
# Note: A simple way to check if a function is invertible
# or not.
if isinstance(inverse, FiniteSet) and not inverse.has(Piecewise)\
and len(inverse) == 1:
A = factor_terms[1]
if not is_homogeneous:
b = b / factor_terms[0]
b = b.subs(t, list(inverse)[0])
type = "type{}".format(5 + (not is_homogeneous))
match.update({'func_coeff': A, 'tau': F_t,
't_': t_, 'type_of_equation': type, 'rhs': b})
return match
def linear_ode_to_matrix(eqs, funcs, t, order):
r"""
Convert a linear system of ODEs to matrix form
Explanation
===========
Express a system of linear ordinary differential equations as a single
matrix differential equation [1]. For example the system $x' = x + y + 1$
and $y' = x - y$ can be represented as
.. math:: A_1 X' = A0 X + b
where $A_1$ and $A_0$ are $2 \times 2$ matrices and $b$, $X$ and $X'$ are
$2 \times 1$ matrices with $X = [x, y]^T$.
Higher-order systems are represented with additional matrices e.g. a
second-order system would look like
.. math:: A_2 X'' = A_1 X' + A_0 X + b
Examples
========
>>> from sympy import (Function, Symbol, Matrix, Eq)
>>> from sympy.solvers.ode.systems import linear_ode_to_matrix
>>> t = Symbol('t')
>>> x = Function('x')
>>> y = Function('y')
We can create a system of linear ODEs like
>>> eqs = [
... Eq(x(t).diff(t), x(t) + y(t) + 1),
... Eq(y(t).diff(t), x(t) - y(t)),
... ]
>>> funcs = [x(t), y(t)]
>>> order = 1 # 1st order system
Now ``linear_ode_to_matrix`` can represent this as a matrix
differential equation.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order)
>>> A1
Matrix([
[1, 0],
[0, 1]])
>>> A0
Matrix([
[1, 1],
[1, -1]])
>>> b
Matrix([
[1],
[0]])
The original equations can be recovered from these matrices:
>>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs])
>>> X = Matrix(funcs)
>>> A1 * X.diff(t) - A0 * X - b == eqs_mat
True
If the system of equations has a maximum order greater than the
order of the system specified, a ODEOrderError exception is raised.
>>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODEOrderError: Cannot represent system in 1-order form
If the system of equations is nonlinear, then ODENonlinearError is
raised.
>>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODENonlinearError: The system of ODEs is nonlinear.
Parameters
==========
eqs : list of sympy expressions or equalities
The equations as expressions (assumed equal to zero).
funcs : list of applied functions
The dependent variables of the system of ODEs.
t : symbol
The independent variable.
order : int
The order of the system of ODEs.
Returns
=======
The tuple ``(As, b)`` where ``As`` is a tuple of matrices and ``b`` is the
the matrix representing the rhs of the matrix equation.
Raises
======
ODEOrderError
When the system of ODEs have an order greater than what was specified
ODENonlinearError
When the system of ODEs is nonlinear
See Also
========
linear_eq_to_matrix: for systems of linear algebraic equations.
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_differential_equation
"""
from sympy.solvers.solveset import linear_eq_to_matrix
if any(ode_order(eq, func) > order for eq in eqs for func in funcs):
msg = "Cannot represent system in {}-order form"
raise ODEOrderError(msg.format(order))
As = []
for o in range(order, -1, -1):
# Work from the highest derivative down
funcs_deriv = [func.diff(t, o) for func in funcs]
# linear_eq_to_matrix expects a proper symbol so substitute e.g.
# Derivative(x(t), t) for a Dummy.
rep = {func_deriv: Dummy() for func_deriv in funcs_deriv}
eqs = [eq.subs(rep) for eq in eqs]
syms = [rep[func_deriv] for func_deriv in funcs_deriv]
# Ai is the matrix for X(t).diff(t, o)
# eqs is minus the remainder of the equations.
try:
Ai, b = linear_eq_to_matrix(eqs, syms)
except NonlinearError:
raise ODENonlinearError("The system of ODEs is nonlinear.")
Ai = Ai.applyfunc(expand_mul)
As.append(Ai if o == order else -Ai)
if o:
eqs = [-eq for eq in b]
else:
rhs = b
return As, rhs
def matrix_exp(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix ``A`` and scalar ``t``.
Explanation
===========
This functions returns the $\exp(A*t)$ by doing a simple
matrix multiplication:
.. math:: \exp(A*t) = P * expJ * P^{-1}
where $expJ$ is $\exp(J*t)$. $J$ is the Jordan normal
form of $A$ and $P$ is matrix such that:
.. math:: A = P * J * P^{-1}
The matrix exponential $\exp(A*t)$ appears in the solution of linear
differential equations. For example if $x$ is a vector and $A$ is a matrix
then the initial value problem
.. math:: \frac{dx(t)}{dt} = A \times x(t), x(0) = x0
has the unique solution
.. math:: x(t) = \exp(A t) x0
Examples
========
>>> from sympy import Symbol, Matrix, pprint
>>> from sympy.solvers.ode.systems import matrix_exp
>>> t = Symbol('t')
We will consider a 2x2 matrix for comupting the exponential
>>> A = Matrix([[2, -5], [2, -4]])
>>> pprint(A)
[2 -5]
[ ]
[2 -4]
Now, exp(A*t) is given as follows:
>>> pprint(matrix_exp(A, t))
[ -t -t -t ]
[3*e *sin(t) + e *cos(t) -5*e *sin(t) ]
[ ]
[ -t -t -t ]
[ 2*e *sin(t) - 3*e *sin(t) + e *cos(t)]
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
See Also
========
matrix_exp_jordan_form: For exponential of Jordan normal form
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_normal_form
.. [2] https://en.wikipedia.org/wiki/Matrix_exponential
"""
P, expJ = matrix_exp_jordan_form(A, t)
return P * expJ * P.inv()
def matrix_exp_jordan_form(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix *A* and scalar *t*.
Explanation
===========
Returns the Jordan form of the $\exp(A*t)$ along with the matrix $P$ such that:
.. math::
\exp(A*t) = P * expJ * P^{-1}
Examples
========
>>> from sympy import Matrix, Symbol
>>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form
>>> t = Symbol('t')
We will consider a 2x2 defective matrix. This shows that our method
works even for defective matrices.
>>> A = Matrix([[1, 1], [0, 1]])
It can be observed that this function gives us the Jordan normal form
and the required invertible matrix P.
>>> P, expJ = matrix_exp_jordan_form(A, t)
Here, it is shown that P and expJ returned by this function is correct
as they satisfy the formula: P * expJ * P_inverse = exp(A*t).
>>> P * expJ * P.inv() == matrix_exp(A, t)
True
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
References
==========
.. [1] https://en.wikipedia.org/wiki/Defective_matrix
.. [2] https://en.wikipedia.org/wiki/Jordan_matrix
.. [3] https://en.wikipedia.org/wiki/Jordan_normal_form
"""
N, M = A.shape
if N != M:
raise ValueError('Needed square matrix but got shape (%s, %s)' % (N, M))
elif A.has(t):
raise ValueError('Matrix A should not depend on t')
def jordan_chains(A):
'''Chains from Jordan normal form analogous to M.eigenvects().
Returns a dict with eignevalues as keys like:
{e1: [[v111,v112,...], [v121, v122,...]], e2:...}
where vijk is the kth vector in the jth chain for eigenvalue i.
'''
P, blocks = A.jordan_cells()
basis = [P[:,i] for i in range(P.shape[1])]
n = 0
chains = {}
for b in blocks:
eigval = b[0, 0]
size = b.shape[0]
if eigval not in chains:
chains[eigval] = []
chains[eigval].append(basis[n:n+size])
n += size
return chains
eigenchains = jordan_chains(A)
# Needed for consistency across Python versions
eigenchains_iter = sorted(eigenchains.items(), key=default_sort_key)
isreal = not A.has(I)
blocks = []
vectors = []
seen_conjugate = set()
for e, chains in eigenchains_iter:
for chain in chains:
n = len(chain)
if isreal and e != e.conjugate() and e.conjugate() in eigenchains:
if e in seen_conjugate:
continue
seen_conjugate.add(e.conjugate())
exprt = exp(re(e) * t)
imrt = im(e) * t
imblock = Matrix([[cos(imrt), sin(imrt)],
[-sin(imrt), cos(imrt)]])
expJblock2 = Matrix(n, n, lambda i,j:
imblock * t**(j-i) / factorial(j-i) if j >= i
else zeros(2, 2))
expJblock = Matrix(2*n, 2*n, lambda i,j: expJblock2[i//2,j//2][i%2,j%2])
blocks.append(exprt * expJblock)
for i in range(n):
vectors.append(re(chain[i]))
vectors.append(im(chain[i]))
else:
vectors.extend(chain)
fun = lambda i,j: t**(j-i)/factorial(j-i) if j >= i else 0
expJblock = Matrix(n, n, fun)
blocks.append(exp(e * t) * expJblock)
expJ = Matrix.diag(*blocks)
P = Matrix(N, N, lambda i,j: vectors[j][i])
return P, expJ
# Note: To add a docstring example with tau
def linodesolve(A, t, b=None, B=None, type="auto", doit=False,
tau=None):
r"""
System of n equations linear first-order differential equations
Explanation
===========
This solver solves the system of ODEs of the follwing form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of n independent variables,
$b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$
Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution
differently.
When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous,
the system is "type1". The solution is:
.. math::
X(t) = \exp(A t) C
Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.
When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous,
the system is "type2". The solution is:
.. math::
X(t) = e^{A t} ( \int e^{- A t} b \,dt + C)
When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and
$b(t)$ is a zero vector i.e. system is homogeneous, the system is "type3". The solution is:
.. math::
X(t) = \exp(B(t)) C
When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is
non-homogeneous, the system is "type4". The solution is:
.. math::
X(t) = e^{B(t)} ( \int e^{-B(t)} b(t) \,dt + C)
When $A(t)$ is a coefficient matrix such that it can be factorized into a scalar and a constant
coefficient matrix:
.. math::
A(t) = f(t) * A
Where $f(t)$ is a scalar expression in the independent variable $t$ and $A$ is a constant matrix,
then we can do the following substitutions:
.. math::
tau = \int f(t) dt, X(t) = Y(tau), b(t) = b(f^{-1}(tau))
Here, the substitution for the non-homogeneous term is done only when its non-zero.
Using these substitutions, our original system becomes:
.. math::
Y'(tau) = A * Y(tau) + b(tau)/f(tau)
The above system can be easily solved using the solution for "type1" or "type2" depending
on the homogeneity of the system. After we get the solution for $Y(tau)$, we substitute the
solution for $tau$ as $t$ to get back $X(t)$
.. math::
X(t) = Y(tau)
Systems of "type5" and "type6" have a commutative antiderivative but we use this solution
because its faster to compute.
The final solution is the general solution for all the four equations since a constant coefficient
matrix is always commutative with its antidervative.
An additional feature of this function is, if someone wants to substitute for value of the independent
variable, they can pass the substitution `tau` and the solution will have the independent variable
substituted with the passed expression(`tau`).
Parameters
==========
A : Matrix
Coefficient matrix of the system of linear first order ODEs.
t : Symbol
Independent variable in the system of ODEs.
b : Matrix or None
Non-homogeneous term in the system of ODEs. If None is passed,
a homogeneous system of ODEs is assumed.
B : Matrix or None
Antiderivative of the coefficient matrix. If the antiderivative
is not passed and the solution requires the term, then the solver
would compute it internally.
type : String
Type of the system of ODEs passed. Depending on the type, the
solution is evaluated. The type values allowed and the corresponding
system it solves are: "type1" for constant coefficient homogeneous
"type2" for constant coefficient non-homogeneous, "type3" for non-constant
coefficient homogeneous, "type4" for non-constant coefficient non-homogeneous,
"type5" and "type6" for non-constant coefficient homogeneous and non-homogeneous
systems respectively where the coefficient matrix can be factorized to a constant
coefficient matrix.
The default value is "auto" which will let the solver decide the correct type of
the system passed.
doit : Boolean
Evaluate the solution if True, default value is False
tau: Expression
Used to substitute for the value of `t` after we get the solution of the system.
Examples
========
To solve the system of ODEs using this function directly, several things must be
done in the right order. Wrong inputs to the function will lead to incorrect results.
>>> from sympy import symbols, Function, Eq
>>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
>>> from sympy.solvers.ode.subscheck import checkodesol
>>> f, g = symbols("f, g", cls=Function)
>>> x, a = symbols("x, a")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), a*f(x))]
Here, it is important to note that before we derive the coefficient matrix, it is
important to get the system of ODEs into the desired form. For that we will use
:obj:`sympy.solvers.ode.systems.canonical_odes()`.
>>> eqs = canonical_odes(eqs, funcs, x)
>>> eqs
[[Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), a*f(x) - g(x))]]
Now, we will use :obj:`sympy.solvers.ode.systems.linear_ode_to_matrix()` to get the coefficient matrix and the
non-homogeneous term if it is there.
>>> eqs = eqs[0]
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
We have the coefficient matrices and the non-homogeneous term ready. Now, we can use
:obj:`sympy.solvers.ode.systems.linodesolve_type()` to get the information for the system of ODEs
to finally pass it to the solver.
>>> system_info = linodesolve_type(A, x, b=b)
>>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type_of_equation'])
Now, we can prove if the solution is correct or not by using :obj:`sympy.solvers.ode.checkodesol()`
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
We can also use the doit method to evaluate the solutions passed by the function.
>>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)
Now, we will look at a system of ODEs which is non-constant.
>>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]
The system defined above is already in the desired form, so we don't have to convert it.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
A user can also pass the commutative antiderivative required for type3 and type4 system of ODEs.
Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative
with its antiderivative, then :obj:`sympy.solvers.ode.systems.linodesolve_type()` raises a NotImplementedError.
If it does have a commutative antiderivative, then the function just returns the information about the system.
>>> system_info = linodesolve_type(A, x, b=b)
Now, we can pass the antiderivative as an argument to get the solution. If the system information is not
passed, then the solver will compute the required arguments internally.
>>> sol_vector = linodesolve(A, x, b=b)
Once again, we can verify the solution obtained.
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
Returns
=======
List
Raises
======
ValueError
This error is raised when the coefficient matrix, non-homogeneous term
or the antiderivative, if passed, aren't a matrix or
don't have correct dimensions
NonSquareMatrixError
When the coefficient matrix or its antiderivative, if passed isn't a square
matrix
NotImplementedError
If the coefficient matrix doesn't have a commutative antiderivative
See Also
========
linear_ode_to_matrix: Coefficient matrix computation function
canonical_odes: System of ODEs representation change
linodesolve_type: Getting information about systems of ODEs to pass in this solver
"""
if not isinstance(A, MatrixBase):
raise ValueError(filldedent('''\
The coefficients of the system of ODEs should be of type Matrix
'''))
if not A.is_square:
raise NonSquareMatrixError(filldedent('''\
The coefficient matrix must be a square
'''))
if b is not None:
if not isinstance(b, MatrixBase):
raise ValueError(filldedent('''\
The non-homogeneous terms of the system of ODEs should be of type Matrix
'''))
if A.rows != b.rows:
raise ValueError(filldedent('''\
The system of ODEs should have the same number of non-homogeneous terms and the number of
equations
'''))
if B is not None:
if not isinstance(B, MatrixBase):
raise ValueError(filldedent('''\
The antiderivative of coefficients of the system of ODEs should be of type Matrix
'''))
if not B.is_square:
raise NonSquareMatrixError(filldedent('''\
The antiderivative of the coefficient matrix must be a square
'''))
if A.rows != B.rows:
raise ValueError(filldedent('''\
The coefficient matrix and its antiderivative should have same dimensions
'''))
if not any(type == "type{}".format(i) for i in range(1, 7)) and not type == "auto":
raise ValueError(filldedent('''\
The input type should be a valid one
'''))
n = A.rows
# constants = numbered_symbols(prefix='C', cls=Dummy, start=const_idx+1)
Cvect = Matrix(list(Dummy() for _ in range(n)))
if any(type == typ for typ in ["type2", "type4", "type6"]) and b is None:
b = zeros(n, 1)
is_transformed = tau is not None
passed_type = type
if type == "auto":
system_info = linodesolve_type(A, t, b=b)
type = system_info["type_of_equation"]
B = system_info["antiderivative"]
if type == "type5" or type == "type6":
is_transformed = True
if passed_type != "auto":
if tau is None:
system_info = _first_order_type5_6_subs(A, t, b=b)
if not system_info:
raise ValueError(filldedent('''
The system passed isn't {}.
'''.format(type)))
tau = system_info['tau']
t = system_info['t_']
A = system_info['A']
b = system_info['b']
if type in ["type1", "type2", "type5", "type6"]:
P, J = matrix_exp_jordan_form(A, t)
P = simplify(P)
if type == "type1" or type == "type5":
sol_vector = P * (J * Cvect)
else:
sol_vector = P * J * ((J.inv() * P.inv() * b).applyfunc(lambda x: Integral(x, t)) + Cvect)
else:
if B is None:
B, _ = _is_commutative_anti_derivative(A, t)
if type == "type3":
sol_vector = B.exp() * Cvect
else:
sol_vector = B.exp() * (((-B).exp() * b).applyfunc(lambda x: Integral(x, t)) + Cvect)
if is_transformed:
sol_vector = sol_vector.subs(t, tau)
gens = sol_vector.atoms(exp)
if type != "type1":
sol_vector = [expand_mul(s) for s in sol_vector]
sol_vector = [collect(s, ordered(gens), exact=True) for s in sol_vector]
if doit:
sol_vector = [s.doit() for s in sol_vector]
return sol_vector
def _matrix_is_constant(M, t):
"""Checks if the matrix M is independent of t or not."""
return all(coef.as_independent(t, as_Add=True)[1] == 0 for coef in M)
def canonical_odes(eqs, funcs, t):
r"""
Function that solves for highest order derivatives in a system
Explanation
===========
This function inputs a system of ODEs and based on the system,
the dependent variables and their highest order, returns the system
in the following form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $X(t)$ is the vector of dependent variables of lower order, $A(t)$ is
the coefficient matrix, $b(t)$ is the non-homogeneous term and $X'(t)$ is the
vector of dependent variables in their respective highest order. We use the term
canonical form to imply the system of ODEs which is of the above form.
If the system passed has a non-linear term with multiple solutions, then a list of
systems is returned in its canonical form.
Parameters
==========
eqs : List
List of the ODEs
funcs : List
List of dependent variables
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Function, Eq, Derivative
>>> from sympy.solvers.ode.systems import canonical_odes
>>> f, g = symbols("f g", cls=Function)
>>> x, y = symbols("x y")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - 7*f(x), 12*g(x)), Eq(g(x).diff(x) + g(x), 20*f(x))]
>>> canonical_eqs = canonical_odes(eqs, funcs, x)
>>> canonical_eqs
[[Eq(Derivative(f(x), x), 7*f(x) + 12*g(x)), Eq(Derivative(g(x), x), 20*f(x) - g(x))]]
>>> system = [Eq(Derivative(f(x), x)**2 - 2*Derivative(f(x), x) + 1, 4), Eq(-y*f(x) + Derivative(g(x), x), 0)]
>>> canonical_system = canonical_odes(system, funcs, x)
>>> canonical_system
[[Eq(Derivative(f(x), x), -1), Eq(Derivative(g(x), x), y*f(x))], [Eq(Derivative(f(x), x), 3), Eq(Derivative(g(x), x), y*f(x))]]
Returns
=======
List
"""
from sympy.solvers.solvers import solve
order = _get_func_order(eqs, funcs)
canon_eqs = solve(eqs, *[func.diff(t, order[func]) for func in funcs], dict=True)
systems = []
for eq in canon_eqs:
system = [Eq(func.diff(t, order[func]), eq[func.diff(t, order[func])]) for func in funcs]
systems.append(system)
return systems
def _is_commutative_anti_derivative(A, t):
r"""
Helper function for determining if the Matrix passed is commutative with its antiderivative
Explanation
===========
This function checks if the Matrix $A$ passed is commutative with its antiderivative with respect
to the independent variable $t$.
.. math::
B(t) = \int A(t) dt
The function outputs two values, first one being the antiderivative $B(t)$, second one being a
boolean value, if True, then the matrix $A(t)$ passed is commutative with $B(t)$, else the matrix
passed isn't commutative with $B(t)$.
Parameters
==========
A : Matrix
The matrix which has to be checked
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import _is_commutative_anti_derivative
>>> t = symbols("t")
>>> A = Matrix([[1, t], [-t, 1]])
>>> B, is_commuting = _is_commutative_anti_derivative(A, t)
>>> is_commuting
True
Returns
=======
Matrix, Boolean
"""
B = integrate(A, t)
is_commuting = (B*A - A*B).applyfunc(expand).applyfunc(factor_terms).is_zero_matrix
is_commuting = False if is_commuting is None else is_commuting
return B, is_commuting
def _factor_matrix(A, t):
term = None
for element in A:
temp_term = element.as_independent(t)[1]
if temp_term.has(t):
term = temp_term
break
if term is not None:
A_factored = (A/term).applyfunc(ratsimp)
can_factor = _matrix_is_constant(A_factored, t)
term = (term, A_factored) if can_factor else None
return term
def _is_second_order_type2(A, t):
term = _factor_matrix(A, t)
is_type2 = False
if term is not None:
term = 1/term[0]
is_type2 = term.is_polynomial()
if is_type2:
poly = Poly(term.expand(), t)
monoms = poly.monoms()
if monoms[0][0] == 4 or monoms[0][0] == 2:
cs = _get_poly_coeffs(poly, 4)
a, b, c, d, e = cs
a1 = powdenest(sqrt(a), force=True)
c1 = powdenest(sqrt(e), force=True)
b1 = powdenest(sqrt(c - 2*a1*c1), force=True)
is_type2 = (b == 2*a1*b1) and (d == 2*b1*c1)
term = a1*t**2 + b1*t + c1
else:
is_type2 = False
return is_type2, term
def _get_poly_coeffs(poly, order):
cs = [0 for _ in range(order+1)]
for c, m in zip(poly.coeffs(), poly.monoms()):
cs[-1-m[0]] = c
return cs
def _match_second_order_type(A1, A0, t, b=None):
r"""
Works only for second order system in its canonical form.
Type 0: Constant coefficient matrix, can be simply solved by
introducing dummy variables.
Type 1: When the substitution: $U = t*X' - X$ works for reducing
the second order system to first order system.
Type 2: When the system is of the form: $poly * X'' = A*X$ where
$poly$ is square of a quadratic polynomial with respect to
*t* and $A$ is a constant coefficient matrix.
"""
match = {"type_of_equation": "type0"}
n = A1.shape[0]
if _matrix_is_constant(A1, t) and _matrix_is_constant(A0, t):
return match
if (A1 + A0*t).applyfunc(expand_mul).is_zero_matrix:
match.update({"type_of_equation": "type1", "A1": A1})
elif A1.is_zero_matrix and (b is None or b.is_zero_matrix):
is_type2, term = _is_second_order_type2(A0, t)
if is_type2:
a, b, c = _get_poly_coeffs(Poly(term, t), 2)
A = (A0*(term**2).expand()).applyfunc(ratsimp) + (b**2/4 - a*c)*eye(n, n)
tau = integrate(1/term, t)
t_ = Symbol("{}_".format(t))
match.update({"type_of_equation": "type2", "A0": A,
"g(t)": sqrt(term), "tau": tau, "is_transformed": True,
"t_": t_})
return match
def _second_order_subs_type1(A, b, funcs, t):
r"""
For a linear, second order system of ODEs, a particular substitution.
A system of the below form can be reduced to a linear first order system of
ODEs:
.. math::
X'' = A(t) * (t*X' - X) + b(t)
By substituting:
.. math:: U = t*X' - X
To get the system:
.. math:: U' = t*(A(t)*U + b(t))
Where $U$ is the vector of dependent variables, $X$ is the vector of dependent
variables in `funcs` and $X'$ is the first order derivative of $X$ with respect to
$t$. It may or may not reduce the system into linear first order system of ODEs.
Then a check is made to determine if the system passed can be reduced or not, if
this substitution works, then the system is reduced and its solved for the new
substitution. After we get the solution for $U$:
.. math:: U = a(t)
We substitute and return the reduced system:
.. math::
a(t) = t*X' - X
Parameters
==========
A: Matrix
Coefficient matrix($A(t)*t$) of the second order system of this form.
b: Matrix
Non-homogeneous term($b(t)$) of the system of ODEs.
funcs: List
List of dependent variables
t: Symbol
Independent variable of the system of ODEs.
Returns
=======
List
"""
U = Matrix([t*func.diff(t) - func for func in funcs])
sol = linodesolve(A, t, t*b)
reduced_eqs = [Eq(u, s) for s, u in zip(sol, U)]
reduced_eqs = canonical_odes(reduced_eqs, funcs, t)[0]
return reduced_eqs
def _second_order_subs_type2(A, funcs, t_):
r"""
Returns a second order system based on the coefficient matrix passed.
Explanation
===========
This function returns a system of second order ODE of the following form:
.. math::
X'' = A * X
Here, $X$ is the vector of dependent variables, but a bit modified, $A$ is the
coefficient matrix passed.
Along with returning the second order system, this function also returns the new
dependent variables with the new independent variable `t_` passed.
Parameters
==========
A: Matrix
Coefficient matrix of the system
funcs: List
List of old dependent variables
t_: Symbol
New independent variable
Returns
=======
List, List
"""
func_names = [func.func.__name__ for func in funcs]
new_funcs = [Function(Dummy("{}_".format(name)))(t_) for name in func_names]
rhss = A * Matrix(new_funcs)
new_eqs = [Eq(func.diff(t_, 2), rhs) for func, rhs in zip(new_funcs, rhss)]
return new_eqs, new_funcs
def _is_euler_system(As, t):
return all(_matrix_is_constant((A*t**i).applyfunc(ratsimp), t) for i, A in enumerate(As))
def _classify_linear_system(eqs, funcs, t, is_canon=False):
r"""
Returns a dictionary with details of the eqs if the system passed is linear
and can be classified by this function else returns None
Explanation
===========
This function takes the eqs, converts it into a form Ax = b where x is a vector of terms
containing dependent variables and their derivatives till their maximum order. If it is
possible to convert eqs into Ax = b, then all the equations in eqs are linear otherwise
they are non-linear.
To check if the equations are constant coefficient, we need to check if all the terms in
A obtained above are constant or not.
To check if the equations are homogeneous or not, we need to check if b is a zero matrix
or not.
Parameters
==========
eqs: List
List of ODEs
funcs: List
List of dependent variables
t: Symbol
Independent variable of the equations in eqs
is_canon: Boolean
If True, then this function won't try to get the
system in canonical form. Default value is False
Returns
=======
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_constant': is_constant,
'is_homogeneous': is_homogeneous,
}
Dict or list of Dicts or None
Dict with values for keys:
1. no_of_equation: Number of equations
2. eq: The set of equations
3. func: List of dependent variables
4. order: A dictionary that gives the order of the
dependent variable in eqs
5. is_linear: Boolean value indicating if the set of
equations are linear or not.
6. is_constant: Boolean value indicating if the set of
equations have constant coefficients or not.
7. is_homogeneous: Boolean value indicating if the set of
equations are homogeneous or not.
8. commutative_antiderivative: Antiderivative of the coefficient
matrix if the coefficient matrix is non-constant
and commutative with its antiderivative. This key
may or may not exist.
9. is_general: Boolean value indicating if the system of ODEs is
solvable using one of the general case solvers or not.
10. rhs: rhs of the non-homogeneous system of ODEs in Matrix form. This
key may or may not exist.
11. is_higher_order: True if the system passed has an order greater than 1.
This key may or may not exist.
12. is_second_order: True if the system passed is a second order ODE. This
key may or may not exist.
This Dict is the answer returned if the eqs are linear and constant
coefficient. Otherwise, None is returned.
"""
# Error for i == 0 can be added but isn't for now
# Check for len(funcs) == len(eqs)
if len(funcs) != len(eqs):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
# ValueError when functions have more than one arguments
for func in funcs:
if len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# Getting the func_dict and order using the helper
# function
order = _get_func_order(eqs, funcs)
system_order = max(order[func] for func in funcs)
is_higher_order = system_order > 1
is_second_order = system_order == 2 and all(order[func] == 2 for func in funcs)
# Not adding the check if the len(func.args) for
# every func in funcs is 1
# Linearity check
try:
canon_eqs = canonical_odes(eqs, funcs, t) if not is_canon else [eqs]
if len(canon_eqs) == 1:
As, b = linear_ode_to_matrix(canon_eqs[0], funcs, t, system_order)
else:
match = {
'is_implicit': True,
'canon_eqs': canon_eqs
}
return match
# When the system of ODEs is non-linear, an ODENonlinearError is raised.
# This function catches the error and None is returned.
except ODENonlinearError:
return None
is_linear = True
# Homogeneous check
is_homogeneous = True if b.is_zero_matrix else False
# Is general key is used to identify if the system of ODEs can be solved by
# one of the general case solvers or not.
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_homogeneous': is_homogeneous,
'is_general': True
}
if not is_homogeneous:
match['rhs'] = b
is_constant = all(_matrix_is_constant(A_, t) for A_ in As)
# The match['is_linear'] check will be added in the future when this
# function becomes ready to deal with non-linear systems of ODEs
if not is_higher_order:
A = As[1]
match['func_coeff'] = A
# Constant coefficient check
is_constant = _matrix_is_constant(A, t)
match['is_constant'] = is_constant
try:
system_info = linodesolve_type(A, t, b=b)
except NotImplementedError:
return None
match.update(system_info)
antiderivative = match.pop("antiderivative")
if not is_constant:
match['commutative_antiderivative'] = antiderivative
return match
if is_higher_order:
match['type_of_equation'] = "type0"
if is_second_order:
A1, A0 = As[1:]
match_second_order = _match_second_order_type(A1, A0, t)
match.update(match_second_order)
match['is_second_order'] = True
# If system is constant, then no need to check if its in euler
# form or not. It will be easier and faster to directly proceed
# to solve it.
if match['type_of_equation'] == "type0" and not is_constant:
is_euler = _is_euler_system(As, t)
if is_euler:
t_ = Symbol('{}_'.format(t))
match.update({'is_transformed': True, 'type_of_equation': 'type1',
't_': t_})
else:
is_jordan = lambda M: M == Matrix.jordan_block(M.shape[0], M[0, 0])
terms = _factor_matrix(As[-1], t)
if all(A.is_zero_matrix for A in As[1:-1]) and terms is not None and not is_jordan(terms[1]):
P, J = terms[1].jordan_form()
match.update({'type_of_equation': 'type2', 'J': J,
'f(t)': terms[0], 'P': P, 'is_transformed': True})
if match['type_of_equation'] != 'type0' and is_second_order:
match.pop('is_second_order', None)
match['is_higher_order'] = is_higher_order
return match
return None
def _preprocess_eqs(eqs):
processed_eqs = []
for eq in eqs:
processed_eqs.append(eq if isinstance(eq, Equality) else Eq(eq, 0))
return processed_eqs
def _eqs2dict(eqs, funcs):
eqsorig = {}
eqsmap = {}
funcset = set(funcs)
for eq in eqs:
f1, = eq.lhs.atoms(AppliedUndef)
f2s = (eq.rhs.atoms(AppliedUndef) - {f1}) & funcset
eqsmap[f1] = f2s
eqsorig[f1] = eq
return eqsmap, eqsorig
def _dict2graph(d):
nodes = list(d)
edges = [(f1, f2) for f1, f2s in d.items() for f2 in f2s]
G = (nodes, edges)
return G
def _is_type1(scc, t):
eqs, funcs = scc
try:
(A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 1)
except (ODENonlinearError, ODEOrderError):
return False
if _matrix_is_constant(A0, t) and b.is_zero_matrix:
return True
return False
def _combine_type1_subsystems(subsystem, funcs, t):
indices = [i for i, sys in enumerate(zip(subsystem, funcs)) if _is_type1(sys, t)]
remove = set()
for ip, i in enumerate(indices):
for j in indices[ip+1:]:
if any(eq2.has(funcs[i]) for eq2 in subsystem[j]):
subsystem[j] = subsystem[i] + subsystem[j]
remove.add(i)
subsystem = [sys for i, sys in enumerate(subsystem) if i not in remove]
return subsystem
def _component_division(eqs, funcs, t):
from sympy.utilities.iterables import connected_components, strongly_connected_components
# Assuming that each eq in eqs is in canonical form,
# that is, [f(x).diff(x) = .., g(x).diff(x) = .., etc]
# and that the system passed is in its first order
eqsmap, eqsorig = _eqs2dict(eqs, funcs)
subsystems = []
for cc in connected_components(_dict2graph(eqsmap)):
eqsmap_c = {f: eqsmap[f] for f in cc}
sccs = strongly_connected_components(_dict2graph(eqsmap_c))
subsystem = [[eqsorig[f] for f in scc] for scc in sccs]
subsystem = _combine_type1_subsystems(subsystem, sccs, t)
subsystems.append(subsystem)
return subsystems
# Returns: List of equations
def _linear_ode_solver(match):
t = match['t']
funcs = match['func']
rhs = match.get('rhs', None)
tau = match.get('tau', None)
t = match['t_'] if 't_' in match else t
A = match['func_coeff']
# Note: To make B None when the matrix has constant
# coefficient
B = match.get('commutative_antiderivative', None)
type = match['type_of_equation']
sol_vector = linodesolve(A, t, b=rhs, B=B,
type=type, tau=tau)
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
def _select_equations(eqs, funcs, key=lambda x: x):
eq_dict = {e.lhs: e.rhs for e in eqs}
return [Eq(f, eq_dict[key(f)]) for f in funcs]
def _higher_order_ode_solver(match):
eqs = match["eq"]
funcs = match["func"]
t = match["t"]
sysorder = match['order']
type = match.get('type_of_equation', "type0")
is_second_order = match.get('is_second_order', False)
is_transformed = match.get('is_transformed', False)
is_euler = is_transformed and type == "type1"
is_higher_order_type2 = is_transformed and type == "type2" and 'P' in match
if is_second_order:
new_eqs, new_funcs = _second_order_to_first_order(eqs, funcs, t,
A1=match.get("A1", None), A0=match.get("A0", None),
b=match.get("rhs", None), type=type,
t_=match.get("t_", None))
else:
new_eqs, new_funcs = _higher_order_to_first_order(eqs, sysorder, t, funcs=funcs,
type=type, J=match.get('J', None),
f_t=match.get('f(t)', None),
P=match.get('P', None), b=match.get('rhs', None))
if is_transformed:
t = match.get('t_', t)
if not is_higher_order_type2:
new_eqs = _select_equations(new_eqs, [f.diff(t) for f in new_funcs])
sol = None
# NotImplementedError may be raised when the system may be actually
# solvable if it can be just divided into sub-systems
try:
if not is_higher_order_type2:
sol = _strong_component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
# Dividing the system only when it becomes essential
if sol is None:
try:
sol = _component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
if sol is None:
return sol
is_second_order_type2 = is_second_order and type == "type2"
underscores = '__' if is_transformed else '_'
sol = _select_equations(sol, funcs,
key=lambda x: Function(Dummy('{}{}0'.format(x.func.__name__, underscores)))(t))
if match.get("is_transformed", False):
if is_second_order_type2:
g_t = match["g(t)"]
tau = match["tau"]
sol = [Eq(s.lhs, s.rhs.subs(t, tau) * g_t) for s in sol]
elif is_euler:
t = match['t']
tau = match['t_']
sol = [s.subs(tau, log(t)) for s in sol]
elif is_higher_order_type2:
P = match['P']
sol_vector = P * Matrix([s.rhs for s in sol])
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
# Returns: List of equations or None
# If None is returned by this solver, then the system
# of ODEs cannot be solved directly by dsolve_system.
def _strong_component_solver(eqs, funcs, t):
from sympy.solvers.ode.ode import dsolve, constant_renumber
match = _classify_linear_system(eqs, funcs, t, is_canon=True)
sol = None
# Assuming that we can't get an implicit system
# since we are already canonical equations from
# dsolve_system
if match:
match['t'] = t
if match.get('is_higher_order', False):
sol = _higher_order_ode_solver(match)
elif match.get('is_linear', False):
sol = _linear_ode_solver(match)
# Note: For now, only linear systems are handled by this function
# hence, the match condition is added. This can be removed later.
if sol is None and len(eqs) == 1:
sol = dsolve(eqs[0], func=funcs[0])
variables = Tuple(eqs[0]).free_symbols
new_constants = [Dummy() for _ in range(ode_order(eqs[0], funcs[0]))]
sol = constant_renumber(sol, variables=variables, newconstants=new_constants)
sol = [sol]
# To add non-linear case here in future
return sol
def _get_funcs_from_canon(eqs):
return [eq.lhs.args[0] for eq in eqs]
# Returns: List of Equations(a solution)
def _weak_component_solver(wcc, t):
# We will divide the systems into sccs
# only when the wcc cannot be solved as
# a whole
eqs = []
for scc in wcc:
eqs += scc
funcs = _get_funcs_from_canon(eqs)
sol = _strong_component_solver(eqs, funcs, t)
if sol:
return sol
sol = []
for j, scc in enumerate(wcc):
eqs = scc
funcs = _get_funcs_from_canon(eqs)
# Substituting solutions for the dependent
# variables solved in previous SCC, if any solved.
comp_eqs = [eq.subs({s.lhs: s.rhs for s in sol}) for eq in eqs]
scc_sol = _strong_component_solver(comp_eqs, funcs, t)
if scc_sol is None:
raise NotImplementedError(filldedent('''
The system of ODEs passed cannot be solved by dsolve_system.
'''))
# scc_sol: List of equations
# scc_sol is a solution
sol += scc_sol
return sol
# Returns: List of Equations(a solution)
def _component_solver(eqs, funcs, t):
components = _component_division(eqs, funcs, t)
sol = []
for wcc in components:
# wcc_sol: List of Equations
sol += _weak_component_solver(wcc, t)
# sol: List of Equations
return sol
def _second_order_to_first_order(eqs, funcs, t, type="auto", A1=None,
A0=None, b=None, t_=None):
r"""
Expects the system to be in second order and in canonical form
Explanation
===========
Reduces a second order system into a first order one depending on the type of second
order system.
1. "type0": If this is passed, then the system will be reduced to first order by
introducing dummy variables.
2. "type1": If this is passed, then a particular substitution will be used to reduce the
the system into first order.
3. "type2": If this is passed, then the system will be transformed with new dependent
variables and independent variables. This transformation is a part of solving
the corresponding system of ODEs.
`A1` and `A0` are the coefficient matrices from the system and it is assumed that the
second order system has the form given below:
.. math::
A2 * X'' = A1 * X' + A0 * X + b
Here, $A2$ is the coefficient matrix for the vector $X''$ and $b$ is the non-homogeneous
term.
Default value for `b` is None but if `A1` and `A0` are passed and `b` isn't passed, then the
system will be assumed homogeneous.
"""
is_a1 = A1 is None
is_a0 = A0 is None
if (type == "type1" and is_a1) or (type == "type2" and is_a0)\
or (type == "auto" and (is_a1 or is_a0)):
(A2, A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 2)
if not A2.is_Identity:
raise ValueError(filldedent('''
The system must be in its canonical form.
'''))
if type == "auto":
match = _match_second_order_type(A1, A0, t)
type = match["type_of_equation"]
A1 = match.get("A1", None)
A0 = match.get("A0", None)
sys_order = {func: 2 for func in funcs}
if type == "type1":
if b is None:
b = zeros(len(eqs))
eqs = _second_order_subs_type1(A1, b, funcs, t)
sys_order = {func: 1 for func in funcs}
if type == "type2":
if t_ is None:
t_ = Symbol("{}_".format(t))
t = t_
eqs, funcs = _second_order_subs_type2(A0, funcs, t_)
sys_order = {func: 2 for func in funcs}
return _higher_order_to_first_order(eqs, sys_order, t, funcs=funcs)
def _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, b=None, P=None):
# Note: To add a test for this ValueError
if J is None or f_t is None or not _matrix_is_constant(J, t):
raise ValueError(filldedent('''
Correctly input for args 'A' and 'f_t' for Linear, Higher Order,
Type 2
'''))
if P is None and b is not None and not b.is_zero_matrix:
raise ValueError(filldedent('''
Provide the keyword 'P' for matrix P in A = P * J * P-1.
'''))
new_funcs = Matrix([Function(Dummy('{}__0'.format(f.func.__name__)))(t) for f in funcs])
new_eqs = new_funcs.diff(t, max_order) - f_t * J * new_funcs
if b is not None and not b.is_zero_matrix:
new_eqs -= P.inv() * b
new_eqs = canonical_odes(new_eqs, new_funcs, t)[0]
return new_eqs, new_funcs
def _higher_order_to_first_order(eqs, sys_order, t, funcs=None, type="type0", **kwargs):
if funcs is None:
funcs = sys_order.keys()
# Standard Cauchy Euler system
if type == "type1":
t_ = Symbol('{}_'.format(t))
new_funcs = [Function(Dummy('{}_'.format(f.func.__name__)))(t_) for f in funcs]
max_order = max(sys_order[func] for func in funcs)
subs_dict = {func: new_func for func, new_func in zip(funcs, new_funcs)}
subs_dict[t] = exp(t_)
free_function = Function(Dummy())
def _get_coeffs_from_subs_expression(expr):
if isinstance(expr, Subs):
free_symbol = expr.args[1][0]
term = expr.args[0]
return {ode_order(term, free_symbol): 1}
if isinstance(expr, Mul):
coeff = expr.args[0]
order = list(_get_coeffs_from_subs_expression(expr.args[1]).keys())[0]
return {order: coeff}
if isinstance(expr, Add):
coeffs = {}
for arg in expr.args:
if isinstance(arg, Mul):
coeffs.update(_get_coeffs_from_subs_expression(arg))
else:
order = list(_get_coeffs_from_subs_expression(arg).keys())[0]
coeffs[order] = 1
return coeffs
for o in range(1, max_order + 1):
expr = free_function(log(t_)).diff(t_, o)*t_**o
coeff_dict = _get_coeffs_from_subs_expression(expr)
coeffs = [coeff_dict[order] if order in coeff_dict else 0 for order in range(o + 1)]
expr_to_subs = sum(free_function(t_).diff(t_, i) * c for i, c in
enumerate(coeffs)) / t**o
subs_dict.update({f.diff(t, o): expr_to_subs.subs(free_function(t_), nf)
for f, nf in zip(funcs, new_funcs)})
new_eqs = [eq.subs(subs_dict) for eq in eqs]
new_sys_order = {nf: sys_order[f] for f, nf in zip(funcs, new_funcs)}
new_eqs = canonical_odes(new_eqs, new_funcs, t_)[0]
return _higher_order_to_first_order(new_eqs, new_sys_order, t_, funcs=new_funcs)
# Systems of the form: X(n)(t) = f(t)*A*X + b
# where X(n)(t) is the nth derivative of the vector of dependent variables
# with respect to the independent variable and A is a constant matrix.
if type == "type2":
J = kwargs.get('J', None)
f_t = kwargs.get('f_t', None)
b = kwargs.get('b', None)
P = kwargs.get('P', None)
max_order = max(sys_order[func] for func in funcs)
return _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, P=P, b=b)
# Note: To be changed to this after doit option is disabled for default cases
# new_sysorder = _get_func_order(new_eqs, new_funcs)
#
# return _higher_order_to_first_order(new_eqs, new_sysorder, t, funcs=new_funcs)
new_funcs = []
for prev_func in funcs:
func_name = prev_func.func.__name__
func = Function(Dummy('{}_0'.format(func_name)))(t)
new_funcs.append(func)
subs_dict = {prev_func: func}
new_eqs = []
for i in range(1, sys_order[prev_func]):
new_func = Function(Dummy('{}_{}'.format(func_name, i)))(t)
subs_dict[prev_func.diff(t, i)] = new_func
new_funcs.append(new_func)
prev_f = subs_dict[prev_func.diff(t, i-1)]
new_eq = Eq(prev_f.diff(t), new_func)
new_eqs.append(new_eq)
eqs = [eq.subs(subs_dict) for eq in eqs] + new_eqs
return eqs, new_funcs
def dsolve_system(eqs, funcs=None, t=None, ics=None, doit=False, simplify=True):
r"""
Solves any(supported) system of Ordinary Differential Equations
Explanation
===========
This function takes a system of ODEs as an input, determines if the
it is solvable by this function, and returns the solution if found any.
This function can handle:
1. Linear, First Order, Constant coefficient homogeneous system of ODEs
2. Linear, First Order, Constant coefficient non-homogeneous system of ODEs
3. Linear, First Order, non-constant coefficient homogeneous system of ODEs
4. Linear, First Order, non-constant coefficient non-homogeneous system of ODEs
5. Any implicit system which can be divided into system of ODEs which is of the above 4 forms
6. Any higher order linear system of ODEs that can be reduced to one of the 5 forms of systems described above.
The types of systems described above aren't limited by the number of equations, i.e. this
function can solve the above types irrespective of the number of equations in the system passed.
But, the bigger the system, the more time it will take to solve the system.
This function returns a list of solutions. Each solution is a list of equations where LHS is
the dependent variable and RHS is an expression in terms of the independent variable.
Among the non constant coefficient types, not all the systems are solvable by this function. Only
those which have either a coefficient matrix with a commutative antiderivative or those systems which
may be divided further so that the divided systems may have coefficient matrix with commutative antiderivative.
Parameters
==========
eqs : List
system of ODEs to be solved
funcs : List or None
List of dependent variables that make up the system of ODEs
t : Symbol or None
Independent variable in the system of ODEs
ics : Dict or None
Set of initial boundary/conditions for the system of ODEs
doit : Boolean
Evaluate the solutions if True. Default value is True. Can be
set to false if the integral evaluation takes too much time and/or
isn't required.
simplify: Boolean
Simplify the solutions for the systems. Default value is True.
Can be set to false if simplification takes too much time and/or
isn't required.
Examples
========
>>> from sympy import symbols, Eq, Function
>>> from sympy.solvers.ode.systems import dsolve_system
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
You can also pass the initial conditions for the system of ODEs:
>>> dsolve_system(eqs, ics={f(0): 1, g(0): 0})
[[Eq(f(x), exp(x)/2 + exp(-x)/2), Eq(g(x), exp(x)/2 - exp(-x)/2)]]
Optionally, you can pass the dependent variables and the independent
variable for which the system is to be solved:
>>> funcs = [f(x), g(x)]
>>> dsolve_system(eqs, funcs=funcs, t=x)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
Lets look at an implicit system of ODEs:
>>> eqs = [Eq(f(x).diff(x)**2, g(x)**2), Eq(g(x).diff(x), g(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), C1 - C2*exp(x)), Eq(g(x), C2*exp(x))], [Eq(f(x), C1 + C2*exp(x)), Eq(g(x), C2*exp(x))]]
Returns
=======
List of List of Equations
Raises
======
NotImplementedError
When the system of ODEs is not solvable by this function.
ValueError
When the parameters passed aren't in the required form.
"""
from sympy.solvers.ode.ode import solve_ics, _extract_funcs, constant_renumber
if not iterable(eqs):
raise ValueError(filldedent('''
List of equations should be passed. The input is not valid.
'''))
eqs = _preprocess_eqs(eqs)
if funcs is not None and not isinstance(funcs, list):
raise ValueError(filldedent('''
Input to the funcs should be a list of functions.
'''))
if funcs is None:
funcs = _extract_funcs(eqs)
if any(len(func.args) != 1 for func in funcs):
raise ValueError(filldedent('''
dsolve_system can solve a system of ODEs with only one independent
variable.
'''))
if len(eqs) != len(funcs):
raise ValueError(filldedent('''
Number of equations and number of functions don't match
'''))
if t is not None and not isinstance(t, Symbol):
raise ValueError(filldedent('''
The indepedent variable must be of type Symbol
'''))
if t is None:
t = list(list(eqs[0].atoms(Derivative))[0].atoms(Symbol))[0]
sols = []
canon_eqs = canonical_odes(eqs, funcs, t)
for canon_eq in canon_eqs:
try:
sol = _strong_component_solver(canon_eq, funcs, t)
except NotImplementedError:
sol = None
if sol is None:
sol = _component_solver(canon_eq, funcs, t)
sols.append(sol)
if sols:
final_sols = []
variables = Tuple(*eqs).free_symbols
for sol in sols:
sol = _select_equations(sol, funcs)
sol = constant_renumber(sol, variables=variables)
if ics:
constants = Tuple(*sol).free_symbols - variables
solved_constants = solve_ics(sol, funcs, constants, ics)
sol = [s.subs(solved_constants) for s in sol]
if simplify:
constants = Tuple(*sol).free_symbols - variables
sol = simpsol(sol, [t], constants, doit=doit)
final_sols.append(sol)
sols = final_sols
return sols
|
7397f81dacb7a010a688bc61ff1de901dda228bdcae11db0bf39e98c9962faae | from sympy.core import S, Pow
from sympy.core.compatibility import iterable, is_sequence
from sympy.core.function import (Derivative, AppliedUndef, diff)
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.logic.boolalg import BooleanAtom
from sympy.functions import exp
from sympy.series import Order
from sympy.simplify.simplify import simplify, posify, besselsimp
from sympy.simplify.trigsimp import trigsimp
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.solvers import solve
from sympy.solvers.deutils import _preprocess, ode_order
def sub_func_doit(eq, func, new):
r"""
When replacing the func with something else, we usually want the
derivative evaluated, so this function helps in making that happen.
Examples
========
>>> from sympy import Derivative, symbols, Function
>>> from sympy.solvers.ode.ode import sub_func_doit
>>> x, z = symbols('x, z')
>>> y = Function('y')
>>> sub_func_doit(3*Derivative(y(x), x) - 1, y(x), x)
2
>>> sub_func_doit(x*Derivative(y(x), x) - y(x)**2 + y(x), y(x),
... 1/(x*(z + 1/x)))
x*(-1/(x**2*(z + 1/x)) + 1/(x**3*(z + 1/x)**2)) + 1/(x*(z + 1/x))
...- 1/(x**2*(z + 1/x)**2)
"""
reps= {func: new}
for d in eq.atoms(Derivative):
if d.expr == func:
reps[d] = new.diff(*d.variable_count)
else:
reps[d] = d.xreplace({func: new}).doit(deep=False)
return eq.xreplace(reps)
def checkodesol(ode, sol, func=None, order='auto', solve_for_func=True):
r"""
Substitutes ``sol`` into ``ode`` and checks that the result is ``0``.
This works when ``func`` is one function, like `f(x)` or a list of
functions like `[f(x), g(x)]` when `ode` is a system of ODEs. ``sol`` can
be a single solution or a list of solutions. Each solution may be an
:py:class:`~sympy.core.relational.Equality` that the solution satisfies,
e.g. ``Eq(f(x), C1), Eq(f(x) + C1, 0)``; or simply an
:py:class:`~sympy.core.expr.Expr`, e.g. ``f(x) - C1``. In most cases it
will not be necessary to explicitly identify the function, but if the
function cannot be inferred from the original equation it can be supplied
through the ``func`` argument.
If a sequence of solutions is passed, the same sort of container will be
used to return the result for each solution.
It tries the following methods, in order, until it finds zero equivalence:
1. Substitute the solution for `f` in the original equation. This only
works if ``ode`` is solved for `f`. It will attempt to solve it first
unless ``solve_for_func == False``.
2. Take `n` derivatives of the solution, where `n` is the order of
``ode``, and check to see if that is equal to the solution. This only
works on exact ODEs.
3. Take the 1st, 2nd, ..., `n`\th derivatives of the solution, each time
solving for the derivative of `f` of that order (this will always be
possible because `f` is a linear operator). Then back substitute each
derivative into ``ode`` in reverse order.
This function returns a tuple. The first item in the tuple is ``True`` if
the substitution results in ``0``, and ``False`` otherwise. The second
item in the tuple is what the substitution results in. It should always
be ``0`` if the first item is ``True``. Sometimes this function will
return ``False`` even when an expression is identically equal to ``0``.
This happens when :py:meth:`~sympy.simplify.simplify.simplify` does not
reduce the expression to ``0``. If an expression returned by this
function vanishes identically, then ``sol`` really is a solution to
the ``ode``.
If this function seems to hang, it is probably because of a hard
simplification.
To use this function to test, test the first item of the tuple.
Examples
========
>>> from sympy import (Eq, Function, checkodesol, symbols,
... Derivative, exp)
>>> x, C1, C2 = symbols('x,C1,C2')
>>> f, g = symbols('f g', cls=Function)
>>> checkodesol(f(x).diff(x), Eq(f(x), C1))
(True, 0)
>>> assert checkodesol(f(x).diff(x), C1)[0]
>>> assert not checkodesol(f(x).diff(x), x)[0]
>>> checkodesol(f(x).diff(x, 2), x**2)
(False, 2)
>>> eqs = [Eq(Derivative(f(x), x), f(x)), Eq(Derivative(g(x), x), g(x))]
>>> sol = [Eq(f(x), C1*exp(x)), Eq(g(x), C2*exp(x))]
>>> checkodesol(eqs, sol)
(True, [0, 0])
"""
if iterable(ode):
return checksysodesol(ode, sol, func=func)
if not isinstance(ode, Equality):
ode = Eq(ode, 0)
if func is None:
try:
_, func = _preprocess(ode.lhs)
except ValueError:
funcs = [s.atoms(AppliedUndef) for s in (
sol if is_sequence(sol, set) else [sol])]
funcs = set().union(*funcs)
if len(funcs) != 1:
raise ValueError(
'must pass func arg to checkodesol for this case.')
func = funcs.pop()
if not isinstance(func, AppliedUndef) or len(func.args) != 1:
raise ValueError(
"func must be a function of one variable, not %s" % func)
if is_sequence(sol, set):
return type(sol)([checkodesol(ode, i, order=order, solve_for_func=solve_for_func) for i in sol])
if not isinstance(sol, Equality):
sol = Eq(func, sol)
elif sol.rhs == func:
sol = sol.reversed
if order == 'auto':
order = ode_order(ode, func)
solved = sol.lhs == func and not sol.rhs.has(func)
if solve_for_func and not solved:
rhs = solve(sol, func)
if rhs:
eqs = [Eq(func, t) for t in rhs]
if len(rhs) == 1:
eqs = eqs[0]
return checkodesol(ode, eqs, order=order,
solve_for_func=False)
x = func.args[0]
# Handle series solutions here
if sol.has(Order):
assert sol.lhs == func
Oterm = sol.rhs.getO()
solrhs = sol.rhs.removeO()
Oexpr = Oterm.expr
assert isinstance(Oexpr, Pow)
sorder = Oexpr.exp
assert Oterm == Order(x**sorder)
odesubs = (ode.lhs-ode.rhs).subs(func, solrhs).doit().expand()
neworder = Order(x**(sorder - order))
odesubs = odesubs + neworder
assert odesubs.getO() == neworder
residual = odesubs.removeO()
return (residual == 0, residual)
s = True
testnum = 0
while s:
if testnum == 0:
# First pass, try substituting a solved solution directly into the
# ODE. This has the highest chance of succeeding.
ode_diff = ode.lhs - ode.rhs
if sol.lhs == func:
s = sub_func_doit(ode_diff, func, sol.rhs)
s = besselsimp(s)
else:
testnum += 1
continue
ss = simplify(s.rewrite(exp))
if ss:
# with the new numer_denom in power.py, if we do a simple
# expansion then testnum == 0 verifies all solutions.
s = ss.expand(force=True)
else:
s = 0
testnum += 1
elif testnum == 1:
# Second pass. If we cannot substitute f, try seeing if the nth
# derivative is equal, this will only work for odes that are exact,
# by definition.
s = simplify(
trigsimp(diff(sol.lhs, x, order) - diff(sol.rhs, x, order)) -
trigsimp(ode.lhs) + trigsimp(ode.rhs))
# s2 = simplify(
# diff(sol.lhs, x, order) - diff(sol.rhs, x, order) - \
# ode.lhs + ode.rhs)
testnum += 1
elif testnum == 2:
# Third pass. Try solving for df/dx and substituting that into the
# ODE. Thanks to Chris Smith for suggesting this method. Many of
# the comments below are his, too.
# The method:
# - Take each of 1..n derivatives of the solution.
# - Solve each nth derivative for d^(n)f/dx^(n)
# (the differential of that order)
# - Back substitute into the ODE in decreasing order
# (i.e., n, n-1, ...)
# - Check the result for zero equivalence
if sol.lhs == func and not sol.rhs.has(func):
diffsols = {0: sol.rhs}
elif sol.rhs == func and not sol.lhs.has(func):
diffsols = {0: sol.lhs}
else:
diffsols = {}
sol = sol.lhs - sol.rhs
for i in range(1, order + 1):
# Differentiation is a linear operator, so there should always
# be 1 solution. Nonetheless, we test just to make sure.
# We only need to solve once. After that, we automatically
# have the solution to the differential in the order we want.
if i == 1:
ds = sol.diff(x)
try:
sdf = solve(ds, func.diff(x, i))
if not sdf:
raise NotImplementedError
except NotImplementedError:
testnum += 1
break
else:
diffsols[i] = sdf[0]
else:
# This is what the solution says df/dx should be.
diffsols[i] = diffsols[i - 1].diff(x)
# Make sure the above didn't fail.
if testnum > 2:
continue
else:
# Substitute it into ODE to check for self consistency.
lhs, rhs = ode.lhs, ode.rhs
for i in range(order, -1, -1):
if i == 0 and 0 not in diffsols:
# We can only substitute f(x) if the solution was
# solved for f(x).
break
lhs = sub_func_doit(lhs, func.diff(x, i), diffsols[i])
rhs = sub_func_doit(rhs, func.diff(x, i), diffsols[i])
ode_or_bool = Eq(lhs, rhs)
ode_or_bool = simplify(ode_or_bool)
if isinstance(ode_or_bool, (bool, BooleanAtom)):
if ode_or_bool:
lhs = rhs = S.Zero
else:
lhs = ode_or_bool.lhs
rhs = ode_or_bool.rhs
# No sense in overworking simplify -- just prove that the
# numerator goes to zero
num = trigsimp((lhs - rhs).as_numer_denom()[0])
# since solutions are obtained using force=True we test
# using the same level of assumptions
## replace function with dummy so assumptions will work
_func = Dummy('func')
num = num.subs(func, _func)
## posify the expression
num, reps = posify(num)
s = simplify(num).xreplace(reps).xreplace({_func: func})
testnum += 1
else:
break
if not s:
return (True, s)
elif s is True: # The code above never was able to change s
raise NotImplementedError("Unable to test if " + str(sol) +
" is a solution to " + str(ode) + ".")
else:
return (False, s)
def checksysodesol(eqs, sols, func=None):
r"""
Substitutes corresponding ``sols`` for each functions into each ``eqs`` and
checks that the result of substitutions for each equation is ``0``. The
equations and solutions passed can be any iterable.
This only works when each ``sols`` have one function only, like `x(t)` or `y(t)`.
For each function, ``sols`` can have a single solution or a list of solutions.
In most cases it will not be necessary to explicitly identify the function,
but if the function cannot be inferred from the original equation it
can be supplied through the ``func`` argument.
When a sequence of equations is passed, the same sequence is used to return
the result for each equation with each function substituted with corresponding
solutions.
It tries the following method to find zero equivalence for each equation:
Substitute the solutions for functions, like `x(t)` and `y(t)` into the
original equations containing those functions.
This function returns a tuple. The first item in the tuple is ``True`` if
the substitution results for each equation is ``0``, and ``False`` otherwise.
The second item in the tuple is what the substitution results in. Each element
of the ``list`` should always be ``0`` corresponding to each equation if the
first item is ``True``. Note that sometimes this function may return ``False``,
but with an expression that is identically equal to ``0``, instead of returning
``True``. This is because :py:meth:`~sympy.simplify.simplify.simplify` cannot
reduce the expression to ``0``. If an expression returned by each function
vanishes identically, then ``sols`` really is a solution to ``eqs``.
If this function seems to hang, it is probably because of a difficult simplification.
Examples
========
>>> from sympy import Eq, diff, symbols, sin, cos, exp, sqrt, S, Function
>>> from sympy.solvers.ode.subscheck import checksysodesol
>>> C1, C2 = symbols('C1:3')
>>> t = symbols('t')
>>> x, y = symbols('x, y', cls=Function)
>>> eq = (Eq(diff(x(t),t), x(t) + y(t) + 17), Eq(diff(y(t),t), -2*x(t) + y(t) + 12))
>>> sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - S(5)/3),
... Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - S(46)/3)]
>>> checksysodesol(eq, sol)
(True, [0, 0])
>>> eq = (Eq(diff(x(t),t),x(t)*y(t)**4), Eq(diff(y(t),t),y(t)**3))
>>> sol = [Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), -sqrt(2)*sqrt(-1/(C2 + t))/2),
... Eq(x(t), C1*exp(-1/(4*(C2 + t)))), Eq(y(t), sqrt(2)*sqrt(-1/(C2 + t))/2)]
>>> checksysodesol(eq, sol)
(True, [0, 0])
"""
def _sympify(eq):
return list(map(sympify, eq if iterable(eq) else [eq]))
eqs = _sympify(eqs)
for i in range(len(eqs)):
if isinstance(eqs[i], Equality):
eqs[i] = eqs[i].lhs - eqs[i].rhs
if func is None:
funcs = []
for eq in eqs:
derivs = eq.atoms(Derivative)
func = set().union(*[d.atoms(AppliedUndef) for d in derivs])
for func_ in func:
funcs.append(func_)
funcs = list(set(funcs))
if not all(isinstance(func, AppliedUndef) and len(func.args) == 1 for func in funcs)\
and len({func.args for func in funcs})!=1:
raise ValueError("func must be a function of one variable, not %s" % func)
for sol in sols:
if len(sol.atoms(AppliedUndef)) != 1:
raise ValueError("solutions should have one function only")
if len(funcs) != len({sol.lhs for sol in sols}):
raise ValueError("number of solutions provided does not match the number of equations")
dictsol = dict()
for sol in sols:
func = list(sol.atoms(AppliedUndef))[0]
if sol.rhs == func:
sol = sol.reversed
solved = sol.lhs == func and not sol.rhs.has(func)
if not solved:
rhs = solve(sol, func)
if not rhs:
raise NotImplementedError
else:
rhs = sol.rhs
dictsol[func] = rhs
checkeq = []
for eq in eqs:
for func in funcs:
eq = sub_func_doit(eq, func, dictsol[func])
ss = simplify(eq)
if ss != 0:
eq = ss.expand(force=True)
if eq != 0:
eq = sqrtdenest(eq).simplify()
else:
eq = 0
checkeq.append(eq)
if len(set(checkeq)) == 1 and list(set(checkeq))[0] == 0:
return (True, checkeq)
else:
return (False, checkeq)
|
3086932115400a18dc1c883ba5e79dca9d695c2a88412772fa08cc8a923fb86d | from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat, diff)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt,
Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
sinh, tanh, cosh, sech, coth)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import (Complement, EmptySet, FiniteSet,
Intersection, Interval, Union, imageset, ProductSet)
from sympy.simplify import simplify
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols
from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP)
from sympy.testing.randtest import verify_numerically as tn
from sympy.physics.units import cm
from sympy.solvers.solveset import (
solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
linsolve, _is_function_class_equation, invert_real, invert_complex,
solveset, solve_decomposition, substitution, nonlinsolve, solvify,
_is_finite_with_finite_vars, _transolve, _is_exponential,
_solve_exponential, _is_logarithmic,
_solve_logarithm, _term_factors, _is_modular, NonlinearError)
from sympy.abc import (a, b, c, d, e, f, g, h, i, j, k, l, m, n, q, r,
t, w, x, y, z)
def dumeq(i, j):
if type(i) in (list, tuple):
return all(dumeq(i, j) for i, j in zip(i, j))
return i == j or i.dummy_eq(j)
def test_invert_real():
x = Symbol('x', real=True)
def ireal(x, s=S.Reals):
return Intersection(s, x)
# issue 14223
assert invert_real(x, 0, x, Interval(1, 2)) == (x, S.EmptySet)
assert invert_real(exp(x), z, x) == (x, ireal(FiniteSet(log(z))))
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
raises(ValueError, lambda: invert_real(x**pi, y, x))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
lhs = x**31 + x
base_values = FiniteSet(y - 1, -y - 1)
assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)
assert dumeq(invert_real(sin(x), y, x),
(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers)))
assert dumeq(invert_real(sin(exp(x)), y, x),
(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers)))
assert dumeq(invert_real(csc(x), y, x),
(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers)))
assert dumeq(invert_real(csc(exp(x)), y, x),
(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers)))
assert dumeq(invert_real(cos(x), y, x),
(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers))))
assert dumeq(invert_real(cos(exp(x)), y, x),
(x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers))))
assert dumeq(invert_real(sec(x), y, x),
(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers))))
assert dumeq(invert_real(sec(exp(x)), y, x),
(x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers))))
assert dumeq(invert_real(tan(x), y, x),
(x, imageset(Lambda(n, n*pi + atan(y)), S.Integers)))
assert dumeq(invert_real(tan(exp(x)), y, x),
(x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers)))
assert dumeq(invert_real(cot(x), y, x),
(x, imageset(Lambda(n, n*pi + acot(y)), S.Integers)))
assert dumeq(invert_real(cot(exp(x)), y, x),
(x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers)))
assert dumeq(invert_real(tan(tan(x)), y, x),
(tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers)))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
def test_invert_complex():
assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
assert dumeq(invert_complex(exp(x), y, x),
(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)))
assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))
raises(ValueError, lambda: invert_real(1, y, x))
raises(ValueError, lambda: invert_complex(x, x, x))
raises(ValueError, lambda: invert_complex(x, x, 1))
# https://github.com/skirpichev/omg/issues/16
assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0))
def test_domain_check():
assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
assert domain_check(x**2, x, 0) is True
assert domain_check(x, x, oo) is False
assert domain_check(0, x, oo) is False
def test_issue_11536():
assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)
def test_issue_17479():
from sympy.solvers.solveset import nonlinsolve
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = f.diff(x)
fy = f.diff(y)
fz = f.diff(z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
assert len(sol) >= 4 and len(sol) <= 20
# nonlinsolve has been giving a varying number of solutions
# (originally 18, then 20, now 19) due to various internal changes.
# Unfortunately not all the solutions are actually valid and some are
# redundant. Since the original issue was that an exception was raised,
# this first test only checks that nonlinsolve returns a "plausible"
# solution set. The next test checks the result for correctness.
@XFAIL
def test_issue_18449():
x, y, z = symbols("x, y, z")
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = diff(f, x)
fy = diff(f, y)
fz = diff(f, z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
for (xs, ys, zs) in sol:
d = {x: xs, y: ys, z: zs}
assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0)
# After simplification and removal of duplicate elements, there should
# only be 4 parametric solutions left:
# simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z),
# (-sqrt(1 - z**2), z, z),
# (sqrt(1 - z**2), -z, z),
# (-sqrt(1 - z**2), -z, z))
# TODO: Is the above solution set definitely complete?
def test_is_function_class_equation():
from sympy.abc import x, a
assert _is_function_class_equation(TrigonometricFunction,
tan(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x) - a, x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x + a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x*a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
a*tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**2 + sin(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + x, x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2) + sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(sin(x)) + sin(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x) - a, x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x + a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x*a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
a*tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**2 + sinh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + x, x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2) + sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(sinh(x)) + sinh(x), x) is False
def test_garbage_input():
raises(ValueError, lambda: solveset_real([y], y))
x = Symbol('x', real=True)
assert solveset_real(x, 1) == S.EmptySet
assert solveset_real(x - 1, 1) == FiniteSet(x)
assert solveset_real(x, pi) == S.EmptySet
assert solveset_real(x, x**2) == S.EmptySet
raises(ValueError, lambda: solveset_complex([x], x))
assert solveset_complex(x, pi) == S.EmptySet
raises(ValueError, lambda: solveset((x, y), x))
raises(ValueError, lambda: solveset(x + 1, S.Reals))
raises(ValueError, lambda: solveset(x + 1, x, 2))
def test_solve_mul():
assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
Union({log(3)}, Intersection({-b/a}, S.Reals))
anz = Symbol('anz', nonzero=True)
bb = Symbol('bb', real=True)
assert solveset_real((anz*x + bb)*(exp(x) - 3), x) == \
FiniteSet(-bb/anz, log(3))
assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
assert solveset_real(x/log(x), x) == EmptySet()
def test_solve_invert():
assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))
assert solveset_real(3**(x + 2), x) == FiniteSet()
assert solveset_real(3**(2 - x), x) == FiniteSet()
assert solveset_real(y - b*exp(a/x), x) == Intersection(
S.Reals, FiniteSet(a/log(y/b)))
# issue 4504
assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))
def test_errorinverses():
assert solveset_real(erf(x) - S.Half, x) == \
FiniteSet(erfinv(S.Half))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_solve_polynomial():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One)
assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)
a11, a12, a21, a22, b1, b2 = symbols('a11, a12, a21, a22, b1, b2')
assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
-2 + 3 ** S.Half,
S(4),
-2 - 3 ** S.Half)
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
assert solveset_real(x**6 + x**4 + I, x) is S.EmptySet
def test_return_root_of():
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get CRootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()
sol = list(solveset_complex(x**6 - 2*x + 2, x))
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert solveset_complex(s, x) == \
FiniteSet(*Poly(s*4, domain='ZZ').all_roots())
# Refer issue #7876
eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
assert solveset_complex(eq, x) == \
FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2),
CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4),
CRootOf(x**6 - x + 1, 5))
def test__has_rational_power():
from sympy.solvers.solveset import _has_rational_power
assert _has_rational_power(sqrt(2), x)[0] is False
assert _has_rational_power(x*sqrt(2), x)[0] is False
assert _has_rational_power(x**2*sqrt(x), x) == (True, 2)
assert _has_rational_power(sqrt(2)*x**Rational(1, 3), x) == (True, 3)
assert _has_rational_power(sqrt(x)*x**Rational(1, 3), x) == (True, 6)
def test_solveset_sqrt_1():
assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
def test_solveset_sqrt_2():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
FiniteSet(S(5), S(13))
assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
FiniteSet(-6)
# http://www.purplemath.com/modules/solverad.htm
assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
FiniteSet(3)
eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3))
eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
assert solveset_real(eq, x) == FiniteSet(0)
eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
assert solveset_real(eq, x) == FiniteSet(5)
eq = sqrt(x)*sqrt(x - 7) - 12
assert solveset_real(eq, x) == FiniteSet(16)
eq = sqrt(x - 3) + sqrt(x) - 3
assert solveset_real(eq, x) == FiniteSet(4)
eq = sqrt(2*x**2 - 7) - (3 - x)
assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))
# others
eq = sqrt(9*x**2 + 4) - (3*x + 2)
assert solveset_real(eq, x) == FiniteSet(0)
assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()
eq = (2*x - 5)**Rational(1, 3) - 3
assert solveset_real(eq, x) == FiniteSet(16)
assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4)
eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
assert solveset_real(eq, x) == FiniteSet()
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
ans = solveset_real(eq, x)
ra = S('''-1484/375 - 4*(-1/2 + sqrt(3)*I/2)*(-12459439/52734375 +
114*sqrt(12657)/78125)**(1/3) - 172564/(140625*(-1/2 +
sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(1/3))''')
rb = Rational(4, 5)
assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
len(ans) == 2 and \
{i.n(chop=True) for i in ans} == \
{i.n(chop=True) for i in (ra, rb)}
assert solveset_real(sqrt(x) + x**Rational(1, 3) +
x**Rational(1, 4), x) == FiniteSet(0)
assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)
eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
assert solveset_real(eq, x) == FiniteSet(y**3)
# issue 4497
assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \
FiniteSet(Rational(-295244, 59049))
@XFAIL
def test_solve_sqrt_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
assert solveset_real(eq, x) == FiniteSet(Rational(1, 3))
@slow
def test_solve_sqrt_3():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solveset_complex(eq, R)
fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 +
sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) +
I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)]
cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
Rational(5, 3) +
I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]
assert sol._args[0] == FiniteSet(*fset)
assert sol._args[1] == ConditionSet(
R,
Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0),
FiniteSet(*cset))
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) -
sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m -
sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals)
assert solveset_real(eq, q) == unsolved_object
def test_solve_polynomial_symbolic_param():
assert solveset_complex((x**2 - 1)**2 - a, x) == \
FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
# issue 4507
assert solveset_complex(y - b/(1 + a*x), x) == \
FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)
# issue 4508
assert solveset_complex(y - b*x/(a + x), x) == \
FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S.Zero, S(14))
def test_solveset_real_gen_is_pow():
assert solveset_real(sqrt(1) + 1, x) == EmptySet()
def test_no_sol():
assert solveset(1 - oo*x) == EmptySet()
assert solveset(oo*x, x) == EmptySet()
assert solveset(oo*x - oo, x) == EmptySet()
assert solveset_real(4, x) == EmptySet()
assert solveset_real(exp(x), x) == EmptySet()
assert solveset_real(x**2 + 1, x) == EmptySet()
assert solveset_real(-3*a/sqrt(x), x) == EmptySet()
assert solveset_real(1/x, x) == EmptySet()
assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x) == \
EmptySet()
def test_sol_zero_real():
assert solveset_real(0, x) == S.Reals
assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals
def test_no_sol_rational_extragenous():
assert solveset_real((x/(x + 1) + 3)**(-2), x) == EmptySet()
assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) == EmptySet()
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x*(x**(S.One / 3) - 3), x) == \
FiniteSet(S.Zero, S(27))
def test_solveset_real_rational():
"""Test solveset_real for rational functions"""
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
== FiniteSet(y**3)
# issue 4486
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
def test_solveset_real_log():
assert solveset_real(log((x-1)*(x+1)), x) == \
FiniteSet(sqrt(2), -sqrt(2))
def test_poly_gens():
assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
FiniteSet(Rational(-3, 2), S.Half)
def test_solve_abs():
n = Dummy('n')
raises(ValueError, lambda: solveset(Abs(x) - 1, x))
assert solveset(Abs(x) - n, x, S.Reals).dummy_eq(
ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}))
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x) + 2, x) is S.EmptySet
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
sol = ConditionSet(
x,
And(
Contains(b, Interval(0, oo)),
Contains(a + b, Interval(0, oo)),
Contains(a - b, Interval(0, oo))),
FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
eq = Abs(Abs(x + 3) - a) - b
assert invert_real(eq, 0, x)[1] == sol
reps = {a: 3, b: 1}
eqab = eq.subs(reps)
for si in sol.subs(reps):
assert not eqab.subs(x, si)
assert dumeq(solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals), Union(
Intersection(Interval(0, oo),
ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)),
Intersection(Interval(-oo, 0),
ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers))))
def test_issue_9824():
assert dumeq(solveset(sin(x)**2 - 2*sin(x) + 1, x), ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers))
assert dumeq(solveset(cos(x)**2 - 2*cos(x) + 1, x), ImageSet(Lambda(n, 2*n*pi), S.Integers))
def test_issue_9565():
assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2)
def test_issue_10069():
eq = abs(1/(x - 1)) - 1 > 0
assert solveset_real(eq, x) == Union(
Interval.open(0, 1), Interval.open(1, 2))
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
S.EmptySet
def test_units():
assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)
def test_solve_only_exp_1():
y = Symbol('y', positive=True)
assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
assert solveset_real(exp(x) + exp(-x) - 4, x) == \
FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
def test_atan2():
# The .inverse() method on atan2 works only if x.is_real is True and the
# second argument is a real constant
assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
def test_piecewise_solveset():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, 0 <= x - 3),
(3 - x, 0 > x - 3))
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(
Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
) == Interval(-oo, 0)
assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)
# issue 19718
g = Piecewise((1, x > 10), (0, True))
assert solveset(g > 0, x, S.Reals) == Interval.open(10, oo)
from sympy.logic.boolalg import BooleanTrue
f = BooleanTrue()
assert solveset(f, x, domain=Interval(-3, 10)) == Interval(-3, 10)
def test_solveset_complex_polynomial():
assert solveset_complex(a*x**2 + b*x + c, x) == \
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
assert solveset_complex(x - y**3, y) == FiniteSet(
(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
x**Rational(1, 3),
(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)
assert solveset_complex(x + 1/x - 1, x) == \
FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2)
def test_sol_zero_complex():
assert solveset_complex(0, x) == S.Complexes
def test_solveset_complex_rational():
assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
FiniteSet(1, I)
assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
FiniteSet(y**3)
assert solveset_complex(-x**2 - I, x) == \
FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
def test_solve_quintics():
skip("This test is too slow")
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 + 15*x + 12
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
def test_solveset_complex_exp():
from sympy.abc import x, n
assert dumeq(solveset_complex(exp(x) - 1, x),
imageset(Lambda(n, I*2*n*pi), S.Integers))
assert dumeq(solveset_complex(exp(x) - I, x),
imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers))
assert solveset_complex(1/exp(x), x) == S.EmptySet
assert dumeq(solveset_complex(sinh(x).rewrite(exp), x),
imageset(Lambda(n, n*pi*I), S.Integers))
def test_solveset_real_exp():
from sympy.abc import x, y
assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))
assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))
def test_solve_complex_log():
assert solveset_complex(log(x), x) == FiniteSet(1)
assert solveset_complex(1 - log(a + 4*x**2), x) == \
FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S.Zero, 1 / a ** 2)
def test_solveset_complex_tan():
s = solveset_complex(tan(x).rewrite(exp), x)
assert dumeq(s, imageset(Lambda(n, pi*n), S.Integers) - \
imageset(Lambda(n, pi*n + pi/2), S.Integers))
def test_solve_trig():
from sympy.abc import n
assert dumeq(solveset_real(sin(x), x),
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers)))
assert dumeq(solveset_real(sin(x) - 1, x),
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))
assert dumeq(solveset_real(cos(x), x),
Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers)))
assert dumeq(solveset_real(sin(x) + cos(x), x),
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers)))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
assert dumeq(solveset_complex(cos(x) - S.Half, x),
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi/3), S.Integers)))
assert dumeq(solveset(sin(y + a) - sin(y), a, domain=S.Reals),
Union(ImageSet(Lambda(n, 2*n*pi), S.Integers),
Intersection(ImageSet(Lambda(n, -I*(I*(
2*n*pi + arg(-exp(-2*I*y))) +
2*im(y))), S.Integers), S.Reals)))
assert dumeq(solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x),
ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers))
assert dumeq(solveset_real(2*tan(x)*sin(x) + 1, x), Union(
ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers)))
assert dumeq(solveset_real(cos(2*x)*cos(4*x) - 1, x),
ImageSet(Lambda(n, n*pi), S.Integers))
assert dumeq(solveset(sin(x/10) + Rational(3, 4)), Union(
ImageSet(Lambda(n, 20*n*pi + 10*atan(3*sqrt(7)/7) + 10*pi), S.Integers),
ImageSet(Lambda(n, 20*n*pi - 10*atan(3*sqrt(7)/7) + 20*pi), S.Integers)))
assert dumeq(solveset(cos(x/15) + cos(x/5)), Union(
ImageSet(Lambda(n, 30*n*pi + 15*pi/2), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 45*pi/2), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 75*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 45*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 105*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 15*pi/4), S.Integers)))
assert dumeq(solveset(sec(sqrt(2)*x/3) + 5), Union(
ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers),
ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers)))
assert dumeq(simplify(solveset(tan(pi*x) - cot(pi/2*x))), Union(
ImageSet(Lambda(n, 4*n + 1), S.Integers),
ImageSet(Lambda(n, 4*n + 3), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(7, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(5, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(11, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(1, 3)), S.Integers)))
assert dumeq(solveset(cos(9*x)), Union(
ImageSet(Lambda(n, 2*n*pi/9 + pi/18), S.Integers),
ImageSet(Lambda(n, 2*n*pi/9 + pi/6), S.Integers)))
assert dumeq(solveset(sin(8*x) + cot(12*x), x, S.Reals), Union(
ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 3*pi/8), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 5*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 3*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 7*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + pi/16), S.Integers)))
# This is the only remaining solveset test that actually ends up being solved
# by _solve_trig2(). All others are handled by the improved _solve_trig1.
assert dumeq(solveset_real(2*cos(x)*cos(2*x) - 1, x),
Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers),
ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) +
2*pi), S.Integers)))
# issue #16870
assert dumeq(simplify(solveset(sin(x/180*pi) - S.Half, x, S.Reals)), Union(
ImageSet(Lambda(n, 360*n + 150), S.Integers),
ImageSet(Lambda(n, 360*n + 30), S.Integers)))
def test_solve_hyperbolic():
# actual solver: _solve_trig1
n = Dummy('n')
assert solveset(sinh(x) + cosh(x), x) == S.EmptySet
assert solveset(sinh(x) + cos(x), x) == ConditionSet(x,
Eq(cos(x) + sinh(x), 0), S.Complexes)
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
log(sqrt(sqrt(5) - 2)))
assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet(
-log(3)/2, log(3)/2)
assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet(
log((2 + sqrt(5))*exp(3)))
assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet(
log(-2 + sqrt(5)), log(1 + sqrt(2)))
assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet(
log(S.Half + sqrt(5)/2), log(1 + sqrt(2)))
assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet(
log(4 + sqrt(17))/2)
assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet(
log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2))))
assert dumeq(solveset_complex(sinh(x) - I/2, x), Union(
ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers)))
assert dumeq(solveset_complex(sinh(x) + sech(x), x), Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers)))
assert dumeq(solveset(sinh(x/10) + Rational(3, 4)), Union(
ImageSet(Lambda(n, 10*I*(2*n*pi + pi) + 10*log(2)), S.Integers),
ImageSet(Lambda(n, 20*n*I*pi - 10*log(2)), S.Integers)))
assert dumeq(solveset(cosh(x/15) + cosh(x/5)), Union(
ImageSet(Lambda(n, 15*I*(2*n*pi + pi/2)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - pi/2)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - 3*pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi + 3*pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi + pi/4)), S.Integers)))
assert dumeq(solveset(sech(sqrt(2)*x/3) + 5), Union(
ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers),
ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers)))
assert dumeq(solveset(tanh(pi*x) - coth(pi/2*x)), Union(
ImageSet(Lambda(n, 2*I*(2*n*pi + pi/2)/pi), S.Integers),
ImageSet(Lambda(n, 2*I*(2*n*pi - pi/2)/pi), S.Integers)))
assert dumeq(solveset(cosh(9*x)), Union(
ImageSet(Lambda(n, I*(2*n*pi + pi/2)/9), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2)/9), S.Integers)))
# issues #9606 / #9531:
assert solveset(sinh(x), x, S.Reals) == FiniteSet(0)
assert dumeq(solveset(sinh(x), x, S.Complexes), Union(
ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi), S.Integers)))
# issues #11218 / #18427
assert dumeq(solveset(sin(pi*x), x, S.Reals), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
ImageSet(Lambda(n, 2*n), S.Integers)))
assert dumeq(solveset(sin(pi*x), x), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
ImageSet(Lambda(n, 2*n), S.Integers)))
# issue #17543
assert dumeq(simplify(solveset(I*cot(8*x - 8*E), x)), Union(
ImageSet(Lambda(n, n*pi/4 - 13*pi/16 + E), S.Integers),
ImageSet(Lambda(n, n*pi/4 - 11*pi/16 + E), S.Integers)))
# issues #18490 / #19489
assert solveset(cosh(x) + cosh(3*x) - cosh(5*x), x, S.Reals
).dummy_eq(ConditionSet(x,
Eq(cosh(x) + cosh(3*x) - cosh(5*x), 0), S.Reals))
assert solveset(sinh(8*x) + coth(12*x)).dummy_eq(
ConditionSet(x, Eq(sinh(8*x) + coth(12*x), 0), S.Complexes))
def test_solve_trig_hyp_symbolic():
# actual solver: _solve_trig1
assert dumeq(solveset(sin(a*x), x), ConditionSet(x, Ne(a, 0), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/a), S.Integers),
ImageSet(Lambda(n, 2*n*pi/a), S.Integers))))
assert dumeq(solveset(cosh(x/a), x), ConditionSet(x, Ne(a, 0), Union(
ImageSet(Lambda(n, I*a*(2*n*pi + pi/2)), S.Integers),
ImageSet(Lambda(n, I*a*(2*n*pi - pi/2)), S.Integers))))
assert dumeq(solveset(sin(2*sqrt(3)/3*a**2/(b*pi)*x)
+ cos(4*sqrt(3)/3*a**2/(b*pi)*x), x),
ConditionSet(x, Ne(b, 0) & Ne(a**2, 0), Union(
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi + pi/2)/(2*a**2)), S.Integers),
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - 5*pi/6)/(2*a**2)), S.Integers),
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - pi/6)/(2*a**2)), S.Integers))))
assert dumeq(simplify(solveset(cot((1 + I)*x) - cot((3 + 3*I)*x), x)), Union(
ImageSet(Lambda(n, pi*(1 - I)*(4*n + 1)/4), S.Integers),
ImageSet(Lambda(n, pi*(1 - I)*(4*n - 1)/4), S.Integers)))
assert dumeq(solveset(cosh((a**2 + 1)*x) - 3, x),
ConditionSet(x, Ne(a**2 + 1, 0), Union(
ImageSet(Lambda(n, (2*n*I*pi + log(3 - 2*sqrt(2)))/(a**2 + 1)), S.Integers),
ImageSet(Lambda(n, (2*n*I*pi + log(2*sqrt(2) + 3))/(a**2 + 1)), S.Integers))))
ar = Symbol('ar', real=True)
assert solveset(cosh((ar**2 + 1)*x) - 2, x, S.Reals) == FiniteSet(
log(sqrt(3) + 2)/(ar**2 + 1), log(2 - sqrt(3))/(ar**2 + 1))
def test_issue_9616():
assert dumeq(solveset(sinh(x) + tanh(x) - 1, x), Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
+ log(sqrt(1 + sqrt(2)))), S.Integers)))
f1 = (sinh(x)).rewrite(exp)
f2 = (tanh(x)).rewrite(exp)
assert dumeq(solveset(f1 + f2 - 1, x), Union(
Complement(ImageSet(
Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers))))
def test_solve_invalid_sol():
assert 0 not in solveset_real(sin(x)/x, x)
assert 0 not in solveset_complex((exp(x) - 1)/x, x)
@XFAIL
def test_solve_trig_simplified():
from sympy.abc import n
assert dumeq(solveset_real(sin(x), x),
imageset(Lambda(n, n*pi), S.Integers))
assert dumeq(solveset_real(cos(x), x),
imageset(Lambda(n, n*pi + pi/2), S.Integers))
assert dumeq(solveset_real(cos(x) + sin(x), x),
imageset(Lambda(n, n*pi - pi/4), S.Integers))
@XFAIL
def test_solve_lambert():
assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
assert solveset_real(x + 2**x, x) == \
FiniteSet(-LambertW(log(2))/log(2))
# issue 4739
ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
assert ans == FiniteSet(Rational(-5, 3) +
LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2)))
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solveset_real(eq, x)
ans = FiniteSet((log(2401) +
5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
assert result == ans
assert solveset_real(eq.expand(), x) == result
assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)
assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2)
assert solveset_real(3*x + log(4*x), x) == \
FiniteSet(LambertW(Rational(3, 4))/3)
assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))
a = Symbol('a')
assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
a = Symbol('a', real=True)
assert solveset_real(a/x + exp(x/2), x) == \
FiniteSet(2*LambertW(-a/2))
assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))
# coverage test
assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) == EmptySet()
assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*S.Exp1)/3)
assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
assert solveset_real(x*log(x) + 3*x + 1, x) == \
FiniteSet(exp(-3 + LambertW(-exp(3))))
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solveset_real(eq, x) == \
FiniteSet(LambertW(3*exp(-LambertW(3))))
assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a))))
p = symbols('p', positive=True)
assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
FiniteSet(
log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically
# check collection
b = Symbol('b')
eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
assert solveset_real(eq, x) == FiniteSet(
-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))
# issue 4271
assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3))
assert solveset_real(x**3 - 3**x, x) == \
FiniteSet(-3/log(3)*LambertW(-log(3)/3))
assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
acos(-3*LambertW(-log(3)/3)/log(3)))
assert solveset_real(x**2 - 2**x, x) == \
solveset_real(-x**2 + 2**x, x)
assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3))
assert solveset_real(LambertW(2*x) - y) == FiniteSet(
y*exp(y)/2)
@XFAIL
def test_other_lambert():
a = Rational(6, 5)
assert solveset_real(x**a - a**x, x) == FiniteSet(
a, -a*LambertW(-log(a)/a)/log(a))
def test_solveset():
f = Function('f')
raises(ValueError, lambda: solveset(x + y))
assert solveset(x, 1) == S.EmptySet
assert solveset(f(1)**2 + y + 1, f(1)
) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
assert solveset(x - 1, 1) == FiniteSet(x)
assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))
assert solveset(0, domain=S.Reals) == S.Reals
assert solveset(1) == S.EmptySet
assert solveset(True, domain=S.Reals) == S.Reals # issue 10197
assert solveset(False, domain=S.Reals) == S.EmptySet
assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
A = Indexed('A', x)
assert solveset(A - 1, A, S.Reals) == FiniteSet(1)
assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)
assert dumeq(solveset(exp(x) - 1, x), imageset(Lambda(n, 2*I*pi*n), S.Integers))
assert dumeq(solveset(Eq(exp(x), 1), x), imageset(Lambda(n, 2*I*pi*n),
S.Integers))
# issue 13825
assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}
# issue 19977
assert solveset(atan(log(x)) > 0, x, domain=Interval.open(0, oo)) == Interval.open(1, oo)
def test__solveset_multi():
from sympy.solvers.solveset import _solveset_multi
from sympy import Reals
# Basic univariate case:
from sympy.abc import x
assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,))
# Linear systems of two equations
from sympy.abc import x, y
assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1))
assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1))
assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2))
assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2))
# assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), ImageSet(Lambda(x, (x, -x)), Reals))
assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), Union(
ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals))))
assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet
# Systems of three equations:
from sympy.abc import x, y, z
assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals,
Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half))
# Nonlinear systems:
from sympy.abc import r, theta, z, x, y
assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1))
assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0))
#assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union(
# ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals))
assert dumeq(_solveset_multi([x**2-y**2], [x, y], [Reals, Reals]), Union(
ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals))))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r],
[Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0))
#assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
# [Interval(0, 1), Interval(0, pi)]) == ?
assert dumeq(_solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]), Union(
ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))),
ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi)))))
def test_conditionset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals
) is S.Reals
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
).dummy_eq(ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals))
assert dumeq(solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
), imageset(Lambda(n, 2*n*pi + pi/2), S.Integers))
assert solveset(x + sin(x) > 1, x, domain=S.Reals
).dummy_eq(ConditionSet(x, x + sin(x) > 1, S.Reals))
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
).dummy_eq(ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals))
assert solveset(y**x-z, x, S.Reals
).dummy_eq(ConditionSet(x, Eq(y**x - z, 0), S.Reals))
@XFAIL
def test_conditionset_equality():
''' Checking equality of different representations of ConditionSet'''
assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)
def test_solveset_domain():
assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
def test_improve_coverage():
from sympy.solvers.solveset import _has_rational_power
solution = solveset(exp(x) + sin(x), x, S.Reals)
unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
assert solution.dummy_eq(unsolved_object)
assert _has_rational_power(sin(x)*exp(x) + 1, x) == (False, S.One)
assert _has_rational_power((sin(x)**2)*(exp(x) + 1)**3, x) == (False, S.One)
def test_issue_9522():
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) == EmptySet()
assert solveset(expr2, x, S.Reals) == EmptySet()
def test_solvify():
assert solvify(x**2 + 10, x, S.Reals) == []
assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2,
S.Half + sqrt(3)*I/2]
assert solvify(log(x), x, S.Reals) == [1]
assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)]
assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)]
raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))
def test_abs_invert_solvify():
assert solvify(sin(Abs(x)), x, S.Reals) is None
def test_linear_eq_to_matrix():
eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]
A, B = linear_eq_to_matrix(eqns1, x, y, z)
assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
assert B == Matrix([[3], [0], [12]])
A, B = linear_eq_to_matrix(eqns2, x, y, z)
assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
assert B == Matrix([[1], [-2], [0]])
# Pure symbolic coefficients
eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
A, B = linear_eq_to_matrix(eqns3, x, y, z)
assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
assert B == Matrix([[d], [h], [l]])
# raise ValueError if
# 1) no symbols are given
raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
# 2) there are duplicates
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
# 3) there are non-symbols
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, 1/a, y]))
# 4) a nonlinear term is detected in the original expression
raises(NonlinearError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x), [x]))
assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))
# issue 15195
assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
assert linear_eq_to_matrix(Matrix(
[[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))
# issue 15312
assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
Matrix([[1]]), Matrix([[-1]]))
def test_issue_16577():
assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == (
Matrix([[2*a, 3*a + 4]]), Matrix([[5]]))
def test_linsolve():
x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
# Test for different input forms
M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
system1 = A, B = M[:, :-1], M[:, -1]
Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
2*x1 + 4*x2 + 6*x4 - 4]
sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
assert linsolve(system1, (x1, x2, x3, x4)) == sol
assert linsolve(system1, *(x1, x2, x3, x4)) == sol
# issue 9667 - symbols can be Dummy symbols
x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
(-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
# raise ValueError for garbage value
raises(ValueError, lambda: linsolve(Eqns))
raises(ValueError, lambda: linsolve(x1))
raises(ValueError, lambda: linsolve(x1, x2))
raises(ValueError, lambda: linsolve((A,), x1, x2))
raises(ValueError, lambda: linsolve(A, B, x1, x2))
#raise ValueError if equations are non-linear in given variables
raises(NonlinearError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
raises(NonlinearError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}
# Fully symbolic test
A = Matrix([[a, b], [c, d]])
B = Matrix([[e], [g]])
system2 = (A, B)
sol = FiniteSet(((-b*g + d*e)/(a*d - b*c), (a*g - c*e)/(a*d - b*c)))
assert linsolve(system2, [x, y]) == sol
# No solution
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
B = Matrix([0, 0, 1])
assert linsolve((A, B), (x, y, z)) == EmptySet()
# Issue #10056
A, B, J1, J2 = symbols('A B J1 J2')
Augmatrix = Matrix([
[2*I*J1, 2*I*J2, -2/J1],
[-2*I*J2, -2*I*J1, 2/J2],
[0, 2, 2*I/(J1*J2)],
[2, 0, 0],
])
assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))
# Issue #10121 - Assignment of free variables
Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
#raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))
x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau1')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
# symbols can be given as generators
x0, x2, x4 = symbols('x0, x2, x4')
assert linsolve(Augmatrix, numbered_symbols('x')
) == FiniteSet((x0, 0, x2, 0, x4))
Augmatrix[-1, -1] = x0
# use Dummy to avoid clash; the names may clash but the symbols
# will not
Augmatrix[-1, -1] = symbols('_x0')
assert len(linsolve(
Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4
# Issue #12604
f = Function('f')
assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))
# Issue #14860
from sympy.physics.units import meter, newton, kilo
kN = kilo*newton
Eqns = [8*kN + x + y, 28*kN*meter + 3*x*meter]
assert linsolve(Eqns, x, y) == {
(kilo*newton*Rational(-28, 3), kN*Rational(4, 3))}
# linsolve fully expands expressions, so removable singularities
# and other nonlinearity does not raise an error
assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(1/x, 1/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(y/x, y/x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(x*(x + 1), x**2 + y)], [x, y]) == {(y, y)}
def test_linsolve_large_sparse():
#
# This is mainly a performance test
#
def _mk_eqs_sol(n):
xs = symbols('x:{}'.format(n))
ys = symbols('y:{}'.format(n))
syms = xs + ys
eqs = []
sol = (-S.Half,) * n + (S.Half,) * n
for xi, yi in zip(xs, ys):
eqs.extend([xi + yi, xi - yi + 1])
return eqs, syms, FiniteSet(sol)
n = 500
eqs, syms, sol = _mk_eqs_sol(n)
assert linsolve(eqs, syms) == sol
def test_linsolve_immutable():
A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]])
B = ImmutableDenseMatrix([2, 1, -1])
assert linsolve([A, B], (x, y, z)) == FiniteSet((1, 3, -1))
A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]])
assert linsolve(A) == FiniteSet((5, 2))
def test_solve_decomposition():
n = Dummy('n')
f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
f2 = sin(x)**2 - 2*sin(x) + 1
f3 = sin(x)**2 - sin(x)
f4 = sin(x + 1)
f5 = exp(x + 2) - 1
f6 = 1/log(x)
f7 = 1/x
s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)
assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
assert dumeq(solve_decomposition(f2, x, S.Reals), s3)
assert dumeq(solve_decomposition(f3, x, S.Reals), Union(s1, s2, s3))
assert dumeq(solve_decomposition(f4, x, S.Reals), Union(s4, s5))
assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet
# nonlinsolve testcases
def test_nonlinsolve_basic():
assert nonlinsolve([],[]) == S.EmptySet
assert nonlinsolve([],[x, y]) == S.EmptySet
system = [x, y - x - 5]
assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
assert nonlinsolve(system, [y]) == FiniteSet((x + 5,))
soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
assert dumeq(nonlinsolve([sin(x) - 1], [x]), FiniteSet(tuple(soln)))
assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))
soln = FiniteSet((y, y))
assert nonlinsolve([x - y, 0], x, y) == soln
assert nonlinsolve([0, x - y], x, y) == soln
assert nonlinsolve([x - y, x - y], x, y) == soln
assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
f = Function('f')
assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
A = Indexed('A', x)
assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
def test_nonlinsolve_abs():
soln = FiniteSet((x, Abs(x)))
assert nonlinsolve([Abs(x) - y], x, y) == soln
def test_raise_exception_nonlinsolve():
raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
raises(ValueError, lambda: nonlinsolve([x**2 -1]))
raises(NotImplementedError, lambda: nonlinsolve([(x+y)**2 - 9, x**2 - y**2 - 0.75], (x, y)))
def test_trig_system():
# TODO: add more simple testcases when solveset returns
# simplified soln for Trig eq
assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
soln = FiniteSet(soln1)
assert dumeq(nonlinsolve([sin(x) - 1, cos(x)], x), soln)
@XFAIL
def test_trig_system_fail():
# fails because solveset trig solver is not much smart.
sys = [x + y - pi/2, sin(x) + sin(y) - 1]
# solveset returns conditionset for sin(x) + sin(y) - 1
soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
ImageSet(Lambda(n, n*pi)), S.Integers)
soln_1 = FiniteSet(soln_1)
soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
soln_2 = FiniteSet(soln_2)
soln = soln_1 + soln_2
assert dumeq(nonlinsolve(sys, [x, y]), soln)
# Add more cases from here
# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers))
soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers))
assert dumeq(nonlinsolve(sys, [x, y]), FiniteSet((soln_x, soln_y)))
def test_nonlinsolve_positive_dimensional():
x, y, z, a, b, c, d = symbols('x, y, z, a, b, c, d', extended_real=True)
assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))
system = [a**2 + a*c, a - b]
assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
# here (a= 0, b = 0) is independent soln so both is printed.
# if symbols = [a, b, c] then only {a : -c ,b : -c}
eq1 = a + b + c + d
eq2 = a*b + b*c + c*d + d*a
eq3 = a*b*c + b*c*d + c*d*a + d*a*b
eq4 = a*b*c*d - 1
system = [eq1, eq2, eq3, eq4]
sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
soln = FiniteSet(sol1, sol2)
assert nonlinsolve(system, [a, b, c, d]) == soln
def test_nonlinsolve_polysys():
x, y, z = symbols('x, y, z', real=True)
assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet
s = (-y + 2, y)
assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)
system = [x**2 - y**2]
soln_real = FiniteSet((-y, y), (y, y))
soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
soln =soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [x**2 - y**2]
soln_real= FiniteSet((y, -y), (y, y))
soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
soln = soln_real + soln_complex
assert nonlinsolve(system, [y, x]) == soln
system = [x**2 + y - 3, x - y - 4]
assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))
def test_nonlinsolve_using_substitution():
x, y, z, n = symbols('x, y, z, n', real = True)
system = [(x + y)*n - y**2 + 2]
s_x = (n*y - y**2 + 2)/n
soln = (-s_x, y)
assert nonlinsolve(system, [x, y]) == FiniteSet(soln)
system = [z**2*x**2 - z**2*y**2/exp(x)]
soln_real_1 = (y, x, 0)
soln_real_2 = (-exp(x/2)*Abs(x), x, z)
soln_real_3 = (exp(x/2)*Abs(x), x, z)
soln_complex_1 = (-x*exp(x/2), x, z)
soln_complex_2 = (x*exp(x/2), x, z)
syms = [y, x, z]
soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
soln_real_2, soln_real_3)
assert nonlinsolve(system,syms) == soln
def test_nonlinsolve_complex():
n = Dummy('n')
assert dumeq(nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]), {
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))})
system = [exp(x) - sin(y), 1/exp(y) - 3]
assert dumeq(nonlinsolve(system, [x, y]), {
(ImageSet(Lambda(n, I*(2*n*pi + pi)
+ log(sin(log(3)))), S.Integers), -log(3)),
(ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3))))
+ log(Abs(sin(2*n*I*pi - log(3))))), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))})
system = [exp(x) - sin(y), y**2 - 4]
assert dumeq(nonlinsolve(system, [x, y]), {
(ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2),
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)})
@XFAIL
def test_solve_nonlinear_trans():
# After the transcendental equation solver these will work
x, y, z = symbols('x, y, z', real=True)
soln1 = FiniteSet((2*LambertW(y/2), y))
soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
soln3 = FiniteSet((x*exp(x/2), x))
soln4 = FiniteSet(2*LambertW(y/2), y)
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4
def test_issue_5132_1():
system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert dumeq(nonlinsolve(eqs, [y, z]), soln)
def test_issue_5132_2():
x, y = symbols('x, y', real=True)
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
n = Dummy('n')
soln_real = (log(-z**2 + sin(y))/2, z)
lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
img = ImageSet(lam, S.Integers)
# not sure about the complex soln. But it looks correct.
soln_complex = (img, z)
soln = FiniteSet(soln_real, soln_complex)
assert dumeq(nonlinsolve(eqs, [x, z]), soln)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x = sqrt(r/(tan(t)**2 + 1))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
assert nonlinsolve(system, [x, y]) == soln
def test_issue_6752():
a,b,c,d = symbols('a, b, c, d', real=True)
assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}
@SKIP("slow")
def test_issue_5114_solveset():
# slow testcase
from sympy.abc import d, e, f, g, h, i, j, k, l, o, p, q, r
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = [a, b, c, f, h, k, n]
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(nonlinsolve(eqs, syms)) == 1
@SKIP("Hangs")
def _test_issue_5335():
# Not able to check zero dimensional system.
# is_zero_dimensional Hangs
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions but only two are valid
assert len(nonlinsolve(eqs, sym)) == 2
# float
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
assert len(nonlinsolve(eqs, sym)) == 2
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = {(a, -b), (a, b)}
assert nonlinsolve((e1, e2), (x, y)) == ans
assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
# make the 2nd circle's radius be -3
e2 += 6
assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = [x, y, z]
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = [f1, f2, f3]
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = [g1, g2, g3]
# both soln same
A = nonlinsolve(F, v)
B = nonlinsolve(G, v)
assert A == B
def test_nonlinsolve_conditionset():
# when solveset failed to solve all the eq
# return conditionset
f = Function('f')
f1 = f(x) - pi/2
f2 = f(y) - pi*Rational(3, 2)
intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0)
symbols = Tuple(x, y)
soln = ConditionSet(
symbols,
intermediate_system,
S.Complexes**2)
assert nonlinsolve([f1, f2], [x, y]) == soln
def test_substitution_basic():
assert substitution([], [x, y]) == S.EmptySet
assert substitution([], []) == S.EmptySet
system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
assert substitution(system, [x, y]) == soln
soln = FiniteSet((-1, 1))
assert substitution([x + y], [x], [{y: 1}], [y], set(), [x, y]) == soln
assert substitution(
[x + y], [x], [{y: 1}], [y],
{x + 1}, [y, x]) == S.EmptySet
def test_issue_5132_substitution():
x, y, z, r, t = symbols('x, y, z, r, t', real=True)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
assert substitution(system, [x, y]) == soln
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2))
soln = soln_real + soln_complex
assert dumeq(substitution(eqs, [y, z]), soln)
def test_raises_substitution():
raises(ValueError, lambda: substitution([x**2 -1], []))
raises(TypeError, lambda: substitution([x**2 -1]))
raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
raises(TypeError, lambda: substitution([x**2 -1], x))
raises(TypeError, lambda: substitution([x**2 -1], 1))
# end of tests for nonlinsolve
def test_issue_9556():
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) == EmptySet()
assert solveset(Abs(x) + b, x, S.Reals) == EmptySet()
assert solveset(Eq(b, -1), b, S.Reals) == EmptySet()
def test_issue_9611():
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
def test_issue_9557():
assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
FiniteSet(-sqrt(-a), sqrt(-a)))
def test_issue_9778():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x**3 + y, x, S.Reals) == \
FiniteSet(-Abs(y)**Rational(1, 3)*sign(y))
def test_issue_10214():
assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet
assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet
ans = FiniteSet(-2**Rational(2, 3))
assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0
def test_issue_9849():
assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
def test_issue_9953():
assert linsolve([ ], x) == S.EmptySet
def test_issue_9913():
assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/
(3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3))
def test_issue_10397():
assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
def test_issue_14987():
raises(ValueError, lambda: linear_eq_to_matrix(
[x**2], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(-3/x + 1) + 2*y - a], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x**2 - 3*x)/(x - 3) - 3], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)**3 - x**3 - 3*x**2 + 7], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(1/x + 1) + y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)*y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(1/x, 1/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(y/x, y/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(x*(x + 1), x**2 + y)], [x, y]))
def test_simplification():
eq = x + (a - b)/(-2*a + 2*b)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals)
# So that ap - bn is not zero:
ap = Symbol('ap', positive=True)
bn = Symbol('bn', negative=True)
eq = x + (ap - bn)/(-2*ap + 2*bn)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
def test_issue_10555():
f = Function('f')
g = Function('g')
assert solveset(f(x) - pi/2, x, S.Reals).dummy_eq(
ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals))
assert solveset(f(g(x)) - pi/2, g(x), S.Reals).dummy_eq(
ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals))
def test_issue_8715():
eq = x + 1/x > -2 + 1/x
assert solveset(eq, x, S.Reals) == \
(Interval.open(-2, oo) - FiniteSet(0))
assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
Interval.open(exp(-2), oo) - FiniteSet(1)
def test_issue_11174():
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
def test_issue_11534():
# eq and eq2 should give the same solution as a Complement
x = Symbol('x', real=True)
y = Symbol('y', real=True)
eq = -y + x/sqrt(-x**2 + 1)
eq2 = -y**2 + x**2/(-x**2 + 1)
soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1))
assert solveset(eq, x, S.Reals) == soln
assert solveset(eq2, x, S.Reals) == soln
def test_issue_10477():
assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
Union(Interval.open(-oo, -3), Interval.open(0, 1))
def test_issue_10671():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
def test_issue_11064():
eq = x + sqrt(x**2 - 5)
assert solveset(eq > 0, x, S.Reals) == \
Interval(sqrt(5), oo)
assert solveset(eq < 0, x, S.Reals) == \
Interval(-oo, -sqrt(5))
assert solveset(eq > sqrt(5), x, S.Reals) == \
Interval.Lopen(sqrt(5), oo)
def test_issue_12478():
eq = sqrt(x - 2) + 2
soln = solveset_real(eq, x)
assert soln is S.EmptySet
assert solveset(eq < 0, x, S.Reals) is S.EmptySet
assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)
def test_issue_12429():
eq = solveset(log(x)/x <= 0, x, S.Reals)
sol = Interval.Lopen(0, 1)
assert eq == sol
def test_solveset_arg():
assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo)
assert solveset(arg(4*x -3), x) == Interval.open(Rational(3, 4), oo)
def test__is_finite_with_finite_vars():
f = _is_finite_with_finite_vars
# issue 12482
assert all(f(1/x) is None for x in (
Dummy(), Dummy(real=True), Dummy(complex=True)))
assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0
def test_issue_13550():
assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)
def test_issue_13849():
assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == EmptySet()
def test_issue_14223():
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
S.Reals) == FiniteSet(-1, 1)
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
Interval(0, 2)) == FiniteSet(1)
def test_issue_10158():
dom = S.Reals
assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3))
assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5))
assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
dom = S.Complexes
raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))
def test_issue_14300():
f = 1 - exp(-18000000*x) - y
a1 = FiniteSet(-log(-y + 1)/18000000)
assert solveset(f, x, S.Reals) == \
Intersection(S.Reals, a1)
assert dumeq(solveset(f, x),
ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
log(Abs(y - 1))/18000000), S.Integers))
def test_issue_14454():
number = CRootOf(x**4 + x - 1, 2)
raises(ValueError, lambda: invert_real(number, 0, x, S.Reals))
assert invert_real(x**2, number, x, S.Reals) # no error
def test_issue_17882():
assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \
FiniteSet(sqrt(3), -sqrt(3))
def test_term_factors():
assert list(_term_factors(3**x - 2)) == [-2, 3**x]
expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
assert set(_term_factors(expr)) == {
3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)}
#################### tests for transolve and its helpers ###############
def test_transolve():
assert _transolve(3**x, x, S.Reals) == S.EmptySet
assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)
# exponential tests
def test_exponential_real():
from sympy.abc import x, y, z
e1 = 3**(2*x) - 2**(x + 3)
e2 = 4**(5 - 9*x) - 8**(2 - x)
e3 = 2**x + 4**x
e4 = exp(log(5)*x) - 2**x
e5 = exp(x/y)*exp(-z/y) - 2
e6 = 5**(x/2) - 2**(x/3)
e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
e9 = 2**x + 4**x + 8**x - 84
assert solveset(e1, x, S.Reals) == FiniteSet(
-3*log(2)/(-2*log(3) + log(2)))
assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15))
assert solveset(e3, x, S.Reals) == S.EmptySet
assert solveset(e4, x, S.Reals) == FiniteSet(0)
assert solveset(e5, x, S.Reals) == Intersection(
S.Reals, FiniteSet(y*log(2*exp(z/y))))
assert solveset(e6, x, S.Reals) == FiniteSet(0)
assert solveset(e7, x, S.Reals) == FiniteSet(2)
assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5))
assert solveset(e9, x, S.Reals) == FiniteSet(2)
assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
-((-5 - 2*log(3) + log(2))/(log(2) + 2)))
assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
# coverage test
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
S.Reals, FiniteSet(-log(C1 + C2/x**2)))
y = symbols('y', positive=True)
assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
p = Symbol('p', positive=True)
assert solveset_real((1/p + 1)**(p + 1), p).dummy_eq(
ConditionSet(x, Eq((1 + 1/x)**(x + 1), 0), S.Reals))
@XFAIL
def test_exponential_complex():
from sympy.abc import x
from sympy import Dummy
n = Dummy('n')
assert dumeq(solveset_complex(2**x + 4**x, x),imageset(
Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers))
assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
log(2)/(log(x) + log(y)))
assert dumeq(solveset_complex(4**(x/2) - 2**(x/3), x), imageset(
Lambda(n, 3*n*I*pi/log(2)), S.Integers))
assert dumeq(solveset(2**x + 32, x), imageset(
Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers))
eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
assert solveset_complex(eq, y) == FiniteSet(-a, a)
union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers)
union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers)
assert dumeq(solveset(2**x + 4**x + 8**x, x), Union(union1, union2))
eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
res = solveset(eq, x)
num = 2*n*I*pi - 4*log(2) + 2*log(3)
den = -2*log(2) + log(3)
ans = imageset(Lambda(n, num/den), S.Integers)
assert dumeq(res, ans)
def test_expo_conditionset():
f1 = (exp(x) + 1)**x - 2
f2 = (x + 2)**y*x - 3
f3 = 2**x - exp(x) - 3
f4 = log(x) - exp(x)
f5 = 2**x + 3**x - 5**x
assert solveset(f1, x, S.Reals).dummy_eq(ConditionSet(
x, Eq((exp(x) + 1)**x - 2, 0), S.Reals))
assert solveset(f2, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(x*(x + 2)**y - 3, 0), S.Reals))
assert solveset(f3, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(2**x - exp(x) - 3, 0), S.Reals))
assert solveset(f4, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(-exp(x) + log(x), 0), S.Reals))
assert solveset(f5, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(2**x + 3**x - 5**x, 0), S.Reals))
def test_exponential_symbols():
x, y, z = symbols('x y z', positive=True)
assert solveset(z**x - y, x, S.Reals) == Intersection(
S.Reals, FiniteSet(log(y)/log(z)))
f1 = 2*x**w - 4*y**w
f2 = (x/y)**w - 2
sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals)
sol2 = Intersection({log(2)/log(x/y)}, S.Reals)
assert solveset(f1, w, S.Reals) == sol1, solveset(f1, w, S.Reals)
assert solveset(f2, w, S.Reals) == sol2, solveset(f2, w, S.Reals)
assert solveset(x**x, x, Interval.Lopen(0,oo)).dummy_eq(
ConditionSet(w, Eq(w**w, 0), Interval.open(0, oo)))
assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == FiniteSet(
(x - z)/log(2)) - FiniteSet(0)
assert solveset(a**x - b**x, x).dummy_eq(ConditionSet(
w, Ne(a, 0) & Ne(b, 0), FiniteSet(0)))
def test_ignore_assumptions():
# make sure assumptions are ignored
xpos = symbols('x', positive=True)
x = symbols('x')
assert solveset_complex(xpos**2 - 4, xpos
) == solveset_complex(x**2 - 4, x)
@XFAIL
def test_issue_10864():
assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)
@XFAIL
def test_solve_only_exp_2():
assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
def test_is_exponential():
assert _is_exponential(y, x) is False
assert _is_exponential(3**x - 2, x) is True
assert _is_exponential(5**x - 7**(2 - x), x) is True
assert _is_exponential(sin(2**x) - 4*x, x) is False
assert _is_exponential(x**y - z, y) is True
assert _is_exponential(x**y - z, x) is False
assert _is_exponential(2**x + 4**x - 1, x) is True
assert _is_exponential(x**(y*z) - x, x) is False
assert _is_exponential(x**(2*x) - 3**x, x) is False
assert _is_exponential(x**y - y*z, y) is False
assert _is_exponential(x**y - x*z, y) is True
def test_solve_exponential():
assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2))
assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
S.EmptySet
assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
# end of exponential tests
# logarithmic tests
def test_logarithmic():
assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
-sqrt(10), sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2)
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solveset_real(eq, x) == \
Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
sqrt(y**2 - y*exp(z)))) - \
Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
assert solveset_real(
log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half)
assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals
@XFAIL
def test_uselogcombine_2():
eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
assert solveset_real(eq, x) == EmptySet()
eq = log(8*x) - log(sqrt(x) + 1) - 2
assert solveset_real(eq, x) == EmptySet()
def test_is_logarithmic():
assert _is_logarithmic(y, x) is False
assert _is_logarithmic(log(x), x) is True
assert _is_logarithmic(log(x) - 3, x) is True
assert _is_logarithmic(log(x)*log(y), x) is True
assert _is_logarithmic(log(x)**2, x) is False
assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
assert _is_logarithmic(log(x**y) - y*log(x), x) is True
assert _is_logarithmic(sin(log(x)), x) is False
assert _is_logarithmic(x + y, x) is False
assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
assert _is_logarithmic(log(x) + log(y) + x, x) is False
assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False
def test_solve_logarithm():
y = Symbol('y')
assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
y = Symbol('y', positive=True)
assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)
# end of logarithmic tests
def test_linear_coeffs():
from sympy.solvers.solveset import linear_coeffs
assert linear_coeffs(0, x) == [0, 0]
assert all(i is S.Zero for i in linear_coeffs(0, x))
assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
raises(ValueError, lambda:
linear_coeffs(x + 2*x**2 + x**3, x, x**2))
raises(ValueError, lambda:
linear_coeffs(1/x*(x - 1) + 1/x, x))
assert linear_coeffs(a*(x + y), x, y) == [a, a, 0]
assert linear_coeffs(1.0, x, y) == [0, 0, 1.0]
# modular tests
def test_is_modular():
assert _is_modular(y, x) is False
assert _is_modular(Mod(x, 3) - 1, x) is True
assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True
assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True
assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True
assert _is_modular(Mod(x, 3) - 1, y) is False
assert _is_modular(Mod(x, 3)**2 - 5, x) is False
assert _is_modular(Mod(x, 3)**2 - y, x) is False
assert _is_modular(exp(Mod(x, 3)) - 1, x) is False
assert _is_modular(Mod(3, y) - 1, y) is False
def test_invert_modular():
n = Dummy('n', integer=True)
from sympy.solvers.solveset import _invert_modular as invert_modular
# non invertible cases
assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5)
assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5)
assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5)
# a is symbol
assert dumeq(invert_modular(Mod(x, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 5), S.Integers)))
# a.is_Add
assert dumeq(invert_modular(Mod(x + 8, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \
(Mod(x**2 + x, 7), 5)
# a.is_Mul
assert dumeq(invert_modular(Mod(3*x, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \
(Mod((x + 1)*(x + 2), 7), 5)
# a.is_Pow
assert invert_modular(Mod(x**4, 7), S(5), n, x) == \
(x, EmptySet())
assert dumeq(invert_modular(Mod(3**x, 4), S(3), n, x),
(x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0)))
assert dumeq(invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x),
(x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0)))
assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, EmptySet())
def test_solve_modular():
n = Dummy('n', integer=True)
# if rhs has symbol (need to be implemented in future).
assert solveset(Mod(x, 4) - x, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(-x + Mod(x, 4), 0),
S.Integers))
# when _invert_modular fails to invert
assert solveset(3 - Mod(sin(x), 7), x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers))
assert solveset(3 - Mod(log(x), 7), x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers))
assert solveset(3 - Mod(exp(x), 7), x, S.Integers
).dummy_eq(ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0),
S.Integers))
# EmptySet solution definitely
assert solveset(7 - Mod(x, 5), x, S.Integers) == EmptySet()
assert solveset(5 - Mod(x, 5), x, S.Integers) == EmptySet()
# Negative m
assert dumeq(solveset(2 + Mod(x, -3), x, S.Integers),
ImageSet(Lambda(n, -3*n - 2), S.Integers))
assert solveset(4 + Mod(x, -3), x, S.Integers) == EmptySet()
# linear expression in Mod
assert dumeq(solveset(3 - Mod(x, 5), x, S.Integers),
ImageSet(Lambda(n, 5*n + 3), S.Integers))
assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Integers),
ImageSet(Lambda(n, 7*n + 5), S.Integers))
assert dumeq(solveset(3 - Mod(5*x, 7), x, S.Integers),
ImageSet(Lambda(n, 7*n + 2), S.Integers))
# higher degree expression in Mod
assert dumeq(solveset(Mod(x**2, 160) - 9, x, S.Integers),
Union(ImageSet(Lambda(n, 160*n + 3), S.Integers),
ImageSet(Lambda(n, 160*n + 13), S.Integers),
ImageSet(Lambda(n, 160*n + 67), S.Integers),
ImageSet(Lambda(n, 160*n + 77), S.Integers),
ImageSet(Lambda(n, 160*n + 83), S.Integers),
ImageSet(Lambda(n, 160*n + 93), S.Integers),
ImageSet(Lambda(n, 160*n + 147), S.Integers),
ImageSet(Lambda(n, 160*n + 157), S.Integers)))
assert solveset(3 - Mod(x**4, 7), x, S.Integers) == EmptySet()
assert dumeq(solveset(Mod(x**4, 17) - 13, x, S.Integers),
Union(ImageSet(Lambda(n, 17*n + 3), S.Integers),
ImageSet(Lambda(n, 17*n + 5), S.Integers),
ImageSet(Lambda(n, 17*n + 12), S.Integers),
ImageSet(Lambda(n, 17*n + 14), S.Integers)))
# a.is_Pow tests
assert dumeq(solveset(Mod(7**x, 41) - 15, x, S.Integers),
ImageSet(Lambda(n, 40*n + 3), S.Naturals0))
assert dumeq(solveset(Mod(12**x, 21) - 18, x, S.Integers),
ImageSet(Lambda(n, 6*n + 2), S.Naturals0))
assert dumeq(solveset(Mod(3**x, 4) - 3, x, S.Integers),
ImageSet(Lambda(n, 2*n + 1), S.Naturals0))
assert dumeq(solveset(Mod(2**x, 7) - 2 , x, S.Integers),
ImageSet(Lambda(n, 3*n + 1), S.Naturals0))
assert dumeq(solveset(Mod(3**(3**x), 4) - 3, x, S.Integers),
Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)},
S.Integers)), S.Naturals0), S.Integers))
# Implemented for m without primitive root
assert solveset(Mod(x**3, 7) - 2, x, S.Integers) == EmptySet()
assert dumeq(solveset(Mod(x**3, 8) - 1, x, S.Integers),
ImageSet(Lambda(n, 8*n + 1), S.Integers))
assert dumeq(solveset(Mod(x**4, 9) - 4, x, S.Integers),
Union(ImageSet(Lambda(n, 9*n + 4), S.Integers),
ImageSet(Lambda(n, 9*n + 5), S.Integers)))
# domain intersection
assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0),
Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0))
# Complex args
assert solveset(Mod(x, 3) - I, x, S.Integers) == \
EmptySet()
assert solveset(Mod(I*x, 3) - 2, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers))
assert solveset(Mod(I + x, 3) - 2, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers))
# issue 17373 (https://github.com/sympy/sympy/issues/17373)
assert dumeq(solveset(Mod(x**4, 14) - 11, x, S.Integers),
Union(ImageSet(Lambda(n, 14*n + 3), S.Integers),
ImageSet(Lambda(n, 14*n + 11), S.Integers)))
assert dumeq(solveset(Mod(x**31, 74) - 43, x, S.Integers),
ImageSet(Lambda(n, 74*n + 31), S.Integers))
# issue 13178
n = symbols('n', integer=True)
a = 742938285
b = 1898888478
m = 2**31 - 1
c = 20170816
assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Integers),
ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0))
assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Naturals0),
Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0),
S.Naturals0))
assert dumeq(solveset(c - Mod(a**(2*n)*b, m), n, S.Integers),
Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0),
S.Integers))
assert solveset(c - Mod(a**(2*n + 7)*b, m), n, S.Integers) == EmptySet()
assert dumeq(solveset(c - Mod(a**(n - 4)*b, m), n, S.Integers),
Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0),
S.Integers))
# end of modular tests
def test_issue_17276():
assert nonlinsolve([Eq(x, 5**(S(1)/5)), Eq(x*y, 25*sqrt(5))], x, y) == \
FiniteSet((5**(S(1)/5), 25*5**(S(3)/10)))
@XFAIL
def test_substitution_with_infeasible_solution():
a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11 = symbols(
'a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11'
)
solvefor = [p00, p01, p10, p11, c00, c01, c10, c11, m0, m1, m3, l0, l1, l2, l3]
system = [
-l0 * c00 - l1 * c01 + m0 + c00 + c01,
-l0 * c10 - l1 * c11 + m1,
-l2 * c00 - l3 * c01 + c00 + c01,
-l2 * c10 - l3 * c11 + m3,
-l0 * p00 - l2 * p10 + p00 + p10,
-l1 * p00 - l3 * p10 + p00 + p10,
-l0 * p01 - l2 * p11,
-l1 * p01 - l3 * p11,
-a00 + c00 * p00 + c10 * p01,
-a01 + c01 * p00 + c11 * p01,
-a10 + c00 * p10 + c10 * p11,
-a11 + c01 * p10 + c11 * p11,
-m0 * p00,
-m1 * p01,
-m2 * p10,
-m3 * p11,
-m4 * c00,
-m5 * c01,
-m6 * c10,
-m7 * c11,
m2,
m4,
m5,
m6,
m7
]
sol = FiniteSet(
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l2, l3),
(p00, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, 1, -p01/p11, -p01/p11),
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, -l3*p11/p01, -p01/p11, l3),
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, -l2*p11/p01, -l3*p11/p01, l2, l3),
)
assert sol != nonlinsolve(system, solvefor)
|
866dccd757c8ebcb6e7ad880143ef70296b1ab78adff059d1e2d3f0b77369c37 | from sympy import (
Abs, And, Derivative, Dummy, Eq, Float, Function, Gt, I, Integral,
LambertW, Lt, Matrix, Or, Poly, Q, Rational, S, Symbol, Ne,
Wild, acos, asin, atan, atanh, binomial, cos, cosh, diff, erf, erfinv, erfc,
erfcinv, exp, im, log, pi, re, sec, sin,
sinh, solve, solve_linear, sqrt, sstr, symbols, sympify, tan, tanh,
root, atan2, arg, Mul, SparseMatrix, ask, Tuple, nsolve, oo,
E, cbrt, denom, Add, Piecewise, GoldenRatio, TribonacciConstant)
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, denoms
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.testing.pytest import slow, XFAIL, SKIP, raises
from sympy.testing.randtest import verify_numerically as tn
from sympy.abc import a, b, c, d, k, h, p, x, y, z, t, q, m
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True)[0] == {fx: 2, gx: 0}
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y - gx**2*x}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == {S(2), -S(2)}
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
# duplicate symbols removed
assert solve((x - 3, y + 2), x, y, x) == {x: 3, y: -2}
# unordered symbols
# only 1
assert solve(y - 3, {y}) == [3]
# more than 1
assert solve(y - 3, {x, y}) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == \
[(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))]
assert solve(*args, set=True) == \
([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))})
assert solve(*args, dict=True) == \
[{b: sqrt(2), a: -sqrt(2)}, {b: -sqrt(2), a: sqrt(2)}]
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
flags = dict(dict=True)
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: c - b**2/(4*a), h: -b/(2*a), p: 1/(4*a)}]
flags.update(dict(simplify=False))
assert solve(eq, [h, p, k], exclude=[a, b, c], **flags) == \
[{k: (4*a*c - b**2)/(4*a), h: -b/(2*a), p: 1/(4*a)}]
# failing undetermined system
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == {x: -LambertW(1), y: 0}
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == {x: -LambertW(-1), y: -LambertW(-1)}
# -- when symbols given
solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
# When one or more args are Boolean
assert solve(Eq(x**2, 0.0)) == [0] # issue 19048
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
assert not solve([Eq(x, x+1), x < 2], x)
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
assert solve([Eq(x, x), Eq(x, x+1)], x) == []
assert solve(True, x) == []
assert solve([x - 1, False], [x], set=True) == ([], set())
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == {-S.One, S.One}
assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One}
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {y: S.Zero, x: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == {
-2 + 3**S.Half,
S(4),
-2 - 3**S.Half
}
assert set(solve((x**2 - 1)**2 - a, x)) == \
{sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))}
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2}
assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)}
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2],
[ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)]
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: t*(-n-1)/n, z: t*(-n-1)/n, y: 0}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
@XFAIL
def test_linear_system_xfail():
# https://github.com/sympy/sympy/issues/6420
M = Matrix([[0, 15.0, 10.0, 700.0],
[1, 1, 1, 100.0],
[0, 10.0, 5.0, 200.0],
[-5.0, 0, 0, 0 ]])
assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_system_symbols_doesnt_hang_1():
def _mk_eqs(wy):
# Equations for fitting a wy*2 - 1 degree polynomial between two points,
# at end points derivatives are known up to order: wy - 1
order = 2*wy - 1
x, x0, x1 = symbols('x, x0, x1', real=True)
y0s = symbols('y0_:{}'.format(wy), real=True)
y1s = symbols('y1_:{}'.format(wy), real=True)
c = symbols('c_:{}'.format(order+1), real=True)
expr = sum([coeff*x**o for o, coeff in enumerate(c)])
eqs = []
for i in range(wy):
eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i])
eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i])
return eqs, c
#
# The purpose of this test is just to see that these calls don't hang. The
# expressions returned are complicated so are not included here. Testing
# their correctness takes longer than solving the system.
#
for n in range(1, 7+1):
eqs, c = _mk_eqs(n)
solve(eqs, c)
def test_linear_system_symbols_doesnt_hang_2():
M = Matrix([
[66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76],
[10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78],
[19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3],
[74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6],
[69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81],
[50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35],
[58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39],
[42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24],
[ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13],
[19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51],
[29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40],
[15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37],
[62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45],
[ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50],
[40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32],
[33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1],
[97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96],
[40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52],
[38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]])
syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19')
sol = {
x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588,
x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147,
x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294,
x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176,
x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528,
x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764,
x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588,
x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063,
x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176,
x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528,
x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528,
x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882,
x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882,
x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176,
x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168,
x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176,
x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764,
x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176,
x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528
}
eqs = list(M * Matrix(syms + (1,)))
assert solve(eqs, syms) == sol
y = Symbol('y')
eqs = list(y * M * Matrix(syms + (1,)))
assert solve(eqs, syms) == sol
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
@slow
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)}
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [{
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
}, {
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)},
{
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)}]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I}
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
ans = [(log(2401) + 5*LambertW((-1 + sqrt(5) + sqrt(2)*I*sqrt(sqrt(5) + \
5))*log(7**(7*3**Rational(1, 5)/20))* -1))/(-3*log(7)), \
(log(2401) + 5*LambertW((1 + sqrt(5) - sqrt(2)*I*sqrt(5 - \
sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW((1 + sqrt(5) + sqrt(2)*I*sqrt(5 - \
sqrt(5)))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW((-sqrt(5) + 1 + sqrt(2)*I*sqrt(sqrt(5) + \
5))*log(7**(7*3**Rational(1, 5)/20))))/(-3*log(7)), \
(log(2401) + 5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(-3*log(7))]
assert result == ans
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [1 + log(5)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = {3*x - 1, 2*y - 4}
assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
# issue 13263
x = Symbol('x')
f = Function('f')
soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)],
f(x).diff(x), f(x).diff(x, 2))
assert soln == { f(x).diff(x, 2): 1/2, f(x).diff(x): 1/2 }
soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) -
f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3))
assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x) == \
{a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1) - (2*x + 1)/(x**2 + x), [a, b], x) == \
{a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), [a, b, c], x) == \
{a: -2, b: 2, c: -1}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S.Zero < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6))
assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(0, x)) == [0]
assert solve(Eq(True, x)) == True
assert solve(Eq(1, x)) == [1]
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1)
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)}
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
{log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)},
{2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)},
{log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)},
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
{log(-sqrt(3) + 2), log(sqrt(3) + 2)}
assert set(solve(x**y + x**(2*y) - 1, x)) == \
{(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)}
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve((x + y)*n - y**2 + 2, x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)}
assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)}
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)]
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
{log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a}
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
{(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))}
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(Rational(1, 3))), Rational(1, 3))]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
{(log(-sin(2)), -S(2)), (log(sin(2)), S(2))}
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([x, y], {
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))})
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-z**2 + sin(y))/2, z), (log(-sqrt(-z**2 + sin(y))), z)})
assert set(solve(eqs, x, y)) == \
{
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))}
assert set(solve(eqs, y, z)) == \
{
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))}
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([x, y], {
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))})
assert solve(eqs, x, z, set=True) == (
[x, z],
{(log(-sqrt(-z + sin(y))), z), (log(-z + sin(y))/2, z)})
assert set(solve(eqs, x, y)) == {
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))}
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], {(S.One, S(3)), (S(3), S.One)})
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
{(S.One, S(3)), (S(3), S.One)}
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
{(-sqrt(-y - 4),), (sqrt(-y - 4),)}
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
{(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))}
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)}
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
{S.Zero, Rational(9, 16)}
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)}
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)}
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
{Rational(-1, 2), Rational(-1, 3)}
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)}
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [Rational(-1, 11)]
assert solve(p + 6*I) == []
# issue 8622
assert unrad(root(x + 1, 5) - root(x, 3)) == (
x**5 - x**3 - 3*x**2 - 3*x - 1, [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**Rational(1, 3) + x)**Rational(5, 2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 +
10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# is this needed?
#assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
# x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 - cosh(x)**5, [])
raises(NotImplementedError, lambda:
unrad(sqrt(cosh(x)/x) + root(x + 1,3)*sqrt(x) - 1))
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 - (Rational(-1, 2) -
sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) - Rational(13824, 343))**2)/2 -
Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x + 27*sqrt(x**2))**Rational(1, 3)/21 -
(Rational(-1, 2) + sqrt(3)*I/2)*(x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) -
Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3, 4*2**Rational(2, 3)*(27*x +
27*sqrt(x**2))**Rational(1, 3)/21 - (x*Rational(-6912, 343) + sqrt((x*Rational(-13824, 343) -
Rational(13824, 343))**2)/2 - Rational(6912, 343))**Rational(1, 3)/3]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(4096*s**13 + 960*s**12 + 48*s**11 - s**10 - 1728*s**4,
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = F*Rational(2, 7) - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(-s*(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 +
51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
eq = root(x, 3) - root(y, 3) + root(x, 5)
assert check(unrad(eq),
(s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x]))
eq = root(x, 3) + root(y, 3) + root(x*y, 4)
assert check(unrad(eq),
(s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 -
3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 -
3*s**3*y**5 - y**6), [s, s**4 - x*y]))
raises(NotImplementedError,
lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5)))
# Test unrad with an Equality
eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5))
assert check(unrad(eq),
(-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x]))
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
assert checksol([x - 1, x**2 - 1], x, 1) is True
assert checksol([x - 1, x**2 - 2], x, 1) is False
assert checksol(Poly(x**2 - 1), x, 1) is True
raises(ValueError, lambda: checksol(x, 1))
raises(ValueError, lambda: checksol([], x, 1))
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
@slow
def test_issue_5114_solvers():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
I1: I2 + I6,
dI1: -4*I2 - 4*I3 - 4*I5 - 10*I6 + 24,
I4: -I5 + I6,
dQ4: -I5 + I6,
Q4: 3*I5/2 - I6/2 - dI4/2,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True) == ans[0]
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [-I3 + I6, I3 - I6, 0, 0, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_issue_5849 but solved with the matrix solver.
A solution only exists if I3 == I6 which is not generically true,
but `solve` does not return conditions under which the solution is
valid, only a solution that is canonical and consistent with the input.
'''
# a simple example with the same issue
# assert solve([x+y+z, x+y], [x, y]) == {x: y}
# the longer example
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == {
I1: I2 + I6,
dI1: -4*I2 - 4*I3 - 4*I5 - 10*I6 + 24,
I4: -I5 + I6,
dQ4: -I5 + I6,
Q4: 3*I5/2 - I6/2 - dI4/2,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6}
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[{f(x): 3*D, y: 9*D**2 + 4}]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([g(a)], {
(-sqrt(h(a)**2*f(a)**2 + G)/f(a),),
(sqrt(h(a)**2*f(a)**2+ G)/f(a),)})
args = [f(x).diff(x, 2)*(f(x) + g(x)) - g(x)**2 + 2, f(x), g(x)]
assert set(solve(*args)) == \
{(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], {
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))})
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
{-sqrt(-x), sqrt(-x)}
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
{S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half}
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=True)) \
== 3
assert count(solve([x + y + z, y + z + a + t], particular=True, quick=False)) \
== 3
assert count(solve([x + y + z, y + z + a], particular=True, quick=True)) == 1
assert count(solve([x + y + z, y + z + a], particular=True, quick=False)) == 2
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)]
assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)}
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
def test_lambert_multivariate():
from sympy.abc import x, y
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)}
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478...
assert solve(x**3 - 3**x, x) == ans
assert set(solve(3*log(x) - x*log(3))) == set(ans)
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
assert solve(3*sin(x) - x*sin(3), x) == [3]
assert set(solve(x**a - a**x), x) == {
a, -a*LambertW(-log(a)/a)/log(a)}
@slow
def test_lambert_bivariate():
# tests passing current implementation
assert solve((x**2 + x)*exp(x**2 + x) - 1) == [
Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2,
Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2]
assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [
Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2,
Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve((a/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)]
assert solve((1/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)/4),
4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21
4*LambertW(-sqrt(2)/4, -1)]
assert solve(x*log(x) + 3*x + 1, x) == \
[exp(-3 + LambertW(-exp(3)))]
assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
# check collection
ax = a**(3*x + 5)
ans = solve(3*log(ax) + b*log(ax) + ax, x)
x0 = 1/log(a)
x1 = sqrt(3)*I
x2 = b + 3
x3 = x2*LambertW(1/x2)/a**5
x4 = x3**Rational(1, 3)/2
assert ans == [
x0*log(x4*(x1 - 1)),
x0*log(-x4*(x1 + 1)),
x0*log(x3)/3]
x1 = LambertW(Rational(1, 3))
x2 = a**(-5)
x3 = 3**Rational(1, 3)
x4 = 3**Rational(5, 6)*I
x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2
ans = solve(3*log(ax) + ax, x)
assert ans == [
x0*log(3*x1*x2)/3,
x0*log(x5*(-x3 + x4)),
x0*log(-x5*(x3 + x4))]
# coverage
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))]
assert set(solve(3**cos(x) - cos(x)**3)) == {
acos(3), acos(-3*LambertW(-log(3)/3)/log(3))}
# should give only one solution after using `uniq`
assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [
exp(-z + LambertW(2*z**4*exp(2*z))/2)/z]
# cases when p != S.One
# issue 4271
ans = solve((a/x + exp(x/2)).diff(x, 2), x)
x0 = (-a)**Rational(1, 3)
x1 = sqrt(3)*I
x2 = x0/6
assert ans == [
6*LambertW(x0/3),
6*LambertW(x2*(x1 - 1)),
6*LambertW(-x2*(x1 + 1))]
assert solve((1/x + exp(x/2)).diff(x, 2), x) == \
[6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \
6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
# this is slow but not exceedingly slow
assert solve((x**3)**(x/2) + pi/2, x) == [
exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))]
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)}
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 3270
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
@slow
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == {x**y}
assert _simple_dens(1/root(x, 3), [x]) == {x}
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]]
assert p == q == r
@slow
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3),
pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9),
pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3),
pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi,
-2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)),
-2*I*log(-sin(pi/18) - I*cos(pi/18)),
-2*I*log(-sin(pi/18) + I*cos(pi/18)),
-2*I*log(sin(pi/18) - I*cos(pi/18)),
-2*I*log(sin(pi/18) + I*cos(pi/18))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
@slow
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
s = solve(terms, [a, b, c, d, e, f, g], dict=True)
assert s == [{a: -sqrt(-f**2 - 1), b: -sqrt(-f**2 - 1),
c: -sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: sqrt(-f**2 - 1), b: sqrt(-f**2 - 1),
c: sqrt(-f**2 - 1), d: f, e: f, g: -1},
{a: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 - sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 - sqrt(-f**2 + 2)/2, c: sqrt(-f**2 + 2),
d: -f/2 - sqrt(-3*f**2 + 6)/2,
e: -f/2 + sqrt(3)*sqrt(-f**2 + 2)/2, g: 2},
{a: sqrt(3)*f/2 + sqrt(-f**2 + 2)/2,
b: -sqrt(3)*f/2 + sqrt(-f**2 + 2)/2, c: -sqrt(-f**2 + 2),
d: -f/2 + sqrt(-3*f**2 + 6)/2,
e: -f/2 - sqrt(3)*sqrt(-f**2 + 2)/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == {2, y}
assert denoms(x/2 + 1/y, y) == {y}
assert denoms(x/2 + 1/y, [y]) == {y}
assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y}
assert denoms(1/x + 1/y + 1/z, x, y) == {x, y}
assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y}
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1},
{x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
@slow
def test_issue_15731():
# f(x)**g(x)=c
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
assert solve((x)**(x + 4) - 4) == [-2]
assert solve((-x)**(-x + 4) - 4) == [2]
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
assert solve((x**2 + 1)**x - 25) == [2]
assert solve(x**(2/x) - 2) == [2, 4]
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)]
# a**g(x)=c
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)]
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half]
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
assert solve(I**x + 1) == [2]
assert solve((1 + I)**x - 2*I) == [2]
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)]
# bases of both sides are equal
b = Symbol('b')
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
assert solve(b**x - b, x) == [1]
b = Symbol('b', positive=True)
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
def test_issue_10933():
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
def test_Abs_handling():
x = symbols('x', real=True)
assert solve(abs(x/y), x) == [0]
def test_issue_7982():
x = Symbol('x')
# Test that no exception happens
assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false
# From #8040
assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false
def test_issue_14645():
x, y = symbols('x y')
assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)]
def test_issue_12024():
x, y = symbols('x y')
assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \
[{y: Piecewise((0.0, x < 0.1), (x, True))}]
def test_issue_17452():
assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)),
sqrt(log(pi) + I*pi)/sqrt(log(7))]
assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))]
def test_issue_17799():
assert solve(-erf(x**(S(1)/3))**pi + I, x) == []
def test_issue_17650():
x = Symbol('x', real=True)
assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)]
def test_issue_17882():
eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3))
assert unrad(eq) == (4*x**2 - 12, [])
def test_issue_17949():
assert solve(exp(+x+x**2), x) == []
assert solve(exp(-x+x**2), x) == []
assert solve(exp(+x-x**2), x) == []
assert solve(exp(-x-x**2), x) == []
def test_issue_10993():
assert solve(Eq(binomial(x, 2), 3)) == [-2, 3]
assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1]
assert solve(Eq(binomial(x, 2), 0)) == [0, 1]
assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)]
assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)]
assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3]
def test_issue_11553():
eq1 = x + y + 1
eq2 = x + GoldenRatio
assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio}
eq3 = x + 2 + TribonacciConstant
assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant}
def test_issue_19113_19102():
t = S(1)/3
solve(cos(x)**5-sin(x)**5)
assert solve(4*cos(x)**3 - 2*sin(x)**3) == [
atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2),
-atan(2**(t)*(1 + sqrt(3)*I)/2)]
h = S.Half
assert solve(cos(x)**2 + sin(x)) == [
2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2),
-2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2),
-2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2),
-2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)]
assert solve(3*cos(x) - sin(x)) == [atan(3)]
def test_issue_19509():
a = S(3)/4
b = S(5)/8
c = sqrt(5)/8
d = sqrt(5)/4
assert solve(1/(x -1)**5 - 1) == [2,
-d + a - sqrt(-b + c),
-d + a + sqrt(-b + c),
d + a - sqrt(-b - c),
d + a + sqrt(-b - c)]
|
4f420c79d77107823f1e85187e95b29dbf1473fa3b71d66f6fcf834a4457c9a7 | """Tests for solvers of systems of polynomial equations. """
from sympy import (flatten, I, Integer, Poly, QQ, Rational, S, sqrt,
solve, symbols)
from sympy.abc import x, y, z
from sympy.polys import PolynomialError
from sympy.solvers.polysys import (solve_poly_system,
solve_triangulated, solve_biquadratic, SolveFailed)
from sympy.polys.polytools import parallel_poly_from_expr
from sympy.testing.pytest import raises
def test_solve_poly_system():
assert solve_poly_system([x - 1], x) == [(S.One,)]
assert solve_poly_system([y - x, y - x - 1], x, y) is None
assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)]
assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \
[(Rational(3, 2), Integer(2), Integer(10))]
assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \
[(0, 0), (2, -sqrt(2)), (2, sqrt(2))]
assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \
[(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))]
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
solution = [(1, -1), (1, 1)]
assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution
assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution
assert solve_poly_system([x**2 - y**2, x - 1]) == solution
assert solve_poly_system(
[x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)]
raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y))
raises(NotImplementedError, lambda: solve_poly_system(
[z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2]))
raises(PolynomialError, lambda: solve_poly_system([1/x], x))
def test_solve_biquadratic():
x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r')
f_1 = (x - 1)**2 + (y - 1)**2 - r**2
f_2 = (x - 2)**2 + (y - 2)**2 - r**2
s = sqrt(2*r**2 - 1)
a = (3 - s)/2
b = (3 + s)/2
assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)]
f_1 = (x - 1)**2 + (y - 2)**2 - r**2
f_2 = (x - 1)**2 + (y - 1)**2 - r**2
assert solve_poly_system([f_1, f_2], x, y) == \
[(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)),
(1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))]
query = lambda expr: expr.is_Pow and expr.exp is S.Half
f_1 = (x - 1 )**2 + (y - 2)**2 - r**2
f_2 = (x - x1)**2 + (y - 1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(r.count(query) == 1 for r in flatten(result))
f_1 = (x - x0)**2 + (y - y0)**2 - r**2
f_2 = (x - x1)**2 + (y - y1)**2 - r**2
result = solve_poly_system([f_1, f_2], x, y)
assert len(result) == 2 and all(len(r) == 2 for r in result)
assert all(len(r.find(query)) == 1 for r in flatten(result))
s1 = (x*y - y, x**2 - x)
assert solve(s1) == [{x: 1}, {x: 0, y: 0}]
s2 = (x*y - x, y**2 - y)
assert solve(s2) == [{y: 1}, {x: 0, y: 0}]
gens = (x, y)
for seq in (s1, s2):
(f, g), opt = parallel_poly_from_expr(seq, *gens)
raises(SolveFailed, lambda: solve_biquadratic(f, g, opt))
seq = (x**2 + y**2 - 2, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == [
(-1, -1), (-1, 1), (1, -1), (1, 1)]
ans = [(0, -1), (0, 1)]
seq = (x**2 + y**2 - 1, y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1)
(f, g), opt = parallel_poly_from_expr(seq, *gens)
assert solve_biquadratic(f, g, opt) == ans
def test_solve_triangulated():
f_1 = x**2 + y + z - 1
f_2 = x + y**2 + z - 1
f_3 = x + y + z**2 - 1
a, b = sqrt(2) - 1, -sqrt(2) - 1
assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0)]
dom = QQ.algebraic_field(sqrt(2))
assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \
[(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)]
def test_solve_issue_3686():
roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y)
assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))]
roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y)
# TODO: does this really have to be so complicated?!
assert len(roots) == 2
assert roots[0][0] == 0
assert roots[0][1].epsilon_eq(-499.474999374969, 1e12)
assert roots[1][0] == 0
assert roots[1][1].epsilon_eq(500.474999374969, 1e12)
|
1b52377099192d04dcb64399e8b7023c7514204f0357c321c1b0d6eceb3494c5 | """
If the arbitrary constant class from issue 4435 is ever implemented, this
should serve as a set of test cases.
"""
from sympy import (acos, cos, cosh, Eq, exp, Function, I, Integral, log, Pow,
S, sin, sinh, sqrt, Symbol)
from sympy.solvers.ode.ode import constantsimp, constant_renumber
from sympy.testing.pytest import XFAIL
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
u2 = Symbol('u2')
_a = Symbol('_a')
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
f = Function('f')
def test_constant_mul():
# We want C1 (Constant) below to absorb the y's, but not the x's
assert constant_renumber(constantsimp(y*C1, [C1])) == C1*y
assert constant_renumber(constantsimp(C1*y, [C1])) == C1*y
assert constant_renumber(constantsimp(x*C1, [C1])) == x*C1
assert constant_renumber(constantsimp(C1*x, [C1])) == x*C1
assert constant_renumber(constantsimp(2*C1, [C1])) == C1
assert constant_renumber(constantsimp(C1*2, [C1])) == C1
assert constant_renumber(constantsimp(y*C1*x, [C1, y])) == C1*x
assert constant_renumber(constantsimp(x*y*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp(y*x*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp(C1*x*y, [C1, y])) == C1*x
assert constant_renumber(constantsimp(x*C1*y, [C1, y])) == x*C1
assert constant_renumber(constantsimp(C1*y*(y + 1), [C1])) == C1*y*(y+1)
assert constant_renumber(constantsimp(y*C1*(y + 1), [C1])) == C1*y*(y+1)
assert constant_renumber(constantsimp(x*(y*C1), [C1])) == x*y*C1
assert constant_renumber(constantsimp(x*(C1*y), [C1])) == x*y*C1
assert constant_renumber(constantsimp(C1*(x*y), [C1, y])) == C1*x
assert constant_renumber(constantsimp((x*y)*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp((y*x)*C1, [C1, y])) == x*C1
assert constant_renumber(constantsimp(y*(y + 1)*C1, [C1, y])) == C1
assert constant_renumber(constantsimp((C1*x)*y, [C1, y])) == C1*x
assert constant_renumber(constantsimp(y*(x*C1), [C1, y])) == x*C1
assert constant_renumber(constantsimp((x*C1)*y, [C1, y])) == x*C1
assert constant_renumber(constantsimp(C1*x*y*x*y*2, [C1, y])) == C1*x**2
assert constant_renumber(constantsimp(C1*x*y*z, [C1, y, z])) == C1*x
assert constant_renumber(constantsimp(C1*x*y**2*sin(z), [C1, y, z])) == C1*x
assert constant_renumber(constantsimp(C1*C1, [C1])) == C1
assert constant_renumber(constantsimp(C1*C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2*C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1*C1*C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1*x*2**x, [C1])) == C1*x*2**x
def test_constant_add():
assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
assert constant_renumber(constantsimp(C1 + 2, [C1])) == C1
assert constant_renumber(constantsimp(2 + C1, [C1])) == C1
assert constant_renumber(constantsimp(C1 + y, [C1, y])) == C1
assert constant_renumber(constantsimp(C1 + x, [C1])) == C1 + x
assert constant_renumber(constantsimp(C1 + C1, [C1])) == C1
assert constant_renumber(constantsimp(C1 + C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2 + C1, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1 + C2 + C1, [C1, C2])) == C1
def test_constant_power_as_base():
assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
assert constant_renumber(constantsimp(Pow(C1, C1), [C1])) == C1
assert constant_renumber(constantsimp(C1**C1, [C1])) == C1
assert constant_renumber(constantsimp(C1**C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2**C1, [C1, C2])) == C1
assert constant_renumber(constantsimp(C2**C2, [C1, C2])) == C1
assert constant_renumber(constantsimp(C1**y, [C1, y])) == C1
assert constant_renumber(constantsimp(C1**x, [C1])) == C1**x
assert constant_renumber(constantsimp(C1**2, [C1])) == C1
assert constant_renumber(
constantsimp(C1**(x*y), [C1])) == C1**(x*y)
def test_constant_power_as_exp():
assert constant_renumber(constantsimp(x**C1, [C1])) == x**C1
assert constant_renumber(constantsimp(y**C1, [C1, y])) == C1
assert constant_renumber(constantsimp(x**y**C1, [C1, y])) == x**C1
assert constant_renumber(
constantsimp((x**y)**C1, [C1])) == (x**y)**C1
assert constant_renumber(
constantsimp(x**(y**C1), [C1, y])) == x**C1
assert constant_renumber(constantsimp(x**C1**y, [C1, y])) == x**C1
assert constant_renumber(
constantsimp(x**(C1**y), [C1, y])) == x**C1
assert constant_renumber(
constantsimp((x**C1)**y, [C1])) == (x**C1)**y
assert constant_renumber(constantsimp(2**C1, [C1])) == C1
assert constant_renumber(constantsimp(S(2)**C1, [C1])) == C1
assert constant_renumber(constantsimp(exp(C1), [C1])) == C1
assert constant_renumber(
constantsimp(exp(C1 + x), [C1])) == C1*exp(x)
assert constant_renumber(constantsimp(Pow(2, C1), [C1])) == C1
def test_constant_function():
assert constant_renumber(constantsimp(sin(C1), [C1])) == C1
assert constant_renumber(constantsimp(f(C1), [C1])) == C1
assert constant_renumber(constantsimp(f(C1, C1), [C1])) == C1
assert constant_renumber(constantsimp(f(C1, C2), [C1, C2])) == C1
assert constant_renumber(constantsimp(f(C2, C1), [C1, C2])) == C1
assert constant_renumber(constantsimp(f(C2, C2), [C1, C2])) == C1
assert constant_renumber(
constantsimp(f(C1, x), [C1])) == f(C1, x)
assert constant_renumber(constantsimp(f(C1, y), [C1, y])) == C1
assert constant_renumber(constantsimp(f(y, C1), [C1, y])) == C1
assert constant_renumber(constantsimp(f(C1, y, C2), [C1, C2, y])) == C1
def test_constant_function_multiple():
# The rules to not renumber in this case would be too complicated, and
# dsolve is not likely to ever encounter anything remotely like this.
assert constant_renumber(
constantsimp(f(C1, C1, x), [C1])) == f(C1, C1, x)
def test_constant_multiple():
assert constant_renumber(constantsimp(C1*2 + 2, [C1])) == C1
assert constant_renumber(constantsimp(x*2/C1, [C1])) == C1*x
assert constant_renumber(constantsimp(C1**2*2 + 2, [C1])) == C1
assert constant_renumber(
constantsimp(sin(2*C1) + x + sqrt(2), [C1])) == C1 + x
assert constant_renumber(constantsimp(2*C1 + C2, [C1, C2])) == C1
def test_constant_repeated():
assert C1 + C1*x == constant_renumber( C1 + C1*x)
def test_ode_solutions():
# only a few examples here, the rest will be tested in the actual dsolve tests
assert constant_renumber(constantsimp(C1*exp(2*x) + exp(x)*(C2 + C3), [C1, C2, C3])) == \
constant_renumber(C1*exp(x) + C2*exp(2*x))
assert constant_renumber(
constantsimp(Eq(f(x), I*C1*sinh(x/3) + C2*cosh(x/3)), [C1, C2])
) == constant_renumber(Eq(f(x), C1*sinh(x/3) + C2*cosh(x/3)))
assert constant_renumber(constantsimp(Eq(f(x), acos((-C1)/cos(x))), [C1])) == \
Eq(f(x), acos(C1/cos(x)))
assert constant_renumber(
constantsimp(Eq(log(f(x)/C1) + 2*exp(x/f(x)), 0), [C1])
) == Eq(log(C1*f(x)) + 2*exp(x/f(x)), 0)
assert constant_renumber(constantsimp(Eq(log(x*sqrt(2)*sqrt(1/x)*sqrt(f(x))
/C1) + x**2/(2*f(x)**2), 0), [C1])) == \
Eq(log(C1*sqrt(x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
assert constant_renumber(constantsimp(Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(x/C1) -
cos(f(x)/x)*exp(-f(x)/x)/2, 0), [C1])) == \
Eq(-exp(-f(x)/x)*sin(f(x)/x)/2 + log(C1*x) - cos(f(x)/x)*
exp(-f(x)/x)/2, 0)
assert constant_renumber(constantsimp(Eq(-Integral(-1/(sqrt(1 - u2**2)*u2),
(u2, _a, x/f(x))) + log(f(x)/C1), 0), [C1])) == \
Eq(-Integral(-1/(u2*sqrt(1 - u2**2)), (u2, _a, x/f(x))) +
log(C1*f(x)), 0)
assert [constantsimp(i, [C1]) for i in [Eq(f(x), sqrt(-C1*x + x**2)), Eq(f(x), -sqrt(-C1*x + x**2))]] == \
[Eq(f(x), sqrt(x*(C1 + x))), Eq(f(x), -sqrt(x*(C1 + x)))]
@XFAIL
def test_nonlocal_simplification():
assert constantsimp(C1 + C2+x*C2, [C1, C2]) == C1 + C2*x
def test_constant_Eq():
# C1 on the rhs is well-tested, but the lhs is only tested here
assert constantsimp(Eq(C1, 3 + f(x)*x), [C1]) == Eq(x*f(x), C1)
assert constantsimp(Eq(C1, 3 * f(x)*x), [C1]) == Eq(f(x)*x, C1)
|
38bdfc8fd6be75aac11ef1e1eb03fa8bdcb1324dd3943b7642876ed08f7fb181 | from sympy import (Add, Matrix, Mul, S, symbols, Eq, pi, factorint, oo,
powsimp, Rational)
from sympy.core.function import _mexpand
from sympy.core.compatibility import ordered
from sympy.functions.elementary.trigonometric import sin
from sympy.solvers.diophantine import diophantine
from sympy.solvers.diophantine.diophantine import (diop_DN,
diop_solve, diop_ternary_quadratic_normal,
diop_general_pythagorean, diop_ternary_quadratic, diop_linear,
diop_quadratic, diop_general_sum_of_squares, diop_general_sum_of_even_powers,
descent, diop_bf_DN, divisible, equivalent, find_DN, ldescent, length,
reconstruct, partition, power_representation,
prime_as_sum_of_two_squares, square_factor, sum_of_four_squares,
sum_of_three_squares, transformation_to_DN, transformation_to_normal,
classify_diop, base_solution_linear, cornacchia, sqf_normal, gaussian_reduce, holzer,
check_param, parametrize_ternary_quadratic, sum_of_powers, sum_of_squares,
_diop_ternary_quadratic_normal, _diop_general_sum_of_squares, _nint_or_floor,
_odd, _even, _remove_gcd, _can_do_sum_of_squares, DiophantineSolutionSet)
from sympy.utilities import default_sort_key
from sympy.testing.pytest import slow, raises, XFAIL
from sympy.utilities.iterables import (
signed_permutations)
a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z = symbols(
"a, b, c, d, p, q, x, y, z, w, t, u, v, X, Y, Z", integer=True)
t_0, t_1, t_2, t_3, t_4, t_5, t_6 = symbols("t_:7", integer=True)
m1, m2, m3 = symbols('m1:4', integer=True)
n1 = symbols('n1', integer=True)
def diop_simplify(eq):
return _mexpand(powsimp(_mexpand(eq)))
def test_input_format():
raises(TypeError, lambda: diophantine(sin(x)))
raises(TypeError, lambda: diophantine(x/pi - 3))
def test_nosols():
# diophantine should sympify eq so that these are equivalent
assert diophantine(3) == set()
assert diophantine(S(3)) == set()
def test_univariate():
assert diop_solve((x - 1)*(x - 2)**2) == {(1,), (2,)}
assert diop_solve((x - 1)*(x - 2)) == {(1,), (2,)}
def test_classify_diop():
raises(TypeError, lambda: classify_diop(x**2/3 - 1))
raises(ValueError, lambda: classify_diop(1))
raises(NotImplementedError, lambda: classify_diop(w*x*y*z - 1))
raises(NotImplementedError, lambda: classify_diop(x**3 + y**3 + z**4 - 90))
assert classify_diop(14*x**2 + 15*x - 42) == (
[x], {1: -42, x: 15, x**2: 14}, 'univariate')
assert classify_diop(x*y + z) == (
[x, y, z], {x*y: 1, z: 1}, 'inhomogeneous_ternary_quadratic')
assert classify_diop(x*y + z + w + x**2) == (
[w, x, y, z], {x*y: 1, w: 1, x**2: 1, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + x*z + x**2 + 1) == (
[x, y, z], {x*y: 1, x*z: 1, x**2: 1, 1: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z + w + 42) == (
[w, x, y, z], {x*y: 1, w: 1, 1: 42, z: 1}, 'inhomogeneous_general_quadratic')
assert classify_diop(x*y + z*w) == (
[w, x, y, z], {x*y: 1, w*z: 1}, 'homogeneous_general_quadratic')
assert classify_diop(x*y**2 + 1) == (
[x, y], {x*y**2: 1, 1: 1}, 'cubic_thue')
assert classify_diop(x**4 + y**4 + z**4 - (1 + 16 + 81)) == (
[x, y, z], {1: -98, x**4: 1, z**4: 1, y**4: 1}, 'general_sum_of_even_powers')
assert classify_diop(x**2 + y**2 + z**2) == (
[x, y, z], {x**2: 1, y**2: 1, z**2: 1}, 'homogeneous_ternary_quadratic_normal')
def test_linear():
assert diop_solve(x) == (0,)
assert diop_solve(1*x) == (0,)
assert diop_solve(3*x) == (0,)
assert diop_solve(x + 1) == (-1,)
assert diop_solve(2*x + 1) == (None,)
assert diop_solve(2*x + 4) == (-2,)
assert diop_solve(y + x) == (t_0, -t_0)
assert diop_solve(y + x + 0) == (t_0, -t_0)
assert diop_solve(y + x - 0) == (t_0, -t_0)
assert diop_solve(0*x - y - 5) == (-5,)
assert diop_solve(3*y + 2*x - 5) == (3*t_0 - 5, -2*t_0 + 5)
assert diop_solve(2*x - 3*y - 5) == (3*t_0 - 5, 2*t_0 - 5)
assert diop_solve(-2*x - 3*y - 5) == (3*t_0 + 5, -2*t_0 - 5)
assert diop_solve(7*x + 5*y) == (5*t_0, -7*t_0)
assert diop_solve(2*x + 4*y) == (2*t_0, -t_0)
assert diop_solve(4*x + 6*y - 4) == (3*t_0 - 2, -2*t_0 + 2)
assert diop_solve(4*x + 6*y - 3) == (None, None)
assert diop_solve(0*x + 3*y - 4*z + 5) == (4*t_0 + 5, 3*t_0 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5) == (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
assert diop_solve(4*x + 3*y - 4*z + 5, None) == (0, 5, 5)
assert diop_solve(4*x + 2*y + 8*z - 5) == (None, None, None)
assert diop_solve(5*x + 7*y - 2*z - 6) == (t_0, -3*t_0 + 2*t_1 + 6, -8*t_0 + 7*t_1 + 18)
assert diop_solve(3*x - 6*y + 12*z - 9) == (2*t_0 + 3, t_0 + 2*t_1, t_1)
assert diop_solve(6*w + 9*x + 20*y - z) == (t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 20*t_2)
# to ignore constant factors, use diophantine
raises(TypeError, lambda: diop_solve(x/2))
def test_quadratic_simple_hyperbolic_case():
# Simple Hyperbolic case: A = C = 0 and B != 0
assert diop_solve(3*x*y + 34*x - 12*y + 1) == \
{(-133, -11), (5, -57)}
assert diop_solve(6*x*y + 2*x + 3*y + 1) == set()
assert diop_solve(-13*x*y + 2*x - 4*y - 54) == {(27, 0)}
assert diop_solve(-27*x*y - 30*x - 12*y - 54) == {(-14, -1)}
assert diop_solve(2*x*y + 5*x + 56*y + 7) == {(-161, -3), (-47, -6), (-35, -12),
(-29, -69), (-27, 64), (-21, 7),
(-9, 1), (105, -2)}
assert diop_solve(6*x*y + 9*x + 2*y + 3) == set()
assert diop_solve(x*y + x + y + 1) == {(-1, t), (t, -1)}
assert diophantine(48*x*y)
def test_quadratic_elliptical_case():
# Elliptical case: B**2 - 4AC < 0
assert diop_solve(42*x**2 + 8*x*y + 15*y**2 + 23*x + 17*y - 4915) == {(-11, -1)}
assert diop_solve(4*x**2 + 3*y**2 + 5*x - 11*y + 12) == set()
assert diop_solve(x**2 + y**2 + 2*x + 2*y + 2) == {(-1, -1)}
assert diop_solve(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950) == {(-15, 6)}
assert diop_solve(10*x**2 + 12*x*y + 12*y**2 - 34) == \
{(-1, -1), (-1, 2), (1, -2), (1, 1)}
def test_quadratic_parabolic_case():
# Parabolic case: B**2 - 4AC = 0
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 5*x + 7*y + 16)
assert check_solutions(8*x**2 - 24*x*y + 18*y**2 + 6*x + 12*y - 6)
assert check_solutions(8*x**2 + 24*x*y + 18*y**2 + 4*x + 6*y - 7)
assert check_solutions(-4*x**2 + 4*x*y - y**2 + 2*x - 3)
assert check_solutions(x**2 + 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(x**2 - 2*x*y + y**2 + 2*x + 2*y + 1)
assert check_solutions(y**2 - 41*x + 40)
def test_quadratic_perfect_square():
# B**2 - 4*A*C > 0
# B**2 - 4*A*C is a perfect square
assert check_solutions(48*x*y)
assert check_solutions(4*x**2 - 5*x*y + y**2 + 2)
assert check_solutions(-2*x**2 - 3*x*y + 2*y**2 -2*x - 17*y + 25)
assert check_solutions(12*x**2 + 13*x*y + 3*y**2 - 2*x + 3*y - 12)
assert check_solutions(8*x**2 + 10*x*y + 2*y**2 - 32*x - 13*y - 23)
assert check_solutions(4*x**2 - 4*x*y - 3*y- 8*x - 3)
assert check_solutions(- 4*x*y - 4*y**2 - 3*y- 5*x - 10)
assert check_solutions(x**2 - y**2 - 2*x - 2*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
assert check_solutions(4*x**2 - 9*y**2 - 4*x - 12*y - 3)
def test_quadratic_non_perfect_square():
# B**2 - 4*A*C is not a perfect square
# Used check_solutions() since the solutions are complex expressions involving
# square roots and exponents
assert check_solutions(x**2 - 2*x - 5*y**2)
assert check_solutions(3*x**2 - 2*y**2 - 2*x - 2*y)
assert check_solutions(x**2 - x*y - y**2 - 3*y)
assert check_solutions(x**2 - 9*y**2 - 2*x - 6*y)
def test_issue_9106():
eq = -48 - 2*x*(3*x - 1) + y*(3*y - 1)
v = (x, y)
for sol in diophantine(eq):
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
def test_issue_18138():
eq = x**2 - x - y**2
v = (x, y)
for sol in diophantine(eq):
assert not diop_simplify(eq.xreplace(dict(zip(v, sol))))
@slow
def test_quadratic_non_perfect_slow():
assert check_solutions(8*x**2 + 10*x*y - 2*y**2 - 32*x - 13*y - 23)
# This leads to very large numbers.
# assert check_solutions(5*x**2 - 13*x*y + y**2 - 4*x - 4*y - 15)
assert check_solutions(-3*x**2 - 2*x*y + 7*y**2 - 5*x - 7)
assert check_solutions(-4 - x + 4*x**2 - y - 3*x*y - 4*y**2)
assert check_solutions(1 + 2*x + 2*x**2 + 2*y + x*y - 2*y**2)
def test_DN():
# Most of the test cases were adapted from,
# Solving the generalized Pell equation x**2 - D*y**2 = N, John P. Robertson, July 31, 2004.
# http://www.jpr2718.org/pell.pdf
# others are verified using Wolfram Alpha.
# Covers cases where D <= 0 or D > 0 and D is a square or N = 0
# Solutions are straightforward in these cases.
assert diop_DN(3, 0) == [(0, 0)]
assert diop_DN(-17, -5) == []
assert diop_DN(-19, 23) == [(2, 1)]
assert diop_DN(-13, 17) == [(2, 1)]
assert diop_DN(-15, 13) == []
assert diop_DN(0, 5) == []
assert diop_DN(0, 9) == [(3, t)]
assert diop_DN(9, 0) == [(3*t, t)]
assert diop_DN(16, 24) == []
assert diop_DN(9, 180) == [(18, 4)]
assert diop_DN(9, -180) == [(12, 6)]
assert diop_DN(7, 0) == [(0, 0)]
# When equation is x**2 + y**2 = N
# Solutions are interchangeable
assert diop_DN(-1, 5) == [(2, 1), (1, 2)]
assert diop_DN(-1, 169) == [(12, 5), (5, 12), (13, 0), (0, 13)]
# D > 0 and D is not a square
# N = 1
assert diop_DN(13, 1) == [(649, 180)]
assert diop_DN(980, 1) == [(51841, 1656)]
assert diop_DN(981, 1) == [(158070671986249, 5046808151700)]
assert diop_DN(986, 1) == [(49299, 1570)]
assert diop_DN(991, 1) == [(379516400906811930638014896080, 12055735790331359447442538767)]
assert diop_DN(17, 1) == [(33, 8)]
assert diop_DN(19, 1) == [(170, 39)]
# N = -1
assert diop_DN(13, -1) == [(18, 5)]
assert diop_DN(991, -1) == []
assert diop_DN(41, -1) == [(32, 5)]
assert diop_DN(290, -1) == [(17, 1)]
assert diop_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_DN(32, -1) == []
# |N| > 1
# Some tests were created using calculator at
# http://www.numbertheory.org/php/patz.html
assert diop_DN(13, -4) == [(3, 1), (393, 109), (36, 10)]
# Source I referred returned (3, 1), (393, 109) and (-3, 1) as fundamental solutions
# So (-3, 1) and (393, 109) should be in the same equivalent class
assert equivalent(-3, 1, 393, 109, 13, -4) == True
assert diop_DN(13, 27) == [(220, 61), (40, 11), (768, 213), (12, 3)]
assert set(diop_DN(157, 12)) == {(13, 1), (10663, 851), (579160, 46222),
(483790960, 38610722), (26277068347, 2097138361),
(21950079635497, 1751807067011)}
assert diop_DN(13, 25) == [(3245, 900)]
assert diop_DN(192, 18) == []
assert diop_DN(23, 13) == [(-6, 1), (6, 1)]
assert diop_DN(167, 2) == [(13, 1)]
assert diop_DN(167, -2) == []
assert diop_DN(123, -2) == [(11, 1)]
# One calculator returned [(11, 1), (-11, 1)] but both of these are in
# the same equivalence class
assert equivalent(11, 1, -11, 1, 123, -2)
assert diop_DN(123, -23) == [(-10, 1), (10, 1)]
assert diop_DN(0, 0, t) == [(0, t)]
assert diop_DN(0, -1, t) == []
def test_bf_pell():
assert diop_bf_DN(13, -4) == [(3, 1), (-3, 1), (36, 10)]
assert diop_bf_DN(13, 27) == [(12, 3), (-12, 3), (40, 11), (-40, 11)]
assert diop_bf_DN(167, -2) == []
assert diop_bf_DN(1729, 1) == [(44611924489705, 1072885712316)]
assert diop_bf_DN(89, -8) == [(9, 1), (-9, 1)]
assert diop_bf_DN(21257, -1) == [(13913102721304, 95427381109)]
assert diop_bf_DN(340, -4) == [(756, 41)]
assert diop_bf_DN(-1, 0, t) == [(0, 0)]
assert diop_bf_DN(0, 0, t) == [(0, t)]
assert diop_bf_DN(4, 0, t) == [(2*t, t), (-2*t, t)]
assert diop_bf_DN(3, 0, t) == [(0, 0)]
assert diop_bf_DN(1, -2, t) == []
def test_length():
assert length(2, 1, 0) == 1
assert length(-2, 4, 5) == 3
assert length(-5, 4, 17) == 4
assert length(0, 4, 13) == 6
assert length(7, 13, 11) == 23
assert length(1, 6, 4) == 2
def is_pell_transformation_ok(eq):
"""
Test whether X*Y, X, or Y terms are present in the equation
after transforming the equation using the transformation returned
by transformation_to_pell(). If they are not present we are good.
Moreover, coefficient of X**2 should be a divisor of coefficient of
Y**2 and the constant term.
"""
A, B = transformation_to_DN(eq)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
simplified = diop_simplify(eq.subs(zip((x, y), (u, v))))
coeff = dict([reversed(t.as_independent(*[X, Y])) for t in simplified.args])
for term in [X*Y, X, Y]:
if term in coeff.keys():
return False
for term in [X**2, Y**2, 1]:
if term not in coeff.keys():
coeff[term] = 0
if coeff[X**2] != 0:
return divisible(coeff[Y**2], coeff[X**2]) and \
divisible(coeff[1], coeff[X**2])
return True
def test_transformation_to_pell():
assert is_pell_transformation_ok(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y - 14)
assert is_pell_transformation_ok(-17*x**2 + 19*x*y - 7*y**2 - 5*x - 13*y - 23)
assert is_pell_transformation_ok(x**2 - y**2 + 17)
assert is_pell_transformation_ok(-x**2 + 7*y**2 - 23)
assert is_pell_transformation_ok(25*x**2 - 45*x*y + 5*y**2 - 5*x - 10*y + 5)
assert is_pell_transformation_ok(190*x**2 + 30*x*y + y**2 - 3*y - 170*x - 130)
assert is_pell_transformation_ok(x**2 - 2*x*y -190*y**2 - 7*y - 23*x - 89)
assert is_pell_transformation_ok(15*x**2 - 9*x*y + 14*y**2 - 23*x - 14*y - 4950)
def test_find_DN():
assert find_DN(x**2 - 2*x - y**2) == (1, 1)
assert find_DN(x**2 - 3*y**2 - 5) == (3, 5)
assert find_DN(x**2 - 2*x*y - 4*y**2 - 7) == (5, 7)
assert find_DN(4*x**2 - 8*x*y - y**2 - 9) == (20, 36)
assert find_DN(7*x**2 - 2*x*y - y**2 - 12) == (8, 84)
assert find_DN(-3*x**2 + 4*x*y -y**2) == (1, 0)
assert find_DN(-13*x**2 - 7*x*y + y**2 + 2*x - 2*y -14) == (101, -7825480)
def test_ldescent():
# Equations which have solutions
u = ([(13, 23), (3, -11), (41, -113), (4, -7), (-7, 4), (91, -3), (1, 1), (1, -1),
(4, 32), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = ldescent(a, b)
assert a*x**2 + b*y**2 == w**2
assert ldescent(-1, -1) is None
def test_diop_ternary_quadratic_normal():
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(23*x**2 + 616*y**2 - z**2)
assert check_solutions(5*x**2 + 4*y**2 - z**2)
assert check_solutions(3*x**2 + 6*y**2 - 3*z**2)
assert check_solutions(x**2 + 3*y**2 - z**2)
assert check_solutions(4*x**2 + 5*y**2 - z**2)
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(16*x**2 + y**2 - 25*z**2)
assert check_solutions(6*x**2 - y**2 + 10*z**2)
assert check_solutions(213*x**2 + 12*y**2 - 9*z**2)
assert check_solutions(34*x**2 - 3*y**2 - 301*z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def is_normal_transformation_ok(eq):
A = transformation_to_normal(eq)
X, Y, Z = A*Matrix([x, y, z])
simplified = diop_simplify(eq.subs(zip((x, y, z), (X, Y, Z))))
coeff = dict([reversed(t.as_independent(*[X, Y, Z])) for t in simplified.args])
for term in [X*Y, Y*Z, X*Z]:
if term in coeff.keys():
return False
return True
def test_transformation_to_normal():
assert is_normal_transformation_ok(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert is_normal_transformation_ok(x**2 + 3*y**2 - 100*z**2)
assert is_normal_transformation_ok(x**2 + 23*y*z)
assert is_normal_transformation_ok(3*y**2 - 100*z**2 - 12*x*y)
assert is_normal_transformation_ok(x**2 + 23*x*y - 34*y*z + 12*x*z)
assert is_normal_transformation_ok(z**2 + 34*x*y - 23*y*z + x*z)
assert is_normal_transformation_ok(x**2 + y**2 + z**2 - x*y - y*z - x*z)
assert is_normal_transformation_ok(x**2 + 2*y*z + 3*z**2)
assert is_normal_transformation_ok(x*y + 2*x*z + 3*y*z)
assert is_normal_transformation_ok(2*x*z + 3*y*z)
def test_diop_ternary_quadratic():
assert check_solutions(2*x**2 + z**2 + y**2 - 4*x*y)
assert check_solutions(x**2 - y**2 - z**2 - x*y - y*z)
assert check_solutions(3*x**2 - x*y - y*z - x*z)
assert check_solutions(x**2 - y*z - x*z)
assert check_solutions(5*x**2 - 3*x*y - x*z)
assert check_solutions(4*x**2 - 5*y**2 - x*z)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(8*x**2 - 12*y*z)
assert check_solutions(45*x**2 - 7*y**2 - 8*x*y - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 17*y*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - x*y - 16*y*z + 12*x*z)
assert check_solutions(x**2 + 3*y**2 + z**2 - 13*x*y - 16*y*z + 12*x*z)
assert check_solutions(x*y - 7*y*z + 13*x*z)
assert diop_ternary_quadratic_normal(x**2 + y**2 + z**2) == (None, None, None)
assert diop_ternary_quadratic_normal(x**2 + y**2) is None
raises(ValueError, lambda:
_diop_ternary_quadratic_normal((x, y, z),
{x*y: 1, x**2: 2, y**2: 3, z**2: 0}))
eq = -2*x*y - 6*x*z + 7*y**2 - 3*y*z + 4*z**2
assert diop_ternary_quadratic(eq) == (7, 2, 0)
assert diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2) == \
(1, 0, 2)
assert diop_ternary_quadratic(x*y + 2*y*z) == \
(-2, 0, n1)
eq = -5*x*y - 8*x*z - 3*y*z + 8*z**2
assert parametrize_ternary_quadratic(eq) == \
(8*p**2 - 3*p*q, -8*p*q + 8*q**2, 5*p*q)
# this cannot be tested with diophantine because it will
# factor into a product
assert diop_solve(x*y + 2*y*z) == (-2*p*q, -n1*p**2 + p**2, p*q)
def test_square_factor():
assert square_factor(1) == square_factor(-1) == 1
assert square_factor(0) == 1
assert square_factor(5) == square_factor(-5) == 1
assert square_factor(4) == square_factor(-4) == 2
assert square_factor(12) == square_factor(-12) == 2
assert square_factor(6) == 1
assert square_factor(18) == 3
assert square_factor(52) == 2
assert square_factor(49) == 7
assert square_factor(392) == 14
assert square_factor(factorint(-12)) == 2
def test_parametrize_ternary_quadratic():
assert check_solutions(x**2 + y**2 - z**2)
assert check_solutions(x**2 + 2*x*y + z**2)
assert check_solutions(234*x**2 - 65601*y**2 - z**2)
assert check_solutions(3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z)
assert check_solutions(x**2 - y**2 - z**2)
assert check_solutions(x**2 - 49*y**2 - z**2 + 13*z*y - 8*x*y)
assert check_solutions(8*x*y + z**2)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
assert check_solutions(236*x**2 - 225*y**2 - 11*x*y - 13*y*z - 17*x*z)
assert check_solutions(90*x**2 + 3*y**2 + 5*x*y + 2*z*y + 5*x*z)
assert check_solutions(124*x**2 - 30*y**2 - 7729*z**2)
def test_no_square_ternary_quadratic():
assert check_solutions(2*x*y + y*z - 3*x*z)
assert check_solutions(189*x*y - 345*y*z - 12*x*z)
assert check_solutions(23*x*y + 34*y*z)
assert check_solutions(x*y + y*z + z*x)
assert check_solutions(23*x*y + 23*y*z + 23*x*z)
def test_descent():
u = ([(13, 23), (3, -11), (41, -113), (91, -3), (1, 1), (1, -1), (17, 13), (123689, 1), (19, -570)])
for a, b in u:
w, x, y = descent(a, b)
assert a*x**2 + b*y**2 == w**2
# the docstring warns against bad input, so these are expected results
# - can't both be negative
raises(TypeError, lambda: descent(-1, -3))
# A can't be zero unless B != 1
raises(ZeroDivisionError, lambda: descent(0, 3))
# supposed to be square-free
raises(TypeError, lambda: descent(4, 3))
def test_diophantine():
assert check_solutions((x - y)*(y - z)*(z - x))
assert check_solutions((x - y)*(x**2 + y**2 - z**2))
assert check_solutions((x - 3*y + 7*z)*(x**2 + y**2 - z**2))
assert check_solutions(x**2 - 3*y**2 - 1)
assert check_solutions(y**2 + 7*x*y)
assert check_solutions(x**2 - 3*x*y + y**2)
assert check_solutions(z*(x**2 - y**2 - 15))
assert check_solutions(x*(2*y - 2*z + 5))
assert check_solutions((x**2 - 3*y**2 - 1)*(x**2 - y**2 - 15))
assert check_solutions((x**2 - 3*y**2 - 1)*(y - 7*z))
assert check_solutions((x**2 + y**2 - z**2)*(x - 7*y - 3*z + 4*w))
# Following test case caused problems in parametric representation
# But this can be solved by factoring out y.
# No need to use methods for ternary quadratic equations.
assert check_solutions(y**2 - 7*x*y + 4*y*z)
assert check_solutions(x**2 - 2*x + 1)
assert diophantine(x - y) == diophantine(Eq(x, y))
# 18196
eq = x**4 + y**4 - 97
assert diophantine(eq, permute=True) == diophantine(-eq, permute=True)
assert diophantine(3*x*pi - 2*y*pi) == {(2*t_0, 3*t_0)}
eq = x**2 + y**2 + z**2 - 14
base_sol = {(1, 2, 3)}
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
assert diophantine(x**2 + x*Rational(15, 14) - 3) == set()
# test issue 11049
eq = 92*x**2 - 99*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
{(9, 7, 51)}
assert diophantine(eq) == {(
891*p**2 + 9*q**2, -693*p**2 - 102*p*q + 7*q**2,
5049*p**2 - 1386*p*q - 51*q**2)}
eq = 2*x**2 + 2*y**2 - z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
{(1, 1, 2)}
assert diophantine(eq) == {(
2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
4*p**2 - 4*p*q + 2*q**2)}
eq = 411*x**2+57*y**2-221*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
{(2021, 2645, 3066)}
assert diophantine(eq) == \
{(115197*p**2 - 446641*q**2, -150765*p**2 + 1355172*p*q -
584545*q**2, 174762*p**2 - 301530*p*q + 677586*q**2)}
eq = 573*x**2+267*y**2-984*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
{(49, 233, 127)}
assert diophantine(eq) == \
{(4361*p**2 - 16072*q**2, -20737*p**2 + 83312*p*q - 76424*q**2,
11303*p**2 - 41474*p*q + 41656*q**2)}
# this produces factors during reconstruction
eq = x**2 + 3*y**2 - 12*z**2
coeff = eq.as_coefficients_dict()
assert _diop_ternary_quadratic_normal((x, y, z), coeff) == \
{(0, 2, 1)}
assert diophantine(eq) == \
{(24*p*q, 2*p**2 - 24*q**2, p**2 + 12*q**2)}
# solvers have not been written for every type
raises(NotImplementedError, lambda: diophantine(x*y**2 + 1))
# rational expressions
assert diophantine(1/x) == set()
assert diophantine(1/x + 1/y - S.Half) == {(6, 3), (-2, 1), (4, 4), (1, -2), (3, 6)}
assert diophantine(x**2 + y**2 +3*x- 5, permute=True) == \
{(-1, 1), (-4, -1), (1, -1), (1, 1), (-4, 1), (-1, -1), (4, 1), (4, -1)}
#test issue 18186
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(x, y), permute=True) == \
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
assert diophantine(y**4 + x**4 - 2**4 - 3**4, syms=(y, x), permute=True) == \
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
# issue 18122
assert check_solutions(x**2-y)
assert check_solutions(y**2-x)
assert diophantine((x**2-y), t) == {(t, t**2)}
assert diophantine((y**2-x), t) == {(t**2, -t)}
def test_general_pythagorean():
from sympy.abc import a, b, c, d, e
assert check_solutions(a**2 + b**2 + c**2 - d**2)
assert check_solutions(a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 + 4*c**2 - d**2)
assert check_solutions(9*a**2 + 4*b**2 - 25*d**2 + 4*c**2 )
assert check_solutions(9*a**2 - 16*d**2 + 4*b**2 + 4*c**2)
assert check_solutions(-e**2 + 9*a**2 + 4*b**2 + 4*c**2 + 25*d**2)
assert check_solutions(16*a**2 - b**2 + 9*c**2 + d**2 + 25*e**2)
def test_diop_general_sum_of_squares_quick():
for i in range(3, 10):
assert check_solutions(sum(i**2 for i in symbols(':%i' % i)) - i)
raises(ValueError, lambda: _diop_general_sum_of_squares((x, y), 2))
assert _diop_general_sum_of_squares((x, y, z), -2) == set()
eq = x**2 + y**2 + z**2 - (1 + 4 + 9)
assert diop_general_sum_of_squares(eq) == \
{(1, 2, 3)}
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 1313
assert len(diop_general_sum_of_squares(eq, 3)) == 3
# issue 11016
var = symbols(':5') + (symbols('6', negative=True),)
eq = Add(*[i**2 for i in var]) - 112
base_soln = {(0, 1, 1, 5, 6, -7), (1, 1, 1, 3, 6, -8), (2, 3, 3, 4, 5, -7), (0, 1, 1, 1, 3, -10),
(0, 0, 4, 4, 4, -8), (1, 2, 3, 3, 5, -8), (0, 1, 2, 3, 7, -7), (2, 2, 4, 4, 6, -6),
(1, 1, 3, 4, 6, -7), (0, 2, 3, 3, 3, -9), (0, 0, 2, 2, 2, -10), (1, 1, 2, 3, 4, -9),
(0, 1, 1, 2, 5, -9), (0, 0, 2, 6, 6, -6), (1, 3, 4, 5, 5, -6), (0, 2, 2, 2, 6, -8),
(0, 3, 3, 3, 6, -7), (0, 2, 3, 5, 5, -7), (0, 1, 5, 5, 5, -6)}
assert diophantine(eq) == base_soln
assert len(diophantine(eq, permute=True)) == 196800
# handle negated squares with signsimp
assert diophantine(12 - x**2 - y**2 - z**2) == {(2, 2, 2)}
# diophantine handles simplification, so classify_diop should
# not have to look for additional patterns that are removed
# by diophantine
eq = a**2 + b**2 + c**2 + d**2 - 4
raises(NotImplementedError, lambda: classify_diop(-eq))
def test_diop_partition():
for n in [8, 10]:
for k in range(1, 8):
for p in partition(n, k):
assert len(p) == k
assert [p for p in partition(3, 5)] == []
assert [list(p) for p in partition(3, 5, 1)] == [
[0, 0, 0, 0, 3], [0, 0, 0, 1, 2], [0, 0, 1, 1, 1]]
assert list(partition(0)) == [()]
assert list(partition(1, 0)) == [()]
assert [list(i) for i in partition(3)] == [[1, 1, 1], [1, 2], [3]]
def test_prime_as_sum_of_two_squares():
for i in [5, 13, 17, 29, 37, 41, 2341, 3557, 34841, 64601]:
a, b = prime_as_sum_of_two_squares(i)
assert a**2 + b**2 == i
assert prime_as_sum_of_two_squares(7) is None
ans = prime_as_sum_of_two_squares(800029)
assert ans == (450, 773) and type(ans[0]) is int
def test_sum_of_three_squares():
for i in [0, 1, 2, 34, 123, 34304595905, 34304595905394941, 343045959052344,
800, 801, 802, 803, 804, 805, 806]:
a, b, c = sum_of_three_squares(i)
assert a**2 + b**2 + c**2 == i
assert sum_of_three_squares(7) is None
assert sum_of_three_squares((4**5)*15) is None
assert sum_of_three_squares(25) == (5, 0, 0)
assert sum_of_three_squares(4) == (0, 0, 2)
def test_sum_of_four_squares():
from random import randint
# this should never fail
n = randint(1, 100000000000000)
assert sum(i**2 for i in sum_of_four_squares(n)) == n
assert sum_of_four_squares(0) == (0, 0, 0, 0)
assert sum_of_four_squares(14) == (0, 1, 2, 3)
assert sum_of_four_squares(15) == (1, 1, 2, 3)
assert sum_of_four_squares(18) == (1, 2, 2, 3)
assert sum_of_four_squares(19) == (0, 1, 3, 3)
assert sum_of_four_squares(48) == (0, 4, 4, 4)
def test_power_representation():
tests = [(1729, 3, 2), (234, 2, 4), (2, 1, 2), (3, 1, 3), (5, 2, 2), (12352, 2, 4),
(32760, 2, 3)]
for test in tests:
n, p, k = test
f = power_representation(n, p, k)
while True:
try:
l = next(f)
assert len(l) == k
chk_sum = 0
for l_i in l:
chk_sum = chk_sum + l_i**p
assert chk_sum == n
except StopIteration:
break
assert list(power_representation(20, 2, 4, True)) == \
[(1, 1, 3, 3), (0, 0, 2, 4)]
raises(ValueError, lambda: list(power_representation(1.2, 2, 2)))
raises(ValueError, lambda: list(power_representation(2, 0, 2)))
raises(ValueError, lambda: list(power_representation(2, 2, 0)))
assert list(power_representation(-1, 2, 2)) == []
assert list(power_representation(1, 1, 1)) == [(1,)]
assert list(power_representation(3, 2, 1)) == []
assert list(power_representation(4, 2, 1)) == [(2,)]
assert list(power_representation(3**4, 4, 6, zeros=True)) == \
[(1, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 3)]
assert list(power_representation(3**4, 4, 5, zeros=False)) == []
assert list(power_representation(-2, 3, 2)) == [(-1, -1)]
assert list(power_representation(-2, 4, 2)) == []
assert list(power_representation(0, 3, 2, True)) == [(0, 0)]
assert list(power_representation(0, 3, 2, False)) == []
# when we are dealing with squares, do feasibility checks
assert len(list(power_representation(4**10*(8*10 + 7), 2, 3))) == 0
# there will be a recursion error if these aren't recognized
big = 2**30
for i in [13, 10, 7, 5, 4, 2, 1]:
assert list(sum_of_powers(big, 2, big - i)) == []
def test_assumptions():
"""
Test whether diophantine respects the assumptions.
"""
#Test case taken from the below so question regarding assumptions in diophantine module
#https://stackoverflow.com/questions/23301941/how-can-i-declare-natural-symbols-with-sympy
m, n = symbols('m n', integer=True, positive=True)
diof = diophantine(n**2 + m*n - 500)
assert diof == {(5, 20), (40, 10), (95, 5), (121, 4), (248, 2), (499, 1)}
a, b = symbols('a b', integer=True, positive=False)
diof = diophantine(a*b + 2*a + 3*b - 6)
assert diof == {(-15, -3), (-9, -4), (-7, -5), (-6, -6), (-5, -8), (-4, -14)}
def check_solutions(eq):
"""
Determines whether solutions returned by diophantine() satisfy the original
equation. Hope to generalize this so we can remove functions like check_ternay_quadratic,
check_solutions_normal, check_solutions()
"""
s = diophantine(eq)
factors = Mul.make_args(eq)
var = list(eq.free_symbols)
var.sort(key=default_sort_key)
while s:
solution = s.pop()
for f in factors:
if diop_simplify(f.subs(zip(var, solution))) == 0:
break
else:
return False
return True
def test_diopcoverage():
eq = (2*x + y + 1)**2
assert diop_solve(eq) == {(t_0, -2*t_0 - 1)}
eq = 2*x**2 + 6*x*y + 12*x + 4*y**2 + 18*y + 18
assert diop_solve(eq) == {(t_0, -t_0 - 3), (2*t_0 - 3, -t_0)}
assert diop_quadratic(x + y**2 - 3) == {(-t**2 + 3, -t)}
assert diop_linear(x + y - 3) == (t_0, 3 - t_0)
assert base_solution_linear(0, 1, 2, t=None) == (0, 0)
ans = (3*t - 1, -2*t + 1)
assert base_solution_linear(4, 8, 12, t) == ans
assert base_solution_linear(4, 8, 12, t=None) == tuple(_.subs(t, 0) for _ in ans)
assert cornacchia(1, 1, 20) is None
assert cornacchia(1, 1, 5) == {(2, 1)}
assert cornacchia(1, 2, 17) == {(3, 2)}
raises(ValueError, lambda: reconstruct(4, 20, 1))
assert gaussian_reduce(4, 1, 3) == (1, 1)
eq = -w**2 - x**2 - y**2 + z**2
assert diop_general_pythagorean(eq) == \
diop_general_pythagorean(-eq) == \
(m1**2 + m2**2 - m3**2, 2*m1*m3,
2*m2*m3, m1**2 + m2**2 + m3**2)
assert check_param(S(3) + x/3, S(4) + x/2, S(2), x) == (None, None)
assert check_param(Rational(3, 2), S(4) + x, S(2), x) == (None, None)
assert check_param(S(4) + x, Rational(3, 2), S(2), x) == (None, None)
assert _nint_or_floor(16, 10) == 2
assert _odd(1) == (not _even(1)) == True
assert _odd(0) == (not _even(0)) == False
assert _remove_gcd(2, 4, 6) == (1, 2, 3)
raises(TypeError, lambda: _remove_gcd((2, 4, 6)))
assert sqf_normal(2*3**2*5, 2*5*11, 2*7**2*11) == \
(11, 1, 5)
# it's ok if these pass some day when the solvers are implemented
raises(NotImplementedError, lambda: diophantine(x**2 + y**2 + x*y + 2*y*z - 12))
raises(NotImplementedError, lambda: diophantine(x**3 + y**2))
assert diop_quadratic(x**2 + y**2 - 1**2 - 3**4) == \
{(-9, -1), (-9, 1), (-1, -9), (-1, 9), (1, -9), (1, 9), (9, -1), (9, 1)}
def test_holzer():
# if the input is good, don't let it diverge in holzer()
# (but see test_fail_holzer below)
assert holzer(2, 7, 13, 4, 79, 23) == (2, 7, 13)
# None in uv condition met; solution is not Holzer reduced
# so this will hopefully change but is here for coverage
assert holzer(2, 6, 2, 1, 1, 10) == (2, 6, 2)
raises(ValueError, lambda: holzer(2, 7, 14, 4, 79, 23))
@XFAIL
def test_fail_holzer():
eq = lambda x, y, z: a*x**2 + b*y**2 - c*z**2
a, b, c = 4, 79, 23
x, y, z = xyz = 26, 1, 11
X, Y, Z = ans = 2, 7, 13
assert eq(*xyz) == 0
assert eq(*ans) == 0
assert max(a*x**2, b*y**2, c*z**2) <= a*b*c
assert max(a*X**2, b*Y**2, c*Z**2) <= a*b*c
h = holzer(x, y, z, a, b, c)
assert h == ans # it would be nice to get the smaller soln
def test_issue_9539():
assert diophantine(6*w + 9*y + 20*x - z) == \
{(t_0, t_1, t_1 + t_2, 6*t_0 + 29*t_1 + 9*t_2)}
def test_issue_8943():
assert diophantine(
3*(x**2 + y**2 + z**2) - 14*(x*y + y*z + z*x)) == \
{(0, 0, 0)}
def test_diop_sum_of_even_powers():
eq = x**4 + y**4 + z**4 - 2673
assert diop_solve(eq) == {(3, 6, 6), (2, 4, 7)}
assert diop_general_sum_of_even_powers(eq, 2) == {(3, 6, 6), (2, 4, 7)}
raises(NotImplementedError, lambda: diop_general_sum_of_even_powers(-eq, 2))
neg = symbols('neg', negative=True)
eq = x**4 + y**4 + neg**4 - 2673
assert diop_general_sum_of_even_powers(eq) == {(-3, 6, 6)}
assert diophantine(x**4 + y**4 + 2) == set()
assert diop_general_sum_of_even_powers(x**4 + y**4 - 2, limit=0) == set()
def test_sum_of_squares_powers():
tru = {(0, 0, 1, 1, 11), (0, 0, 5, 7, 7), (0, 1, 3, 7, 8), (0, 1, 4, 5, 9), (0, 3, 4, 7, 7), (0, 3, 5, 5, 8),
(1, 1, 2, 6, 9), (1, 1, 6, 6, 7), (1, 2, 3, 3, 10), (1, 3, 4, 4, 9), (1, 5, 5, 6, 6), (2, 2, 3, 5, 9),
(2, 3, 5, 6, 7), (3, 3, 4, 5, 8)}
eq = u**2 + v**2 + x**2 + y**2 + z**2 - 123
ans = diop_general_sum_of_squares(eq, oo) # allow oo to be used
assert len(ans) == 14
assert ans == tru
raises(ValueError, lambda: list(sum_of_squares(10, -1)))
assert list(sum_of_squares(-10, 2)) == []
assert list(sum_of_squares(2, 3)) == []
assert list(sum_of_squares(0, 3, True)) == [(0, 0, 0)]
assert list(sum_of_squares(0, 3)) == []
assert list(sum_of_squares(4, 1)) == [(2,)]
assert list(sum_of_squares(5, 1)) == []
assert list(sum_of_squares(50, 2)) == [(5, 5), (1, 7)]
assert list(sum_of_squares(11, 5, True)) == [
(1, 1, 1, 2, 2), (0, 0, 1, 1, 3)]
assert list(sum_of_squares(8, 8)) == [(1, 1, 1, 1, 1, 1, 1, 1)]
assert [len(list(sum_of_squares(i, 5, True))) for i in range(30)] == [
1, 1, 1, 1, 2,
2, 1, 1, 2, 2,
2, 2, 2, 3, 2,
1, 3, 3, 3, 3,
4, 3, 3, 2, 2,
4, 4, 4, 4, 5]
assert [len(list(sum_of_squares(i, 5))) for i in range(30)] == [
0, 0, 0, 0, 0,
1, 0, 0, 1, 0,
0, 1, 0, 1, 1,
0, 1, 1, 0, 1,
2, 1, 1, 1, 1,
1, 1, 1, 1, 3]
for i in range(30):
s1 = set(sum_of_squares(i, 5, True))
assert not s1 or all(sum(j**2 for j in t) == i for t in s1)
s2 = set(sum_of_squares(i, 5))
assert all(sum(j**2 for j in t) == i for t in s2)
raises(ValueError, lambda: list(sum_of_powers(2, -1, 1)))
raises(ValueError, lambda: list(sum_of_powers(2, 1, -1)))
assert list(sum_of_powers(-2, 3, 2)) == [(-1, -1)]
assert list(sum_of_powers(-2, 4, 2)) == []
assert list(sum_of_powers(2, 1, 1)) == [(2,)]
assert list(sum_of_powers(2, 1, 3, True)) == [(0, 0, 2), (0, 1, 1)]
assert list(sum_of_powers(5, 1, 2, True)) == [(0, 5), (1, 4), (2, 3)]
assert list(sum_of_powers(6, 2, 2)) == []
assert list(sum_of_powers(3**5, 3, 1)) == []
assert list(sum_of_powers(3**6, 3, 1)) == [(9,)] and (9**3 == 3**6)
assert list(sum_of_powers(2**1000, 5, 2)) == []
def test__can_do_sum_of_squares():
assert _can_do_sum_of_squares(3, -1) is False
assert _can_do_sum_of_squares(-3, 1) is False
assert _can_do_sum_of_squares(0, 1)
assert _can_do_sum_of_squares(4, 1)
assert _can_do_sum_of_squares(1, 2)
assert _can_do_sum_of_squares(2, 2)
assert _can_do_sum_of_squares(3, 2) is False
def test_diophantine_permute_sign():
from sympy.abc import a, b, c, d, e
eq = a**4 + b**4 - (2**4 + 3**4)
base_sol = {(2, 3)}
assert diophantine(eq) == base_sol
complete_soln = set(signed_permutations(base_sol.pop()))
assert diophantine(eq, permute=True) == complete_soln
eq = a**2 + b**2 + c**2 + d**2 + e**2 - 234
assert len(diophantine(eq)) == 35
assert len(diophantine(eq, permute=True)) == 62000
soln = {(-1, -1), (-1, 2), (1, -2), (1, 1)}
assert diophantine(10*x**2 + 12*x*y + 12*y**2 - 34, permute=True) == soln
@XFAIL
def test_not_implemented():
eq = x**2 + y**4 - 1**2 - 3**4
assert diophantine(eq, syms=[x, y]) == {(9, 1), (1, 3)}
def test_issue_9538():
eq = x - 3*y + 2
assert diophantine(eq, syms=[y,x]) == {(t_0, 3*t_0 - 2)}
raises(TypeError, lambda: diophantine(eq, syms={y, x}))
def test_ternary_quadratic():
# solution with 3 parameters
s = diophantine(2*x**2 + y**2 - 2*z**2)
p, q, r = ordered(S(s).free_symbols)
assert s == {(
p**2 - 2*q**2,
-2*p**2 + 4*p*q - 4*p*r - 4*q**2,
p**2 - 4*p*q + 2*q**2 - 4*q*r)}
# solution with Mul in solution
s = diophantine(x**2 + 2*y**2 - 2*z**2)
assert s == {(4*p*q, p**2 - 2*q**2, p**2 + 2*q**2)}
# solution with no Mul in solution
s = diophantine(2*x**2 + 2*y**2 - z**2)
assert s == {(2*p**2 - q**2, -2*p**2 + 4*p*q - q**2,
4*p**2 - 4*p*q + 2*q**2)}
# reduced form when parametrized
s = diophantine(3*x**2 + 72*y**2 - 27*z**2)
assert s == {(24*p**2 - 9*q**2, 6*p*q, 8*p**2 + 3*q**2)}
assert parametrize_ternary_quadratic(
3*x**2 + 2*y**2 - z**2 - 2*x*y + 5*y*z - 7*y*z) == (
2*p**2 - 2*p*q - q**2, 2*p**2 + 2*p*q - q**2, 2*p**2 -
2*p*q + 3*q**2)
assert parametrize_ternary_quadratic(
124*x**2 - 30*y**2 - 7729*z**2) == (
-1410*p**2 - 363263*q**2, 2700*p**2 + 30916*p*q -
695610*q**2, -60*p**2 + 5400*p*q + 15458*q**2)
def test_diophantine_solution_set():
s1 = DiophantineSolutionSet([])
assert set(s1) == set()
assert s1.symbols == ()
assert s1.parameters == ()
raises(ValueError, lambda: s1.add((x,)))
assert list(s1.dict_iterator()) == []
s2 = DiophantineSolutionSet([x, y], [t, u])
assert s2.symbols == (x, y)
assert s2.parameters == (t, u)
raises(ValueError, lambda: s2.add((1,)))
s2.add((3, 4))
assert set(s2) == {(3, 4)}
s2.update((3, 4), (-1, u))
assert set(s2) == {(3, 4), (-1, u)}
raises(ValueError, lambda: s1.update(s2))
assert list(s2.dict_iterator()) == [{x: -1, y: u}, {x: 3, y: 4}]
s3 = DiophantineSolutionSet([x, y, z], [t, u])
assert len(s3.parameters) == 2
s3.add((t**2 + u, t - u, 1))
assert set(s3) == {(t**2 + u, t - u, 1)}
assert s3.subs(t, 2) == {(u + 4, 2 - u, 1)}
assert s3(2) == {(u + 4, 2 - u, 1)}
assert s3.subs({t: 7, u: 8}) == {(57, -1, 1)}
assert s3(7, 8) == {(57, -1, 1)}
assert s3.subs({t: 5}) == {(u + 25, 5 - u, 1)}
assert s3(5) == {(u + 25, 5 - u, 1)}
assert s3.subs(u, -3) == {(t**2 - 3, t + 3, 1)}
assert s3(None, -3) == {(t**2 - 3, t + 3, 1)}
assert s3.subs({t: 2, u: 8}) == {(12, -6, 1)}
assert s3(2, 8) == {(12, -6, 1)}
assert s3.subs({t: 5, u: -3}) == {(22, 8, 1)}
assert s3(5, -3) == {(22, 8, 1)}
raises(ValueError, lambda: s3.subs(x=1))
raises(ValueError, lambda: s3.subs(1, 2, 3))
raises(ValueError, lambda: s3.add(()))
raises(ValueError, lambda: s3.add((1, 2, 3, 4)))
raises(ValueError, lambda: s3.add((1, 2)))
raises(ValueError, lambda: s3(1, 2, 3))
raises(TypeError, lambda: s3(t=1))
s4 = DiophantineSolutionSet([x])
assert len(s4.parameters) == 1
|
e7f357e266f6b0668e609f7dc40191f88b5f20efdc583c7beb210cfd99f6c3c8 | from sympy import (acos, acosh, atan, cos, Derivative, diff,
Dummy, Eq, Ne, exp, Function, I, Integral, LambertW, log, O, pi,
Rational, rootof, S, sin, sqrt, Subs, Symbol, tan, asin, sinh,
Piecewise, symbols, Poly, sec, re, im, atan2, collect, hyper)
from sympy.solvers.ode import (classify_ode,
homogeneous_order, infinitesimals, checkinfsol,
dsolve)
from sympy.solvers.ode.subscheck import checkodesol, checksysodesol
from sympy.solvers.ode.ode import (_linear_coeff_match,
_undetermined_coefficients_match, classify_sysode,
constant_renumber, constantsimp, get_numbered_constants, solve_ics)
from sympy.functions import airyai, airybi, besselj, bessely
from sympy.solvers.deutils import ode_order
from sympy.testing.pytest import XFAIL, skip, raises, slow, ON_TRAVIS, SKIP
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
# Note: the tests below may fail (but still be correct) if ODE solver,
# the integral engine, solve(), or even simplify() changes. Also, in
# differently formatted solutions, the arbitrary constants might not be
# equal. Using specific hints in tests can help to avoid this.
# Tests of order higher than 1 should run the solutions through
# constant_renumber because it will normalize it (constant_renumber causes
# dsolve() to return different results on different machines)
def test_get_numbered_constants():
with raises(ValueError):
get_numbered_constants(None)
def test_dsolve_all_hint():
eq = f(x).diff(x)
output = dsolve(eq, hint='all')
# Match the Dummy variables:
sol1 = output['separable_Integral']
_y = sol1.lhs.args[1][0]
sol1 = output['1st_homogeneous_coeff_subs_dep_div_indep_Integral']
_u1 = sol1.rhs.args[1].args[1][0]
expected = {'Bernoulli_Integral': Eq(f(x), C1 + Integral(0, x)),
'1st_homogeneous_coeff_best': Eq(f(x), C1),
'Bernoulli': Eq(f(x), C1),
'nth_algebraic': Eq(f(x), C1),
'nth_linear_euler_eq_homogeneous': Eq(f(x), C1),
'nth_linear_constant_coeff_homogeneous': Eq(f(x), C1),
'separable': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_indep_div_dep': Eq(f(x), C1),
'nth_algebraic_Integral': Eq(f(x), C1),
'1st_linear': Eq(f(x), C1),
'1st_linear_Integral': Eq(f(x), C1 + Integral(0, x)),
'lie_group': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_dep_div_indep': Eq(f(x), C1),
'1st_homogeneous_coeff_subs_dep_div_indep_Integral': Eq(log(x), C1 + Integral(-1/_u1, (_u1, f(x)/x))),
'1st_power_series': Eq(f(x), C1),
'separable_Integral': Eq(Integral(1, (_y, f(x))), C1 + Integral(0, x)),
'1st_homogeneous_coeff_subs_indep_div_dep_Integral': Eq(f(x), C1),
'best': Eq(f(x), C1),
'best_hint': 'nth_algebraic',
'default': 'nth_algebraic',
'order': 1}
assert output == expected
assert dsolve(eq, hint='best') == Eq(f(x), C1)
def test_dsolve_ics():
# Maybe this should just use one of the solutions instead of raising...
with raises(NotImplementedError):
dsolve(f(x).diff(x) - sqrt(f(x)), ics={f(1):1})
@slow
@XFAIL
def test_nonlinear_3eq_order1_type1():
if ON_TRAVIS:
skip("Too slow for travis.")
a, b, c = symbols('a b c')
eqs = [
a * f(x).diff(x) - (b - c) * g(x) * h(x),
b * g(x).diff(x) - (c - a) * h(x) * f(x),
c * h(x).diff(x) - (a - b) * f(x) * g(x),
]
assert dsolve(eqs) # NotImplementedError
def test_dsolve_euler_rootof():
eq = x**6 * f(x).diff(x, 6) - x*f(x).diff(x) + f(x)
sol = Eq(f(x),
C1*x
+ C2*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 0)
+ C3*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 1)
+ C4*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 2)
+ C5*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 3)
+ C6*x**rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, 4)
)
assert dsolve(eq) == sol
def test_nth_euler_imroot():
eq = x**2 * f(x).diff(x, 2) + x * f(x).diff(x) + 4 * f(x) - 1/x
sol = Eq(f(x), C1*sin(2*log(x)) + C2*cos(2*log(x)) + 1/(5*x))
dsolve_sol = dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters')
assert dsolve_sol == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
def test_constant_coeff_circular_atan2():
eq = f(x).diff(x, x) + y*f(x)
sol = Eq(f(x), C1*exp(-x*sqrt(-y)) + C2*exp(x*sqrt(-y)))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False)[0]
@XFAIL
def test_nonlinear_3eq_order1_type4():
eqs = [
Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))),
Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))),
Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))),
]
dsolve(eqs) # KeyError when matching
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type3():
if ON_TRAVIS:
skip("Too slow for travis.")
eqs = [
Eq(f(x).diff(x), (2*f(x)**2 - 3 )),
Eq(g(x).diff(x), (4 - 2*h(x) )),
Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)),
]
dsolve(eqs) # Not sure if this finishes...
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@XFAIL
def test_nonlinear_3eq_order1_type5():
eqs = [
Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))),
Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))),
Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))),
]
dsolve(eqs) # KeyError
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol1 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol2 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol3 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol4 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol5 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol6 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq6)
assert s == sol6 # too complicated to test with subs and simplify
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = Rational(2, 3)
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = {Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))}
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = {Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)}
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
@slow
def test_dsolve_options():
eq = x*f(x).diff(x) + f(x)
a = dsolve(eq, hint='all')
b = dsolve(eq, hint='all', simplify=False)
c = dsolve(eq, hint='all_Integral')
keys = ['1st_exact', '1st_exact_Integral', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear',
'1st_linear_Integral', 'Bernoulli', 'Bernoulli_Integral',
'almost_linear', 'almost_linear_Integral', 'best', 'best_hint',
'default', 'lie_group',
'nth_linear_euler_eq_homogeneous', 'order',
'separable', 'separable_Integral']
Integral_keys = ['1st_exact_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral', '1st_linear_Integral',
'Bernoulli_Integral', 'almost_linear_Integral', 'best', 'best_hint', 'default',
'nth_linear_euler_eq_homogeneous',
'order', 'separable_Integral']
assert sorted(a.keys()) == keys
assert a['order'] == ode_order(eq, f(x))
assert a['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best') == Eq(f(x), C1/x)
assert a['default'] == 'separable'
assert a['best_hint'] == 'separable'
assert not a['1st_exact'].has(Integral)
assert not a['separable'].has(Integral)
assert not a['1st_homogeneous_coeff_best'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not a['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not a['1st_linear'].has(Integral)
assert a['1st_linear_Integral'].has(Integral)
assert a['1st_exact_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert a['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert a['separable_Integral'].has(Integral)
assert sorted(b.keys()) == keys
assert b['order'] == ode_order(eq, f(x))
assert b['best'] == Eq(f(x), C1/x)
assert dsolve(eq, hint='best', simplify=False) == Eq(f(x), C1/x)
assert b['default'] == 'separable'
assert b['best_hint'] == '1st_linear'
assert a['separable'] != b['separable']
assert a['1st_homogeneous_coeff_subs_dep_div_indep'] != \
b['1st_homogeneous_coeff_subs_dep_div_indep']
assert a['1st_homogeneous_coeff_subs_indep_div_dep'] != \
b['1st_homogeneous_coeff_subs_indep_div_dep']
assert not b['1st_exact'].has(Integral)
assert not b['separable'].has(Integral)
assert not b['1st_homogeneous_coeff_best'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_dep_div_indep'].has(Integral)
assert not b['1st_homogeneous_coeff_subs_indep_div_dep'].has(Integral)
assert not b['1st_linear'].has(Integral)
assert b['1st_linear_Integral'].has(Integral)
assert b['1st_exact_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_dep_div_indep_Integral'].has(Integral)
assert b['1st_homogeneous_coeff_subs_indep_div_dep_Integral'].has(Integral)
assert b['separable_Integral'].has(Integral)
assert sorted(c.keys()) == Integral_keys
raises(ValueError, lambda: dsolve(eq, hint='notarealhint'))
raises(ValueError, lambda: dsolve(eq, hint='Liouville'))
assert dsolve(f(x).diff(x) - 1/f(x)**2, hint='all')['best'] == \
dsolve(f(x).diff(x) - 1/f(x)**2, hint='best')
assert dsolve(f(x) + f(x).diff(x) + sin(x).diff(x) + 1, f(x),
hint="1st_linear_Integral") == \
Eq(f(x), (C1 + Integral((-sin(x).diff(x) - 1)*
exp(Integral(1, x)), x))*exp(-Integral(1, x)))
def test_classify_ode():
assert classify_ode(f(x).diff(x, 2), f(x)) == \
(
'nth_algebraic',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'Liouville',
'2nd_power_series_ordinary',
'nth_algebraic_Integral',
'Liouville_Integral',
)
assert classify_ode(f(x), f(x)) == ('nth_algebraic', 'nth_algebraic_Integral')
assert classify_ode(Eq(f(x).diff(x), 0), f(x)) == (
'nth_algebraic',
'separable',
'1st_linear',
'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
assert classify_ode(f(x).diff(x)**2, f(x)) == ('factorable',
'nth_algebraic',
'separable',
'1st_linear',
'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_homogeneous',
'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral',
'separable_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
# issue 4749: f(x) should be cleared from highest derivative before classifying
a = classify_ode(Eq(f(x).diff(x) + f(x), x), f(x))
b = classify_ode(f(x).diff(x)*f(x) + f(x)*f(x) - x*f(x), f(x))
c = classify_ode(f(x).diff(x)/f(x) + f(x)/f(x) - x/f(x), f(x))
assert a == ('1st_linear',
'Bernoulli',
'almost_linear',
'1st_power_series', "lie_group",
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert b == ('factorable',
'1st_linear',
'Bernoulli',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert c == ('1st_linear',
'Bernoulli',
'1st_power_series',
'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral',
'Bernoulli_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
assert classify_ode(
2*x*f(x)*f(x).diff(x) + (1 + x)*f(x)**2 - exp(x), f(x)
) == ('Bernoulli', 'almost_linear', 'lie_group',
'Bernoulli_Integral', 'almost_linear_Integral')
assert 'Riccati_special_minus2' in \
classify_ode(2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2), f(x))
raises(ValueError, lambda: classify_ode(x + f(x, y).diff(x).diff(
y), f(x, y)))
# issue 5176
k = Symbol('k')
assert classify_ode(f(x).diff(x)/(k*f(x) + k*x*f(x)) + 2*f(x)/(k*f(x) +
k*x*f(x)) + x*f(x).diff(x)/(k*f(x) + k*x*f(x)) + z, f(x)) == \
('separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_power_series', 'lie_group', 'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral', 'Bernoulli_Integral')
# preprocessing
ans = ('nth_algebraic', 'separable', '1st_exact', '1st_linear', 'Bernoulli',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_algebraic_Integral',
'separable_Integral', '1st_exact_Integral',
'1st_linear_Integral',
'Bernoulli_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters_Integral')
# w/o f(x) given
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x)) == ans
# w/ f(x) and prep=True
assert classify_ode(diff(f(x) + x, x) + diff(f(x), x), f(x),
prep=True) == ans
assert classify_ode(Eq(2*x**3*f(x).diff(x), 0), f(x)) == \
('factorable', 'nth_algebraic', 'separable', '1st_linear',
'Bernoulli', '1st_power_series',
'lie_group', 'nth_linear_euler_eq_homogeneous',
'nth_algebraic_Integral', 'separable_Integral',
'1st_linear_Integral', 'Bernoulli_Integral')
assert classify_ode(Eq(2*f(x)**3*f(x).diff(x), 0), f(x)) == \
('factorable', 'nth_algebraic', 'separable', '1st_linear', 'Bernoulli',
'1st_power_series', 'lie_group', 'nth_algebraic_Integral',
'separable_Integral', '1st_linear_Integral', 'Bernoulli_Integral')
# test issue 13864
assert classify_ode(Eq(diff(f(x), x) - f(x)**x, 0), f(x)) == \
('1st_power_series', 'lie_group')
assert isinstance(classify_ode(Eq(f(x), 5), f(x), dict=True), dict)
def test_classify_ode_ics():
# Dummy
eq = f(x).diff(x, x) - f(x)
# Not f(0) or f'(0)
ics = {x: 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
############################
# f(0) type (AppliedUndef) #
############################
# Wrong function
ics = {g(0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(0, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(0): f(1)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(0): 1}
classify_ode(eq, f(x), ics=ics)
#####################
# f'(0) type (Subs) #
#####################
# Wrong function
ics = {g(x).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Wrong variable
ics = {f(y).diff(y).subs(y, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, y).subs(x, 0): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, 0): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, 0): 1}
classify_ode(eq, f(x), ics=ics)
###########################
# f'(y) type (Derivative) #
###########################
# Wrong function
ics = {g(x).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Contains x
ics = {f(y).diff(y).subs(y, x): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Too many args
ics = {f(x, y).diff(x).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Derivative wrt wrong vars
ics = {Derivative(f(x), x, z).subs(x, y): 1}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# point contains f
# XXX: Should be NotImplementedError
ics = {f(x).diff(x).subs(x, y): f(0)}
raises(ValueError, lambda: classify_ode(eq, f(x), ics=ics))
# Does not raise
ics = {f(x).diff(x).subs(x, y): 1}
classify_ode(eq, f(x), ics=ics)
def test_classify_sysode():
# Here x is assumed to be x(t) and y as y(t) for simplicity.
# Similarly diff(x,t) and diff(y,y) is assumed to be x1 and y1 respectively.
k, l, m, n = symbols('k, l, m, n', Integer=True)
k1, k2, k3, l1, l2, l3, m1, m2, m3 = symbols('k1, k2, k3, l1, l2, l3, m1, m2, m3', Integer=True)
P, Q, R, p, q, r = symbols('P, Q, R, p, q, r', cls=Function)
P1, P2, P3, Q1, Q2, R1, R2 = symbols('P1, P2, P3, Q1, Q2, R1, R2', cls=Function)
x, y, z = symbols('x, y, z', cls=Function)
t = symbols('t')
x1 = diff(x(t),t) ; y1 = diff(y(t),t) ;
eq6 = (Eq(x1, exp(k*x(t))*P(x(t),y(t))), Eq(y1,r(y(t))*P(x(t),y(t))))
sol6 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': 'type2', 'func': \
[x(t), y(t)], 'is_linear': False, 'eq': [-P(x(t), y(t))*exp(k*x(t)) + Derivative(x(t), t), -P(x(t), \
y(t))*r(y(t)) + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq6) == sol6
eq7 = (Eq(x1, x(t)**2+y(t)/x(t)), Eq(y1, x(t)/y(t)))
sol7 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): 0, (1, x(t), 1): 0, (0, x(t), 1): 1, (1, y(t), 0): 0, \
(1, x(t), 0): -1/y(t), (0, y(t), 1): 0, (0, y(t), 0): -1/x(t), (1, y(t), 1): 1}, 'type_of_equation': 'type3', \
'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)**2 + Derivative(x(t), t) - y(t)/x(t), -x(t)/y(t) + \
Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq7) == sol7
eq8 = (Eq(x1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)), Eq(y1, P1(x(t))*Q1(y(t))*R(x(t),y(t),t)))
sol8 = {'func': [x(t), y(t)], 'is_linear': False, 'type_of_equation': 'type4', 'eq': \
[-P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + Derivative(x(t), t), -P1(x(t))*Q1(y(t))*R(x(t), y(t), t) + \
Derivative(y(t), t)], 'func_coeff': {(0, y(t), 1): 0, (1, y(t), 1): 1, (1, x(t), 1): 0, (0, y(t), 0): 0, \
(1, x(t), 0): 0, (0, x(t), 0): 0, (1, y(t), 0): 0, (0, x(t), 1): 1}, 'order': {y(t): 1, x(t): 1}, 'no_of_equation': 2}
assert classify_sysode(eq8) == sol8
eq11 = (Eq(x1,x(t)*y(t)**3), Eq(y1,y(t)**5))
sol11 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)**3, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): 0, (1, y(t), 1): 1}, 'type_of_equation': \
'type1', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)**3 + Derivative(x(t), t), \
-y(t)**5 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq11) == sol11
eq13 = (Eq(x1,x(t)*y(t)*sin(t)**2), Eq(y1,y(t)**2*sin(t)**2))
sol13 = {'no_of_equation': 2, 'func_coeff': {(0, x(t), 0): -y(t)*sin(t)**2, (1, x(t), 1): 0, (0, x(t), 1): 1, \
(1, y(t), 0): 0, (1, x(t), 0): 0, (0, y(t), 1): 0, (0, y(t), 0): -x(t)*sin(t)**2, (1, y(t), 1): 1}, \
'type_of_equation': 'type4', 'func': [x(t), y(t)], 'is_linear': False, 'eq': [-x(t)*y(t)*sin(t)**2 + \
Derivative(x(t), t), -y(t)**2*sin(t)**2 + Derivative(y(t), t)], 'order': {y(t): 1, x(t): 1}}
assert classify_sysode(eq13) == sol13
def test_solve_ics():
# Basic tests that things work from dsolve.
assert dsolve(f(x).diff(x) - 1/f(x), f(x), ics={f(1): 2}) == \
Eq(f(x), sqrt(2 * x + 2))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x) - f(x), f(x), ics={f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), exp(x))
assert dsolve(f(x).diff(x, x) + f(x), f(x), ics={f(0): 1,
f(x).diff(x).subs(x, 0): 1}) == Eq(f(x), sin(x) + cos(x))
assert dsolve([f(x).diff(x) - f(x) + g(x), g(x).diff(x) - g(x) - f(x)],
[f(x), g(x)], ics={f(0): 1, g(0): 0}) == [Eq(f(x), exp(x)*cos(x)), Eq(g(x), exp(x)*sin(x))]
# Test cases where dsolve returns two solutions.
eq = (x**2*f(x)**2 - x).diff(x)
assert dsolve(eq, f(x), ics={f(1): 0}) == [Eq(f(x),
-sqrt(x - 1)/x), Eq(f(x), sqrt(x - 1)/x)]
assert dsolve(eq, f(x), ics={f(x).diff(x).subs(x, 1): 0}) == [Eq(f(x),
-sqrt(x - S.Half)/x), Eq(f(x), sqrt(x - S.Half)/x)]
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=False) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3))
assert dsolve(eq, f(x),
ics={f(0):1}, hint='1st_exact', simplify=True) == Eq(x*cos(f(x)) + f(x)**3/3, Rational(1, 3))
assert solve_ics([Eq(f(x), C1*exp(x))], [f(x)], [C1], {f(0): 1}) == {C1: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(pi/2): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2],
{f(0): 1, f(x).diff(x).subs(x, 0): 1}) == {C1: 1, C2: 1}
assert solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1}) == \
{C2: 1}
# Some more complicated tests Refer to PR #16098
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x, 1):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6 - x / 2)}
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0})) == \
{Eq(f(x), 0), Eq(f(x), C2*x + x**3/6)}
K, r, f0 = symbols('K r f0')
sol = Eq(f(x), K*f0*exp(r*x)/((-K + f0)*(f0*exp(r*x)/(-K + f0) - 1)))
assert (dsolve(Eq(f(x).diff(x), r * f(x) * (1 - f(x) / K)), f(x), ics={f(0): f0})) == sol
#Order dependent issues Refer to PR #16098
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(x).diff(x).subs(x,0):0, f(0):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6)}
assert set(dsolve(f(x).diff(x)*(f(x).diff(x, 2)-x), ics={f(0):0, f(x).diff(x).subs(x,0):0})) == \
{Eq(f(x), 0), Eq(f(x), x ** 3 / 6)}
# XXX: Ought to be ValueError
raises(ValueError, lambda: solve_ics([Eq(f(x), C1*sin(x) + C2*cos(x))], [f(x)], [C1, C2], {f(0): 1, f(pi): 1}))
# Degenerate case. f'(0) is identically 0.
raises(ValueError, lambda: solve_ics([Eq(f(x), sqrt(C1 - x**2))], [f(x)], [C1], {f(x).diff(x).subs(x, 0): 0}))
EI, q, L = symbols('EI q L')
# eq = Eq(EI*diff(f(x), x, 4), q)
sols = [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3 + q*x**4/(24*EI))]
funcs = [f(x)]
constants = [C1, C2, C3, C4]
# Test both cases, Derivative (the default from f(x).diff(x).subs(x, L)),
# and Subs
ics1 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
f(L).diff(L, 2): 0,
f(L).diff(L, 3): 0}
ics2 = {f(0): 0,
f(x).diff(x).subs(x, 0): 0,
Subs(f(x).diff(x, 2), x, L): 0,
Subs(f(x).diff(x, 3), x, L): 0}
solved_constants1 = solve_ics(sols, funcs, constants, ics1)
solved_constants2 = solve_ics(sols, funcs, constants, ics2)
assert solved_constants1 == solved_constants2 == {
C1: 0,
C2: 0,
C3: L**2*q/(4*EI),
C4: -L*q/(6*EI)}
def test_ode_order():
f = Function('f')
g = Function('g')
x = Symbol('x')
assert ode_order(3*x*exp(f(x)), f(x)) == 0
assert ode_order(x*diff(f(x), x) + 3*x*f(x) - sin(x)/x, f(x)) == 1
assert ode_order(x**2*f(x).diff(x, x) + x*diff(f(x), x) - f(x), f(x)) == 2
assert ode_order(diff(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), f(x)) == 3
assert ode_order(diff(f(x), x, x), g(x)) == 0
assert ode_order(diff(f(x), x, x)*diff(g(x), x), f(x)) == 2
assert ode_order(diff(f(x), x, x)*diff(g(x), x), g(x)) == 1
assert ode_order(diff(x*diff(x*exp(f(x)), x, x), x), g(x)) == 0
# issue 5835: ode_order has to also work for unevaluated derivatives
# (ie, without using doit()).
assert ode_order(Derivative(x*f(x), x), f(x)) == 1
assert ode_order(x*sin(Derivative(x*f(x)**2, x, x)), f(x)) == 2
assert ode_order(Derivative(x*Derivative(x*exp(f(x)), x, x), x), g(x)) == 0
assert ode_order(Derivative(f(x), x, x), g(x)) == 0
assert ode_order(Derivative(x*exp(f(x)), x, x), f(x)) == 2
assert ode_order(Derivative(f(x), x, x)*Derivative(g(x), x), g(x)) == 1
assert ode_order(Derivative(x*Derivative(f(x), x, x), x), f(x)) == 3
assert ode_order(
x*sin(Derivative(x*Derivative(f(x), x)**2, x, x)), f(x)) == 3
# In all tests below, checkodesol has the order option set to prevent
# superfluous calls to ode_order(), and the solve_for_func flag set to False
# because dsolve() already tries to solve for the function, unless the
# simplify=False option is set.
def test_old_ode_tests():
# These are simple tests from the old ode module
eq1 = Eq(f(x).diff(x), 0)
eq2 = Eq(3*f(x).diff(x) - 5, 0)
eq3 = Eq(3*f(x).diff(x), 5)
eq4 = Eq(9*f(x).diff(x, x) + f(x), 0)
eq5 = Eq(9*f(x).diff(x, x), f(x))
# Type: a(x)f'(x)+b(x)*f(x)+c(x)=0
eq6 = Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0)
eq7 = Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0)
# Type: 2nd order, constant coefficients (two real different roots)
eq8 = Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0)
# Type: 2nd order, constant coefficients (two real equal roots)
eq9 = Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0)
# Type: 2nd order, constant coefficients (two complex roots)
eq10 = Eq(3*f(x).diff(x) - 1, 0)
eq11 = Eq(x*f(x).diff(x) - 1, 0)
sol1 = Eq(f(x), C1)
sol2 = Eq(f(x), C1 + x*Rational(5, 3))
sol3 = Eq(f(x), C1 + x*Rational(5, 3))
sol4 = Eq(f(x), C1*sin(x/3) + C2*cos(x/3))
sol5 = Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))
sol6 = Eq(f(x), (C1 - cos(x))/x**3)
sol7 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol8 = Eq(f(x), (C1 + C2*x)*exp(2*x))
sol9 = Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))
sol10 = Eq(f(x), C1 + x/3)
sol11 = Eq(f(x), C1 + log(x))
assert dsolve(eq1) == sol1
assert dsolve(eq1.lhs) == sol1
assert dsolve(eq2) == sol2
assert dsolve(eq3) == sol3
assert dsolve(eq4) == sol4
assert dsolve(eq5) == sol5
assert dsolve(eq6) == sol6
assert dsolve(eq7) == sol7
assert dsolve(eq8) == sol8
assert dsolve(eq9) == sol9
assert dsolve(eq10) == sol10
assert dsolve(eq11) == sol11
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=2, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=2, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=2, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=2, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=1, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=1, solve_for_func=False)[0]
def test_homogeneous_order():
assert homogeneous_order(exp(y/x) + tan(y/x), x, y) == 0
assert homogeneous_order(x**2 + sin(x)*cos(y), x, y) is None
assert homogeneous_order(x - y - x*sin(y/x), x, y) == 1
assert homogeneous_order((x*y + sqrt(x**4 + y**4) + x**2*(log(x) - log(y)))/
(pi*x**Rational(2, 3)*sqrt(y)**3), x, y) == Rational(-1, 6)
assert homogeneous_order(y/x*cos(y/x) - x/y*sin(y/x) + cos(y/x), x, y) == 0
assert homogeneous_order(f(x), x, f(x)) == 1
assert homogeneous_order(f(x)**2, x, f(x)) == 2
assert homogeneous_order(x*y*z, x, y) == 2
assert homogeneous_order(x*y*z, x, y, z) == 3
assert homogeneous_order(x**2*f(x)/sqrt(x**2 + f(x)**2), f(x)) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y), y) == 2
assert homogeneous_order(f(x, y)**2, x, f(x), y) is None
assert homogeneous_order(f(x, y)**2, x, f(x, y)) is None
assert homogeneous_order(f(y, x)**2, x, y, f(x, y)) is None
assert homogeneous_order(f(y), f(x), x) is None
assert homogeneous_order(-f(x)/x + 1/sin(f(x)/ x), f(x), x) == 0
assert homogeneous_order(log(1/y) + log(x**2), x, y) is None
assert homogeneous_order(log(1/y) + log(x), x, y) == 0
assert homogeneous_order(log(x/y), x, y) == 0
assert homogeneous_order(2*log(1/y) + 2*log(x), x, y) == 0
a = Symbol('a')
assert homogeneous_order(a*log(1/y) + a*log(x), x, y) == 0
assert homogeneous_order(f(x).diff(x), x, y) is None
assert homogeneous_order(-f(x).diff(x) + x, x, y) is None
assert homogeneous_order(O(x), x, y) is None
assert homogeneous_order(x + O(x**2), x, y) is None
assert homogeneous_order(x**pi, x) == pi
assert homogeneous_order(x**x, x) is None
raises(ValueError, lambda: homogeneous_order(x*y))
@slow
def test_1st_homogeneous_coeff_ode():
# Type: First order homogeneous, y'=f(y/x)
eq1 = f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x)
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
eq4 = 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x)
eq5 = 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x)
eq6 = x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x)
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
eq8 = x + f(x) - (x - f(x))*f(x).diff(x)
sol1 = Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))
sol2 = Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))
sol4 = Eq(log(f(x)), C1 - 2*exp(x/f(x)))
sol5 = Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)
sol6 = Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
sol8 = Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))
# indep_div_dep actually has a simpler solution for eq2,
# but it runs too slow
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_best') == sol3
assert dsolve(eq4, hint='1st_homogeneous_coeff_best') == sol4
assert dsolve(eq5, hint='1st_homogeneous_coeff_best') == sol5
assert dsolve(eq6, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol6
assert dsolve(eq7, hint='1st_homogeneous_coeff_best') == sol7
assert dsolve(eq8, hint='1st_homogeneous_coeff_best') == sol8
# FIXME: sol3 and sol5 don't work with checkodesol (because of LambertW?)
# previous code was testing with these other solutions:
sol3b = Eq(-f(x)/(1 + log(x/f(x))), C1)
sol5b = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=1, solve_for_func=False)[0]
assert checkodesol(eq5, sol5b, order=1, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=1, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check2():
eq2 = x*f(x).diff(x) - f(x) - x*sin(f(x)/x)
sol2 = Eq(x/tan(f(x)/(2*x)), C1)
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check3():
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
# This solution is correct:
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(1 - C1)))
assert dsolve(eq3) == sol3
# FIXME: Checked in test_1st_homogeneous_coeff_ode_check3_check below
# Alternate form:
sol3a = Eq(f(x), x*exp(1 - LambertW(C1*x)))
assert checkodesol(eq3, sol3a, solve_for_func=True)[0]
@XFAIL
def test_1st_homogeneous_coeff_ode_check3_check():
# See test_1st_homogeneous_coeff_ode_check3 above
eq3 = f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x)
sol3 = Eq(f(x), -exp(C1)*LambertW(-x*exp(1 - C1)))
assert checkodesol(eq3, sol3) == (True, 0) # XFAIL
def test_1st_homogeneous_coeff_ode_check7():
eq7 = (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x)
sol7 = Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))
assert dsolve(eq7) == sol7
assert checkodesol(eq7, sol7, order=1, solve_for_func=False) == (True, 0)
def test_1st_homogeneous_coeff_ode2():
eq1 = f(x).diff(x) - f(x)/x + 1/sin(f(x)/x)
eq2 = x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x)
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol1 = [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))]
sol2 = Eq(log(f(x)), log(C1) + log(x/f(x)) - log(x**2/f(x)**2 - 1))
sol3 = Eq(f(x), log((1/(C1 - log(x)))**x))
# specific hints are applied for speed reasons
assert dsolve(eq1, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol1
assert dsolve(eq2, hint='1st_homogeneous_coeff_best', simplify=False) == sol2
assert dsolve(eq3, hint='1st_homogeneous_coeff_subs_dep_div_indep') == sol3
# FIXME: sol3 doesn't work with checkodesol (because of **x?)
# previous code was testing with this other solution:
sol3b = Eq(f(x), log(log(C1/x)**(-x)))
assert checkodesol(eq1, sol1, order=1, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=1, solve_for_func=False)[0]
assert checkodesol(eq3, sol3b, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode_check9():
_u2 = Dummy('u2')
__a = Dummy('a')
eq9 = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol9 = Eq(-Integral(-1/(-(1 - sqrt(1 - _u2**2))*_u2 + _u2), (_u2, __a,
x/f(x))) + log(C1*f(x)), 0)
assert checkodesol(eq9, sol9, order=1, solve_for_func=False)[0]
def test_1st_homogeneous_coeff_ode3():
# The standard integration engine cannot handle one of the integrals
# involved (see issue 4551). meijerg code comes up with an answer, but in
# unconventional form.
# checkodesol fails for this equation, so its test is in
# test_1st_homogeneous_coeff_ode_check9 above. It has to compare string
# expressions because u2 is a dummy variable.
eq = f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x)
sol = Eq(log(f(x)), C1 + Piecewise(
(acosh(f(x)/x), abs(f(x)**2)/x**2 > 1),
(-I*asin(f(x)/x), True)))
assert dsolve(eq, hint='1st_homogeneous_coeff_subs_indep_div_dep') == sol
def test_1st_homogeneous_coeff_corner_case():
eq1 = f(x).diff(x) - f(x)/x
c1 = classify_ode(eq1, f(x))
eq2 = x*f(x).diff(x) - f(x)
c2 = classify_ode(eq2, f(x))
sdi = "1st_homogeneous_coeff_subs_dep_div_indep"
sid = "1st_homogeneous_coeff_subs_indep_div_dep"
assert sid not in c1 and sdi not in c1
assert sid not in c2 and sdi not in c2
@slow
def test_nth_linear_constant_coeff_homogeneous():
# From Exercise 20, in Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 220
a = Symbol('a', positive=True)
k = Symbol('k', real=True)
eq1 = f(x).diff(x, 2) + 2*f(x).diff(x)
eq2 = f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x)
eq3 = f(x).diff(x, 2) - f(x)
eq4 = f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x)
eq5 = 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x)
eq6 = Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0)
eq7 = diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x)
eq8 = f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x)
eq9 = f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \
4*f(x).diff(x) - 2*f(x)
eq10 = f(x).diff(x, 4) - a**2*f(x)
eq11 = f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x)
eq12 = f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x)
eq13 = f(x).diff(x, 4)
eq14 = f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x)
eq15 = 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x)
eq16 = f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x)
eq17 = f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x)
eq18 = f(x).diff(x, 4) + 3*f(x).diff(x, 3)
eq19 = f(x).diff(x, 4) - 2*f(x).diff(x, 2)
eq20 = f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \
12*f(x).diff(x) + 36*f(x)
eq21 = 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x)
eq22 = f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x)
eq23 = f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x)
eq24 = f(x).diff(x, 2) - f(x).diff(x) + f(x)
eq25 = f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x)
eq26 = f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x)
eq27 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x)
eq28 = f(x).diff(x, 3) + 8*f(x)
eq29 = f(x).diff(x, 4) + 4*f(x).diff(x, 2)
eq30 = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x)
eq31 = f(x).diff(x, 4) + f(x).diff(x, 2) + f(x)
eq32 = f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x)
sol1 = Eq(f(x), C1 + C2*exp(-2*x))
sol2 = Eq(f(x), (C1 + C2*exp(x))*exp(x))
sol3 = Eq(f(x), C1*exp(x) + C2*exp(-x))
sol4 = Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))
sol5 = Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3)))
sol6 = Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(x*(-sqrt(2) - 1)))
sol7 = Eq(f(x), C3*exp(3*x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))
sol8 = Eq(f(x), C1 + C2*exp(x) + C3*exp(-2*x) + C4*exp(2*x))
sol9 = Eq(f(x), C3*exp(-x) + C4*exp(x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))
sol10 = Eq(f(x),
C1*sin(x*sqrt(a)) + C2*cos(x*sqrt(a)) + C3*exp(x*sqrt(a)) +
C4*exp(-x*sqrt(a)))
sol11 = Eq(f(x),
C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))
sol12 = Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))
sol13 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)
sol14 = Eq(f(x), (C1 + C2*x)*exp(-2*x))
sol15 = Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))
sol16 = Eq(f(x), (C1 + x*(C2 + C3*x))*exp(2*x))
sol17 = Eq(f(x), (C1 + C2*x)*exp(a*x))
sol18 = Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))
sol19 = Eq(f(x), C1 + C2*x + C3*exp(x*sqrt(2)) + C4*exp(-x*sqrt(2)))
sol20 = Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))
sol21 = Eq(f(x), C1*exp(x/2) + C2*exp(-x) + C3*exp(-x/3) + C4*exp(x*Rational(5, 6)))
sol22 = Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))
sol23 = Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))
sol24 = Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))
sol25 = Eq(f(x),
C1*cos(x*sqrt(3)) + C2*sin(x*sqrt(3)) + C3*sin(x*sqrt(2)) +
C4*cos(x*sqrt(2)))
sol26 = Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))
sol27 = Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))
sol28 = Eq(f(x),
(C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))
sol29 = Eq(f(x), C1 + C2*sin(2*x) + C3*cos(2*x) + C4*x)
sol30 = Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))
sol31 = Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))/sqrt(exp(x))
+ (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*sqrt(exp(x)))
sol32 = Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2))
+ C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))
sol1s = constant_renumber(sol1)
sol2s = constant_renumber(sol2)
sol3s = constant_renumber(sol3)
sol4s = constant_renumber(sol4)
sol5s = constant_renumber(sol5)
sol6s = constant_renumber(sol6)
sol7s = constant_renumber(sol7)
sol8s = constant_renumber(sol8)
sol9s = constant_renumber(sol9)
sol10s = constant_renumber(sol10)
sol11s = constant_renumber(sol11)
sol12s = constant_renumber(sol12)
sol13s = constant_renumber(sol13)
sol14s = constant_renumber(sol14)
sol15s = constant_renumber(sol15)
sol16s = constant_renumber(sol16)
sol17s = constant_renumber(sol17)
sol18s = constant_renumber(sol18)
sol19s = constant_renumber(sol19)
sol20s = constant_renumber(sol20)
sol21s = constant_renumber(sol21)
sol22s = constant_renumber(sol22)
sol23s = constant_renumber(sol23)
sol24s = constant_renumber(sol24)
sol25s = constant_renumber(sol25)
sol26s = constant_renumber(sol26)
sol27s = constant_renumber(sol27)
sol28s = constant_renumber(sol28)
sol29s = constant_renumber(sol29)
sol30s = constant_renumber(sol30)
assert dsolve(eq1) in (sol1, sol1s)
assert dsolve(eq2) in (sol2, sol2s)
assert dsolve(eq3) in (sol3, sol3s)
assert dsolve(eq4) in (sol4, sol4s)
assert dsolve(eq5) in (sol5, sol5s)
assert dsolve(eq6) in (sol6, sol6s)
got = dsolve(eq7)
assert got in (sol7, sol7s), got
assert dsolve(eq8) in (sol8, sol8s)
got = dsolve(eq9)
assert got in (sol9, sol9s), got
assert dsolve(eq10) in (sol10, sol10s)
assert dsolve(eq11) in (sol11, sol11s)
assert dsolve(eq12) in (sol12, sol12s)
assert dsolve(eq13) in (sol13, sol13s)
assert dsolve(eq14) in (sol14, sol14s)
assert dsolve(eq15) in (sol15, sol15s)
got = dsolve(eq16)
assert got in (sol16, sol16s), got
assert dsolve(eq17) in (sol17, sol17s)
assert dsolve(eq18) in (sol18, sol18s)
assert dsolve(eq19) in (sol19, sol19s)
assert dsolve(eq20) in (sol20, sol20s)
assert dsolve(eq21) in (sol21, sol21s)
assert dsolve(eq22) in (sol22, sol22s)
assert dsolve(eq23) in (sol23, sol23s)
assert dsolve(eq24) in (sol24, sol24s)
assert dsolve(eq25) in (sol25, sol25s)
assert dsolve(eq26) in (sol26, sol26s)
assert dsolve(eq27) in (sol27, sol27s)
assert dsolve(eq28) in (sol28, sol28s)
assert dsolve(eq29) in (sol29, sol29s)
assert dsolve(eq30) in (sol30, sol30s)
assert dsolve(eq31) in (sol31,)
assert dsolve(eq32) in (sol32,)
assert checkodesol(eq1, sol1, order=2, solve_for_func=False)[0]
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
assert checkodesol(eq3, sol3, order=2, solve_for_func=False)[0]
assert checkodesol(eq4, sol4, order=3, solve_for_func=False)[0]
assert checkodesol(eq5, sol5, order=2, solve_for_func=False)[0]
assert checkodesol(eq6, sol6, order=2, solve_for_func=False)[0]
assert checkodesol(eq7, sol7, order=3, solve_for_func=False)[0]
assert checkodesol(eq8, sol8, order=4, solve_for_func=False)[0]
assert checkodesol(eq9, sol9, order=4, solve_for_func=False)[0]
assert checkodesol(eq10, sol10, order=4, solve_for_func=False)[0]
assert checkodesol(eq11, sol11, order=2, solve_for_func=False)[0]
assert checkodesol(eq12, sol12, order=2, solve_for_func=False)[0]
assert checkodesol(eq13, sol13, order=4, solve_for_func=False)[0]
assert checkodesol(eq14, sol14, order=2, solve_for_func=False)[0]
assert checkodesol(eq15, sol15, order=3, solve_for_func=False)[0]
assert checkodesol(eq16, sol16, order=3, solve_for_func=False)[0]
assert checkodesol(eq17, sol17, order=2, solve_for_func=False)[0]
assert checkodesol(eq18, sol18, order=4, solve_for_func=False)[0]
assert checkodesol(eq19, sol19, order=4, solve_for_func=False)[0]
assert checkodesol(eq20, sol20, order=4, solve_for_func=False)[0]
assert checkodesol(eq21, sol21, order=4, solve_for_func=False)[0]
assert checkodesol(eq22, sol22, order=4, solve_for_func=False)[0]
assert checkodesol(eq23, sol23, order=2, solve_for_func=False)[0]
assert checkodesol(eq24, sol24, order=2, solve_for_func=False)[0]
assert checkodesol(eq25, sol25, order=4, solve_for_func=False)[0]
assert checkodesol(eq26, sol26, order=2, solve_for_func=False)[0]
assert checkodesol(eq27, sol27, order=4, solve_for_func=False)[0]
assert checkodesol(eq28, sol28, order=3, solve_for_func=False)[0]
assert checkodesol(eq29, sol29, order=4, solve_for_func=False)[0]
assert checkodesol(eq30, sol30, order=5, solve_for_func=False)[0]
assert checkodesol(eq31, sol31, order=4, solve_for_func=False)[0]
assert checkodesol(eq32, sol32, order=4, solve_for_func=False)[0]
# Issue #15237
eqn = Derivative(x*f(x), x, x, x)
hint = 'nth_linear_constant_coeff_homogeneous'
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=True))
raises(ValueError, lambda: dsolve(eqn, f(x), hint, prep=False))
def test_nth_linear_constant_coeff_homogeneous_rootof():
# One real root, two complex conjugate pairs
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(r1*x)
+ exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x))
+ exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Three real roots, one complex conjugate pair
eq = f(x).diff(x,5) - 3*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 3*x + 1, n) for n in range(5)]
sol = Eq(f(x),
C3*exp(r1*x) + C4*exp(r2*x) + C5*exp(r3*x)
+ exp(re(r4)*x) * (C1*sin(im(r4)*x) + C2*cos(im(r4)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five distinct real roots
eq = f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)]
sol = Eq(f(x), C1*exp(r1*x) + C2*exp(r2*x) + C3*exp(r3*x) + C4*exp(r4*x) + C5*exp(r5*x))
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Rational root and unsolvable quintic
eq = f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x)
r2, r3, r4, r5, r6 = [rootof(x**5 - x**4 + 10, n) for n in range(5)]
sol = Eq(f(x),
C5*exp(5*x)
+ C6*exp(x*r2)
+ exp(re(r3)*x) * (C1*sin(im(r3)*x) + C2*cos(im(r3)*x))
+ exp(re(r5)*x) * (C3*sin(im(r5)*x) + C4*cos(im(r5)*x))
)
assert dsolve(eq) == sol
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
# Five double roots (this is (x**5 - x + 1)**2)
eq = f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5) + f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x)
r1, r2, r3, r4, r5 = [rootof(x**5 - x + 1, n) for n in range(5)]
sol = Eq(f(x), (C1 + C2*x)*exp(x*r1) + (C10*sin(x*im(r4)) + C7*x*sin(x*im(r4)) + (
C8 + C9*x)*cos(x*im(r4)))*exp(x*re(r4)) + (C3*x*sin(x*im(r2)) + C6*sin(x*im(r2)
) + (C4 + C5*x)*cos(x*im(r2)))*exp(x*re(r2)))
got = dsolve(eq)
assert sol == got, got
# FIXME: assert checkodesol(eq, sol) == (True, [0]) # Hangs...
def test_nth_linear_constant_coeff_homogeneous_irrational():
our_hint='nth_linear_constant_coeff_homogeneous'
eq = Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
E = exp(1)
eq = Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
eq = Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0)
sol = Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))
assert our_hint in classify_ode(eq)
assert dsolve(eq, f(x), hint=our_hint) == sol
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=3, solve_for_func=False)[0]
@XFAIL
@slow
def test_nth_linear_constant_coeff_homogeneous_rootof_sol():
# See https://github.com/sympy/sympy/issues/15753
if ON_TRAVIS:
skip("Too slow for travis.")
eq = f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x)
sol = Eq(f(x),
C1*exp(x*rootof(x**5 + 11*x - 2, 0)) +
C2*exp(x*rootof(x**5 + 11*x - 2, 1)) +
C3*exp(x*rootof(x**5 + 11*x - 2, 2)) +
C4*exp(x*rootof(x**5 + 11*x - 2, 3)) +
C5*exp(x*rootof(x**5 + 11*x - 2, 4)))
assert checkodesol(eq, sol, order=5, solve_for_func=False)[0]
@XFAIL
def test_noncircularized_real_imaginary_parts():
# If this passes, lines numbered 3878-3882 (at the time of this commit)
# of sympy/solvers/ode.py for nth_linear_constant_coeff_homogeneous
# should be removed.
y = sqrt(1+x)
i, r = im(y), re(y)
assert not (i.has(atan2) and r.has(atan2))
def test_collect_respecting_exponentials():
# If this test passes, lines 1306-1311 (at the time of this commit)
# of sympy/solvers/ode.py should be removed.
sol = 1 + exp(x/2)
assert sol == collect( sol, exp(x/3))
def test_undetermined_coefficients_match():
assert _undetermined_coefficients_match(g(x), x) == {'test': False}
assert _undetermined_coefficients_match(sin(2*x + sqrt(5)), x) == \
{'test': True, 'trialset':
{cos(2*x + sqrt(5)), sin(2*x + sqrt(5))}}
assert _undetermined_coefficients_match(sin(x)*cos(x), x) == \
{'test': False}
s = {cos(x), x*cos(x), x**2*cos(x), x**2*sin(x), x*sin(x), sin(x)}
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
sin(x)*x**2 + sin(x)*x + sin(x), x) == {'test': True, 'trialset': s}
assert _undetermined_coefficients_match(
exp(2*x)*sin(x)*(x**2 + x + 1), x
) == {
'test': True, 'trialset': {exp(2*x)*sin(x), x**2*exp(2*x)*sin(x),
cos(x)*exp(2*x), x**2*cos(x)*exp(2*x), x*cos(x)*exp(2*x),
x*exp(2*x)*sin(x)}}
assert _undetermined_coefficients_match(1/sin(x), x) == {'test': False}
assert _undetermined_coefficients_match(log(x), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': {2**x, x*2**x, x**2*2**x}}
assert _undetermined_coefficients_match(x**y, x) == {'test': False}
assert _undetermined_coefficients_match(exp(x)*exp(2*x + 1), x) == \
{'test': True, 'trialset': {exp(1 + 3*x)}}
assert _undetermined_coefficients_match(sin(x)*(x**2 + x + 1), x) == \
{'test': True, 'trialset': {x*cos(x), x*sin(x), x**2*cos(x),
x**2*sin(x), cos(x), sin(x)}}
assert _undetermined_coefficients_match(sin(x)*(x + sin(x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*(x + sin(2*x)), x) == \
{'test': False}
assert _undetermined_coefficients_match(sin(x)*tan(x), x) == \
{'test': False}
assert _undetermined_coefficients_match(
x**2*sin(x)*exp(x) + x*sin(x) + x, x
) == {
'test': True, 'trialset': {x**2*cos(x)*exp(x), x, cos(x), S.One,
exp(x)*sin(x), sin(x), x*exp(x)*sin(x), x*cos(x), x*cos(x)*exp(x),
x*sin(x), cos(x)*exp(x), x**2*exp(x)*sin(x)}}
assert _undetermined_coefficients_match(4*x*sin(x - 2), x) == {
'trialset': {x*cos(x - 2), x*sin(x - 2), cos(x - 2), sin(x - 2)},
'test': True,
}
assert _undetermined_coefficients_match(2**x*x, x) == \
{'test': True, 'trialset': {2**x, x*2**x}}
assert _undetermined_coefficients_match(2**x*exp(2*x), x) == \
{'test': True, 'trialset': {2**x*exp(2*x)}}
assert _undetermined_coefficients_match(exp(-x)/x, x) == \
{'test': False}
# Below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
assert _undetermined_coefficients_match(S(4), x) == \
{'test': True, 'trialset': {S.One}}
assert _undetermined_coefficients_match(12*exp(x), x) == \
{'test': True, 'trialset': {exp(x)}}
assert _undetermined_coefficients_match(exp(I*x), x) == \
{'test': True, 'trialset': {exp(I*x)}}
assert _undetermined_coefficients_match(sin(x), x) == \
{'test': True, 'trialset': {cos(x), sin(x)}}
assert _undetermined_coefficients_match(cos(x), x) == \
{'test': True, 'trialset': {cos(x), sin(x)}}
assert _undetermined_coefficients_match(8 + 6*exp(x) + 2*sin(x), x) == \
{'test': True, 'trialset': {S.One, cos(x), sin(x), exp(x)}}
assert _undetermined_coefficients_match(x**2, x) == \
{'test': True, 'trialset': {S.One, x, x**2}}
assert _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x) == \
{'test': True, 'trialset': {x*exp(x), exp(x), exp(-x)}}
assert _undetermined_coefficients_match(2*exp(2*x)*sin(x), x) == \
{'test': True, 'trialset': {exp(2*x)*sin(x), cos(x)*exp(2*x)}}
assert _undetermined_coefficients_match(x - sin(x), x) == \
{'test': True, 'trialset': {S.One, x, cos(x), sin(x)}}
assert _undetermined_coefficients_match(x**2 + 2*x, x) == \
{'test': True, 'trialset': {S.One, x, x**2}}
assert _undetermined_coefficients_match(4*x*sin(x), x) == \
{'test': True, 'trialset': {x*cos(x), x*sin(x), cos(x), sin(x)}}
assert _undetermined_coefficients_match(x*sin(2*x), x) == \
{'test': True, 'trialset':
{x*cos(2*x), x*sin(2*x), cos(2*x), sin(2*x)}}
assert _undetermined_coefficients_match(x**2*exp(-x), x) == \
{'test': True, 'trialset': {x*exp(-x), x**2*exp(-x), exp(-x)}}
assert _undetermined_coefficients_match(2*exp(-x) - x**2*exp(-x), x) == \
{'test': True, 'trialset': {x*exp(-x), x**2*exp(-x), exp(-x)}}
assert _undetermined_coefficients_match(exp(-2*x) + x**2, x) == \
{'test': True, 'trialset': {S.One, x, x**2, exp(-2*x)}}
assert _undetermined_coefficients_match(x*exp(-x), x) == \
{'test': True, 'trialset': {x*exp(-x), exp(-x)}}
assert _undetermined_coefficients_match(x + exp(2*x), x) == \
{'test': True, 'trialset': {S.One, x, exp(2*x)}}
assert _undetermined_coefficients_match(sin(x) + exp(-x), x) == \
{'test': True, 'trialset': {cos(x), sin(x), exp(-x)}}
assert _undetermined_coefficients_match(exp(x), x) == \
{'test': True, 'trialset': {exp(x)}}
# converted from sin(x)**2
assert _undetermined_coefficients_match(S.Half - cos(2*x)/2, x) == \
{'test': True, 'trialset': {S.One, cos(2*x), sin(2*x)}}
# converted from exp(2*x)*sin(x)**2
assert _undetermined_coefficients_match(
exp(2*x)*(S.Half + cos(2*x)/2), x
) == {
'test': True, 'trialset': {exp(2*x)*sin(2*x), cos(2*x)*exp(2*x),
exp(2*x)}}
assert _undetermined_coefficients_match(2*x + sin(x) + cos(x), x) == \
{'test': True, 'trialset': {S.One, x, cos(x), sin(x)}}
# converted from sin(2*x)*sin(x)
assert _undetermined_coefficients_match(cos(x)/2 - cos(3*x)/2, x) == \
{'test': True, 'trialset': {cos(x), cos(3*x), sin(x), sin(3*x)}}
assert _undetermined_coefficients_match(cos(x**2), x) == {'test': False}
assert _undetermined_coefficients_match(2**(x**2), x) == {'test': False}
def test_issue_12623():
t = symbols("t")
u = symbols("u",cls=Function)
R, L, C, E_0, alpha = symbols("R L C E_0 alpha",positive=True)
omega = Symbol('omega')
eqRLC_1 = Eq( u(t).diff(t,t) + R /L*u(t).diff(t) + 1/(L*C)*u(t), alpha)
sol_1 = Eq(u(t), C*L*alpha + C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)) + C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)))
assert dsolve(eqRLC_1) == sol_1
assert checkodesol(eqRLC_1, sol_1) == (True, 0)
eqRLC_2 = Eq( L*C*u(t).diff(t,t) + R*C*u(t).diff(t) + u(t), E_0*exp(I*omega*t) )
sol_2 = Eq(u(t),
C1*exp(t*(-R - sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
+ C2*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
+ E_0*exp(I*omega*t)/(-C*L*omega**2 + I*C*R*omega + 1))
assert dsolve(eqRLC_2) == sol_2
assert checkodesol(eqRLC_2, sol_2) == (True, 0)
#issue-https://github.com/sympy/sympy/issues/12623
def test_unexpanded_Liouville_ODE():
# This is the same as eq1 from test_Liouville_ODE() above.
eq1 = diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2
eq2 = eq1*exp(-f(x))/exp(f(x))
sol2 = Eq(f(x), C1 + log(x) - log(C2 + x))
sol2s = constant_renumber(sol2)
assert dsolve(eq2) in (sol2, sol2s)
assert checkodesol(eq2, sol2, order=2, solve_for_func=False)[0]
def test_issue_4785():
from sympy.abc import A
eq = x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2
assert classify_ode(eq, f(x)) == ('1st_linear', 'almost_linear',
'1st_power_series', 'lie_group',
'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'1st_linear_Integral', 'almost_linear_Integral',
'nth_linear_constant_coeff_variation_of_parameters_Integral')
# issue 4864
eq = (x**2 + f(x)**2)*f(x).diff(x) - 2*x*f(x)
assert classify_ode(eq, f(x)) == ('1st_exact',
'1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep',
'1st_homogeneous_coeff_subs_dep_div_indep',
'1st_power_series',
'lie_group', '1st_exact_Integral',
'1st_homogeneous_coeff_subs_indep_div_dep_Integral',
'1st_homogeneous_coeff_subs_dep_div_indep_Integral')
def test_issue_4825():
raises(ValueError, lambda: dsolve(f(x, y).diff(x) - y*f(x, y), f(x)))
assert classify_ode(f(x, y).diff(x) - y*f(x, y), f(x), dict=True) == \
{'order': 0, 'default': None, 'ordered_hints': ()}
# See also issue 3793, test Z13.
raises(ValueError, lambda: dsolve(f(x).diff(x), f(y)))
assert classify_ode(f(x).diff(x), f(y), dict=True) == \
{'order': 0, 'default': None, 'ordered_hints': ()}
def test_constant_renumber_order_issue_5308():
from sympy.utilities.iterables import variations
assert constant_renumber(C1*x + C2*y) == \
constant_renumber(C1*y + C2*x) == \
C1*x + C2*y
e = C1*(C2 + x)*(C3 + y)
for a, b, c in variations([C1, C2, C3], 3):
assert constant_renumber(a*(b + x)*(c + y)) == e
def test_constant_renumber():
e1, e2, x, y = symbols("e1:3 x y")
exprs = [e2*x, e1*x + e2*y]
assert constant_renumber(exprs[0]) == e2*x
assert constant_renumber(exprs[0], variables=[x]) == C1*x
assert constant_renumber(exprs[0], variables=[x], newconstants=[C2]) == C2*x
assert constant_renumber(exprs, variables=[x, y]) == [C1*x, C1*y + C2*x]
assert constant_renumber(exprs, variables=[x, y], newconstants=symbols("C3:5")) == [C3*x, C3*y + C4*x]
def test_issue_5770():
k = Symbol("k", real=True)
t = Symbol('t')
w = Function('w')
sol = dsolve(w(t).diff(t, 6) - k**6*w(t), w(t))
assert len([s for s in sol.free_symbols if s.name.startswith('C')]) == 6
assert constantsimp((C1*cos(x) + C2*cos(x))*exp(x), {C1, C2}) == \
C1*cos(x)*exp(x)
assert constantsimp(C1*cos(x) + C2*cos(x) + C3*sin(x), {C1, C2, C3}) == \
C1*cos(x) + C3*sin(x)
assert constantsimp(exp(C1 + x), {C1}) == C1*exp(x)
assert constantsimp(x + C1 + y, {C1, y}) == C1 + x
assert constantsimp(x + C1 + Integral(x, (x, 1, 2)), {C1}) == C1 + x
def test_issue_5112_5430():
assert homogeneous_order(-log(x) + acosh(x), x) is None
assert homogeneous_order(y - log(x), x, y) is None
def test_issue_5095():
f = Function('f')
raises(ValueError, lambda: dsolve(f(x).diff(x)**2, f(x), 'fdsjf'))
def test_exact_enhancement():
f = Function('f')(x)
df = Derivative(f, x)
eq = f/x**2 + ((f*x - 1)/x)*df
sol = [Eq(f, (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x*f - 1) + df*(x**2 - x*f)
sol = [Eq(f, x - sqrt(C1 + x**2 - 2*log(x))),
Eq(f, x + sqrt(C1 + x**2 - 2*log(x)))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
eq = (x + 2)*sin(f) + df*x*cos(f)
sol = [Eq(f, -asin(C1*exp(-x)/x**2) + pi),
Eq(f, asin(C1*exp(-x)/x**2))]
assert set(dsolve(eq, f)) == set(sol)
assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0), (True, 0)]
@slow
def test_separable_reduced():
f = Function('f')
x = Symbol('x')
df = f(x).diff(x)
eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
eq = x* df + f(x)* (1 / (x**2*f(x) - 1))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol.lhs == log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6
assert sol.rhs == C1 + log(x)
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = f(x).diff(x) + (f(x) / (x**4*f(x) - x))
assert classify_ode(eq) == ('separable_reduced', 'lie_group',
'separable_reduced_Integral')
sol = dsolve(eq, hint = 'separable_reduced')
# FIXME: This one hangs
#assert checkodesol(eq, sol, order=1, solve_for_func=False) == [(True, 0)] * 4
assert len(sol) == 4
eq = x*df + f(x)*(x**2*f(x))
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = Eq(f(x).diff(x) + f(x)/x * (1 + (x**(S(2)/3)*f(x))**2), 0)
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(-3*log(x**(S(2)/3)*f(x)) + 3*log(3*x**(S(4)/3)*f(x)**2 + 1)/2, C1 + log(x))
assert checkodesol(eq, sol, solve_for_func=False) == (True, 0)
eq = Eq(f(x).diff(x) + f(x)/x * (1 + (x*f(x))**2), 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x)),\
Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x))]
assert checkodesol(eq, sol) == [(True, 0)]*2
eq = Eq(f(x).diff(x) + (x**4*f(x)**2 + x**2*f(x))*f(x)/(x*(x**6*f(x)**3 + x**4*f(x)**2)), 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == Eq(f(x), C1 + 1/(2*x**2))
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x) + (f(x)**2)*f(x)/(x), 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/2),\
Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/2)]
assert checkodesol(eq, sol) == [(True, 0), (True, 0)]
eq = Eq(f(x).diff(x) + (f(x)+3)*f(x)/(x*(f(x)+2)), 0)
sol = dsolve(eq, hint = 'separable_reduced', simplify=False)
assert sol == Eq(-log(f(x) + 3)/3 - 2*log(f(x))/3, C1 + log(x))
assert checkodesol(eq, sol, solve_for_func=False) == (True, 0)
eq = Eq(f(x).diff(x) + (f(x)+3)*f(x)/x, 0)
sol = dsolve(eq, hint = 'separable_reduced')
assert sol == Eq(f(x), 3/(C1*x**3 - 1))
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x) + (f(x)**2+f(x))*f(x)/(x), 0)
sol = dsolve(eq, hint='separable_reduced', simplify=False)
assert sol == Eq(-log(f(x) + 1) + log(f(x)) + 1/f(x), C1 + log(x))
assert checkodesol(eq, sol, solve_for_func=False) == (True, 0)
def test_homogeneous_function():
f = Function('f')
eq1 = tan(x + f(x))
eq2 = sin((3*x)/(4*f(x)))
eq3 = cos(x*f(x)*Rational(3, 4))
eq4 = log((3*x + 4*f(x))/(5*f(x) + 7*x))
eq5 = exp((2*x**2)/(3*f(x)**2))
eq6 = log((3*x + 4*f(x))/(5*f(x) + 7*x) + exp((2*x**2)/(3*f(x)**2)))
eq7 = sin((3*x)/(5*f(x) + x**2))
assert homogeneous_order(eq1, x, f(x)) == None
assert homogeneous_order(eq2, x, f(x)) == 0
assert homogeneous_order(eq3, x, f(x)) == None
assert homogeneous_order(eq4, x, f(x)) == 0
assert homogeneous_order(eq5, x, f(x)) == 0
assert homogeneous_order(eq6, x, f(x)) == 0
assert homogeneous_order(eq7, x, f(x)) == None
def test_linear_coeff_match():
n, d = z*(2*x + 3*f(x) + 5), z*(7*x + 9*f(x) + 11)
rat = n/d
eq1 = sin(rat) + cos(rat.expand())
eq2 = rat
eq3 = log(sin(rat))
ans = (4, Rational(-13, 3))
assert _linear_coeff_match(eq1, f(x)) == ans
assert _linear_coeff_match(eq2, f(x)) == ans
assert _linear_coeff_match(eq3, f(x)) == ans
# no c
eq4 = (3*x)/f(x)
# not x and f(x)
eq5 = (3*x + 2)/x
# denom will be zero
eq6 = (3*x + 2*f(x) + 1)/(3*x + 2*f(x) + 5)
# not rational coefficient
eq7 = (3*x + 2*f(x) + sqrt(2))/(3*x + 2*f(x) + 5)
assert _linear_coeff_match(eq4, f(x)) is None
assert _linear_coeff_match(eq5, f(x)) is None
assert _linear_coeff_match(eq6, f(x)) is None
assert _linear_coeff_match(eq7, f(x)) is None
def test_linear_coefficients():
f = Function('f')
sol = Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2))
eq = f(x).diff(x) + (3 + 2*f(x))/(x + 3)
assert dsolve(eq, hint='linear_coefficients') == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_constantsimp_take_problem():
c = exp(C1) + 2
assert len(Poly(constantsimp(exp(C1) + c + c*x, [C1])).gens) == 2
def test_issue_6879():
f = Function('f')
eq = Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x))
sol = (C1 + C2*x)*exp(x) + cos(x)/2
assert dsolve(eq).rhs == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_issue_6989():
f = Function('f')
k = Symbol('k')
eq = f(x).diff(x) - x*exp(-k*x)
csol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
sol = dsolve(eq, f(x))
assert sol == csol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
eq = -f(x).diff(x) + x*exp(-k*x)
csol = Eq(f(x), C1 + Piecewise(
((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),
(x**2/2, True)
))
sol = dsolve(eq, f(x))
assert sol == csol
assert checkodesol(eq, sol, order=1, solve_for_func=False)[0]
def test_heuristic1():
y, a, b, c, a4, a3, a2, a1, a0 = symbols("y a b c a4 a3 a2 a1 a0")
f = Function('f')
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
eq = Eq(df, x**2*f(x))
eq1 = f(x).diff(x) + a*f(x) - c*exp(b*x)
eq2 = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
eq3 = (1 + 2*x)*df + 2 - 4*exp(-f(x))
eq4 = f(x).diff(x) - (a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**Rational(-1, 2)
eq5 = x**2*df - f(x) + x**2*exp(x - (1/x))
eqlist = [eq, eq1, eq2, eq3, eq4, eq5]
i = infinitesimals(eq, hint='abaco1_simple')
assert i == [{eta(x, f(x)): exp(x**3/3), xi(x, f(x)): 0},
{eta(x, f(x)): f(x), xi(x, f(x)): 0},
{eta(x, f(x)): 0, xi(x, f(x)): x**(-2)}]
i1 = infinitesimals(eq1, hint='abaco1_simple')
assert i1 == [{eta(x, f(x)): exp(-a*x), xi(x, f(x)): 0}]
i2 = infinitesimals(eq2, hint='abaco1_simple')
assert i2 == [{eta(x, f(x)): exp(-x**2), xi(x, f(x)): 0}]
i3 = infinitesimals(eq3, hint='abaco1_simple')
assert i3 == [{eta(x, f(x)): 0, xi(x, f(x)): 2*x + 1},
{eta(x, f(x)): 0, xi(x, f(x)): 1/(exp(f(x)) - 2)}]
i4 = infinitesimals(eq4, hint='abaco1_simple')
assert i4 == [{eta(x, f(x)): 1, xi(x, f(x)): 0},
{eta(x, f(x)): 0,
xi(x, f(x)): sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)}]
i5 = infinitesimals(eq5, hint='abaco1_simple')
assert i5 == [{xi(x, f(x)): 0, eta(x, f(x)): exp(-1/x)}]
ilist = [i, i1, i2, i3, i4, i5]
for eq, i in (zip(eqlist, ilist)):
check = checkinfsol(eq, i)
assert check[0]
def test_issue_6247():
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = Eq(f(x), 2*C1/(C1*x**2 - 1))
assert dsolve(eq, hint = 'separable_reduced') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x, x) + 4*f(x)
sol = Eq(f(x), C1*sin(2*x) + C2*cos(2*x))
assert dsolve(eq) == sol
assert checkodesol(eq, sol, order=1)[0]
def test_heuristic2():
xi = Function('xi')
eta = Function('eta')
df = f(x).diff(x)
# This ODE can be solved by the Lie Group method, when there are
# better assumptions
eq = df - (f(x)/x)*(x*log(x**2/f(x)) + 2)
i = infinitesimals(eq, hint='abaco1_product')
assert i == [{eta(x, f(x)): f(x)*exp(-x), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
@slow
def test_heuristic3():
xi = Function('xi')
eta = Function('eta')
a, b = symbols("a b")
df = f(x).diff(x)
eq = x**2*df + x*f(x) + f(x)**2 + x**2
i = infinitesimals(eq, hint='bivariate')
assert i == [{eta(x, f(x)): f(x), xi(x, f(x)): x}]
assert checkinfsol(eq, i)[0]
eq = x**2*(-f(x)**2 + df)- a*x**2*f(x) + 2 - a*x
i = infinitesimals(eq, hint='bivariate')
assert checkinfsol(eq, i)[0]
def test_heuristic_4():
y, a = symbols("y a")
eq = x*(f(x).diff(x)) + 1 - f(x)**2
i = infinitesimals(eq, hint='chi')
assert checkinfsol(eq, i)[0]
def test_heuristic_function_sum():
xi = Function('xi')
eta = Function('eta')
eq = f(x).diff(x) - (3*(1 + x**2/f(x)**2)*atan(f(x)/x) + (1 - 2*f(x))/x +
(1 - 3*f(x))*(x/f(x)**2))
i = infinitesimals(eq, hint='function_sum')
assert i == [{eta(x, f(x)): f(x)**(-2) + x**(-2), xi(x, f(x)): 0}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_similar():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
eq = f(x).diff(x) - F(a*x + b*f(x))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): -a/b, xi(x, f(x)): 1}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) - (f(x)**2 / (sin(f(x) - x) - x**2 + 2*x*f(x)))
i = infinitesimals(eq, hint='abaco2_similar')
assert i == [{eta(x, f(x)): f(x)**2, xi(x, f(x)): f(x)**2}]
assert checkinfsol(eq, i)[0]
def test_heuristic_abaco2_unique_unknown():
xi = Function('xi')
eta = Function('eta')
F = Function('F')
a, b = symbols("a b")
x = Symbol("x", positive=True)
eq = f(x).diff(x) - x**(a - 1)*(f(x)**(1 - b))*F(x**a/a + f(x)**b/b)
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): -f(x)*f(x)**(-b), xi(x, f(x)): x*x**(-a)}]
assert checkinfsol(eq, i)[0]
eq = f(x).diff(x) + tan(F(x**2 + f(x)**2) + atan(x/f(x)))
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert i == [{eta(x, f(x)): x, xi(x, f(x)): -f(x)}]
assert checkinfsol(eq, i)[0]
eq = (x*f(x).diff(x) + f(x) + 2*x)**2 -4*x*f(x) -4*x**2 -4*a
i = infinitesimals(eq, hint='abaco2_unique_unknown')
assert checkinfsol(eq, i)[0]
def test_heuristic_linear():
a, b, m, n = symbols("a b m n")
eq = x**(n*(m + 1) - m)*(f(x).diff(x)) - a*f(x)**n -b*x**(n*(m + 1))
i = infinitesimals(eq, hint='linear')
assert checkinfsol(eq, i)[0]
@XFAIL
def test_kamke():
a, b, alpha, c = symbols("a b alpha c")
eq = x**2*(a*f(x)**2+(f(x).diff(x))) + b*x**alpha + c
i = infinitesimals(eq, hint='sum_function') # XFAIL
assert checkinfsol(eq, i)[0]
def test_series():
C1 = Symbol("C1")
eq = f(x).diff(x) - f(x)
sol = Eq(f(x), C1 + C1*x + C1*x**2/2 + C1*x**3/6 + C1*x**4/24 +
C1*x**5/120 + O(x**6))
assert dsolve(eq, hint='1st_power_series') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x) - x*f(x)
sol = Eq(f(x), C1*x**4/8 + C1*x**2/2 + C1 + O(x**6))
assert dsolve(eq, hint='1st_power_series') == sol
assert checkodesol(eq, sol, order=1)[0]
eq = f(x).diff(x) - sin(x*f(x))
sol = Eq(f(x), (x - 2)**2*(1+ sin(4))*cos(4) + (x - 2)*sin(4) + 2 + O(x**3))
assert dsolve(eq, hint='1st_power_series', ics={f(2): 2}, n=3) == sol
# FIXME: The solution here should be O((x-2)**3) so is incorrect
#assert checkodesol(eq, sol, order=1)[0]
@XFAIL
@SKIP
def test_lie_group_issue17322_1():
eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x
sol = dsolve(eq, f(x)) # Hangs
assert checkodesol(eq, sol) == (True, 0)
@XFAIL
@SKIP
def test_lie_group_issue17322_2():
eq=x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x
sol = dsolve(eq) # Hangs
assert checkodesol(eq, sol) == (True, 0)
@XFAIL
@SKIP
def test_lie_group_issue17322_3():
eq=Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0)
sol = dsolve(eq) # Hangs
assert checkodesol(eq, sol) == (True, 0)
@XFAIL
def test_lie_group_issue17322_4():
eq=f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x)
sol = dsolve(eq) # NotImplementedError
assert checkodesol(eq, sol) == (True, 0)
@slow
def test_lie_group():
C1 = Symbol("C1")
x = Symbol("x") # assuming x is real generates an error!
a, b, c = symbols("a b c")
eq = f(x).diff(x)**2
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = Eq(f(x).diff(x), x**2*f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), C1*exp(x**3)**Rational(1, 3))
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x) + a*f(x) - c*exp(b*x)
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x) + 2*x*f(x) - x*exp(-x**2)
sol = dsolve(eq, f(x), hint='lie_group')
actual_sol = Eq(f(x), (C1 + x**2/2)*exp(-x**2))
errstr = str(eq)+' : '+str(sol)+' == '+str(actual_sol)
assert sol == actual_sol, errstr
assert checkodesol(eq, sol) == (True, 0)
eq = (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x))
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), log(C1/(2*x + 1) + 2))
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x))
sol = dsolve(eq, f(x), hint='lie_group')
assert checkodesol(eq, sol)[0]
eq = x**2*f(x)**2 + x*Derivative(f(x), x)
sol = dsolve(eq, f(x), hint='lie_group')
assert sol == Eq(f(x), 2/(C1 + x**2))
assert checkodesol(eq, sol) == (True, 0)
eq=diff(f(x),x) + 2*x*f(x) - x*exp(-x**2)
sol = Eq(f(x), exp(-x**2)*(C1 + x**2/2))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = diff(f(x),x) + f(x)*cos(x) - exp(2*x)
sol = Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x)))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2
sol = Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1)
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = x*diff(f(x),x) + f(x) - x*sin(x)
sol = Eq(f(x), (C1 - x*cos(x) + sin(x))/x)
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = x*diff(f(x),x) - f(x) - x/log(x)
sol = Eq(f(x), x*(C1 + log(log(x))))
assert sol == dsolve(eq, hint='lie_group')
assert checkodesol(eq, sol) == (True, 0)
eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x))
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol[0]) == (True, 0)
assert checkodesol(eq, sol[1]) == (True, 0)
eq = f(x).diff(x) * (f(x).diff(x) - f(x))
sol = [Eq(f(x), C1*exp(x)), Eq(f(x), C1)]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol[0]) == (True, 0)
assert checkodesol(eq, sol[1]) == (True, 0)
@XFAIL
def test_lie_group_issue15219():
eqn = exp(f(x).diff(x)-f(x))
assert 'lie_group' not in classify_ode(eqn, f(x))
def test_user_infinitesimals():
x = Symbol("x") # assuming x is real generates an error
eq = x*(f(x).diff(x)) + 1 - f(x)**2
sol = Eq(f(x), (C1 + x**2)/(C1 - x**2))
infinitesimals = {'xi':sqrt(f(x) - 1)/sqrt(f(x) + 1), 'eta':0}
assert dsolve(eq, hint='lie_group', **infinitesimals) == sol
assert checkodesol(eq, sol) == (True, 0)
def test_issue_7081():
eq = x*(f(x).diff(x)) + 1 - f(x)**2
s = Eq(f(x), -1/(-C1 + x**2)*(C1 + x**2))
assert dsolve(eq) == s
assert checkodesol(eq, s) == (True, 0)
@slow
def test_2nd_power_series_ordinary():
C1, C2 = symbols("C1 C2")
eq = f(x).diff(x, 2) - x*f(x)
assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary')
sol = Eq(f(x), C2*(x**3/6 + 1) + C1*x*(x**3/12 + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_ordinary') == sol
assert checkodesol(eq, sol) == (True, 0)
sol = Eq(f(x), C2*((x + 2)**4/6 + (x + 2)**3/6 - (x + 2)**2 + 1)
+ C1*(x + (x + 2)**4/12 - (x + 2)**3/3 + S(2))
+ O(x**6))
assert dsolve(eq, hint='2nd_power_series_ordinary', x0=-2) == sol
# FIXME: Solution should be O((x+2)**6)
# assert checkodesol(eq, sol) == (True, 0)
sol = Eq(f(x), C2*x + C1 + O(x**2))
assert dsolve(eq, hint='2nd_power_series_ordinary', n=2) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = (1 + x**2)*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) -2*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(-x**4/3 + x**2 + 1) + C1*x + O(x**6))
assert dsolve(eq) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + x*(f(x).diff(x)) + f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(x**4/8 - x**2/2 + 1) + C1*x*(-x**2/3 + 1) + O(x**6))
assert dsolve(eq) == sol
# FIXME: checkodesol fails for this solution...
# assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + f(x).diff(x) - x*f(x)
assert classify_ode(eq) == ('2nd_power_series_ordinary',)
sol = Eq(f(x), C2*(-x**4/24 + x**3/6 + 1)
+ C1*x*(x**3/24 + x**2/6 - x/2 + 1) + O(x**6))
assert dsolve(eq) == sol
# FIXME: checkodesol fails for this solution...
# assert checkodesol(eq, sol) == (True, 0)
eq = f(x).diff(x, 2) + x*f(x)
assert classify_ode(eq) == ('2nd_linear_airy', '2nd_power_series_ordinary')
sol = Eq(f(x), C2*(x**6/180 - x**3/6 + 1) + C1*x*(-x**3/12 + 1) + O(x**7))
assert dsolve(eq, hint='2nd_power_series_ordinary', n=7) == sol
assert checkodesol(eq, sol) == (True, 0)
def test_Airy_equation():
eq = f(x).diff(x, 2) - x*f(x)
sol = Eq(f(x), C1*airyai(x) + C2*airybi(x))
sols = constant_renumber(sol)
assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary')
assert checkodesol(eq, sol) == (True, 0)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols)
eq = f(x).diff(x, 2) + 2*x*f(x)
sol = Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x))
sols = constant_renumber(sol)
assert classify_ode(eq) == ("2nd_linear_airy",'2nd_power_series_ordinary')
assert checkodesol(eq, sol) == (True, 0)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_airy') in (sol, sols)
def test_2nd_power_series_regular():
C1, C2 = symbols("C1 C2")
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
sol = Eq(f(x), C1*x**2*(-16*x**3/9 + 4*x**2 - 4*x + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
eq = 4*x**2*(f(x).diff(x, 2)) -8*x**2*(f(x).diff(x)) + (4*x**2 +
1)*f(x)
sol = Eq(f(x), C1*sqrt(x)*(x**4/24 + x**3/6 + x**2/2 + x + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) - x**2*(f(x).diff(x)) + (
x**2 - 2)*f(x)
sol = Eq(f(x), C1*(-x**6/720 - 3*x**5/80 - x**4/8 + x**2/2 + x/2 + 1)/x +
C2*x**2*(-x**3/60 + x**2/20 + x/2 + 1) + O(x**6))
assert dsolve(eq) == sol
assert checkodesol(eq, sol) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - Rational(1, 4))*f(x)
sol = Eq(f(x), C1*(x**4/24 - x**2/2 + 1)/sqrt(x) +
C2*sqrt(x)*(x**4/120 - x**2/6 + 1) + O(x**6))
assert dsolve(eq, hint='2nd_power_series_regular') == sol
assert checkodesol(eq, sol) == (True, 0)
def test_2nd_linear_bessel_equation():
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x)
sol = Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x)
sol = Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x)
sol = Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x)
sol = Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x)
sol = Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x)
sol = Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x)
sol = Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x)
sol = Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x))))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x)
sol = Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2)))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
eq = (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x)
sol = Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4)))
sols = constant_renumber(sol)
assert dsolve(eq, f(x)) in (sol, sols)
assert dsolve(eq, f(x), hint='2nd_linear_bessel') in (sol, sols)
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_7093():
x = Symbol("x") # assuming x is real leads to an error
sol = [Eq(f(x), C1 - 2*x*sqrt(x**3)/5),
Eq(f(x), C1 + 2*x*sqrt(x**3)/5)]
eq = Derivative(f(x), x)**2 - x**3
assert set(dsolve(eq)) == set(sol)
assert checkodesol(eq, sol) == [(True, 0)] * 2
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_issue_15056():
t = Symbol('t')
C3 = Symbol('C3')
assert get_numbered_constants(Symbol('C1') * Function('C2')(t)) == C3
def test_issue_10379():
t,y = symbols('t,y')
eq = f(t).diff(t)-(1-51.05*y*f(t))
sol = Eq(f(t), (0.019588638589618*exp(y*(C1 - 51.05*t)) + 0.019588638589618)/y)
dsolve_sol = dsolve(eq, rational=False)
assert str(dsolve_sol) == str(sol)
assert checkodesol(eq, dsolve_sol)[0]
def test_issue_10867():
x = Symbol('x')
eq = Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3)
sol = Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)
assert dsolve(eq, g(x)) == sol
assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
def test_issue_4838():
# Issue #15999
eq = f(x).diff(x) - C1*f(x)
sol = Eq(f(x), C2*exp(C1*x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
# Issue #13691
eq = f(x).diff(x) - C1*g(x).diff(x)
sol = Eq(f(x), C2 + C1*g(x))
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, f(x), order=1, solve_for_func=False) == (True, 0)
# Issue #4838
eq = f(x).diff(x) - 3*C1 - 3*x**2
sol = Eq(f(x), C2 + 3*C1*x + x**3)
assert dsolve(eq, f(x)) == sol
assert checkodesol(eq, sol, order=1, solve_for_func=False) == (True, 0)
@slow
def test_issue_14395():
eq = Derivative(f(x), x, x) + 9*f(x) - sec(x)
sol = Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x))
- 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))
assert dsolve(eq, f(x)) == sol
# FIXME: assert checkodesol(eq, sol, order=2, solve_for_func=False) == (True, 0)
# Needs to be a way to know how to combine derivatives in the expression
def test_factoring_ode():
from sympy import Mul
eqn = Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x)
# 2-arg Mul!
soln = Eq(f(x), C1 + C2*x + C3/Mul(2, (x + 1), evaluate=False))
assert checkodesol(eqn, soln, order=2, solve_for_func=False)[0]
assert soln == dsolve(eqn, f(x))
def test_issue_11542():
m = 96
g = 9.8
k = .2
f1 = g * m
t = Symbol('t')
v = Function('v')
v_equation = dsolve(f1 - k * (v(t) ** 2) - m * Derivative(v(t)), 0)
assert str(v_equation) == \
'Eq(v(t), -68.585712797929/tanh(C1 - 0.142886901662352*t))'
def test_issue_15913():
eq = -C1/x - 2*x*f(x) - f(x) + Derivative(f(x), x)
sol = C2*exp(x**2 + x) + exp(x**2 + x)*Integral(C1*exp(-x**2 - x)/x, x)
assert checkodesol(eq, sol) == (True, 0)
sol = C1 + C2*exp(-x*y)
eq = Derivative(y*f(x), x) + f(x).diff(x, 2)
assert checkodesol(eq, sol, f(x)) == (True, 0)
def test_issue_16146():
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x), g(x), h(x)]))
raises(ValueError, lambda: dsolve([f(x).diff(x), g(x).diff(x)], [f(x)]))
def test_dsolve_remove_redundant_solutions():
eq = (f(x)-2)*f(x).diff(x)
sol = Eq(f(x), C1)
assert dsolve(eq) == sol
eq = (f(x)-sin(x))*(f(x).diff(x, 2))
sol = {Eq(f(x), C1 + C2*x), Eq(f(x), sin(x))}
assert set(dsolve(eq)) == sol
eq = (f(x)**2-2*f(x)+1)*f(x).diff(x, 3)
sol = Eq(f(x), C1 + C2*x + C3*x**2)
assert dsolve(eq) == sol
def test_issue_17322():
eq = (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x))
sol = [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
eq = f(x).diff(x)*(f(x).diff(x)+f(x))
sol = [Eq(f(x), C1), Eq(f(x), C1*exp(-x))]
assert set(sol) == set(dsolve(eq, hint='lie_group'))
assert checkodesol(eq, sol) == 2*[(True, 0)]
def test_2nd_2F1_hypergeometric():
eq = x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x)
sol = Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) +
C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) +
C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
assert checkodesol(eq, sol) == (True, 0)
eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 -
x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x -
1), x)/4)*hyper((S(1)/2, -1), (1,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral')
assert checkodesol(eq, sol) == (True, 0)
eq = -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) +
x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2))
sol = Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) +
C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84))
assert sol == dsolve(eq, hint='2nd_hypergeometric')
# assert checkodesol(eq, sol) == (True, 0) #issue-https://github.com/sympy/sympy/issues/17702
def test_issue_5096():
eq = 2*x**2*f(x).diff(x, 2) + f(x) + sqrt(2*x)*sin(log(2*x)/2)
sol = Eq(f(x), sqrt(x)*(C1*sin(log(x)/2) + C2*cos(log(x)/2) + sqrt(2)*log(x)*cos(log(2*x)/2)/2))
assert sol == dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
eq = 2*x**2*f(x).diff(x, 2) + f(x) + sin(log(2*x)/2)
sol = Eq(f(x), C1*sqrt(x)*sin(log(x)/2) + C2*sqrt(x)*cos(log(x)/2) - 2*sin(log(2*x)/2)/5 - 4*cos(log(2*x)/2)/5)
assert sol == dsolve(eq, hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients')
assert checkodesol(eq, sol) == (True, 0)
|
4fa13921ec408206d35251757cd4e21c3f18772b8308814d6644dc81973859b4 | from sympy import (cos, Derivative, diff,
Eq, erf, erfi, exp, Function, I, Integral, log, pi,
Rational, sin, sqrt, Symbol, symbols, Ei)
from sympy.solvers.ode.subscheck import checkodesol, checksysodesol
from sympy.functions import besselj, bessely
from sympy.testing.pytest import raises, slow
C0, C1, C2, C3, C4 = symbols('C0:5')
u, x, y, z = symbols('u,x:z', real=True)
f = Function('f')
g = Function('g')
h = Function('h')
@slow
def test_checkodesol():
# For the most part, checkodesol is well tested in the tests below.
# These tests only handle cases not checked below.
raises(ValueError, lambda: checkodesol(f(x, y).diff(x), Eq(f(x, y), x)))
raises(ValueError, lambda: checkodesol(f(x).diff(x), Eq(f(x, y),
x), f(x, y)))
assert checkodesol(f(x).diff(x), Eq(f(x, y), x)) == \
(False, -f(x).diff(x) + f(x, y).diff(x) - 1)
assert checkodesol(f(x).diff(x), Eq(f(x), x)) is not True
assert checkodesol(f(x).diff(x), Eq(f(x), x)) == (False, 1)
sol1 = Eq(f(x)**5 + 11*f(x) - 2*f(x) + x, 0)
assert checkodesol(diff(sol1.lhs, x), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 2)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3)*exp(f(x)), sol1) == (True, 0)
assert checkodesol(diff(sol1.lhs, x, 3), Eq(f(x), x*log(x))) == \
(False, 60*x**4*((log(x) + 1)**2 + log(x))*(
log(x) + 1)*log(x)**2 - 5*x**4*log(x)**4 - 9)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0)) == \
(True, 0)
assert checkodesol(diff(exp(f(x)) + x, x)*x, Eq(exp(f(x)) + x, 0),
solve_for_func=False) == (True, 0)
assert checkodesol(f(x).diff(x, 2), [Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)]) == \
[(True, 0), (True, 0), (False, C2)]
assert checkodesol(f(x).diff(x, 2), {Eq(f(x), C1 + C2*x),
Eq(f(x), C2 + C1*x), Eq(f(x), C1*x + C2*x**2)}) == \
{(True, 0), (True, 0), (False, C2)}
assert checkodesol(f(x).diff(x) - 1/f(x)/2, Eq(f(x)**2, x)) == \
[(True, 0), (True, 0)]
assert checkodesol(f(x).diff(x) - f(x), Eq(C1*exp(x), f(x))) == (True, 0)
# Based on test_1st_homogeneous_coeff_ode2_eq3sol. Make sure that
# checkodesol tries back substituting f(x) when it can.
eq3 = x*exp(f(x)/x) + f(x) - x*f(x).diff(x)
sol3 = Eq(f(x), log(log(C1/x)**(-x)))
assert not checkodesol(eq3, sol3)[1].has(f(x))
# This case was failing intermittently depending on hash-seed:
eqn = Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x))
sol = Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))
assert checkodesol(eqn, sol, order=2, solve_for_func=False)[0]
eq = x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (2*x**2 +25)*f(x)
sol = Eq(f(x), C1*besselj(5*I, sqrt(2)*x) + C2*bessely(5*I, sqrt(2)*x))
assert checkodesol(eq, sol) == (True, 0)
eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
sol = [Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]
assert checkodesol(eqs, sol) == (True, [0, 0])
def test_checksysodesol():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq = (Eq(diff(x(t),t), 9*y(t)), Eq(diff(y(t),t), 12*x(t)))
sol = [Eq(x(t), 9*C1*exp(-6*sqrt(3)*t) + 9*C2*exp(6*sqrt(3)*t)), \
Eq(y(t), -6*sqrt(3)*C1*exp(-6*sqrt(3)*t) + 6*sqrt(3)*C2*exp(6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 2*x(t) + 4*y(t)), Eq(diff(y(t),t), 12*x(t) + 41*y(t)))
sol = [Eq(x(t), 4*C1*exp(t*(-sqrt(1713)/2 + Rational(43, 2))) + 4*C2*exp(t*(sqrt(1713)/2 + \
Rational(43, 2)))), Eq(y(t), C1*(-sqrt(1713)/2 + Rational(39, 2))*exp(t*(-sqrt(1713)/2 + \
Rational(43, 2))) + C2*(Rational(39, 2) + sqrt(1713)/2)*exp(t*(sqrt(1713)/2 + Rational(43, 2))))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t)), Eq(diff(y(t),t), -2*x(t) + 2*y(t)))
sol = [Eq(x(t), (C1*sin(sqrt(7)*t/2) + C2*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2))), \
Eq(y(t), ((C1/2 - sqrt(7)*C2/2)*sin(sqrt(7)*t/2) + (sqrt(7)*C1/2 + \
C2/2)*cos(sqrt(7)*t/2))*exp(t*Rational(3, 2)))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol = [Eq(x(t), C1*exp(t*(-sqrt(6) + 3)) + C2*exp(t*(sqrt(6) + 3)) - \
Rational(22, 3)), Eq(y(t), C1*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) + C2*(2 + \
sqrt(6))*exp(t*(sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol = [Eq(x(t), (C1*sin(sqrt(2)*t) + C2*cos(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (sqrt(2)*C1*cos(sqrt(2)*t) - sqrt(2)*C2*sin(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*exp(Integral(2, t).doit()) + C2*exp(-(Integral(2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (C1*exp((Integral(2, t)).doit()) - \
C2*exp(-(Integral(2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol = [Eq(x(t), (C1*cos((Integral(t**2, t)).doit()) + C2*sin((Integral(t**2, t)).doit()))*\
exp((Integral(5*t, t)).doit())), Eq(y(t), (-C1*sin((Integral(t**2, t)).doit()) + \
C2*cos((Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol = [Eq(x(t), (C1*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \
C2*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit())), \
Eq(y(t), (C1*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()) + \
C2*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(Integral(t**2, t)).doit()))*exp((Integral(5*t, t)).doit()))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 5*x(t) + 43*y(t)), Eq(diff(y(t),t,t), x(t) + 9*y(t)))
root0 = -sqrt(-sqrt(47) + 7)
root1 = sqrt(-sqrt(47) + 7)
root2 = -sqrt(sqrt(47) + 7)
root3 = sqrt(sqrt(47) + 7)
sol = [Eq(x(t), 43*C1*exp(t*root0) + 43*C2*exp(t*root1) + 43*C3*exp(t*root2) + 43*C4*exp(t*root3)), \
Eq(y(t), C1*(root0**2 - 5)*exp(t*root0) + C2*(root1**2 - 5)*exp(t*root1) + \
C3*(root2**2 - 5)*exp(t*root2) + C4*(root3**2 - 5)*exp(t*root3))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 8*x(t)+3*y(t)+31), Eq(diff(y(t),t,t), 9*x(t)+7*y(t)+12))
root0 = -sqrt(-sqrt(109)/2 + Rational(15, 2))
root1 = sqrt(-sqrt(109)/2 + Rational(15, 2))
root2 = -sqrt(sqrt(109)/2 + Rational(15, 2))
root3 = sqrt(sqrt(109)/2 + Rational(15, 2))
sol = [Eq(x(t), 3*C1*exp(t*root0) + 3*C2*exp(t*root1) + 3*C3*exp(t*root2) + 3*C4*exp(t*root3) - Rational(181, 29)), \
Eq(y(t), C1*(root0**2 - 8)*exp(t*root0) + C2*(root1**2 - 8)*exp(t*root1) + \
C3*(root2**2 - 8)*exp(t*root2) + C4*(root3**2 - 8)*exp(t*root3) + Rational(183, 29))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t) - 9*diff(y(t),t) + 7*x(t),0), Eq(diff(y(t),t,t) + 9*diff(x(t),t) + 7*y(t),0))
sol = [Eq(x(t), C1*cos(t*(Rational(9, 2) + sqrt(109)/2)) + C2*sin(t*(Rational(9, 2) + sqrt(109)/2)) + \
C3*cos(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*sin(t*(-sqrt(109)/2 + Rational(9, 2)))), Eq(y(t), -C1*sin(t*(Rational(9, 2) + sqrt(109)/2)) \
+ C2*cos(t*(Rational(9, 2) + sqrt(109)/2)) - C3*sin(t*(-sqrt(109)/2 + Rational(9, 2))) + C4*cos(t*(-sqrt(109)/2 + Rational(9, 2))))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t,t), 9*t*diff(y(t),t)-9*y(t)), Eq(diff(y(t),t,t),7*t*diff(x(t),t)-7*x(t)))
I1 = sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erfi(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(3*sqrt(7)*t**2/2)/t
I2 = -sqrt(6)*7**Rational(1, 4)*sqrt(pi)*erf(sqrt(6)*7**Rational(1, 4)*t/2)/2 - exp(-3*sqrt(7)*t**2/2)/t
sol = [Eq(x(t), C3*t + t*(9*C1*I1 + 9*C2*I2)), Eq(y(t), C4*t + t*(3*sqrt(7)*C1*I1 - 3*sqrt(7)*C2*I2))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), 21*x(t)), Eq(diff(y(t),t), 17*x(t)+3*y(t)), Eq(diff(z(t),t), 5*x(t)+7*y(t)+9*z(t)))
sol = [Eq(x(t), C1*exp(21*t)), Eq(y(t), 17*C1*exp(21*t)/18 + C2*exp(3*t)), \
Eq(z(t), 209*C1*exp(21*t)/216 - 7*C2*exp(3*t)/6 + C3*exp(9*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),3*y(t)-11*z(t)),Eq(diff(y(t),t),7*z(t)-3*x(t)),Eq(diff(z(t),t),11*x(t)-7*y(t)))
sol = [Eq(x(t), 7*C0 + sqrt(179)*C1*cos(sqrt(179)*t) + (77*C1/3 + 130*C2/3)*sin(sqrt(179)*t)), \
Eq(y(t), 11*C0 + sqrt(179)*C2*cos(sqrt(179)*t) + (-58*C1/3 - 77*C2/3)*sin(sqrt(179)*t)), \
Eq(z(t), 3*C0 + sqrt(179)*(-7*C1/3 - 11*C2/3)*cos(sqrt(179)*t) + (11*C1 - 7*C2)*sin(sqrt(179)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(3*diff(x(t),t),4*5*(y(t)-z(t))),Eq(4*diff(y(t),t),3*5*(z(t)-x(t))),Eq(5*diff(z(t),t),3*4*(x(t)-y(t))))
sol = [Eq(x(t), C0 + 5*sqrt(2)*C1*cos(5*sqrt(2)*t) + (12*C1/5 + 164*C2/15)*sin(5*sqrt(2)*t)), \
Eq(y(t), C0 + 5*sqrt(2)*C2*cos(5*sqrt(2)*t) + (-51*C1/10 - 12*C2/5)*sin(5*sqrt(2)*t)), \
Eq(z(t), C0 + 5*sqrt(2)*(-9*C1/25 - 16*C2/25)*cos(5*sqrt(2)*t) + (12*C1/5 - 12*C2/5)*sin(5*sqrt(2)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - z(t)),Eq(diff(y(t),t),2*x(t)+2*y(t)-z(t)),Eq(diff(z(t),t),3*x(t)+y(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t) + C3*exp(2*t)), \
Eq(y(t), C1*exp(2*t) + C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t)/2 + C3*t*exp(2*t)), \
Eq(z(t), 2*C1*exp(2*t) + 2*C2*t*exp(2*t) + C2*exp(2*t) + C3*t**2*exp(2*t) + C3*t*exp(2*t) + C3*exp(2*t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),4*x(t) - y(t) - 2*z(t)),Eq(diff(y(t),t),2*x(t) + y(t)- 2*z(t)),Eq(diff(z(t),t),5*x(t)-3*z(t)))
sol = [Eq(x(t), C1*exp(2*t) + C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), \
Eq(y(t), C2*(-sin(t) + 3*cos(t)) + C3*(3*sin(t) + cos(t))), Eq(z(t), C1*exp(2*t) + 5*C2*cos(t) + 5*C3*sin(t))]
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
eq = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol = [Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol = [Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)), \
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3), Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert checksysodesol(eq, sol) == (True, [0, 0])
eq = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol = {Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)}
assert checksysodesol(eq, sol) == (True, [0, 0])
|
d7b1149b4ed9d394eda3624f015c3f0b9a85f3115b779905db3871b24b029be7 | #
# The main tests for the code in single.py are currently located in
# sympy/solvers/tests/test_ode.py
#
r"""
This File contains test functions for the individual hints used for solving ODEs.
Examples of each solver will be returned by _get_examples_ode_sol_name_of_solver.
Examples should have a key 'XFAIL' which stores the list of hints if they are
expected to fail for that hint.
Functions that are for internal use:
1) _ode_solver_test(ode_examples) - It takes dictionary of examples returned by
_get_examples method and tests them with their respective hints.
2) _test_particular_example(our_hint, example_name) - It tests the ODE example corresponding
to the hint provided.
3) _test_all_hints(runxfail=False) - It is used to test all the examples with all the hints
currently implemented. It calls _test_all_examples_for_one_hint() which outputs whether the
given hint functions properly if it classifies the ODE example.
If runxfail flag is set to True then it will only test the examples which are expected to fail.
Everytime the ODE of partiular solver are added then _test_all_hints() is to execuetd to find
the possible failures of different solver hints.
4) _test_all_examples_for_one_hint(our_hint, all_examples) - It takes hint as argument and checks
this hint against all the ODE examples and gives output as the number of ODEs matched, number
of ODEs which were solved correctly, list of ODEs which gives incorrect solution and list of
ODEs which raises exception.
"""
from sympy import (acos, asin, asinh, atan, cos, Derivative, Dummy, diff,
E, Eq, exp, I, Integral, integrate, LambertW, log, pi, Piecewise, Rational, S, sin, sinh, tan,
sqrt, symbols, Ei, erfi)
from sympy.core import Function, Symbol
from sympy.functions import airyai, airybi, besselj, bessely
from sympy.integrals.risch import NonElementaryIntegral
from sympy.solvers.ode import classify_ode, dsolve
from sympy.solvers.ode.ode import allhints, _remove_redundant_solutions
from sympy.solvers.ode.single import (FirstLinear, ODEMatchError,
SingleODEProblem, SingleODESolver)
from sympy.solvers.ode.subscheck import checkodesol
from sympy.testing.pytest import raises, slow, ON_TRAVIS
import traceback
x = Symbol('x')
u = Symbol('u')
y = Symbol('y')
f = Function('f')
g = Function('g')
C1, C2, C3, C4, C5 = symbols('C1:6')
hint_message = """\
Hint did not match the example {example}.
The ODE is:
{eq}.
The expected hint was
{our_hint}\
"""
expected_sol_message = """\
Different solution found from dsolve for example {example}.
The ODE is:
{eq}
The expected solution was
{sol}
What dsolve returned is:
{dsolve_sol}\
"""
checkodesol_msg = """\
solution found is not correct for example {example}.
The ODE is:
{eq}\
"""
dsol_incorrect_msg = """\
solution returned by dsolve is incorrect when using {hint}.
The ODE is:
{eq}
The expected solution was
{sol}
what dsolve returned is:
{dsolve_sol}
You can test this with:
eq = {eq}
sol = dsolve(eq, hint='{hint}')
print(sol)
print(checkodesol(eq, sol))
"""
exception_msg = """\
dsolve raised exception : {e}
when using {hint} for the example {example}
You can test this with:
from sympy.solvers.ode.tests.test_single import _test_an_example
_test_an_example('{hint}', example_name = '{example}')
The ODE is:
{eq}
\
"""
check_hint_msg = """\
Tested hint was : {hint}
Total of {matched} examples matched with this hint.
Out of which {solve} gave correct results.
Examples which gave incorrect results are {unsolve}.
Examples which raised exceptions are {exceptions}
\
"""
def _ode_solver_test(ode_examples, run_slow_test=False):
our_hint = ode_examples['hint']
for example in ode_examples['examples']:
temp = {
'eq': ode_examples['examples'][example]['eq'],
'sol': ode_examples['examples'][example]['sol'],
'XFAIL': ode_examples['examples'][example].get('XFAIL', []),
'func': ode_examples['examples'][example].get('func',ode_examples['func']),
'example_name': example,
'slow': ode_examples['examples'][example].get('slow', False),
'simplify_flag':ode_examples['examples'][example].get('simplify_flag',True),
'checkodesol_XFAIL': ode_examples['examples'][example].get('checkodesol_XFAIL', False),
'dsolve_too_slow':ode_examples['examples'][example].get('dsolve_too_slow',False),
'checkodesol_too_slow':ode_examples['examples'][example].get('checkodesol_too_slow',False),
}
if (not run_slow_test) and temp['slow']:
continue
result = _test_particular_example(our_hint, temp, solver_flag=True)
if result['xpass_msg'] != "":
print(result['xpass_msg'])
def _test_all_hints(runxfail=False):
all_hints = list(allhints)+["default"]
all_examples = _get_all_examples()
for our_hint in all_hints:
if our_hint.endswith('_Integral') or 'series' in our_hint:
continue
_test_all_examples_for_one_hint(our_hint, all_examples, runxfail)
def _test_dummy_sol(expected_sol,dsolve_sol):
if type(dsolve_sol)==list:
return any(expected_sol.dummy_eq(sub_dsol) for sub_dsol in dsolve_sol)
else:
return expected_sol.dummy_eq(dsolve_sol)
def _test_an_example(our_hint, example_name):
all_examples = _get_all_examples()
for example in all_examples:
if example['example_name'] == example_name:
_test_particular_example(our_hint, example)
def _test_particular_example(our_hint, ode_example, solver_flag=False):
eq = ode_example['eq']
expected_sol = ode_example['sol']
example = ode_example['example_name']
xfail = our_hint in ode_example['XFAIL']
func = ode_example['func']
result = {'msg': '', 'xpass_msg': ''}
simplify_flag=ode_example['simplify_flag']
checkodesol_XFAIL = ode_example['checkodesol_XFAIL']
dsolve_too_slow = ode_example['dsolve_too_slow']
checkodesol_too_slow = ode_example['checkodesol_too_slow']
xpass = True
if solver_flag:
if our_hint not in classify_ode(eq, func):
message = hint_message.format(example=example, eq=eq, our_hint=our_hint)
raise AssertionError(message)
if our_hint in classify_ode(eq, func):
result['match_list'] = example
try:
if not (dsolve_too_slow and ON_TRAVIS):
dsolve_sol = dsolve(eq, func, simplify=simplify_flag,hint=our_hint)
else:
if len(expected_sol)==1:
dsolve_sol = expected_sol[0]
else:
dsolve_sol = expected_sol
except Exception as e:
dsolve_sol = []
result['exception_list'] = example
if not solver_flag:
traceback.print_exc()
result['msg'] = exception_msg.format(e=str(e), hint=our_hint, example=example, eq=eq)
xpass = False
if solver_flag and dsolve_sol!=[]:
expect_sol_check = False
if type(dsolve_sol)==list:
for sub_sol in expected_sol:
if sub_sol.has(Dummy):
expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol)
else:
expect_sol_check = sub_sol not in dsolve_sol
if expect_sol_check:
break
else:
expect_sol_check = dsolve_sol not in expected_sol
for sub_sol in expected_sol:
if sub_sol.has(Dummy):
expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol)
if expect_sol_check:
message = expected_sol_message.format(example=example, eq=eq, sol=expected_sol, dsolve_sol=dsolve_sol)
raise AssertionError(message)
expected_checkodesol = [(True, 0) for i in range(len(expected_sol))]
if len(expected_sol) == 1:
expected_checkodesol = (True, 0)
if not (checkodesol_too_slow and ON_TRAVIS):
if not checkodesol_XFAIL:
if checkodesol(eq, dsolve_sol, solve_for_func=False) != expected_checkodesol:
result['unsolve_list'] = example
xpass = False
message = dsol_incorrect_msg.format(hint=our_hint, eq=eq, sol=expected_sol,dsolve_sol=dsolve_sol)
if solver_flag:
message = checkodesol_msg.format(example=example, eq=eq)
raise AssertionError(message)
else:
result['msg'] = 'AssertionError: ' + message
if xpass and xfail:
result['xpass_msg'] = example + "is now passing for the hint" + our_hint
return result
def _test_all_examples_for_one_hint(our_hint, all_examples=[], runxfail=None):
if all_examples == []:
all_examples = _get_all_examples()
match_list, unsolve_list, exception_list = [], [], []
for ode_example in all_examples:
xfail = our_hint in ode_example['XFAIL']
if runxfail and not xfail:
continue
if xfail:
continue
result = _test_particular_example(our_hint, ode_example)
match_list += result.get('match_list',[])
unsolve_list += result.get('unsolve_list',[])
exception_list += result.get('exception_list',[])
if runxfail is not None:
msg = result['msg']
if msg!='':
print(result['msg'])
# print(result.get('xpass_msg',''))
if runxfail is None:
match_count = len(match_list)
solved = len(match_list)-len(unsolve_list)-len(exception_list)
msg = check_hint_msg.format(hint=our_hint, matched=match_count, solve=solved, unsolve=unsolve_list, exceptions=exception_list)
print(msg)
def test_SingleODESolver():
# Test that not implemented methods give NotImplementedError
# Subclasses should override these methods.
problem = SingleODEProblem(f(x).diff(x), f(x), x)
solver = SingleODESolver(problem)
raises(NotImplementedError, lambda: solver.matches())
raises(NotImplementedError, lambda: solver.get_general_solution())
raises(NotImplementedError, lambda: solver._matches())
raises(NotImplementedError, lambda: solver._get_general_solution())
# This ODE can not be solved by the FirstLinear solver. Here we test that
# it does not match and the asking for a general solution gives
# ODEMatchError
problem = SingleODEProblem(f(x).diff(x) + f(x)*f(x), f(x), x)
solver = FirstLinear(problem)
raises(ODEMatchError, lambda: solver.get_general_solution())
solver = FirstLinear(problem)
assert solver.matches() is False
#These are just test for order of ODE
problem = SingleODEProblem(f(x).diff(x) + f(x), f(x), x)
assert problem.order == 1
problem = SingleODEProblem(f(x).diff(x,4) + f(x).diff(x,2) - f(x).diff(x,3), f(x), x)
assert problem.order == 4
def test_nth_algebraic():
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), exp(x)),
Eq(f(x), C1*exp(C2*x))]
solns_final = _remove_redundant_solutions(eqn, solns, 2, x)
assert solns_final == [Eq(f(x), C1*exp(C2*x))]
_ode_solver_test(_get_examples_ode_sol_nth_algebraic())
@slow
def test_slow_examples_nth_linear_constant_coeff_var_of_parameters():
_ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters(), run_slow_test=True)
def test_nth_linear_constant_coeff_var_of_parameters():
_ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters())
@slow
def test_nth_linear_constant_coeff_variation_of_parameters__integral():
# solve_variation_of_parameters shouldn't attempt to simplify the
# Wronskian if simplify=False. If wronskian() ever gets good enough
# to simplify the result itself, this test might fail.
our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral'
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True)
sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False)
assert sol_simp != sol_nsimp
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
@slow
def test_slow_examples_1st_exact():
_ode_solver_test(_get_examples_ode_sol_1st_exact(), run_slow_test=True)
def test_1st_exact():
_ode_solver_test(_get_examples_ode_sol_1st_exact())
def test_1st_exact_integral():
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral')
assert checkodesol(eq, sol_1, order=1, solve_for_func=False)
@slow
def test_slow_examples_nth_order_reducible():
_ode_solver_test(_get_examples_ode_sol_nth_order_reducible(), run_slow_test=True)
@slow
def test_slow_examples_nth_linear_constant_coeff_undetermined_coefficients():
_ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients(), run_slow_test=True)
@slow
def test_slow_examples_separable():
_ode_solver_test(_get_examples_ode_sol_separable(), run_slow_test=True)
def test_nth_linear_constant_coeff_undetermined_coefficients():
#issue-https://github.com/sympy/sympy/issues/5787
# This test case is to show the classification of imaginary constants under
# nth_linear_constant_coeff_undetermined_coefficients
eq = Eq(diff(f(x), x), I*f(x) + S.Half - I)
our_hint = 'nth_linear_constant_coeff_undetermined_coefficients'
assert our_hint in classify_ode(eq)
_ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients())
def test_nth_order_reducible():
from sympy.solvers.ode.ode import _nth_order_reducible_match
F = lambda eq: _nth_order_reducible_match(eq, f(x))
D = Derivative
assert F(D(y*f(x), x, y) + D(f(x), x)) is None
assert F(D(y*f(y), y, y) + D(f(y), y)) is None
assert F(f(x)*D(f(x), x) + D(f(x), x, 2)) is None
assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) is None # no simplification by design
assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) is None
assert F(D(f(x), x, 2) + D(f(x), x, 3)) == dict(n=2)
_ode_solver_test(_get_examples_ode_sol_nth_order_reducible())
def test_separable():
_ode_solver_test(_get_examples_ode_sol_separable())
def test_factorable():
assert integrate(-asin(f(2*x)+pi), x) == -Integral(asin(pi + f(2*x)), x)
_ode_solver_test(_get_examples_ode_sol_factorable())
def test_Riccati_special_minus2():
_ode_solver_test(_get_examples_ode_sol_riccati())
def test_Bernoulli():
_ode_solver_test(_get_examples_ode_sol_bernoulli())
def test_1st_linear():
_ode_solver_test(_get_examples_ode_sol_1st_linear())
def test_almost_linear():
_ode_solver_test(_get_examples_ode_sol_almost_linear())
def test_Liouville_ODE():
hint = 'Liouville'
not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 -
diff(f(x), x)**2/2, f(x))
not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 -
x*diff(f(x), x)**2/2, f(x))
assert hint not in not_Liouville1
assert hint not in not_Liouville2
assert hint + '_Integral' not in not_Liouville1
assert hint + '_Integral' not in not_Liouville2
_ode_solver_test(_get_examples_ode_sol_liouville())
def test_nth_order_linear_euler_eq_homogeneous():
x, t, a, b, c = symbols('x t a b c')
y = Function('y')
our_hint = "nth_linear_euler_eq_homogeneous"
eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t)
assert our_hint in classify_ode(eq)
eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2)
assert our_hint in classify_ode(eq)
_ode_solver_test(_get_examples_ode_sol_euler_homogeneous())
def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients():
x, t = symbols('x t')
a, b, c, d = symbols('a b c d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x
assert our_hint in classify_ode(eq, f(x))
eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x)
assert our_hint in classify_ode(eq, f(x))
_ode_solver_test(_get_examples_ode_sol_euler_undetermined_coeff())
def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters():
x, t = symbols('x, t')
a, b, c, d = symbols('a, b, c, d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x))
assert our_hint in classify_ode(eq, f(x))
_ode_solver_test(_get_examples_ode_sol_euler_var_para())
def _get_examples_ode_sol_euler_homogeneous():
return {
'hint': "nth_linear_euler_eq_homogeneous",
'func': f(x),
'examples':{
'euler_hom_01': {
'eq': Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0),
'sol': [Eq(f(x), C1 + C2*x**Rational(5, 2))],
},
'euler_hom_02': {
'eq': Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0),
'sol': [Eq(f(x), C1*sqrt(x) + C2*x**3)]
},
'euler_hom_03': {
'eq': Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0),
'sol': [Eq(f(x), (C1 + C2*log(x))/x**2)]
},
'euler_hom_04': {
'eq': Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0),
'sol': [Eq(f(x), C1/x**2 + C2*x + C3*x**3)]
},
'euler_hom_05': {
'eq': Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0),
'sol': [Eq(f(x), x**5*(C1 + C2*log(x) + C3*log(x)**2))]
},
'euler_hom_06': {
'eq': x**2*diff(f(x), x, 2) + x*diff(f(x), x) - 9*f(x),
'sol': [Eq(f(x), C1*x**-3 + C2*x**3)]
},
'euler_hom_07': {
'eq': sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x),
'sol': [Eq(f(x), C1*sin(log(x)) + C2*cos(log(x)))],
'XFAIL': ['2nd_power_series_regular','nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients']
},
}
}
def _get_examples_ode_sol_euler_undetermined_coeff():
return {
'hint': "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients",
'func': f(x),
'examples':{
'euler_undet_01': {
'eq': Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1),
'sol': [Eq(f(x), C1 + C2*log(x) + log(x)**2/2)]
},
'euler_undet_02': {
'eq': Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3),
'sol': [Eq(f(x), x*(C1 + C2*x + Rational(1, 2)*x**2))]
},
'euler_undet_03': {
'eq': Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x),
'sol': [Eq(f(x), (C1 + C2*x**4 - log(x)**2/8 - log(x)/16)/x)]
},
'euler_undet_04': {
'eq': Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x)),
'sol': [Eq(f(x), C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256))]
},
'euler_undet_05': {
'eq': Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x)),
'sol': [Eq(f(x), C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36))]
},
}
}
def _get_examples_ode_sol_euler_var_para():
return {
'hint': "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters",
'func': f(x),
'examples':{
'euler_var_01': {
'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4),
'sol': [Eq(f(x), x*(C1 + C2*x + x**3/6))]
},
'euler_var_02': {
'eq': Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x)),
'sol': [Eq(f(x), C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2))]
},
'euler_var_03': {
'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x)),
'sol': [Eq(f(x), x*(C1 + C2*x + x*exp(x) - 2*exp(x)))]
},
'euler_var_04': {
'eq': x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x),
'sol': [Eq(f(x), C1*x + C2*x**2 + log(x)/2 + Rational(3, 4))]
},
'euler_var_05': {
'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x,
'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))]
},
}
}
def _get_examples_ode_sol_bernoulli():
# Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n
return {
'hint': "Bernoulli",
'func': f(x),
'examples':{
'bernoulli_01': {
'eq': Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0),
'sol': [Eq(f(x), 1/(C1*x + 1))],
'XFAIL': ['separable_reduced']
},
'bernoulli_02': {
'eq': f(x).diff(x) - y*f(x),
'sol': [Eq(f(x), C1*exp(x*y))]
},
'bernoulli_03': {
'eq': f(x)*f(x).diff(x) - 1,
'sol': [Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x))]
},
}
}
def _get_examples_ode_sol_riccati():
# Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2
return {
'hint': "Riccati_special_minus2",
'func': f(x),
'examples':{
'riccati_01': {
'eq': 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2),
'sol': [Eq(f(x), (-sqrt(3)*tan(C1 + sqrt(3)*log(x)/4) + 3)/(2*x))],
},
},
}
def _get_examples_ode_sol_1st_linear():
# Type: first order linear form f'(x)+p(x)f(x)=q(x)
return {
'hint': "1st_linear",
'func': f(x),
'examples':{
'linear_01': {
'eq': Eq(f(x).diff(x) + x*f(x), x**2),
'sol': [Eq(f(x), (C1 + x*exp(x**2/2)- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))],
},
},
}
def _get_examples_ode_sol_factorable():
""" some hints are marked as xfail for examples because they missed additional algebraic solution
which could be found by Factorable hint. Fact_01 raise exception for
nth_linear_constant_coeff_undetermined_coefficients"""
y = Dummy('y')
a0,a1,a2,a3,a4 = symbols('a0, a1, a2, a3, a4')
return {
'hint': "factorable",
'func': f(x),
'examples':{
'fact_01': {
'eq': f(x) + f(x)*f(x).diff(x),
'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)],
'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep',
'lie_group', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_linear_constant_coeff_undetermined_coefficients']
},
'fact_02': {
'eq': f(x)*(f(x).diff(x)+f(x)*x+2),
'sol': [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2))*exp(-x**2/2)), Eq(f(x), 0)],
'XFAIL': ['Bernoulli', '1st_linear', 'lie_group']
},
'fact_03': {
'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x)),
'sol': [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)),Eq(f(x), C1*exp(-x**3/3))]
},
'fact_04': {
'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x)),
'sol': [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))]
},
'fact_05': {
'eq': (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4),
'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)]
},
'fact_06': {
'eq': (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x),
'sol': [Eq(f(x), C1)]
},
'fact_07': {
'eq': (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1),
'sol': [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)]
},
'fact_08': {
'eq': Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1,
'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
},
'fact_09': {
'eq': f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x),
x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x),
x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x),
x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1,
'sol': [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),
Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)]
},
'fact_10': {
'eq': x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x),
(x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x),
x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x),
(x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2,
'sol': [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)), Eq(f(x), C1*besselj(sqrt(3),
x) + C2*bessely(sqrt(3), x))]
},
'fact_11': {
'eq': (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x))),
'sol': [], #currently dsolve doesn't return any solution for this example
'XFAIL': ['factorable']
},
#Below examples were added for the issue: https://github.com/sympy/sympy/issues/15889
'fact_12': {
'eq': exp(f(x).diff(x))-f(x)**2,
'sol': [Eq(NonElementaryIntegral(1/log(y**2), (y, f(x))), C1 + x)],
'XFAIL': ['lie_group'] #It shows not implemented error for lie_group.
},
'fact_13': {
'eq': f(x).diff(x)**2 - f(x)**3,
'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))],
'XFAIL': ['lie_group'] #It shows not implemented error for lie_group.
},
'fact_14': {
'eq': f(x).diff(x)**2 - f(x),
'sol': [Eq(f(x), C1**2/4 - C1*x/2 + x**2/4)]
},
'fact_15': {
'eq': f(x).diff(x)**2 - f(x)**2,
'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))]
},
'fact_16': {
'eq': f(x).diff(x)**2 - f(x)**3,
'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))]
},
# kamke ode 1.1
'fact_17': {
'eq': f(x).diff(x)-(a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**(-1/2),
'sol': [Eq(f(x), C1 + Integral(1/sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4), x))]
},
# This is from issue: https://github.com/sympy/sympy/issues/9446
'fact_18':{
'eq': Eq(f(2 * x), sin(Derivative(f(x)))),
'sol': [Eq(f(x), C1 + pi*x - Integral(asin(f(2*x)), x)), Eq(f(x), C1 + Integral(asin(f(2*x)), x))],
'checkodesol_XFAIL':True
},
}
}
def _get_examples_ode_sol_almost_linear():
from sympy import Ei
A = Symbol('A', positive=True)
f = Function('f')
d = f(x).diff(x)
return {
'hint': "almost_linear",
'func': f(x),
'examples':{
'almost_lin_01': {
'eq': x**2*f(x)**2*d + f(x)**3 + 1,
'sol': [Eq(f(x), (C1*exp(3/x) - 1)**Rational(1, 3)),
Eq(f(x), (-1 - sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2),
Eq(f(x), (-1 + sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2)],
},
'almost_lin_02': {
'eq': x*f(x)*d + 2*x*f(x)**2 + 1,
'sol': [Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))), Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x)))]
},
'almost_lin_03': {
'eq': x*d + x*f(x) + 1,
'sol': [Eq(f(x), (C1 - Ei(x))*exp(-x))]
},
'almost_lin_04': {
'eq': x*exp(f(x))*d + exp(f(x)) + 3*x,
'sol': [Eq(f(x), log(C1/x - x*Rational(3, 2)))],
},
'almost_lin_05': {
'eq': x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2,
'sol': [Eq(f(x), (C1 + Piecewise(
(x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x))],
},
}
}
def _get_examples_ode_sol_liouville():
return {
'hint': "Liouville",
'func': f(x),
'examples':{
'liouville_01': {
'eq': diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2,
'sol': [Eq(f(x), log(x/(C1 + C2*x)))],
},
'liouville_02': {
'eq': diff(x*exp(-f(x)), x, x),
'sol': [Eq(f(x), log(x/(C1 + C2*x)))]
},
'liouville_03': {
'eq': ((diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2)*exp(-f(x))/exp(f(x))).expand(),
'sol': [Eq(f(x), log(x/(C1 + C2*x)))]
},
'liouville_04': {
'eq': diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x),
'sol': [Eq(f(x), -sqrt(C1 + C2*log(x))), Eq(f(x), sqrt(C1 + C2*log(x)))],
},
'liouville_05': {
'eq': x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x),
'sol': [Eq(f(x), -sqrt(C1 + C2*exp(-x))), Eq(f(x), sqrt(C1 + C2*exp(-x)))],
},
'liouville_06': {
'eq': Eq((x*exp(f(x))).diff(x, x), 0),
'sol': [Eq(f(x), log(C1 + C2/x))],
},
}
}
def _get_examples_ode_sol_nth_algebraic():
M, m, r, t = symbols('M m r t')
phi = Function('phi')
# This one needs a substitution f' = g.
# 'algeb_12': {
# 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x,
# 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))],
# },
return {
'hint': "nth_algebraic",
'func': f(x),
'examples':{
'algeb_01': {
'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x),
'sol': [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)]
},
'algeb_02': {
'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1),
'sol': [Eq(f(x), C1 + C2*x)]
},
'algeb_03': {
'eq': f(x) * f(x).diff(x) * f(x).diff(x, x),
'sol': [Eq(f(x), C1 + C2*x)]
},
'algeb_04': {
'eq': Eq(-M * phi(t).diff(t),
Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t)),
'sol': [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))],
'func': phi(t)
},
'algeb_05': {
'eq': (1 - sin(f(x))) * f(x).diff(x),
'sol': [Eq(f(x), C1)],
'XFAIL': ['separable'] #It raised exception.
},
'algeb_06': {
'eq': (diff(f(x)) - x)*(diff(f(x)) + x),
'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
},
'algeb_07': {
'eq': Eq(Derivative(f(x), x), Derivative(g(x), x)),
'sol': [Eq(f(x), C1 + g(x))],
},
'algeb_08': {
'eq': f(x).diff(x) - C1, #this example is from issue 15999
'sol': [Eq(f(x), C1*x + C2)],
},
'algeb_09': {
'eq': f(x)*f(x).diff(x),
'sol': [Eq(f(x), C1)],
},
'algeb_10': {
'eq': (diff(f(x)) - x)*(diff(f(x)) + x),
'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)],
},
'algeb_11': {
'eq': f(x) + f(x)*f(x).diff(x),
'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)],
'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep',
'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters']
#nth_linear_constant_coeff_undetermined_coefficients raises exception rest all of them misses a solution.
},
'algeb_12': {
'eq': Derivative(x*f(x), x, x, x),
'sol': [Eq(f(x), (C1 + C2*x + C3*x**2) / x)],
'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve.
},
'algeb_13': {
'eq': Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)),
'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))],
'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve.
},
}
}
def _get_examples_ode_sol_nth_order_reducible():
return {
'hint': "nth_order_reducible",
'func': f(x),
'examples':{
'reducible_01': {
'eq': Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0),
'sol': [Eq(f(x),C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) +
sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))],
'slow': True,
},
'reducible_02': {
'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x,
'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))],
'slow': True,
},
'reducible_03': {
'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0),
'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))],
'slow': True,
},
'reducible_04': {
'eq': f(x).diff(x, 2) + 2*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-2*x))],
},
'reducible_05': {
'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))],
'slow': True,
},
'reducible_06': {
'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))],
'slow': True,
},
'reducible_07': {
'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3),
'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))],
'slow': True,
},
'reducible_08': {
'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2),
'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))],
'slow': True,
},
'reducible_09': {
'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2),
'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))],
'slow': True,
},
'reducible_10': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*(x*sin(x) + cos(x)) + C3*(-x*cos(x) + sin(x)) + C4*sin(x) + C5*cos(x))],
'slow': True,
},
'reducible_11': {
'eq': f(x).diff(x, 2) - f(x).diff(x)**3,
'sol': [Eq(f(x), C1 - sqrt(2)*(I*C2 + I*x)*sqrt(1/(C2 + x))),
Eq(f(x), C1 + sqrt(2)*(I*C2 + I*x)*sqrt(1/(C2 + x)))],
'slow': True,
},
}
}
def _get_examples_ode_sol_nth_linear_undetermined_coefficients():
# examples 3-27 below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
return {
'hint': "nth_linear_constant_coeff_undetermined_coefficients",
'func': f(x),
'examples':{
'undet_01': {
'eq': c - x*g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)],
'slow': True,
},
'undet_02': {
'eq': c - g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)],
'slow': True,
},
'undet_03': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4,
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)],
'slow': True,
},
'undet_04': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))],
'slow': True,
},
'undet_05': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x),
'sol': [Eq(f(x), (S(3)/10 + I/10)*(C1*exp(-2*x) + C2*exp(-x) - I*exp(I*x)))],
'slow': True,
},
'undet_06': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - sin(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + sin(x)/10 - 3*cos(x)/10)],
'slow': True,
},
'undet_07': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - cos(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 3*sin(x)/10 + cos(x)/10)],
'slow': True,
},
'undet_08': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x)),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(x) + sin(x)/5 - 3*cos(x)/5 + 4)],
'slow': True,
},
'undet_09': {
'eq': f2 + f(x).diff(x) + f(x) - x**2,
'sol': [Eq(f(x), -2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))],
'slow': True,
},
'undet_10': {
'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x),
'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))],
'slow': True,
},
'undet_11': {
'eq': f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x),
'sol': [Eq(f(x), C1 + C2*exp(3*x) - 3*exp(2*x)*sin(x)/5 - exp(2*x)*cos(x)/5)],
'slow': True,
},
'undet_12': {
'eq': f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x),
'sol': [Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))],
'slow': True,
},
'undet_13': {
'eq': f2 + f(x).diff(x) - x**2 - 2*x,
'sol': [Eq(f(x), C1 + x**3/3 + C2*exp(-x))],
'slow': True,
},
'undet_14': {
'eq': f2 + f(x).diff(x) - x - sin(2*x),
'sol': [Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))],
'slow': True,
},
'undet_15': {
'eq': f2 + f(x) - 4*x*sin(x),
'sol': [Eq(f(x), (C1 - x**2)*cos(x) + (C2 + x)*sin(x))],
'slow': True,
},
'undet_16': {
'eq': f2 + 4*f(x) - x*sin(2*x),
'sol': [Eq(f(x), (C1 - x**2/8)*cos(2*x) + (C2 + x/16)*sin(2*x))],
'slow': True,
},
'undet_17': {
'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x),
'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))],
'slow': True,
},
'undet_18': {
'eq': f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \
x**2*exp(-x),
'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 - x**3/60 + x/3)))*exp(-x))],
'slow': True,
},
'undet_19': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2,
'sol': [Eq(f(x), C2*exp(-x) + x**2/2 - x*Rational(3,2) + (C1 - x)*exp(-2*x) + Rational(7,4))],
'slow': True,
},
'undet_20': {
'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x),
'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)],
'slow': True,
},
'undet_21': {
'eq': f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x),
'sol': [Eq(f(x), Rational(-1, 36) - x/6 + C2*exp(-3*x) + (C1 + x/5)*exp(2*x))],
'slow': True,
},
'undet_22': {
'eq': f2 + f(x) - sin(x) - exp(-x),
'sol': [Eq(f(x), C2*sin(x) + (C1 - x/2)*cos(x) + exp(-x)/2)],
'slow': True,
},
'undet_23': {
'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x),
'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))],
'slow': True,
},
'undet_24': {
'eq': f2 + f(x) - S.Half - cos(2*x)/2,
'sol': [Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x))],
'slow': True,
},
'undet_25': {
'eq': f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2),
'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + (-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)],
'slow': True,
},
#Note: 'undet_26' is referred in 'undet_37'
'undet_26': {
'eq': (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x -
sin(x) - cos(x)),
'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8))*sin(x) + (C4 + x*(C5 + x/8))*cos(x))],
'slow': True,
},
'undet_27': {
'eq': f2 + f(x) - cos(x)/2 + cos(3*x)/2,
'sol': [Eq(f(x), cos(3*x)/16 + C2*cos(x) + (C1 + x/4)*sin(x))],
'slow': True,
},
'undet_28': {
'eq': f(x).diff(x) - 1,
'sol': [Eq(f(x), C1 + x)],
'slow': True,
},
# https://github.com/sympy/sympy/issues/19358
'undet_29': {
'eq': f2 + f(x).diff(x) + exp(x-C1),
'sol': [Eq(f(x), C2 + C3*exp(-x) - exp(-C1 + x)/2)],
'slow': True,
},
# https://github.com/sympy/sympy/issues/18408
'undet_30': {
'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x),
'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + x*sinh(x)/2)],
},
'undet_31': {
'eq': f(x).diff(x, 2) - 49*f(x) - sinh(3*x),
'sol': [Eq(f(x), C1*exp(-7*x) + C2*exp(7*x) - sinh(3*x)/40)],
},
'undet_32': {
'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x) - exp(x),
'sol': [Eq(f(x), C1 + C3*exp(-x) + x*sinh(x)/2 + (C2 + x/2)*exp(x))],
},
# https://github.com/sympy/sympy/issues/5096
'undet_33': {
'eq': f(x).diff(x, x) + f(x) - x*sin(x - 2),
'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x**2*cos(x - 2)/4 + x*sin(x - 2)/4)],
},
'undet_34': {
'eq': f(x).diff(x, 2) + f(x) - x**4*sin(x-1),
'sol': [ Eq(f(x), C1*sin(x) + C2*cos(x) - x**5*cos(x - 1)/10 + x**4*sin(x - 1)/4 + x**3*cos(x - 1)/2 - 3*x**2*sin(x - 1)/4 - 3*x*cos(x - 1)/4)],
},
'undet_35': {
'eq': f(x).diff(x, 2) - f(x) - exp(x - 1),
'sol': [Eq(f(x), C2*exp(-x) + (C1 + x*exp(-1)/2)*exp(x))],
},
'undet_36': {
'eq': f(x).diff(x, 2)+f(x)-(sin(x-2)+1),
'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x*cos(x - 2)/2 + 1)],
},
# Equivalent to example_name 'undet_26'.
# This previously failed because the algorithm for undetermined coefficients
# didn't know to multiply exp(I*x) by sufficient x because it is linearly
# dependent on sin(x) and cos(x).
'undet_37': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x),
'sol': [Eq(f(x), C1 + x**2*(I*exp(I*x)/8 + 1) + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))],
},
}
}
def _get_examples_ode_sol_separable():
# test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and
# Pollard, pg. 55
a = Symbol('a')
return {
'hint': "separable",
'func': f(x),
'examples':{
'separable_01': {
'eq': f(x).diff(x) - f(x),
'sol': [Eq(f(x), C1*exp(x))],
},
'separable_02': {
'eq': x*f(x).diff(x) - f(x),
'sol': [Eq(f(x), C1*x)],
},
'separable_03': {
'eq': f(x).diff(x) + sin(x),
'sol': [Eq(f(x), C1 + cos(x))],
},
'separable_04': {
'eq': f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x),
'sol': [Eq(f(x), tan(C1 + atan(x)))],
},
'separable_05': {
'eq': f(x).diff(x)/tan(x) - f(x) - 2,
'sol': [Eq(f(x), C1/cos(x) - 2)],
},
'separable_06': {
'eq': f(x).diff(x) * (1 - sin(f(x))) - 1,
'sol': [Eq(-x + f(x) + cos(f(x)), C1)],
},
'separable_07': {
'eq': f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x),
'sol': [Eq(f(x), (-x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1)/2),
Eq(f(x), -((x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1))/2)],
'slow': True,
},
'separable_08': {
'eq': f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x),
'sol': [Eq(f(x), -sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1)),
Eq(f(x), sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1))],
'slow': True,
},
'separable_09': {
'eq': x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2),
'sol': [Eq(f(x), sinh(C1 - log(log(x))))], #One more solution is f(x)=I
'slow': True,
'checkodesol_XFAIL': True,
},
'separable_10': {
'eq': exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x),
'sol': [Eq(E*exp(x) + log(cos(f(x)) - 1)/2 - log(cos(f(x)) + 1)/2 + cos(f(x)), C1)],
'slow': True,
},
'separable_11': {
'eq': (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) - a**2*sin(f(x))*f(x).diff(x)),
'sol': [Eq(f(x), -acos(C1*sqrt(-a**2 + x**2)) + 2*pi),
Eq(f(x), acos(C1*sqrt(-a**2 + x**2)))],
'slow': True,
},
'separable_12': {
'eq': f(x).diff(x) - f(x)*tan(x),
'sol': [Eq(f(x), C1/cos(x))],
},
'separable_13': {
'eq': (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)),
'sol': [Eq(f(x), pi - asin(C1*(x**2 - 2*x + 1)*exp(2*x))),
Eq(f(x), asin(C1*(x**2 - 2*x + 1)*exp(2*x)))],
},
'separable_14': {
'eq': f(x).diff(x) - f(x)*log(f(x))/tan(x),
'sol': [Eq(f(x), exp(C1*sin(x)))],
},
'separable_15': {
'eq': x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x)),
'sol': [Eq(f(x), tan(C1/x))], #Two more solutions are f(x)=0 and f(x)=I
'slow': True,
'checkodesol_XFAIL': True,
},
'separable_16': {
'eq': f(x).diff(x) + x*(f(x) + 1),
'sol': [Eq(f(x), -1 + C1*exp(-x**2/2))],
},
'separable_17': {
'eq': exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x),
'sol': [Eq(f(x), -sqrt(log(1/(C1 + x**2 + 2*x)))),
Eq(f(x), sqrt(log(1/(C1 + x**2 + 2*x))))],
},
'separable_18': {
'eq': f(x).diff(x) + f(x),
'sol': [Eq(f(x), C1*exp(-x))],
},
'separable_19': {
'eq': sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x),
'sol': [Eq(f(x), pi - acos(C1/cos(x)**2)/2), Eq(f(x), acos(C1/cos(x)**2)/2)],
},
'separable_20': {
'eq': (1 - x)*f(x).diff(x) - x*(f(x) + 1),
'sol': [Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))],
},
'separable_21': {
'eq': f(x)*diff(f(x), x) + x - 3*x*f(x)**2,
'sol': [Eq(f(x), -sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3),
Eq(f(x), sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3)],
},
'separable_22': {
'eq': f(x).diff(x) - exp(x + f(x)),
'sol': [Eq(f(x), log(-1/(C1 + exp(x))))],
'XFAIL': ['lie_group'] #It shows 'NoneType' object is not subscriptable for lie_group.
},
}
}
def _get_examples_ode_sol_1st_exact():
# Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0,
# where dp/df == dq/dx
'''
Example 7 is an exact equation that fails under the exact engine. It is caught
by first order homogeneous albeit with a much contorted solution. The
exact engine fails because of a poorly simplified integral of q(0,y)dy,
where q is the function multiplying f'. The solutions should be
Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is
equivalent, but it is so complex that checkodesol fails, and takes a long
time to do so.
'''
return {
'hint': "1st_exact",
'func': f(x),
'examples':{
'1st_exact_01': {
'eq': sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x),
'sol': [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))],
'slow': True,
},
'1st_exact_02': {
'eq': (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x),
'sol': [Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))],
'XFAIL': ['lie_group'], #It shows dsolve raises an exception: List index out of range for lie_group
'slow': True,
'checkodesol_XFAIL':True
},
'1st_exact_03': {
'eq': 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x),
'sol': [Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)],
'XFAIL': ['lie_group'], #It goes into infinite loop for lie_group.
'slow': True,
},
'1st_exact_04': {
'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)],
'slow': True,
},
'1st_exact_05': {
'eq': 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x),
'sol': [Eq(x**2*f(x) + f(x)**3/3, C1)],
'slow': True,
'simplify_flag':False
},
# This was from issue: https://github.com/sympy/sympy/issues/11290
'1st_exact_06': {
'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)],
'simplify_flag':False
},
'1st_exact_07': {
'eq': x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) - sqrt(x**2 + f(x)**2)))*f(x).diff(x),
'sol': [Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))],
'slow': True,
'dsolve_too_slow':True
},
}
}
def _get_examples_ode_sol_nth_linear_var_of_parameters():
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
return {
'hint': "nth_linear_constant_coeff_variation_of_parameters",
'func': f(x),
'examples':{
'var_of_parameters_01': {
'eq': c - x*g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)],
'slow': True,
},
'var_of_parameters_02': {
'eq': c - g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)],
'slow': True,
},
'var_of_parameters_03': {
'eq': f(x).diff(x) - 1,
'sol': [Eq(f(x), C1 + x)],
'slow': True,
},
'var_of_parameters_04': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4,
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)],
'slow': True,
},
'var_of_parameters_05': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))],
'slow': True,
},
'var_of_parameters_06': {
'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x),
'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))],
'slow': True,
},
'var_of_parameters_07': {
'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x),
'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))],
'slow': True,
},
'var_of_parameters_08': {
'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x),
'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)],
'slow': True,
},
'var_of_parameters_09': {
'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x),
'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))],
'slow': True,
},
'var_of_parameters_10': {
'eq': f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x,
'sol': [Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))],
'slow': True,
},
'var_of_parameters_11': {
'eq': f2 + f(x) - 1/sin(x)*1/cos(x),
'sol': [Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2
)*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))],
'slow': True,
},
'var_of_parameters_12': {
'eq': f(x).diff(x, 4) - 1/x,
'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + x**3*(C4 + log(x)/6))],
'slow': True,
},
# These were from issue: https://github.com/sympy/sympy/issues/15996
'var_of_parameters_13': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x),
'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8 + 3*exp(I*x)/2 + 3*exp(-I*x)/2) + 5*exp(2*I*x)/16 + 2*I*exp(I*x) - 2*I*exp(-I*x))*sin(x) + (C4 + x*(C5 + I*x/8 + 3*I*exp(I*x)/2 - 3*I*exp(-I*x)/2)
+ 5*I*exp(2*I*x)/16 - 2*exp(I*x) - 2*exp(-I*x))*cos(x) - I*exp(I*x))],
},
'var_of_parameters_14': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - exp(I*x),
'sol': [Eq(f(x), C1 + (C2 + x*(C3 - x/8) + 5*exp(2*I*x)/16)*sin(x) + (C4 + x*(C5 + I*x/8) + 5*I*exp(2*I*x)/16)*cos(x) - I*exp(I*x))],
},
}
}
def _get_all_examples():
all_solvers = [_get_examples_ode_sol_euler_homogeneous(),
_get_examples_ode_sol_euler_undetermined_coeff(),
_get_examples_ode_sol_euler_var_para(),
_get_examples_ode_sol_factorable(),
_get_examples_ode_sol_bernoulli(),
_get_examples_ode_sol_nth_algebraic(),
_get_examples_ode_sol_riccati(),
_get_examples_ode_sol_1st_linear(),
_get_examples_ode_sol_1st_exact(),
_get_examples_ode_sol_almost_linear(),
_get_examples_ode_sol_nth_order_reducible(),
_get_examples_ode_sol_nth_linear_undetermined_coefficients(),
_get_examples_ode_sol_liouville(),
_get_examples_ode_sol_separable(),
_get_examples_ode_sol_nth_linear_var_of_parameters()
]
all_examples = []
for solver in all_solvers:
for example in solver['examples']:
temp = {
'hint': solver['hint'],
'func': solver['examples'][example].get('func',solver['func']),
'eq': solver['examples'][example]['eq'],
'sol': solver['examples'][example]['sol'],
'XFAIL': solver['examples'][example].get('XFAIL',[]),
'simplify_flag':solver['examples'][example].get('simplify_flag',True),
'checkodesol_XFAIL': solver['examples'][example].get('checkodesol_XFAIL', False),
'dsolve_too_slow': solver['examples'][example].get('dsolve_too_slow', False),
'checkodesol_too_slow': solver['examples'][example].get('checkodesol_too_slow', False),
'example_name': example,
}
all_examples.append(temp)
return all_examples
|
e5d116382d4a7851b4104d64ee2bdae439b2dd6f61214e224f3735864d441147 | from sympy import (symbols, Symbol, diff, Function, Derivative, Matrix, Rational, S,
I, Eq, sqrt, Mul, pi)
from sympy.core.containers import Tuple
from sympy.functions import exp, cos, sin, log, tan, Ci, Si, erf, erfi
from sympy.matrices import dotprodsimp, NonSquareMatrixError
from sympy.solvers.ode import dsolve
from sympy.solvers.ode.ode import constant_renumber
from sympy.solvers.ode.subscheck import checksysodesol
from sympy.solvers.ode.systems import (_classify_linear_system, linear_ode_to_matrix,
ODEOrderError, ODENonlinearError, _simpsol,
_is_commutative_anti_derivative, linodesolve,
canonical_odes, dsolve_system, _component_division,
_eqs2dict, _dict2graph)
from sympy.functions import airyai, airybi
from sympy.integrals.integrals import Integral
from sympy.simplify.ratsimp import ratsimp
from sympy.testing.pytest import ON_TRAVIS, raises, slow, skip, XFAIL
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
def test_linear_ode_to_matrix():
f, g, h = symbols("f, g, h", cls=Function)
t = Symbol("t")
funcs = [f(t), g(t), h(t)]
f1 = f(t).diff(t)
g1 = g(t).diff(t)
h1 = h(t).diff(t)
f2 = f(t).diff(t, 2)
g2 = g(t).diff(t, 2)
h2 = h(t).diff(t, 2)
eqs_1 = [Eq(f1, g(t)), Eq(g1, f(t))]
sol_1 = ([Matrix([[1, 0], [0, 1]]), Matrix([[ 0, 1], [1, 0]])], Matrix([[0],[0]]))
assert linear_ode_to_matrix(eqs_1, funcs[:-1], t, 1) == sol_1
eqs_2 = [Eq(f1, f(t) + 2*g(t)), Eq(g1, h(t)), Eq(h1, g(t) + h(t) + f(t))]
sol_2 = ([Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), Matrix([[1, 2, 0], [ 0, 0, 1], [1, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_2, funcs, t, 1) == sol_2
eqs_3 = [Eq(2*f1 + 3*h1, f(t) + g(t)), Eq(4*h1 + 5*g1, f(t) + h(t)), Eq(5*f1 + 4*g1, g(t) + h(t))]
sol_3 = ([Matrix([[2, 0, 3], [0, 5, 4], [5, 4, 0]]), Matrix([[1, 1, 0], [1, 0, 1], [0, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_3, funcs, t, 1) == sol_3
eqs_4 = [Eq(f2 + h(t), f1 + g(t)), Eq(2*h2 + g2 + g1 + g(t), 0), Eq(3*h1, 4)]
sol_4 = ([Matrix([[1, 0, 0], [0, 1, 2], [0, 0, 0]]), Matrix([[1, 0, 0], [0, -1, 0], [0, 0, -3]]),
Matrix([[0, 1, -1], [0, -1, 0], [0, 0, 0]])], Matrix([[0], [0], [4]]))
assert linear_ode_to_matrix(eqs_4, funcs, t, 2) == sol_4
eqs_5 = [Eq(f2, g(t)), Eq(f1 + g1, f(t))]
raises(ODEOrderError, lambda: linear_ode_to_matrix(eqs_5, funcs[:-1], t, 1))
eqs_6 = [Eq(f1, f(t)**2), Eq(g1, f(t) + g(t))]
raises(ODENonlinearError, lambda: linear_ode_to_matrix(eqs_6, funcs[:-1], t, 1))
def test__classify_linear_system():
x, y, z, w = symbols('x, y, z, w', cls=Function)
t, k, l = symbols('t k l')
x1 = diff(x(t), t)
y1 = diff(y(t), t)
z1 = diff(z(t), t)
w1 = diff(w(t), t)
x2 = diff(x(t), t, t)
y2 = diff(y(t), t, t)
funcs = [x(t), y(t)]
funcs_2 = funcs + [z(t), w(t)]
eqs_1 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
assert _classify_linear_system(eqs_1, funcs, t) is None
eqs_2 = (5 * (x1**2) + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
sol2 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)],
[Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]]}
assert _classify_linear_system(eqs_2, funcs, t) == sol2
eqs_2_1 = [Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_1, funcs, t) is None
eqs_2_2 = [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_2, funcs, t) is None
eqs_3 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (5 * w1 + z(t)), (z1 + w(t)))
answer_3 = {'no_of_equation': 4,
'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t),
z(t) + 5*Derivative(w(t), t),
w(t) + Derivative(z(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, 1],
[0, 0, Rational(1, 5), 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_3, funcs_2, t) == answer_3
eqs_4 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (z1 - w(t)), (w1 - z(t)))
answer_4 = {'no_of_equation': 4,
'eq': (12 * x(t) - 6 * y(t) + 5 * Derivative(x(t), t),
-11 * x(t) + 3 * y(t) + 2 * Derivative(y(t), t),
-w(t) + Derivative(z(t), t),
-z(t) + Derivative(w(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, -1],
[0, 0, -1, 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_4, funcs_2, t) == answer_4
eqs_5 = (5*x1 + 12*x(t) - 6*(y(t)) + x2, (2*y1 - 11*x(t) + 3*y(t)), (z1 - w(t)), (w1 - z(t)))
answer_5 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t) + Derivative(x(t), (t, 2)),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t),
t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 2, y(t): 1, z(t): 1, w(t): 1}, 'is_linear':
True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_higher_order': True}
assert _classify_linear_system(eqs_5, funcs_2, t) == answer_5
eqs_6 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
answer_6 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, -3, 11],
[ 3, 0, -7],
[-11, 7, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_6, funcs_2[:-1], t) == answer_6
eqs_7 = (Eq(x1, y(t)), Eq(y1, x(t)))
answer_7 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -1],
[-1, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_7, funcs, t) == answer_7
eqs_8 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t) + 3*y(t)), Eq(z1, 5*x(t) + 7*y(t) + 9*z(t)))
answer_8 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[ -5, -7, -9]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_8, funcs_2[:-1], t) == answer_8
eqs_9 = (Eq(x1, 4*x(t) + 5*y(t) + 2*z(t)), Eq(y1, x(t) + 13*y(t) + 9*z(t)), Eq(z1, 32*x(t) + 41*y(t) + 11*z(t)))
answer_9 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)),
Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ -4, -5, -2],
[ -1, -13, -9],
[-32, -41, -11]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_9, funcs_2[:-1], t) == answer_9
eqs_10 = (Eq(3*x1, 4*5*(y(t) - z(t))), Eq(4*y1, 3*5*(z(t) - x(t))), Eq(5*z1, 3*4*(x(t) - y(t))))
answer_10 = {'no_of_equation': 3, 'eq': (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_10, funcs_2[:-1], t) == answer_10
eq11 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
sol11 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq11, funcs_2[:-1], t) == sol11
eq12 = (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t)))
sol12 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[0, -1],
[-1, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq12, [x(t), y(t)], t) == sol12
eq13 = (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol13 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 21 * x(t)), Eq(Derivative(y(t), t), 17 * x(t) + 3 * y(t)),
Eq(Derivative(z(t), t), 5 * x(t) + 7 * y(t) + 9 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[-5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq13, [x(t), y(t), z(t)], t) == sol13
eq14 = (
Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)),
Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t)))
sol14 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 4 * x(t) + 5 * y(t) + 2 * z(t)), Eq(Derivative(y(t), t), x(t) + 13 * y(t) + 9 * z(t)),
Eq(Derivative(z(t), t), 32 * x(t) + 41 * y(t) + 11 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-4, -5, -2],
[-1, -13, -9],
[-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq14, [x(t), y(t), z(t)], t) == sol14
eq15 = (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t)))
sol15 = {'no_of_equation': 3, 'eq': (
Eq(3 * Derivative(x(t), t), 20 * y(t) - 20 * z(t)), Eq(4 * Derivative(y(t), t), -15 * x(t) + 15 * z(t)),
Eq(5 * Derivative(z(t), t), 12 * x(t) - 12 * y(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq15, [x(t), y(t), z(t)], t) == sol15
# Constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), x(t) + y(t) + 9), Eq(diff(y(t), t), 2*x(t) + 5*y(t) + 23))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), x(t) + y(t) + 9),
Eq(Derivative(y(t), t), 2*x(t) + 5*y(t) + 23)), 'func': [x(t), y(t)],
'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': False, 'is_general': True,
'func_coeff': -Matrix([[-1, -1], [-2, -5]]), 'rhs': Matrix([[ 9], [23]]), 'type_of_equation': 'type2'}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t), t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), 5*t*x(t) + 2*y(t)), Eq(Derivative(y(t), t), 5*t*y(t) + 2*x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': True, 'func_coeff': -Matrix([ [-5*t, -2], [ -2, -5*t]]), 'commutative_antiderivative': Matrix([
[5*t**2/2, 2*t], [ 2*t, 5*t**2/2]]), 'type_of_equation': 'type3', 'is_general': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient non-homogeneous ODEs
eq1 = [Eq(x1, x(t) + t*y(t) + t), Eq(y1, t*x(t) + y(t))]
sol1 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*y(t) + t + x(t)), Eq(Derivative(y(t), t),
t*x(t) + y(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -t],
[-t, -1]]), 'commutative_antiderivative': Matrix([ [ t, t**2/2], [t**2/2, t]]), 'rhs':
Matrix([ [t], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = [Eq(x1, t*x(t) + t*y(t) + t), Eq(y1, t*x(t) + t*y(t) + cos(t))]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*x(t) + t*y(t) + t), Eq(Derivative(y(t), t),
t*x(t) + t*y(t) + cos(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [ t], [cos(t)]]), 'func_coeff':
Matrix([ [t, t], [t, t]]), 'is_constant': False, 'type_of_equation': 'type4',
'commutative_antiderivative': Matrix([ [t**2/2, t**2/2], [t**2/2, t**2/2]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(x1, t*(x(t) + y(t) + z(t) + 1)), Eq(y1, t*(x(t) + y(t) + z(t))), Eq(z1, t*(x(t) + y(t) + z(t)))]
sol3 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*(x(t) + y(t) + z(t) + 1)),
Eq(Derivative(y(t), t), t*(x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(x(t) + y(t) + z(t)))],
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant':
False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t], [-t, -t,
-t], [-t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [t], [0], [0]]), 'type_of_equation':
'type4'}
assert _classify_linear_system(eq3, funcs_2[:-1], t) == sol3
eq4 = [Eq(x1, x(t) + y(t) + t*z(t) + 1), Eq(y1, x(t) + t*y(t) + z(t) + 10), Eq(z1, t*x(t) + y(t) + z(t) + t)]
sol4 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*z(t) + x(t) + y(t) + 1), Eq(Derivative(y(t),
t), t*y(t) + x(t) + z(t) + 10), Eq(Derivative(z(t), t), t*x(t) + t + y(t) + z(t))], 'func': [x(t),
y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -1, -t], [-1, -t, -1], [-t,
-1, -1]]), 'commutative_antiderivative': Matrix([ [ t, t, t**2/2], [ t, t**2/2,
t], [t**2/2, t, t]]), 'rhs': Matrix([ [ 1], [10], [ t]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq4, funcs_2[:-1], t) == sol4
sum_terms = t*(x(t) + y(t) + z(t) + w(t))
eq5 = [Eq(x1, sum_terms), Eq(y1, sum_terms), Eq(z1, sum_terms + 1), Eq(w1, sum_terms)]
sol5 = {'no_of_equation': 4, 'eq': [Eq(Derivative(x(t), t), t*(w(t) + x(t) + y(t) + z(t))),
Eq(Derivative(y(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(w(t) + x(t) +
y(t) + z(t)) + 1), Eq(Derivative(w(t), t), t*(w(t) + x(t) + y(t) + z(t)))], 'func': [x(t), y(t),
z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t, -t], [-t, -t, -t,
-t], [-t, -t, -t, -t], [-t, -t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [0], [0], [1], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq5, funcs_2, t) == sol5
# Second Order
t_ = symbols("t_")
eq1 = (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)),
Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) +
3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) +
8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([
[11*exp(I*t)], [ 2*exp(I*t)]]), 'type_of_equation': 'type0', 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t)))
sol2 = {'no_of_equation': 2, 'eq': (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True,
'type_of_equation': 'type2', 'A0': Matrix([ [Rational(53, 4), 35], [ 1, Rational(69, 4)]]), 'g(t)': sqrt(4*t**2 + 7*t
+ 1), 'tau': sqrt(33)*log(t - sqrt(33)/8 + Rational(7, 8))/33 - sqrt(33)*log(t + sqrt(33)/8 + Rational(7, 8))/33,
'is_transformed': True, 't_': t_, 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)),
t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2)))
sol3 = {'no_of_equation': 2, 'eq': ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) -
y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t),
t) - y(t)) + Derivative(y(t), (t, 2))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2},
'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type1', 'A1':
Matrix([ [-t*log(t), -t*exp(t)], [ -t**3, -t**2]]), 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq3, funcs, t) == sol3
eq4 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol4 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), (t, 2)), k*x(t) - l*Derivative(y(t), t)),
Eq(Derivative(y(t), (t, 2)), k*y(t) + l*Derivative(x(t), t))), 'func': [x(t), y(t)], 'order': {x(t):
2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation':
'type0', 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq4, funcs, t) == sol4
# Multiple matchs
f, g = symbols("f g", cls=Function)
y, t_ = symbols("y t_")
funcs = [f(t), g(t)]
eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol1 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(f(t), t), -1), Eq(Derivative(g(t), t), y*f(t))],
[Eq(Derivative(f(t), t), 3), Eq(Derivative(g(t), t), y*f(t))]]}
assert _classify_linear_system(eq1, funcs, t) == sol1
raises(ValueError, lambda: _classify_linear_system(eq1, funcs[:1], t))
eq2 = [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [1], [0]]), 'func_coeff': Matrix([ [2,
1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type6', 't_': t_, 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol3 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': True, 'is_general': True, 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant':
False, 'type_of_equation': 'type5', 't_': t_, 'rhs': Matrix([ [0], [0]]), 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq3, funcs, t) == sol3
def test_matrix_exp():
from sympy.matrices.dense import Matrix, eye, zeros
from sympy.solvers.ode.systems import matrix_exp
t = Symbol('t')
for n in range(1, 6+1):
assert matrix_exp(zeros(n), t) == eye(n)
for n in range(1, 6+1):
A = eye(n)
expAt = exp(t) * eye(n)
assert matrix_exp(A, t) == expAt
for n in range(1, 6+1):
A = Matrix(n, n, lambda i,j: i+1 if i==j else 0)
expAt = Matrix(n, n, lambda i,j: exp((i+1)*t) if i==j else 0)
assert matrix_exp(A, t) == expAt
A = Matrix([[0, 1], [-1, 0]])
expAt = Matrix([[cos(t), sin(t)], [-sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([[2, -5], [2, -4]])
expAt = Matrix([
[3*exp(-t)*sin(t) + exp(-t)*cos(t), -5*exp(-t)*sin(t)],
[2*exp(-t)*sin(t), -3*exp(-t)*sin(t) + exp(-t)*cos(t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[21, 17, 6], [-5, -1, -6], [4, 4, 16]])
# TO update this.
# expAt = Matrix([
# [(8*t*exp(12*t) + 5*exp(12*t) - 1)*exp(4*t)/4,
# (8*t*exp(12*t) + 5*exp(12*t) - 5)*exp(4*t)/4,
# (exp(12*t) - 1)*exp(4*t)/2],
# [(-8*t*exp(12*t) - exp(12*t) + 1)*exp(4*t)/4,
# (-8*t*exp(12*t) - exp(12*t) + 5)*exp(4*t)/4,
# (-exp(12*t) + 1)*exp(4*t)/2],
# [4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]])
expAt = Matrix([
[2*t*exp(16*t) + 5*exp(16*t)/4 - exp(4*t)/4, 2*t*exp(16*t) + 5*exp(16*t)/4 - 5*exp(4*t)/4, exp(16*t)/2 - exp(4*t)/2],
[ -2*t*exp(16*t) - exp(16*t)/4 + exp(4*t)/4, -2*t*exp(16*t) - exp(16*t)/4 + 5*exp(4*t)/4, -exp(16*t)/2 + exp(4*t)/2],
[ 4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, -S(1)/8],
[0, 0, S(1)/2, S(1)/2]])
expAt = Matrix([
[exp(t), t*exp(t), 4*t*exp(3*t/4) + 8*t*exp(t) + 48*exp(3*t/4) - 48*exp(t),
-2*t*exp(3*t/4) - 2*t*exp(t) - 16*exp(3*t/4) + 16*exp(t)],
[0, exp(t), -t*exp(3*t/4) - 8*exp(3*t/4) + 8*exp(t), t*exp(3*t/4)/2 + 2*exp(3*t/4) - 2*exp(t)],
[0, 0, t*exp(3*t/4)/4 + exp(3*t/4), -t*exp(3*t/4)/8],
[0, 0, t*exp(3*t/4)/2, -t*exp(3*t/4)/4 + exp(3*t/4)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 0, 0],
[-1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), 0, 0],
[-sin(t), cos(t), 0, 0],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 1, 0],
[-1, 0, 0, 1],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), t*cos(t), t*sin(t)],
[-sin(t), cos(t), -t*sin(t), t*cos(t)],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
# This case is unacceptably slow right now but should be solvable...
#a, b, c, d, e, f = symbols('a b c d e f')
#A = Matrix([
#[-a, b, c, d],
#[ a, -b, e, 0],
#[ 0, 0, -c - e - f, 0],
#[ 0, 0, f, -d]])
A = Matrix([[0, I], [I, 0]])
expAt = Matrix([
[exp(I*t)/2 + exp(-I*t)/2, exp(I*t)/2 - exp(-I*t)/2],
[exp(I*t)/2 - exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
assert matrix_exp(A, t) == expAt
# Testing Errors
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 7, 7]])
M1 = Matrix([[t, 1], [1, 1]])
raises(ValueError, lambda: matrix_exp(M[:, :2], t))
raises(ValueError, lambda: matrix_exp(M[:2, :], t))
raises(ValueError, lambda: matrix_exp(M1, t))
raises(ValueError, lambda: matrix_exp(M1[:1, :1], t))
def test_canonical_odes():
f, g, h = symbols('f g h', cls=Function)
x = symbols('x')
funcs = [f(x), g(x), h(x)]
eqs1 = [Eq(f(x).diff(x, x), f(x) + 2*g(x)), Eq(g(x) + 1, g(x).diff(x) + f(x))]
sol1 = [[Eq(Derivative(f(x), (x, 2)), f(x) + 2*g(x)), Eq(Derivative(g(x), x), -f(x) + g(x) + 1)]]
assert canonical_odes(eqs1, funcs[:2], x) == sol1
eqs2 = [Eq(f(x).diff(x), h(x).diff(x) + f(x)), Eq(g(x).diff(x)**2, f(x) + h(x)), Eq(h(x).diff(x), f(x))]
sol2 = [[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), -sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))],
[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))]]
assert canonical_odes(eqs2, funcs, x) == sol2
def test_sysode_linear_neq_order1_type1():
f, g, x, y, h = symbols('f g x y h', cls=Function)
a, b, c, t = symbols('a b c t')
eqs1 = [Eq(Derivative(x(t), t), x(t)),
Eq(Derivative(y(t), t), y(t))]
sol1 = [Eq(x(t), C1*exp(t)),
Eq(y(t), C2*exp(t))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(x(t), t), 2*x(t)),
Eq(Derivative(y(t), t), 3*y(t))]
sol2 = [Eq(x(t), C1*exp(2*t)),
Eq(y(t), C2*exp(3*t))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(x(t), t), a*x(t)),
Eq(Derivative(y(t), t), a*y(t))]
sol3 = [Eq(x(t), C1*exp(a*t)),
Eq(y(t), C2*exp(a*t))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eqs4 = [Eq(Derivative(x(t), t), a*x(t)),
Eq(Derivative(y(t), t), b*y(t))]
sol4 = [Eq(x(t), C1*exp(a*t)),
Eq(y(t), C2*exp(b*t))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(Derivative(x(t), t), -y(t)),
Eq(Derivative(y(t), t), x(t))]
sol5 = [Eq(x(t), -C1*sin(t) - C2*cos(t)),
Eq(y(t), C1*cos(t) - C2*sin(t))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(x(t), t), -2*y(t)),
Eq(Derivative(y(t), t), 2*x(t))]
sol6 = [Eq(x(t), -C1*sin(2*t) - C2*cos(2*t)),
Eq(y(t), C1*cos(2*t) - C2*sin(2*t))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(Derivative(x(t), t), I*y(t)),
Eq(Derivative(y(t), t), I*x(t))]
sol7 = [Eq(x(t), -C1*exp(-I*t) + C2*exp(I*t)),
Eq(y(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(Derivative(x(t), t), -a*y(t)),
Eq(Derivative(y(t), t), a*x(t))]
sol8 = [Eq(x(t), -I*C1*exp(-I*a*t) + I*C2*exp(I*a*t)),
Eq(y(t), C1*exp(-I*a*t) + C2*exp(I*a*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
eqs9 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), x(t) - y(t))]
sol9 = [Eq(x(t), C1*(1 - sqrt(2))*exp(-sqrt(2)*t) + C2*(1 + sqrt(2))*exp(sqrt(2)*t)),
Eq(y(t), C1*exp(-sqrt(2)*t) + C2*exp(sqrt(2)*t))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
eqs10 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol10 = [Eq(x(t), -C1 + C2*exp(2*t)),
Eq(y(t), C1 + C2*exp(2*t))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
eqs11 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
sol11 = [Eq(x(t), C1*exp(2*t)*sin(t) + C2*exp(2*t)*cos(t)),
Eq(y(t), C1*exp(2*t)*cos(t) - C2*exp(2*t)*sin(t))]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
eqs12 = [Eq(Derivative(x(t), t), x(t) + 2*y(t)),
Eq(Derivative(y(t), t), 2*x(t) + y(t))]
sol12 = [Eq(x(t), -C1*exp(-t) + C2*exp(3*t)),
Eq(y(t), C1*exp(-t) + C2*exp(3*t))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
eqs13 = [Eq(Derivative(x(t), t), 4*x(t) + y(t)),
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
sol13 = [Eq(x(t), C2*t*exp(3*t) + (C1 + C2)*exp(3*t)),
Eq(y(t), -C1*exp(3*t) - C2*t*exp(3*t))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
eqs14 = [Eq(Derivative(x(t), t), a*y(t)),
Eq(Derivative(y(t), t), a*x(t))]
sol14 = [Eq(x(t), -C1*exp(-a*t) + C2*exp(a*t)),
Eq(y(t), C1*exp(-a*t) + C2*exp(a*t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
eqs15 = [Eq(Derivative(x(t), t), a*y(t)),
Eq(Derivative(y(t), t), b*x(t))]
sol15 = [Eq(x(t), -C1*a*exp(-t*sqrt(a*b))/sqrt(a*b) + C2*a*exp(t*sqrt(a*b))/sqrt(a*b)),
Eq(y(t), C1*exp(-t*sqrt(a*b)) + C2*exp(t*sqrt(a*b)))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
eqs16 = [Eq(Derivative(x(t), t), a*x(t) + b*y(t)),
Eq(Derivative(y(t), t), c*x(t))]
sol16 = [Eq(x(t), -2*C1*b*exp(t*(a + sqrt(a**2 + 4*b*c))/2)/(a - sqrt(a**2 + 4*b*c)) - 2*C2*b*exp(t*(a -
sqrt(a**2 + 4*b*c))/2)/(a + sqrt(a**2 + 4*b*c))),
Eq(y(t), C1*exp(t*(a + sqrt(a**2 + 4*b*c))/2) + C2*exp(t*(a - sqrt(a**2 + 4*b*c))/2))]
assert dsolve(eqs16) == sol16
assert checksysodesol(eqs16, sol16) == (True, [0, 0])
# Regression test case for issue #18562
# https://github.com/sympy/sympy/issues/18562
eqs17 = [Eq(Derivative(x(t), t), a*y(t) + x(t)),
Eq(Derivative(y(t), t), a*x(t) - y(t))]
sol17 = [Eq(x(t), C1*a*exp(t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) - 1) - C2*a*exp(-t*sqrt(a**2 + 1))/(sqrt(a**2 +
1) + 1)),
Eq(y(t), C1*exp(t*sqrt(a**2 + 1)) + C2*exp(-t*sqrt(a**2 + 1)))]
assert dsolve(eqs17) == sol17
assert checksysodesol(eqs17, sol17) == (True, [0, 0])
eqs18 = [Eq(Derivative(x(t), t), 0),
Eq(Derivative(y(t), t), 0)]
sol18 = [Eq(x(t), C1),
Eq(y(t), C2)]
assert dsolve(eqs18) == sol18
assert checksysodesol(eqs18, sol18) == (True, [0, 0])
eqs19 = [Eq(Derivative(x(t), t), 2*x(t) - y(t)),
Eq(Derivative(y(t), t), x(t))]
sol19 = [Eq(x(t), C2*t*exp(t) + (C1 + C2)*exp(t)),
Eq(y(t), C1*exp(t) + C2*t*exp(t))]
assert dsolve(eqs19) == sol19
assert checksysodesol(eqs19, sol19) == (True, [0, 0])
eqs20 = [Eq(Derivative(x(t), t), x(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol20 = [Eq(x(t), C1*exp(t)),
Eq(y(t), C1*t*exp(t) + C2*exp(t))]
assert dsolve(eqs20) == sol20
assert checksysodesol(eqs20, sol20) == (True, [0, 0])
eqs21 = [Eq(Derivative(x(t), t), 3*x(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol21 = [Eq(x(t), 2*C1*exp(3*t)),
Eq(y(t), C1*exp(3*t) + C2*exp(t))]
assert dsolve(eqs21) == sol21
assert checksysodesol(eqs21, sol21) == (True, [0, 0])
eqs22 = [Eq(Derivative(x(t), t), 3*x(t)),
Eq(Derivative(y(t), t), y(t))]
sol22 = [Eq(x(t), C1*exp(3*t)),
Eq(y(t), C2*exp(t))]
assert dsolve(eqs22) == sol22
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
@slow
def test_sysode_linear_neq_order1_type1_slow():
t = Symbol('t')
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eqs1 = [Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)),
Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)),
Eq(Derivative(Z2(t), t), (-k20 - k21 - k23)*Z2(t)),
Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))]
sol1 = [Eq(Z0(t), C1*k10/k01 - C2*(k10 - k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*(k10*(k20 + k21 - k30) -
k20**2 - k20*(k21 + k23 - k30) + k23*k30)*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 +
k23)) - C4*exp(-t*(k01 + k10))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*(-k01*(k20 + k21 - k30) + k20*k21 + k21**2
+ k21*(k23 - k30))*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 + k23)) + C4*exp(-t*(k01 +
k10))),
Eq(Z2(t), -C3*(k20 + k21 + k23 - k30)*exp(-t*(k20 + k21 + k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C3*exp(-t*(k20 + k21 + k23)))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
x, y, z, u, v, w = symbols('x y z u v w', cls=Function)
k2, k3 = symbols('k2 k3')
a_b, a_c = symbols('a_b a_c', real=True)
eqs2 = [Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
sol2 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(-t*(k2 + k3)))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0])
eqs3 = [4*u(t) - v(t) - 2*w(t) + Derivative(u(t), t),
2*u(t) + v(t) - 2*w(t) + Derivative(v(t), t),
5*u(t) + v(t) - 3*w(t) + Derivative(w(t), t)]
sol3 = [Eq(u(t), C3*exp(-2*t) + (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 +
C2*Rational(-1, 2))),
Eq(v(t), (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 + C2*Rational(-1, 2))),
Eq(w(t), C1*cos(sqrt(3)*t) - C2*sin(sqrt(3)*t) + C3*exp(-2*t))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(Derivative(x(t), t), w(t)*Rational(-2, 9) + 2*x(t) + y(t) + z(t)*Rational(-8, 9)),
Eq(Derivative(y(t), t), w(t)*Rational(4, 9) + 2*y(t) + z(t)*Rational(16, 9)),
Eq(Derivative(z(t), t), w(t)*Rational(-2, 9) + z(t)*Rational(37, 9)),
Eq(Derivative(w(t), t), w(t)*Rational(44, 9) + z(t)*Rational(-4, 9))]
sol4 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
Eq(y(t), C2*exp(2*t) + 2*C3*exp(4*t)),
Eq(z(t), 2*C3*exp(4*t) + C4*exp(5*t)*Rational(-1, 4)),
Eq(w(t), C3*exp(4*t) + C4*exp(5*t))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq5 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t)), Eq(z(t).diff(t), z(t)), Eq(w(t).diff(t), w(t))]
sol5 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t))]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), y(t) + z(t)),
Eq(Derivative(z(t), t), w(t)*Rational(-1, 8) + z(t)),
Eq(Derivative(w(t), t), w(t)/2 + z(t)/2)]
sol6 = [Eq(x(t), C1*exp(t) + C2*t*exp(t) + 4*C4*t*exp(t*Rational(3, 4)) + (4*C3 + 48*C4)*exp(t*Rational(3,
4))),
Eq(y(t), C2*exp(t) - C4*t*exp(t*Rational(3, 4)) - (C3 + 8*C4)*exp(t*Rational(3, 4))),
Eq(z(t), C4*t*exp(t*Rational(3, 4))/4 + (C3/4 + C4)*exp(t*Rational(3, 4))),
Eq(w(t), C3*exp(t*Rational(3, 4))/2 + C4*t*exp(t*Rational(3, 4))/2)]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq7 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t)),
Eq(Derivative(w(t), t), w(t)), Eq(Derivative(u(t), t), u(t))]
sol7 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t)),
Eq(u(t), C5*exp(t))]
assert dsolve(eq7) == sol7
assert checksysodesol(eq7, sol7) == (True, [0, 0, 0, 0, 0])
eqs8 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
Eq(Derivative(y(t), t), 2*y(t)),
Eq(Derivative(z(t), t), 4*z(t)),
Eq(Derivative(w(t), t), u(t) + 5*w(t)),
Eq(Derivative(u(t), t), 5*u(t))]
sol8 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
Eq(y(t), C2*exp(2*t)),
Eq(z(t), C3*exp(4*t)),
Eq(w(t), C4*exp(5*t) + C5*t*exp(5*t)),
Eq(u(t), C5*exp(5*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq9 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t))]
sol9 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t))]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #15407
# https://github.com/sympy/sympy/issues/15407
eqs10 = [Eq(Derivative(x(t), t), (-a_b - a_c)*x(t)),
Eq(Derivative(y(t), t), a_b*y(t)),
Eq(Derivative(z(t), t), a_c*x(t))]
sol10 = [Eq(x(t), -C1*(a_b + a_c)*exp(-t*(a_b + a_c))/a_c),
Eq(y(t), C2*exp(a_b*t)),
Eq(z(t), C1*exp(-t*(a_b + a_c)) + C3)]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eqs11 = [Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t)),
Eq(Derivative(z(t), t), k2*y(t))]
sol11 = [Eq(x(t), C1 + C2*k3*exp(-t*(k2 + k3))/k2),
Eq(y(t), -C2*(k2 + k3)*exp(-t*(k2 + k3))/k2),
Eq(z(t), C2*exp(-t*(k2 + k3)) + C3)]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eqs12 = [Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
sol12 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(-t*(k2 + k3)))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0, 0])
f, g, h = symbols('f, g, h', cls=Function)
a, b, c = symbols('a, b, c')
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eqs13 = [Eq(Derivative(f(t), t), 2*f(t) + g(t)),
Eq(Derivative(g(t), t), a*f(t))]
sol13 = [Eq(f(t), C1*exp(t*(sqrt(a + 1) + 1))/(sqrt(a + 1) - 1) - C2*exp(-t*(sqrt(a + 1) - 1))/(sqrt(a + 1) +
1)),
Eq(g(t), C1*exp(t*(sqrt(a + 1) + 1)) + C2*exp(-t*(sqrt(a + 1) - 1)))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
eqs14 = [Eq(Derivative(f(t), t), 2*g(t) - 3*h(t)),
Eq(Derivative(g(t), t), -2*f(t) + 4*h(t)),
Eq(Derivative(h(t), t), 3*f(t) - 4*g(t))]
sol14 = [Eq(f(t), 2*C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(3, 25) + C3*Rational(-8, 25)) -
cos(sqrt(29)*t)*(C2*Rational(8, 25) + sqrt(29)*C3*Rational(3, 25))),
Eq(g(t), C1*Rational(3, 2) + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(4, 25) + C3*Rational(6, 25)) -
cos(sqrt(29)*t)*(C2*Rational(6, 25) + sqrt(29)*C3*Rational(-4, 25))),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0, 0])
eqs15 = [Eq(2*Derivative(f(t), t), 12*g(t) - 12*h(t)),
Eq(3*Derivative(g(t), t), -8*f(t) + 8*h(t)),
Eq(4*Derivative(h(t), t), 6*f(t) - 6*g(t))]
sol15 = [Eq(f(t), C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(6, 13) + C3*Rational(-16, 13)) -
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(6, 13))),
Eq(g(t), C1 + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(8, 39) + C3*Rational(16, 13)) -
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(-8, 39))),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0, 0])
eq16 = (Eq(diff(x(t), t), 21*x(t)), Eq(diff(y(t), t), 17*x(t) + 3*y(t)),
Eq(diff(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol16 = [Eq(x(t), 216*C1*exp(21*t)/209),
Eq(y(t), 204*C1*exp(21*t)/209 - 6*C2*exp(3*t)/7),
Eq(z(t), C1*exp(21*t) + C2*exp(3*t) + C3*exp(9*t))]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16, sol16) == (True, [0, 0, 0])
eqs17 = [Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)),
Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))]
sol17 = [Eq(x(t), C1*Rational(7, 3) - sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(11, 170) + C3*Rational(-21,
170)) - cos(sqrt(179)*t)*(C2*Rational(21, 170) + sqrt(179)*C3*Rational(11, 170))),
Eq(y(t), C1*Rational(11, 3) + sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(7, 170) + C3*Rational(33,
170)) - cos(sqrt(179)*t)*(C2*Rational(33, 170) + sqrt(179)*C3*Rational(-7, 170))),
Eq(z(t), C1 + C2*cos(sqrt(179)*t) - C3*sin(sqrt(179)*t))]
assert dsolve(eqs17) == sol17
assert checksysodesol(eqs17, sol17) == (True, [0, 0, 0])
eqs18 = [Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))]
sol18 = [Eq(x(t), C1 - sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(4, 3) - C3) - cos(5*sqrt(2)*t)*(C2 +
sqrt(2)*C3*Rational(4, 3))),
Eq(y(t), C1 + sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(3, 4) + C3) - cos(5*sqrt(2)*t)*(C2 +
sqrt(2)*C3*Rational(-3, 4))),
Eq(z(t), C1 + C2*cos(5*sqrt(2)*t) - C3*sin(5*sqrt(2)*t))]
assert dsolve(eqs18) == sol18
assert checksysodesol(eqs18, sol18) == (True, [0, 0, 0])
eqs19 = [Eq(Derivative(x(t), t), 4*x(t) - z(t)),
Eq(Derivative(y(t), t), 2*x(t) + 2*y(t) - z(t)),
Eq(Derivative(z(t), t), 3*x(t) + y(t))]
sol19 = [Eq(x(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + C2 + 2*C3)*exp(2*t)),
Eq(y(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + 2*C3)*exp(2*t)),
Eq(z(t), C2*t**2*exp(2*t) + t*(3*C2 + 2*C3)*exp(2*t) + (2*C1 + 3*C3)*exp(2*t))]
assert dsolve(eqs19) == sol19
assert checksysodesol(eqs19, sol19) == (True, [0, 0, 0])
eqs20 = [Eq(Derivative(x(t), t), 4*x(t) - y(t) - 2*z(t)),
Eq(Derivative(y(t), t), 2*x(t) + y(t) - 2*z(t)),
Eq(Derivative(z(t), t), 5*x(t) - 3*z(t))]
sol20 = [Eq(x(t), C1*exp(2*t) - sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
Eq(y(t), -sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
Eq(z(t), C1*exp(2*t) - C2*sin(t) + C3*cos(t))]
assert dsolve(eqs20) == sol20
assert checksysodesol(eqs20, sol20) == (True, [0, 0, 0])
eq21 = (Eq(diff(x(t), t), 9*y(t)), Eq(diff(y(t), t), 12*x(t)))
sol21 = [Eq(x(t), -sqrt(3)*C1*exp(-6*sqrt(3)*t)/2 + sqrt(3)*C2*exp(6*sqrt(3)*t)/2),
Eq(y(t), C1*exp(-6*sqrt(3)*t) + C2*exp(6*sqrt(3)*t))]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21, sol21) == (True, [0, 0])
eqs22 = [Eq(Derivative(x(t), t), 2*x(t) + 4*y(t)),
Eq(Derivative(y(t), t), 12*x(t) + 41*y(t))]
sol22 = [Eq(x(t), C1*(39 - sqrt(1713))*exp(t*(sqrt(1713) + 43)/2)*Rational(-1, 24) + C2*(39 +
sqrt(1713))*exp(t*(43 - sqrt(1713))/2)*Rational(-1, 24)),
Eq(y(t), C1*exp(t*(sqrt(1713) + 43)/2) + C2*exp(t*(43 - sqrt(1713))/2))]
assert dsolve(eqs22) == sol22
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
eqs23 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), -2*x(t) + 2*y(t))]
sol23 = [Eq(x(t), (C1/4 + sqrt(7)*C2/4)*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) +
sin(sqrt(7)*t/2)*(sqrt(7)*C1/4 + C2*Rational(-1, 4))*exp(t*Rational(3, 2))),
Eq(y(t), C1*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) - C2*sin(sqrt(7)*t/2)*exp(t*Rational(3, 2)))]
assert dsolve(eqs23) == sol23
assert checksysodesol(eqs23, sol23) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
a = Symbol("a", real=True)
eq24 = [x(t).diff(t) - a*y(t), y(t).diff(t) + a*x(t)]
sol24 = [Eq(x(t), C1*sin(a*t) + C2*cos(a*t)), Eq(y(t), C1*cos(a*t) - C2*sin(a*t))]
assert dsolve(eq24) == sol24
assert checksysodesol(eq24, sol24) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eqs25 = [Eq(Derivative(f(t), t), 0),
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + x(t))/(b*c)),
Eq(Derivative(x(t), t), (g(t) - 2*x(t) + y(t))/(b*c)),
Eq(Derivative(y(t), t), (h(t) + x(t) - 2*y(t))/(b*c)),
Eq(Derivative(h(t), t), 0)]
sol25 = [Eq(f(t), -3*C1 + 4*C2),
Eq(g(t), -2*C1 + 3*C2 - C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 -
sqrt(2))/(b*c))),
Eq(x(t), -C1 + 2*C2 - sqrt(2)*C4*exp(-t*(sqrt(2) + 2)/(b*c)) + sqrt(2)*C5*exp(-t*(2 -
sqrt(2))/(b*c))),
Eq(y(t), C2 + C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 - sqrt(2))/(b*c))),
Eq(h(t), C1)]
assert dsolve(eqs25) == sol25
assert checksysodesol(eqs25, sol25) == (True, [0, 0, 0, 0, 0])
eq26 = [Eq(Derivative(f(t), t), 2*f(t)), Eq(Derivative(g(t), t), 3*f(t) + 7*g(t))]
sol26 = [Eq(f(t), -5*C1*exp(2*t)/3), Eq(g(t), C1*exp(2*t) + C2*exp(7*t))]
assert dsolve(eq26) == sol26
assert checksysodesol(eq26, sol26) == (True, [0, 0])
eq27 = [Eq(Derivative(f(t), t), -9*I*f(t) - 4*g(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol27 = [Eq(f(t), 4*I*C1*exp(-4*I*t)/5 + C2*exp(-9*I*t)), Eq(g(t), C1*exp(-4*I*t))]
assert dsolve(eq27) == sol27
assert checksysodesol(eq27, sol27) == (True, [0, 0])
eq28 = [Eq(Derivative(f(t), t), -9*I*f(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol28 = [Eq(f(t), C1*exp(-9*I*t)), Eq(g(t), C2*exp(-4*I*t))]
assert dsolve(eq28) == sol28
assert checksysodesol(eq28, sol28) == (True, [0, 0])
eq29 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), 0)]
sol29 = [Eq(f(t), C1), Eq(g(t), C2)]
assert dsolve(eq29) == sol29
assert checksysodesol(eq29, sol29) == (True, [0, 0])
eq30 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), 0)]
sol30 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2)]
assert dsolve(eq30) == sol30
assert checksysodesol(eq30, sol30) == (True, [0, 0])
eq31 = [Eq(Derivative(f(t), t), g(t)), Eq(Derivative(g(t), t), 0)]
sol31 = [Eq(f(t), C1 + C2*t), Eq(g(t), C2)]
assert dsolve(eq31) == sol31
assert checksysodesol(eq31, sol31) == (True, [0, 0])
eq32 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), f(t))]
sol32 = [Eq(f(t), C1), Eq(g(t), C1*t + C2)]
assert dsolve(eq32) == sol32
assert checksysodesol(eq32, sol32) == (True, [0, 0])
eq33 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), g(t))]
sol33 = [Eq(f(t), C1), Eq(g(t), C2*exp(t))]
assert dsolve(eq33) == sol33
assert checksysodesol(eq33, sol33) == (True, [0, 0])
eq34 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), I*g(t))]
sol34 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2*exp(I*t))]
assert dsolve(eq34) == sol34
assert checksysodesol(eq34, sol34) == (True, [0, 0])
eq35 = [Eq(Derivative(f(t), t), I*f(t)), Eq(Derivative(g(t), t), -I*g(t))]
sol35 = [Eq(f(t), C1*exp(I*t)), Eq(g(t), C2*exp(-I*t))]
assert dsolve(eq35) == sol35
assert checksysodesol(eq35, sol35) == (True, [0, 0])
eq36 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), 0)]
sol36 = [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)]
assert dsolve(eq36) == sol36
assert checksysodesol(eq36, sol36) == (True, [0, 0])
eq37 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), I*f(t))]
sol37 = [Eq(f(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(g(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eq37) == sol37
assert checksysodesol(eq37, sol37) == (True, [0, 0])
# Multiple systems
eq1 = [Eq(Derivative(f(t), t)**2, g(t)**2), Eq(-f(t) + Derivative(g(t), t), 0)]
sol1 = [[Eq(f(t), -C1*sin(t) - C2*cos(t)),
Eq(g(t), C1*cos(t) - C2*sin(t))],
[Eq(f(t), -C1*exp(-t) + C2*exp(t)),
Eq(g(t), C1*exp(-t) + C2*exp(t))]]
assert dsolve(eq1) == sol1
for sol in sol1:
assert checksysodesol(eq1, sol) == (True, [0, 0])
def test_sysode_linear_neq_order1_type2():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a, b, c, d, y = symbols('x t a b c d y')
eqs1 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
Eq(Derivative(g(x), x), -f(x) - g(x) + 7)]
sol1 = [Eq(f(x), C1 + C2 + 6*x**2 + x*(C2 + 5)),
Eq(g(x), -C1 - 6*x**2 - x*(C2 - 7))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
Eq(Derivative(g(x), x), f(x) + g(x) + 7)]
sol2 = [Eq(f(x), -C1 + C2*exp(2*x) - x - 3),
Eq(g(x), C1 + C2*exp(2*x) + x - 3)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), x), f(x) + 5),
Eq(Derivative(g(x), x), f(x) + 7)]
sol3 = [Eq(f(x), C1*exp(x) - 5),
Eq(g(x), C1*exp(x) + C2 + 2*x - 5)]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(x), x), f(x) + exp(x)),
Eq(Derivative(g(x), x), x*exp(x) + f(x) + g(x))]
sol4 = [Eq(f(x), C1*exp(x) + x*exp(x)),
Eq(g(x), C1*x*exp(x) + C2*exp(x) + x**2*exp(x))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(Derivative(f(x), x), 5*x + f(x) + g(x)),
Eq(Derivative(g(x), x), f(x) - g(x))]
sol5 = [Eq(f(x), C1*(1 + sqrt(2))*exp(sqrt(2)*x) + C2*(1 - sqrt(2))*exp(-sqrt(2)*x) + x*Rational(-5, 2) +
Rational(-5, 2)),
Eq(g(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) + x*Rational(-5, 2))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(f(x), x), -9*f(x) - 4*g(x)),
Eq(Derivative(g(x), x), -4*g(x)),
Eq(Derivative(h(x), x), h(x) + exp(x))]
sol6 = [Eq(f(x), C1*exp(-4*x)*Rational(-4, 5) + C2*exp(-9*x)),
Eq(g(x), C1*exp(-4*x)),
Eq(h(x), C3*exp(x) + x*exp(x))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0])
# Regression test case for issue #8859
# https://github.com/sympy/sympy/issues/8859
eqs7 = [Eq(Derivative(f(t), t), 3*t + f(t)),
Eq(Derivative(g(t), t), g(t))]
sol7 = [Eq(f(t), C1*exp(t) - 3*t - 3),
Eq(g(t), C2*exp(t))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
# Regression test case for issue #8567
# https://github.com/sympy/sympy/issues/8567
eqs8 = [Eq(Derivative(f(t), t), f(t) + 2*g(t)),
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 2*exp(t))]
sol8 = [Eq(f(t), C1*exp(t)*sin(2*t) + C2*exp(t)*cos(2*t) + exp(t)*cos(2*t)**2 +
2*exp(t)*sin(2*t)*tan(t)/(tan(t)**2 + 1)),
Eq(g(t), C1*exp(t)*cos(2*t) - C2*exp(t)*sin(2*t) - exp(t)*sin(2*t)*cos(2*t) +
2*exp(t)*cos(2*t)*tan(t)/(tan(t)**2 + 1))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eqs9 = [Eq(Derivative(f(t), t), (c - 2*f(t) + g(t))/(a*b)),
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + h(t))/(a*b)),
Eq(Derivative(h(t), t), (d + g(t) - 2*h(t))/(a*b))]
sol9 = [Eq(f(t), -C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 4), 3*c + d, evaluate=False)),
Eq(g(t), -sqrt(2)*C2*exp(-t*(sqrt(2) + 2)/(a*b)) + sqrt(2)*C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 2), c + d, evaluate=False)),
Eq(h(t), C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 4), c + 3*d, evaluate=False))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #16635
# https://github.com/sympy/sympy/issues/16635
eqs10 = [Eq(Derivative(f(t), t), 15*t + f(t) - g(t) - 10),
Eq(Derivative(g(t), t), -15*t + f(t) - g(t) - 5)]
sol10 = [Eq(f(t), C1 + C2 + 5*t**3 + 5*t**2 + t*(C2 - 10)),
Eq(g(t), C1 + 5*t**3 - 10*t**2 + t*(C2 - 5))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
# Multiple solutions
eqs11 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol11 = [[Eq(f(t), C1 - t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(-1, 2))],
[Eq(f(t), C1 + 3*t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(3, 2))]]
assert dsolve(eqs11) == sol11
for s11 in sol11:
assert checksysodesol(eqs11, s11) == (True, [0, 0])
# test case for issue #19831
# https://github.com/sympy/sympy/issues/19831
n = symbols('n', positive=True)
x0 = symbols('x_0')
t0 = symbols('t_0')
x_0 = symbols('x_0')
t_0 = symbols('t_0')
t = symbols('t')
x = Function('x')
y = Function('y')
T = symbols('T')
eqs12 = [Eq(Derivative(y(t), t), x(t)),
Eq(Derivative(x(t), t), n*(y(t) + 1))]
sol12 = [Eq(y(t), C1*exp(sqrt(n)*t)*n**Rational(-1, 2) - C2*exp(-sqrt(n)*t)*n**Rational(-1, 2) - 1),
Eq(x(t), C1*exp(sqrt(n)*t) + C2*exp(-sqrt(n)*t))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
sol12b = [
Eq(y(t), (T*exp(-sqrt(n)*t_0)/2 + exp(-sqrt(n)*t_0)/2 +
x_0*exp(-sqrt(n)*t_0)/(2*sqrt(n)))*exp(sqrt(n)*t) +
(T*exp(sqrt(n)*t_0)/2 + exp(sqrt(n)*t_0)/2 -
x_0*exp(sqrt(n)*t_0)/(2*sqrt(n)))*exp(-sqrt(n)*t) - 1),
Eq(x(t), (T*sqrt(n)*exp(-sqrt(n)*t_0)/2 + sqrt(n)*exp(-sqrt(n)*t_0)/2
+ x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t)
- (T*sqrt(n)*exp(sqrt(n)*t_0)/2 + sqrt(n)*exp(sqrt(n)*t_0)/2 -
x_0*exp(sqrt(n)*t_0)/2)*exp(-sqrt(n)*t))
]
assert dsolve(eqs12, ics={y(t0): T, x(t0): x0}) == sol12b
assert checksysodesol(eqs12, sol12b) == (True, [0, 0])
def test_sysode_linear_neq_order1_type3():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(Derivative(f(r), r), r*g(r) + f(r)),
Eq(Derivative(g(r), r), -r*f(r) + g(r))]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(f(x), x), x**2*g(x) + x*f(x)),
Eq(Derivative(g(x), x), 2*x**2*f(x) + (3*x**2 + x)*g(x))]
sol2 = [Eq(f(x), (sqrt(17)*C1/17 + C2*(17 - 3*sqrt(17))/34)*exp(x**3*(3 + sqrt(17))/6 + x**2/2) -
exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(sqrt(17)*C1/17 + C2*(3*sqrt(17) + 17)*Rational(-1, 34))),
Eq(g(x), exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(C1*(17 - 3*sqrt(17))/34 + sqrt(17)*C2*Rational(-2,
17)) + exp(x**3*(3 + sqrt(17))/6 + x**2/2)*(C1*(3*sqrt(17) + 17)/34 + sqrt(17)*C2*Rational(2, 17)))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(f(x).diff(x), x*f(x) + g(x)),
Eq(g(x).diff(x), -f(x) + x*g(x))]
sol3 = [Eq(f(x), (C1/2 + I*C2/2)*exp(x**2/2 - I*x) + exp(x**2/2 + I*x)*(C1/2 + I*C2*Rational(-1, 2))),
Eq(g(x), (I*C1/2 + C2/2)*exp(x**2/2 + I*x) - exp(x**2/2 - I*x)*(I*C1/2 + C2*Rational(-1, 2)))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)))]
sol4 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(f(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x**2*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x**2*(f(x) + g(x) + h(x)))]
sol5 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x)))]
sol6 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
y = symbols("y", real=True)
eqs7 = [Eq(Derivative(f(y), y), y*f(y) + g(y)),
Eq(Derivative(g(y), y), y*g(y) - f(y))]
sol7 = [Eq(f(y), C1*exp(y**2/2)*sin(y) + C2*exp(y**2/2)*cos(y)),
Eq(g(y), C1*exp(y**2/2)*cos(y) - C2*exp(y**2/2)*sin(y))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
@slow
def test_sysode_linear_neq_order1_type4():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r) + r**2), Eq(diff(g(r), r), -r*f(r) + g(r) + r)]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) +
r*exp(-r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) -
r*exp(-r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(diff(f(r), r), f(r) + r*g(r) + r), Eq(diff(g(r), r), -r*f(r) + g(r) + log(r))]
sol2 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) +
exp(-r)*log(r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin(
r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) -
exp(-r)*log(r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos(
r**2/2), r))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + x),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + x),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + 1)]
sol3 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + x**2/6 + x*Rational(-1, 3) +
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + x**2/6 + x*Rational(-1, 3) +
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + x**2*Rational(-1, 3) +
x*Rational(2, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + sin(x))]
sol4 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2))),
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2))),
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2)))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1))]
sol5 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(g(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(h(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1))]
sol6 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
eqs7 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x)
+ h(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x))]
sol7 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x))]
with dotprodsimp(True):
assert dsolve(eqs7, simplify=False, doit=False) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0, 0])
eqs8 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x)
+ g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) +
sin(x)), Eq(Derivative(k(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x))]
sol8 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x))]
with dotprodsimp(True):
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0])
def test_sysode_linear_neq_order1_type5_type6():
f, g = symbols("f g", cls=Function)
x, x_ = symbols("x x_")
# Type 5
eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x))/x), Eq(Derivative(g(x), x), (f(x) + 2*g(x))/x)]
sol1 = [Eq(f(x), -C1*x + C2*x**3), Eq(g(x), C1*x + C2*x**3)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
# Type 6
eqs2 = [Eq(Derivative(f(x), x), (2*f(x) + g(x) + 1)/x),
Eq(Derivative(g(x), x), (x + f(x) + 2*g(x))/x)]
sol2 = [Eq(f(x), C2*x**3 - x*(C1 + Rational(1, 4)) + x*log(x)*Rational(-1, 2) + Rational(-2, 3)),
Eq(g(x), C2*x**3 + x*log(x)/2 + x*(C1 + Rational(-1, 4)) + Rational(1, 3))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
def test_higher_order_to_first_order():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs1 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), -f(x))]
sol1 = [Eq(f(x), -C2*x*exp(-x) + C3*x*exp(x) - (C1 - C2)*exp(-x) + (C3 + C4)*exp(x)),
Eq(g(x), C2*x*exp(-x) - C3*x*exp(x) + (C1 + C2)*exp(-x) + (C3 - C4)*exp(x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(f(x).diff(x, 2), 0), Eq(g(x).diff(x, 2), f(x))]
sol2 = [Eq(f(x), C1 + C2*x), Eq(g(x), C1*x**2/2 + C2*x**3/6 + C3 + C4*x)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), (x, 2)), 2*f(x)),
Eq(Derivative(g(x), (x, 2)), -f(x) + 2*g(x))]
sol3 = [Eq(f(x), 4*C1*exp(-sqrt(2)*x) + 4*C2*exp(sqrt(2)*x)),
Eq(g(x), sqrt(2)*C1*x*exp(-sqrt(2)*x) - sqrt(2)*C2*x*exp(sqrt(2)*x) + (C1 +
sqrt(2)*C4)*exp(-sqrt(2)*x) + (C2 - sqrt(2)*C3)*exp(sqrt(2)*x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), 2*g(x))]
sol4 = [Eq(f(x), C1*x*exp(sqrt(2)*x)/4 + C3*x*exp(-sqrt(2)*x)/4 + (C2/4 + sqrt(2)*C3/8)*exp(-sqrt(2)*x) -
exp(sqrt(2)*x)*(sqrt(2)*C1/8 + C4*Rational(-1, 4))),
Eq(g(x), sqrt(2)*C1*exp(sqrt(2)*x)/2 + sqrt(2)*C3*exp(-sqrt(2)*x)*Rational(-1, 2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(f(x).diff(x, 2), f(x)), Eq(g(x).diff(x, 2), f(x))]
sol5 = [Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), -C1*exp(-x) + C2*exp(x) + C3 + C4*x)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x))]
sol6 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C4*x**3/6 + x*(C3 + C4)),
Eq(g(x), -C1 + C2*x**2*Rational(-1, 2) - C3*x + C4*x**3*Rational(-1, 6))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
Eq(Derivative(g(x), (x, 2)), f(x) + g(x) + 1)]
sol7 = [Eq(f(x), -C1 - C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
Rational(-1, 2)),
Eq(g(x), C1 + C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
Rational(-1, 2))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x) + 1)]
sol8 = [Eq(f(x), C1 + C2 + C4*x**3/6 + x**4/12 + x**2*(C2/2 + Rational(1, 2)) + x*(C3 + C4)),
Eq(g(x), -C1 - C3*x + C4*x**3*Rational(-1, 6) + x**4*Rational(-1, 12) - x**2*(C2/2 + Rational(-1,
2)))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eqs10 = [Eq(Derivative(x(t), (t, 2)), 5*x(t) + 43*y(t)),
Eq(Derivative(y(t), (t, 2)), x(t) + 9*y(t))]
sol10 = [Eq(x(t), C1*(61 - 9*sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))/2 + C2*sqrt(7 -
sqrt(47))*(61 + 9*sqrt(47))*exp(-t*sqrt(7 - sqrt(47)))/2 + C3*(61 - 9*sqrt(47))*sqrt(sqrt(47) +
7)*exp(t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C4*sqrt(7 - sqrt(47))*(61 + 9*sqrt(47))*exp(t*sqrt(7
- sqrt(47)))*Rational(-1, 2)),
Eq(y(t), C1*(7 - sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C2*sqrt(7
- sqrt(47))*(sqrt(47) + 7)*exp(-t*sqrt(7 - sqrt(47)))*Rational(-1, 2) + C3*(7 -
sqrt(47))*sqrt(sqrt(47) + 7)*exp(t*sqrt(sqrt(47) + 7))/2 + C4*sqrt(7 - sqrt(47))*(sqrt(47) +
7)*exp(t*sqrt(7 - sqrt(47)))/2)]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
eqs11 = [Eq(7*x(t) + Derivative(x(t), (t, 2)) - 9*Derivative(y(t), t), 0),
Eq(7*y(t) + 9*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
sol11 = [Eq(y(t), C1*(9 - sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)/14 + C2*(9 -
sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
sqrt(109))*sin(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*cos(sqrt(2)*t*sqrt(95 -
9*sqrt(109))/2)*Rational(-1, 14)),
Eq(x(t), C1*(9 - sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C2*(9 -
sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
sqrt(109))*cos(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*sin(sqrt(2)*t*sqrt(95 -
9*sqrt(109))/2)/14)]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
# Euler Systems
# Note: To add examples of euler systems solver with non-homogeneous term.
eqs13 = [Eq(Derivative(f(t), (t, 2)), Derivative(f(t), t)/t + f(t)/t**2 + g(t)/t**2),
Eq(Derivative(g(t), (t, 2)), g(t)/t**2)]
sol13 = [Eq(f(t), C1*(sqrt(5) + 3)*Rational(-1, 2)*t**(Rational(1, 2) +
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
sqrt(5)/2)*(3 - sqrt(5))*Rational(-1, 2) - C3*t**(1 -
sqrt(2))*(1 + sqrt(2)) - C4*t**(1 + sqrt(2))*(1 - sqrt(2))),
Eq(g(t), C1*(1 + sqrt(5))*Rational(-1, 2)*t**(Rational(1, 2) +
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
sqrt(5)/2)*(1 - sqrt(5))*Rational(-1, 2))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
# Solving systems using dsolve separately
eqs14 = [Eq(Derivative(f(t), (t, 2)), t*f(t)),
Eq(Derivative(g(t), (t, 2)), t*g(t))]
sol14 = [Eq(f(t), C1*airyai(t) + C2*airybi(t)),
Eq(g(t), C3*airyai(t) + C4*airybi(t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
eqs15 = [Eq(Derivative(x(t), (t, 2)), t*(4*Derivative(x(t), t) + 8*Derivative(y(t), t))),
Eq(Derivative(y(t), (t, 2)), t*(12*Derivative(x(t), t) - 6*Derivative(y(t), t)))]
sol15 = [Eq(x(t), C1 - erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2/33 + sqrt(6)*sqrt(pi)*C3*Rational(-1, 44)) +
erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(2, 55) + sqrt(5)*sqrt(pi)*C3*Rational(4, 55))),
Eq(y(t), C4 + erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2*Rational(2, 33) + sqrt(6)*sqrt(pi)*C3*Rational(-1,
22)) + erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(3, 110) + sqrt(5)*sqrt(pi)*C3*Rational(3, 55)))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
@slow
def test_higher_order_to_first_order_9():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs9 = [f(x) + g(x) - 2*exp(I*x) + 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)),
f(x) + g(x) - 2*exp(I*x) + 2*Derivative(g(x), x) + Derivative(g(x), (x, 2))]
sol9 = [Eq(f(x), -C1 + C2*exp(-2*x)/2 + (C3/2 + C4/2)*exp(-x)*sin(x) + (2 +
I)*exp(I*x)*sin(x)**2*Rational(-1, 5) + (1 - 2*I)*exp(I*x)*sin(x)*cos(x)*Rational(2, 5) + (4 -
3*I)*exp(I*x)*cos(x)**2/5 + exp(-x)*sin(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) +
exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) -
exp(-x)*cos(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) +
exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*(C3/2 + C4*Rational(-1, 2))),
Eq(g(x), C1 + C2*exp(-2*x)*Rational(-1, 2) + (C3/2 + C4/2)*exp(-x)*sin(x) + (2 +
I)*exp(I*x)*sin(x)**2*Rational(-1, 5) + (1 - 2*I)*exp(I*x)*sin(x)*cos(x)*Rational(2, 5) + (4 -
3*I)*exp(I*x)*cos(x)**2/5 + exp(-x)*sin(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) +
exp(x)*exp(I*x)*sin(x) + exp(x)*exp(I*x)/cos(x), x) -
exp(-x)*cos(x)*Integral(-exp(x)*exp(I*x)*sin(x)**2/cos(x) + exp(x)*exp(I*x)*sin(x) +
exp(x)*exp(I*x)/cos(x), x) - exp(-x)*cos(x)*(C3/2 + C4*Rational(-1, 2)))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
@slow
def test_higher_order_to_first_order_12():
f, g = symbols('f g', cls=Function)
x = symbols('x')
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eqs12 = [Eq(4*x(t) + Derivative(x(t), (t, 2)) + 8*Derivative(y(t), t), 0),
Eq(4*y(t) - 8*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
sol12 = [Eq(y(t), C1*(2 - sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))/2 + C3*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))*Rational(-1,
2) + C4*(2 + sqrt(5))*cos(2*t*sqrt(9 - 4*sqrt(5)))/2),
Eq(x(t), C1*(2 - sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C3*(2 + sqrt(5))*cos(2*t*sqrt(9 -
4*sqrt(5)))/2 + C4*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))/2)]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
def test_second_order_to_first_order_2():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
eqs2 = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))]
sol2 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*exp(I*exp(2*x_))/2 + C2*exp(-x_)*exp(-I*exp(2*x_))/2 -
I*C3*exp(-x_)*exp(I*exp(2*x_))/2 + I*C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x)))),
Eq(g(x), C4*x + x*Integral(I*C2*exp(-x_)*exp(I*exp(2*x_))/2 - I*C2*exp(-x_)*exp(-I*exp(2*x_))/2 +
C3*exp(-x_)*exp(I*exp(2*x_))/2 + C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = (Eq(diff(f(t),t,t), 9*t*diff(g(t),t)-9*g(t)), Eq(diff(g(t),t,t),7*t*diff(f(t),t)-7*f(t)))
sol3 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/2 + 3*sqrt(7)*C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/14 -
3*sqrt(7)*C3*exp(-t_)*exp(-3*sqrt(7)*exp(2*t_)/2)/14, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(sqrt(7)*C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/6 - sqrt(7)*C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/6 + C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C3*exp(-t_)*exp(-3*sqrt(7)*
exp(2*t_)/2)/2, (t_, log(t))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs3, simplify=False, doit=False) == [sol3]
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
# Regression Test case for sympy#19238
# https://github.com/sympy/sympy/issues/19238
# Note: When the doit method is removed, these particular types of systems
# can be divided first so that we have lesser number of big matrices.
eqs5 = [Eq(Derivative(g(t), (t, 2)), a*m),
Eq(Derivative(f(t), (t, 2)), 0)]
sol5 = [Eq(g(t), C1 + C2*t + a*m*t**2/2),
Eq(f(t), C3 + C4*t)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
# Type 2
eqs6 = [Eq(Derivative(f(t), (t, 2)), f(t)/t**4),
Eq(Derivative(g(t), (t, 2)), d*g(t)/t**4)]
sol6 = [Eq(f(t), C1*sqrt(t**2)*exp(-1/t) - C2*sqrt(t**2)*exp(1/t)),
Eq(g(t), C3*sqrt(t**2)*exp(-sqrt(d)/t)*d**Rational(-1, 2) -
C4*sqrt(t**2)*exp(sqrt(d)/t)*d**Rational(-1, 2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
@slow
def test_second_order_to_first_order_slow1():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
# Type 1
eqs1 = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))]
sol1 = [Eq(f(x), C1*x + 2*C2*x*Ci(2*x) - C2*sin(2*x) - 2*C3*x*Si(2*x) - C3*cos(2*x)),
Eq(g(x), -2*C2*x*Si(2*x) - C2*cos(2*x) - 2*C3*x*Ci(2*x) + C3*sin(2*x) + C4*x)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
@slow
def test_second_order_to_first_order_slow4():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
eqs4 = [Eq(Derivative(f(t), (t, 2)), t*sin(t)*Derivative(g(t), t) - g(t)*sin(t)),
Eq(Derivative(g(t), (t, 2)), t*sin(t)*Derivative(f(t), t) - f(t)*sin(t))]
sol4 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 - C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 +
C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(-C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 + C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
def test_component_division():
f, g, h, k = symbols('f g h k', cls=Function)
x = symbols("x")
funcs = [f(x), g(x), h(x), k(x)]
eqs1 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), h(x)**4 + k(x))]
sol1 = [Eq(f(x), 2*C1*exp(2*x)),
Eq(g(x), C1*exp(2*x) + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C3**4*exp(4*x)/3 + C4*exp(x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
components1 = {((Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),)),
((Eq(Derivative(h(x), x), h(x)),), (Eq(Derivative(k(x), x), h(x)**4 + k(x)),))}
eqsdict1 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {h(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), h(x)**4 + k(x))})
graph1 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), h(x))}]
assert {tuple(tuple(scc) for scc in wcc) for wcc in _component_division(eqs1, funcs, x)} == components1
assert _eqs2dict(eqs1, funcs) == eqsdict1
assert [set(element) for element in _dict2graph(eqsdict1[0])] == graph1
eqs2 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol2 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C1*exp(2*x)/2 + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0, 0])
components2 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),)])}
eqsdict2 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph2 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs2, funcs, x)} == components2
assert _eqs2dict(eqs2, funcs) == eqsdict2
assert [set(element) for element in _dict2graph(eqsdict2[0])] == graph2
eqs3 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), x + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol3 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C1*exp(2*x)/2 + C2 + x**2/2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0, 0])
components3 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), x + f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),),])}
eqsdict3 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph3 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs3, funcs, x)} == components3
assert _eqs2dict(eqs3, funcs) == eqsdict3
assert [set(l) for l in _dict2graph(eqsdict3[0])] == graph3
# Note: To be uncommented when the default option to call dsolve first for
# single ODE system can be rearranged. This can be done after the doit
# option in dsolve is made False by default.
eqs4 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), f(x) + x*g(x) + x),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol4 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2 - sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2 + sqrt(2)*Integral(x*exp(-x**2/2
- sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2
- sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 -\
sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/4)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 +
x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*exp(x**2/2 -
sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 -
sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/2 + sqrt(2)*exp(x**2/2 + sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +
sqrt(2)*x)/2, x)/2 + exp(x**2/2 + sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)**4*exp(-x), x))]
components4 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + x + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict4 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph4 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs4, funcs, x)} == components4
assert _eqs2dict(eqs4, funcs) == eqsdict4
assert [set(element) for element in _dict2graph(eqsdict4[0])] == graph4
# XXX: dsolve hangs in integration here:
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol5 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2)**4*exp(-x), x))]
components5 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict5 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph5 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs5, funcs, x)} == components5
assert _eqs2dict(eqs5, funcs) == eqsdict5
assert [set(element) for element in _dict2graph(eqsdict5[0])] == graph5
# XXX: dsolve hangs in integration here:
assert dsolve_system(eqs5, simplify=False, doit=False) == [sol5]
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
def test_linodesolve():
t, x, a = symbols("t x a")
f, g, h = symbols("f g h", cls=Function)
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t))
raises(ValueError, lambda: linodesolve(a, t))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t)), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [C1*(-Rational(1, 2) + sqrt(5)/2)*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*(-sqrt(5)/2 - Rational(1, 2))*
exp(t*(-sqrt(5)/2 - Rational(1, 2))),
C1*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*exp(t*(-sqrt(5)/2 - Rational(1, 2)))]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a+10]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7, t, b=t**2))
raises(ValueError, lambda: linodesolve(a, t, b=log(t) + sin(t)))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
b1 = Matrix([t, 1, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t, b=b1))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
b2 = Matrix([t, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, b=b2))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1[:1]))
# DOIT check
A1 = Matrix([[1, -1], [1, -1]])
b1 = Matrix([15*t - 10, -15*t - 5])
sol1 = [C1 + C2*t + C2 - 10*t**3 + 10*t**2 + t*(15*t**2 - 5*t) - 10*t,
C1 + C2*t - 10*t**3 - 5*t**2 + t*(15*t**2 - 5*t) - 5*t]
assert constant_renumber(linodesolve(A1, t, b=b1, type="type2", doit=True),
variables=[t]) == sol1
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t) + t), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2 -
t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t)/2 + sqrt(5)*exp(-t/2 +
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)), t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 +
sqrt(5)*t/2)/5, t)/2 - exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 +
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)), t) + exp(-sqrt(5)*t/2 -
t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)]
assert constant_renumber(linodesolve(A, t, b=b), variables=[t]) == sol
# non-homogeneous term assumed to be 0
sol1 = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2
- t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 +
sqrt(5)*exp(-t/2 + sqrt(5)*t/2)*Integral(0, t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2
- exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2)
+ exp(-t/2 + sqrt(5)*t/2)*Integral(0, t) + exp(-sqrt(5)*t/2 - t/2)*Integral(0, t)]
assert constant_renumber(linodesolve(A, t, type="type2"), variables=[t]) == sol1
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t))
raises(ValueError, lambda: linodesolve(a*t, t))
A1 = Matrix([[1, t], [-t, 1]])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, B=B1))
raises(ValueError, lambda: linodesolve(A1, t, B=1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, B=B2[:2, :]))
raises(ValueError, lambda: linodesolve(A2, t, B=2))
raises(ValueError, lambda: linodesolve(A2, t, B=B2, type="type31"))
raises(ValueError, lambda: linodesolve(A1, t, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, B=B1))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t), f(t) + t*g(t)), Eq(g(t).diff(t), -t*f(t) + g(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [(C1/2 - I*C2/2)*exp(I*t**2/2 + t) + (C1/2 + I*C2/2)*exp(-I*t**2/2 + t),
(-I*C1/2 + C2/2)*exp(-I*t**2/2 + t) + (I*C1/2 + C2/2)*exp(I*t**2/2 + t)]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, t, type="type3"), variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t))
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a*t, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7*t]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a + 10*log(t)]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7*t, t, b=t**2))
raises(ValueError, lambda: linodesolve(a*t**2, t, b=log(t) + sin(t)))
A1 = Matrix([[1, t], [-t, 1]])
b1 = Matrix([t, t ** 2])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, b=b1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
b2 = Matrix([t, 1, t**2])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2[:2, :], t, b=b2))
raises(ValueError, lambda: linodesolve(A1, t, b=b2))
raises(ValueError, lambda: linodesolve(A2, t, b=b1))
raises(ValueError, lambda: linodesolve(A1, t, b=b1, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, b=b2, B=B1))
# Testing auto functionality
func = [f(x), g(x), h(x)]
eq = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)]
ceq = canonical_odes(eq, func, x)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, x, 1)
A = A0
_x1 = exp(-3*x**2/2)
_x2 = exp(3*x**2/2)
_x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x)
_x4 = 2*_x2*_x3/3
_x5 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x)
sol = [
C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 - 2*_x3/3 + _x4 + 2*_x5/3,
]
assert constant_renumber(linodesolve(A, x, b=b), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, x, b=b, type="type4"),
variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t, b=b1))
# non-homogeneous term not passed
sol1 = [-C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2),
-C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)]
assert constant_renumber(linodesolve(A, x, type="type4", doit=True), variables=Tuple(*eq).free_symbols) == sol1
@slow
def test_linear_3eq_order1_type4_slow():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4 * f + g) * x(t) - f * y(t) - 2 * f * z(t)),
Eq(diff(y(t), t), 2 * f * x(t) + (f + g) * y(t) - 2 * f * z(t)), Eq(diff(z(t), t), 5 * f * x(t) + f * y(
t) + (-3 * f + g) * z(t)))
with dotprodsimp(True):
dsolve(eq1)
@slow
def test_linear_neq_order1_type2_slow1():
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
eq = [eq1, eq2]
# XXX: Solution is too complicated
[sol] = dsolve_system(eq, simplify=False, doit=False)
assert checksysodesol(eq, sol) == (True, [0, 0])
# Regression test case for issue #9204
# https://github.com/sympy/sympy/issues/9204
@slow
def test_linear_new_order1_type2_de_lorentz_slow_check():
if ON_TRAVIS:
skip("Too slow for travis.")
m = Symbol("m", real=True)
q = Symbol("q", real=True)
t = Symbol("t", real=True)
e1, e2, e3 = symbols("e1:4", real=True)
b1, b2, b3 = symbols("b1:4", real=True)
v1, v2, v3 = symbols("v1:4", cls=Function, real=True)
eqs = [
-e1*q + m*Derivative(v1(t), t) - q*(-b2*v3(t) + b3*v2(t)),
-e2*q + m*Derivative(v2(t), t) - q*(b1*v3(t) - b3*v1(t)),
-e3*q + m*Derivative(v3(t), t) - q*(-b1*v2(t) + b2*v1(t))
]
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
# Regression test case for issue #14001
# https://github.com/sympy/sympy/issues/14001
@slow
def test_linear_neq_order1_type2_slow_check():
RC, t, C, Vs, L, R1, V0, I0 = symbols("RC t C Vs L R1 V0 I0")
V = Function("V")
I = Function("I")
system = [Eq(V(t).diff(t), -1/RC*V(t) + I(t)/C), Eq(I(t).diff(t), -R1/L*I(t) - 1/L*V(t) + Vs/L)]
[sol] = dsolve_system(system, simplify=False, doit=False)
assert checksysodesol(system, sol) == (True, [0, 0])
def _linear_3eq_order1_type4_long():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4*f + g)*x(t) - f*y(t) - 2*f*z(t)),
Eq(diff(y(t), t), 2*f*x(t) + (f + g)*y(t) - 2*f*z(t)), Eq(diff(z(t), t), 5*f*x(t) + f*y(
t) + (-3*f + g)*z(t)))
dsolve_sol = dsolve(eq1)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
x_1 = sqrt(-t**6 - 8*t**3*log(t) + 8*t**3 - 16*log(t)**2 + 32*log(t) - 16)
x_2 = sqrt(3)
x_3 = 8324372644*C1*x_1*x_2 + 4162186322*C2*x_1*x_2 - 8324372644*C3*x_1*x_2
x_4 = 1 / (1903457163*t**3 + 3825881643*x_1*x_2 + 7613828652*log(t) - 7613828652)
x_5 = exp(t**3/3 + t*x_1*x_2/4 - cos(t))
x_6 = exp(t**3/3 - t*x_1*x_2/4 - cos(t))
x_7 = exp(t**4/2 + t**3/3 + 2*t*log(t) - 2*t - cos(t))
x_8 = 91238*C1*x_1*x_2 + 91238*C2*x_1*x_2 - 91238*C3*x_1*x_2
x_9 = 1 / (66049*t**3 - 50629*x_1*x_2 + 264196*log(t) - 264196)
x_10 = 50629 * C1 / 25189 + 37909*C2/25189 - 50629*C3/25189 - x_3*x_4
x_11 = -50629*C1/25189 - 12720*C2/25189 + 50629*C3/25189 + x_3*x_4
sol = [Eq(x(t), x_10*x_5 + x_11*x_6 + x_7*(C1 - C2)), Eq(y(t), x_10*x_5 + x_11*x_6), Eq(z(t), x_5*(
-424*C1/257 - 167*C2/257 + 424*C3/257 - x_8*x_9) + x_6*(167*C1/257 + 424*C2/257 -
167*C3/257 + x_8*x_9) + x_7*(C1 - C2))]
assert dsolve_sol1 == sol
assert checksysodesol(eq1, dsolve_sol1) == (True, [0, 0, 0])
@slow
def test_neq_order1_type4_slow_check1():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x) + x),
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x) + 1)]
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0])
@slow
def test_neq_order1_type4_slow_check2():
f, g, h = symbols("f, g, h", cls=Function)
x = Symbol("x")
eqs = [
Eq(Derivative(f(x), x), x*h(x) + f(x) + g(x) + 1),
Eq(Derivative(g(x), x), x*g(x) + f(x) + h(x) + 10),
Eq(Derivative(h(x), x), x*f(x) + x + g(x) + h(x))
]
with dotprodsimp(True):
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
def _neq_order1_type4_slow3():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [
Eq(Derivative(f(x), x), x*f(x) + g(x) + sin(x)),
Eq(Derivative(g(x), x), x**2 + x*g(x) - f(x))
]
sol = [
Eq(f(x), (C1/2 - I*C2/2 - I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 +
I*x) + (C1/2 + I*C2/2 + I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 -
I*x)),
Eq(g(x), (-I*C1/2 + C2/2 + Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 -
I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 +
I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 +
I*x)*sin(x)/2, x)/2)*exp(x**2/2 - I*x) + (I*C1/2 + C2/2 +
Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 +
I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2,
x)/2 + I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 +
I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 +
exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 + I*x))
]
return eqs, sol
def test_neq_order1_type4_slow3():
eqs, sol = _neq_order1_type4_slow3()
assert dsolve_system(eqs, simplify=False, doit=False) == [sol]
# XXX: dsolve gives an error in integration:
# assert dsolve(eqs) == sol
# https://github.com/sympy/sympy/issues/20155
@slow
def test_neq_order1_type4_slow_check3():
eqs, sol = _neq_order1_type4_slow3()
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
@slow
def test_linear_3eq_order1_type4_long_dsolve_slow_xfail():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_dsolve_dotprodsimp():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
# XXX: Only works with dotprodsimp see
# test_linear_3eq_order1_type4_long_dsolve_slow_xfail which is too slow
with dotprodsimp(True):
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_check():
if ON_TRAVIS:
skip("Too slow for travis.")
eq, sol = _linear_3eq_order1_type4_long()
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
def test_dsolve_system():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
funcs = [f(x), g(x)]
sol = [[Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]]
assert dsolve_system(eqs, funcs=funcs, t=x, doit=True) == sol
raises(ValueError, lambda: dsolve_system(1))
raises(ValueError, lambda: dsolve_system(eqs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs[:1], x))
eq = (Eq(f(x).diff(x), 12 * f(x) - 6 * g(x)), Eq(g(x).diff(x) ** 2, 11 * f(x) + 3 * g(x)))
raises(NotImplementedError, lambda: dsolve_system(eq) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)]) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], ics={f(0): 1, g(0): 1}) == ([], []))
def test_dsolve():
f, g = symbols('f g', cls=Function)
x, y = symbols('x y')
eqs = [f(x).diff(x) - x, f(x).diff(x) + x]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)]
with raises(ValueError):
dsolve(eqs)
@slow
def test_higher_order1_slow1():
x, y = symbols("x y", cls=Function)
t = symbols("t")
eq = [
Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)),
Eq(diff(y(t),t,t), (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t))
]
sol, = dsolve_system(eq, simplify=False, doit=False)
# The solution is too long to write out explicitly and checkodesol is too
# slow so we test for particular values of t:
for e in eq:
res = (e.lhs - e.rhs).subs({sol[0].lhs:sol[0].rhs, sol[1].lhs:sol[1].rhs})
res = res.subs({d: d.doit(deep=False) for d in res.atoms(Derivative)})
assert ratsimp(res.subs(t, 1)) == 0
@slow
def test_second_order_type2_slow1():
x, y, z = symbols('x, y, z', cls=Function)
t, l = symbols('t, l')
eqs1 = [Eq(Derivative(x(t), (t, 2)), t*(2*x(t) + y(t))),
Eq(Derivative(y(t), (t, 2)), t*(-x(t) + 2*y(t)))]
sol1 = [Eq(x(t), I*C1*airyai(t*(2 - I)**(S(1)/3)) + I*C2*airybi(t*(2 - I)**(S(1)/3)) - I*C3*airyai(t*(2 +
I)**(S(1)/3)) - I*C4*airybi(t*(2 + I)**(S(1)/3))),
Eq(y(t), C1*airyai(t*(2 - I)**(S(1)/3)) + C2*airybi(t*(2 - I)**(S(1)/3)) + C3*airyai(t*(2 + I)**(S(1)/3)) +
C4*airybi(t*(2 + I)**(S(1)/3)))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
101942ad18e09671d75c8042eac7220930547cae4b083a1c1c06ca975fc35c94 | """ Generic SymPy-Independent Strategies """
from sympy.core.compatibility import get_function_name
def identity(x):
yield x
def exhaust(brule):
""" Apply a branching rule repeatedly until it has no effect """
def exhaust_brl(expr):
seen = {expr}
for nexpr in brule(expr):
if nexpr not in seen:
seen.add(nexpr)
yield from exhaust_brl(nexpr)
if seen == {expr}:
yield expr
return exhaust_brl
def onaction(brule, fn):
def onaction_brl(expr):
for result in brule(expr):
if result != expr:
fn(brule, expr, result)
yield result
return onaction_brl
def debug(brule, file=None):
""" Print the input and output expressions at each rule application """
if not file:
from sys import stdout
file = stdout
def write(brl, expr, result):
file.write("Rule: %s\n" % get_function_name(brl))
file.write("In: %s\nOut: %s\n\n" % (expr, result))
return onaction(brule, write)
def multiplex(*brules):
""" Multiplex many branching rules into one """
def multiplex_brl(expr):
seen = set()
for brl in brules:
for nexpr in brl(expr):
if nexpr not in seen:
seen.add(nexpr)
yield nexpr
return multiplex_brl
def condition(cond, brule):
""" Only apply branching rule if condition is true """
def conditioned_brl(expr):
if cond(expr):
yield from brule(expr)
else:
pass
return conditioned_brl
def sfilter(pred, brule):
""" Yield only those results which satisfy the predicate """
def filtered_brl(expr):
yield from filter(pred, brule(expr))
return filtered_brl
def notempty(brule):
def notempty_brl(expr):
yielded = False
for nexpr in brule(expr):
yielded = True
yield nexpr
if not yielded:
yield expr
return notempty_brl
def do_one(*brules):
""" Execute one of the branching rules """
def do_one_brl(expr):
yielded = False
for brl in brules:
for nexpr in brl(expr):
yielded = True
yield nexpr
if yielded:
return
return do_one_brl
def chain(*brules):
"""
Compose a sequence of brules so that they apply to the expr sequentially
"""
def chain_brl(expr):
if not brules:
yield expr
return
head, tail = brules[0], brules[1:]
for nexpr in head(expr):
yield from chain(*tail)(nexpr)
return chain_brl
def yieldify(rl):
""" Turn a rule into a branching rule """
def brl(expr):
yield rl(expr)
return brl
|
0ec4bb248f9044ebaac27d92de4707942a8879f016389443d008553a6b2293e3 | from .core import exhaust, multiplex
from .traverse import top_down
def canon(*rules):
""" Strategy for canonicalization
Apply each branching rule in a top-down fashion through the tree.
Multiplex through all branching rule traversals
Keep doing this until there is no change.
"""
return exhaust(multiplex(*map(top_down, rules)))
|
a268df61feefc60d4c3b876e42c3a3a019a4c6c8c0bb59b68f49a1fa49b13178 | """ Branching Strategies to Traverse a Tree """
from itertools import product
from sympy.strategies.util import basic_fns
from .core import chain, identity, do_one
def top_down(brule, fns=basic_fns):
""" Apply a rule down a tree running it on the top nodes first """
return chain(do_one(brule, identity),
lambda expr: sall(top_down(brule, fns), fns)(expr))
def sall(brule, fns=basic_fns):
""" Strategic all - apply rule to args """
op, new, children, leaf = map(fns.get, ('op', 'new', 'children', 'leaf'))
def all_rl(expr):
if leaf(expr):
yield expr
else:
myop = op(expr)
argss = product(*map(brule, children(expr)))
for args in argss:
yield new(myop, *args)
return all_rl
|
8048cd29325fa56bea08bc3f6b5b50c8496dce90ab8e9edfc0a9a1a635a3435f | from sympy.strategies.branch.tools import canon
from sympy import Basic
def posdec(x):
if isinstance(x, int) and x > 0:
yield x-1
else:
yield x
def branch5(x):
if isinstance(x, int):
if 0 < x < 5:
yield x-1
elif 5 < x < 10:
yield x+1
elif x == 5:
yield x+1
yield x-1
else:
yield x
def test_zero_ints():
expr = Basic(2, Basic(5, 3), 8)
expected = {Basic(0, Basic(0, 0), 0)}
brl = canon(posdec)
assert set(brl(expr)) == expected
def test_split5():
expr = Basic(2, Basic(5, 3), 8)
expected = {Basic(0, Basic(0, 0), 10),
Basic(0, Basic(10, 0), 10)}
brl = canon(branch5)
assert set(brl(expr)) == expected
|
a8ba3a1ae0779389faf3814ed9e115374e183daafed6859dfa4c37ad4bc03654 | from sympy.strategies.branch.core import (exhaust, debug, multiplex,
condition, notempty, chain, onaction, sfilter, yieldify, do_one,
identity)
from sympy.core.compatibility import get_function_name
def posdec(x):
if x > 0:
yield x-1
else:
yield x
def branch5(x):
if 0 < x < 5:
yield x-1
elif 5 < x < 10:
yield x+1
elif x == 5:
yield x+1
yield x-1
else:
yield x
even = lambda x: x%2 == 0
def inc(x):
yield x + 1
def one_to_n(n):
yield from range(n)
def test_exhaust():
brl = exhaust(branch5)
assert set(brl(3)) == {0}
assert set(brl(7)) == {10}
assert set(brl(5)) == {0, 10}
def test_debug():
from sympy.core.compatibility import StringIO
file = StringIO()
rl = debug(posdec, file)
list(rl(5))
log = file.getvalue()
file.close()
assert get_function_name(posdec) in log
assert '5' in log
assert '4' in log
def test_multiplex():
brl = multiplex(posdec, branch5)
assert set(brl(3)) == {2}
assert set(brl(7)) == {6, 8}
assert set(brl(5)) == {4, 6}
def test_condition():
brl = condition(even, branch5)
assert set(brl(4)) == set(branch5(4))
assert set(brl(5)) == set()
def test_sfilter():
brl = sfilter(even, one_to_n)
assert set(brl(10)) == {0, 2, 4, 6, 8}
def test_notempty():
def ident_if_even(x):
if even(x):
yield x
brl = notempty(ident_if_even)
assert set(brl(4)) == {4}
assert set(brl(5)) == {5}
def test_chain():
assert list(chain()(2)) == [2] # identity
assert list(chain(inc, inc)(2)) == [4]
assert list(chain(branch5, inc)(4)) == [4]
assert set(chain(branch5, inc)(5)) == {5, 7}
assert list(chain(inc, branch5)(5)) == [7]
def test_onaction():
L = []
def record(fn, input, output):
L.append((input, output))
list(onaction(inc, record)(2))
assert L == [(2, 3)]
list(onaction(identity, record)(2))
assert L == [(2, 3)]
def test_yieldify():
inc = lambda x: x + 1
yinc = yieldify(inc)
assert list(yinc(3)) == [4]
def test_do_one():
def bad(expr):
raise ValueError()
yield False
assert list(do_one(inc)(3)) == [4]
assert list(do_one(inc, bad)(3)) == [4]
assert list(do_one(inc, posdec)(3)) == [4]
|
71ab309f0a2e950f01c0eb90b592f58f825b096a8ce328a84000493f880a7732 | """ Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy import (Rational, symbols, Dummy, factorial, sqrt, log, exp, oo, zoo,
product, binomial, rf, pi, gamma, igcd, factorint, radsimp, combsimp,
npartitions, totient, primerange, factor, simplify, gcd, resultant, expand,
I, trigsimp, tan, sin, cos, cot, diff, nan, limit, EulerGamma, polygamma,
bernoulli, hyper, hyperexpand, besselj, asin, assoc_legendre, Function, re,
im, DiracDelta, chebyshevt, legendre_poly, polylog, series, O,
atan, sinh, cosh, tanh, floor, ceiling, solve, asinh, acot, csc, sec,
LambertW, N, apart, sqrtdenest, factorial2, powdenest, Mul, S, ZZ,
Poly, expand_func, E, Q, And, Lt, Min, ask, refine, AlgebraicNumber,
continued_fraction_iterator as cf_i, continued_fraction_periodic as cf_p,
continued_fraction_convergents as cf_c, continued_fraction_reduce as cf_r,
FiniteSet, elliptic_e, elliptic_f, powsimp, hessian, wronskian, fibonacci,
sign, Lambda, Piecewise, Subs, residue, Derivative, logcombine, Symbol,
Intersection, Union, EmptySet, Interval, idiff, ImageSet, acos, Max,
MatMul, conjugate)
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import Ci, Si, erf
from sympy.functions.special.zeta_functions import zeta
from sympy.testing.pytest import (XFAIL, slow, SKIP, skip, ON_TRAVIS,
raises)
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.assumptions import assuming
from sympy.polys.rings import PolyRing
from sympy.polys.fields import FracField
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from itertools import islice, takewhile
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.calculus.util import minimum
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l})
# Previous output below. Not sure why that should be the expected output.
# There should probably be a way to rewrite Intersections that way but I
# don't see why an Intersection should evaluate like that:
#
# == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l}))))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by sympy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 is oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp(2**n * factorial(n) * product(2*k - 1, (k, 1, n))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
R(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify(Mul(*[x - r for r in solveset(x**3 + x**2 - 7)])) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
def test_I1():
assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) is nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
# This should fail or return nan or something.
res = diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
assert res is nan # trigsimp(res) gives nan
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S.Half, S.Half], [R(3, 2)], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
def test_J17():
assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(R(4, 5)) + Subs(Derivative(g(x), x), x, 1)
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', real=True, positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', real=True, negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*pi*R(2, 7)) + I*sin(n*pi*R(2, 7)) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
sol = solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)
assert [s.simplify() for s in sol] == [
1 - sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(-6 + 2*I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*I*sqrt(3 + 4*sqrt (3)))/2,
1 - sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 + 2*sqrt(-3 + 4*sqrt(3)))/2,
1 - sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2,
1 + sqrt(-6 - 2*sqrt(-3 + 4*sqrt(3)))/2]
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
# x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - pi*R(7, 4)), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
def test_M15():
n = Dummy('n')
got = solveset(sin(x) - S.Half)
assert any(got.dummy_eq(i) for i in (
Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers)),
Union(ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers))))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers)
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(Rational(-1, 2) + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
with assuming(Q.is_true(sin(cos(1/E**2) + 1) + b > 0)):
# TODO: Replace solve with solveset
solve(log(acos(asin(x**R(2, 3) - b) - 1)) + 2, x) == [-b - sin(1 + cos(1/E**2))**R(3/2), b + sin(1 + cos(1/E**2))**R(3/2)]
@XFAIL
def test_M28():
assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7)
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(R(-3, 2), R(3, 2))
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3)
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3)
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
# assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1)
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
a, b, c = symbols('a, b, c')
domain = FracField([a, b, c], ZZ).to_domain()
ring = PolyRing('k1:50', domain)
(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10,
k11, k12, k13, k14, k15, k16, k17, k18, k19, k20,
k21, k22, k23, k24, k25, k26, k27, k28, k29, k30,
k31, k32, k33, k34, k35, k36, k37, k38, k39, k40,
k41, k42, k43, k44, k45, k46, k47, k48, k49) = ring.gens
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, ring) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(Q.is_true(E**pi > pi**E))
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(Q.is_true(x**4 - x + 1 > 0)) is True
assert ask(Q.is_true(x**4 - x + 1 > 1)) is False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(Q.is_true(And(Lt(-1, x), Lt(x, 1))), Q.is_true(abs(x) < 1 ))
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(2*x**2 > 2*y**2), Q.is_true((x > y) & (y > 0))) is True
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(Q.is_true(k*x**2 > k*y**2), Q.is_true((x > y) & (y > 0) & (k > 0))) is True
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(Q.is_true(k*x**n > k*y**n), Q.is_true((x > y) & (y > 0) & (k > 0) & (n > 0))) is True
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(Q.is_true(y > 0), Q.is_true((x > 1) & (y >= x - 1))) is True
@XFAIL
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Q.is_true((x == y) & (y == z)),
Q.is_true((x >= y) & (y >= z) & (z >= x)))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
x = Symbol('x')
# Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true),
# Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))'
# which is not the correct answer, but the provided also seems wrong.
assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
# assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
@XFAIL
def test_O5():
#assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[R(23, 19)],
[R(63, 19)],
[R(-47, 19)]]),
Matrix([
[R(1692, 353)],
[R(-1551, 706)],
[R(-423, 706)]])]
def test_P1():
assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix(
1, 2, [-1, -1])
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)]
A21 = A
A221 = -A[0:2, 2:4]
A222 = -A[(3, 0), (2, 1)]
A22 = BlockMatrix([[A221, A222]]).T
rows = [[-A11, A12], [A21, A22]]
raises(ValueError, lambda: BlockMatrix(rows))
B = Matrix(rows)
assert B == Matrix([
[-12, -13, -14, 13, 11, 14],
[-22, -23, -24, 23, 21, 24],
[-32, -33, -34, 43, 41, 44],
[11, 12, 13, 14, -13, -23],
[21, 22, 23, 24, -14, -24],
[31, 32, 33, 34, -43, -13],
[41, 42, 43, 44, -42, -12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', nonzero=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*I), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P11_workaround():
# This test was changed to inverse method ADJ because it depended on the
# specific form of inverse returned from the 'GE' method which has changed.
M = Matrix([[x, y], [1, x*y]]).inv('ADJ')
c = gcd(tuple(M))
assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([
[x*y, -y],
[ -1, x]]), evaluate=False)
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
def test_P22():
d = 100
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
ev_1 = sorted(MF.eigenvals(multiple=True))
ev_2 = sorted(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])
for x, y in zip(ev_1, ev_2):
assert abs(x - y) < 1e-12
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [
(a, 3, [
Matrix([1, 0, 0, 0, 0]),
Matrix([0, 0, 1, 0, 0]),
Matrix([0, 0, 0, 1, 0])
]),
(1 - I, 1, [
Matrix([0, (1 + I)/2, 0, 0, 1])
]),
(1 + I, 1, [
Matrix([0, (1 - I)/2, 0, 0, 1])
]),
]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
assert M**S.Half == Matrix([[1, R(1, 2), 0],
[0, 1, 0],
[0, 0, 1]])
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
#raises ValueError: Matrix det == 0; not invertible
M**S.Half
@XFAIL
def test_P39():
"""
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
"""
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, j, n = symbols('i j n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# sum does not calculate
# Unknown result
Sm.doit()
raise NotImplementedError('Unknown result')
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), (m, b), domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 2, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1)))
@XFAIL
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product does not evaluate
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit() # Product does not evaluate
assert T.simplify() == R(2, 3)
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == 2/pi
@XFAIL
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
T = Pr.doit()
# Product produces 0
# https://github.com/sympy/sympy/issues/7133
assert T.simplify() == sqrt(2)
@XFAIL
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == S.Half
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', real=True, positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', real=True, positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# No longer raises PoleError, but should return euler-mascheroni constant
assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo))
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# evaluates to 0
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
def test_T12():
x, t = symbols('x t', real=True)
# Does not evaluate the limit but returns an expression with erf
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
d = diff(x**n, x, n)
assert d.rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4)
@XFAIL
def test_U11():
# assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
raise NotImplementedError
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
def test_U13():
assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
def test_V5():
# Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1))
assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(tan(x/2) + R(3, 4))/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3)))
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
assert r1 == -1/(tan(x/2) + 2)
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# Integral not calculated
assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo
@XFAIL
@slow
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3)
@XFAIL
@slow
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3)
@XFAIL
@slow
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3)
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', real=True, positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', real=True, positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12)
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == R(36, 35)
def test_W17():
a, b = symbols('a b', real=True, positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# Integral not calculated
# Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - R(17, 108) + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@slow
def test_W23():
a, b = symbols('a b', real=True, positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.collect(pi) == pi*(-a + b)
def test_W23b():
# like W23 but limits are reversed
a, b = symbols('a b', real=True, positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2.collect(pi) == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_TRAVIS:
skip("Too slow for travis.")
# Not that slow, but does not fully evaluate so simplify is slow.
# Maybe also require doit()
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_TRAVIS:
skip("Too slow for travis.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == R(46, 15)
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 +
(x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2))))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x-1)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
# 2019-02-17: Raises
# PoleError:
# Asymptotic expansion of Ei around [-oo] is not implemented.
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
# fps does not calculate
assert fps(log(sin(x)/x)) == \
Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo))
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
#
# Now, sympy returns
# oo
# _____
# \ `
# \ / k k\
# \ k |I*(-1 - I) I*(-1 + I) |
# \ x *|----------- - -----------|
# / \ 2 2 /
# / ------------------------------
# / k!
# /____,
# k = 0
k = Dummy('k')
assert fps(exp(-x)*sin(x)) == \
Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo))
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*w - t)
def test_Y3():
t = symbols('t', real=True, positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', real=True, positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
@XFAIL
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', real=True, positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(y(t), t, s) - s
+ LaplaceTransform(y(t), t, s) - 4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', real=True, positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z).cancel() ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
# Update 2019-02-17 raises:
# TypeError: cannot unpack non-iterable MellinTransform object
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
expected = ((S(1)/2 - sqrt(5)/2)**n*(S(1)/2 - sqrt(5)/10)
+ (S(1)/2 + sqrt(5)/2)**n*(sqrt(5)/10 + S(1)/2))
sol = rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n), {r(1): 1, r(2): 2})
assert sol == expected
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', real=True, positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
0fe1f22a86ccda6825612845a2d2be6cf269088172e777f6ce1f1018edf5a962 | from textwrap import dedent
from itertools import islice, product
from sympy import (
symbols, Integer, Integral, Tuple, Dummy, Basic, default_sort_key, Matrix,
factorial, true)
from sympy.combinatorics import RGS_enum, RGS_unrank, Permutation
from sympy.core.compatibility import iterable
from sympy.utilities.iterables import (
_partition, _set_partitions, binary_partitions, bracelets, capture,
cartes, common_prefix, common_suffix, connected_components, dict_merge,
filter_symbols, flatten, generate_bell, generate_derangements,
generate_involutions, generate_oriented_forest, group, has_dups, ibin,
iproduct, kbins, minlex, multiset, multiset_combinations,
multiset_partitions, multiset_permutations, necklaces, numbered_symbols,
ordered, partitions, permutations, postfixes, postorder_traversal,
prefixes, reshape, rotate_left, rotate_right, runs, sift,
strongly_connected_components, subsets, take, topological_sort, unflatten,
uniq, variations, ordered_partitions, rotations, is_palindromic)
from sympy.utilities.enumerative import (
factoring_visitor, multiset_partitions_taocp )
from sympy.core.singleton import S
from sympy.functions.elementary.piecewise import Piecewise, ExprCondPair
from sympy.testing.pytest import raises
w, x, y, z = symbols('w,x,y,z')
def test_is_palindromic():
assert is_palindromic('')
assert is_palindromic('x')
assert is_palindromic('xx')
assert is_palindromic('xyx')
assert not is_palindromic('xy')
assert not is_palindromic('xyzx')
assert is_palindromic('xxyzzyx', 1)
assert not is_palindromic('xxyzzyx', 2)
assert is_palindromic('xxyzzyx', 2, -1)
assert is_palindromic('xxyzzyx', 2, 6)
assert is_palindromic('xxyzyx', 1)
assert not is_palindromic('xxyzyx', 2)
assert is_palindromic('xxyzyx', 2, 2 + 3)
def test_postorder_traversal():
expr = z + w*(x + y)
expected = [z, w, x, y, x + y, w*(x + y), w*(x + y) + z]
assert list(postorder_traversal(expr, keys=default_sort_key)) == expected
assert list(postorder_traversal(expr, keys=True)) == expected
expr = Piecewise((x, x < 1), (x**2, True))
expected = [
x, 1, x, x < 1, ExprCondPair(x, x < 1),
2, x, x**2, true,
ExprCondPair(x**2, True), Piecewise((x, x < 1), (x**2, True))
]
assert list(postorder_traversal(expr, keys=default_sort_key)) == expected
assert list(postorder_traversal(
[expr], keys=default_sort_key)) == expected + [[expr]]
assert list(postorder_traversal(Integral(x**2, (x, 0, 1)),
keys=default_sort_key)) == [
2, x, x**2, 0, 1, x, Tuple(x, 0, 1),
Integral(x**2, Tuple(x, 0, 1))
]
assert list(postorder_traversal(('abc', ('d', 'ef')))) == [
'abc', 'd', 'ef', ('d', 'ef'), ('abc', ('d', 'ef'))]
def test_flatten():
assert flatten((1, (1,))) == [1, 1]
assert flatten((x, (x,))) == [x, x]
ls = [[(-2, -1), (1, 2)], [(0, 0)]]
assert flatten(ls, levels=0) == ls
assert flatten(ls, levels=1) == [(-2, -1), (1, 2), (0, 0)]
assert flatten(ls, levels=2) == [-2, -1, 1, 2, 0, 0]
assert flatten(ls, levels=3) == [-2, -1, 1, 2, 0, 0]
raises(ValueError, lambda: flatten(ls, levels=-1))
class MyOp(Basic):
pass
assert flatten([MyOp(x, y), z]) == [MyOp(x, y), z]
assert flatten([MyOp(x, y), z], cls=MyOp) == [x, y, z]
assert flatten({1, 11, 2}) == list({1, 11, 2})
def test_iproduct():
assert list(iproduct()) == [()]
assert list(iproduct([])) == []
assert list(iproduct([1,2,3])) == [(1,),(2,),(3,)]
assert sorted(iproduct([1, 2], [3, 4, 5])) == [
(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)]
assert sorted(iproduct([0,1],[0,1],[0,1])) == [
(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)]
assert iterable(iproduct(S.Integers)) is True
assert iterable(iproduct(S.Integers, S.Integers)) is True
assert (3,) in iproduct(S.Integers)
assert (4, 5) in iproduct(S.Integers, S.Integers)
assert (1, 2, 3) in iproduct(S.Integers, S.Integers, S.Integers)
triples = set(islice(iproduct(S.Integers, S.Integers, S.Integers), 1000))
for n1, n2, n3 in triples:
assert isinstance(n1, Integer)
assert isinstance(n2, Integer)
assert isinstance(n3, Integer)
for t in set(product(*([range(-2, 3)]*3))):
assert t in iproduct(S.Integers, S.Integers, S.Integers)
def test_group():
assert group([]) == []
assert group([], multiple=False) == []
assert group([1]) == [[1]]
assert group([1], multiple=False) == [(1, 1)]
assert group([1, 1]) == [[1, 1]]
assert group([1, 1], multiple=False) == [(1, 2)]
assert group([1, 1, 1]) == [[1, 1, 1]]
assert group([1, 1, 1], multiple=False) == [(1, 3)]
assert group([1, 2, 1]) == [[1], [2], [1]]
assert group([1, 2, 1], multiple=False) == [(1, 1), (2, 1), (1, 1)]
assert group([1, 1, 2, 2, 2, 1, 3, 3]) == [[1, 1], [2, 2, 2], [1], [3, 3]]
assert group([1, 1, 2, 2, 2, 1, 3, 3], multiple=False) == [(1, 2),
(2, 3), (1, 1), (3, 2)]
def test_subsets():
# combinations
assert list(subsets([1, 2, 3], 0)) == [()]
assert list(subsets([1, 2, 3], 1)) == [(1,), (2,), (3,)]
assert list(subsets([1, 2, 3], 2)) == [(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 3)) == [(1, 2, 3)]
l = list(range(4))
assert list(subsets(l, 0, repetition=True)) == [()]
assert list(subsets(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(subsets(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 1), (1, 2),
(1, 3), (2, 2), (2, 3),
(3, 3)]
assert list(subsets(l, 3, repetition=True)) == [(0, 0, 0), (0, 0, 1),
(0, 0, 2), (0, 0, 3),
(0, 1, 1), (0, 1, 2),
(0, 1, 3), (0, 2, 2),
(0, 2, 3), (0, 3, 3),
(1, 1, 1), (1, 1, 2),
(1, 1, 3), (1, 2, 2),
(1, 2, 3), (1, 3, 3),
(2, 2, 2), (2, 2, 3),
(2, 3, 3), (3, 3, 3)]
assert len(list(subsets(l, 4, repetition=True))) == 35
assert list(subsets(l[:2], 3, repetition=False)) == []
assert list(subsets(l[:2], 3, repetition=True)) == [(0, 0, 0),
(0, 0, 1),
(0, 1, 1),
(1, 1, 1)]
assert list(subsets([1, 2], repetition=True)) == \
[(), (1,), (2,), (1, 1), (1, 2), (2, 2)]
assert list(subsets([1, 2], repetition=False)) == \
[(), (1,), (2,), (1, 2)]
assert list(subsets([1, 2, 3], 2)) == \
[(1, 2), (1, 3), (2, 3)]
assert list(subsets([1, 2, 3], 2, repetition=True)) == \
[(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)]
def test_variations():
# permutations
l = list(range(4))
assert list(variations(l, 0, repetition=False)) == [()]
assert list(variations(l, 1, repetition=False)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=False)) == [(0, 1), (0, 2), (0, 3), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (2, 3), (3, 0), (3, 1), (3, 2)]
assert list(variations(l, 3, repetition=False)) == [(0, 1, 2), (0, 1, 3), (0, 2, 1), (0, 2, 3), (0, 3, 1), (0, 3, 2), (1, 0, 2), (1, 0, 3), (1, 2, 0), (1, 2, 3), (1, 3, 0), (1, 3, 2), (2, 0, 1), (2, 0, 3), (2, 1, 0), (2, 1, 3), (2, 3, 0), (2, 3, 1), (3, 0, 1), (3, 0, 2), (3, 1, 0), (3, 1, 2), (3, 2, 0), (3, 2, 1)]
assert list(variations(l, 0, repetition=True)) == [()]
assert list(variations(l, 1, repetition=True)) == [(0,), (1,), (2,), (3,)]
assert list(variations(l, 2, repetition=True)) == [(0, 0), (0, 1), (0, 2),
(0, 3), (1, 0), (1, 1),
(1, 2), (1, 3), (2, 0),
(2, 1), (2, 2), (2, 3),
(3, 0), (3, 1), (3, 2),
(3, 3)]
assert len(list(variations(l, 3, repetition=True))) == 64
assert len(list(variations(l, 4, repetition=True))) == 256
assert list(variations(l[:2], 3, repetition=False)) == []
assert list(variations(l[:2], 3, repetition=True)) == [
(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)
]
def test_cartes():
assert list(cartes([1, 2], [3, 4, 5])) == \
[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)]
assert list(cartes()) == [()]
assert list(cartes('a')) == [('a',)]
assert list(cartes('a', repeat=2)) == [('a', 'a')]
assert list(cartes(list(range(2)))) == [(0,), (1,)]
def test_filter_symbols():
s = numbered_symbols()
filtered = filter_symbols(s, symbols("x0 x2 x3"))
assert take(filtered, 3) == list(symbols("x1 x4 x5"))
def test_numbered_symbols():
s = numbered_symbols(cls=Dummy)
assert isinstance(next(s), Dummy)
assert next(numbered_symbols('C', start=1, exclude=[symbols('C1')])) == \
symbols('C2')
def test_sift():
assert sift(list(range(5)), lambda _: _ % 2) == {1: [1, 3], 0: [0, 2, 4]}
assert sift([x, y], lambda _: _.has(x)) == {False: [y], True: [x]}
assert sift([S.One], lambda _: _.has(x)) == {False: [1]}
assert sift([0, 1, 2, 3], lambda x: x % 2, binary=True) == (
[1, 3], [0, 2])
assert sift([0, 1, 2, 3], lambda x: x % 3 == 1, binary=True) == (
[1], [0, 2, 3])
raises(ValueError, lambda:
sift([0, 1, 2, 3], lambda x: x % 3, binary=True))
def test_take():
X = numbered_symbols()
assert take(X, 5) == list(symbols('x0:5'))
assert take(X, 5) == list(symbols('x5:10'))
assert take([1, 2, 3, 4, 5], 5) == [1, 2, 3, 4, 5]
def test_dict_merge():
assert dict_merge({}, {1: x, y: z}) == {1: x, y: z}
assert dict_merge({1: x, y: z}, {}) == {1: x, y: z}
assert dict_merge({2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {2: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: y, 2: z}, {1: x, y: z}) == {1: x, 2: z, y: z}
assert dict_merge({1: x, y: z}, {1: y, 2: z}) == {1: y, 2: z, y: z}
def test_prefixes():
assert list(prefixes([])) == []
assert list(prefixes([1])) == [[1]]
assert list(prefixes([1, 2])) == [[1], [1, 2]]
assert list(prefixes([1, 2, 3, 4, 5])) == \
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4], [1, 2, 3, 4, 5]]
def test_postfixes():
assert list(postfixes([])) == []
assert list(postfixes([1])) == [[1]]
assert list(postfixes([1, 2])) == [[2], [1, 2]]
assert list(postfixes([1, 2, 3, 4, 5])) == \
[[5], [4, 5], [3, 4, 5], [2, 3, 4, 5], [1, 2, 3, 4, 5]]
def test_topological_sort():
V = [2, 3, 5, 7, 8, 9, 10, 11]
E = [(7, 11), (7, 8), (5, 11),
(3, 8), (3, 10), (11, 2),
(11, 9), (11, 10), (8, 9)]
assert topological_sort((V, E)) == [3, 5, 7, 8, 11, 2, 9, 10]
assert topological_sort((V, E), key=lambda v: -v) == \
[7, 5, 11, 3, 10, 8, 9, 2]
raises(ValueError, lambda: topological_sort((V, E + [(10, 7)])))
def test_strongly_connected_components():
assert strongly_connected_components(([], [])) == []
assert strongly_connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert strongly_connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert strongly_connected_components((V, E)) == [[4], [2, 3], [1]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 1), (3, 4), (4, 3)]
assert strongly_connected_components((V, E)) == [[1, 2], [3, 4]]
def test_connected_components():
assert connected_components(([], [])) == []
assert connected_components(([1, 2, 3], [])) == [[1], [2], [3]]
V = [1, 2, 3]
E = [(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)]
assert connected_components((V, E)) == [[1, 2, 3]]
V = [1, 2, 3, 4]
E = [(1, 2), (2, 3), (3, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2, 3, 4]]
V = [1, 2, 3, 4]
E = [(1, 2), (3, 4)]
assert connected_components((V, E)) == [[1, 2], [3, 4]]
def test_rotate():
A = [0, 1, 2, 3, 4]
assert rotate_left(A, 2) == [2, 3, 4, 0, 1]
assert rotate_right(A, 1) == [4, 0, 1, 2, 3]
A = []
B = rotate_right(A, 1)
assert B == []
B.append(1)
assert A == []
B = rotate_left(A, 1)
assert B == []
B.append(1)
assert A == []
def test_multiset_partitions():
A = [0, 1, 2, 3, 4]
assert list(multiset_partitions(A, 5)) == [[[0], [1], [2], [3], [4]]]
assert len(list(multiset_partitions(A, 4))) == 10
assert len(list(multiset_partitions(A, 3))) == 25
assert list(multiset_partitions([1, 1, 1, 2, 2], 2)) == [
[[1, 1, 1, 2], [2]], [[1, 1, 1], [2, 2]], [[1, 1, 2, 2], [1]],
[[1, 1, 2], [1, 2]], [[1, 1], [1, 2, 2]]]
assert list(multiset_partitions([1, 1, 2, 2], 2)) == [
[[1, 1, 2], [2]], [[1, 1], [2, 2]], [[1, 2, 2], [1]],
[[1, 2], [1, 2]]]
assert list(multiset_partitions([1, 2, 3, 4], 2)) == [
[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
assert list(multiset_partitions([1, 2, 2], 2)) == [
[[1, 2], [2]], [[1], [2, 2]]]
assert list(multiset_partitions(3)) == [
[[0, 1, 2]], [[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]],
[[0], [1], [2]]]
assert list(multiset_partitions(3, 2)) == [
[[0, 1], [2]], [[0, 2], [1]], [[0], [1, 2]]]
assert list(multiset_partitions([1] * 3, 2)) == [[[1], [1, 1]]]
assert list(multiset_partitions([1] * 3)) == [
[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
a = [3, 2, 1]
assert list(multiset_partitions(a)) == \
list(multiset_partitions(sorted(a)))
assert list(multiset_partitions(a, 5)) == []
assert list(multiset_partitions(a, 1)) == [[[1, 2, 3]]]
assert list(multiset_partitions(a + [4], 5)) == []
assert list(multiset_partitions(a + [4], 1)) == [[[1, 2, 3, 4]]]
assert list(multiset_partitions(2, 5)) == []
assert list(multiset_partitions(2, 1)) == [[[0, 1]]]
assert list(multiset_partitions('a')) == [[['a']]]
assert list(multiset_partitions('a', 2)) == []
assert list(multiset_partitions('ab')) == [[['a', 'b']], [['a'], ['b']]]
assert list(multiset_partitions('ab', 1)) == [[['a', 'b']]]
assert list(multiset_partitions('aaa', 1)) == [['aaa']]
assert list(multiset_partitions([1, 1], 1)) == [[[1, 1]]]
ans = [('mpsyy',), ('mpsy', 'y'), ('mps', 'yy'), ('mps', 'y', 'y'),
('mpyy', 's'), ('mpy', 'sy'), ('mpy', 's', 'y'), ('mp', 'syy'),
('mp', 'sy', 'y'), ('mp', 's', 'yy'), ('mp', 's', 'y', 'y'),
('msyy', 'p'), ('msy', 'py'), ('msy', 'p', 'y'), ('ms', 'pyy'),
('ms', 'py', 'y'), ('ms', 'p', 'yy'), ('ms', 'p', 'y', 'y'),
('myy', 'ps'), ('myy', 'p', 's'), ('my', 'psy'), ('my', 'ps', 'y'),
('my', 'py', 's'), ('my', 'p', 'sy'), ('my', 'p', 's', 'y'),
('m', 'psyy'), ('m', 'psy', 'y'), ('m', 'ps', 'yy'),
('m', 'ps', 'y', 'y'), ('m', 'pyy', 's'), ('m', 'py', 'sy'),
('m', 'py', 's', 'y'), ('m', 'p', 'syy'),
('m', 'p', 'sy', 'y'), ('m', 'p', 's', 'yy'),
('m', 'p', 's', 'y', 'y')]
assert list(tuple("".join(part) for part in p)
for p in multiset_partitions('sympy')) == ans
factorings = [[24], [8, 3], [12, 2], [4, 6], [4, 2, 3],
[6, 2, 2], [2, 2, 2, 3]]
assert list(factoring_visitor(p, [2,3]) for
p in multiset_partitions_taocp([3, 1])) == factorings
def test_multiset_combinations():
ans = ['iii', 'iim', 'iip', 'iis', 'imp', 'ims', 'ipp', 'ips',
'iss', 'mpp', 'mps', 'mss', 'pps', 'pss', 'sss']
assert [''.join(i) for i in
list(multiset_combinations('mississippi', 3))] == ans
M = multiset('mississippi')
assert [''.join(i) for i in
list(multiset_combinations(M, 3))] == ans
assert [''.join(i) for i in multiset_combinations(M, 30)] == []
assert list(multiset_combinations([[1], [2, 3]], 2)) == [[[1], [2, 3]]]
assert len(list(multiset_combinations('a', 3))) == 0
assert len(list(multiset_combinations('a', 0))) == 1
assert list(multiset_combinations('abc', 1)) == [['a'], ['b'], ['c']]
def test_multiset_permutations():
ans = ['abby', 'abyb', 'aybb', 'baby', 'bayb', 'bbay', 'bbya', 'byab',
'byba', 'yabb', 'ybab', 'ybba']
assert [''.join(i) for i in multiset_permutations('baby')] == ans
assert [''.join(i) for i in multiset_permutations(multiset('baby'))] == ans
assert list(multiset_permutations([0, 0, 0], 2)) == [[0, 0]]
assert list(multiset_permutations([0, 2, 1], 2)) == [
[0, 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]
assert len(list(multiset_permutations('a', 0))) == 1
assert len(list(multiset_permutations('a', 3))) == 0
def test():
for i in range(1, 7):
print(i)
for p in multiset_permutations([0, 0, 1, 0, 1], i):
print(p)
assert capture(lambda: test()) == dedent('''\
1
[0]
[1]
2
[0, 0]
[0, 1]
[1, 0]
[1, 1]
3
[0, 0, 0]
[0, 0, 1]
[0, 1, 0]
[0, 1, 1]
[1, 0, 0]
[1, 0, 1]
[1, 1, 0]
4
[0, 0, 0, 1]
[0, 0, 1, 0]
[0, 0, 1, 1]
[0, 1, 0, 0]
[0, 1, 0, 1]
[0, 1, 1, 0]
[1, 0, 0, 0]
[1, 0, 0, 1]
[1, 0, 1, 0]
[1, 1, 0, 0]
5
[0, 0, 0, 1, 1]
[0, 0, 1, 0, 1]
[0, 0, 1, 1, 0]
[0, 1, 0, 0, 1]
[0, 1, 0, 1, 0]
[0, 1, 1, 0, 0]
[1, 0, 0, 0, 1]
[1, 0, 0, 1, 0]
[1, 0, 1, 0, 0]
[1, 1, 0, 0, 0]
6\n''')
def test_partitions():
ans = [[{}], [(0, {})]]
for i in range(2):
assert list(partitions(0, size=i)) == ans[i]
assert list(partitions(1, 0, size=i)) == ans[i]
assert list(partitions(6, 2, 2, size=i)) == ans[i]
assert list(partitions(6, 2, None, size=i)) != ans[i]
assert list(partitions(6, None, 2, size=i)) != ans[i]
assert list(partitions(6, 2, 0, size=i)) == ans[i]
assert [p for p in partitions(6, k=2)] == [
{2: 3}, {1: 2, 2: 2}, {1: 4, 2: 1}, {1: 6}]
assert [p for p in partitions(6, k=3)] == [
{3: 2}, {1: 1, 2: 1, 3: 1}, {1: 3, 3: 1}, {2: 3}, {1: 2, 2: 2},
{1: 4, 2: 1}, {1: 6}]
assert [p for p in partitions(8, k=4, m=3)] == [
{4: 2}, {1: 1, 3: 1, 4: 1}, {2: 2, 4: 1}, {2: 1, 3: 2}] == [
i for i in partitions(8, k=4, m=3) if all(k <= 4 for k in i)
and sum(i.values()) <=3]
assert [p for p in partitions(S(3), m=2)] == [
{3: 1}, {1: 1, 2: 1}]
assert [i for i in partitions(4, k=3)] == [
{1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}] == [
i for i in partitions(4) if all(k <= 3 for k in i)]
# Consistency check on output of _partitions and RGS_unrank.
# This provides a sanity test on both routines. Also verifies that
# the total number of partitions is the same in each case.
# (from pkrathmann2)
for n in range(2, 6):
i = 0
for m, q in _set_partitions(n):
assert q == RGS_unrank(i, n)
i += 1
assert i == RGS_enum(n)
def test_binary_partitions():
assert [i[:] for i in binary_partitions(10)] == [[8, 2], [8, 1, 1],
[4, 4, 2], [4, 4, 1, 1], [4, 2, 2, 2], [4, 2, 2, 1, 1],
[4, 2, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2],
[2, 2, 2, 2, 1, 1], [2, 2, 2, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1],
[2, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
assert len([j[:] for j in binary_partitions(16)]) == 36
def test_bell_perm():
assert [len(set(generate_bell(i))) for i in range(1, 7)] == [
factorial(i) for i in range(1, 7)]
assert list(generate_bell(3)) == [
(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
# generate_bell and trotterjohnson are advertised to return the same
# permutations; this is not technically necessary so this test could
# be removed
for n in range(1, 5):
p = Permutation(range(n))
b = generate_bell(n)
for bi in b:
assert bi == tuple(p.array_form)
p = p.next_trotterjohnson()
raises(ValueError, lambda: list(generate_bell(0))) # XXX is this consistent with other permutation algorithms?
def test_involutions():
lengths = [1, 2, 4, 10, 26, 76]
for n, N in enumerate(lengths):
i = list(generate_involutions(n + 1))
assert len(i) == N
assert len({Permutation(j)**2 for j in i}) == 1
def test_derangements():
assert len(list(generate_derangements(list(range(6))))) == 265
assert ''.join(''.join(i) for i in generate_derangements('abcde')) == (
'badecbaecdbcaedbcdeabceadbdaecbdeacbdecabeacdbedacbedcacabedcadebcaebd'
'cdaebcdbeacdeabcdebaceabdcebadcedabcedbadabecdaebcdaecbdcaebdcbeadceab'
'dcebadeabcdeacbdebacdebcaeabcdeadbceadcbecabdecbadecdabecdbaedabcedacb'
'edbacedbca')
assert list(generate_derangements([0, 1, 2, 3])) == [
[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1],
[2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], [3, 2, 1, 0]]
assert list(generate_derangements([0, 1, 2, 2])) == [
[2, 2, 0, 1], [2, 2, 1, 0]]
assert list(generate_derangements('ba')) == [list('ab')]
def test_necklaces():
def count(n, k, f):
return len(list(necklaces(n, k, f)))
m = []
for i in range(1, 8):
m.append((
i, count(i, 2, 0), count(i, 2, 1), count(i, 3, 1)))
assert Matrix(m) == Matrix([
[1, 2, 2, 3],
[2, 3, 3, 6],
[3, 4, 4, 10],
[4, 6, 6, 21],
[5, 8, 8, 39],
[6, 14, 13, 92],
[7, 20, 18, 198]])
def test_bracelets():
bc = [i for i in bracelets(2, 4)]
assert Matrix(bc) == Matrix([
[0, 0],
[0, 1],
[0, 2],
[0, 3],
[1, 1],
[1, 2],
[1, 3],
[2, 2],
[2, 3],
[3, 3]
])
bc = [i for i in bracelets(4, 2)]
assert Matrix(bc) == Matrix([
[0, 0, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 1],
[0, 1, 0, 1],
[0, 1, 1, 1],
[1, 1, 1, 1]
])
def test_generate_oriented_forest():
assert list(generate_oriented_forest(5)) == [[0, 1, 2, 3, 4],
[0, 1, 2, 3, 3], [0, 1, 2, 3, 2], [0, 1, 2, 3, 1], [0, 1, 2, 3, 0],
[0, 1, 2, 2, 2], [0, 1, 2, 2, 1], [0, 1, 2, 2, 0], [0, 1, 2, 1, 2],
[0, 1, 2, 1, 1], [0, 1, 2, 1, 0], [0, 1, 2, 0, 1], [0, 1, 2, 0, 0],
[0, 1, 1, 1, 1], [0, 1, 1, 1, 0], [0, 1, 1, 0, 1], [0, 1, 1, 0, 0],
[0, 1, 0, 1, 0], [0, 1, 0, 0, 0], [0, 0, 0, 0, 0]]
assert len(list(generate_oriented_forest(10))) == 1842
def test_unflatten():
r = list(range(10))
assert unflatten(r) == list(zip(r[::2], r[1::2]))
assert unflatten(r, 5) == [tuple(r[:5]), tuple(r[5:])]
raises(ValueError, lambda: unflatten(list(range(10)), 3))
raises(ValueError, lambda: unflatten(list(range(10)), -2))
def test_common_prefix_suffix():
assert common_prefix([], [1]) == []
assert common_prefix(list(range(3))) == [0, 1, 2]
assert common_prefix(list(range(3)), list(range(4))) == [0, 1, 2]
assert common_prefix([1, 2, 3], [1, 2, 5]) == [1, 2]
assert common_prefix([1, 2, 3], [1, 3, 5]) == [1]
assert common_suffix([], [1]) == []
assert common_suffix(list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(3))) == [0, 1, 2]
assert common_suffix(list(range(3)), list(range(4))) == []
assert common_suffix([1, 2, 3], [9, 2, 3]) == [2, 3]
assert common_suffix([1, 2, 3], [9, 7, 3]) == [3]
def test_minlex():
assert minlex([1, 2, 0]) == (0, 1, 2)
assert minlex((1, 2, 0)) == (0, 1, 2)
assert minlex((1, 0, 2)) == (0, 2, 1)
assert minlex((1, 0, 2), directed=False) == (0, 1, 2)
assert minlex('aba') == 'aab'
def test_ordered():
assert list(ordered((x, y), hash, default=False)) in [[x, y], [y, x]]
assert list(ordered((x, y), hash, default=False)) == \
list(ordered((y, x), hash, default=False))
assert list(ordered((x, y))) == [x, y]
seq, keys = [[[1, 2, 1], [0, 3, 1], [1, 1, 3], [2], [1]],
(lambda x: len(x), lambda x: sum(x))]
assert list(ordered(seq, keys, default=False, warn=False)) == \
[[1], [2], [1, 2, 1], [0, 3, 1], [1, 1, 3]]
raises(ValueError, lambda:
list(ordered(seq, keys, default=False, warn=True)))
def test_runs():
assert runs([]) == []
assert runs([1]) == [[1]]
assert runs([1, 1]) == [[1], [1]]
assert runs([1, 1, 2]) == [[1], [1, 2]]
assert runs([1, 2, 1]) == [[1, 2], [1]]
assert runs([2, 1, 1]) == [[2], [1], [1]]
from operator import lt
assert runs([2, 1, 1], lt) == [[2, 1], [1]]
def test_reshape():
seq = list(range(1, 9))
assert reshape(seq, [4]) == \
[[1, 2, 3, 4], [5, 6, 7, 8]]
assert reshape(seq, (4,)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, 2)) == \
[(1, 2, 3, 4), (5, 6, 7, 8)]
assert reshape(seq, (2, [2])) == \
[(1, 2, [3, 4]), (5, 6, [7, 8])]
assert reshape(seq, ((2,), [2])) == \
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
assert reshape(seq, (1, [2], 1)) == \
[(1, [2, 3], 4), (5, [6, 7], 8)]
assert reshape(tuple(seq), ([[1], 1, (2,)],)) == \
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
assert reshape(tuple(seq), ([1], 1, (2,))) == \
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
assert reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) == \
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
raises(ValueError, lambda: reshape([0, 1], [-1]))
raises(ValueError, lambda: reshape([0, 1], [3]))
def test_uniq():
assert list(uniq(p for p in partitions(4))) == \
[{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2: 1}, {1: 4}]
assert list(uniq(x % 2 for x in range(5))) == [0, 1]
assert list(uniq('a')) == ['a']
assert list(uniq('ababc')) == list('abc')
assert list(uniq([[1], [2, 1], [1]])) == [[1], [2, 1]]
assert list(uniq(permutations(i for i in [[1], 2, 2]))) == \
[([1], 2, 2), (2, [1], 2), (2, 2, [1])]
assert list(uniq([2, 3, 2, 4, [2], [1], [2], [3], [1]])) == \
[2, 3, 4, [2], [1], [3]]
f = [1]
raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
f = [[1]]
raises(RuntimeError, lambda: [f.remove(i) for i in uniq(f)])
def test_kbins():
assert len(list(kbins('1123', 2, ordered=1))) == 24
assert len(list(kbins('1123', 2, ordered=11))) == 36
assert len(list(kbins('1123', 2, ordered=10))) == 10
assert len(list(kbins('1123', 2, ordered=0))) == 5
assert len(list(kbins('1123', 2, ordered=None))) == 3
def test1():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins([0, 0, 1], 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test1()) == dedent('''\
ordered = None
[[0], [0, 1]]
[[0, 0], [1]]
ordered = 0
[[0, 0], [1]]
[[0, 1], [0]]
ordered = 1
[[0], [0, 1]]
[[0], [1, 0]]
[[1], [0, 0]]
ordered = 10
[[0, 0], [1]]
[[1], [0, 0]]
[[0, 1], [0]]
[[0], [0, 1]]
ordered = 11
[[0], [0, 1]]
[[0, 0], [1]]
[[0], [1, 0]]
[[0, 1], [0]]
[[1], [0, 0]]
[[1, 0], [0]]\n''')
def test2():
for orderedval in [None, 0, 1, 10, 11]:
print('ordered =', orderedval)
for p in kbins(list(range(3)), 2, ordered=orderedval):
print(' ', p)
assert capture(lambda : test2()) == dedent('''\
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]\n''')
def test_has_dups():
assert has_dups(set()) is False
assert has_dups(list(range(3))) is False
assert has_dups([1, 2, 1]) is True
def test__partition():
assert _partition('abcde', [1, 0, 1, 2, 0]) == [
['b', 'e'], ['a', 'c'], ['d']]
assert _partition('abcde', [1, 0, 1, 2, 0], 3) == [
['b', 'e'], ['a', 'c'], ['d']]
output = (3, [1, 0, 1, 2, 0])
assert _partition('abcde', *output) == [['b', 'e'], ['a', 'c'], ['d']]
def test_ordered_partitions():
from sympy.functions.combinatorial.numbers import nT
f = ordered_partitions
assert list(f(0, 1)) == [[]]
assert list(f(1, 0)) == [[]]
for i in range(1, 7):
for j in [None] + list(range(1, i)):
assert (
sum(1 for p in f(i, j, 1)) ==
sum(1 for p in f(i, j, 0)) ==
nT(i, j))
def test_rotations():
assert list(rotations('ab')) == [['a', 'b'], ['b', 'a']]
assert list(rotations(range(3))) == [[0, 1, 2], [1, 2, 0], [2, 0, 1]]
assert list(rotations(range(3), dir=-1)) == [[0, 1, 2], [2, 0, 1], [1, 2, 0]]
def test_ibin():
assert ibin(3) == [1, 1]
assert ibin(3, 3) == [0, 1, 1]
assert ibin(3, str=True) == '11'
assert ibin(3, 3, str=True) == '011'
assert list(ibin(2, 'all')) == [(0, 0), (0, 1), (1, 0), (1, 1)]
assert list(ibin(2, '', str=True)) == ['00', '01', '10', '11']
raises(ValueError, lambda: ibin(-.5))
raises(ValueError, lambda: ibin(2, 1))
|
dd5d70a1d1b2486e6441a052ef6cedbb2abcae7c01ce3136fa9f8840b38117ca | import itertools
from sympy.core import S
from sympy.core.containers import Tuple
from sympy.core.function import _coeff_isneg
from sympy.core.mul import Mul
from sympy.core.numbers import Number, Rational
from sympy.core.power import Pow
from sympy.core.symbol import Symbol
from sympy.core.sympify import SympifyError
from sympy.printing.conventions import requires_partial
from sympy.printing.precedence import PRECEDENCE, precedence, precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.str import sstr
from sympy.utilities import default_sort_key
from sympy.utilities.iterables import has_variety
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.printing.pretty.pretty_symbology import hobj, vobj, xobj, \
xsym, pretty_symbol, pretty_atom, pretty_use_unicode, greek_unicode, U, \
pretty_try_use_unicode, annotated
# rename for usage from outside
pprint_use_unicode = pretty_use_unicode
pprint_try_use_unicode = pretty_try_use_unicode
class PrettyPrinter(Printer):
"""Printer, which converts an expression into 2D ASCII-art figure."""
printmethod = "_pretty"
_default_settings = {
"order": None,
"full_prec": "auto",
"use_unicode": None,
"wrap_line": True,
"num_columns": None,
"use_unicode_sqrt_char": True,
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"perm_cyclic": True
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if not isinstance(self._settings['imaginary_unit'], str):
raise TypeError("'imaginary_unit' must a string, not {}".format(self._settings['imaginary_unit']))
elif self._settings['imaginary_unit'] not in ["i", "j"]:
raise ValueError("'imaginary_unit' must be either 'i' or 'j', not '{}'".format(self._settings['imaginary_unit']))
def emptyPrinter(self, expr):
return prettyForm(str(expr))
@property
def _use_unicode(self):
if self._settings['use_unicode']:
return True
else:
return pretty_use_unicode()
def doprint(self, expr):
return self._print(expr).render(**self._settings)
# empty op so _print(stringPict) returns the same
def _print_stringPict(self, e):
return e
def _print_basestring(self, e):
return prettyForm(e)
def _print_atan2(self, e):
pform = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(*pform.left('atan2'))
return pform
def _print_Symbol(self, e, bold_name=False):
symb = pretty_symbol(e.name, bold_name)
return prettyForm(symb)
_print_RandomSymbol = _print_Symbol
def _print_MatrixSymbol(self, e):
return self._print_Symbol(e, self._settings['mat_symbol_style'] == "bold")
def _print_Float(self, e):
# we will use StrPrinter's Float printer, but we need to handle the
# full_prec ourselves, according to the self._print_level
full_prec = self._settings["full_prec"]
if full_prec == "auto":
full_prec = self._print_level == 1
return prettyForm(sstr(e, full_prec=full_prec))
def _print_Cross(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Curl(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('MULTIPLICATION SIGN'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Divergence(self, e):
vec = e._expr
pform = self._print(vec)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Dot(self, e):
vec1 = e._expr1
vec2 = e._expr2
pform = self._print(vec2)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('DOT OPERATOR'))))
pform = prettyForm(*pform.left(')'))
pform = prettyForm(*pform.left(self._print(vec1)))
pform = prettyForm(*pform.left('('))
return pform
def _print_Gradient(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('NABLA'))))
return pform
def _print_Laplacian(self, e):
func = e._expr
pform = self._print(func)
pform = prettyForm(*pform.left('('))
pform = prettyForm(*pform.right(')'))
pform = prettyForm(*pform.left(self._print(U('INCREMENT'))))
return pform
def _print_Atom(self, e):
try:
# print atoms like Exp1 or Pi
return prettyForm(pretty_atom(e.__class__.__name__, printer=self))
except KeyError:
return self.emptyPrinter(e)
# Infinity inherits from Number, so we have to override _print_XXX order
_print_Infinity = _print_Atom
_print_NegativeInfinity = _print_Atom
_print_EmptySet = _print_Atom
_print_Naturals = _print_Atom
_print_Naturals0 = _print_Atom
_print_Integers = _print_Atom
_print_Rationals = _print_Atom
_print_Complexes = _print_Atom
_print_EmptySequence = _print_Atom
def _print_Reals(self, e):
if self._use_unicode:
return self._print_Atom(e)
else:
inf_list = ['-oo', 'oo']
return self._print_seq(inf_list, '(', ')')
def _print_subfactorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('!'))
return pform
def _print_factorial(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!'))
return pform
def _print_factorial2(self, e):
x = e.args[0]
pform = self._print(x)
# Add parentheses if needed
if not ((x.is_Integer and x.is_nonnegative) or x.is_Symbol):
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right('!!'))
return pform
def _print_binomial(self, e):
n, k = e.args
n_pform = self._print(n)
k_pform = self._print(k)
bar = ' '*max(n_pform.width(), k_pform.width())
pform = prettyForm(*k_pform.above(bar))
pform = prettyForm(*pform.above(n_pform))
pform = prettyForm(*pform.parens('(', ')'))
pform.baseline = (pform.baseline + 1)//2
return pform
def _print_Relational(self, e):
op = prettyForm(' ' + xsym(e.rel_op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Not(self, e):
from sympy import Equivalent, Implies
if self._use_unicode:
arg = e.args[0]
pform = self._print(arg)
if isinstance(arg, Equivalent):
return self._print_Equivalent(arg, altchar="\N{LEFT RIGHT DOUBLE ARROW WITH STROKE}")
if isinstance(arg, Implies):
return self._print_Implies(arg, altchar="\N{RIGHTWARDS ARROW WITH STROKE}")
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left("\N{NOT SIGN}"))
else:
return self._print_Function(e)
def __print_Boolean(self, e, char, sort=True):
args = e.args
if sort:
args = sorted(e.args, key=default_sort_key)
arg = args[0]
pform = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform = prettyForm(*pform.parens())
for arg in args[1:]:
pform_arg = self._print(arg)
if arg.is_Boolean and not arg.is_Not:
pform_arg = prettyForm(*pform_arg.parens())
pform = prettyForm(*pform.right(' %s ' % char))
pform = prettyForm(*pform.right(pform_arg))
return pform
def _print_And(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{LOGICAL AND}")
else:
return self._print_Function(e, sort=True)
def _print_Or(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{LOGICAL OR}")
else:
return self._print_Function(e, sort=True)
def _print_Xor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{XOR}")
else:
return self._print_Function(e, sort=True)
def _print_Nand(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{NAND}")
else:
return self._print_Function(e, sort=True)
def _print_Nor(self, e):
if self._use_unicode:
return self.__print_Boolean(e, "\N{NOR}")
else:
return self._print_Function(e, sort=True)
def _print_Implies(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or "\N{RIGHTWARDS ARROW}", sort=False)
else:
return self._print_Function(e)
def _print_Equivalent(self, e, altchar=None):
if self._use_unicode:
return self.__print_Boolean(e, altchar or "\N{LEFT RIGHT DOUBLE ARROW}")
else:
return self._print_Function(e, sort=True)
def _print_conjugate(self, e):
pform = self._print(e.args[0])
return prettyForm( *pform.above( hobj('_', pform.width())) )
def _print_Abs(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('|', '|'))
return pform
_print_Determinant = _print_Abs
def _print_floor(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lfloor', 'rfloor'))
return pform
else:
return self._print_Function(e)
def _print_ceiling(self, e):
if self._use_unicode:
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens('lceil', 'rceil'))
return pform
else:
return self._print_Function(e)
def _print_Derivative(self, deriv):
if requires_partial(deriv.expr) and self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
count_total_deriv = 0
for sym, num in reversed(deriv.variable_count):
s = self._print(sym)
ds = prettyForm(*s.left(deriv_symbol))
count_total_deriv += num
if (not num.is_Integer) or (num > 1):
ds = ds**prettyForm(str(num))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if (count_total_deriv > 1) != False:
pform = pform**prettyForm(str(count_total_deriv))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Cycle(self, dc):
from sympy.combinatorics.permutations import Permutation, Cycle
# for Empty Cycle
if dc == Cycle():
cyc = stringPict('')
return prettyForm(*cyc.parens())
dc_list = Permutation(dc.list()).cyclic_form
# for Identity Cycle
if dc_list == []:
cyc = self._print(dc.size - 1)
return prettyForm(*cyc.parens())
cyc = stringPict('')
for i in dc_list:
l = self._print(str(tuple(i)).replace(',', ''))
cyc = prettyForm(*cyc.right(l))
return cyc
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
SymPyDeprecationWarning(
feature="Permutation.print_cyclic = {}".format(perm_cyclic),
useinstead="init_printing(perm_cyclic={})"
.format(perm_cyclic),
issue=15201,
deprecated_since_version="1.6").warn()
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(Cycle(expr))
lower = expr.array_form
upper = list(range(len(lower)))
result = stringPict('')
first = True
for u, l in zip(upper, lower):
s1 = self._print(u)
s2 = self._print(l)
col = prettyForm(*s1.below(s2))
if first:
first = False
else:
col = prettyForm(*col.left(" "))
result = prettyForm(*result.right(col))
return prettyForm(*result.parens())
def _print_Integral(self, integral):
f = integral.function
# Add parentheses if arg involves addition of terms and
# create a pretty form for the argument
prettyF = self._print(f)
# XXX generalize parens
if f.is_Add:
prettyF = prettyForm(*prettyF.parens())
# dx dy dz ...
arg = prettyF
for x in integral.limits:
prettyArg = self._print(x[0])
# XXX qparens (parens if needs-parens)
if prettyArg.width() > 1:
prettyArg = prettyForm(*prettyArg.parens())
arg = prettyForm(*arg.right(' d', prettyArg))
# \int \int \int ...
firstterm = True
s = None
for lim in integral.limits:
x = lim[0]
# Create bar based on the height of the argument
h = arg.height()
H = h + 2
# XXX hack!
ascii_mode = not self._use_unicode
if ascii_mode:
H += 2
vint = vobj('int', H)
# Construct the pretty form with the integral sign and the argument
pform = prettyForm(vint)
pform.baseline = arg.baseline + (
H - h)//2 # covering the whole argument
if len(lim) > 1:
# Create pretty forms for endpoints, if definite integral.
# Do not print empty endpoints.
if len(lim) == 2:
prettyA = prettyForm("")
prettyB = self._print(lim[1])
if len(lim) == 3:
prettyA = self._print(lim[1])
prettyB = self._print(lim[2])
if ascii_mode: # XXX hack
# Add spacing so that endpoint can more easily be
# identified with the correct integral sign
spc = max(1, 3 - prettyB.width())
prettyB = prettyForm(*prettyB.left(' ' * spc))
spc = max(1, 4 - prettyA.width())
prettyA = prettyForm(*prettyA.right(' ' * spc))
pform = prettyForm(*pform.above(prettyB))
pform = prettyForm(*pform.below(prettyA))
if not ascii_mode: # XXX hack
pform = prettyForm(*pform.right(' '))
if firstterm:
s = pform # first term
firstterm = False
else:
s = prettyForm(*s.left(pform))
pform = prettyForm(*arg.left(s))
pform.binding = prettyForm.MUL
return pform
def _print_Product(self, expr):
func = expr.term
pretty_func = self._print(func)
horizontal_chr = xobj('_', 1)
corner_chr = xobj('_', 1)
vertical_chr = xobj('|', 1)
if self._use_unicode:
# use unicode corners
horizontal_chr = xobj('-', 1)
corner_chr = '\N{BOX DRAWINGS LIGHT DOWN AND HORIZONTAL}'
func_height = pretty_func.height()
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
pretty_lower, pretty_upper = self.__print_SumProduct_Limits(lim)
width = (func_height + 2) * 5 // 3 - 2
sign_lines = [horizontal_chr + corner_chr + (horizontal_chr * (width-2)) + corner_chr + horizontal_chr]
for _ in range(func_height + 1):
sign_lines.append(' ' + vertical_chr + (' ' * (width-2)) + vertical_chr + ' ')
pretty_sign = stringPict('')
pretty_sign = prettyForm(*pretty_sign.stack(*sign_lines))
max_upper = max(max_upper, pretty_upper.height())
if first:
sign_height = pretty_sign.height()
pretty_sign = prettyForm(*pretty_sign.above(pretty_upper))
pretty_sign = prettyForm(*pretty_sign.below(pretty_lower))
if first:
pretty_func.baseline = 0
first = False
height = pretty_sign.height()
padding = stringPict('')
padding = prettyForm(*padding.stack(*[' ']*(height - 1)))
pretty_sign = prettyForm(*pretty_sign.right(padding))
pretty_func = prettyForm(*pretty_sign.right(pretty_func))
pretty_func.baseline = max_upper + sign_height//2
pretty_func.binding = prettyForm.MUL
return pretty_func
def __print_SumProduct_Limits(self, lim):
def print_start(lhs, rhs):
op = prettyForm(' ' + xsym("==") + ' ')
l = self._print(lhs)
r = self._print(rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
prettyUpper = self._print(lim[2])
prettyLower = print_start(lim[0], lim[1])
return prettyLower, prettyUpper
def _print_Sum(self, expr):
ascii_mode = not self._use_unicode
def asum(hrequired, lower, upper, use_ascii):
def adjust(s, wid=None, how='<^>'):
if not wid or len(s) > wid:
return s
need = wid - len(s)
if how == '<^>' or how == "<" or how not in list('<^>'):
return s + ' '*need
half = need//2
lead = ' '*half
if how == ">":
return " "*need + s
return lead + s + ' '*(need - len(lead))
h = max(hrequired, 2)
d = h//2
w = d + 1
more = hrequired % 2
lines = []
if use_ascii:
lines.append("_"*(w) + ' ')
lines.append(r"\%s`" % (' '*(w - 1)))
for i in range(1, d):
lines.append('%s\\%s' % (' '*i, ' '*(w - i)))
if more:
lines.append('%s)%s' % (' '*(d), ' '*(w - d)))
for i in reversed(range(1, d)):
lines.append('%s/%s' % (' '*i, ' '*(w - i)))
lines.append("/" + "_"*(w - 1) + ',')
return d, h + more, lines, more
else:
w = w + more
d = d + more
vsum = vobj('sum', 4)
lines.append("_"*(w))
for i in range(0, d):
lines.append('%s%s%s' % (' '*i, vsum[2], ' '*(w - i - 1)))
for i in reversed(range(0, d)):
lines.append('%s%s%s' % (' '*i, vsum[4], ' '*(w - i - 1)))
lines.append(vsum[8]*(w))
return d, h + 2*more, lines, more
f = expr.function
prettyF = self._print(f)
if f.is_Add: # add parens
prettyF = prettyForm(*prettyF.parens())
H = prettyF.height() + 2
# \sum \sum \sum ...
first = True
max_upper = 0
sign_height = 0
for lim in expr.limits:
prettyLower, prettyUpper = self.__print_SumProduct_Limits(lim)
max_upper = max(max_upper, prettyUpper.height())
# Create sum sign based on the height of the argument
d, h, slines, adjustment = asum(
H, prettyLower.width(), prettyUpper.width(), ascii_mode)
prettySign = stringPict('')
prettySign = prettyForm(*prettySign.stack(*slines))
if first:
sign_height = prettySign.height()
prettySign = prettyForm(*prettySign.above(prettyUpper))
prettySign = prettyForm(*prettySign.below(prettyLower))
if first:
# change F baseline so it centers on the sign
prettyF.baseline -= d - (prettyF.height()//2 -
prettyF.baseline)
first = False
# put padding to the right
pad = stringPict('')
pad = prettyForm(*pad.stack(*[' ']*h))
prettySign = prettyForm(*prettySign.right(pad))
# put the present prettyF to the right
prettyF = prettyForm(*prettySign.right(prettyF))
# adjust baseline of ascii mode sigma with an odd height so that it is
# exactly through the center
ascii_adjustment = ascii_mode if not adjustment else 0
prettyF.baseline = max_upper + sign_height//2 + ascii_adjustment
prettyF.binding = prettyForm.MUL
return prettyF
def _print_Limit(self, l):
e, z, z0, dir = l.args
E = self._print(e)
if precedence(e) <= PRECEDENCE["Mul"]:
E = prettyForm(*E.parens('(', ')'))
Lim = prettyForm('lim')
LimArg = self._print(z)
if self._use_unicode:
LimArg = prettyForm(*LimArg.right('\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{RIGHTWARDS ARROW}'))
else:
LimArg = prettyForm(*LimArg.right('->'))
LimArg = prettyForm(*LimArg.right(self._print(z0)))
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
dir = ""
else:
if self._use_unicode:
dir = '\N{SUPERSCRIPT PLUS SIGN}' if str(dir) == "+" else '\N{SUPERSCRIPT MINUS}'
LimArg = prettyForm(*LimArg.right(self._print(dir)))
Lim = prettyForm(*Lim.below(LimArg))
Lim = prettyForm(*Lim.right(E), binding=prettyForm.MUL)
return Lim
def _print_matrix_contents(self, e):
"""
This method factors out what is essentially grid printing.
"""
M = e # matrix
Ms = {} # i,j -> pretty(M[i,j])
for i in range(M.rows):
for j in range(M.cols):
Ms[i, j] = self._print(M[i, j])
# h- and v- spacers
hsep = 2
vsep = 1
# max width for columns
maxw = [-1] * M.cols
for j in range(M.cols):
maxw[j] = max([Ms[i, j].width() for i in range(M.rows)] or [0])
# drawing result
D = None
for i in range(M.rows):
D_row = None
for j in range(M.cols):
s = Ms[i, j]
# reshape s to maxw
# XXX this should be generalized, and go to stringPict.reshape ?
assert s.width() <= maxw[j]
# hcenter it, +0.5 to the right 2
# ( it's better to align formula starts for say 0 and r )
# XXX this is not good in all cases -- maybe introduce vbaseline?
wdelta = maxw[j] - s.width()
wleft = wdelta // 2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
# we don't need vcenter cells -- this is automatically done in
# a pretty way because when their baselines are taking into
# account in .right()
if D_row is None:
D_row = s # first box in a row
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
if D is None:
D = prettyForm('') # Empty Matrix
return D
def _print_MatrixBase(self, e):
D = self._print_matrix_contents(e)
D.baseline = D.height()//2
D = prettyForm(*D.parens('[', ']'))
return D
def _print_TensorProduct(self, expr):
# This should somehow share the code with _print_WedgeProduct:
circled_times = "\u2297"
return self._print_seq(expr.args, None, None, circled_times,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_WedgeProduct(self, expr):
# This should somehow share the code with _print_TensorProduct:
wedge_symbol = "\u2227"
return self._print_seq(expr.args, None, None, wedge_symbol,
parenthesize=lambda x: precedence_traditional(x) <= PRECEDENCE["Mul"])
def _print_Trace(self, e):
D = self._print(e.arg)
D = prettyForm(*D.parens('(',')'))
D.baseline = D.height()//2
D = prettyForm(*D.left('\n'*(0) + 'tr'))
return D
def _print_MatrixElement(self, expr):
from sympy.matrices import MatrixSymbol
from sympy import Symbol
if (isinstance(expr.parent, MatrixSymbol)
and expr.i.is_number and expr.j.is_number):
return self._print(
Symbol(expr.parent.name + '_%d%d' % (expr.i, expr.j)))
else:
prettyFunc = self._print(expr.parent)
prettyFunc = prettyForm(*prettyFunc.parens())
prettyIndices = self._print_seq((expr.i, expr.j), delimiter=', '
).parens(left='[', right=']')[0]
pform = prettyForm(binding=prettyForm.FUNC,
*stringPict.next(prettyFunc, prettyIndices))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyIndices
return pform
def _print_MatrixSlice(self, m):
# XXX works only for applied functions
from sympy.matrices import MatrixSymbol
prettyFunc = self._print(m.parent)
if not isinstance(m.parent, MatrixSymbol):
prettyFunc = prettyForm(*prettyFunc.parens())
def ppslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return prettyForm(*self._print_seq(x, delimiter=':'))
prettyArgs = self._print_seq((ppslice(m.rowslice, m.parent.rows),
ppslice(m.colslice, m.parent.cols)), delimiter=', ').parens(left='[', right=']')[0]
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_Transpose(self, expr):
pform = self._print(expr.arg)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(prettyForm('T'))
return pform
def _print_Adjoint(self, expr):
pform = self._print(expr.arg)
if self._use_unicode:
dag = prettyForm('\N{DAGGER}')
else:
dag = prettyForm('+')
from sympy.matrices import MatrixSymbol
if not isinstance(expr.arg, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**dag
return pform
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
return self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_MatAdd(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
coeff = item.as_coeff_mmul()[0]
if _coeff_isneg(S(coeff)):
s = prettyForm(*stringPict.next(s, ' '))
pform = self._print(item)
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_MatMul(self, expr):
args = list(expr.args)
from sympy import Add, MatAdd, HadamardProduct, KroneckerProduct
for i, a in enumerate(args):
if (isinstance(a, (Add, MatAdd, HadamardProduct, KroneckerProduct))
and len(expr.args) > 1):
args[i] = prettyForm(*self._print(a).parens())
else:
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_Identity(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL I}')
else:
return prettyForm('I')
def _print_ZeroMatrix(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO}')
else:
return prettyForm('0')
def _print_OneMatrix(self, expr):
if self._use_unicode:
return prettyForm('\N{MATHEMATICAL DOUBLE-STRUCK DIGIT ONE}')
else:
return prettyForm('1')
def _print_DotProduct(self, expr):
args = list(expr.args)
for i, a in enumerate(args):
args[i] = self._print(a)
return prettyForm.__mul__(*args)
def _print_MatPow(self, expr):
pform = self._print(expr.base)
from sympy.matrices import MatrixSymbol
if not isinstance(expr.base, MatrixSymbol):
pform = prettyForm(*pform.parens())
pform = pform**(self._print(expr.exp))
return pform
def _print_HadamardProduct(self, expr):
from sympy import MatAdd, MatMul, HadamardProduct
if self._use_unicode:
delim = pretty_atom('Ring')
else:
delim = '.*'
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul, HadamardProduct)))
def _print_HadamardPower(self, expr):
# from sympy import MatAdd, MatMul
if self._use_unicode:
circ = pretty_atom('Ring')
else:
circ = self._print('.')
pretty_base = self._print(expr.base)
pretty_exp = self._print(expr.exp)
if precedence(expr.exp) < PRECEDENCE["Mul"]:
pretty_exp = prettyForm(*pretty_exp.parens())
pretty_circ_exp = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(circ, pretty_exp)
)
return pretty_base**pretty_circ_exp
def _print_KroneckerProduct(self, expr):
from sympy import MatAdd, MatMul
if self._use_unicode:
delim = ' \N{N-ARY CIRCLED TIMES OPERATOR} '
else:
delim = ' x '
return self._print_seq(expr.args, None, None, delim,
parenthesize=lambda x: isinstance(x, (MatAdd, MatMul)))
def _print_FunctionMatrix(self, X):
D = self._print(X.lamda.expr)
D = prettyForm(*D.parens('[', ']'))
return D
def _print_TransferFunction(self, expr):
if not expr.num == 1:
num, den = expr.num, expr.den
res = Mul(num, Pow(den, -1, evaluate=False), evaluate=False)
return self._print_Mul(res)
else:
return self._print(1)/self._print(expr.den)
def _print_Series(self, expr):
args = list(expr.args)
for i, a in enumerate(expr.args):
args[i] = prettyForm(*self._print(a).parens())
return prettyForm.__mul__(*args)
def _print_Parallel(self, expr):
s = None
for item in expr.args:
pform = self._print(item)
if s is None:
s = pform # First element
else:
s = prettyForm(*stringPict.next(s, ' + '))
s = prettyForm(*stringPict.next(s, pform))
return s
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Parallel, Series
num, tf = expr.num, TransferFunction(1, 1, expr.num.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.den.args) if isinstance(expr.den, Series) else [expr.den]
if isinstance(num, Series) and isinstance(expr.den, Series):
den = Parallel(tf, Series(*num_arg_list, *den_arg_list))
elif isinstance(num, Series) and isinstance(expr.den, TransferFunction):
if expr.den == tf:
den = Parallel(tf, Series(*num_arg_list))
else:
den = Parallel(tf, Series(*num_arg_list, expr.den))
elif isinstance(num, TransferFunction) and isinstance(expr.den, Series):
if num == tf:
den = Parallel(tf, Series(*den_arg_list))
else:
den = Parallel(tf, Series(num, *den_arg_list))
else:
if num == tf:
den = Parallel(tf, *den_arg_list)
elif expr.den == tf:
den = Parallel(tf, *num_arg_list)
else:
den = Parallel(tf, Series(*num_arg_list, *den_arg_list))
return self._print(num)/self._print(den)
def _print_BasisDependent(self, expr):
from sympy.vector import Vector
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of BasisDependent is not implemented")
if expr == expr.zero:
return prettyForm(expr.zero._pretty_form)
o1 = []
vectstrs = []
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key = lambda x: x[0].__str__())
for k, v in inneritems:
#if the coef of the basis vector is 1
#we skip the 1
if v == 1:
o1.append("" +
k._pretty_form)
#Same for -1
elif v == -1:
o1.append("(-1) " +
k._pretty_form)
#For a general expr
else:
#We always wrap the measure numbers in
#parentheses
arg_str = self._print(
v).parens()[0]
o1.append(arg_str + ' ' + k._pretty_form)
vectstrs.append(k._pretty_form)
#outstr = u("").join(o1)
if o1[0].startswith(" + "):
o1[0] = o1[0][3:]
elif o1[0].startswith(" "):
o1[0] = o1[0][1:]
#Fixing the newlines
lengths = []
strs = ['']
flag = []
for i, partstr in enumerate(o1):
flag.append(0)
# XXX: What is this hack?
if '\n' in partstr:
tempstr = partstr
tempstr = tempstr.replace(vectstrs[i], '')
if '\N{right parenthesis extension}' in tempstr: # If scalar is a fraction
for paren in range(len(tempstr)):
flag[i] = 1
if tempstr[paren] == '\N{right parenthesis extension}':
tempstr = tempstr[:paren] + '\N{right parenthesis extension}'\
+ ' ' + vectstrs[i] + tempstr[paren + 1:]
break
elif '\N{RIGHT PARENTHESIS LOWER HOOK}' in tempstr:
flag[i] = 1
tempstr = tempstr.replace('\N{RIGHT PARENTHESIS LOWER HOOK}',
'\N{RIGHT PARENTHESIS LOWER HOOK}'
+ ' ' + vectstrs[i])
else:
tempstr = tempstr.replace('\N{RIGHT PARENTHESIS UPPER HOOK}',
'\N{RIGHT PARENTHESIS UPPER HOOK}'
+ ' ' + vectstrs[i])
o1[i] = tempstr
o1 = [x.split('\n') for x in o1]
n_newlines = max([len(x) for x in o1]) # Width of part in its pretty form
if 1 in flag: # If there was a fractional scalar
for i, parts in enumerate(o1):
if len(parts) == 1: # If part has no newline
parts.insert(0, ' ' * (len(parts[0])))
flag[i] = 1
for i, parts in enumerate(o1):
lengths.append(len(parts[flag[i]]))
for j in range(n_newlines):
if j+1 <= len(parts):
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
if j == flag[i]:
strs[flag[i]] += parts[flag[i]] + ' + '
else:
strs[j] += parts[j] + ' '*(lengths[-1] -
len(parts[j])+
3)
else:
if j >= len(strs):
strs.append(' ' * (sum(lengths[:-1]) +
3*(len(lengths)-1)))
strs[j] += ' '*(lengths[-1]+3)
return prettyForm('\n'.join([s[:-3] for s in strs]))
def _print_NDimArray(self, expr):
from sympy import ImmutableMatrix
if expr.rank() == 0:
return self._print(expr[()])
level_str = [[]] + [[] for i in range(expr.rank())]
shape_ranges = [list(range(i)) for i in expr.shape]
# leave eventual matrix elements unflattened
mat = lambda x: ImmutableMatrix(x, evaluate=False)
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(expr[outer_i])
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(level_str[back_outer_i+1])
else:
level_str[back_outer_i].append(mat(
level_str[back_outer_i+1]))
if len(level_str[back_outer_i + 1]) == 1:
level_str[back_outer_i][-1] = mat(
[[level_str[back_outer_i][-1]]])
even = not even
level_str[back_outer_i+1] = []
out_expr = level_str[0][0]
if expr.rank() % 2 == 1:
out_expr = mat([out_expr])
return self._print(out_expr)
def _printer_tensor_indices(self, name, indices, index_map={}):
center = stringPict(name)
top = stringPict(" "*center.width())
bot = stringPict(" "*center.width())
last_valence = None
prev_map = None
for i, index in enumerate(indices):
indpic = self._print(index.args[0])
if ((index in index_map) or prev_map) and last_valence == index.is_up:
if index.is_up:
top = prettyForm(*stringPict.next(top, ","))
else:
bot = prettyForm(*stringPict.next(bot, ","))
if index in index_map:
indpic = prettyForm(*stringPict.next(indpic, "="))
indpic = prettyForm(*stringPict.next(indpic, self._print(index_map[index])))
prev_map = True
else:
prev_map = False
if index.is_up:
top = stringPict(*top.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
bot = stringPict(*bot.right(" "*indpic.width()))
else:
bot = stringPict(*bot.right(indpic))
center = stringPict(*center.right(" "*indpic.width()))
top = stringPict(*top.right(" "*indpic.width()))
last_valence = index.is_up
pict = prettyForm(*center.above(top))
pict = prettyForm(*pict.below(bot))
return pict
def _print_Tensor(self, expr):
name = expr.args[0].name
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices)
def _print_TensorElement(self, expr):
name = expr.expr.args[0].name
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
sign, args = expr._get_args_for_traditional_printer()
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in args
]
pform = prettyForm.__mul__(*args)
if sign:
return prettyForm(*pform.left(sign))
else:
return pform
def _print_TensAdd(self, expr):
args = [
prettyForm(*self._print(i).parens()) if
precedence_traditional(i) < PRECEDENCE["Mul"] else self._print(i)
for i in expr.args
]
return prettyForm.__add__(*args)
def _print_TensorIndex(self, expr):
sym = expr.args[0]
if not expr.is_up:
sym = -sym
return self._print(sym)
def _print_PartialDerivative(self, deriv):
if self._use_unicode:
deriv_symbol = U('PARTIAL DIFFERENTIAL')
else:
deriv_symbol = r'd'
x = None
for variable in reversed(deriv.variables):
s = self._print(variable)
ds = prettyForm(*s.left(deriv_symbol))
if x is None:
x = ds
else:
x = prettyForm(*x.right(' '))
x = prettyForm(*x.right(ds))
f = prettyForm(
binding=prettyForm.FUNC, *self._print(deriv.expr).parens())
pform = prettyForm(deriv_symbol)
if len(deriv.variables) > 1:
pform = pform**self._print(len(deriv.variables))
pform = prettyForm(*pform.below(stringPict.LINE, x))
pform.baseline = pform.baseline + 1
pform = prettyForm(*stringPict.next(pform, f))
pform.binding = prettyForm.MUL
return pform
def _print_Piecewise(self, pexpr):
P = {}
for n, ec in enumerate(pexpr.args):
P[n, 0] = self._print(ec.expr)
if ec.cond == True:
P[n, 1] = prettyForm('otherwise')
else:
P[n, 1] = prettyForm(
*prettyForm('for ').right(self._print(ec.cond)))
hsep = 2
vsep = 1
len_args = len(pexpr.args)
# max widths
maxw = [max([P[i, j].width() for i in range(len_args)])
for j in range(2)]
# FIXME: Refactor this code and matrix into some tabular environment.
# drawing result
D = None
for i in range(len_args):
D_row = None
for j in range(2):
p = P[i, j]
assert p.width() <= maxw[j]
wdelta = maxw[j] - p.width()
wleft = wdelta // 2
wright = wdelta - wleft
p = prettyForm(*p.right(' '*wright))
p = prettyForm(*p.left(' '*wleft))
if D_row is None:
D_row = p
continue
D_row = prettyForm(*D_row.right(' '*hsep)) # h-spacer
D_row = prettyForm(*D_row.right(p))
if D is None:
D = D_row # first row in a picture
continue
# v-spacer
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens('{', ''))
D.baseline = D.height()//2
D.binding = prettyForm.OPEN
return D
def _print_ITE(self, ite):
from sympy.functions.elementary.piecewise import Piecewise
return self._print(ite.rewrite(Piecewise))
def _hprint_vec(self, v):
D = None
for a in v:
p = a
if D is None:
D = p
else:
D = prettyForm(*D.right(', '))
D = prettyForm(*D.right(p))
if D is None:
D = stringPict(' ')
return D
def _hprint_vseparator(self, p1, p2):
tmp = prettyForm(*p1.right(p2))
sep = stringPict(vobj('|', tmp.height()), baseline=tmp.baseline)
return prettyForm(*p1.right(sep, p2))
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_meijerg(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
v = {}
v[(0, 0)] = [self._print(a) for a in e.an]
v[(0, 1)] = [self._print(a) for a in e.aother]
v[(1, 0)] = [self._print(b) for b in e.bm]
v[(1, 1)] = [self._print(b) for b in e.bother]
P = self._print(e.argument)
P.baseline = P.height()//2
vp = {}
for idx in v:
vp[idx] = self._hprint_vec(v[idx])
for i in range(2):
maxw = max(vp[(0, i)].width(), vp[(1, i)].width())
for j in range(2):
s = vp[(j, i)]
left = (maxw - s.width()) // 2
right = maxw - left - s.width()
s = prettyForm(*s.left(' ' * left))
s = prettyForm(*s.right(' ' * right))
vp[(j, i)] = s
D1 = prettyForm(*vp[(0, 0)].right(' ', vp[(0, 1)]))
D1 = prettyForm(*D1.below(' '))
D2 = prettyForm(*vp[(1, 0)].right(' ', vp[(1, 1)]))
D = prettyForm(*D1.below(D2))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the G symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('G')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
pp = self._print(len(e.ap))
pq = self._print(len(e.bq))
pm = self._print(len(e.bm))
pn = self._print(len(e.an))
def adjust(p1, p2):
diff = p1.width() - p2.width()
if diff == 0:
return p1, p2
elif diff > 0:
return p1, prettyForm(*p2.left(' '*diff))
else:
return prettyForm(*p1.left(' '*-diff)), p2
pp, pm = adjust(pp, pm)
pq, pn = adjust(pq, pn)
pu = prettyForm(*pm.right(', ', pn))
pl = prettyForm(*pp.right(', ', pq))
ht = F.baseline - above - 2
if ht > 0:
pu = prettyForm(*pu.below('\n'*ht))
p = prettyForm(*pu.below(pl))
F.baseline = above
F = prettyForm(*F.right(p))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
def _print_ExpBase(self, e):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
base = prettyForm(pretty_atom('Exp1', 'e'))
return base ** self._print(e.args[0])
def _print_Function(self, e, sort=False, func_name=None):
# optional argument func_name for supplying custom names
# XXX works only for applied functions
return self._helper_print_function(e.func, e.args, sort=sort, func_name=func_name)
def _print_mathieuc(self, e):
return self._print_Function(e, func_name='C')
def _print_mathieus(self, e):
return self._print_Function(e, func_name='S')
def _print_mathieucprime(self, e):
return self._print_Function(e, func_name="C'")
def _print_mathieusprime(self, e):
return self._print_Function(e, func_name="S'")
def _helper_print_function(self, func, args, sort=False, func_name=None, delimiter=', ', elementwise=False):
if sort:
args = sorted(args, key=default_sort_key)
if not func_name and hasattr(func, "__name__"):
func_name = func.__name__
if func_name:
prettyFunc = self._print(Symbol(func_name))
else:
prettyFunc = prettyForm(*self._print(func).parens())
if elementwise:
if self._use_unicode:
circ = pretty_atom('Modifier Letter Low Ring')
else:
circ = '.'
circ = self._print(circ)
prettyFunc = prettyForm(
binding=prettyForm.LINE,
*stringPict.next(prettyFunc, circ)
)
prettyArgs = prettyForm(*self._print_seq(args, delimiter=delimiter).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_ElementwiseApplyFunction(self, e):
func = e.function
arg = e.expr
args = [arg]
return self._helper_print_function(func, args, delimiter="", elementwise=True)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.zeta_functions import lerchphi
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: [greek_unicode['delta'], 'delta'],
gamma: [greek_unicode['Gamma'], 'Gamma'],
lerchphi: [greek_unicode['Phi'], 'lerchphi'],
lowergamma: [greek_unicode['gamma'], 'gamma'],
beta: [greek_unicode['Beta'], 'B'],
DiracDelta: [greek_unicode['delta'], 'delta'],
Chi: ['Chi', 'Chi']}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
if self._use_unicode:
return prettyForm(self._special_function_classes[cls][0])
else:
return prettyForm(self._special_function_classes[cls][1])
func_name = expr.__name__
return prettyForm(pretty_symbol(func_name))
def _print_GeometryEntity(self, expr):
# GeometryEntity is based on Tuple but should not print like a Tuple
return self.emptyPrinter(expr)
def _print_lerchphi(self, e):
func_name = greek_unicode['Phi'] if self._use_unicode else 'lerchphi'
return self._print_Function(e, func_name=func_name)
def _print_dirichlet_eta(self, e):
func_name = greek_unicode['eta'] if self._use_unicode else 'dirichlet_eta'
return self._print_Function(e, func_name=func_name)
def _print_Heaviside(self, e):
func_name = greek_unicode['theta'] if self._use_unicode else 'Heaviside'
return self._print_Function(e, func_name=func_name)
def _print_fresnels(self, e):
return self._print_Function(e, func_name="S")
def _print_fresnelc(self, e):
return self._print_Function(e, func_name="C")
def _print_airyai(self, e):
return self._print_Function(e, func_name="Ai")
def _print_airybi(self, e):
return self._print_Function(e, func_name="Bi")
def _print_airyaiprime(self, e):
return self._print_Function(e, func_name="Ai'")
def _print_airybiprime(self, e):
return self._print_Function(e, func_name="Bi'")
def _print_LambertW(self, e):
return self._print_Function(e, func_name="W")
def _print_Lambda(self, e):
expr = e.expr
sig = e.signature
if self._use_unicode:
arrow = " \N{RIGHTWARDS ARROW FROM BAR} "
else:
arrow = " -> "
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
var_form = self._print(sig)
return prettyForm(*stringPict.next(var_form, arrow, self._print(expr)), binding=8)
def _print_Order(self, expr):
pform = self._print(expr.expr)
if (expr.point and any(p != S.Zero for p in expr.point)) or \
len(expr.variables) > 1:
pform = prettyForm(*pform.right("; "))
if len(expr.variables) > 1:
pform = prettyForm(*pform.right(self._print(expr.variables)))
elif len(expr.variables):
pform = prettyForm(*pform.right(self._print(expr.variables[0])))
if self._use_unicode:
pform = prettyForm(*pform.right(" \N{RIGHTWARDS ARROW} "))
else:
pform = prettyForm(*pform.right(" -> "))
if len(expr.point) > 1:
pform = prettyForm(*pform.right(self._print(expr.point)))
else:
pform = prettyForm(*pform.right(self._print(expr.point[0])))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left("O"))
return pform
def _print_SingularityFunction(self, e):
if self._use_unicode:
shift = self._print(e.args[0]-e.args[1])
n = self._print(e.args[2])
base = prettyForm("<")
base = prettyForm(*base.right(shift))
base = prettyForm(*base.right(">"))
pform = base**n
return pform
else:
n = self._print(e.args[2])
shift = self._print(e.args[0]-e.args[1])
base = self._print_seq(shift, "<", ">", ' ')
return base**n
def _print_beta(self, e):
func_name = greek_unicode['Beta'] if self._use_unicode else 'B'
return self._print_Function(e, func_name=func_name)
def _print_gamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_uppergamma(self, e):
func_name = greek_unicode['Gamma'] if self._use_unicode else 'Gamma'
return self._print_Function(e, func_name=func_name)
def _print_lowergamma(self, e):
func_name = greek_unicode['gamma'] if self._use_unicode else 'lowergamma'
return self._print_Function(e, func_name=func_name)
def _print_DiracDelta(self, e):
if self._use_unicode:
if len(e.args) == 2:
a = prettyForm(greek_unicode['delta'])
b = self._print(e.args[1])
b = prettyForm(*b.parens())
c = self._print(e.args[0])
c = prettyForm(*c.parens())
pform = a**b
pform = prettyForm(*pform.right(' '))
pform = prettyForm(*pform.right(c))
return pform
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(greek_unicode['delta']))
return pform
else:
return self._print_Function(e)
def _print_expint(self, e):
from sympy import Function
if e.args[0].is_Integer and self._use_unicode:
return self._print_Function(Function('E_%s' % e.args[0])(e.args[1]))
return self._print_Function(e)
def _print_Chi(self, e):
# This needs a special case since otherwise it comes out as greek
# letter chi...
prettyFunc = prettyForm("Chi")
prettyArgs = prettyForm(*self._print_seq(e.args).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
# store pform parts so it can be reassembled e.g. when powered
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_elliptic_e(self, e):
pforma0 = self._print(e.args[0])
if len(e.args) == 1:
pform = pforma0
else:
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('E'))
return pform
def _print_elliptic_k(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('K'))
return pform
def _print_elliptic_f(self, e):
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
pform = self._hprint_vseparator(pforma0, pforma1)
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left('F'))
return pform
def _print_elliptic_pi(self, e):
name = greek_unicode['Pi'] if self._use_unicode else 'Pi'
pforma0 = self._print(e.args[0])
pforma1 = self._print(e.args[1])
if len(e.args) == 2:
pform = self._hprint_vseparator(pforma0, pforma1)
else:
pforma2 = self._print(e.args[2])
pforma = self._hprint_vseparator(pforma1, pforma2)
pforma = prettyForm(*pforma.left('; '))
pform = prettyForm(*pforma.left(pforma0))
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(name))
return pform
def _print_GoldenRatio(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('phi'))
return self._print(Symbol("GoldenRatio"))
def _print_EulerGamma(self, expr):
if self._use_unicode:
return prettyForm(pretty_symbol('gamma'))
return self._print(Symbol("EulerGamma"))
def _print_Mod(self, expr):
pform = self._print(expr.args[0])
if pform.binding > prettyForm.MUL:
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.right(' mod '))
pform = prettyForm(*pform.right(self._print(expr.args[1])))
pform.binding = prettyForm.OPEN
return pform
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
pforms, indices = [], []
def pretty_negative(pform, index):
"""Prepend a minus sign to a pretty form. """
#TODO: Move this code to prettyForm
if index == 0:
if pform.height() > 1:
pform_neg = '- '
else:
pform_neg = '-'
else:
pform_neg = ' - '
if (pform.binding > prettyForm.NEG
or pform.binding == prettyForm.ADD):
p = stringPict(*pform.parens())
else:
p = pform
p = stringPict.next(pform_neg, p)
# Lower the binding to NEG, even if it was higher. Otherwise, it
# will print as a + ( - (b)), instead of a - (b).
return prettyForm(binding=prettyForm.NEG, *p)
for i, term in enumerate(terms):
if term.is_Mul and _coeff_isneg(term):
coeff, other = term.as_coeff_mul(rational=False)
if coeff == -1:
negterm = Mul(*other, evaluate=False)
else:
negterm = Mul(-coeff, *other, evaluate=False)
pform = self._print(negterm)
pforms.append(pretty_negative(pform, i))
elif term.is_Rational and term.q > 1:
pforms.append(None)
indices.append(i)
elif term.is_Number and term < 0:
pform = self._print(-term)
pforms.append(pretty_negative(pform, i))
elif term.is_Relational:
pforms.append(prettyForm(*self._print(term).parens()))
else:
pforms.append(self._print(term))
if indices:
large = True
for pform in pforms:
if pform is not None and pform.height() > 1:
break
else:
large = False
for i in indices:
term, negative = terms[i], False
if term < 0:
term, negative = -term, True
if large:
pform = prettyForm(str(term.p))/prettyForm(str(term.q))
else:
pform = self._print(term)
if negative:
pform = pretty_negative(pform, i)
pforms[i] = pform
return prettyForm.__add__(*pforms)
def _print_Mul(self, product):
from sympy.physics.units import Quantity
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = product.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
strargs = list(map(self._print, args))
# XXX: This is a hack to work around the fact that
# prettyForm.__mul__ absorbs a leading -1 in the args. Probably it
# would be better to fix this in prettyForm.__mul__ instead.
negone = strargs[0] == '-1'
if negone:
strargs[0] = prettyForm('1', 0, 0)
obj = prettyForm.__mul__(*strargs)
if negone:
obj = prettyForm('-' + obj.s, obj.baseline, obj.binding)
return obj
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = list(product.args)
# If quantities are present append them at the back
args = sorted(args, key=lambda x: isinstance(x, Quantity) or
(isinstance(x, Pow) and isinstance(x.base, Quantity)))
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
if item.exp != -1:
b.append(Pow(item.base, -item.exp, evaluate=False))
else:
b.append(Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( Rational(item.p) )
if item.q != 1:
b.append( Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in range(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
elif a[i].is_Relational:
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in range(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
def _print_nth_root(self, base, expt):
bpretty = self._print(base)
# In very simple cases, use a single-char root sign
if (self._settings['use_unicode_sqrt_char'] and self._use_unicode
and expt is S.Half and bpretty.height() == 1
and (bpretty.width() == 1
or (base.is_Integer and base.is_nonnegative))):
return prettyForm(*bpretty.left('\N{SQUARE ROOT}'))
# Construct root sign, start with the \/ shape
_zZ = xobj('/', 1)
rootsign = xobj('\\', 1) + _zZ
# Make exponent number to put above it
if isinstance(expt, Rational):
exp = str(expt.q)
if exp == '2':
exp = ''
else:
exp = str(expt.args[0])
exp = exp.ljust(2)
if len(exp) > 2:
rootsign = ' '*(len(exp) - 2) + rootsign
# Stack the exponent
rootsign = stringPict(exp + '\n' + rootsign)
rootsign.baseline = 0
# Diagonal: length is one less than height of base
linelength = bpretty.height() - 1
diagonal = stringPict('\n'.join(
' '*(linelength - i - 1) + _zZ + ' '*i
for i in range(linelength)
))
# Put baseline just below lowest line: next to exp
diagonal.baseline = linelength - 1
# Make the root symbol
rootsign = prettyForm(*rootsign.right(diagonal))
# Det the baseline to match contents to fix the height
# but if the height of bpretty is one, the rootsign must be one higher
rootsign.baseline = max(1, bpretty.baseline)
#build result
s = prettyForm(hobj('_', 2 + bpretty.width()))
s = prettyForm(*bpretty.above(s))
s = prettyForm(*s.left(rootsign))
return s
def _print_Pow(self, power):
from sympy.simplify.simplify import fraction
b, e = power.as_base_exp()
if power.is_commutative:
if e is S.NegativeOne:
return prettyForm("1")/self._print(b)
n, d = fraction(e)
if n is S.One and d.is_Atom and not e.is_Integer and self._settings['root_notation']:
return self._print_nth_root(b, e)
if e.is_Rational and e < 0:
return prettyForm("1")/self._print(Pow(b, -e, evaluate=False))
if b.is_Relational:
return prettyForm(*self._print(b).parens()).__pow__(self._print(e))
return self._print(b)**self._print(e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def __print_numer_denom(self, p, q):
if q == 1:
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)
else:
return prettyForm(str(p))
elif abs(p) >= 10 and abs(q) >= 10:
# If more than one digit in numer and denom, print larger fraction
if p < 0:
return prettyForm(str(p), binding=prettyForm.NEG)/prettyForm(str(q))
# Old printing method:
#pform = prettyForm(str(-p))/prettyForm(str(q))
#return prettyForm(binding=prettyForm.NEG, *pform.left('- '))
else:
return prettyForm(str(p))/prettyForm(str(q))
else:
return None
def _print_Rational(self, expr):
result = self.__print_numer_denom(expr.p, expr.q)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_Fraction(self, expr):
result = self.__print_numer_denom(expr.numerator, expr.denominator)
if result is not None:
return result
else:
return self.emptyPrinter(expr)
def _print_ProductSet(self, p):
if len(p.sets) >= 1 and not has_variety(p.sets):
return self._print(p.sets[0]) ** self._print(len(p.sets))
else:
prod_char = "\N{MULTIPLICATION SIGN}" if self._use_unicode else 'x'
return self._print_seq(p.sets, None, None, ' %s ' % prod_char,
parenthesize=lambda set: set.is_Union or
set.is_Intersection or set.is_ProductSet)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_seq(items, '{', '}', ', ' )
def _print_Range(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif len(s) > 4:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
printset = tuple(s)
return self._print_seq(printset, '{', '}', ', ' )
def _print_Interval(self, i):
if i.start == i.end:
return self._print_seq(i.args[:1], '{', '}')
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return self._print_seq(i.args[:2], left, right)
def _print_AccumulationBounds(self, i):
left = '<'
right = '>'
return self._print_seq(i.args[:2], left, right)
def _print_Intersection(self, u):
delimiter = ' %s ' % pretty_atom('Intersection', 'n')
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Union or set.is_Complement)
def _print_Union(self, u):
union_delimiter = ' %s ' % pretty_atom('Union', 'U')
return self._print_seq(u.args, None, None, union_delimiter,
parenthesize=lambda set: set.is_ProductSet or
set.is_Intersection or set.is_Complement)
def _print_SymmetricDifference(self, u):
if not self._use_unicode:
raise NotImplementedError("ASCII pretty printing of SymmetricDifference is not implemented")
sym_delimeter = ' %s ' % pretty_atom('SymmetricDifference')
return self._print_seq(u.args, None, None, sym_delimeter)
def _print_Complement(self, u):
delimiter = r' \ '
return self._print_seq(u.args, None, None, delimiter,
parenthesize=lambda set: set.is_ProductSet or set.is_Intersection
or set.is_Union)
def _print_ImageSet(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
else:
inn = 'in'
fun = ts.lamda
sets = ts.base_sets
signature = fun.signature
expr = self._print(fun.expr)
bar = self._print("|")
if len(signature) == 1:
return self._print_seq((expr, bar, signature[0], inn, sets[0]), "{", "}", ' ')
else:
pargs = tuple(j for var, setv in zip(signature, sets) for j in (var, inn, setv, ","))
return self._print_seq((expr, bar) + pargs[:-1], "{", "}", ' ')
def _print_ConditionSet(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
# using _and because and is a keyword and it is bad practice to
# overwrite them
_and = "\N{LOGICAL AND}"
else:
inn = 'in'
_and = 'and'
variables = self._print_seq(Tuple(ts.sym))
as_expr = getattr(ts.condition, 'as_expr', None)
if as_expr is not None:
cond = self._print(ts.condition.as_expr())
else:
cond = self._print(ts.condition)
if self._use_unicode:
cond = self._print(cond)
cond = prettyForm(*cond.parens())
bar = self._print("|")
if ts.base_set is S.UniversalSet:
return self._print_seq((variables, bar, cond), "{", "}", ' ')
base = self._print(ts.base_set)
return self._print_seq((variables, bar, variables, inn,
base, _and, cond), "{", "}", ' ')
def _print_ComplexRegion(self, ts):
if self._use_unicode:
inn = "\N{SMALL ELEMENT OF}"
else:
inn = 'in'
variables = self._print_seq(ts.variables)
expr = self._print(ts.expr)
bar = self._print("|")
prodsets = self._print(ts.sets)
return self._print_seq((expr, bar, variables, inn, prodsets), "{", "}", ' ')
def _print_Contains(self, e):
var, set = e.args
if self._use_unicode:
el = " \N{ELEMENT OF} "
return prettyForm(*stringPict.next(self._print(var),
el, self._print(set)), binding=8)
else:
return prettyForm(sstr(e))
def _print_FourierSeries(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
return self._print_Add(s.truncate()) + self._print(dots)
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_SetExpr(self, se):
pretty_set = prettyForm(*self._print(se.set).parens())
pretty_name = self._print(Symbol("SetExpr"))
return prettyForm(*pretty_name.right(pretty_set))
def _print_SeqFormula(self, s):
if self._use_unicode:
dots = "\N{HORIZONTAL ELLIPSIS}"
else:
dots = '...'
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
raise NotImplementedError("Pretty printing of sequences with symbolic bound not implemented")
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
printset = tuple(printset)
else:
printset = tuple(s)
return self._print_list(printset)
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_seq(self, seq, left=None, right=None, delimiter=', ',
parenthesize=lambda x: False):
s = None
try:
for item in seq:
pform = self._print(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else:
# XXX: Under the tests from #15686 this raises:
# AttributeError: 'Fake' object has no attribute 'baseline'
# This is caught below but that is not the right way to
# fix it.
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
except AttributeError:
s = None
for item in seq:
pform = self.doprint(item)
if parenthesize(item):
pform = prettyForm(*pform.parens())
if s is None:
# first element
s = pform
else :
s = prettyForm(*stringPict.next(s, delimiter))
s = prettyForm(*stringPict.next(s, pform))
if s is None:
s = stringPict('')
s = prettyForm(*s.parens(left, right, ifascii_nougly=True))
return s
def join(self, delimiter, args):
pform = None
for arg in args:
if pform is None:
pform = arg
else:
pform = prettyForm(*pform.right(delimiter))
pform = prettyForm(*pform.right(arg))
if pform is None:
return prettyForm("")
else:
return pform
def _print_list(self, l):
return self._print_seq(l, '[', ']')
def _print_tuple(self, t):
if len(t) == 1:
ptuple = prettyForm(*stringPict.next(self._print(t[0]), ','))
return prettyForm(*ptuple.parens('(', ')', ifascii_nougly=True))
else:
return self._print_seq(t, '(', ')')
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for k in keys:
K = self._print(k)
V = self._print(d[k])
s = prettyForm(*stringPict.next(K, ': ', V))
items.append(s)
return self._print_seq(items, '{', '}')
def _print_Dict(self, d):
return self._print_dict(d)
def _print_set(self, s):
if not s:
return prettyForm('set()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
return pretty
def _print_frozenset(self, s):
if not s:
return prettyForm('frozenset()')
items = sorted(s, key=default_sort_key)
pretty = self._print_seq(items)
pretty = prettyForm(*pretty.parens('{', '}', ifascii_nougly=True))
pretty = prettyForm(*pretty.parens('(', ')', ifascii_nougly=True))
pretty = prettyForm(*stringPict.next(type(s).__name__, pretty))
return pretty
def _print_UniversalSet(self, s):
if self._use_unicode:
return prettyForm("\N{MATHEMATICAL DOUBLE-STRUCK CAPITAL U}")
else:
return prettyForm('UniversalSet')
def _print_PolyRing(self, ring):
return prettyForm(sstr(ring))
def _print_FracField(self, field):
return prettyForm(sstr(field))
def _print_FreeGroupElement(self, elm):
return prettyForm(str(elm))
def _print_PolyElement(self, poly):
return prettyForm(sstr(poly))
def _print_FracElement(self, frac):
return prettyForm(sstr(frac))
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_ComplexRootOf(self, expr):
args = [self._print_Add(expr.expr, order='lex'), expr.index]
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('CRootOf'))
return pform
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
pform = prettyForm(*self._print_seq(args).parens())
pform = prettyForm(*pform.left('RootSum'))
return pform
def _print_FiniteField(self, expr):
if self._use_unicode:
form = '\N{DOUBLE-STRUCK CAPITAL Z}_%d'
else:
form = 'GF(%d)'
return prettyForm(pretty_symbol(form % expr.mod))
def _print_IntegerRing(self, expr):
if self._use_unicode:
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Z}')
else:
return prettyForm('ZZ')
def _print_RationalField(self, expr):
if self._use_unicode:
return prettyForm('\N{DOUBLE-STRUCK CAPITAL Q}')
else:
return prettyForm('QQ')
def _print_RealField(self, domain):
if self._use_unicode:
prefix = '\N{DOUBLE-STRUCK CAPITAL R}'
else:
prefix = 'RR'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_ComplexField(self, domain):
if self._use_unicode:
prefix = '\N{DOUBLE-STRUCK CAPITAL C}'
else:
prefix = 'CC'
if domain.has_default_precision:
return prettyForm(prefix)
else:
return self._print(pretty_symbol(prefix + "_" + str(domain.precision)))
def _print_PolynomialRing(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_FractionField(self, expr):
args = list(expr.symbols)
if not expr.order.is_default:
order = prettyForm(*prettyForm("order=").right(self._print(expr.order)))
args.append(order)
pform = self._print_seq(args, '(', ')')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_PolynomialRingBase(self, expr):
g = expr.symbols
if str(expr.order) != str(expr.default_order):
g = g + ("order=" + str(expr.order),)
pform = self._print_seq(g, '[', ']')
pform = prettyForm(*pform.left(self._print(expr.domain)))
return pform
def _print_GroebnerBasis(self, basis):
exprs = [ self._print_Add(arg, order=basis.order)
for arg in basis.exprs ]
exprs = prettyForm(*self.join(", ", exprs).parens(left="[", right="]"))
gens = [ self._print(gen) for gen in basis.gens ]
domain = prettyForm(
*prettyForm("domain=").right(self._print(basis.domain)))
order = prettyForm(
*prettyForm("order=").right(self._print(basis.order)))
pform = self.join(", ", [exprs] + gens + [domain, order])
pform = prettyForm(*pform.parens())
pform = prettyForm(*pform.left(basis.__class__.__name__))
return pform
def _print_Subs(self, e):
pform = self._print(e.expr)
pform = prettyForm(*pform.parens())
h = pform.height() if pform.height() > 1 else 2
rvert = stringPict(vobj('|', h), baseline=pform.baseline)
pform = prettyForm(*pform.right(rvert))
b = pform.baseline
pform.baseline = pform.height() - 1
pform = prettyForm(*pform.right(self._print_seq([
self._print_seq((self._print(v[0]), xsym('=='), self._print(v[1])),
delimiter='') for v in zip(e.variables, e.point) ])))
pform.baseline = b
return pform
def _print_number_function(self, e, name):
# Print name_arg[0] for one argument or name_arg[0](arg[1])
# for more than one argument
pform = prettyForm(name)
arg = self._print(e.args[0])
pform_arg = prettyForm(" "*arg.width())
pform_arg = prettyForm(*pform_arg.below(arg))
pform = prettyForm(*pform.right(pform_arg))
if len(e.args) == 1:
return pform
m, x = e.args
# TODO: copy-pasted from _print_Function: can we do better?
prettyFunc = pform
prettyArgs = prettyForm(*self._print_seq([x]).parens())
pform = prettyForm(
binding=prettyForm.FUNC, *stringPict.next(prettyFunc, prettyArgs))
pform.prettyFunc = prettyFunc
pform.prettyArgs = prettyArgs
return pform
def _print_euler(self, e):
return self._print_number_function(e, "E")
def _print_catalan(self, e):
return self._print_number_function(e, "C")
def _print_bernoulli(self, e):
return self._print_number_function(e, "B")
_print_bell = _print_bernoulli
def _print_lucas(self, e):
return self._print_number_function(e, "L")
def _print_fibonacci(self, e):
return self._print_number_function(e, "F")
def _print_tribonacci(self, e):
return self._print_number_function(e, "T")
def _print_stieltjes(self, e):
if self._use_unicode:
return self._print_number_function(e, '\N{GREEK SMALL LETTER GAMMA}')
else:
return self._print_number_function(e, "stieltjes")
def _print_KroneckerDelta(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.right(prettyForm(',')))
pform = prettyForm(*pform.right(self._print(e.args[1])))
if self._use_unicode:
a = stringPict(pretty_symbol('delta'))
else:
a = stringPict('d')
b = pform
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.below(top))
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.as_boolean())))
return pform
elif hasattr(d, 'set'):
pform = self._print('Domain: ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
pform = prettyForm(*pform.right(self._print(' in ')))
pform = prettyForm(*pform.right(self._print(d.set)))
return pform
elif hasattr(d, 'symbols'):
pform = self._print('Domain on ')
pform = prettyForm(*pform.right(self._print(d.symbols)))
return pform
else:
return self._print(None)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(pretty_symbol(object.name))
def _print_Morphism(self, morphism):
arrow = xsym("-->")
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
tail = domain.right(arrow, codomain)[0]
return prettyForm(tail)
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(pretty_symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(":", pretty_morphism)[0])
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(
NamedMorphism(morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
circle = xsym(".")
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [pretty_symbol(component.name) for
component in morphism.components]
component_names_list.reverse()
component_names = circle.join(component_names_list) + ":"
pretty_name = self._print(component_names)
pretty_morphism = self._print_Morphism(morphism)
return prettyForm(pretty_name.right(pretty_morphism)[0])
def _print_Category(self, category):
return self._print(pretty_symbol(category.name))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
pretty_result = self._print(diagram.premises)
if diagram.conclusions:
results_arrow = " %s " % xsym("==>")
pretty_conclusions = self._print(diagram.conclusions)[0]
pretty_result = pretty_result.right(
results_arrow, pretty_conclusions)
return prettyForm(pretty_result[0])
def _print_DiagramGrid(self, grid):
from sympy.matrices import Matrix
from sympy import Symbol
matrix = Matrix([[grid[i, j] if grid[i, j] else Symbol(" ")
for j in range(grid.width)]
for i in range(grid.height)])
return self._print_matrix_contents(matrix)
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return self._print_seq(m, '[', ']')
def _print_SubModule(self, M):
return self._print_seq(M.gens, '<', '>')
def _print_FreeModule(self, M):
return self._print(M.ring)**self._print(M.rank)
def _print_ModuleImplementedIdeal(self, M):
return self._print_seq([x for [x] in M._module.gens], '<', '>')
def _print_QuotientRing(self, R):
return self._print(R.ring) / self._print(R.base_ideal)
def _print_QuotientRingElement(self, R):
return self._print(R.data) + self._print(R.ring.base_ideal)
def _print_QuotientModuleElement(self, m):
return self._print(m.data) + self._print(m.module.killed_module)
def _print_QuotientModule(self, M):
return self._print(M.base) / self._print(M.killed_module)
def _print_MatrixHomomorphism(self, h):
matrix = self._print(h._sympy_matrix())
matrix.baseline = matrix.height() // 2
pform = prettyForm(*matrix.right(' : ', self._print(h.domain),
' %s> ' % hobj('-', 2), self._print(h.codomain)))
return pform
def _print_Manifold(self, manifold):
return self._print(manifold.name)
def _print_Patch(self, patch):
return self._print(patch.name)
def _print_CoordSystem(self, coords):
return self._print(coords.name)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return self._print(pretty_symbol(string))
def _print_BaseVectorField(self, field):
s = U('PARTIAL DIFFERENTIAL') + '_' + field._coord_sys.symbols[field._index].name
return self._print(pretty_symbol(s))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return self._print('\N{DOUBLE-STRUCK ITALIC SMALL D} ' + pretty_symbol(string))
else:
pform = self._print(field)
pform = prettyForm(*pform.parens())
return prettyForm(*pform.left("\N{DOUBLE-STRUCK ITALIC SMALL D}"))
def _print_Tr(self, p):
#TODO: Handle indices
pform = self._print(p.args[0])
pform = prettyForm(*pform.left('%s(' % (p.__class__.__name__)))
pform = prettyForm(*pform.right(')'))
return pform
def _print_primenu(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['nu']))
else:
pform = prettyForm(*pform.left('nu'))
return pform
def _print_primeomega(self, e):
pform = self._print(e.args[0])
pform = prettyForm(*pform.parens())
if self._use_unicode:
pform = prettyForm(*pform.left(greek_unicode['Omega']))
else:
pform = prettyForm(*pform.left('Omega'))
return pform
def _print_Quantity(self, e):
if e.name.name == 'degree':
pform = self._print("\N{DEGREE SIGN}")
return pform
else:
return self.emptyPrinter(e)
def _print_AssignmentBase(self, e):
op = prettyForm(' ' + xsym(e.op) + ' ')
l = self._print(e.lhs)
r = self._print(e.rhs)
pform = prettyForm(*stringPict.next(l, op, r))
return pform
def _print_Str(self, s):
return self._print(s.name)
@print_function(PrettyPrinter)
def pretty(expr, **settings):
"""Returns a string containing the prettified form of expr.
For information on keyword arguments see pretty_print function.
"""
pp = PrettyPrinter(settings)
# XXX: this is an ugly hack, but at least it works
use_unicode = pp._settings['use_unicode']
uflag = pretty_use_unicode(use_unicode)
try:
return pp.doprint(expr)
finally:
pretty_use_unicode(uflag)
def pretty_print(expr, **kwargs):
"""Prints expr in pretty form.
pprint is just a shortcut for this function.
Parameters
==========
expr : expression
The expression to print.
wrap_line : bool, optional (default=True)
Line wrapping enabled/disabled.
num_columns : int or None, optional (default=None)
Number of columns before line breaking (default to None which reads
the terminal width), useful when using SymPy without terminal.
use_unicode : bool or None, optional (default=None)
Use unicode characters, such as the Greek letter pi instead of
the string pi.
full_prec : bool or string, optional (default="auto")
Use full precision.
order : bool or string, optional (default=None)
Set to 'none' for long expressions if slow; default is None.
use_unicode_sqrt_char : bool, optional (default=True)
Use compact single-character square root symbol (when unambiguous).
root_notation : bool, optional (default=True)
Set to 'False' for printing exponents of the form 1/n in fractional form.
By default exponent is printed in root form.
mat_symbol_style : string, optional (default="plain")
Set to "bold" for printing MatrixSymbols using a bold mathematical symbol face.
By default the standard face is used.
imaginary_unit : string, optional (default="i")
Letter to use for imaginary unit when use_unicode is True.
Can be "i" (default) or "j".
"""
print(pretty(expr, **kwargs))
pprint = pretty_print
def pager_print(expr, **settings):
"""Prints expr using the pager, in pretty form.
This invokes a pager command using pydoc. Lines are not wrapped
automatically. This routine is meant to be used with a pager that allows
sideways scrolling, like ``less -S``.
Parameters are the same as for ``pretty_print``. If you wish to wrap lines,
pass ``num_columns=None`` to auto-detect the width of the terminal.
"""
from pydoc import pager
from locale import getpreferredencoding
if 'num_columns' not in settings:
settings['num_columns'] = 500000 # disable line wrap
pager(pretty(expr, **settings).encode(getpreferredencoding()))
|
2bc9d220fc0270a0e7e6bc90b7f8c871715ffb914b35b8c6fe9f01d6b3e37f99 | """Symbolic primitives + unicode/ASCII abstraction for pretty.py"""
import sys
import warnings
from string import ascii_lowercase, ascii_uppercase
unicode_warnings = ''
# first, setup unicodedate environment
try:
import unicodedata
def U(name):
"""unicode character by name or None if not found"""
try:
u = unicodedata.lookup(name)
except KeyError:
u = None
global unicode_warnings
unicode_warnings += 'No \'%s\' in unicodedata\n' % name
return u
except ImportError:
unicode_warnings += 'No unicodedata available\n'
U = lambda name: None
from sympy.printing.conventions import split_super_sub
from sympy.core.alphabets import greeks
from sympy.utilities.exceptions import SymPyDeprecationWarning
# prefix conventions when constructing tables
# L - LATIN i
# G - GREEK beta
# D - DIGIT 0
# S - SYMBOL +
__all__ = ['greek_unicode', 'sub', 'sup', 'xsym', 'vobj', 'hobj', 'pretty_symbol',
'annotated']
_use_unicode = False
def pretty_use_unicode(flag=None):
"""Set whether pretty-printer should use unicode by default"""
global _use_unicode
global unicode_warnings
if flag is None:
return _use_unicode
# we know that some letters are not supported in Python 2.X so
# ignore those warnings. Remove this when 2.X support is dropped.
if unicode_warnings:
known = ['LATIN SUBSCRIPT SMALL LETTER %s' % i for i in 'HKLMNPST']
unicode_warnings = '\n'.join([
l for l in unicode_warnings.splitlines() if not any(
i in l for i in known)])
# ------------ end of 2.X warning filtering
if flag and unicode_warnings:
# print warnings (if any) on first unicode usage
warnings.warn(unicode_warnings)
unicode_warnings = ''
use_unicode_prev = _use_unicode
_use_unicode = flag
return use_unicode_prev
def pretty_try_use_unicode():
"""See if unicode output is available and leverage it if possible"""
try:
symbols = []
# see, if we can represent greek alphabet
symbols.extend(greek_unicode.values())
# and atoms
symbols += atoms_table.values()
for s in symbols:
if s is None:
return # common symbols not present!
encoding = getattr(sys.stdout, 'encoding', None)
# this happens when e.g. stdout is redirected through a pipe, or is
# e.g. a cStringIO.StringO
if encoding is None:
return # sys.stdout has no encoding
# try to encode
s.encode(encoding)
except UnicodeEncodeError:
pass
else:
pretty_use_unicode(True)
def xstr(*args):
SymPyDeprecationWarning(
feature="``xstr`` function",
useinstead="``str``",
deprecated_since_version="1.7").warn()
return str(*args)
# GREEK
g = lambda l: U('GREEK SMALL LETTER %s' % l.upper())
G = lambda l: U('GREEK CAPITAL LETTER %s' % l.upper())
greek_letters = list(greeks) # make a copy
# deal with Unicode's funny spelling of lambda
greek_letters[greek_letters.index('lambda')] = 'lamda'
# {} greek letter -> (g,G)
greek_unicode = {L: g(L) for L in greek_letters}
greek_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_letters)
# aliases
greek_unicode['lambda'] = greek_unicode['lamda']
greek_unicode['Lambda'] = greek_unicode['Lamda']
greek_unicode['varsigma'] = '\N{GREEK SMALL LETTER FINAL SIGMA}'
# BOLD
b = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
B = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
bold_unicode = {l: b(l) for l in ascii_lowercase}
bold_unicode.update((L, B(L)) for L in ascii_uppercase)
# GREEK BOLD
gb = lambda l: U('MATHEMATICAL BOLD SMALL %s' % l.upper())
GB = lambda l: U('MATHEMATICAL BOLD CAPITAL %s' % l.upper())
greek_bold_letters = list(greeks) # make a copy, not strictly required here
# deal with Unicode's funny spelling of lambda
greek_bold_letters[greek_bold_letters.index('lambda')] = 'lamda'
# {} greek letter -> (g,G)
greek_bold_unicode = {L: g(L) for L in greek_bold_letters}
greek_bold_unicode.update((L[0].upper() + L[1:], G(L)) for L in greek_bold_letters)
greek_bold_unicode['lambda'] = greek_unicode['lamda']
greek_bold_unicode['Lambda'] = greek_unicode['Lamda']
greek_bold_unicode['varsigma'] = '\N{MATHEMATICAL BOLD SMALL FINAL SIGMA}'
digit_2txt = {
'0': 'ZERO',
'1': 'ONE',
'2': 'TWO',
'3': 'THREE',
'4': 'FOUR',
'5': 'FIVE',
'6': 'SIX',
'7': 'SEVEN',
'8': 'EIGHT',
'9': 'NINE',
}
symb_2txt = {
'+': 'PLUS SIGN',
'-': 'MINUS',
'=': 'EQUALS SIGN',
'(': 'LEFT PARENTHESIS',
')': 'RIGHT PARENTHESIS',
'[': 'LEFT SQUARE BRACKET',
']': 'RIGHT SQUARE BRACKET',
'{': 'LEFT CURLY BRACKET',
'}': 'RIGHT CURLY BRACKET',
# non-std
'{}': 'CURLY BRACKET',
'sum': 'SUMMATION',
'int': 'INTEGRAL',
}
# SUBSCRIPT & SUPERSCRIPT
LSUB = lambda letter: U('LATIN SUBSCRIPT SMALL LETTER %s' % letter.upper())
GSUB = lambda letter: U('GREEK SUBSCRIPT SMALL LETTER %s' % letter.upper())
DSUB = lambda digit: U('SUBSCRIPT %s' % digit_2txt[digit])
SSUB = lambda symb: U('SUBSCRIPT %s' % symb_2txt[symb])
LSUP = lambda letter: U('SUPERSCRIPT LATIN SMALL LETTER %s' % letter.upper())
DSUP = lambda digit: U('SUPERSCRIPT %s' % digit_2txt[digit])
SSUP = lambda symb: U('SUPERSCRIPT %s' % symb_2txt[symb])
sub = {} # symb -> subscript symbol
sup = {} # symb -> superscript symbol
# latin subscripts
for l in 'aeioruvxhklmnpst':
sub[l] = LSUB(l)
for l in 'in':
sup[l] = LSUP(l)
for gl in ['beta', 'gamma', 'rho', 'phi', 'chi']:
sub[gl] = GSUB(gl)
for d in [str(i) for i in range(10)]:
sub[d] = DSUB(d)
sup[d] = DSUP(d)
for s in '+-=()':
sub[s] = SSUB(s)
sup[s] = SSUP(s)
# Variable modifiers
# TODO: Make brackets adjust to height of contents
modifier_dict = {
# Accents
'mathring': lambda s: center_accent(s, '\N{COMBINING RING ABOVE}'),
'ddddot': lambda s: center_accent(s, '\N{COMBINING FOUR DOTS ABOVE}'),
'dddot': lambda s: center_accent(s, '\N{COMBINING THREE DOTS ABOVE}'),
'ddot': lambda s: center_accent(s, '\N{COMBINING DIAERESIS}'),
'dot': lambda s: center_accent(s, '\N{COMBINING DOT ABOVE}'),
'check': lambda s: center_accent(s, '\N{COMBINING CARON}'),
'breve': lambda s: center_accent(s, '\N{COMBINING BREVE}'),
'acute': lambda s: center_accent(s, '\N{COMBINING ACUTE ACCENT}'),
'grave': lambda s: center_accent(s, '\N{COMBINING GRAVE ACCENT}'),
'tilde': lambda s: center_accent(s, '\N{COMBINING TILDE}'),
'hat': lambda s: center_accent(s, '\N{COMBINING CIRCUMFLEX ACCENT}'),
'bar': lambda s: center_accent(s, '\N{COMBINING OVERLINE}'),
'vec': lambda s: center_accent(s, '\N{COMBINING RIGHT ARROW ABOVE}'),
'prime': lambda s: s+'\N{PRIME}',
'prm': lambda s: s+'\N{PRIME}',
# # Faces -- these are here for some compatibility with latex printing
# 'bold': lambda s: s,
# 'bm': lambda s: s,
# 'cal': lambda s: s,
# 'scr': lambda s: s,
# 'frak': lambda s: s,
# Brackets
'norm': lambda s: '\N{DOUBLE VERTICAL LINE}'+s+'\N{DOUBLE VERTICAL LINE}',
'avg': lambda s: '\N{MATHEMATICAL LEFT ANGLE BRACKET}'+s+'\N{MATHEMATICAL RIGHT ANGLE BRACKET}',
'abs': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
'mag': lambda s: '\N{VERTICAL LINE}'+s+'\N{VERTICAL LINE}',
}
# VERTICAL OBJECTS
HUP = lambda symb: U('%s UPPER HOOK' % symb_2txt[symb])
CUP = lambda symb: U('%s UPPER CORNER' % symb_2txt[symb])
MID = lambda symb: U('%s MIDDLE PIECE' % symb_2txt[symb])
EXT = lambda symb: U('%s EXTENSION' % symb_2txt[symb])
HLO = lambda symb: U('%s LOWER HOOK' % symb_2txt[symb])
CLO = lambda symb: U('%s LOWER CORNER' % symb_2txt[symb])
TOP = lambda symb: U('%s TOP' % symb_2txt[symb])
BOT = lambda symb: U('%s BOTTOM' % symb_2txt[symb])
# {} '(' -> (extension, start, end, middle) 1-character
_xobj_unicode = {
# vertical symbols
# (( ext, top, bot, mid ), c1)
'(': (( EXT('('), HUP('('), HLO('(') ), '('),
')': (( EXT(')'), HUP(')'), HLO(')') ), ')'),
'[': (( EXT('['), CUP('['), CLO('[') ), '['),
']': (( EXT(']'), CUP(']'), CLO(']') ), ']'),
'{': (( EXT('{}'), HUP('{'), HLO('{'), MID('{') ), '{'),
'}': (( EXT('{}'), HUP('}'), HLO('}'), MID('}') ), '}'),
'|': U('BOX DRAWINGS LIGHT VERTICAL'),
'<': ((U('BOX DRAWINGS LIGHT VERTICAL'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT')), '<'),
'>': ((U('BOX DRAWINGS LIGHT VERTICAL'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), '>'),
'lfloor': (( EXT('['), EXT('['), CLO('[') ), U('LEFT FLOOR')),
'rfloor': (( EXT(']'), EXT(']'), CLO(']') ), U('RIGHT FLOOR')),
'lceil': (( EXT('['), CUP('['), EXT('[') ), U('LEFT CEILING')),
'rceil': (( EXT(']'), CUP(']'), EXT(']') ), U('RIGHT CEILING')),
'int': (( EXT('int'), U('TOP HALF INTEGRAL'), U('BOTTOM HALF INTEGRAL') ), U('INTEGRAL')),
'sum': (( U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'), '_', U('OVERLINE'), U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT')), U('N-ARY SUMMATION')),
# horizontal objects
#'-': '-',
'-': U('BOX DRAWINGS LIGHT HORIZONTAL'),
'_': U('LOW LINE'),
# We used to use this, but LOW LINE looks better for roots, as it's a
# little lower (i.e., it lines up with the / perfectly. But perhaps this
# one would still be wanted for some cases?
# '_': U('HORIZONTAL SCAN LINE-9'),
# diagonal objects '\' & '/' ?
'/': U('BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT'),
'\\': U('BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT'),
}
_xobj_ascii = {
# vertical symbols
# (( ext, top, bot, mid ), c1)
'(': (( '|', '/', '\\' ), '('),
')': (( '|', '\\', '/' ), ')'),
# XXX this looks ugly
# '[': (( '|', '-', '-' ), '['),
# ']': (( '|', '-', '-' ), ']'),
# XXX not so ugly :(
'[': (( '[', '[', '[' ), '['),
']': (( ']', ']', ']' ), ']'),
'{': (( '|', '/', '\\', '<' ), '{'),
'}': (( '|', '\\', '/', '>' ), '}'),
'|': '|',
'<': (( '|', '/', '\\' ), '<'),
'>': (( '|', '\\', '/' ), '>'),
'int': ( ' | ', ' /', '/ ' ),
# horizontal objects
'-': '-',
'_': '_',
# diagonal objects '\' & '/' ?
'/': '/',
'\\': '\\',
}
def xobj(symb, length):
"""Construct spatial object of given length.
return: [] of equal-length strings
"""
if length <= 0:
raise ValueError("Length should be greater than 0")
# TODO robustify when no unicodedat available
if _use_unicode:
_xobj = _xobj_unicode
else:
_xobj = _xobj_ascii
vinfo = _xobj[symb]
c1 = top = bot = mid = None
if not isinstance(vinfo, tuple): # 1 entry
ext = vinfo
else:
if isinstance(vinfo[0], tuple): # (vlong), c1
vlong = vinfo[0]
c1 = vinfo[1]
else: # (vlong), c1
vlong = vinfo
ext = vlong[0]
try:
top = vlong[1]
bot = vlong[2]
mid = vlong[3]
except IndexError:
pass
if c1 is None:
c1 = ext
if top is None:
top = ext
if bot is None:
bot = ext
if mid is not None:
if (length % 2) == 0:
# even height, but we have to print it somehow anyway...
# XXX is it ok?
length += 1
else:
mid = ext
if length == 1:
return c1
res = []
next = (length - 2)//2
nmid = (length - 2) - next*2
res += [top]
res += [ext]*next
res += [mid]*nmid
res += [ext]*next
res += [bot]
return res
def vobj(symb, height):
"""Construct vertical object of a given height
see: xobj
"""
return '\n'.join( xobj(symb, height) )
def hobj(symb, width):
"""Construct horizontal object of a given width
see: xobj
"""
return ''.join( xobj(symb, width) )
# RADICAL
# n -> symbol
root = {
2: U('SQUARE ROOT'), # U('RADICAL SYMBOL BOTTOM')
3: U('CUBE ROOT'),
4: U('FOURTH ROOT'),
}
# RATIONAL
VF = lambda txt: U('VULGAR FRACTION %s' % txt)
# (p,q) -> symbol
frac = {
(1, 2): VF('ONE HALF'),
(1, 3): VF('ONE THIRD'),
(2, 3): VF('TWO THIRDS'),
(1, 4): VF('ONE QUARTER'),
(3, 4): VF('THREE QUARTERS'),
(1, 5): VF('ONE FIFTH'),
(2, 5): VF('TWO FIFTHS'),
(3, 5): VF('THREE FIFTHS'),
(4, 5): VF('FOUR FIFTHS'),
(1, 6): VF('ONE SIXTH'),
(5, 6): VF('FIVE SIXTHS'),
(1, 8): VF('ONE EIGHTH'),
(3, 8): VF('THREE EIGHTHS'),
(5, 8): VF('FIVE EIGHTHS'),
(7, 8): VF('SEVEN EIGHTHS'),
}
# atom symbols
_xsym = {
'==': ('=', '='),
'<': ('<', '<'),
'>': ('>', '>'),
'<=': ('<=', U('LESS-THAN OR EQUAL TO')),
'>=': ('>=', U('GREATER-THAN OR EQUAL TO')),
'!=': ('!=', U('NOT EQUAL TO')),
':=': (':=', ':='),
'+=': ('+=', '+='),
'-=': ('-=', '-='),
'*=': ('*=', '*='),
'/=': ('/=', '/='),
'%=': ('%=', '%='),
'*': ('*', U('DOT OPERATOR')),
'-->': ('-->', U('EM DASH') + U('EM DASH') +
U('BLACK RIGHT-POINTING TRIANGLE') if U('EM DASH')
and U('BLACK RIGHT-POINTING TRIANGLE') else None),
'==>': ('==>', U('BOX DRAWINGS DOUBLE HORIZONTAL') +
U('BOX DRAWINGS DOUBLE HORIZONTAL') +
U('BLACK RIGHT-POINTING TRIANGLE') if
U('BOX DRAWINGS DOUBLE HORIZONTAL') and
U('BOX DRAWINGS DOUBLE HORIZONTAL') and
U('BLACK RIGHT-POINTING TRIANGLE') else None),
'.': ('*', U('RING OPERATOR')),
}
def xsym(sym):
"""get symbology for a 'character'"""
op = _xsym[sym]
if _use_unicode:
return op[1]
else:
return op[0]
# SYMBOLS
atoms_table = {
# class how-to-display
'Exp1': U('SCRIPT SMALL E'),
'Pi': U('GREEK SMALL LETTER PI'),
'Infinity': U('INFINITY'),
'NegativeInfinity': U('INFINITY') and ('-' + U('INFINITY')), # XXX what to do here
#'ImaginaryUnit': U('GREEK SMALL LETTER IOTA'),
#'ImaginaryUnit': U('MATHEMATICAL ITALIC SMALL I'),
'ImaginaryUnit': U('DOUBLE-STRUCK ITALIC SMALL I'),
'EmptySet': U('EMPTY SET'),
'Naturals': U('DOUBLE-STRUCK CAPITAL N'),
'Naturals0': (U('DOUBLE-STRUCK CAPITAL N') and
(U('DOUBLE-STRUCK CAPITAL N') +
U('SUBSCRIPT ZERO'))),
'Integers': U('DOUBLE-STRUCK CAPITAL Z'),
'Rationals': U('DOUBLE-STRUCK CAPITAL Q'),
'Reals': U('DOUBLE-STRUCK CAPITAL R'),
'Complexes': U('DOUBLE-STRUCK CAPITAL C'),
'Union': U('UNION'),
'SymmetricDifference': U('INCREMENT'),
'Intersection': U('INTERSECTION'),
'Ring': U('RING OPERATOR'),
'Modifier Letter Low Ring':U('Modifier Letter Low Ring'),
'EmptySequence': 'EmptySequence',
}
def pretty_atom(atom_name, default=None, printer=None):
"""return pretty representation of an atom"""
if _use_unicode:
if printer is not None and atom_name == 'ImaginaryUnit' and printer._settings['imaginary_unit'] == 'j':
return U('DOUBLE-STRUCK ITALIC SMALL J')
else:
return atoms_table[atom_name]
else:
if default is not None:
return default
raise KeyError('only unicode') # send it default printer
def pretty_symbol(symb_name, bold_name=False):
"""return pretty representation of a symbol"""
# let's split symb_name into symbol + index
# UC: beta1
# UC: f_beta
if not _use_unicode:
return symb_name
name, sups, subs = split_super_sub(symb_name)
def translate(s, bold_name) :
if bold_name:
gG = greek_bold_unicode.get(s)
else:
gG = greek_unicode.get(s)
if gG is not None:
return gG
for key in sorted(modifier_dict.keys(), key=lambda k:len(k), reverse=True) :
if s.lower().endswith(key) and len(s)>len(key):
return modifier_dict[key](translate(s[:-len(key)], bold_name))
if bold_name:
return ''.join([bold_unicode[c] for c in s])
return s
name = translate(name, bold_name)
# Let's prettify sups/subs. If it fails at one of them, pretty sups/subs are
# not used at all.
def pretty_list(l, mapping):
result = []
for s in l:
pretty = mapping.get(s)
if pretty is None:
try: # match by separate characters
pretty = ''.join([mapping[c] for c in s])
except (TypeError, KeyError):
return None
result.append(pretty)
return result
pretty_sups = pretty_list(sups, sup)
if pretty_sups is not None:
pretty_subs = pretty_list(subs, sub)
else:
pretty_subs = None
# glue the results into one string
if pretty_subs is None: # nice formatting of sups/subs did not work
if subs:
name += '_'+'_'.join([translate(s, bold_name) for s in subs])
if sups:
name += '__'+'__'.join([translate(s, bold_name) for s in sups])
return name
else:
sups_result = ' '.join(pretty_sups)
subs_result = ' '.join(pretty_subs)
return ''.join([name, sups_result, subs_result])
def annotated(letter):
"""
Return a stylised drawing of the letter ``letter``, together with
information on how to put annotations (super- and subscripts to the
left and to the right) on it.
See pretty.py functions _print_meijerg, _print_hyper on how to use this
information.
"""
ucode_pics = {
'F': (2, 0, 2, 0, '\N{BOX DRAWINGS LIGHT DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
'\N{BOX DRAWINGS LIGHT VERTICAL AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\n'
'\N{BOX DRAWINGS LIGHT UP}'),
'G': (3, 0, 3, 1, '\N{BOX DRAWINGS LIGHT ARC DOWN AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC DOWN AND LEFT}\n'
'\N{BOX DRAWINGS LIGHT VERTICAL}\N{BOX DRAWINGS LIGHT RIGHT}\N{BOX DRAWINGS LIGHT DOWN AND LEFT}\n'
'\N{BOX DRAWINGS LIGHT ARC UP AND RIGHT}\N{BOX DRAWINGS LIGHT HORIZONTAL}\N{BOX DRAWINGS LIGHT ARC UP AND LEFT}')
}
ascii_pics = {
'F': (3, 0, 3, 0, ' _\n|_\n|\n'),
'G': (3, 0, 3, 1, ' __\n/__\n\\_|')
}
if _use_unicode:
return ucode_pics[letter]
else:
return ascii_pics[letter]
_remove_combining = dict.fromkeys(list(range(ord('\N{COMBINING GRAVE ACCENT}'), ord('\N{COMBINING LATIN SMALL LETTER X}')))
+ list(range(ord('\N{COMBINING LEFT HARPOON ABOVE}'), ord('\N{COMBINING ASTERISK ABOVE}'))))
def is_combining(sym):
"""Check whether symbol is a unicode modifier. """
return ord(sym) in _remove_combining
def center_accent(string, accent):
"""
Returns a string with accent inserted on the middle character. Useful to
put combining accents on symbol names, including multi-character names.
Parameters
==========
string : string
The string to place the accent in.
accent : string
The combining accent to insert
References
==========
.. [1] https://en.wikipedia.org/wiki/Combining_character
.. [2] https://en.wikipedia.org/wiki/Combining_Diacritical_Marks
"""
# Accent is placed on the previous character, although it may not always look
# like that depending on console
midpoint = len(string) // 2 + 1
firstpart = string[:midpoint]
secondpart = string[midpoint:]
return firstpart + accent + secondpart
def line_width(line):
"""Unicode combining symbols (modifiers) are not ever displayed as
separate symbols and thus shouldn't be counted
"""
return len(line.translate(_remove_combining))
|
57a42693da6d78fe336a3af3565764475e0547c50003d3090b6eb709aa3b436e | """Prettyprinter by Jurjen Bos.
(I hate spammers: mail me at pietjepuk314 at the reverse of ku.oc.oohay).
All objects have a method that create a "stringPict",
that can be used in the str method for pretty printing.
Updates by Jason Gedge (email <my last name> at cs mun ca)
- terminal_string() method
- minor fixes and changes (mostly to prettyForm)
TODO:
- Allow left/center/right alignment options for above/below and
top/center/bottom alignment options for left/right
"""
from .pretty_symbology import hobj, vobj, xsym, xobj, pretty_use_unicode, line_width
from sympy.utilities.exceptions import SymPyDeprecationWarning
class stringPict:
"""An ASCII picture.
The pictures are represented as a list of equal length strings.
"""
#special value for stringPict.below
LINE = 'line'
def __init__(self, s, baseline=0):
"""Initialize from string.
Multiline strings are centered.
"""
self.s = s
#picture is a string that just can be printed
self.picture = stringPict.equalLengths(s.splitlines())
#baseline is the line number of the "base line"
self.baseline = baseline
self.binding = None
@staticmethod
def equalLengths(lines):
# empty lines
if not lines:
return ['']
width = max(line_width(line) for line in lines)
return [line.center(width) for line in lines]
def height(self):
"""The height of the picture in characters."""
return len(self.picture)
def width(self):
"""The width of the picture in characters."""
return line_width(self.picture[0])
@staticmethod
def next(*args):
"""Put a string of stringPicts next to each other.
Returns string, baseline arguments for stringPict.
"""
#convert everything to stringPicts
objects = []
for arg in args:
if isinstance(arg, str):
arg = stringPict(arg)
objects.append(arg)
#make a list of pictures, with equal height and baseline
newBaseline = max(obj.baseline for obj in objects)
newHeightBelowBaseline = max(
obj.height() - obj.baseline
for obj in objects)
newHeight = newBaseline + newHeightBelowBaseline
pictures = []
for obj in objects:
oneEmptyLine = [' '*obj.width()]
basePadding = newBaseline - obj.baseline
totalPadding = newHeight - obj.height()
pictures.append(
oneEmptyLine * basePadding +
obj.picture +
oneEmptyLine * (totalPadding - basePadding))
result = [''.join(lines) for lines in zip(*pictures)]
return '\n'.join(result), newBaseline
def right(self, *args):
r"""Put pictures next to this one.
Returns string, baseline arguments for stringPict.
(Multiline) strings are allowed, and are given a baseline of 0.
Examples
========
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("10").right(" + ",stringPict("1\r-\r2",1))[0])
1
10 + -
2
"""
return stringPict.next(self, *args)
def left(self, *args):
"""Put pictures (left to right) at left.
Returns string, baseline arguments for stringPict.
"""
return stringPict.next(*(args + (self,)))
@staticmethod
def stack(*args):
"""Put pictures on top of each other,
from top to bottom.
Returns string, baseline arguments for stringPict.
The baseline is the baseline of the second picture.
Everything is centered.
Baseline is the baseline of the second picture.
Strings are allowed.
The special value stringPict.LINE is a row of '-' extended to the width.
"""
#convert everything to stringPicts; keep LINE
objects = []
for arg in args:
if arg is not stringPict.LINE and isinstance(arg, str):
arg = stringPict(arg)
objects.append(arg)
#compute new width
newWidth = max(
obj.width()
for obj in objects
if obj is not stringPict.LINE)
lineObj = stringPict(hobj('-', newWidth))
#replace LINE with proper lines
for i, obj in enumerate(objects):
if obj is stringPict.LINE:
objects[i] = lineObj
#stack the pictures, and center the result
newPicture = []
for obj in objects:
newPicture.extend(obj.picture)
newPicture = [line.center(newWidth) for line in newPicture]
newBaseline = objects[0].height() + objects[1].baseline
return '\n'.join(newPicture), newBaseline
def below(self, *args):
"""Put pictures under this picture.
Returns string, baseline arguments for stringPict.
Baseline is baseline of top picture
Examples
========
>>> from sympy.printing.pretty.stringpict import stringPict
>>> print(stringPict("x+3").below(
... stringPict.LINE, '3')[0]) #doctest: +NORMALIZE_WHITESPACE
x+3
---
3
"""
s, baseline = stringPict.stack(self, *args)
return s, self.baseline
def above(self, *args):
"""Put pictures above this picture.
Returns string, baseline arguments for stringPict.
Baseline is baseline of bottom picture.
"""
string, baseline = stringPict.stack(*(args + (self,)))
baseline = len(string.splitlines()) - self.height() + self.baseline
return string, baseline
def parens(self, left='(', right=')', ifascii_nougly=False):
"""Put parentheses around self.
Returns string, baseline arguments for stringPict.
left or right can be None or empty string which means 'no paren from
that side'
"""
h = self.height()
b = self.baseline
# XXX this is a hack -- ascii parens are ugly!
if ifascii_nougly and not pretty_use_unicode():
h = 1
b = 0
res = self
if left:
lparen = stringPict(vobj(left, h), baseline=b)
res = stringPict(*lparen.right(self))
if right:
rparen = stringPict(vobj(right, h), baseline=b)
res = stringPict(*res.right(rparen))
return ('\n'.join(res.picture), res.baseline)
def leftslash(self):
"""Precede object by a slash of the proper size.
"""
# XXX not used anywhere ?
height = max(
self.baseline,
self.height() - 1 - self.baseline)*2 + 1
slash = '\n'.join(
' '*(height - i - 1) + xobj('/', 1) + ' '*i
for i in range(height)
)
return self.left(stringPict(slash, height//2))
def root(self, n=None):
"""Produce a nice root symbol.
Produces ugly results for big n inserts.
"""
# XXX not used anywhere
# XXX duplicate of root drawing in pretty.py
#put line over expression
result = self.above('_'*self.width())
#construct right half of root symbol
height = self.height()
slash = '\n'.join(
' ' * (height - i - 1) + '/' + ' ' * i
for i in range(height)
)
slash = stringPict(slash, height - 1)
#left half of root symbol
if height > 2:
downline = stringPict('\\ \n \\', 1)
else:
downline = stringPict('\\')
#put n on top, as low as possible
if n is not None and n.width() > downline.width():
downline = downline.left(' '*(n.width() - downline.width()))
downline = downline.above(n)
#build root symbol
root = downline.right(slash)
#glue it on at the proper height
#normally, the root symbel is as high as self
#which is one less than result
#this moves the root symbol one down
#if the root became higher, the baseline has to grow too
root.baseline = result.baseline - result.height() + root.height()
return result.left(root)
def render(self, * args, **kwargs):
"""Return the string form of self.
Unless the argument line_break is set to False, it will
break the expression in a form that can be printed
on the terminal without being broken up.
"""
if kwargs["wrap_line"] is False:
return "\n".join(self.picture)
if kwargs["num_columns"] is not None:
# Read the argument num_columns if it is not None
ncols = kwargs["num_columns"]
else:
# Attempt to get a terminal width
ncols = self.terminal_width()
ncols -= 2
if ncols <= 0:
ncols = 78
# If smaller than the terminal width, no need to correct
if self.width() <= ncols:
return type(self.picture[0])(self)
# for one-line pictures we don't need v-spacers. on the other hand, for
# multiline-pictures, we need v-spacers between blocks, compare:
#
# 2 2 3 | a*c*e + a*c*f + a*d | a*c*e + a*c*f + a*d | 3.14159265358979323
# 6*x *y + 4*x*y + | | *e + a*d*f + b*c*e | 84626433832795
# | *e + a*d*f + b*c*e | + b*c*f + b*d*e + b |
# 3 4 4 | | *d*f |
# 4*y*x + x + y | + b*c*f + b*d*e + b | |
# | | |
# | *d*f
i = 0
svals = []
do_vspacers = (self.height() > 1)
while i < self.width():
svals.extend([ sval[i:i + ncols] for sval in self.picture ])
if do_vspacers:
svals.append("") # a vertical spacer
i += ncols
if svals[-1] == '':
del svals[-1] # Get rid of the last spacer
return "\n".join(svals)
def terminal_width(self):
"""Return the terminal width if possible, otherwise return 0.
"""
ncols = 0
try:
import curses
import io
try:
curses.setupterm()
ncols = curses.tigetnum('cols')
except AttributeError:
# windows curses doesn't implement setupterm or tigetnum
# code below from
# http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/440694
from ctypes import windll, create_string_buffer
# stdin handle is -10
# stdout handle is -11
# stderr handle is -12
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(bufx, bufy, curx, cury, wattr,
left, top, right, bottom, maxx, maxy) = struct.unpack("hhhhHhhhhhh", csbi.raw)
ncols = right - left + 1
except curses.error:
pass
except io.UnsupportedOperation:
pass
except (ImportError, TypeError):
pass
return ncols
def __eq__(self, o):
if isinstance(o, str):
return '\n'.join(self.picture) == o
elif isinstance(o, stringPict):
return o.picture == self.picture
return False
def __hash__(self):
return super().__hash__()
def __str__(self):
return '\n'.join(self.picture)
def __repr__(self):
return "stringPict(%r,%d)" % ('\n'.join(self.picture), self.baseline)
def __getitem__(self, index):
return self.picture[index]
def __len__(self):
return len(self.s)
class prettyForm(stringPict):
"""
Extension of the stringPict class that knows about basic math applications,
optimizing double minus signs.
"Binding" is interpreted as follows::
ATOM this is an atom: never needs to be parenthesized
FUNC this is a function application: parenthesize if added (?)
DIV this is a division: make wider division if divided
POW this is a power: only parenthesize if exponent
MUL this is a multiplication: parenthesize if powered
ADD this is an addition: parenthesize if multiplied or powered
NEG this is a negative number: optimize if added, parenthesize if
multiplied or powered
OPEN this is an open object: parenthesize if added, multiplied, or
powered (example: Piecewise)
"""
ATOM, FUNC, DIV, POW, MUL, ADD, NEG, OPEN = range(8)
def __init__(self, s, baseline=0, binding=0, unicode=None):
"""Initialize from stringPict and binding power."""
stringPict.__init__(self, s, baseline)
self.binding = binding
if unicode is not None:
SymPyDeprecationWarning(
feature="``unicode`` argument to ``prettyForm``",
useinstead="the ``s`` argument",
deprecated_since_version="1.7").warn()
self._unicode = unicode or s
@property
def unicode(self):
SymPyDeprecationWarning(
feature="``prettyForm.unicode`` attribute",
useinstead="``stringPrict.s`` attribute",
deprecated_since_version="1.7").warn()
return self._unicode
# Note: code to handle subtraction is in _print_Add
def __add__(self, *others):
"""Make a pretty addition.
Addition of negative numbers is simplified.
"""
arg = self
if arg.binding > prettyForm.NEG:
arg = stringPict(*arg.parens())
result = [arg]
for arg in others:
#add parentheses for weak binders
if arg.binding > prettyForm.NEG:
arg = stringPict(*arg.parens())
#use existing minus sign if available
if arg.binding != prettyForm.NEG:
result.append(' + ')
result.append(arg)
return prettyForm(binding=prettyForm.ADD, *stringPict.next(*result))
def __truediv__(self, den, slashed=False):
"""Make a pretty division; stacked or slashed.
"""
if slashed:
raise NotImplementedError("Can't do slashed fraction yet")
num = self
if num.binding == prettyForm.DIV:
num = stringPict(*num.parens())
if den.binding == prettyForm.DIV:
den = stringPict(*den.parens())
if num.binding==prettyForm.NEG:
num = num.right(" ")[0]
return prettyForm(binding=prettyForm.DIV, *stringPict.stack(
num,
stringPict.LINE,
den))
def __mul__(self, *others):
"""Make a pretty multiplication.
Parentheses are needed around +, - and neg.
"""
quantity = {
'degree': "\N{DEGREE SIGN}"
}
if len(others) == 0:
return self # We aren't actually multiplying... So nothing to do here.
args = self
if args.binding > prettyForm.MUL:
arg = stringPict(*args.parens())
result = [args]
for arg in others:
if arg.picture[0] not in quantity.values():
result.append(xsym('*'))
#add parentheses for weak binders
if arg.binding > prettyForm.MUL:
arg = stringPict(*arg.parens())
result.append(arg)
len_res = len(result)
for i in range(len_res):
if i < len_res - 1 and result[i] == '-1' and result[i + 1] == xsym('*'):
# substitute -1 by -, like in -1*x -> -x
result.pop(i)
result.pop(i)
result.insert(i, '-')
if result[0][0] == '-':
# if there is a - sign in front of all
# This test was failing to catch a prettyForm.__mul__(prettyForm("-1", 0, 6)) being negative
bin = prettyForm.NEG
if result[0] == '-':
right = result[1]
if right.picture[right.baseline][0] == '-':
result[0] = '- '
else:
bin = prettyForm.MUL
return prettyForm(binding=bin, *stringPict.next(*result))
def __repr__(self):
return "prettyForm(%r,%d,%d)" % (
'\n'.join(self.picture),
self.baseline,
self.binding)
def __pow__(self, b):
"""Make a pretty power.
"""
a = self
use_inline_func_form = False
if b.binding == prettyForm.POW:
b = stringPict(*b.parens())
if a.binding > prettyForm.FUNC:
a = stringPict(*a.parens())
elif a.binding == prettyForm.FUNC:
# heuristic for when to use inline power
if b.height() > 1:
a = stringPict(*a.parens())
else:
use_inline_func_form = True
if use_inline_func_form:
# 2
# sin + + (x)
b.baseline = a.prettyFunc.baseline + b.height()
func = stringPict(*a.prettyFunc.right(b))
return prettyForm(*func.right(a.prettyArgs))
else:
# 2 <-- top
# (x+y) <-- bot
top = stringPict(*b.left(' '*a.width()))
bot = stringPict(*a.right(' '*b.width()))
return prettyForm(binding=prettyForm.POW, *bot.above(top))
simpleFunctions = ["sin", "cos", "tan"]
@staticmethod
def apply(function, *args):
"""Functions of one or more variables.
"""
if function in prettyForm.simpleFunctions:
#simple function: use only space if possible
assert len(
args) == 1, "Simple function %s must have 1 argument" % function
arg = args[0].__pretty__()
if arg.binding <= prettyForm.DIV:
#optimization: no parentheses necessary
return prettyForm(binding=prettyForm.FUNC, *arg.left(function + ' '))
argumentList = []
for arg in args:
argumentList.append(',')
argumentList.append(arg.__pretty__())
argumentList = stringPict(*stringPict.next(*argumentList[1:]))
argumentList = stringPict(*argumentList.parens())
return prettyForm(binding=prettyForm.ATOM, *argumentList.left(function))
|
fe74dee1de4115ac89acda2ad15d629793834203b13d67525c289c96bd41a071 | from sympy.codegen import Assignment
from sympy.codegen.ast import none
from sympy.codegen.cfunctions import expm1, log1p
from sympy.codegen.scipy_nodes import cosm1
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.core import Expr, Mod, symbols, Eq, Le, Gt, zoo, oo, Rational, Pow
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions import acos, KroneckerDelta, Piecewise, sign, sqrt
from sympy.logic import And, Or
from sympy.matrices import SparseMatrix, MatrixSymbol, Identity
from sympy.printing.pycode import (
MpmathPrinter, NumPyPrinter, PythonCodePrinter, pycode, SciPyPrinter,
SymPyPrinter
)
from sympy.testing.pytest import raises
from sympy.tensor import IndexedBase
from sympy.testing.pytest import skip
from sympy.external import import_module
from sympy.functions.special.gamma_functions import loggamma
x, y, z = symbols('x y z')
p = IndexedBase("p")
def test_PythonCodePrinter():
prntr = PythonCodePrinter()
assert not prntr.module_imports
assert prntr.doprint(x**y) == 'x**y'
assert prntr.doprint(Mod(x, 2)) == 'x % 2'
assert prntr.doprint(And(x, y)) == 'x and y'
assert prntr.doprint(Or(x, y)) == 'x or y'
assert not prntr.module_imports
assert prntr.doprint(pi) == 'math.pi'
assert prntr.module_imports == {'math': {'pi'}}
assert prntr.doprint(x**Rational(1, 2)) == 'math.sqrt(x)'
assert prntr.doprint(sqrt(x)) == 'math.sqrt(x)'
assert prntr.module_imports == {'math': {'pi', 'sqrt'}}
assert prntr.doprint(acos(x)) == 'math.acos(x)'
assert prntr.doprint(Assignment(x, 2)) == 'x = 2'
assert prntr.doprint(Piecewise((1, Eq(x, 0)),
(2, x>6))) == '((1) if (x == 0) else (2) if (x > 6) else None)'
assert prntr.doprint(Piecewise((2, Le(x, 0)),
(3, Gt(x, 0)), evaluate=False)) == '((2) if (x <= 0) else'\
' (3) if (x > 0) else None)'
assert prntr.doprint(sign(x)) == '(0.0 if x == 0 else math.copysign(1, x))'
assert prntr.doprint(p[0, 1]) == 'p[0, 1]'
assert prntr.doprint(KroneckerDelta(x,y)) == '(1 if x == y else 0)'
def test_PythonCodePrinter_standard():
import sys
prntr = PythonCodePrinter({'standard':None})
python_version = sys.version_info.major
if python_version == 2:
assert prntr.standard == 'python2'
if python_version == 3:
assert prntr.standard == 'python3'
raises(ValueError, lambda: PythonCodePrinter({'standard':'python4'}))
def test_MpmathPrinter():
p = MpmathPrinter()
assert p.doprint(sign(x)) == 'mpmath.sign(x)'
assert p.doprint(Rational(1, 2)) == 'mpmath.mpf(1)/mpmath.mpf(2)'
assert p.doprint(S.Exp1) == 'mpmath.e'
assert p.doprint(S.Pi) == 'mpmath.pi'
assert p.doprint(S.GoldenRatio) == 'mpmath.phi'
assert p.doprint(S.EulerGamma) == 'mpmath.euler'
assert p.doprint(S.NaN) == 'mpmath.nan'
assert p.doprint(S.Infinity) == 'mpmath.inf'
assert p.doprint(S.NegativeInfinity) == 'mpmath.ninf'
assert p.doprint(loggamma(x)) == 'mpmath.loggamma(x)'
def test_NumPyPrinter():
from sympy import (Lambda, ZeroMatrix, OneMatrix, FunctionMatrix,
HadamardProduct, KroneckerProduct, Adjoint, DiagonalOf,
DiagMatrix, DiagonalMatrix)
from sympy.abc import a, b
p = NumPyPrinter()
assert p.doprint(sign(x)) == 'numpy.sign(x)'
A = MatrixSymbol("A", 2, 2)
B = MatrixSymbol("B", 2, 2)
C = MatrixSymbol("C", 1, 5)
D = MatrixSymbol("D", 3, 4)
assert p.doprint(A**(-1)) == "numpy.linalg.inv(A)"
assert p.doprint(A**5) == "numpy.linalg.matrix_power(A, 5)"
assert p.doprint(Identity(3)) == "numpy.eye(3)"
u = MatrixSymbol('x', 2, 1)
v = MatrixSymbol('y', 2, 1)
assert p.doprint(MatrixSolve(A, u)) == 'numpy.linalg.solve(A, x)'
assert p.doprint(MatrixSolve(A, u) + v) == 'numpy.linalg.solve(A, x) + y'
assert p.doprint(ZeroMatrix(2, 3)) == "numpy.zeros((2, 3))"
assert p.doprint(OneMatrix(2, 3)) == "numpy.ones((2, 3))"
assert p.doprint(FunctionMatrix(4, 5, Lambda((a, b), a + b))) == \
"numpy.fromfunction(lambda a, b: a + b, (4, 5))"
assert p.doprint(HadamardProduct(A, B)) == "numpy.multiply(A, B)"
assert p.doprint(KroneckerProduct(A, B)) == "numpy.kron(A, B)"
assert p.doprint(Adjoint(A)) == "numpy.conjugate(numpy.transpose(A))"
assert p.doprint(DiagonalOf(A)) == "numpy.reshape(numpy.diag(A), (-1, 1))"
assert p.doprint(DiagMatrix(C)) == "numpy.diagflat(C)"
assert p.doprint(DiagonalMatrix(D)) == "numpy.multiply(D, numpy.eye(3, 4))"
# Workaround for numpy negative integer power errors
assert p.doprint(x**-1) == 'x**(-1.0)'
assert p.doprint(x**-2) == 'x**(-2.0)'
expr = Pow(2, -1, evaluate=False)
assert p.doprint(expr) == "2**(-1.0)"
assert p.doprint(S.Exp1) == 'numpy.e'
assert p.doprint(S.Pi) == 'numpy.pi'
assert p.doprint(S.EulerGamma) == 'numpy.euler_gamma'
assert p.doprint(S.NaN) == 'numpy.nan'
assert p.doprint(S.Infinity) == 'numpy.PINF'
assert p.doprint(S.NegativeInfinity) == 'numpy.NINF'
def test_issue_18770():
numpy = import_module('numpy')
if not numpy:
skip("numpy not installed.")
from sympy import lambdify, Min, Max
expr1 = Min(0.1*x + 3, x + 1, 0.5*x + 1)
func = lambdify(x, expr1, "numpy")
assert (func(numpy.linspace(0, 3, 3)) == [1.0 , 1.75, 2.5 ]).all()
assert func(4) == 3
expr1 = Max(x**2 , x**3)
func = lambdify(x,expr1, "numpy")
assert (func(numpy.linspace(-1 , 2, 4)) == [1, 0, 1, 8] ).all()
assert func(4) == 64
def test_SciPyPrinter():
p = SciPyPrinter()
expr = acos(x)
assert 'numpy' not in p.module_imports
assert p.doprint(expr) == 'numpy.arccos(x)'
assert 'numpy' in p.module_imports
assert not any(m.startswith('scipy') for m in p.module_imports)
smat = SparseMatrix(2, 5, {(0, 1): 3})
assert p.doprint(smat) == \
'scipy.sparse.coo_matrix(([3], ([0], [1])), shape=(2, 5))'
assert 'scipy.sparse' in p.module_imports
assert p.doprint(S.GoldenRatio) == 'scipy.constants.golden_ratio'
assert p.doprint(S.Pi) == 'scipy.constants.pi'
assert p.doprint(S.Exp1) == 'numpy.e'
def test_pycode_reserved_words():
s1, s2 = symbols('if else')
raises(ValueError, lambda: pycode(s1 + s2, error_on_reserved=True))
py_str = pycode(s1 + s2)
assert py_str in ('else_ + if_', 'if_ + else_')
def test_sqrt():
prntr = PythonCodePrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'math.sqrt(x)'
assert prntr._print_Pow(1/sqrt(x), rational=False) == '1/math.sqrt(x)'
prntr = PythonCodePrinter({'standard' : 'python2'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1./2.)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1./2.)'
prntr = PythonCodePrinter({'standard' : 'python3'})
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
assert prntr._print_Pow(1/sqrt(x), rational=True) == 'x**(-1/2)'
prntr = MpmathPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'mpmath.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == \
"x**(mpmath.mpf(1)/mpmath.mpf(2))"
prntr = NumPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SciPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'numpy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
prntr = SymPyPrinter()
assert prntr._print_Pow(sqrt(x), rational=False) == 'sympy.sqrt(x)'
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
def test_frac():
from sympy import frac
expr = frac(x)
prntr = NumPyPrinter()
assert prntr.doprint(expr) == 'numpy.mod(x, 1)'
prntr = SciPyPrinter()
assert prntr.doprint(expr) == 'numpy.mod(x, 1)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr) == 'x % 1'
prntr = MpmathPrinter()
assert prntr.doprint(expr) == 'mpmath.frac(x)'
prntr = SymPyPrinter()
assert prntr.doprint(expr) == 'sympy.functions.elementary.integers.frac(x)'
class CustomPrintedObject(Expr):
def _numpycode(self, printer):
return 'numpy'
def _mpmathcode(self, printer):
return 'mpmath'
def test_printmethod():
obj = CustomPrintedObject()
assert NumPyPrinter().doprint(obj) == 'numpy'
assert MpmathPrinter().doprint(obj) == 'mpmath'
def test_codegen_ast_nodes():
assert pycode(none) == 'None'
def test_issue_14283():
prntr = PythonCodePrinter()
assert prntr.doprint(zoo) == "float('nan')"
assert prntr.doprint(-oo) == "float('-inf')"
def test_NumPyPrinter_print_seq():
n = NumPyPrinter()
assert n._print_seq(range(2)) == '(0, 1,)'
def test_issue_16535_16536():
from sympy import lowergamma, uppergamma
a = symbols('a')
expr1 = lowergamma(a, x)
expr2 = uppergamma(a, x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.gamma(a)*scipy.special.gammainc(a, x)'
assert prntr.doprint(expr2) == 'scipy.special.gamma(a)*scipy.special.gammaincc(a, x)'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # lowergamma\nlowergamma(a, x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # uppergamma\nuppergamma(a, x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # lowergamma\nlowergamma(a, x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # uppergamma\nuppergamma(a, x)'
def test_Integral():
from sympy import Integral, exp
single = Integral(exp(-x), (x, 0, oo))
double = Integral(x**2*exp(x*y), (x, -z, z), (y, 0, z))
indefinite = Integral(x**2, x)
evaluateat = Integral(x**2, (x, 1))
prntr = SciPyPrinter()
assert prntr.doprint(single) == 'scipy.integrate.quad(lambda x: numpy.exp(-x), 0, numpy.PINF)[0]'
assert prntr.doprint(double) == 'scipy.integrate.nquad(lambda x, y: x**2*numpy.exp(x*y), ((-z, z), (0, z)))[0]'
raises(NotImplementedError, lambda: prntr.doprint(indefinite))
raises(NotImplementedError, lambda: prntr.doprint(evaluateat))
prntr = MpmathPrinter()
assert prntr.doprint(single) == 'mpmath.quad(lambda x: mpmath.exp(-x), (0, mpmath.inf))'
assert prntr.doprint(double) == 'mpmath.quad(lambda x, y: x**2*mpmath.exp(x*y), (-z, z), (0, z))'
raises(NotImplementedError, lambda: prntr.doprint(indefinite))
raises(NotImplementedError, lambda: prntr.doprint(evaluateat))
def test_fresnel_integrals():
from sympy import fresnelc, fresnels
expr1 = fresnelc(x)
expr2 = fresnels(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.fresnel(x)[1]'
assert prntr.doprint(expr2) == 'scipy.special.fresnel(x)[0]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # fresnelc\nfresnelc(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # fresnels\nfresnels(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # fresnelc\nfresnelc(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # fresnels\nfresnels(x)'
prntr = MpmathPrinter()
assert prntr.doprint(expr1) == 'mpmath.fresnelc(x)'
assert prntr.doprint(expr2) == 'mpmath.fresnels(x)'
def test_beta():
from sympy import beta
expr = beta(x, y)
prntr = SciPyPrinter()
assert prntr.doprint(expr) == 'scipy.special.beta(x, y)'
prntr = NumPyPrinter()
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = PythonCodePrinter({'allow_unknown_functions': True})
assert prntr.doprint(expr) == 'math.gamma(x)*math.gamma(y)/math.gamma(x + y)'
prntr = MpmathPrinter()
assert prntr.doprint(expr) == 'mpmath.beta(x, y)'
def test_airy():
from sympy import airyai, airybi
expr1 = airyai(x)
expr2 = airybi(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.airy(x)[0]'
assert prntr.doprint(expr2) == 'scipy.special.airy(x)[2]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # airyai\nairyai(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # airybi\nairybi(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # airyai\nairyai(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # airybi\nairybi(x)'
def test_airy_prime():
from sympy import airyaiprime, airybiprime
expr1 = airyaiprime(x)
expr2 = airybiprime(x)
prntr = SciPyPrinter()
assert prntr.doprint(expr1) == 'scipy.special.airy(x)[1]'
assert prntr.doprint(expr2) == 'scipy.special.airy(x)[3]'
prntr = NumPyPrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python with NumPy:\n # airyaiprime\nairyaiprime(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python with NumPy:\n # airybiprime\nairybiprime(x)'
prntr = PythonCodePrinter()
assert prntr.doprint(expr1) == ' # Not supported in Python:\n # airyaiprime\nairyaiprime(x)'
assert prntr.doprint(expr2) == ' # Not supported in Python:\n # airybiprime\nairybiprime(x)'
def test_numerical_accuracy_functions():
prntr = SciPyPrinter()
assert prntr.doprint(expm1(x)) == 'numpy.expm1(x)'
assert prntr.doprint(log1p(x)) == 'numpy.log1p(x)'
assert prntr.doprint(cosm1(x)) == 'scipy.special.cosm1(x)'
|
729633562eb434d80ab728933af6c80a96631188825e4d7132eafe998037c055 | from sympy import symbols
from sympy.functions import beta, Ei, zeta, Max, Min, sqrt
from sympy.printing.cxx import CXX98CodePrinter, CXX11CodePrinter, CXX17CodePrinter, cxxcode
from sympy.codegen.cfunctions import log1p
from sympy.testing.pytest import warns_deprecated_sympy
x, y = symbols('x y')
def test_CXX98CodePrinter():
assert CXX98CodePrinter().doprint(Max(x, 3)) in ('std::max(x, 3)', 'std::max(3, x)')
assert CXX98CodePrinter().doprint(Min(x, 3, sqrt(x))) == 'std::min(3, std::min(x, std::sqrt(x)))'
cxx98printer = CXX98CodePrinter()
assert cxx98printer.language == 'C++'
assert cxx98printer.standard == 'C++98'
assert 'template' in cxx98printer.reserved_words
assert 'alignas' not in cxx98printer.reserved_words
def test_CXX11CodePrinter():
assert CXX11CodePrinter().doprint(log1p(x)) == 'std::log1p(x)'
cxx11printer = CXX11CodePrinter()
assert cxx11printer.language == 'C++'
assert cxx11printer.standard == 'C++11'
assert 'operator' in cxx11printer.reserved_words
assert 'noexcept' in cxx11printer.reserved_words
assert 'concept' not in cxx11printer.reserved_words
def test_subclass_print_method():
class MyPrinter(CXX11CodePrinter):
def _print_log1p(self, expr):
return 'my_library::log1p(%s)' % ', '.join(map(self._print, expr.args))
assert MyPrinter().doprint(log1p(x)) == 'my_library::log1p(x)'
def test_subclass_print_method__ns():
class MyPrinter(CXX11CodePrinter):
_ns = 'my_library::'
p = CXX11CodePrinter()
myp = MyPrinter()
assert p.doprint(log1p(x)) == 'std::log1p(x)'
assert myp.doprint(log1p(x)) == 'my_library::log1p(x)'
def test_CXX17CodePrinter():
assert CXX17CodePrinter().doprint(beta(x, y)) == 'std::beta(x, y)'
assert CXX17CodePrinter().doprint(Ei(x)) == 'std::expint(x)'
assert CXX17CodePrinter().doprint(zeta(x)) == 'std::riemann_zeta(x)'
def test_cxxcode():
assert sorted(cxxcode(sqrt(x)*.5).split('*')) == sorted(['0.5', 'std::sqrt(x)'])
def test_cxxcode_submodule():
# Test the compatibility sympy.printing.cxxcode module imports
with warns_deprecated_sympy():
import sympy.printing.cxxcode # noqa:F401
|
38580be1077e73d353f9c4ec7d8926a8c215620fc839855b24b8e8fbbfc3d2ed | from sympy import (Add, Abs, Catalan, cos, Derivative, E, EulerGamma, exp,
factorial, factorial2, Function, GoldenRatio, TribonacciConstant, I,
Integer, Integral, Interval, Lambda, Limit, Matrix, nan, O, oo, pi, Pow,
Rational, Float, Rel, S, sin, SparseMatrix, sqrt, summation, Sum, Symbol,
symbols, Wild, WildFunction, zeta, zoo, Dummy, Dict, Tuple, FiniteSet, factor,
subfactorial, true, false, Equivalent, Xor, Complement, SymmetricDifference,
AccumBounds, UnevaluatedExpr, Eq, Ne, Quaternion, Subs, MatrixSymbol, MatrixSlice)
from sympy.core import Expr, Mul
from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback
from sympy.physics.units import second, joule
from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ,
ZZ_I, QQ_I, lex, grlex)
from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle
from sympy.tensor import NDimArray
from sympy.testing.pytest import raises
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.core.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(Add(0, 1, evaluate=False)) == "0 + 1"
assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1"
assert str(1.0*x) == "1.0*x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)'
assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \
'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))'
assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \
'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))'
assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \
'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))'
assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \
'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)"
assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
assert str(Mul(0, 1, evaluate=False)) == '0*1'
assert str(Mul(1, 0, evaluate=False)) == '1*0'
assert str(Mul(1, 1, evaluate=False)) == '1*1'
assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1'
assert str(Mul(1, 2, evaluate=False)) == '1*2'
assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)'
assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)'
assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x'
assert str(Mul(1, -1, evaluate=False)) == '1*(-1)'
assert str(Mul(-1, 1, evaluate=False)) == '(-1)*1'
assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x'
assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x'
assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert sstr(p) == s
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert sstr(p, perm_cyclic=False) == s
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert sstr(p) == s
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
Rx_zzi, xz = ring("x", ZZ_I)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
Rx_zzi, xz = field("x", QQ_I)
i = QQ_I(0, 1)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
assert str((1+i)/xz) == "(1 + 1*I)/x"
assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x"
def test_GaussianInteger():
assert str(ZZ_I(1, 0)) == "1"
assert str(ZZ_I(-1, 0)) == "-1"
assert str(ZZ_I(0, 1)) == "I"
assert str(ZZ_I(0, -1)) == "-I"
assert str(ZZ_I(0, 2)) == "2*I"
assert str(ZZ_I(0, -2)) == "-2*I"
assert str(ZZ_I(1, 1)) == "1 + I"
assert str(ZZ_I(-1, -1)) == "-1 - I"
assert str(ZZ_I(-1, -2)) == "-1 - 2*I"
def test_GaussianRational():
assert str(QQ_I(1, 0)) == "1"
assert str(QQ_I(QQ(2, 3), 0)) == "2/3"
assert str(QQ_I(0, QQ(2, 3))) == "2*I/3"
assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.0'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2'
assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0'
assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1'
assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr({1}) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr({1, 2, 3}) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
{1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Series_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Series(tf1, tf2)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Series(tf1, tf2, tf3)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Series(-tf2, tf1)) == \
"Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_TransferFunction_str():
tf1 = TransferFunction(x - 1, x + 1, x)
assert str(tf1) == "TransferFunction(x - 1, x + 1, x)"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)"
def test_Parallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Parallel(tf1, tf2)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Parallel(tf1, tf2, tf3)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Parallel(-tf2, tf1)) == \
"Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_Feedback_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Feedback(tf1*tf2, tf3)) == \
"Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Feedback(tf1, TransferFunction(1, 1, y))) == \
"Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == (
'FiniteSet(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,'
' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,'
' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50)'
)
assert str(FiniteSet(*range(1, 6))) == 'FiniteSet(1, 2, 3, 4, 5)'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
from sympy import MatrixSymbol
X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2)
assert str(2*(X + Y)) == "2*(X + Y)"
assert str(I*X) == "I*X"
assert str(-I*X) == "-I*X"
assert str((1 + I)*X) == '(1 + I)*X'
assert str(-(1 + I)*X) == '(-1 - I)*X'
def test_MatrixSlice():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]'
assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]'
assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[x:, :y]) == 'X[x:, :y]'
assert str(X[x:y, z:w]) == 'X[x:y, z:w]'
assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]'
assert str(X[x::y, t::w]) == 'X[x::y, t::w]'
assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]'
assert str(X[::x, ::y]) == 'X[::x, ::y]'
assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]'
assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]'
assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]'
assert str(X[1:10:2]) == 'X[1:10:2, :]'
assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]'
assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]'
assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]'
assert str(X[0:1, 0:1]) == 'X[:1, :1]'
assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]'
assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "x ^ y"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-(A + B) + A*B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert str(X) == "X"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)'
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
assert str(expr) == 'Lambda(x, 1/x).(n*X)'
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
e = Integral(factorial(x), (x, -oo, oo))
assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e])
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert str(Identity(4)) == 'I'
assert str(ZeroMatrix(2, 2)) == '0'
assert str(OneMatrix(2, 2)) == '1'
def test_issue_14567():
assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == 'x'
assert sstrrepr(Str('x')) == "Str('x')"
def test_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert str(m) == "M"
p = Patch('P', m)
assert str(p) == "P"
rect = CoordSystem('rect', p, [x, y])
assert str(rect) == "rect"
b = BaseScalarField(rect, 0)
assert str(b) == "x"
def test_NDimArray():
assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000'
assert sstr(NDimArray(1.0), full_prec=False) == '1.0'
assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]'
assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]'
|
7f9998e634a4350688146d727bb162578bf5506879681f338eacc2bd83caa103 | from sympy import (sin, cos, atan2, log, exp, gamma, conjugate, sqrt,
factorial, Integral, Piecewise, Add, diff, symbols, S,
Float, Dummy, Eq, Range, Catalan, EulerGamma, E,
GoldenRatio, I, pi, Function, Rational, Integer, Lambda,
sign, Mod)
from sympy.codegen import For, Assignment, aug_assign
from sympy.codegen.ast import Declaration, Variable, float32, float64, \
value_const, real, bool_, While, FunctionPrototype, FunctionDefinition, \
integer, Return
from sympy.core.relational import Relational
from sympy.logic.boolalg import And, Or, Not, Equivalent, Xor
from sympy.matrices import Matrix, MatrixSymbol
from sympy.printing.fortran import fcode, FCodePrinter
from sympy.tensor import IndexedBase, Idx
from sympy.utilities.lambdify import implemented_function
from sympy.testing.pytest import raises, warns_deprecated_sympy
def test_printmethod():
x = symbols('x')
class nint(Function):
def _fcode(self, printer):
return "nint(%s)" % printer._print(self.args[0])
assert fcode(nint(x)) == " nint(x)"
def test_fcode_sign(): #issue 12267
x=symbols('x')
y=symbols('y', integer=True)
z=symbols('z', complex=True)
assert fcode(sign(x), standard=95, source_format='free') == "merge(0d0, dsign(1d0, x), x == 0d0)"
assert fcode(sign(y), standard=95, source_format='free') == "merge(0, isign(1, y), y == 0)"
assert fcode(sign(z), standard=95, source_format='free') == "merge(cmplx(0d0, 0d0), z/abs(z), abs(z) == 0d0)"
raises(NotImplementedError, lambda: fcode(sign(x)))
def test_fcode_Pow():
x, y = symbols('x,y')
n = symbols('n', integer=True)
assert fcode(x**3) == " x**3"
assert fcode(x**(y**3)) == " x**(y**3)"
assert fcode(1/(sin(x)*3.5)**(x - y**x)/(x**2 + y)) == \
" (3.5d0*sin(x))**(-x + y**x)/(x**2 + y)"
assert fcode(sqrt(x)) == ' sqrt(x)'
assert fcode(sqrt(n)) == ' sqrt(dble(n))'
assert fcode(x**0.5) == ' sqrt(x)'
assert fcode(sqrt(x)) == ' sqrt(x)'
assert fcode(sqrt(10)) == ' sqrt(10.0d0)'
assert fcode(x**-1.0) == ' 1d0/x'
assert fcode(x**-2.0, 'y', source_format='free') == 'y = x**(-2.0d0)' # 2823
assert fcode(x**Rational(3, 7)) == ' x**(3.0d0/7.0d0)'
def test_fcode_Rational():
x = symbols('x')
assert fcode(Rational(3, 7)) == " 3.0d0/7.0d0"
assert fcode(Rational(18, 9)) == " 2"
assert fcode(Rational(3, -7)) == " -3.0d0/7.0d0"
assert fcode(Rational(-3, -7)) == " 3.0d0/7.0d0"
assert fcode(x + Rational(3, 7)) == " x + 3.0d0/7.0d0"
assert fcode(Rational(3, 7)*x) == " (3.0d0/7.0d0)*x"
def test_fcode_Integer():
assert fcode(Integer(67)) == " 67"
assert fcode(Integer(-1)) == " -1"
def test_fcode_Float():
assert fcode(Float(42.0)) == " 42.0000000000000d0"
assert fcode(Float(-1e20)) == " -1.00000000000000d+20"
def test_fcode_functions():
x, y = symbols('x,y')
assert fcode(sin(x) ** cos(y)) == " sin(x)**cos(y)"
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=66))
raises(NotImplementedError, lambda: fcode(x % y, standard=66))
raises(NotImplementedError, lambda: fcode(Mod(x, y), standard=77))
raises(NotImplementedError, lambda: fcode(x % y, standard=77))
for standard in [90, 95, 2003, 2008]:
assert fcode(Mod(x, y), standard=standard) == " modulo(x, y)"
assert fcode(x % y, standard=standard) == " modulo(x, y)"
def test_case():
ob = FCodePrinter()
x,x_,x__,y,X,X_,Y = symbols('x,x_,x__,y,X,X_,Y')
assert fcode(exp(x_) + sin(x*y) + cos(X*Y)) == \
' exp(x_) + sin(x*y) + cos(X__*Y_)'
assert fcode(exp(x__) + 2*x*Y*X_**Rational(7, 2)) == \
' 2*X_**(7.0d0/2.0d0)*Y*x + exp(x__)'
assert fcode(exp(x_) + sin(x*y) + cos(X*Y), name_mangling=False) == \
' exp(x_) + sin(x*y) + cos(X*Y)'
assert fcode(x - cos(X), name_mangling=False) == ' x - cos(X)'
assert ob.doprint(X*sin(x) + x_, assign_to='me') == ' me = X*sin(x_) + x__'
assert ob.doprint(X*sin(x), assign_to='mu') == ' mu = X*sin(x_)'
assert ob.doprint(x_, assign_to='ad') == ' ad = x__'
n, m = symbols('n,m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
I = Idx('I', n)
assert fcode(A[i, I]*x[I], assign_to=y[i], source_format='free') == (
"do i = 1, m\n"
" y(i) = 0\n"
"end do\n"
"do i = 1, m\n"
" do I_ = 1, n\n"
" y(i) = A(i, I_)*x(I_) + y(i)\n"
" end do\n"
"end do" )
#issue 6814
def test_fcode_functions_with_integers():
x= symbols('x')
log10_17 = log(10).evalf(17)
loglog10_17 = '0.8340324452479558d0'
assert fcode(x * log(10)) == " x*%sd0" % log10_17
assert fcode(x * log(10)) == " x*%sd0" % log10_17
assert fcode(x * log(S(10))) == " x*%sd0" % log10_17
assert fcode(log(S(10))) == " %sd0" % log10_17
assert fcode(exp(10)) == " %sd0" % exp(10).evalf(17)
assert fcode(x * log(log(10))) == " x*%s" % loglog10_17
assert fcode(x * log(log(S(10)))) == " x*%s" % loglog10_17
def test_fcode_NumberSymbol():
prec = 17
p = FCodePrinter()
assert fcode(Catalan) == ' parameter (Catalan = %sd0)\n Catalan' % Catalan.evalf(prec)
assert fcode(EulerGamma) == ' parameter (EulerGamma = %sd0)\n EulerGamma' % EulerGamma.evalf(prec)
assert fcode(E) == ' parameter (E = %sd0)\n E' % E.evalf(prec)
assert fcode(GoldenRatio) == ' parameter (GoldenRatio = %sd0)\n GoldenRatio' % GoldenRatio.evalf(prec)
assert fcode(pi) == ' parameter (pi = %sd0)\n pi' % pi.evalf(prec)
assert fcode(
pi, precision=5) == ' parameter (pi = %sd0)\n pi' % pi.evalf(5)
assert fcode(Catalan, human=False) == ({
(Catalan, p._print(Catalan.evalf(prec)))}, set(), ' Catalan')
assert fcode(EulerGamma, human=False) == ({(EulerGamma, p._print(
EulerGamma.evalf(prec)))}, set(), ' EulerGamma')
assert fcode(E, human=False) == (
{(E, p._print(E.evalf(prec)))}, set(), ' E')
assert fcode(GoldenRatio, human=False) == ({(GoldenRatio, p._print(
GoldenRatio.evalf(prec)))}, set(), ' GoldenRatio')
assert fcode(pi, human=False) == (
{(pi, p._print(pi.evalf(prec)))}, set(), ' pi')
assert fcode(pi, precision=5, human=False) == (
{(pi, p._print(pi.evalf(5)))}, set(), ' pi')
def test_fcode_complex():
assert fcode(I) == " cmplx(0,1)"
x = symbols('x')
assert fcode(4*I) == " cmplx(0,4)"
assert fcode(3 + 4*I) == " cmplx(3,4)"
assert fcode(3 + 4*I + x) == " cmplx(3,4) + x"
assert fcode(I*x) == " cmplx(0,1)*x"
assert fcode(3 + 4*I - x) == " cmplx(3,4) - x"
x = symbols('x', imaginary=True)
assert fcode(5*x) == " 5*x"
assert fcode(I*x) == " cmplx(0,1)*x"
assert fcode(3 + x) == " x + 3"
def test_implicit():
x, y = symbols('x,y')
assert fcode(sin(x)) == " sin(x)"
assert fcode(atan2(x, y)) == " atan2(x, y)"
assert fcode(conjugate(x)) == " conjg(x)"
def test_not_fortran():
x = symbols('x')
g = Function('g')
gamma_f = fcode(gamma(x))
assert gamma_f == "C Not supported in Fortran:\nC gamma\n gamma(x)"
assert fcode(Integral(sin(x))) == "C Not supported in Fortran:\nC Integral\n Integral(sin(x), x)"
assert fcode(g(x)) == "C Not supported in Fortran:\nC g\n g(x)"
def test_user_functions():
x = symbols('x')
assert fcode(sin(x), user_functions={"sin": "zsin"}) == " zsin(x)"
x = symbols('x')
assert fcode(
gamma(x), user_functions={"gamma": "mygamma"}) == " mygamma(x)"
g = Function('g')
assert fcode(g(x), user_functions={"g": "great"}) == " great(x)"
n = symbols('n', integer=True)
assert fcode(
factorial(n), user_functions={"factorial": "fct"}) == " fct(n)"
def test_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert fcode(g(x)) == " 2*x"
g = implemented_function('g', Lambda(x, 2*pi/x))
assert fcode(g(x)) == (
" parameter (pi = %sd0)\n"
" 2*pi/x"
) % pi.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert fcode(g(A[i]), assign_to=A[i]) == (
" do i = 1, n\n"
" A(i) = (A(i) + 1)*(A(i) + 2)*A(i)\n"
" end do"
)
def test_assign_to():
x = symbols('x')
assert fcode(sin(x), assign_to="s") == " s = sin(x)"
def test_line_wrapping():
x, y = symbols('x,y')
assert fcode(((x + y)**10).expand(), assign_to="var") == (
" var = x**10 + 10*x**9*y + 45*x**8*y**2 + 120*x**7*y**3 + 210*x**6*\n"
" @ y**4 + 252*x**5*y**5 + 210*x**4*y**6 + 120*x**3*y**7 + 45*x**2*y\n"
" @ **8 + 10*x*y**9 + y**10"
)
e = [x**i for i in range(11)]
assert fcode(Add(*e)) == (
" x**10 + x**9 + x**8 + x**7 + x**6 + x**5 + x**4 + x**3 + x**2 + x\n"
" @ + 1"
)
def test_fcode_precedence():
x, y = symbols("x y")
assert fcode(And(x < y, y < x + 1), source_format="free") == \
"x < y .and. y < x + 1"
assert fcode(Or(x < y, y < x + 1), source_format="free") == \
"x < y .or. y < x + 1"
assert fcode(Xor(x < y, y < x + 1, evaluate=False),
source_format="free") == "x < y .neqv. y < x + 1"
assert fcode(Equivalent(x < y, y < x + 1), source_format="free") == \
"x < y .eqv. y < x + 1"
def test_fcode_Logical():
x, y, z = symbols("x y z")
# unary Not
assert fcode(Not(x), source_format="free") == ".not. x"
# binary And
assert fcode(And(x, y), source_format="free") == "x .and. y"
assert fcode(And(x, Not(y)), source_format="free") == "x .and. .not. y"
assert fcode(And(Not(x), y), source_format="free") == "y .and. .not. x"
assert fcode(And(Not(x), Not(y)), source_format="free") == \
".not. x .and. .not. y"
assert fcode(Not(And(x, y), evaluate=False), source_format="free") == \
".not. (x .and. y)"
# binary Or
assert fcode(Or(x, y), source_format="free") == "x .or. y"
assert fcode(Or(x, Not(y)), source_format="free") == "x .or. .not. y"
assert fcode(Or(Not(x), y), source_format="free") == "y .or. .not. x"
assert fcode(Or(Not(x), Not(y)), source_format="free") == \
".not. x .or. .not. y"
assert fcode(Not(Or(x, y), evaluate=False), source_format="free") == \
".not. (x .or. y)"
# mixed And/Or
assert fcode(And(Or(y, z), x), source_format="free") == "x .and. (y .or. z)"
assert fcode(And(Or(z, x), y), source_format="free") == "y .and. (x .or. z)"
assert fcode(And(Or(x, y), z), source_format="free") == "z .and. (x .or. y)"
assert fcode(Or(And(y, z), x), source_format="free") == "x .or. y .and. z"
assert fcode(Or(And(z, x), y), source_format="free") == "y .or. x .and. z"
assert fcode(Or(And(x, y), z), source_format="free") == "z .or. x .and. y"
# trinary And
assert fcode(And(x, y, z), source_format="free") == "x .and. y .and. z"
assert fcode(And(x, y, Not(z)), source_format="free") == \
"x .and. y .and. .not. z"
assert fcode(And(x, Not(y), z), source_format="free") == \
"x .and. z .and. .not. y"
assert fcode(And(Not(x), y, z), source_format="free") == \
"y .and. z .and. .not. x"
assert fcode(Not(And(x, y, z), evaluate=False), source_format="free") == \
".not. (x .and. y .and. z)"
# trinary Or
assert fcode(Or(x, y, z), source_format="free") == "x .or. y .or. z"
assert fcode(Or(x, y, Not(z)), source_format="free") == \
"x .or. y .or. .not. z"
assert fcode(Or(x, Not(y), z), source_format="free") == \
"x .or. z .or. .not. y"
assert fcode(Or(Not(x), y, z), source_format="free") == \
"y .or. z .or. .not. x"
assert fcode(Not(Or(x, y, z), evaluate=False), source_format="free") == \
".not. (x .or. y .or. z)"
def test_fcode_Xlogical():
x, y, z = symbols("x y z")
# binary Xor
assert fcode(Xor(x, y, evaluate=False), source_format="free") == \
"x .neqv. y"
assert fcode(Xor(x, Not(y), evaluate=False), source_format="free") == \
"x .neqv. .not. y"
assert fcode(Xor(Not(x), y, evaluate=False), source_format="free") == \
"y .neqv. .not. x"
assert fcode(Xor(Not(x), Not(y), evaluate=False),
source_format="free") == ".not. x .neqv. .not. y"
assert fcode(Not(Xor(x, y, evaluate=False), evaluate=False),
source_format="free") == ".not. (x .neqv. y)"
# binary Equivalent
assert fcode(Equivalent(x, y), source_format="free") == "x .eqv. y"
assert fcode(Equivalent(x, Not(y)), source_format="free") == \
"x .eqv. .not. y"
assert fcode(Equivalent(Not(x), y), source_format="free") == \
"y .eqv. .not. x"
assert fcode(Equivalent(Not(x), Not(y)), source_format="free") == \
".not. x .eqv. .not. y"
assert fcode(Not(Equivalent(x, y), evaluate=False),
source_format="free") == ".not. (x .eqv. y)"
# mixed And/Equivalent
assert fcode(Equivalent(And(y, z), x), source_format="free") == \
"x .eqv. y .and. z"
assert fcode(Equivalent(And(z, x), y), source_format="free") == \
"y .eqv. x .and. z"
assert fcode(Equivalent(And(x, y), z), source_format="free") == \
"z .eqv. x .and. y"
assert fcode(And(Equivalent(y, z), x), source_format="free") == \
"x .and. (y .eqv. z)"
assert fcode(And(Equivalent(z, x), y), source_format="free") == \
"y .and. (x .eqv. z)"
assert fcode(And(Equivalent(x, y), z), source_format="free") == \
"z .and. (x .eqv. y)"
# mixed Or/Equivalent
assert fcode(Equivalent(Or(y, z), x), source_format="free") == \
"x .eqv. y .or. z"
assert fcode(Equivalent(Or(z, x), y), source_format="free") == \
"y .eqv. x .or. z"
assert fcode(Equivalent(Or(x, y), z), source_format="free") == \
"z .eqv. x .or. y"
assert fcode(Or(Equivalent(y, z), x), source_format="free") == \
"x .or. (y .eqv. z)"
assert fcode(Or(Equivalent(z, x), y), source_format="free") == \
"y .or. (x .eqv. z)"
assert fcode(Or(Equivalent(x, y), z), source_format="free") == \
"z .or. (x .eqv. y)"
# mixed Xor/Equivalent
assert fcode(Equivalent(Xor(y, z, evaluate=False), x),
source_format="free") == "x .eqv. (y .neqv. z)"
assert fcode(Equivalent(Xor(z, x, evaluate=False), y),
source_format="free") == "y .eqv. (x .neqv. z)"
assert fcode(Equivalent(Xor(x, y, evaluate=False), z),
source_format="free") == "z .eqv. (x .neqv. y)"
assert fcode(Xor(Equivalent(y, z), x, evaluate=False),
source_format="free") == "x .neqv. (y .eqv. z)"
assert fcode(Xor(Equivalent(z, x), y, evaluate=False),
source_format="free") == "y .neqv. (x .eqv. z)"
assert fcode(Xor(Equivalent(x, y), z, evaluate=False),
source_format="free") == "z .neqv. (x .eqv. y)"
# mixed And/Xor
assert fcode(Xor(And(y, z), x, evaluate=False), source_format="free") == \
"x .neqv. y .and. z"
assert fcode(Xor(And(z, x), y, evaluate=False), source_format="free") == \
"y .neqv. x .and. z"
assert fcode(Xor(And(x, y), z, evaluate=False), source_format="free") == \
"z .neqv. x .and. y"
assert fcode(And(Xor(y, z, evaluate=False), x), source_format="free") == \
"x .and. (y .neqv. z)"
assert fcode(And(Xor(z, x, evaluate=False), y), source_format="free") == \
"y .and. (x .neqv. z)"
assert fcode(And(Xor(x, y, evaluate=False), z), source_format="free") == \
"z .and. (x .neqv. y)"
# mixed Or/Xor
assert fcode(Xor(Or(y, z), x, evaluate=False), source_format="free") == \
"x .neqv. y .or. z"
assert fcode(Xor(Or(z, x), y, evaluate=False), source_format="free") == \
"y .neqv. x .or. z"
assert fcode(Xor(Or(x, y), z, evaluate=False), source_format="free") == \
"z .neqv. x .or. y"
assert fcode(Or(Xor(y, z, evaluate=False), x), source_format="free") == \
"x .or. (y .neqv. z)"
assert fcode(Or(Xor(z, x, evaluate=False), y), source_format="free") == \
"y .or. (x .neqv. z)"
assert fcode(Or(Xor(x, y, evaluate=False), z), source_format="free") == \
"z .or. (x .neqv. y)"
# trinary Xor
assert fcode(Xor(x, y, z, evaluate=False), source_format="free") == \
"x .neqv. y .neqv. z"
assert fcode(Xor(x, y, Not(z), evaluate=False), source_format="free") == \
"x .neqv. y .neqv. .not. z"
assert fcode(Xor(x, Not(y), z, evaluate=False), source_format="free") == \
"x .neqv. z .neqv. .not. y"
assert fcode(Xor(Not(x), y, z, evaluate=False), source_format="free") == \
"y .neqv. z .neqv. .not. x"
def test_fcode_Relational():
x, y = symbols("x y")
assert fcode(Relational(x, y, "=="), source_format="free") == "x == y"
assert fcode(Relational(x, y, "!="), source_format="free") == "x /= y"
assert fcode(Relational(x, y, ">="), source_format="free") == "x >= y"
assert fcode(Relational(x, y, "<="), source_format="free") == "x <= y"
assert fcode(Relational(x, y, ">"), source_format="free") == "x > y"
assert fcode(Relational(x, y, "<"), source_format="free") == "x < y"
def test_fcode_Piecewise():
x = symbols('x')
expr = Piecewise((x, x < 1), (x**2, True))
# Check that inline conditional (merge) fails if standard isn't 95+
raises(NotImplementedError, lambda: fcode(expr))
code = fcode(expr, standard=95)
expected = " merge(x, x**2, x < 1)"
assert code == expected
assert fcode(Piecewise((x, x < 1), (x**2, True)), assign_to="var") == (
" if (x < 1) then\n"
" var = x\n"
" else\n"
" var = x**2\n"
" end if"
)
a = cos(x)/x
b = sin(x)/x
for i in range(10):
a = diff(a, x)
b = diff(b, x)
expected = (
" if (x < 0) then\n"
" weird_name = -cos(x)/x + 10*sin(x)/x**2 + 90*cos(x)/x**3 - 720*\n"
" @ sin(x)/x**4 - 5040*cos(x)/x**5 + 30240*sin(x)/x**6 + 151200*cos(x\n"
" @ )/x**7 - 604800*sin(x)/x**8 - 1814400*cos(x)/x**9 + 3628800*sin(x\n"
" @ )/x**10 + 3628800*cos(x)/x**11\n"
" else\n"
" weird_name = -sin(x)/x - 10*cos(x)/x**2 + 90*sin(x)/x**3 + 720*\n"
" @ cos(x)/x**4 - 5040*sin(x)/x**5 - 30240*cos(x)/x**6 + 151200*sin(x\n"
" @ )/x**7 + 604800*cos(x)/x**8 - 1814400*sin(x)/x**9 - 3628800*cos(x\n"
" @ )/x**10 + 3628800*sin(x)/x**11\n"
" end if"
)
code = fcode(Piecewise((a, x < 0), (b, True)), assign_to="weird_name")
assert code == expected
code = fcode(Piecewise((x, x < 1), (x**2, x > 1), (sin(x), True)), standard=95)
expected = " merge(x, merge(x**2, sin(x), x > 1), x < 1)"
assert code == expected
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: fcode(expr))
def test_wrap_fortran():
# "########################################################################"
printer = FCodePrinter()
lines = [
"C This is a long comment on a single line that must be wrapped properly to produce nice output",
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)/must + be + wrapped + properly",
]
wrapped_lines = printer._wrap_fortran(lines)
expected_lines = [
"C This is a long comment on a single line that must be wrapped",
"C properly to produce nice output",
" this = is + a + long + and + nasty + fortran + statement + that *",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that *",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ * must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that*",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ *must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement +",
" @ that*must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that**",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ **must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement + that",
" @ **must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement +",
" @ that**must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)/",
" @ must + be + wrapped + properly",
" this = is + a + long + and + nasty + fortran + statement(that)",
" @ /must + be + wrapped + properly",
]
for line in wrapped_lines:
assert len(line) <= 72
for w, e in zip(wrapped_lines, expected_lines):
assert w == e
assert len(wrapped_lines) == len(expected_lines)
def test_wrap_fortran_keep_d0():
printer = FCodePrinter()
lines = [
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break = 10.0d0'
]
expected = [
' this_variable_is_very_long_because_we_try_to_test_line_break=1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 1.0d0',
' this_variable_is_very_long_because_we_try_to_test_line_break =',
' @ 10.0d0'
]
assert printer._wrap_fortran(lines) == expected
def test_settings():
raises(TypeError, lambda: fcode(S(4), method="garbage"))
def test_free_form_code_line():
x, y = symbols('x,y')
assert fcode(cos(x) + sin(y), source_format='free') == "sin(y) + cos(x)"
def test_free_form_continuation_line():
x, y = symbols('x,y')
result = fcode(((cos(x) + sin(y))**(7)).expand(), source_format='free')
expected = (
'sin(y)**7 + 7*sin(y)**6*cos(x) + 21*sin(y)**5*cos(x)**2 + 35*sin(y)**4* &\n'
' cos(x)**3 + 35*sin(y)**3*cos(x)**4 + 21*sin(y)**2*cos(x)**5 + 7* &\n'
' sin(y)*cos(x)**6 + cos(x)**7'
)
assert result == expected
def test_free_form_comment_line():
printer = FCodePrinter({'source_format': 'free'})
lines = [ "! This is a long comment on a single line that must be wrapped properly to produce nice output"]
expected = [
'! This is a long comment on a single line that must be wrapped properly',
'! to produce nice output']
assert printer._wrap_fortran(lines) == expected
def test_loops():
n, m = symbols('n,m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
expected = (
'do i = 1, m\n'
' y(i) = 0\n'
'end do\n'
'do i = 1, m\n'
' do j = 1, n\n'
' y(i) = %(rhs)s\n'
' end do\n'
'end do'
)
code = fcode(A[i, j]*x[j], assign_to=y[i], source_format='free')
assert (code == expected % {'rhs': 'y(i) + A(i, j)*x(j)'} or
code == expected % {'rhs': 'y(i) + x(j)*A(i, j)'} or
code == expected % {'rhs': 'x(j)*A(i, j) + y(i)'} or
code == expected % {'rhs': 'A(i, j)*x(j) + y(i)'})
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'do i_%(icount)i = 1, m_%(mcount)i\n'
' y(i_%(icount)i) = x(i_%(icount)i)\n'
'end do'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
code = fcode(x[i], assign_to=y[i], source_format='free')
assert code == expected
def test_fcode_Indexed_without_looking_for_contraction():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
code0 = fcode(e.rhs, assign_to=e.lhs, contract=False)
assert code0.endswith('Dy(i) = (y(i + 1) - y(i))/(x(i + 1) - x(i))')
def test_derived_classes():
class MyFancyFCodePrinter(FCodePrinter):
_default_settings = FCodePrinter._default_settings.copy()
printer = MyFancyFCodePrinter()
x = symbols('x')
assert printer.doprint(sin(x), "bork") == " bork = sin(x)"
def test_indent():
codelines = (
'subroutine test(a)\n'
'integer :: a, i, j\n'
'\n'
'do\n'
'do \n'
'do j = 1, 5\n'
'if (a>b) then\n'
'if(b>0) then\n'
'a = 3\n'
'donot_indent_me = 2\n'
'do_not_indent_me_either = 2\n'
'ifIam_indented_something_went_wrong = 2\n'
'if_I_am_indented_something_went_wrong = 2\n'
'end should not be unindented here\n'
'end if\n'
'endif\n'
'end do\n'
'end do\n'
'enddo\n'
'end subroutine\n'
'\n'
'subroutine test2(a)\n'
'integer :: a\n'
'do\n'
'a = a + 1\n'
'end do \n'
'end subroutine\n'
)
expected = (
'subroutine test(a)\n'
'integer :: a, i, j\n'
'\n'
'do\n'
' do \n'
' do j = 1, 5\n'
' if (a>b) then\n'
' if(b>0) then\n'
' a = 3\n'
' donot_indent_me = 2\n'
' do_not_indent_me_either = 2\n'
' ifIam_indented_something_went_wrong = 2\n'
' if_I_am_indented_something_went_wrong = 2\n'
' end should not be unindented here\n'
' end if\n'
' endif\n'
' end do\n'
' end do\n'
'enddo\n'
'end subroutine\n'
'\n'
'subroutine test2(a)\n'
'integer :: a\n'
'do\n'
' a = a + 1\n'
'end do \n'
'end subroutine\n'
)
p = FCodePrinter({'source_format': 'free'})
result = p.indent_code(codelines)
assert result == expected
def test_Matrix_printing():
x, y, z = symbols('x,y,z')
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert fcode(mat, A) == (
" A(1, 1) = x*y\n"
" if (y > 0) then\n"
" A(2, 1) = x + 2\n"
" else\n"
" A(2, 1) = y\n"
" end if\n"
" A(3, 1) = sin(z)")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert fcode(expr, standard=95) == (
" merge(2*A(3, 1), A(3, 1), x > 0) + sin(A(2, 1)) + A(1, 1)")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert fcode(m, M) == (
" M(1, 1) = sin(q(2, 1))\n"
" M(2, 1) = q(2, 1) + q(3, 1)\n"
" M(3, 1) = 2*q(5, 1)/q(2, 1)\n"
" M(1, 2) = 0\n"
" M(2, 2) = q(4, 1)\n"
" M(3, 2) = sqrt(q(1, 1)) + 4\n"
" M(1, 3) = cos(q(3, 1))\n"
" M(2, 3) = 5\n"
" M(3, 3) = 0")
def test_fcode_For():
x, y = symbols('x y')
f = For(x, Range(0, 10, 2), [Assignment(y, x * y)])
sol = fcode(f)
assert sol == (" do x = 0, 10, 2\n"
" y = x*y\n"
" end do")
def test_fcode_Declaration():
def check(expr, ref, **kwargs):
assert fcode(expr, standard=95, source_format='free', **kwargs) == ref
i = symbols('i', integer=True)
var1 = Variable.deduced(i)
dcl1 = Declaration(var1)
check(dcl1, "integer*4 :: i")
x, y = symbols('x y')
var2 = Variable(x, float32, value=42, attrs={value_const})
dcl2b = Declaration(var2)
check(dcl2b, 'real*4, parameter :: x = 42')
var3 = Variable(y, type=bool_)
dcl3 = Declaration(var3)
check(dcl3, 'logical :: y')
check(float32, "real*4")
check(float64, "real*8")
check(real, "real*4", type_aliases={real: float32})
check(real, "real*8", type_aliases={real: float64})
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(fcode(A[0, 0]) == " A(1, 1)")
assert(fcode(3 * A[0, 0]) == " 3*A(1, 1)")
F = C[0, 0].subs(C, A - B)
assert(fcode(F) == " (A - B)(1, 1)")
def test_aug_assign():
x = symbols('x')
assert fcode(aug_assign(x, '+', 1), source_format='free') == 'x = x + 1'
def test_While():
x = symbols('x')
assert fcode(While(abs(x) > 1, [aug_assign(x, '-', 1)]), source_format='free') == (
'do while (abs(x) > 1)\n'
' x = x - 1\n'
'end do'
)
def test_FunctionPrototype_print():
x = symbols('x')
n = symbols('n', integer=True)
vx = Variable(x, type=real)
vn = Variable(n, type=integer)
fp1 = FunctionPrototype(real, 'power', [vx, vn])
# Should be changed to proper test once multi-line generation is working
# see https://github.com/sympy/sympy/issues/15824
raises(NotImplementedError, lambda: fcode(fp1))
def test_FunctionDefinition_print():
x = symbols('x')
n = symbols('n', integer=True)
vx = Variable(x, type=real)
vn = Variable(n, type=integer)
body = [Assignment(x, x**n), Return(x)]
fd1 = FunctionDefinition(real, 'power', [vx, vn], body)
# Should be changed to proper test once multi-line generation is working
# see https://github.com/sympy/sympy/issues/15824
raises(NotImplementedError, lambda: fcode(fd1))
def test_fcode_submodule():
# Test the compatibility sympy.printing.fcode module imports
with warns_deprecated_sympy():
import sympy.printing.fcode # noqa:F401
|
54ea94bc5df22c8f7ecf8744a5bce3dfb1d32639ddadf13207963eee442d8091 | from sympy.core import (
S, pi, oo, symbols, Rational, Integer, Float, Mod, GoldenRatio, EulerGamma, Catalan,
Lambda, Dummy, Eq, nan, Mul, Pow
)
from sympy.functions import (
Abs, acos, acosh, asin, asinh, atan, atanh, atan2, ceiling, cos, cosh, erf,
erfc, exp, floor, gamma, log, loggamma, Max, Min, Piecewise, sign, sin, sinh,
sqrt, tan, tanh
)
from sympy.sets import Range
from sympy.logic import ITE
from sympy.codegen import For, aug_assign, Assignment
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
from sympy.printing.c import C89CodePrinter, C99CodePrinter, get_math_macros
from sympy.codegen.ast import (
AddAugmentedAssignment, Element, Type, FloatType, Declaration, Pointer, Variable, value_const, pointer_const,
While, Scope, Print, FunctionPrototype, FunctionDefinition, FunctionCall, Return,
real, float32, float64, float80, float128, intc, Comment, CodeBlock
)
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, fma, log10, Cbrt, hypot, Sqrt
from sympy.codegen.cnodes import restrict
from sympy.utilities.lambdify import implemented_function
from sympy.tensor import IndexedBase, Idx
from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix
from sympy import ccode
x, y, z = symbols('x,y,z')
def test_printmethod():
class fabs(Abs):
def _ccode(self, printer):
return "fabs(%s)" % printer._print(self.args[0])
assert ccode(fabs(x)) == "fabs(x)"
def test_ccode_sqrt():
assert ccode(sqrt(x)) == "sqrt(x)"
assert ccode(x**0.5) == "sqrt(x)"
assert ccode(sqrt(x)) == "sqrt(x)"
def test_ccode_Pow():
assert ccode(x**3) == "pow(x, 3)"
assert ccode(x**(y**3)) == "pow(x, pow(y, 3))"
g = implemented_function('g', Lambda(x, 2*x))
assert ccode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"pow(3.5*2*x, -x + pow(y, x))/(pow(x, 2) + y)"
assert ccode(x**-1.0) == '1.0/x'
assert ccode(x**Rational(2, 3)) == 'pow(x, 2.0/3.0)'
assert ccode(x**Rational(2, 3), type_aliases={real: float80}) == 'powl(x, 2.0L/3.0L)'
_cond_cfunc = [(lambda base, exp: exp.is_integer, "dpowi"),
(lambda base, exp: not exp.is_integer, "pow")]
assert ccode(x**3, user_functions={'Pow': _cond_cfunc}) == 'dpowi(x, 3)'
assert ccode(x**0.5, user_functions={'Pow': _cond_cfunc}) == 'pow(x, 0.5)'
assert ccode(x**Rational(16, 5), user_functions={'Pow': _cond_cfunc}) == 'pow(x, 16.0/5.0)'
_cond_cfunc2 = [(lambda base, exp: base == 2, lambda base, exp: 'exp2(%s)' % exp),
(lambda base, exp: base != 2, 'pow')]
# Related to gh-11353
assert ccode(2**x, user_functions={'Pow': _cond_cfunc2}) == 'exp2(x)'
assert ccode(x**2, user_functions={'Pow': _cond_cfunc2}) == 'pow(x, 2)'
# For issue 14160
assert ccode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
def test_ccode_Max():
# Test for gh-11926
assert ccode(Max(x,x*x),user_functions={"Max":"my_max", "Pow":"my_pow"}) == 'my_max(x, my_pow(x, 2))'
def test_ccode_Min_performance():
#Shouldn't take more than a few seconds
big_min = Min(*symbols('a[0:50]'))
for curr_standard in ('c89', 'c99', 'c11'):
output = ccode(big_min, standard=curr_standard)
assert output.count('(') == output.count(')')
def test_ccode_constants_mathh():
assert ccode(exp(1)) == "M_E"
assert ccode(pi) == "M_PI"
assert ccode(oo, standard='c89') == "HUGE_VAL"
assert ccode(-oo, standard='c89') == "-HUGE_VAL"
assert ccode(oo) == "INFINITY"
assert ccode(-oo, standard='c99') == "-INFINITY"
assert ccode(pi, type_aliases={real: float80}) == "M_PIl"
def test_ccode_constants_other():
assert ccode(2*GoldenRatio) == "const double GoldenRatio = %s;\n2*GoldenRatio" % GoldenRatio.evalf(17)
assert ccode(
2*Catalan) == "const double Catalan = %s;\n2*Catalan" % Catalan.evalf(17)
assert ccode(2*EulerGamma) == "const double EulerGamma = %s;\n2*EulerGamma" % EulerGamma.evalf(17)
def test_ccode_Rational():
assert ccode(Rational(3, 7)) == "3.0/7.0"
assert ccode(Rational(3, 7), type_aliases={real: float80}) == "3.0L/7.0L"
assert ccode(Rational(18, 9)) == "2"
assert ccode(Rational(3, -7)) == "-3.0/7.0"
assert ccode(Rational(3, -7), type_aliases={real: float80}) == "-3.0L/7.0L"
assert ccode(Rational(-3, -7)) == "3.0/7.0"
assert ccode(Rational(-3, -7), type_aliases={real: float80}) == "3.0L/7.0L"
assert ccode(x + Rational(3, 7)) == "x + 3.0/7.0"
assert ccode(x + Rational(3, 7), type_aliases={real: float80}) == "x + 3.0L/7.0L"
assert ccode(Rational(3, 7)*x) == "(3.0/7.0)*x"
assert ccode(Rational(3, 7)*x, type_aliases={real: float80}) == "(3.0L/7.0L)*x"
def test_ccode_Integer():
assert ccode(Integer(67)) == "67"
assert ccode(Integer(-1)) == "-1"
def test_ccode_functions():
assert ccode(sin(x) ** cos(x)) == "pow(sin(x), cos(x))"
def test_ccode_inline_function():
x = symbols('x')
g = implemented_function('g', Lambda(x, 2*x))
assert ccode(g(x)) == "2*x"
g = implemented_function('g', Lambda(x, 2*x/Catalan))
assert ccode(
g(x)) == "const double Catalan = %s;\n2*x/Catalan" % Catalan.evalf(17)
A = IndexedBase('A')
i = Idx('i', symbols('n', integer=True))
g = implemented_function('g', Lambda(x, x*(1 + x)*(2 + x)))
assert ccode(g(A[i]), assign_to=A[i]) == (
"for (int i=0; i<n; i++){\n"
" A[i] = (A[i] + 1)*(A[i] + 2)*A[i];\n"
"}"
)
def test_ccode_exceptions():
assert ccode(gamma(x), standard='C99') == "tgamma(x)"
gamma_c89 = ccode(gamma(x), standard='C89')
assert 'not supported in c' in gamma_c89.lower()
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=False)
assert 'not supported in c' in gamma_c89.lower()
gamma_c89 = ccode(gamma(x), standard='C89', allow_unknown_functions=True)
assert not 'not supported in c' in gamma_c89.lower()
assert ccode(ceiling(x)) == "ceil(x)"
assert ccode(Abs(x)) == "fabs(x)"
assert ccode(gamma(x)) == "tgamma(x)"
r, s = symbols('r,s', real=True)
assert ccode(Mod(ceiling(r), ceiling(s))) == "((ceil(r)) % (ceil(s)))"
assert ccode(Mod(r, s)) == "fmod(r, s)"
def test_ccode_user_functions():
x = symbols('x', integer=False)
n = symbols('n', integer=True)
custom_functions = {
"ceiling": "ceil",
"Abs": [(lambda x: not x.is_integer, "fabs"), (lambda x: x.is_integer, "abs")],
}
assert ccode(ceiling(x), user_functions=custom_functions) == "ceil(x)"
assert ccode(Abs(x), user_functions=custom_functions) == "fabs(x)"
assert ccode(Abs(n), user_functions=custom_functions) == "abs(n)"
def test_ccode_boolean():
assert ccode(True) == "true"
assert ccode(S.true) == "true"
assert ccode(False) == "false"
assert ccode(S.false) == "false"
assert ccode(x & y) == "x && y"
assert ccode(x | y) == "x || y"
assert ccode(~x) == "!x"
assert ccode(x & y & z) == "x && y && z"
assert ccode(x | y | z) == "x || y || z"
assert ccode((x & y) | z) == "z || x && y"
assert ccode((x | y) & z) == "z && (x || y)"
def test_ccode_Relational():
from sympy import Eq, Ne, Le, Lt, Gt, Ge
assert ccode(Eq(x, y)) == "x == y"
assert ccode(Ne(x, y)) == "x != y"
assert ccode(Le(x, y)) == "x <= y"
assert ccode(Lt(x, y)) == "x < y"
assert ccode(Gt(x, y)) == "x > y"
assert ccode(Ge(x, y)) == "x >= y"
def test_ccode_Piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert ccode(expr) == (
"((x < 1) ? (\n"
" x\n"
")\n"
": (\n"
" pow(x, 2)\n"
"))")
assert ccode(expr, assign_to="c") == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else {\n"
" c = pow(x, 2);\n"
"}")
expr = Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True))
assert ccode(expr) == (
"((x < 1) ? (\n"
" x\n"
")\n"
": ((x < 2) ? (\n"
" x + 1\n"
")\n"
": (\n"
" pow(x, 2)\n"
")))")
assert ccode(expr, assign_to='c') == (
"if (x < 1) {\n"
" c = x;\n"
"}\n"
"else if (x < 2) {\n"
" c = x + 1;\n"
"}\n"
"else {\n"
" c = pow(x, 2);\n"
"}")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: ccode(expr))
def test_ccode_sinc():
from sympy import sinc
expr = sinc(x)
assert ccode(expr) == (
"((x != 0) ? (\n"
" sin(x)/x\n"
")\n"
": (\n"
" 1\n"
"))")
def test_ccode_Piecewise_deep():
p = ccode(2*Piecewise((x, x < 1), (x + 1, x < 2), (x**2, True)))
assert p == (
"2*((x < 1) ? (\n"
" x\n"
")\n"
": ((x < 2) ? (\n"
" x + 1\n"
")\n"
": (\n"
" pow(x, 2)\n"
")))")
expr = x*y*z + x**2 + y**2 + Piecewise((0, x < 0.5), (1, True)) + cos(z) - 1
assert ccode(expr) == (
"pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
" 0\n"
")\n"
": (\n"
" 1\n"
")) + cos(z) - 1")
assert ccode(expr, assign_to='c') == (
"c = pow(x, 2) + x*y*z + pow(y, 2) + ((x < 0.5) ? (\n"
" 0\n"
")\n"
": (\n"
" 1\n"
")) + cos(z) - 1;")
def test_ccode_ITE():
expr = ITE(x < 1, y, z)
assert ccode(expr) == (
"((x < 1) ? (\n"
" y\n"
")\n"
": (\n"
" z\n"
"))")
def test_ccode_settings():
raises(TypeError, lambda: ccode(sin(x), method="garbage"))
def test_ccode_Indexed():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
s, n, m, o = symbols('s n m o', integer=True)
i, j, k = Idx('i', n), Idx('j', m), Idx('k', o)
x = IndexedBase('x')[j]
A = IndexedBase('A')[i, j]
B = IndexedBase('B')[i, j, k]
p = C99CodePrinter()
assert p._print_Indexed(x) == 'x[j]'
assert p._print_Indexed(A) == 'A[%s]' % (m*i+j)
assert p._print_Indexed(B) == 'B[%s]' % (i*o*m+j*o+k)
A = IndexedBase('A', shape=(5,3))[i, j]
assert p._print_Indexed(A) == 'A[%s]' % (3*i + j)
A = IndexedBase('A', shape=(5,3), strides='F')[i, j]
assert ccode(A) == 'A[%s]' % (i + 5*j)
A = IndexedBase('A', shape=(29,29), strides=(1, s), offset=o)[i, j]
assert ccode(A) == 'A[o + s*j + i]'
Abase = IndexedBase('A', strides=(s, m, n), offset=o)
assert ccode(Abase[i, j, k]) == 'A[m*j + n*k + o + s*i]'
assert ccode(Abase[2, 3, k]) == 'A[3*m + n*k + o + 2*s]'
def test_Element():
assert ccode(Element('x', 'ij')) == 'x[i][j]'
assert ccode(Element('x', 'ij', strides='kl', offset='o')) == 'x[i*k + j*l + o]'
assert ccode(Element('x', (3,))) == 'x[3]'
assert ccode(Element('x', (3,4,5))) == 'x[3][4][5]'
def test_ccode_Indexed_without_looking_for_contraction():
len_y = 5
y = IndexedBase('y', shape=(len_y,))
x = IndexedBase('x', shape=(len_y,))
Dy = IndexedBase('Dy', shape=(len_y-1,))
i = Idx('i', len_y-1)
e=Eq(Dy[i], (y[i+1]-y[i])/(x[i+1]-x[i]))
code0 = ccode(e.rhs, assign_to=e.lhs, contract=False)
assert code0 == 'Dy[i] = (y[%s] - y[i])/(x[%s] - x[i]);' % (i + 1, i + 1)
def test_ccode_loops_matrix_vector():
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}'
)
assert ccode(A[i, j]*x[j], assign_to=y[i]) == s
def test_dummy_loops():
i, m = symbols('i m', integer=True, cls=Dummy)
x = IndexedBase('x')
y = IndexedBase('y')
i = Idx(i, m)
expected = (
'for (int i_%(icount)i=0; i_%(icount)i<m_%(mcount)i; i_%(icount)i++){\n'
' y[i_%(icount)i] = x[i_%(icount)i];\n'
'}'
) % {'icount': i.label.dummy_index, 'mcount': m.dummy_index}
assert ccode(x[i], assign_to=y[i]) == expected
def test_ccode_loops_add():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m = symbols('n m', integer=True)
A = IndexedBase('A')
x = IndexedBase('x')
y = IndexedBase('y')
z = IndexedBase('z')
i = Idx('i', m)
j = Idx('j', n)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = x[i] + z[i];\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = A[%s]*x[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}'
)
assert ccode(A[i, j]*x[j] + x[i] + z[i], assign_to=y[i]) == s
def test_ccode_loops_multiple_contractions():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = a[%s]*b[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
assert ccode(b[j, k, l]*a[i, j, k, l], assign_to=y[i]) == s
def test_ccode_loops_addfactor():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
l = Idx('l', p)
s = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' for (int l=0; l<p; l++){\n'
' y[i] = (a[%s] + b[%s])*c[%s] + y[i];\n' % (i*n*o*p + j*o*p + k*p + l, i*n*o*p + j*o*p + k*p + l, j*o*p + k*p + l) +\
' }\n'
' }\n'
' }\n'
'}'
)
assert ccode((a[i, j, k, l] + b[i, j, k, l])*c[j, k, l], assign_to=y[i]) == s
def test_ccode_loops_multiple_terms():
from sympy.tensor import IndexedBase, Idx
from sympy import symbols
n, m, o, p = symbols('n m o p', integer=True)
a = IndexedBase('a')
b = IndexedBase('b')
c = IndexedBase('c')
y = IndexedBase('y')
i = Idx('i', m)
j = Idx('j', n)
k = Idx('k', o)
s0 = (
'for (int i=0; i<m; i++){\n'
' y[i] = 0;\n'
'}\n'
)
s1 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = b[j]*b[k]*c[%s] + y[i];\n' % (i*n*o + j*o + k) +\
' }\n'
' }\n'
'}\n'
)
s2 = (
'for (int i=0; i<m; i++){\n'
' for (int k=0; k<o; k++){\n'
' y[i] = a[%s]*b[k] + y[i];\n' % (i*o + k) +\
' }\n'
'}\n'
)
s3 = (
'for (int i=0; i<m; i++){\n'
' for (int j=0; j<n; j++){\n'
' y[i] = a[%s]*b[j] + y[i];\n' % (i*n + j) +\
' }\n'
'}\n'
)
c = ccode(b[j]*a[i, j] + b[k]*a[i, k] + b[j]*b[k]*c[i, j, k], assign_to=y[i])
assert (c == s0 + s1 + s2 + s3[:-1] or
c == s0 + s1 + s3 + s2[:-1] or
c == s0 + s2 + s1 + s3[:-1] or
c == s0 + s2 + s3 + s1[:-1] or
c == s0 + s3 + s1 + s2[:-1] or
c == s0 + s3 + s2 + s1[:-1])
def test_dereference_printing():
expr = x + y + sin(z) + z
assert ccode(expr, dereference=[z]) == "x + y + (*z) + sin((*z))"
def test_Matrix_printing():
# Test returning a Matrix
mat = Matrix([x*y, Piecewise((2 + x, y>0), (y, True)), sin(z)])
A = MatrixSymbol('A', 3, 1)
assert ccode(mat, A) == (
"A[0] = x*y;\n"
"if (y > 0) {\n"
" A[1] = x + 2;\n"
"}\n"
"else {\n"
" A[1] = y;\n"
"}\n"
"A[2] = sin(z);")
# Test using MatrixElements in expressions
expr = Piecewise((2*A[2, 0], x > 0), (A[2, 0], True)) + sin(A[1, 0]) + A[0, 0]
assert ccode(expr) == (
"((x > 0) ? (\n"
" 2*A[2]\n"
")\n"
": (\n"
" A[2]\n"
")) + sin(A[1]) + A[0]")
# Test using MatrixElements in a Matrix
q = MatrixSymbol('q', 5, 1)
M = MatrixSymbol('M', 3, 3)
m = Matrix([[sin(q[1,0]), 0, cos(q[2,0])],
[q[1,0] + q[2,0], q[3, 0], 5],
[2*q[4, 0]/q[1,0], sqrt(q[0,0]) + 4, 0]])
assert ccode(m, M) == (
"M[0] = sin(q[1]);\n"
"M[1] = 0;\n"
"M[2] = cos(q[2]);\n"
"M[3] = q[1] + q[2];\n"
"M[4] = q[3];\n"
"M[5] = 5;\n"
"M[6] = 2*q[4]/q[1];\n"
"M[7] = sqrt(q[0]) + 4;\n"
"M[8] = 0;")
def test_sparse_matrix():
# gh-15791
assert 'Not supported in C' in ccode(SparseMatrix([[1, 2, 3]]))
def test_ccode_reserved_words():
x, y = symbols('x, if')
with raises(ValueError):
ccode(y**2, error_on_reserved=True, standard='C99')
assert ccode(y**2) == 'pow(if_, 2)'
assert ccode(x * y**2, dereference=[y]) == 'pow((*if_), 2)*x'
assert ccode(y**2, reserved_word_suffix='_unreserved') == 'pow(if_unreserved, 2)'
def test_ccode_sign():
expr1, ref1 = sign(x) * y, 'y*(((x) > 0) - ((x) < 0))'
expr2, ref2 = sign(cos(x)), '(((cos(x)) > 0) - ((cos(x)) < 0))'
expr3, ref3 = sign(2 * x + x**2) * x + x**2, 'pow(x, 2) + x*(((pow(x, 2) + 2*x) > 0) - ((pow(x, 2) + 2*x) < 0))'
assert ccode(expr1) == ref1
assert ccode(expr1, 'z') == 'z = %s;' % ref1
assert ccode(expr2) == ref2
assert ccode(expr3) == ref3
def test_ccode_Assignment():
assert ccode(Assignment(x, y + z)) == 'x = y + z;'
assert ccode(aug_assign(x, '+', y + z)) == 'x += y + z;'
def test_ccode_For():
f = For(x, Range(0, 10, 2), [aug_assign(y, '*', x)])
assert ccode(f) == ("for (x = 0; x < 10; x += 2) {\n"
" y *= x;\n"
"}")
def test_ccode_Max_Min():
assert ccode(Max(x, 0), standard='C89') == '((0 > x) ? 0 : x)'
assert ccode(Max(x, 0), standard='C99') == 'fmax(0, x)'
assert ccode(Min(x, 0, sqrt(x)), standard='c89') == (
'((0 < ((x < sqrt(x)) ? x : sqrt(x))) ? 0 : ((x < sqrt(x)) ? x : sqrt(x)))'
)
def test_ccode_standard():
assert ccode(expm1(x), standard='c99') == 'expm1(x)'
assert ccode(nan, standard='c99') == 'NAN'
assert ccode(float('nan'), standard='c99') == 'NAN'
def test_C89CodePrinter():
c89printer = C89CodePrinter()
assert c89printer.language == 'C'
assert c89printer.standard == 'C89'
assert 'void' in c89printer.reserved_words
assert 'template' not in c89printer.reserved_words
def test_C99CodePrinter():
assert C99CodePrinter().doprint(expm1(x)) == 'expm1(x)'
assert C99CodePrinter().doprint(log1p(x)) == 'log1p(x)'
assert C99CodePrinter().doprint(exp2(x)) == 'exp2(x)'
assert C99CodePrinter().doprint(log2(x)) == 'log2(x)'
assert C99CodePrinter().doprint(fma(x, y, -z)) == 'fma(x, y, -z)'
assert C99CodePrinter().doprint(log10(x)) == 'log10(x)'
assert C99CodePrinter().doprint(Cbrt(x)) == 'cbrt(x)' # note Cbrt due to cbrt already taken.
assert C99CodePrinter().doprint(hypot(x, y)) == 'hypot(x, y)'
assert C99CodePrinter().doprint(loggamma(x)) == 'lgamma(x)'
assert C99CodePrinter().doprint(Max(x, 3, x**2)) == 'fmax(3, fmax(x, pow(x, 2)))'
assert C99CodePrinter().doprint(Min(x, 3)) == 'fmin(3, x)'
c99printer = C99CodePrinter()
assert c99printer.language == 'C'
assert c99printer.standard == 'C99'
assert 'restrict' in c99printer.reserved_words
assert 'using' not in c99printer.reserved_words
@XFAIL
def test_C99CodePrinter__precision_f80():
f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
assert f80_printer.doprint(sin(x+Float('2.1'))) == 'sinl(x + 2.1L)'
def test_C99CodePrinter__precision():
n = symbols('n', integer=True)
f32_printer = C99CodePrinter(dict(type_aliases={real: float32}))
f64_printer = C99CodePrinter(dict(type_aliases={real: float64}))
f80_printer = C99CodePrinter(dict(type_aliases={real: float80}))
assert f32_printer.doprint(sin(x+2.1)) == 'sinf(x + 2.1F)'
assert f64_printer.doprint(sin(x+2.1)) == 'sin(x + 2.1000000000000001)'
assert f80_printer.doprint(sin(x+Float('2.0'))) == 'sinl(x + 2.0L)'
for printer, suffix in zip([f32_printer, f64_printer, f80_printer], ['f', '', 'l']):
def check(expr, ref):
assert printer.doprint(expr) == ref.format(s=suffix, S=suffix.upper())
check(Abs(n), 'abs(n)')
check(Abs(x + 2.0), 'fabs{s}(x + 2.0{S})')
check(sin(x + 4.0)**cos(x - 2.0), 'pow{s}(sin{s}(x + 4.0{S}), cos{s}(x - 2.0{S}))')
check(exp(x*8.0), 'exp{s}(8.0{S}*x)')
check(exp2(x), 'exp2{s}(x)')
check(expm1(x*4.0), 'expm1{s}(4.0{S}*x)')
check(Mod(n, 2), '((n) % (2))')
check(Mod(2*n + 3, 3*n + 5), '((2*n + 3) % (3*n + 5))')
check(Mod(x + 2.0, 3.0), 'fmod{s}(1.0{S}*x + 2.0{S}, 3.0{S})')
check(Mod(x, 2.0*x + 3.0), 'fmod{s}(1.0{S}*x, 2.0{S}*x + 3.0{S})')
check(log(x/2), 'log{s}((1.0{S}/2.0{S})*x)')
check(log10(3*x/2), 'log10{s}((3.0{S}/2.0{S})*x)')
check(log2(x*8.0), 'log2{s}(8.0{S}*x)')
check(log1p(x), 'log1p{s}(x)')
check(2**x, 'pow{s}(2, x)')
check(2.0**x, 'pow{s}(2.0{S}, x)')
check(x**3, 'pow{s}(x, 3)')
check(x**4.0, 'pow{s}(x, 4.0{S})')
check(sqrt(3+x), 'sqrt{s}(x + 3)')
check(Cbrt(x-2.0), 'cbrt{s}(x - 2.0{S})')
check(hypot(x, y), 'hypot{s}(x, y)')
check(sin(3.*x + 2.), 'sin{s}(3.0{S}*x + 2.0{S})')
check(cos(3.*x - 1.), 'cos{s}(3.0{S}*x - 1.0{S})')
check(tan(4.*y + 2.), 'tan{s}(4.0{S}*y + 2.0{S})')
check(asin(3.*x + 2.), 'asin{s}(3.0{S}*x + 2.0{S})')
check(acos(3.*x + 2.), 'acos{s}(3.0{S}*x + 2.0{S})')
check(atan(3.*x + 2.), 'atan{s}(3.0{S}*x + 2.0{S})')
check(atan2(3.*x, 2.*y), 'atan2{s}(3.0{S}*x, 2.0{S}*y)')
check(sinh(3.*x + 2.), 'sinh{s}(3.0{S}*x + 2.0{S})')
check(cosh(3.*x - 1.), 'cosh{s}(3.0{S}*x - 1.0{S})')
check(tanh(4.0*y + 2.), 'tanh{s}(4.0{S}*y + 2.0{S})')
check(asinh(3.*x + 2.), 'asinh{s}(3.0{S}*x + 2.0{S})')
check(acosh(3.*x + 2.), 'acosh{s}(3.0{S}*x + 2.0{S})')
check(atanh(3.*x + 2.), 'atanh{s}(3.0{S}*x + 2.0{S})')
check(erf(42.*x), 'erf{s}(42.0{S}*x)')
check(erfc(42.*x), 'erfc{s}(42.0{S}*x)')
check(gamma(x), 'tgamma{s}(x)')
check(loggamma(x), 'lgamma{s}(x)')
check(ceiling(x + 2.), "ceil{s}(x + 2.0{S})")
check(floor(x + 2.), "floor{s}(x + 2.0{S})")
check(fma(x, y, -z), 'fma{s}(x, y, -z)')
check(Max(x, 8.0, x**4.0), 'fmax{s}(8.0{S}, fmax{s}(x, pow{s}(x, 4.0{S})))')
check(Min(x, 2.0), 'fmin{s}(2.0{S}, x)')
def test_get_math_macros():
macros = get_math_macros()
assert macros[exp(1)] == 'M_E'
assert macros[1/Sqrt(2)] == 'M_SQRT1_2'
def test_ccode_Declaration():
i = symbols('i', integer=True)
var1 = Variable(i, type=Type.from_expr(i))
dcl1 = Declaration(var1)
assert ccode(dcl1) == 'int i'
var2 = Variable(x, type=float32, attrs={value_const})
dcl2a = Declaration(var2)
assert ccode(dcl2a) == 'const float x'
dcl2b = var2.as_Declaration(value=pi)
assert ccode(dcl2b) == 'const float x = M_PI'
var3 = Variable(y, type=Type('bool'))
dcl3 = Declaration(var3)
printer = C89CodePrinter()
assert 'stdbool.h' not in printer.headers
assert printer.doprint(dcl3) == 'bool y'
assert 'stdbool.h' in printer.headers
u = symbols('u', real=True)
ptr4 = Pointer.deduced(u, attrs={pointer_const, restrict})
dcl4 = Declaration(ptr4)
assert ccode(dcl4) == 'double * const restrict u'
var5 = Variable(x, Type('__float128'), attrs={value_const})
dcl5a = Declaration(var5)
assert ccode(dcl5a) == 'const __float128 x'
var5b = Variable(var5.symbol, var5.type, pi, attrs=var5.attrs)
dcl5b = Declaration(var5b)
assert ccode(dcl5b) == 'const __float128 x = M_PI'
def test_C99CodePrinter_custom_type():
# We will look at __float128 (new in glibc 2.26)
f128 = FloatType('_Float128', float128.nbits, float128.nmant, float128.nexp)
p128 = C99CodePrinter(dict(
type_aliases={real: f128},
type_literal_suffixes={f128: 'Q'},
type_func_suffixes={f128: 'f128'},
type_math_macro_suffixes={
real: 'f128',
f128: 'f128'
},
type_macros={
f128: ('__STDC_WANT_IEC_60559_TYPES_EXT__',)
}
))
assert p128.doprint(x) == 'x'
assert not p128.headers
assert not p128.libraries
assert not p128.macros
assert p128.doprint(2.0) == '2.0Q'
assert not p128.headers
assert not p128.libraries
assert p128.macros == {'__STDC_WANT_IEC_60559_TYPES_EXT__'}
assert p128.doprint(Rational(1, 2)) == '1.0Q/2.0Q'
assert p128.doprint(sin(x)) == 'sinf128(x)'
assert p128.doprint(cos(2., evaluate=False)) == 'cosf128(2.0Q)'
assert p128.doprint(x**-1.0) == '1.0Q/x'
var5 = Variable(x, f128, attrs={value_const})
dcl5a = Declaration(var5)
assert ccode(dcl5a) == 'const _Float128 x'
var5b = Variable(x, f128, pi, attrs={value_const})
dcl5b = Declaration(var5b)
assert p128.doprint(dcl5b) == 'const _Float128 x = M_PIf128'
var5b = Variable(x, f128, value=Catalan.evalf(38), attrs={value_const})
dcl5c = Declaration(var5b)
assert p128.doprint(dcl5c) == 'const _Float128 x = %sQ' % Catalan.evalf(f128.decimal_dig)
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(ccode(A[0, 0]) == "A[0]")
assert(ccode(3 * A[0, 0]) == "3*A[0]")
F = C[0, 0].subs(C, A - B)
assert(ccode(F) == "(A - B)[0]")
def test_ccode_math_macros():
assert ccode(z + exp(1)) == 'z + M_E'
assert ccode(z + log2(exp(1))) == 'z + M_LOG2E'
assert ccode(z + 1/log(2)) == 'z + M_LOG2E'
assert ccode(z + log(2)) == 'z + M_LN2'
assert ccode(z + log(10)) == 'z + M_LN10'
assert ccode(z + pi) == 'z + M_PI'
assert ccode(z + pi/2) == 'z + M_PI_2'
assert ccode(z + pi/4) == 'z + M_PI_4'
assert ccode(z + 1/pi) == 'z + M_1_PI'
assert ccode(z + 2/pi) == 'z + M_2_PI'
assert ccode(z + 2/sqrt(pi)) == 'z + M_2_SQRTPI'
assert ccode(z + 2/Sqrt(pi)) == 'z + M_2_SQRTPI'
assert ccode(z + sqrt(2)) == 'z + M_SQRT2'
assert ccode(z + Sqrt(2)) == 'z + M_SQRT2'
assert ccode(z + 1/sqrt(2)) == 'z + M_SQRT1_2'
assert ccode(z + 1/Sqrt(2)) == 'z + M_SQRT1_2'
def test_ccode_Type():
assert ccode(Type('float')) == 'float'
assert ccode(intc) == 'int'
def test_ccode_codegen_ast():
assert ccode(Comment("this is a comment")) == "// this is a comment"
assert ccode(While(abs(x) > 1, [aug_assign(x, '-', 1)])) == (
'while (fabs(x) > 1) {\n'
' x -= 1;\n'
'}'
)
assert ccode(Scope([AddAugmentedAssignment(x, 1)])) == (
'{\n'
' x += 1;\n'
'}'
)
inp_x = Declaration(Variable(x, type=real))
assert ccode(FunctionPrototype(real, 'pwer', [inp_x])) == 'double pwer(double x)'
assert ccode(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) == (
'double pwer(double x){\n'
' x = pow(x, 2);\n'
'}'
)
# Elements of CodeBlock are formatted as statements:
block = CodeBlock(
x,
Print([x, y], "%d %d"),
FunctionCall('pwer', [x]),
Return(x),
)
assert ccode(block) == '\n'.join([
'x;',
'printf("%d %d", x, y);',
'pwer(x);',
'return x;',
])
def test_ccode_submodule():
# Test the compatibility sympy.printing.ccode module imports
with warns_deprecated_sympy():
import sympy.printing.ccode # noqa:F401
|
9cc1f8ab1c4b378de535bb3d837d78b917f9b021c83f92be770889dd8b52dfb4 | from sympy.tensor.toperators import PartialDerivative
from sympy import (
Abs, Chi, Ci, CosineTransform, Dict, Ei, Eq, FallingFactorial,
FiniteSet, Float, FourierTransform, Function, Indexed, IndexedBase, Integral,
Interval, InverseCosineTransform, InverseFourierTransform, Derivative,
InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform,
Lambda, LaplaceTransform, Limit, Matrix, Max, MellinTransform, Min, Mul,
Order, Piecewise, Poly, ring, field, ZZ, Pow, Product, Range, Rational,
RisingFactorial, rootof, RootSum, S, Shi, Si, SineTransform, Subs,
Sum, Symbol, ImageSet, Tuple, Ynm, Znm, arg, asin, acsc, asinh, Mod,
assoc_laguerre, assoc_legendre, beta, binomial, catalan, ceiling,
chebyshevt, chebyshevu, conjugate, cot, coth, diff, dirichlet_eta, euler,
exp, expint, factorial, factorial2, floor, gamma, gegenbauer, hermite,
hyper, im, jacobi, laguerre, legendre, lerchphi, log, frac,
meijerg, oo, polar_lift, polylog, re, root, sin, sqrt, symbols,
uppergamma, zeta, subfactorial, totient, elliptic_k, elliptic_f,
elliptic_e, elliptic_pi, cos, tan, Wild, true, false, Equivalent, Not,
Contains, divisor_sigma, SeqPer, SeqFormula, MatrixSlice,
SeqAdd, SeqMul, fourier_series, pi, ConditionSet, ComplexRegion, fps,
AccumBounds, reduced_totient, primenu, primeomega, SingularityFunction,
stieltjes, mathieuc, mathieus, mathieucprime, mathieusprime,
UnevaluatedExpr, Quaternion, I, KroneckerProduct, LambertW)
from sympy.ntheory.factor_ import udivisor_sigma
from sympy.abc import mu, tau
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex,
latex_escape, LatexPrinter)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.testing.pytest import XFAIL, raises
from sympy.functions import DiracDelta, Heaviside, KroneckerDelta, LeviCivita
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci
from sympy.logic import Implies
from sympy.logic.boolalg import And, Or, Xor
from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.units import meter, gibibyte, microgram, second
from sympy.core.trace import Tr
from sympy.combinatorics.permutations import \
Cycle, Permutation, AppliedPermutation
from sympy.matrices.expressions.permutation import PermutationMatrix
from sympy import MatrixSymbol, ln
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.sets.setexpr import SetExpr
from sympy.sets.sets import \
Union, Intersection, Complement, SymmetricDifference, ProductSet
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == "foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == "foo"
def test_latex_basic():
assert latex(1 + x) == "x + 1"
assert latex(x**2) == "x^{2}"
assert latex(x**(1 + x)) == "x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == "x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == "2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \frac{1}{2}'
assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
r'1 \cdot 1 \frac{1}{2}'
assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
r'1 \cdot 1 \cdot 2 \cdot 3 x'
assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
r'\frac{2}{3} \frac{5}{7}'
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == "1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == "x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(binomial(x, y)) == r"{\binom{x}{y}}"
x_star = Symbol('x^*')
f = Function('f')
assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == "x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
assert latex(Permutation(0, 1), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
assert latex(Permutation(), perm_cyclic=False) == \
r"\left( \right)"
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
r"10000.0"
assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
r"9.99990000000000 \cdot 10^{-2}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left((x)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left((3 \mathbf{{x}_{A}} x)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + (3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left((3 \mathbf{{x}_{A}})\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left((x)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\triangle \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\triangle \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\triangle \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\triangle \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == "T"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = {l.capitalize() for l in greek_letters_set}
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
def test_latex_functions():
assert latex(exp(x)) == "e^{x}"
assert latex(exp(1) + exp(2)) == "e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a1 = Function('a_1')
assert latex(a1) == r"\operatorname{a_{1}}"
assert latex(a1(x)) == r"\operatorname{a_{1}}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(asinh(x), inv_trig_style="full") == \
r"\operatorname{arcsinh}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(stieltjes(x)) == r"\gamma_{x}"
assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(LambertW(n)) == r'W\left(n\right)'
assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
assert latex(Mod(x, 7)) == r'x\bmod{7}'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right)\bmod{7}'
assert latex(Mod(2 * x, 7)) == r'2 x\bmod{7}'
assert latex(Mod(x, 7) + 1) == r'\left(x\bmod{7}\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x\bmod{7}\right)'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy import pi
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == '\\Psi_{0} \\overline{\\Psi_{0}}'
assert indexed_latex == '\\overline{{\\Psi}_{0}} {\\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
assert latex(Indexed('x1', Symbol('i'))) == '{x_{1}}_{i}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == 'a b'
assert latex(IndexedBase('a_b')) == 'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# for negative nested Derivative
assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
x1 = Symbol('x1')
x2 = Symbol('x2')
assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
n1 = Symbol('n1')
assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
n2 = Symbol('n2')
assert latex(diff(f(x), (x, Max(n1, n2)))) == \
r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
def test_latex_subs():
assert latex(Subs(x*y, (
x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# for negative nested Integral
assert latex(Integral(-Integral(y**2,x),x)) == \
r'\int \left(- \int y^{2}\, dx\right)\, dx'
assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
assert latex(Range(oo, -oo, -1)) == \
r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
a, b, c = symbols('a:c')
assert latex(Range(a, b, c)) == r'Range\left(a, b, c\right)'
assert latex(Range(a, 10, 1)) == r'Range\left(a, 10, 1\right)'
assert latex(Range(0, b, 1)) == r'Range\left(0, b, 1\right)'
assert latex(Range(0, 10, c)) == r'Range\left(0, 10, c\right)'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_set_operators_parenthesis():
a, b, c, d = symbols('a:d')
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(A, B, evaluate=False)
D2 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert latex(Intersection(A, U2, evaluate=False)) == \
'\\left\\{a\\right\\} \\cap ' \
'\\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)'
assert latex(Intersection(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\cap \\left(\\left\\{c\\right\\} \\cup \\left\\{d\\right\\}\\right)'
assert latex(Intersection(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Intersection(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\cap \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(Intersection(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\cap \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Union(A, I2, evaluate=False)) == \
'\\left\\{a\\right\\} \\cup ' \
'\\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)'
assert latex(Union(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap ''\\left\\{b\\right\\}\\right) ' \
'\\cup \\left(\\left\\{c\\right\\} \\cap \\left\\{d\\right\\}\\right)'
assert latex(Union(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Union(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\cup \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(Union(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\cup \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(A, C2, evaluate=False)) == \
'\\left\\{a\\right\\} \\setminus \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(Complement(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\setminus \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\setminus \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(Complement(D1, D2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\setminus ' \
'\\left(\\left\\{c\\right\\} \\triangle \\left\\{d\\right\\}\\right)'
assert latex(Complement(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) '\
'\\setminus \\left(\\left\\{c\\right\\} \\times '\
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
'\\left\\{a\\right\\} \\triangle \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\triangle ' \
'\\left(\\left\\{c\\right\\} \\setminus \\left\\{d\\right\\}\\right)'
assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
'\\left(\\left\\{a\\right\\} \\times \\left\\{b\\right\\}\\right) ' \
'\\triangle \\left(\\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}\\right)'
# XXX This can be incorrect since cartesian product is not associative
assert latex(ProductSet(A, P2).flatten()) == \
'\\left\\{a\\right\\} \\times \\left\\{c\\right\\} \\times ' \
'\\left\\{d\\right\\}'
assert latex(ProductSet(U1, U2)) == \
'\\left(\\left\\{a\\right\\} \\cup \\left\\{b\\right\\}\\right) ' \
'\\times \\left(\\left\\{c\\right\\} \\cup ' \
'\\left\\{d\\right\\}\\right)'
assert latex(ProductSet(I1, I2)) == \
'\\left(\\left\\{a\\right\\} \\cap \\left\\{b\\right\\}\\right) ' \
'\\times \\left(\\left\\{c\\right\\} \\cap ' \
'\\left\\{d\\right\\}\\right)'
assert latex(ProductSet(C1, C2)) == \
'\\left(\\left\\{a\\right\\} \\setminus ' \
'\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \
'\\setminus \\left\\{d\\right\\}\\right)'
assert latex(ProductSet(D1, D2)) == \
'\\left(\\left\\{a\\right\\} \\triangle ' \
'\\left\\{b\\right\\}\\right) \\times \\left(\\left\\{c\\right\\} ' \
'\\triangle \\left\\{d\\right\\}\\right)'
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; |\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; |\; x \in \left\{1, 2, 3\right\} , y \in \left\{3, 4\right\}\right\}"
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
assert latex(imgset) == \
r"\left\{x + y\; |\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x \mid x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x \mid x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; |\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; |\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(ln(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x)+log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x)+log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == "8 \\sqrt{2} \\tau^{\\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
"\\begin{equation*}8 \\sqrt{2} \\mu^{\\frac{7}{2}}\\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
"$$8 \\sqrt{2} \\mu^{\\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(-1, 2)) == "- \\frac{1}{2}"
assert latex(Rational(1, -2)) == "- \\frac{1}{2}"
assert latex(-Rational(-1, 2)) == "\\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == "- \\frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
"- \\frac{x}{2} - \\frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == "\\frac{1}{x}"
assert latex(1/(x + y)) == "\\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == 'x + y'
assert latex(expr, mode='plain') == 'x + y'
assert latex(expr, mode='inline') == '$x + y$'
assert latex(
expr, mode='equation*') == '\\begin{equation*}x + y\\end{equation*}'
assert latex(
expr, mode='equation') == '\\begin{equation}x + y\\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_mathieu():
assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == "\\begin{cases} x & \\text{for}\\: x < 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
assert latex(p, itex=True) == \
"\\begin{cases} x & \\text{for}\\: x \\lt 1 \\\\x^{2} &" \
" \\text{otherwise} \\end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == '\\begin{cases} x & \\text{for}\\: x < 0 \\\\0 &' \
' \\text{otherwise} \\end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
'\\begin{cases} x & ' \
'\\text{for}\\: x < 1 \\\\x^{2} & \\text{for}\\: x < 2 \\end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == "x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
'\\left[\\begin{matrix}\\frac{1}{x} & y\\\\z & w\\end{matrix}\\right]'
assert latex(M1) == \
"\\left[\\begin{matrix}\\frac{1}{x} & y & z\\end{matrix}\\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == "4 \\times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == "4 \\cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == "4 \\times x"
assert latex(4*x, mul_symbol='dot') == "4 \\cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert 'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert '3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == "A B C^{-1}"
assert latex(C**-1*A*B) == "C^{-1} A B"
assert latex(A*C**-1*B) == "A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == "x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == "y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == "x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == \
r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == \
r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
assert latex(Lambda(x, x)) == \
r"\left( x \mapsto x \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
' x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
'\\operatorname{Poly}{\\left( a x^{4} + x^{3} + \\left(b + c\\right) '\
'x^{2} + 2 x + 3, x, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
'\\operatorname{Poly}{\\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
'a x - c y^{3} + y + b, x, y, domain=\\mathbb{Z}\\left[a, b, c\\right] \\right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == "x"
assert latex(x, symbol_names={x: "x_i"}) == "x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == "x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == "x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == "x_i + y_j"
def test_matAdd():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
l = LatexPrinter()
assert l._print(C - 2*B) in ['- 2 B + C', 'C -2 B']
assert l._print(C + 2*B) in ['2 B + C', 'C + 2 B']
assert l._print(B - 2*C) in ['B - 2 C', '- 2 C + B']
assert l._print(B + 2*C) in ['B + 2 C', '2 C + B']
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
lp = LatexPrinter()
assert lp._print_MatMul(2*A) == '2 A'
assert lp._print_MatMul(2*x*A) == '2 x A'
assert lp._print_MatMul(-2*A) == '- 2 A'
assert lp._print_MatMul(1.5*A) == '1.5 A'
assert lp._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert lp._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert lp._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert lp._print_MatMul(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
n = Symbol('n', integer=True)
x, y, z, w, t, = symbols('x y z w t')
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\}\text{ in }\left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == "A_{1}"
assert latex(f1) == "f_{1}:A_{1}\\rightarrow A_{2}"
assert latex(id_A1) == "id:A_{1}\\rightarrow A_{1}"
assert latex(f2*f1) == "f_{2}\\circ f_{1}:A_{1}\\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == "\\begin{array}{cc}\n" \
"A & B \\\\\n" \
" & C \n" \
"\\end{array}\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Adjoint():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == \
r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == \
r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == \
r'\left(X^{T}\right)^{2}'
def test_Hadamard():
from sympy.matrices import MatrixSymbol, HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
assert latex(HadamardPower(X, n+1)) == \
r'X^{\circ \left({n + 1}\right)}'
def test_ElementwiseApplyFunction():
from sympy.matrices import MatrixSymbol
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
expr = X.applyfunc(Lambda(x, 1/x))
assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'
def test_ZeroMatrix():
from sympy import ZeroMatrix
assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"\mathbb{0}"
assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
def test_OneMatrix():
from sympy import OneMatrix
assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"\mathbb{1}"
assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
def test_Identity():
from sympy import Identity
assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == 'a \\wedge b \\wedge c \\wedge d \\wedge e \\wedge f'
expr = Or(*syms)
assert latex(expr) == 'a \\vee b \\vee c \\vee d \\vee e \\vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
'a \\Leftrightarrow b \\Leftrightarrow c \\Leftrightarrow d \\Leftrightarrow e \\Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
'a \\veebar b \\veebar c \\veebar d \\veebar e \\veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == 'A'
s = 'Beta'
assert translate(s) == 'B'
s = 'Eta'
assert translate(s) == 'H'
s = 'omicron'
assert translate(s) == 'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == "\\"+s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'A'
assert latex(Symbol('Beta')) == r'B'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'E'
assert latex(Symbol('Zeta')) == r'Z'
assert latex(Symbol('Eta')) == r'H'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'I'
assert latex(Symbol('Kappa')) == r'K'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'M'
assert latex(Symbol('Nu')) == r'N'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'O'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'P'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'T'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'X'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
def test_fancyset_symbols():
assert latex(S.Rationals) == '\\mathbb{Q}'
assert latex(S.Naturals) == '\\mathbb{N}'
assert latex(S.Naturals0) == '\\mathbb{N}_0'
assert latex(S.Integers) == '\\mathbb{Z}'
assert latex(S.Reals) == '\\mathbb{R}'
assert latex(S.Complexes) == '\\mathbb{C}'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.Half, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"- x y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == '\\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = 'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Series_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert latex(Series(tf1, tf2)) == \
'\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right)'
assert latex(Series(tf1, tf2, tf3)) == \
'\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right) \\left(\\frac{t x^{2} - t^{w} x + w}{t - y}\\right)'
assert latex(Series(-tf2, tf1)) == \
'\\left(\\frac{- x + y}{x + y}\\right) \\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right)'
def test_TransferFunction_printing():
tf1 = TransferFunction(x - 1, x + 1, x)
assert latex(tf1) == r"\frac{x - 1}{x + 1}"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert latex(tf2) == r"\frac{x + 1}{2 - y}"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"
def test_Parallel_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
assert latex(Parallel(tf1, tf2)) == \
'\\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right) \\left(\\frac{x - y}{x + y}\\right)'
assert latex(Parallel(-tf2, tf1)) == \
'\\left(\\frac{- x + y}{x + y}\\right) \\left(\\frac{x y^{2} - z}{- t^{3} + y^{3}}\\right)'
def test_Feedback_printing():
tf1 = TransferFunction(p, p + x, p)
tf2 = TransferFunction(-s + p, p + s, p)
assert latex(Feedback(tf1, tf2)) == \
'\\frac{\\frac{p}{p + x}}{\\left(1 \\cdot 1^{-1}\\right) \\left(\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)\\right)}'
assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
'\\frac{\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)}{\\left(1 \\cdot 1^{-1}\\right) \\left(\\left(\\frac{p}{p + x}\\right) \\left(\\frac{p - s}{p + s}\\right)\\right)}'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == "x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == "x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
K = TensorHead("K", [L, L, L, L])
assert latex(i) == "{}^{i}"
assert latex(-i) == "{}_{i}"
expr = A(i)
assert latex(expr) == "A{}^{i}"
expr = A(i0)
assert latex(expr) == "A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == "A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == "K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == "K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == "K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == "H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == "H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == "H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == "H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == "H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == "3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == 'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == 'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == 'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == 'K{}^{i=3,j}{}_{kl}'
expr = PartialDerivative(A(i), A(i))
assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
expr = PartialDerivative(A(-i), A(-j))
assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
from sympy import ConditionSet, Tuple, S, sin, cos
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(
Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
assert latex(sol) == \
r'\left\{\left( x, \ a\right) \mid \left( x, \ a\right) \in ' \
r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
r'\cos{\left(a x \right)} = 0 \right\}'
def test_trace():
# Issue 15303
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy import Basic, Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'UnimplementedExpr\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'UnimplementedExpr\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'UnimplementedExpr^{1}_{x}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A_k = MatrixSymbol("A_k", 3, 3)
assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"
A = MatrixSymbol(r"\nabla_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"
def test_AppliedPermutation():
p = Permutation(0, 1, 2)
x = Symbol('x')
assert latex(AppliedPermutation(p, x)) == \
r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
def test_PermutationMatrix():
p = Permutation(0, 1, 2)
assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
p = Permutation(0, 3)(1, 2)
assert latex(PermutationMatrix(p)) == \
r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
def test_imaginary_unit():
assert latex(1 + I) == '1 + i'
assert latex(1 + I, imaginary_unit='i') == '1 + i'
assert latex(1 + I, imaginary_unit='j') == '1 + j'
assert latex(1 + I, imaginary_unit='foo') == '1 + foo'
assert latex(I, imaginary_unit="ti") == '\\text{i}'
assert latex(I, imaginary_unit="tj") == '\\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_latex_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p, [x, y])
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{x}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_printing():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
def test_issue_17092():
x_star = Symbol('x^*')
assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
def test_latex_decimal_separator():
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
# comma decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')
# period decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')
# default decimal_separator
assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,)) == r'\left( 1,\right)')
assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') ==r'18{,}02')
assert(latex(3.4*5.3, decimal_separator = 'comma')==r'18{,}02')
x = symbols('x')
y = symbols('y')
z = symbols('z')
assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma')== r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
assert(latex(S(0.987), decimal_separator='comma')== r'0{,}987')
assert(latex(.3, decimal_separator='comma')== r'0{,}3')
assert(latex(S(.3), decimal_separator='comma')== r'0{,}3')
assert(latex(5.8*10**(-7), decimal_separator='comma') ==r'5{,}8 \cdot 10^{-7}')
assert(latex(S(5.7)*10**(-7), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
assert(latex(S(5.7*10**(-7)), decimal_separator='comma')==r'5{,}7 \cdot 10^{-7}')
x = symbols('x')
assert(latex(1.2*x+3.4, decimal_separator='comma')==r'1{,}2 x + 3{,}4')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period')==r'\left\{1, 2.3, 4.5\right\}')
# Error Handling tests
raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == 'x'
def test_latex_escape():
assert latex_escape(r"~^\&%$#_{}") == "".join([
r'\textasciitilde',
r'\textasciicircum',
r'\textbackslash',
r'\&',
r'\%',
r'\$',
r'\#',
r'\_',
r'\{',
r'\}',
])
def test_emptyPrinter():
class MyObject:
def __repr__(self):
return "<MyObject with {...}>"
# unknown objects are monospaced
assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"
# even if they are nested within other objects
assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"
def test_global_settings():
import inspect
# settings should be visible in the signature of `latex`
assert inspect.signature(latex).parameters['imaginary_unit'].default == 'i'
assert latex(I) == 'i'
try:
# but changing the defaults...
LatexPrinter.set_global_settings(imaginary_unit='j')
# ... should change the signature
assert inspect.signature(latex).parameters['imaginary_unit'].default == 'j'
assert latex(I) == 'j'
finally:
# there's no public API to undo this, but we need to make sure we do
# so as not to impact other tests
del LatexPrinter._global_settings['imaginary_unit']
# check we really did undo it
assert inspect.signature(latex).parameters['imaginary_unit'].default == 'i'
assert latex(I) == 'i'
|
9cbe588777d6a5b5bfaa52a81d2f83147d92c7bde01417c6802b37c08f2a0da7 | from sympy import (Symbol, symbols, oo, limit, Rational, Integral, Derivative,
log, exp, sqrt, pi, Function, sin, Eq, Ge, Le, Gt, Lt, Ne, Abs, conjugate,
I, Matrix)
from sympy.printing.python import python
from sympy.testing.pytest import raises, XFAIL
x, y = symbols('x,y')
th = Symbol('theta')
ph = Symbol('phi')
def test_python_basic():
# Simple numbers/symbols
assert python(-Rational(1)/2) == "e = Rational(-1, 2)"
assert python(-Rational(13)/22) == "e = Rational(-13, 22)"
assert python(oo) == "e = oo"
# Powers
assert python(x**2) == "x = Symbol(\'x\')\ne = x**2"
assert python(1/x) == "x = Symbol('x')\ne = 1/x"
assert python(y*x**-2) == "y = Symbol('y')\nx = Symbol('x')\ne = y/x**2"
assert python(
x**Rational(-5, 2)) == "x = Symbol('x')\ne = x**Rational(-5, 2)"
# Sums of terms
assert python(x**2 + x + 1) in [
"x = Symbol('x')\ne = 1 + x + x**2",
"x = Symbol('x')\ne = x + x**2 + 1",
"x = Symbol('x')\ne = x**2 + x + 1", ]
assert python(1 - x) in [
"x = Symbol('x')\ne = 1 - x",
"x = Symbol('x')\ne = -x + 1"]
assert python(1 - 2*x) in [
"x = Symbol('x')\ne = 1 - 2*x",
"x = Symbol('x')\ne = -2*x + 1"]
assert python(1 - Rational(3, 2)*y/x) in [
"y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3/2*y/x",
"y = Symbol('y')\nx = Symbol('x')\ne = -3/2*y/x + 1",
"y = Symbol('y')\nx = Symbol('x')\ne = 1 - 3*y/(2*x)"]
# Multiplication
assert python(x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = x/y"
assert python(-x/y) == "x = Symbol('x')\ny = Symbol('y')\ne = -x/y"
assert python((x + 2)/y) in [
"y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(2 + x)",
"y = Symbol('y')\nx = Symbol('x')\ne = 1/y*(x + 2)",
"x = Symbol('x')\ny = Symbol('y')\ne = 1/y*(2 + x)",
"x = Symbol('x')\ny = Symbol('y')\ne = (2 + x)/y",
"x = Symbol('x')\ny = Symbol('y')\ne = (x + 2)/y"]
assert python((1 + x)*y) in [
"y = Symbol('y')\nx = Symbol('x')\ne = y*(1 + x)",
"y = Symbol('y')\nx = Symbol('x')\ne = y*(x + 1)", ]
# Check for proper placement of negative sign
assert python(-5*x/(x + 10)) == "x = Symbol('x')\ne = -5*x/(x + 10)"
assert python(1 - Rational(3, 2)*(x + 1)) in [
"x = Symbol('x')\ne = Rational(-3, 2)*x + Rational(-1, 2)",
"x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)",
"x = Symbol('x')\ne = -3*x/2 + Rational(-1, 2)"
]
def test_python_keyword_symbol_name_escaping():
# Check for escaping of keywords
assert python(
5*Symbol("lambda")) == "lambda_ = Symbol('lambda')\ne = 5*lambda_"
assert (python(5*Symbol("lambda") + 7*Symbol("lambda_")) ==
"lambda__ = Symbol('lambda')\nlambda_ = Symbol('lambda_')\ne = 7*lambda_ + 5*lambda__")
assert (python(5*Symbol("for") + Function("for_")(8)) ==
"for__ = Symbol('for')\nfor_ = Function('for_')\ne = 5*for__ + for_(8)")
def test_python_keyword_function_name_escaping():
assert python(
5*Function("for")(8)) == "for_ = Function('for')\ne = 5*for_(8)"
def test_python_relational():
assert python(Eq(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = Eq(x, y)"
assert python(Ge(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x >= y"
assert python(Le(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x <= y"
assert python(Gt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x > y"
assert python(Lt(x, y)) == "x = Symbol('x')\ny = Symbol('y')\ne = x < y"
assert python(Ne(x/(y + 1), y**2)) in [
"x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(1 + y), y**2)",
"x = Symbol('x')\ny = Symbol('y')\ne = Ne(x/(y + 1), y**2)"]
def test_python_functions():
# Simple
assert python(2*x + exp(x)) in "x = Symbol('x')\ne = 2*x + exp(x)"
assert python(sqrt(2)) == 'e = sqrt(2)'
assert python(2**Rational(1, 3)) == 'e = 2**Rational(1, 3)'
assert python(sqrt(2 + pi)) == 'e = sqrt(2 + pi)'
assert python((2 + pi)**Rational(1, 3)) == 'e = (2 + pi)**Rational(1, 3)'
assert python(2**Rational(1, 4)) == 'e = 2**Rational(1, 4)'
assert python(Abs(x)) == "x = Symbol('x')\ne = Abs(x)"
assert python(
Abs(x/(x**2 + 1))) in ["x = Symbol('x')\ne = Abs(x/(1 + x**2))",
"x = Symbol('x')\ne = Abs(x/(x**2 + 1))"]
# Univariate/Multivariate functions
f = Function('f')
assert python(f(x)) == "x = Symbol('x')\nf = Function('f')\ne = f(x)"
assert python(f(x, y)) == "x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x, y)"
assert python(f(x/(y + 1), y)) in [
"x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(1 + y), y)",
"x = Symbol('x')\ny = Symbol('y')\nf = Function('f')\ne = f(x/(y + 1), y)"]
# Nesting of square roots
assert python(sqrt((sqrt(x + 1)) + 1)) in [
"x = Symbol('x')\ne = sqrt(1 + sqrt(1 + x))",
"x = Symbol('x')\ne = sqrt(sqrt(x + 1) + 1)"]
# Nesting of powers
assert python((((x + 1)**Rational(1, 3)) + 1)**Rational(1, 3)) in [
"x = Symbol('x')\ne = (1 + (1 + x)**Rational(1, 3))**Rational(1, 3)",
"x = Symbol('x')\ne = ((x + 1)**Rational(1, 3) + 1)**Rational(1, 3)"]
# Function powers
assert python(sin(x)**2) == "x = Symbol('x')\ne = sin(x)**2"
@XFAIL
def test_python_functions_conjugates():
a, b = map(Symbol, 'ab')
assert python( conjugate(a + b*I) ) == '_ _\na - I*b'
assert python( conjugate(exp(a + b*I)) ) == ' _ _\n a - I*b\ne '
def test_python_derivatives():
# Simple
f_1 = Derivative(log(x), x, evaluate=False)
assert python(f_1) == "x = Symbol('x')\ne = Derivative(log(x), x)"
f_2 = Derivative(log(x), x, evaluate=False) + x
assert python(f_2) == "x = Symbol('x')\ne = x + Derivative(log(x), x)"
# Multiple symbols
f_3 = Derivative(log(x) + x**2, x, y, evaluate=False)
assert python(f_3) == \
"x = Symbol('x')\ny = Symbol('y')\ne = Derivative(x**2 + log(x), x, y)"
f_4 = Derivative(2*x*y, y, x, evaluate=False) + x**2
assert python(f_4) in [
"x = Symbol('x')\ny = Symbol('y')\ne = x**2 + Derivative(2*x*y, y, x)",
"x = Symbol('x')\ny = Symbol('y')\ne = Derivative(2*x*y, y, x) + x**2"]
def test_python_integrals():
# Simple
f_1 = Integral(log(x), x)
assert python(f_1) == "x = Symbol('x')\ne = Integral(log(x), x)"
f_2 = Integral(x**2, x)
assert python(f_2) == "x = Symbol('x')\ne = Integral(x**2, x)"
# Double nesting of pow
f_3 = Integral(x**(2**x), x)
assert python(f_3) == "x = Symbol('x')\ne = Integral(x**(2**x), x)"
# Definite integrals
f_4 = Integral(x**2, (x, 1, 2))
assert python(f_4) == "x = Symbol('x')\ne = Integral(x**2, (x, 1, 2))"
f_5 = Integral(x**2, (x, Rational(1, 2), 10))
assert python(
f_5) == "x = Symbol('x')\ne = Integral(x**2, (x, Rational(1, 2), 10))"
# Nested integrals
f_6 = Integral(x**2*y**2, x, y)
assert python(f_6) == "x = Symbol('x')\ny = Symbol('y')\ne = Integral(x**2*y**2, x, y)"
def test_python_matrix():
p = python(Matrix([[x**2+1, 1], [y, x+y]]))
s = "x = Symbol('x')\ny = Symbol('y')\ne = MutableDenseMatrix([[x**2 + 1, 1], [y, x + y]])"
assert p == s
def test_python_limits():
assert python(limit(x, x, oo)) == 'e = oo'
assert python(limit(x**2, x, 0)) == 'e = 0'
def test_settings():
raises(TypeError, lambda: python(x, method="garbage"))
|
459eb720b166797b9a862e11e351a5f75ed8cf1be8a16db4ee585b6c5dd1053d | from sympy import TableForm, S
from sympy.printing.latex import latex
from sympy.abc import x
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.testing.pytest import raises
from textwrap import dedent
def test_TableForm():
s = str(TableForm([["a", "b"], ["c", "d"], ["e", 0]],
headings="automatic"))
assert s == (
' | 1 2\n'
'-------\n'
'1 | a b\n'
'2 | c d\n'
'3 | e '
)
s = str(TableForm([["a", "b"], ["c", "d"], ["e", 0]],
headings="automatic", wipe_zeros=False))
assert s == dedent('''\
| 1 2
-------
1 | a b
2 | c d
3 | e 0''')
s = str(TableForm([[x**2, "b"], ["c", x**2], ["e", "f"]],
headings=("automatic", None)))
assert s == (
'1 | x**2 b \n'
'2 | c x**2\n'
'3 | e f '
)
s = str(TableForm([["a", "b"], ["c", "d"], ["e", "f"]],
headings=(None, "automatic")))
assert s == dedent('''\
1 2
---
a b
c d
e f''')
s = str(TableForm([[5, 7], [4, 2], [10, 3]],
headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]]))
assert s == (
' | y1 y2\n'
'---------------\n'
'Group A | 5 7 \n'
'Group B | 4 2 \n'
'Group C | 10 3 '
)
raises(
ValueError,
lambda:
TableForm(
[[5, 7], [4, 2], [10, 3]],
headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]],
alignments="middle")
)
s = str(TableForm([[5, 7], [4, 2], [10, 3]],
headings=[["Group A", "Group B", "Group C"], ["y1", "y2"]],
alignments="right"))
assert s == dedent('''\
| y1 y2
---------------
Group A | 5 7
Group B | 4 2
Group C | 10 3''')
# other alignment permutations
d = [[1, 100], [100, 1]]
s = TableForm(d, headings=(('xxx', 'x'), None), alignments='l')
assert str(s) == (
'xxx | 1 100\n'
' x | 100 1 '
)
s = TableForm(d, headings=(('xxx', 'x'), None), alignments='lr')
assert str(s) == dedent('''\
xxx | 1 100
x | 100 1''')
s = TableForm(d, headings=(('xxx', 'x'), None), alignments='clr')
assert str(s) == dedent('''\
xxx | 1 100
x | 100 1''')
s = TableForm(d, headings=(('xxx', 'x'), None))
assert str(s) == (
'xxx | 1 100\n'
' x | 100 1 '
)
raises(ValueError, lambda: TableForm(d, alignments='clr'))
#pad
s = str(TableForm([[None, "-", 2], [1]], pad='?'))
assert s == dedent('''\
? - 2
1 ? ?''')
def test_TableForm_latex():
s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
wipe_zeros=True, headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
wipe_zeros=True, headings=("automatic", "automatic"), alignments='l'))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([[0, x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
wipe_zeros=True, headings=("automatic", "automatic"), alignments='l'*3))
assert s == (
'\\begin{tabular}{l l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & $a$ & $x^{3}$ \\\\\n'
'2 & $c$ & $\\frac{1}{4}$ \\\\\n'
'3 & $\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]],
formats=['(%s)', None], headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & (a) & $x^{3}$ \\\\\n'
'2 & (c) & $\\frac{1}{4}$ \\\\\n'
'3 & (sqrt(x)) & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
def neg_in_paren(x, i, j):
if i % 2:
return ('(%s)' if x < 0 else '%s') % x
else:
pass # use default print
s = latex(TableForm([[-1, 2], [-3, 4]],
formats=[neg_in_paren]*2, headings=("automatic", "automatic")))
assert s == (
'\\begin{tabular}{r l l}\n'
' & 1 & 2 \\\\\n'
'\\hline\n'
'1 & -1 & 2 \\\\\n'
'2 & (-3) & 4 \\\\\n'
'\\end{tabular}'
)
s = latex(TableForm([["a", x**3], ["c", S.One/4], [sqrt(x), sin(x**2)]]))
assert s == (
'\\begin{tabular}{l l}\n'
'$a$ & $x^{3}$ \\\\\n'
'$c$ & $\\frac{1}{4}$ \\\\\n'
'$\\sqrt{x}$ & $\\sin{\\left(x^{2} \\right)}$ \\\\\n'
'\\end{tabular}'
)
|
cc5bf052cac41a9bd936630a0f42a2f74e80b176def8538a5d3d19cee41cc027 | from sympy import diff, Integral, Limit, sin, Symbol, Integer, Rational, cos, \
tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh, E, I, oo, \
pi, GoldenRatio, EulerGamma, Sum, Eq, Ne, Ge, Lt, Float, Matrix, Basic, \
S, MatrixSymbol, Function, Derivative, log, true, false, Range, Min, Max, \
Lambda, IndexedBase, symbols, zoo, elliptic_f, elliptic_e, elliptic_pi, Ei, \
expint, jacobi, gegenbauer, chebyshevt, chebyshevu, legendre, assoc_legendre, \
laguerre, assoc_laguerre, hermite, euler, stieltjes, mathieuc, mathieus, \
mathieucprime, mathieusprime, TribonacciConstant, Contains, LambertW, \
cot, coth, acot, acoth, csc, acsc, csch, acsch, sec, asec, sech, asech
from sympy import elliptic_k, totient, reduced_totient, primenu, primeomega, \
fresnelc, fresnels, Heaviside
from sympy.calculus.util import AccumBounds
from sympy.core.containers import Tuple
from sympy.functions.combinatorial.factorials import factorial, factorial2, \
binomial
from sympy.functions.combinatorial.numbers import bernoulli, bell, lucas, \
fibonacci, tribonacci, catalan
from sympy.functions.elementary.complexes import re, im, Abs, conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.integers import floor, ceiling
from sympy.functions.special.gamma_functions import gamma, lowergamma, uppergamma
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.zeta_functions import polylog, lerchphi, zeta, dirichlet_eta
from sympy.logic.boolalg import And, Or, Implies, Equivalent, Xor, Not
from sympy.matrices.expressions.determinant import Determinant
from sympy.physics.quantum import ComplexSpace, HilbertSpace, FockSpace, hbar, Dagger
from sympy.printing.mathml import mathml, MathMLContentPrinter, \
MathMLPresentationPrinter, MathMLPrinter
from sympy.sets.sets import FiniteSet, Union, Intersection, Complement, \
SymmetricDifference, Interval, EmptySet, ProductSet
from sympy.stats.rv import RandomSymbol
from sympy.testing.pytest import raises
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy import sympify
x, y, z, a, b, c, d, e, n = symbols('x:z a:e n')
mp = MathMLContentPrinter()
mpp = MathMLPresentationPrinter()
def test_mathml_printer():
m = MathMLPrinter()
assert m.doprint(1+x) == mp.doprint(1+x)
def test_content_printmethod():
assert mp.doprint(1 + x) == '<apply><plus/><ci>x</ci><cn>1</cn></apply>'
def test_content_mathml_core():
mml_1 = mp._print(1 + x)
assert mml_1.nodeName == 'apply'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName == 'plus'
assert nodes[0].hasChildNodes() is False
assert nodes[0].nodeValue is None
assert nodes[1].nodeName in ['cn', 'ci']
if nodes[1].nodeName == 'cn':
assert nodes[1].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(x**2)
assert mml_2.nodeName == 'apply'
nodes = mml_2.childNodes
assert nodes[1].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '2'
mml_3 = mp._print(2*x)
assert mml_3.nodeName == 'apply'
nodes = mml_3.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '2'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'apply'
nodes = mml.childNodes
assert nodes[0].nodeName == 'times'
assert nodes[1].childNodes[0].nodeValue == '1.0'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_content_mathml_functions():
mml_1 = mp._print(sin(x))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'sin'
assert mml_1.childNodes[1].nodeName == 'ci'
mml_2 = mp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'diff'
assert mml_2.childNodes[1].nodeName == 'bvar'
assert mml_2.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
mml_3 = mp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'partialdiff'
assert mml_3.childNodes[1].nodeName == 'bvar'
assert mml_3.childNodes[1].childNodes[
0].nodeName == 'ci' # below bvar there's <ci>x/ci>
def test_content_mathml_limits():
# XXX No unevaluated limits
lim_fun = sin(x)/x
mml_1 = mp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'limit'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].toxml() == mp._print(lim_fun).toxml()
def test_content_mathml_integrals():
integrand = x
mml_1 = mp._print(Integral(integrand, (x, 0, 1)))
assert mml_1.childNodes[0].nodeName == 'int'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(integrand).toxml()
def test_content_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mp._print(A)
assert mll_1.childNodes[0].nodeName == 'matrixrow'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[1].nodeName == 'matrixrow'
assert mll_1.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[2].nodeName == 'matrixrow'
assert mll_1.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_1.childNodes[2].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mp._print(B)
assert mll_2.childNodes[0].nodeName == 'matrixrow'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[1].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[0].childNodes[2].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[1].nodeName == 'matrixrow'
assert mll_2.childNodes[1].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[1].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[1].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[1].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[1].childNodes[2].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[2].nodeName == 'matrixrow'
assert mll_2.childNodes[2].childNodes[0].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[2].childNodes[1].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[1].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[2].childNodes[2].nodeName == 'cn'
assert mll_2.childNodes[2].childNodes[2].childNodes[0].nodeValue == '9'
def test_content_mathml_sums():
summand = x
mml_1 = mp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'sum'
assert mml_1.childNodes[1].nodeName == 'bvar'
assert mml_1.childNodes[2].nodeName == 'lowlimit'
assert mml_1.childNodes[3].nodeName == 'uplimit'
assert mml_1.childNodes[4].toxml() == mp._print(summand).toxml()
def test_content_mathml_tuples():
mml_1 = mp._print([2])
assert mml_1.nodeName == 'list'
assert mml_1.childNodes[0].nodeName == 'cn'
assert len(mml_1.childNodes) == 1
mml_2 = mp._print([2, Integer(1)])
assert mml_2.nodeName == 'list'
assert mml_2.childNodes[0].nodeName == 'cn'
assert mml_2.childNodes[1].nodeName == 'cn'
assert len(mml_2.childNodes) == 2
def test_content_mathml_add():
mml = mp._print(x**5 - x**4 + x)
assert mml.childNodes[0].nodeName == 'plus'
assert mml.childNodes[1].childNodes[0].nodeName == 'minus'
assert mml.childNodes[1].childNodes[1].nodeName == 'apply'
def test_content_mathml_Rational():
mml_1 = mp._print(Rational(1, 1))
"""should just return a number"""
assert mml_1.nodeName == 'cn'
mml_2 = mp._print(Rational(2, 5))
assert mml_2.childNodes[0].nodeName == 'divide'
def test_content_mathml_constants():
mml = mp._print(I)
assert mml.nodeName == 'imaginaryi'
mml = mp._print(E)
assert mml.nodeName == 'exponentiale'
mml = mp._print(oo)
assert mml.nodeName == 'infinity'
mml = mp._print(pi)
assert mml.nodeName == 'pi'
assert mathml(GoldenRatio) == '<cn>φ</cn>'
mml = mathml(EulerGamma)
assert mml == '<eulergamma/>'
mml = mathml(EmptySet())
assert mml == '<emptyset/>'
mml = mathml(S.true)
assert mml == '<true/>'
mml = mathml(S.false)
assert mml == '<false/>'
mml = mathml(S.NaN)
assert mml == '<notanumber/>'
def test_content_mathml_trig():
mml = mp._print(sin(x))
assert mml.childNodes[0].nodeName == 'sin'
mml = mp._print(cos(x))
assert mml.childNodes[0].nodeName == 'cos'
mml = mp._print(tan(x))
assert mml.childNodes[0].nodeName == 'tan'
mml = mp._print(cot(x))
assert mml.childNodes[0].nodeName == 'cot'
mml = mp._print(csc(x))
assert mml.childNodes[0].nodeName == 'csc'
mml = mp._print(sec(x))
assert mml.childNodes[0].nodeName == 'sec'
mml = mp._print(asin(x))
assert mml.childNodes[0].nodeName == 'arcsin'
mml = mp._print(acos(x))
assert mml.childNodes[0].nodeName == 'arccos'
mml = mp._print(atan(x))
assert mml.childNodes[0].nodeName == 'arctan'
mml = mp._print(acot(x))
assert mml.childNodes[0].nodeName == 'arccot'
mml = mp._print(acsc(x))
assert mml.childNodes[0].nodeName == 'arccsc'
mml = mp._print(asec(x))
assert mml.childNodes[0].nodeName == 'arcsec'
mml = mp._print(sinh(x))
assert mml.childNodes[0].nodeName == 'sinh'
mml = mp._print(cosh(x))
assert mml.childNodes[0].nodeName == 'cosh'
mml = mp._print(tanh(x))
assert mml.childNodes[0].nodeName == 'tanh'
mml = mp._print(coth(x))
assert mml.childNodes[0].nodeName == 'coth'
mml = mp._print(csch(x))
assert mml.childNodes[0].nodeName == 'csch'
mml = mp._print(sech(x))
assert mml.childNodes[0].nodeName == 'sech'
mml = mp._print(asinh(x))
assert mml.childNodes[0].nodeName == 'arcsinh'
mml = mp._print(atanh(x))
assert mml.childNodes[0].nodeName == 'arctanh'
mml = mp._print(acosh(x))
assert mml.childNodes[0].nodeName == 'arccosh'
mml = mp._print(acoth(x))
assert mml.childNodes[0].nodeName == 'arccoth'
mml = mp._print(acsch(x))
assert mml.childNodes[0].nodeName == 'arccsch'
mml = mp._print(asech(x))
assert mml.childNodes[0].nodeName == 'arcsech'
def test_content_mathml_relational():
mml_1 = mp._print(Eq(x, 1))
assert mml_1.nodeName == 'apply'
assert mml_1.childNodes[0].nodeName == 'eq'
assert mml_1.childNodes[1].nodeName == 'ci'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[2].nodeName == 'cn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mp._print(Ne(1, x))
assert mml_2.nodeName == 'apply'
assert mml_2.childNodes[0].nodeName == 'neq'
assert mml_2.childNodes[1].nodeName == 'cn'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[2].nodeName == 'ci'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mp._print(Ge(1, x))
assert mml_3.nodeName == 'apply'
assert mml_3.childNodes[0].nodeName == 'geq'
assert mml_3.childNodes[1].nodeName == 'cn'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[2].nodeName == 'ci'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mp._print(Lt(1, x))
assert mml_4.nodeName == 'apply'
assert mml_4.childNodes[0].nodeName == 'lt'
assert mml_4.childNodes[1].nodeName == 'cn'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[2].nodeName == 'ci'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_content_symbol():
mml = mp._print(x)
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mp._print(Symbol("x^2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x__2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mp._print(Symbol("x^3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x__3_2"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msubsup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[0].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mp._print(Symbol("x_2_a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msub'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x^2^a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
mml = mp._print(Symbol("x__2__a"))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeName == 'mml:msup'
assert mml.childNodes[0].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].nodeName == 'mml:mrow'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[0].childNodes[
0].nodeValue == '2'
assert mml.childNodes[0].childNodes[1].childNodes[1].nodeName == 'mml:mo'
assert mml.childNodes[0].childNodes[1].childNodes[1].childNodes[
0].nodeValue == ' '
assert mml.childNodes[0].childNodes[1].childNodes[2].nodeName == 'mml:mi'
assert mml.childNodes[0].childNodes[1].childNodes[2].childNodes[
0].nodeValue == 'a'
del mml
def test_content_mathml_greek():
mml = mp._print(Symbol('alpha'))
assert mml.nodeName == 'ci'
assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}'
assert mp.doprint(Symbol('alpha')) == '<ci>α</ci>'
assert mp.doprint(Symbol('beta')) == '<ci>β</ci>'
assert mp.doprint(Symbol('gamma')) == '<ci>γ</ci>'
assert mp.doprint(Symbol('delta')) == '<ci>δ</ci>'
assert mp.doprint(Symbol('epsilon')) == '<ci>ε</ci>'
assert mp.doprint(Symbol('zeta')) == '<ci>ζ</ci>'
assert mp.doprint(Symbol('eta')) == '<ci>η</ci>'
assert mp.doprint(Symbol('theta')) == '<ci>θ</ci>'
assert mp.doprint(Symbol('iota')) == '<ci>ι</ci>'
assert mp.doprint(Symbol('kappa')) == '<ci>κ</ci>'
assert mp.doprint(Symbol('lambda')) == '<ci>λ</ci>'
assert mp.doprint(Symbol('mu')) == '<ci>μ</ci>'
assert mp.doprint(Symbol('nu')) == '<ci>ν</ci>'
assert mp.doprint(Symbol('xi')) == '<ci>ξ</ci>'
assert mp.doprint(Symbol('omicron')) == '<ci>ο</ci>'
assert mp.doprint(Symbol('pi')) == '<ci>π</ci>'
assert mp.doprint(Symbol('rho')) == '<ci>ρ</ci>'
assert mp.doprint(Symbol('varsigma')) == '<ci>ς</ci>'
assert mp.doprint(Symbol('sigma')) == '<ci>σ</ci>'
assert mp.doprint(Symbol('tau')) == '<ci>τ</ci>'
assert mp.doprint(Symbol('upsilon')) == '<ci>υ</ci>'
assert mp.doprint(Symbol('phi')) == '<ci>φ</ci>'
assert mp.doprint(Symbol('chi')) == '<ci>χ</ci>'
assert mp.doprint(Symbol('psi')) == '<ci>ψ</ci>'
assert mp.doprint(Symbol('omega')) == '<ci>ω</ci>'
assert mp.doprint(Symbol('Alpha')) == '<ci>Α</ci>'
assert mp.doprint(Symbol('Beta')) == '<ci>Β</ci>'
assert mp.doprint(Symbol('Gamma')) == '<ci>Γ</ci>'
assert mp.doprint(Symbol('Delta')) == '<ci>Δ</ci>'
assert mp.doprint(Symbol('Epsilon')) == '<ci>Ε</ci>'
assert mp.doprint(Symbol('Zeta')) == '<ci>Ζ</ci>'
assert mp.doprint(Symbol('Eta')) == '<ci>Η</ci>'
assert mp.doprint(Symbol('Theta')) == '<ci>Θ</ci>'
assert mp.doprint(Symbol('Iota')) == '<ci>Ι</ci>'
assert mp.doprint(Symbol('Kappa')) == '<ci>Κ</ci>'
assert mp.doprint(Symbol('Lambda')) == '<ci>Λ</ci>'
assert mp.doprint(Symbol('Mu')) == '<ci>Μ</ci>'
assert mp.doprint(Symbol('Nu')) == '<ci>Ν</ci>'
assert mp.doprint(Symbol('Xi')) == '<ci>Ξ</ci>'
assert mp.doprint(Symbol('Omicron')) == '<ci>Ο</ci>'
assert mp.doprint(Symbol('Pi')) == '<ci>Π</ci>'
assert mp.doprint(Symbol('Rho')) == '<ci>Ρ</ci>'
assert mp.doprint(Symbol('Sigma')) == '<ci>Σ</ci>'
assert mp.doprint(Symbol('Tau')) == '<ci>Τ</ci>'
assert mp.doprint(Symbol('Upsilon')) == '<ci>Υ</ci>'
assert mp.doprint(Symbol('Phi')) == '<ci>Φ</ci>'
assert mp.doprint(Symbol('Chi')) == '<ci>Χ</ci>'
assert mp.doprint(Symbol('Psi')) == '<ci>Ψ</ci>'
assert mp.doprint(Symbol('Omega')) == '<ci>Ω</ci>'
def test_content_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLContentPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '3'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '4'
mp = MathMLContentPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[1].childNodes[0].nodeName == 'power'
assert mml.childNodes[1].childNodes[1].childNodes[0].data == 'y'
assert mml.childNodes[1].childNodes[2].childNodes[0].data == '4'
assert mml.childNodes[4].childNodes[0].nodeName == 'power'
assert mml.childNodes[4].childNodes[1].childNodes[0].data == 'x'
assert mml.childNodes[4].childNodes[2].childNodes[0].data == '3'
def test_content_settings():
raises(TypeError, lambda: mathml(x, method="garbage"))
def test_content_mathml_logic():
assert mathml(And(x, y)) == '<apply><and/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Or(x, y)) == '<apply><or/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Xor(x, y)) == '<apply><xor/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Implies(x, y)) == '<apply><implies/><ci>x</ci><ci>y</ci></apply>'
assert mathml(Not(x)) == '<apply><not/><ci>x</ci></apply>'
def test_content_finite_sets():
assert mathml(FiniteSet(a)) == '<set><ci>a</ci></set>'
assert mathml(FiniteSet(a, b)) == '<set><ci>a</ci><ci>b</ci></set>'
assert mathml(FiniteSet(FiniteSet(a, b), c)) == \
'<set><ci>c</ci><set><ci>a</ci><ci>b</ci></set></set>'
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert mathml(U1) == \
'<apply><union/><set><ci>a</ci></set><set><ci>b</ci></set></apply>'
assert mathml(I1) == \
'<apply><intersect/><set><ci>a</ci></set><set><ci>b</ci></set>' \
'</apply>'
assert mathml(C1) == \
'<apply><setdiff/><set><ci>a</ci></set><set><ci>b</ci></set></apply>'
assert mathml(P1) == \
'<apply><cartesianproduct/><set><ci>a</ci></set><set><ci>b</ci>' \
'</set></apply>'
assert mathml(Intersection(A, U2, evaluate=False)) == \
'<apply><intersect/><set><ci>a</ci></set><apply><union/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Intersection(U1, U2, evaluate=False)) == \
'<apply><intersect/><apply><union/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
# XXX Does the parenthesis appear correctly for these examples in mathjax?
assert mathml(Intersection(C1, C2, evaluate=False)) == \
'<apply><intersect/><apply><setdiff/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Intersection(P1, P2, evaluate=False)) == \
'<apply><intersect/><apply><cartesianproduct/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Union(A, I2, evaluate=False)) == \
'<apply><union/><set><ci>a</ci></set><apply><intersect/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Union(I1, I2, evaluate=False)) == \
'<apply><union/><apply><intersect/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Union(C1, C2, evaluate=False)) == \
'<apply><union/><apply><setdiff/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><setdiff/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Union(P1, P2, evaluate=False)) == \
'<apply><union/><apply><cartesianproduct/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(A, C2, evaluate=False)) == \
'<apply><setdiff/><set><ci>a</ci></set><apply><setdiff/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(U1, U2, evaluate=False)) == \
'<apply><setdiff/><apply><union/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(I1, I2, evaluate=False)) == \
'<apply><setdiff/><apply><intersect/><set><ci>a</ci></set><set>' \
'<ci>b</ci></set></apply><apply><intersect/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(Complement(P1, P2, evaluate=False)) == \
'<apply><setdiff/><apply><cartesianproduct/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><cartesianproduct/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(A, P2)) == \
'<apply><cartesianproduct/><set><ci>a</ci></set>' \
'<apply><cartesianproduct/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(U1, U2)) == \
'<apply><cartesianproduct/><apply><union/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><union/><set><ci>c</ci></set>' \
'<set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(I1, I2)) == \
'<apply><cartesianproduct/><apply><intersect/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><intersect/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
assert mathml(ProductSet(C1, C2)) == \
'<apply><cartesianproduct/><apply><setdiff/><set><ci>a</ci></set>' \
'<set><ci>b</ci></set></apply><apply><setdiff/><set>' \
'<ci>c</ci></set><set><ci>d</ci></set></apply></apply>'
def test_presentation_printmethod():
assert mpp.doprint(1 + x) == '<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(x**2) == '<msup><mi>x</mi><mn>2</mn></msup>'
assert mpp.doprint(x**-1) == '<mfrac><mn>1</mn><mi>x</mi></mfrac>'
assert mpp.doprint(x**-2) == \
'<mfrac><mn>1</mn><msup><mi>x</mi><mn>2</mn></msup></mfrac>'
assert mpp.doprint(2*x) == \
'<mrow><mn>2</mn><mo>⁢</mo><mi>x</mi></mrow>'
def test_presentation_mathml_core():
mml_1 = mpp._print(1 + x)
assert mml_1.nodeName == 'mrow'
nodes = mml_1.childNodes
assert len(nodes) == 3
assert nodes[0].nodeName in ['mi', 'mn']
assert nodes[1].nodeName == 'mo'
if nodes[0].nodeName == 'mn':
assert nodes[0].childNodes[0].nodeValue == '1'
assert nodes[2].childNodes[0].nodeValue == 'x'
else:
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(x**2)
assert mml_2.nodeName == 'msup'
nodes = mml_2.childNodes
assert nodes[0].childNodes[0].nodeValue == 'x'
assert nodes[1].childNodes[0].nodeValue == '2'
mml_3 = mpp._print(2*x)
assert mml_3.nodeName == 'mrow'
nodes = mml_3.childNodes
assert nodes[0].childNodes[0].nodeValue == '2'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
mml = mpp._print(Float(1.0, 2)*x)
assert mml.nodeName == 'mrow'
nodes = mml.childNodes
assert nodes[0].childNodes[0].nodeValue == '1.0'
assert nodes[1].childNodes[0].nodeValue == '⁢'
assert nodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_functions():
mml_1 = mpp._print(sin(x))
assert mml_1.childNodes[0].childNodes[0
].nodeValue == 'sin'
assert mml_1.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'x'
mml_2 = mpp._print(diff(sin(x), x, evaluate=False))
assert mml_2.nodeName == 'mrow'
assert mml_2.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
assert mml_2.childNodes[1].childNodes[1
].nodeName == 'mfenced'
assert mml_2.childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == 'ⅆ'
mml_3 = mpp._print(diff(cos(x*y), x, evaluate=False))
assert mml_3.childNodes[0].nodeName == 'mfrac'
assert mml_3.childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '∂'
assert mml_3.childNodes[1].childNodes[0
].childNodes[0].nodeValue == 'cos'
def test_print_derivative():
f = Function('f')
d = Derivative(f(x, y, z), x, z, x, z, z, y)
assert mathml(d) == \
'<apply><partialdiff/><bvar><ci>y</ci><ci>z</ci><degree><cn>2</cn></degree><ci>x</ci><ci>z</ci><ci>x</ci></bvar><apply><f/><ci>x</ci><ci>y</ci><ci>z</ci></apply></apply>'
assert mathml(d, printer='presentation') == \
'<mrow><mfrac><mrow><msup><mo>∂</mo><mn>6</mn></msup></mrow><mrow><mo>∂</mo><mi>y</mi><msup><mo>∂</mo><mn>2</mn></msup><mi>z</mi><mo>∂</mo><mi>x</mi><mo>∂</mo><mi>z</mi><mo>∂</mo><mi>x</mi></mrow></mfrac><mrow><mi>f</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow></mrow>'
def test_presentation_mathml_limits():
lim_fun = sin(x)/x
mml_1 = mpp._print(Limit(lim_fun, x, 0))
assert mml_1.childNodes[0].nodeName == 'munder'
assert mml_1.childNodes[0].childNodes[0
].childNodes[0].nodeValue == 'lim'
assert mml_1.childNodes[0].childNodes[1
].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml_1.childNodes[0].childNodes[1
].childNodes[1].childNodes[0
].nodeValue == '→'
assert mml_1.childNodes[0].childNodes[1
].childNodes[2].childNodes[0
].nodeValue == '0'
def test_presentation_mathml_integrals():
assert mpp.doprint(Integral(x, (x, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mi>x</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(log(x), x)) == \
'<mrow><mo>∫</mo><mrow><mi>log</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y, x, y)) == \
'<mrow><mo>∬</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi></mrow><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
z, w = symbols('z w')
assert mpp.doprint(Integral(x*y*z, x, y, z)) == \
'<mrow><mo>∭</mo><mrow><mi>x</mi><mo>⁢</mo>'\
'<mi>y</mi><mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo>'\
'<mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x*y*z*w, x, y, z, w)) == \
'<mrow><mo>∫</mo><mo>∫</mo><mo>∫</mo>'\
'<mo>∫</mo><mrow><mi>w</mi><mo>⁢</mo>'\
'<mi>x</mi><mo>⁢</mo><mi>y</mi>'\
'<mo>⁢</mo><mi>z</mi></mrow><mo>ⅆ</mo><mi>w</mi>'\
'<mo>ⅆ</mo><mi>z</mi><mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, x, y, (z, 0, 1))) == \
'<mrow><msubsup><mo>∫</mo><mn>0</mn><mn>1</mn></msubsup>'\
'<mo>∫</mo><mo>∫</mo><mi>x</mi><mo>ⅆ</mo><mi>z</mi>'\
'<mo>ⅆ</mo><mi>y</mi><mo>ⅆ</mo><mi>x</mi></mrow>'
assert mpp.doprint(Integral(x, (x, 0))) == \
'<mrow><msup><mo>∫</mo><mn>0</mn></msup><mi>x</mi><mo>ⅆ</mo>'\
'<mi>x</mi></mrow>'
def test_presentation_mathml_matrices():
A = Matrix([1, 2, 3])
B = Matrix([[0, 5, 4], [2, 3, 1], [9, 7, 9]])
mll_1 = mpp._print(A)
assert mll_1.childNodes[0].nodeName == 'mtable'
assert mll_1.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_1.childNodes[0].childNodes) == 3
assert mll_1.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_1.childNodes[0].childNodes[0].childNodes) == 1
assert mll_1.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_1.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_1.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '3'
mll_2 = mpp._print(B)
assert mll_2.childNodes[0].nodeName == 'mtable'
assert mll_2.childNodes[0].childNodes[0].nodeName == 'mtr'
assert len(mll_2.childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0].nodeName == 'mtd'
assert len(mll_2.childNodes[0].childNodes[0].childNodes) == 3
assert mll_2.childNodes[0].childNodes[0].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '0'
assert mll_2.childNodes[0].childNodes[0].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '5'
assert mll_2.childNodes[0].childNodes[0].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '4'
assert mll_2.childNodes[0].childNodes[1].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '2'
assert mll_2.childNodes[0].childNodes[1].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '3'
assert mll_2.childNodes[0].childNodes[1].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '1'
assert mll_2.childNodes[0].childNodes[2].childNodes[0
].childNodes[0].childNodes[0].nodeValue == '9'
assert mll_2.childNodes[0].childNodes[2].childNodes[1
].childNodes[0].childNodes[0].nodeValue == '7'
assert mll_2.childNodes[0].childNodes[2].childNodes[2
].childNodes[0].childNodes[0].nodeValue == '9'
def test_presentation_mathml_sums():
summand = x
mml_1 = mpp._print(Sum(summand, (x, 1, 10)))
assert mml_1.childNodes[0].nodeName == 'munderover'
assert len(mml_1.childNodes[0].childNodes) == 3
assert mml_1.childNodes[0].childNodes[0].childNodes[0
].nodeValue == '∑'
assert len(mml_1.childNodes[0].childNodes[1].childNodes) == 3
assert mml_1.childNodes[0].childNodes[2].childNodes[0
].nodeValue == '10'
assert mml_1.childNodes[1].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_add():
mml = mpp._print(x**5 - x**4 + x)
assert len(mml.childNodes) == 5
assert mml.childNodes[0].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0
].nodeValue == '5'
assert mml.childNodes[1].childNodes[0].nodeValue == '-'
assert mml.childNodes[2].childNodes[0].childNodes[0
].nodeValue == 'x'
assert mml.childNodes[2].childNodes[1].childNodes[0
].nodeValue == '4'
assert mml.childNodes[3].childNodes[0].nodeValue == '+'
assert mml.childNodes[4].childNodes[0].nodeValue == 'x'
def test_presentation_mathml_Rational():
mml_1 = mpp._print(Rational(1, 1))
assert mml_1.nodeName == 'mn'
mml_2 = mpp._print(Rational(2, 5))
assert mml_2.nodeName == 'mfrac'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '2'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '5'
def test_presentation_mathml_constants():
mml = mpp._print(I)
assert mml.childNodes[0].nodeValue == 'ⅈ'
mml = mpp._print(E)
assert mml.childNodes[0].nodeValue == 'ⅇ'
mml = mpp._print(oo)
assert mml.childNodes[0].nodeValue == '∞'
mml = mpp._print(pi)
assert mml.childNodes[0].nodeValue == 'π'
assert mathml(GoldenRatio, printer='presentation') == '<mi>Φ</mi>'
assert mathml(zoo, printer='presentation') == \
'<mover><mo>∞</mo><mo>~</mo></mover>'
assert mathml(S.NaN, printer='presentation') == '<mi>NaN</mi>'
def test_presentation_mathml_trig():
mml = mpp._print(sin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sin'
mml = mpp._print(cos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cos'
mml = mpp._print(tan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tan'
mml = mpp._print(asin(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsin'
mml = mpp._print(acos(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccos'
mml = mpp._print(atan(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctan'
mml = mpp._print(sinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'sinh'
mml = mpp._print(cosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'cosh'
mml = mpp._print(tanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'tanh'
mml = mpp._print(asinh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arcsinh'
mml = mpp._print(atanh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arctanh'
mml = mpp._print(acosh(x))
assert mml.childNodes[0].childNodes[0].nodeValue == 'arccosh'
def test_presentation_mathml_relational():
mml_1 = mpp._print(Eq(x, 1))
assert len(mml_1.childNodes) == 3
assert mml_1.childNodes[0].nodeName == 'mi'
assert mml_1.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml_1.childNodes[1].nodeName == 'mo'
assert mml_1.childNodes[1].childNodes[0].nodeValue == '='
assert mml_1.childNodes[2].nodeName == 'mn'
assert mml_1.childNodes[2].childNodes[0].nodeValue == '1'
mml_2 = mpp._print(Ne(1, x))
assert len(mml_2.childNodes) == 3
assert mml_2.childNodes[0].nodeName == 'mn'
assert mml_2.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_2.childNodes[1].nodeName == 'mo'
assert mml_2.childNodes[1].childNodes[0].nodeValue == '≠'
assert mml_2.childNodes[2].nodeName == 'mi'
assert mml_2.childNodes[2].childNodes[0].nodeValue == 'x'
mml_3 = mpp._print(Ge(1, x))
assert len(mml_3.childNodes) == 3
assert mml_3.childNodes[0].nodeName == 'mn'
assert mml_3.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_3.childNodes[1].nodeName == 'mo'
assert mml_3.childNodes[1].childNodes[0].nodeValue == '≥'
assert mml_3.childNodes[2].nodeName == 'mi'
assert mml_3.childNodes[2].childNodes[0].nodeValue == 'x'
mml_4 = mpp._print(Lt(1, x))
assert len(mml_4.childNodes) == 3
assert mml_4.childNodes[0].nodeName == 'mn'
assert mml_4.childNodes[0].childNodes[0].nodeValue == '1'
assert mml_4.childNodes[1].nodeName == 'mo'
assert mml_4.childNodes[1].childNodes[0].nodeValue == '<'
assert mml_4.childNodes[2].nodeName == 'mi'
assert mml_4.childNodes[2].childNodes[0].nodeValue == 'x'
def test_presentation_symbol():
mml = mpp._print(x)
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == 'x'
del mml
mml = mpp._print(Symbol("x^2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x__2"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x_2"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
del mml
mml = mpp._print(Symbol("x^3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x__3_2"))
assert mml.nodeName == 'msubsup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].nodeValue == '2'
assert mml.childNodes[2].nodeName == 'mi'
assert mml.childNodes[2].childNodes[0].nodeValue == '3'
del mml
mml = mpp._print(Symbol("x_2_a"))
assert mml.nodeName == 'msub'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x^2^a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
mml = mpp._print(Symbol("x__2__a"))
assert mml.nodeName == 'msup'
assert mml.childNodes[0].nodeName == 'mi'
assert mml.childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[1].nodeName == 'mrow'
assert mml.childNodes[1].childNodes[0].nodeName == 'mi'
assert mml.childNodes[1].childNodes[0].childNodes[0].nodeValue == '2'
assert mml.childNodes[1].childNodes[1].nodeName == 'mo'
assert mml.childNodes[1].childNodes[1].childNodes[0].nodeValue == ' '
assert mml.childNodes[1].childNodes[2].nodeName == 'mi'
assert mml.childNodes[1].childNodes[2].childNodes[0].nodeValue == 'a'
del mml
def test_presentation_mathml_greek():
mml = mpp._print(Symbol('alpha'))
assert mml.nodeName == 'mi'
assert mml.childNodes[0].nodeValue == '\N{GREEK SMALL LETTER ALPHA}'
assert mpp.doprint(Symbol('alpha')) == '<mi>α</mi>'
assert mpp.doprint(Symbol('beta')) == '<mi>β</mi>'
assert mpp.doprint(Symbol('gamma')) == '<mi>γ</mi>'
assert mpp.doprint(Symbol('delta')) == '<mi>δ</mi>'
assert mpp.doprint(Symbol('epsilon')) == '<mi>ε</mi>'
assert mpp.doprint(Symbol('zeta')) == '<mi>ζ</mi>'
assert mpp.doprint(Symbol('eta')) == '<mi>η</mi>'
assert mpp.doprint(Symbol('theta')) == '<mi>θ</mi>'
assert mpp.doprint(Symbol('iota')) == '<mi>ι</mi>'
assert mpp.doprint(Symbol('kappa')) == '<mi>κ</mi>'
assert mpp.doprint(Symbol('lambda')) == '<mi>λ</mi>'
assert mpp.doprint(Symbol('mu')) == '<mi>μ</mi>'
assert mpp.doprint(Symbol('nu')) == '<mi>ν</mi>'
assert mpp.doprint(Symbol('xi')) == '<mi>ξ</mi>'
assert mpp.doprint(Symbol('omicron')) == '<mi>ο</mi>'
assert mpp.doprint(Symbol('pi')) == '<mi>π</mi>'
assert mpp.doprint(Symbol('rho')) == '<mi>ρ</mi>'
assert mpp.doprint(Symbol('varsigma')) == '<mi>ς</mi>'
assert mpp.doprint(Symbol('sigma')) == '<mi>σ</mi>'
assert mpp.doprint(Symbol('tau')) == '<mi>τ</mi>'
assert mpp.doprint(Symbol('upsilon')) == '<mi>υ</mi>'
assert mpp.doprint(Symbol('phi')) == '<mi>φ</mi>'
assert mpp.doprint(Symbol('chi')) == '<mi>χ</mi>'
assert mpp.doprint(Symbol('psi')) == '<mi>ψ</mi>'
assert mpp.doprint(Symbol('omega')) == '<mi>ω</mi>'
assert mpp.doprint(Symbol('Alpha')) == '<mi>Α</mi>'
assert mpp.doprint(Symbol('Beta')) == '<mi>Β</mi>'
assert mpp.doprint(Symbol('Gamma')) == '<mi>Γ</mi>'
assert mpp.doprint(Symbol('Delta')) == '<mi>Δ</mi>'
assert mpp.doprint(Symbol('Epsilon')) == '<mi>Ε</mi>'
assert mpp.doprint(Symbol('Zeta')) == '<mi>Ζ</mi>'
assert mpp.doprint(Symbol('Eta')) == '<mi>Η</mi>'
assert mpp.doprint(Symbol('Theta')) == '<mi>Θ</mi>'
assert mpp.doprint(Symbol('Iota')) == '<mi>Ι</mi>'
assert mpp.doprint(Symbol('Kappa')) == '<mi>Κ</mi>'
assert mpp.doprint(Symbol('Lambda')) == '<mi>Λ</mi>'
assert mpp.doprint(Symbol('Mu')) == '<mi>Μ</mi>'
assert mpp.doprint(Symbol('Nu')) == '<mi>Ν</mi>'
assert mpp.doprint(Symbol('Xi')) == '<mi>Ξ</mi>'
assert mpp.doprint(Symbol('Omicron')) == '<mi>Ο</mi>'
assert mpp.doprint(Symbol('Pi')) == '<mi>Π</mi>'
assert mpp.doprint(Symbol('Rho')) == '<mi>Ρ</mi>'
assert mpp.doprint(Symbol('Sigma')) == '<mi>Σ</mi>'
assert mpp.doprint(Symbol('Tau')) == '<mi>Τ</mi>'
assert mpp.doprint(Symbol('Upsilon')) == '<mi>Υ</mi>'
assert mpp.doprint(Symbol('Phi')) == '<mi>Φ</mi>'
assert mpp.doprint(Symbol('Chi')) == '<mi>Χ</mi>'
assert mpp.doprint(Symbol('Psi')) == '<mi>Ψ</mi>'
assert mpp.doprint(Symbol('Omega')) == '<mi>Ω</mi>'
def test_presentation_mathml_order():
expr = x**3 + x**2*y + 3*x*y**3 + y**4
mp = MathMLPresentationPrinter({'order': 'lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '3'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '4'
mp = MathMLPresentationPrinter({'order': 'rev-lex'})
mml = mp._print(expr)
assert mml.childNodes[0].nodeName == 'msup'
assert mml.childNodes[0].childNodes[0].childNodes[0].nodeValue == 'y'
assert mml.childNodes[0].childNodes[1].childNodes[0].nodeValue == '4'
assert mml.childNodes[6].nodeName == 'msup'
assert mml.childNodes[6].childNodes[0].childNodes[0].nodeValue == 'x'
assert mml.childNodes[6].childNodes[1].childNodes[0].nodeValue == '3'
def test_print_intervals():
a = Symbol('a', real=True)
assert mpp.doprint(Interval(0, a)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, False)) == \
'<mrow><mfenced close="]" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, False)) == \
'<mrow><mfenced close="]" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, False, True)) == \
'<mrow><mfenced close=")" open="["><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Interval(0, a, True, True)) == \
'<mrow><mfenced close=")" open="("><mn>0</mn><mi>a</mi></mfenced></mrow>'
def test_print_tuples():
assert mpp.doprint(Tuple(0,)) == \
'<mrow><mfenced><mn>0</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, a, a)) == \
'<mrow><mfenced><mn>0</mn><mi>a</mi><mi>a</mi></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, 2, 3, 4)) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mn>2</mn><mn>3</mn><mn>4</mn></mfenced></mrow>'
assert mpp.doprint(Tuple(0, 1, Tuple(2, 3, 4))) == \
'<mrow><mfenced><mn>0</mn><mn>1</mn><mrow><mfenced><mn>2</mn><mn>3'\
'</mn><mn>4</mn></mfenced></mrow></mfenced></mrow>'
def test_print_re_im():
assert mpp.doprint(re(x)) == \
'<mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(im(x)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(re(x + 1)) == \
'<mrow><mrow><mi mathvariant="fraktur">R</mi><mfenced><mi>x</mi>'\
'</mfenced></mrow><mo>+</mo><mn>1</mn></mrow>'
assert mpp.doprint(im(x + 1)) == \
'<mrow><mi mathvariant="fraktur">I</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_Abs():
assert mpp.doprint(Abs(x)) == \
'<mrow><mfenced close="|" open="|"><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Abs(x + 1)) == \
'<mrow><mfenced close="|" open="|"><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced></mrow>'
def test_print_Determinant():
assert mpp.doprint(Determinant(Matrix([[1, 2], [3, 4]]))) == \
'<mrow><mfenced close="|" open="|"><mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced></mfenced></mrow>'
def test_presentation_settings():
raises(TypeError, lambda: mathml(x, printer='presentation',
method="garbage"))
def test_toprettyxml_hooking():
# test that the patch doesn't influence the behavior of the standard
# library
import xml.dom.minidom
doc1 = xml.dom.minidom.parseString(
"<apply><plus/><ci>x</ci><cn>1</cn></apply>")
doc2 = xml.dom.minidom.parseString(
"<mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow>")
prettyxml_old1 = doc1.toprettyxml()
prettyxml_old2 = doc2.toprettyxml()
mp.apply_patch()
mp.restore_patch()
assert prettyxml_old1 == doc1.toprettyxml()
assert prettyxml_old2 == doc2.toprettyxml()
def test_print_domains():
from sympy import Complexes, Integers, Naturals, Naturals0, Reals
assert mpp.doprint(Complexes) == '<mi mathvariant="normal">ℂ</mi>'
assert mpp.doprint(Integers) == '<mi mathvariant="normal">ℤ</mi>'
assert mpp.doprint(Naturals) == '<mi mathvariant="normal">ℕ</mi>'
assert mpp.doprint(Naturals0) == \
'<msub><mi mathvariant="normal">ℕ</mi><mn>0</mn></msub>'
assert mpp.doprint(Reals) == '<mi mathvariant="normal">ℝ</mi>'
def test_print_expression_with_minus():
assert mpp.doprint(-x) == '<mrow><mo>-</mo><mi>x</mi></mrow>'
assert mpp.doprint(-x/y) == \
'<mrow><mo>-</mo><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow>'
assert mpp.doprint(-Rational(1, 2)) == \
'<mrow><mo>-</mo><mfrac><mn>1</mn><mn>2</mn></mfrac></mrow>'
def test_print_AssocOp():
from sympy.core.operations import AssocOp
class TestAssocOp(AssocOp):
identity = 0
expr = TestAssocOp(1, 2)
mpp.doprint(expr) == \
'<mrow><mi>testassocop</mi><mn>2</mn><mn>1</mn></mrow>'
def test_print_basic():
expr = Basic(1, 2)
assert mpp.doprint(expr) == \
'<mrow><mi>basic</mi><mfenced><mn>1</mn><mn>2</mn></mfenced></mrow>'
assert mp.doprint(expr) == '<basic><cn>1</cn><cn>2</cn></basic>'
def test_mat_delim_print():
expr = Matrix([[1, 2], [3, 4]])
assert mathml(expr, printer='presentation', mat_delim='[') == \
'<mfenced close="]" open="["><mtable><mtr><mtd><mn>1</mn></mtd><mtd>'\
'<mn>2</mn></mtd></mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn>'\
'</mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='(') == \
'<mfenced><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd>'\
'</mtr><mtr><mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable></mfenced>'
assert mathml(expr, printer='presentation', mat_delim='') == \
'<mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>2</mn></mtd></mtr><mtr>'\
'<mtd><mn>3</mn></mtd><mtd><mn>4</mn></mtd></mtr></mtable>'
def test_ln_notation_print():
expr = log(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=False) == \
'<mrow><mi>log</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(expr, printer='presentation', ln_notation=True) == \
'<mrow><mi>ln</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mul_symbol_print():
expr = x * y
assert mathml(expr, printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol=None) == \
'<mrow><mi>x</mi><mo>⁢</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='dot') == \
'<mrow><mi>x</mi><mo>·</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='ldot') == \
'<mrow><mi>x</mi><mo>․</mo><mi>y</mi></mrow>'
assert mathml(expr, printer='presentation', mul_symbol='times') == \
'<mrow><mi>x</mi><mo>×</mo><mi>y</mi></mrow>'
def test_print_lerchphi():
assert mpp.doprint(lerchphi(1, 2, 3)) == \
'<mrow><mi>Φ</mi><mfenced><mn>1</mn><mn>2</mn><mn>3</mn></mfenced></mrow>'
def test_print_polylog():
assert mp.doprint(polylog(x, y)) == \
'<apply><polylog/><ci>x</ci><ci>y</ci></apply>'
assert mpp.doprint(polylog(x, y)) == \
'<mrow><msub><mi>Li</mi><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
def test_print_set_frozenset():
f = frozenset({1, 5, 3})
assert mpp.doprint(f) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mn>5</mn></mfenced>'
s = set({1, 2, 3})
assert mpp.doprint(s) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
def test_print_FiniteSet():
f1 = FiniteSet(x, 1, 3)
assert mpp.doprint(f1) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi></mfenced>'
def test_print_LambertW():
assert mpp.doprint(LambertW(x)) == '<mrow><mi>W</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(LambertW(x, y)) == '<mrow><mi>W</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_EmptySet():
assert mpp.doprint(EmptySet()) == '<mo>∅</mo>'
def test_print_UniversalSet():
assert mpp.doprint(S.UniversalSet) == '<mo>𝕌</mo>'
def test_print_spaces():
assert mpp.doprint(HilbertSpace()) == '<mi>ℋ</mi>'
assert mpp.doprint(ComplexSpace(2)) == '<msup>𝒞<mn>2</mn></msup>'
assert mpp.doprint(FockSpace()) == '<mi>ℱ</mi>'
def test_print_constants():
assert mpp.doprint(hbar) == '<mi>ℏ</mi>'
assert mpp.doprint(TribonacciConstant) == '<mi>TribonacciConstant</mi>'
assert mpp.doprint(EulerGamma) == '<mi>γ</mi>'
def test_print_Contains():
assert mpp.doprint(Contains(x, S.Naturals)) == \
'<mrow><mi>x</mi><mo>∈</mo><mi mathvariant="normal">ℕ</mi></mrow>'
def test_print_Dagger():
assert mpp.doprint(Dagger(x)) == '<msup><mi>x</mi>†</msup>'
def test_print_SetOp():
f1 = FiniteSet(x, 1, 3)
f2 = FiniteSet(y, 2, 4)
prntr = lambda x: mathml(x, printer='presentation')
assert prntr(Union(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∪</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert prntr(Intersection(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∩</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert prntr(Complement(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∖</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
assert prntr(SymmetricDifference(f1, f2, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mn>1</mn><mn>3</mn><mi>x</mi>'\
'</mfenced><mo>∆</mo><mfenced close="}" open="{"><mn>2</mn>'\
'<mn>4</mn><mi>y</mi></mfenced></mrow>'
A = FiniteSet(a)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(C, D, evaluate=False)
I1 = Intersection(C, D, evaluate=False)
C1 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(C, D)
assert prntr(Union(A, I1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∪</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∩</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(Intersection(A, C1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∩</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∖</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(Complement(A, D1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∖</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∆</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(SymmetricDifference(A, P1, evaluate=False)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>∆</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>×</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
assert prntr(ProductSet(A, U1)) == \
'<mrow><mfenced close="}" open="{"><mi>a</mi></mfenced>' \
'<mo>×</mo><mfenced><mrow><mfenced close="}" open="{">' \
'<mi>c</mi></mfenced><mo>∪</mo><mfenced close="}" open="{">' \
'<mi>d</mi></mfenced></mrow></mfenced></mrow>'
def test_print_logic():
assert mpp.doprint(And(x, y)) == \
'<mrow><mi>x</mi><mo>∧</mo><mi>y</mi></mrow>'
assert mpp.doprint(Or(x, y)) == \
'<mrow><mi>x</mi><mo>∨</mo><mi>y</mi></mrow>'
assert mpp.doprint(Xor(x, y)) == \
'<mrow><mi>x</mi><mo>⊻</mo><mi>y</mi></mrow>'
assert mpp.doprint(Implies(x, y)) == \
'<mrow><mi>x</mi><mo>⇒</mo><mi>y</mi></mrow>'
assert mpp.doprint(Equivalent(x, y)) == \
'<mrow><mi>x</mi><mo>⇔</mo><mi>y</mi></mrow>'
assert mpp.doprint(And(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), y < 3, x > y + 1)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo><mn>1</mn></mrow>'\
'</mrow><mo>∧</mo><mrow><mi>y</mi><mo><</mo><mn>3</mn></mrow></mrow>'
assert mpp.doprint(Or(Eq(x, y), x > 4)) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mi>y</mi></mrow><mo>∨</mo>'\
'<mrow><mi>x</mi><mo>></mo><mn>4</mn></mrow></mrow>'
assert mpp.doprint(And(Eq(x, 3), Or(y < 3, x > y + 1))) == \
'<mrow><mrow><mi>x</mi><mo>=</mo><mn>3</mn></mrow><mo>∧</mo>'\
'<mfenced><mrow><mrow><mi>x</mi><mo>></mo><mrow><mi>y</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow><mo>∨</mo><mrow><mi>y</mi><mo><</mo>'\
'<mn>3</mn></mrow></mrow></mfenced></mrow>'
assert mpp.doprint(Not(x)) == '<mrow><mo>¬</mo><mi>x</mi></mrow>'
assert mpp.doprint(Not(And(x, y))) == \
'<mrow><mo>¬</mo><mfenced><mrow><mi>x</mi><mo>∧</mo>'\
'<mi>y</mi></mrow></mfenced></mrow>'
def test_root_notation_print():
assert mathml(x**(S.One/3), printer='presentation') == \
'<mroot><mi>x</mi><mn>3</mn></mroot>'
assert mathml(x**(S.One/3), printer='presentation', root_notation=False) ==\
'<msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup>'
assert mathml(x**(S.One/3), printer='content') == \
'<apply><root/><degree><ci>3</ci></degree><ci>x</ci></apply>'
assert mathml(x**(S.One/3), printer='content', root_notation=False) == \
'<apply><power/><ci>x</ci><apply><divide/><cn>1</cn><cn>3</cn></apply></apply>'
assert mathml(x**(Rational(-1, 3)), printer='presentation') == \
'<mfrac><mn>1</mn><mroot><mi>x</mi><mn>3</mn></mroot></mfrac>'
assert mathml(x**(Rational(-1, 3)), printer='presentation', root_notation=False) \
== '<mfrac><mn>1</mn><msup><mi>x</mi><mfrac><mn>1</mn><mn>3</mn></mfrac></msup></mfrac>'
def test_fold_frac_powers_print():
expr = x ** Rational(5, 2)
assert mathml(expr, printer='presentation') == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=True) == \
'<msup><mi>x</mi><mfrac bevelled="true"><mn>5</mn><mn>2</mn></mfrac></msup>'
assert mathml(expr, printer='presentation', fold_frac_powers=False) == \
'<msup><mi>x</mi><mfrac><mn>5</mn><mn>2</mn></mfrac></msup>'
def test_fold_short_frac_print():
expr = Rational(2, 5)
assert mathml(expr, printer='presentation') == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=True) == \
'<mfrac bevelled="true"><mn>2</mn><mn>5</mn></mfrac>'
assert mathml(expr, printer='presentation', fold_short_frac=False) == \
'<mfrac><mn>2</mn><mn>5</mn></mfrac>'
def test_print_factorials():
assert mpp.doprint(factorial(x)) == '<mrow><mi>x</mi><mo>!</mo></mrow>'
assert mpp.doprint(factorial(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!</mo></mrow>'
assert mpp.doprint(factorial2(x)) == '<mrow><mi>x</mi><mo>!!</mo></mrow>'
assert mpp.doprint(factorial2(x + 1)) == \
'<mrow><mfenced><mrow><mi>x</mi><mo>+</mo><mn>1</mn></mrow></mfenced><mo>!!</mo></mrow>'
assert mpp.doprint(binomial(x, y)) == \
'<mfenced><mfrac linethickness="0"><mi>x</mi><mi>y</mi></mfrac></mfenced>'
assert mpp.doprint(binomial(4, x + y)) == \
'<mfenced><mfrac linethickness="0"><mn>4</mn><mrow><mi>x</mi>'\
'<mo>+</mo><mi>y</mi></mrow></mfrac></mfenced>'
def test_print_floor():
expr = floor(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌋" open="⌊"><mi>x</mi></mfenced></mrow>'
def test_print_ceiling():
expr = ceiling(x)
assert mathml(expr, printer='presentation') == \
'<mrow><mfenced close="⌉" open="⌈"><mi>x</mi></mfenced></mrow>'
def test_print_Lambda():
expr = Lambda(x, x+1)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mi>x</mi><mo>↦</mo><mrow><mi>x</mi><mo>+</mo>'\
'<mn>1</mn></mrow></mrow></mfenced>'
expr = Lambda((x, y), x + y)
assert mathml(expr, printer='presentation') == \
'<mfenced><mrow><mrow><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'\
'<mo>↦</mo><mrow><mi>x</mi><mo>+</mo><mi>y</mi></mrow></mrow></mfenced>'
def test_print_conjugate():
assert mpp.doprint(conjugate(x)) == \
'<menclose notation="top"><mi>x</mi></menclose>'
assert mpp.doprint(conjugate(x + 1)) == \
'<mrow><menclose notation="top"><mi>x</mi></menclose><mo>+</mo><mn>1</mn></mrow>'
def test_print_AccumBounds():
a = Symbol('a', real=True)
assert mpp.doprint(AccumBounds(0, 1)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mn>1</mn></mfenced>'
assert mpp.doprint(AccumBounds(0, a)) == '<mfenced close="⟩" open="⟨"><mn>0</mn><mi>a</mi></mfenced>'
assert mpp.doprint(AccumBounds(a + 1, a + 2)) == '<mfenced close="⟩" open="⟨"><mrow><mi>a</mi><mo>+</mo><mn>1</mn></mrow><mrow><mi>a</mi><mo>+</mo><mn>2</mn></mrow></mfenced>'
def test_print_Float():
assert mpp.doprint(Float(1e100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1e-100)) == '<mrow><mn>1.0</mn><mo>·</mo><msup><mn>10</mn><mn>-100</mn></msup></mrow>'
assert mpp.doprint(Float(-1e100)) == '<mrow><mn>-1.0</mn><mo>·</mo><msup><mn>10</mn><mn>100</mn></msup></mrow>'
assert mpp.doprint(Float(1.0*oo)) == '<mi>∞</mi>'
assert mpp.doprint(Float(-1.0*oo)) == '<mrow><mo>-</mo><mi>∞</mi></mrow>'
def test_print_different_functions():
assert mpp.doprint(gamma(x)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(lowergamma(x, y)) == '<mrow><mi>γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(uppergamma(x, y)) == '<mrow><mi>Γ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(zeta(x, y)) == '<mrow><mi>ζ</mi><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(dirichlet_eta(x)) == '<mrow><mi>η</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(elliptic_k(x)) == '<mrow><mi>Κ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(totient(x)) == '<mrow><mi>ϕ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(reduced_totient(x)) == '<mrow><mi>λ</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primenu(x)) == '<mrow><mi>ν</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(primeomega(x)) == '<mrow><mi>Ω</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnels(x)) == '<mrow><mi>S</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(fresnelc(x)) == '<mrow><mi>C</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mpp.doprint(Heaviside(x)) == '<mrow><mi>Θ</mi><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_builtins():
assert mpp.doprint(None) == '<mi>None</mi>'
assert mpp.doprint(true) == '<mi>True</mi>'
assert mpp.doprint(false) == '<mi>False</mi>'
def test_mathml_Range():
assert mpp.doprint(Range(1, 51)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mi>…</mi><mn>50</mn></mfenced>'
assert mpp.doprint(Range(1, 4)) == \
'<mfenced close="}" open="{"><mn>1</mn><mn>2</mn><mn>3</mn></mfenced>'
assert mpp.doprint(Range(0, 3, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, 30, 1)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>1</mn><mi>…</mi><mn>29</mn></mfenced>'
assert mpp.doprint(Range(30, 1, -1)) == \
'<mfenced close="}" open="{"><mn>30</mn><mn>29</mn><mi>…</mi>'\
'<mn>2</mn></mfenced>'
assert mpp.doprint(Range(0, oo, 2)) == \
'<mfenced close="}" open="{"><mn>0</mn><mn>2</mn><mi>…</mi></mfenced>'
assert mpp.doprint(Range(oo, -2, -2)) == \
'<mfenced close="}" open="{"><mi>…</mi><mn>2</mn><mn>0</mn></mfenced>'
assert mpp.doprint(Range(-2, -oo, -1)) == \
'<mfenced close="}" open="{"><mn>-2</mn><mn>-3</mn><mi>…</mi></mfenced>'
def test_print_exp():
assert mpp.doprint(exp(x)) == \
'<msup><mi>ⅇ</mi><mi>x</mi></msup>'
assert mpp.doprint(exp(1) + exp(2)) == \
'<mrow><mi>ⅇ</mi><mo>+</mo><msup><mi>ⅇ</mi><mn>2</mn></msup></mrow>'
def test_print_MinMax():
assert mpp.doprint(Min(x, y)) == \
'<mrow><mo>min</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Min(x, 2, x**3)) == \
'<mrow><mo>min</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
assert mpp.doprint(Max(x, y)) == \
'<mrow><mo>max</mo><mfenced><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mpp.doprint(Max(x, 2, x**3)) == \
'<mrow><mo>max</mo><mfenced><mn>2</mn><mi>x</mi><msup><mi>x</mi>'\
'<mn>3</mn></msup></mfenced></mrow>'
def test_mathml_presentation_numbers():
n = Symbol('n')
assert mathml(catalan(n), printer='presentation') == \
'<msub><mi>C</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(bell(n), printer='presentation') == \
'<msub><mi>B</mi><mi>n</mi></msub>'
assert mathml(euler(n), printer='presentation') == \
'<msub><mi>E</mi><mi>n</mi></msub>'
assert mathml(fibonacci(n), printer='presentation') == \
'<msub><mi>F</mi><mi>n</mi></msub>'
assert mathml(lucas(n), printer='presentation') == \
'<msub><mi>L</mi><mi>n</mi></msub>'
assert mathml(tribonacci(n), printer='presentation') == \
'<msub><mi>T</mi><mi>n</mi></msub>'
assert mathml(bernoulli(n, x), printer='presentation') == \
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(bell(n, x), printer='presentation') == \
'<mrow><msub><mi>B</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(euler(n, x), printer='presentation') == \
'<mrow><msub><mi>E</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(fibonacci(n, x), printer='presentation') == \
'<mrow><msub><mi>F</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(tribonacci(n, x), printer='presentation') == \
'<mrow><msub><mi>T</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_presentation_mathieu():
assert mathml(mathieuc(x, y, z), printer='presentation') == \
'<mrow><mi>C</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieus(x, y, z), printer='presentation') == \
'<mrow><mi>S</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieucprime(x, y, z), printer='presentation') == \
'<mrow><mi>C′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
assert mathml(mathieusprime(x, y, z), printer='presentation') == \
'<mrow><mi>S′</mi><mfenced><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_mathml_presentation_stieltjes():
assert mathml(stieltjes(n), printer='presentation') == \
'<msub><mi>γ</mi><mi>n</mi></msub>'
assert mathml(stieltjes(n, x), printer='presentation') == \
'<mrow><msub><mi>γ</mi><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_matrix_symbol():
A = MatrixSymbol('A', 1, 2)
assert mpp.doprint(A) == '<mi>A</mi>'
assert mp.doprint(A) == '<ci>A</ci>'
assert mathml(A, printer='presentation', mat_symbol_style="bold") == \
'<mi mathvariant="bold">A</mi>'
# No effect in content printer
assert mathml(A, mat_symbol_style="bold") == '<ci>A</ci>'
def test_print_hadamard():
from sympy.matrices.expressions import HadamardProduct
from sympy.matrices.expressions import Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(HadamardProduct(X, Y*Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi>' \
'<mo>∘</mo>' \
'<msup><mi>Y</mi><mn>2</mn></msup>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y)*Y, printer="presentation") == \
'<mrow>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>⁢</mo><mi>Y</mi>' \
'</mrow>'
assert mathml(HadamardProduct(X, Y, Y), printer="presentation") == \
'<mrow>' \
'<mi>X</mi><mo>∘</mo>' \
'<mi>Y</mi><mo>∘</mo>' \
'<mi>Y</mi>' \
'</mrow>'
assert mathml(
Transpose(HadamardProduct(X, Y)), printer="presentation") == \
'<msup>' \
'<mfenced>' \
'<mrow><mi>X</mi><mo>∘</mo><mi>Y</mi></mrow>' \
'</mfenced>' \
'<mo>T</mo>' \
'</msup>'
def test_print_random_symbol():
R = RandomSymbol(Symbol('R'))
assert mpp.doprint(R) == '<mi>R</mi>'
assert mp.doprint(R) == '<ci>R</ci>'
def test_print_IndexedBase():
assert mathml(IndexedBase(a)[b], printer='presentation') == \
'<msub><mi>a</mi><mi>b</mi></msub>'
assert mathml(IndexedBase(a)[b, c, d], printer='presentation') == \
'<msub><mi>a</mi><mfenced><mi>b</mi><mi>c</mi><mi>d</mi></mfenced></msub>'
assert mathml(IndexedBase(a)[b]*IndexedBase(c)[d]*IndexedBase(e),
printer='presentation') == \
'<mrow><msub><mi>a</mi><mi>b</mi></msub><mo>⁢'\
'</mo><msub><mi>c</mi><mi>d</mi></msub><mo>⁢</mo><mi>e</mi></mrow>'
def test_print_Indexed():
assert mathml(IndexedBase(a), printer='presentation') == '<mi>a</mi>'
assert mathml(IndexedBase(a/b), printer='presentation') == \
'<mrow><mfrac><mi>a</mi><mi>b</mi></mfrac></mrow>'
assert mathml(IndexedBase((a, b)), printer='presentation') == \
'<mrow><mfenced><mi>a</mi><mi>b</mi></mfenced></mrow>'
def test_print_MatrixElement():
i, j = symbols('i j')
A = MatrixSymbol('A', i, j)
assert mathml(A[0,0],printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mn>0</mn><mn>0</mn></mfenced></msub>'
assert mathml(A[i,j], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mi>i</mi><mi>j</mi></mfenced></msub>'
assert mathml(A[i*j,0], printer = 'presentation') == \
'<msub><mi>A</mi><mfenced close="" open=""><mrow><mi>i</mi><mo>⁢</mo><mi>j</mi></mrow><mn>0</mn></mfenced></msub>'
def test_print_Vector():
ACS = CoordSys3D('A')
assert mathml(Cross(ACS.i, ACS.j*ACS.x*3 + ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover><mi mathvariant="bold">'\
'A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(x*Cross(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Cross(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub>'\
'<mo>×</mo><mfenced><mrow><mfenced><mi>x</mi></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">i</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mrow>'
assert mathml(Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Curl(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<mo>×</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mfenced></mrow>'
assert mathml(Curl(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>×</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub><mi mathvariant="bold">x'\
'</mi><mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Divergence(3*ACS.x*ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<mo>·</mo><mfenced><mrow><mfenced><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow>'\
'</mfenced></mrow></mfenced></mrow>'
assert mathml(Divergence(3*x*ACS.x*ACS.j + ACS.i), printer='presentation') == \
'<mrow><mo>∇</mo><mo>·</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><mfenced><mrow>'\
'<mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'<mo>⁢</mo><mi>x</mi></mrow></mfenced>'\
'<mo>⁢</mo><msub><mover><mi mathvariant="bold">j</mi>'\
'<mo>^</mo></mover><mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j*ACS.x*3+ACS.k), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mrow><mn>3</mn><mo>⁢</mo><msub>'\
'<mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi></msub>'\
'</mrow></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>+</mo><msub><mover>'\
'<mi mathvariant="bold">k</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Dot(x*ACS.i, ACS.j), printer='presentation') == \
'<mrow><msub><mover><mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><mfenced><mrow>'\
'<mfenced><mi>x</mi></mfenced><mo>⁢</mo><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(x*Dot(ACS.i, ACS.j), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><msub><mover>'\
'<mi mathvariant="bold">i</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub><mo>·</mo><msub><mover>'\
'<mi mathvariant="bold">j</mi><mo>^</mo></mover>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mfenced></mrow>'
assert mathml(Gradient(ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Gradient(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Gradient(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∇</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mfenced></mrow>'
assert mathml(Gradient(x*ACS.x), printer='presentation') == \
'<mrow><mo>∇</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
assert mathml(Cross(ACS.x, ACS.z) + Cross(ACS.z, ACS.x), printer='presentation') == \
'<mover><mi mathvariant="bold">0</mi><mo>^</mo></mover>'
assert mathml(Cross(ACS.z, ACS.x), printer='presentation') == \
'<mrow><mo>-</mo><mrow><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub><mo>×</mo><msub>'\
'<mi mathvariant="bold">z</mi><mi mathvariant="bold">A</mi></msub></mrow></mrow>'
assert mathml(Laplacian(ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><msub><mi mathvariant="bold">x</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow>'
assert mathml(Laplacian(ACS.x + 3*ACS.y), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>+</mo><mrow><mn>3</mn>'\
'<mo>⁢</mo><msub><mi mathvariant="bold">y</mi>'\
'<mi mathvariant="bold">A</mi></msub></mrow></mrow></mfenced></mrow>'
assert mathml(x*Laplacian(ACS.x), printer='presentation') == \
'<mrow><mi>x</mi><mo>⁢</mo><mfenced><mrow><mo>∆</mo>'\
'<msub><mi mathvariant="bold">x</mi><mi mathvariant="bold">A</mi>'\
'</msub></mrow></mfenced></mrow>'
assert mathml(Laplacian(x*ACS.x), printer='presentation') == \
'<mrow><mo>∆</mo><mfenced><mrow><msub><mi mathvariant="bold">'\
'x</mi><mi mathvariant="bold">A</mi></msub><mo>⁢</mo>'\
'<mi>x</mi></mrow></mfenced></mrow>'
def test_print_elliptic_f():
assert mathml(elliptic_f(x, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_f(x/y, y), printer = 'presentation') == \
'<mrow><mi>𝖥</mi><mfenced separators="|"><mrow><mfrac><mi>x</mi><mi>y</mi></mfrac></mrow><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_e():
assert mathml(elliptic_e(x), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi></mfenced></mrow>'
assert mathml(elliptic_e(x, y), printer = 'presentation') == \
'<mrow><mi>𝖤</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
def test_print_elliptic_pi():
assert mathml(elliptic_pi(x, y), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators="|"><mi>x</mi><mi>y</mi></mfenced></mrow>'
assert mathml(elliptic_pi(x, y, z), printer = 'presentation') == \
'<mrow><mi>𝛱</mi><mfenced separators=";|"><mi>x</mi><mi>y</mi><mi>z</mi></mfenced></mrow>'
def test_print_Ei():
assert mathml(Ei(x), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><mi>x</mi></mfenced></mrow>'
assert mathml(Ei(x**y), printer = 'presentation') == \
'<mrow><mi>Ei</mi><mfenced><msup><mi>x</mi><mi>y</mi></msup></mfenced></mrow>'
def test_print_expint():
assert mathml(expint(x, y), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><mi>x</mi></msub><mfenced><mi>y</mi></mfenced></mrow>'
assert mathml(expint(IndexedBase(x)[1], IndexedBase(x)[2]), printer = 'presentation') == \
'<mrow><msub><mo>E</mo><msub><mi>x</mi><mn>1</mn></msub></msub><mfenced><msub><mi>x</mi><mn>2</mn></msub></mfenced></mrow>'
def test_print_jacobi():
assert mathml(jacobi(n, a, b, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi><mi>b</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_gegenbauer():
assert mathml(gegenbauer(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>C</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevt():
assert mathml(chebyshevt(n, x), printer = 'presentation') == \
'<mrow><msub><mo>T</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_chebyshevu():
assert mathml(chebyshevu(n, x), printer = 'presentation') == \
'<mrow><msub><mo>U</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_legendre():
assert mathml(legendre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>P</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_legendre():
assert mathml(assoc_legendre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>P</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_laguerre():
assert mathml(laguerre(n, x), printer = 'presentation') == \
'<mrow><msub><mo>L</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_assoc_laguerre():
assert mathml(assoc_laguerre(n, a, x), printer = 'presentation') == \
'<mrow><msubsup><mo>L</mo><mi>n</mi><mfenced><mi>a</mi></mfenced></msubsup><mfenced><mi>x</mi></mfenced></mrow>'
def test_print_hermite():
assert mathml(hermite(n, x), printer = 'presentation') == \
'<mrow><msub><mo>H</mo><mi>n</mi></msub><mfenced><mi>x</mi></mfenced></mrow>'
def test_mathml_SingularityFunction():
assert mathml(SingularityFunction(x, 4, 5), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>5</mn></msup>'
assert mathml(SingularityFunction(x, -3, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>+</mo><mn>3</mn></mrow></mfenced><mn>4</mn></msup>'
assert mathml(SingularityFunction(x, 0, 4), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mi>x</mi></mfenced>' \
'<mn>4</mn></msup>'
assert mathml(SingularityFunction(x, a, n), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mrow>' \
'<mo>-</mo><mi>a</mi></mrow><mo>+</mo><mi>x</mi></mrow></mfenced>' \
'<mi>n</mi></msup>'
assert mathml(SingularityFunction(x, 4, -2), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-2</mn></msup>'
assert mathml(SingularityFunction(x, 4, -1), printer='presentation') == \
'<msup><mfenced close="⟩" open="⟨"><mrow><mi>x</mi>' \
'<mo>-</mo><mn>4</mn></mrow></mfenced><mn>-1</mn></msup>'
def test_mathml_matrix_functions():
from sympy.matrices import MatrixSymbol, Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert mathml(Adjoint(X), printer='presentation') == \
'<msup><mi>X</mi><mo>†</mo></msup>'
assert mathml(Adjoint(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X) + Adjoint(Y), printer='presentation') == \
'<mrow><msup><mi>X</mi><mo>†</mo></msup><mo>+</mo><msup>' \
'<mi>Y</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X*Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>⁢</mo>' \
'<mi>Y</mi></mrow></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(Y)*Adjoint(X), printer='presentation') == \
'<mrow><msup><mi>Y</mi><mo>†</mo></msup><mo>⁢' \
'</mo><msup><mi>X</mi><mo>†</mo></msup></mrow>'
assert mathml(Adjoint(X**2), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>2</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Adjoint(X)**2, printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>2</mn></msup>'
assert mathml(Adjoint(Inverse(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mn>-1</mn></msup></mfenced><mo>†</mo></msup>'
assert mathml(Inverse(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mn>-1</mn></msup>'
assert mathml(Adjoint(Transpose(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>T</mo></msup></mfenced><mo>†</mo></msup>'
assert mathml(Transpose(Adjoint(X)), printer='presentation') == \
'<msup><mfenced><msup><mi>X</mi><mo>†</mo></msup></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(Adjoint(X) + Y), printer='presentation') == \
'<msup><mfenced><mrow><msup><mi>X</mi><mo>†</mo></msup>' \
'<mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
assert mathml(Transpose(X), printer='presentation') == \
'<msup><mi>X</mi><mo>T</mo></msup>'
assert mathml(Transpose(X + Y), printer='presentation') == \
'<msup><mfenced><mrow><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></mfenced><mo>T</mo></msup>'
def test_mathml_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert mathml(Identity(4), printer='presentation') == '<mi>𝕀</mi>'
assert mathml(ZeroMatrix(2, 2), printer='presentation') == '<mn>𝟘</mn>'
assert mathml(OneMatrix(2, 2), printer='presentation') == '<mn>𝟙</mn>'
def test_mathml_piecewise():
from sympy import Piecewise
# Content MathML
assert mathml(Piecewise((x, x <= 1), (x**2, True))) == \
'<piecewise><piece><ci>x</ci><apply><leq/><ci>x</ci><cn>1</cn></apply></piece><otherwise><apply><power/><ci>x</ci><cn>2</cn></apply></otherwise></piecewise>'
raises(ValueError, lambda: mathml(Piecewise((x, x <= 1))))
def test_issue_17857():
assert mathml(Range(-oo, oo), printer='presentation') == \
'<mfenced close="}" open="{"><mi>…</mi><mn>-1</mn><mn>0</mn><mn>1</mn><mi>…</mi></mfenced>'
assert mathml(Range(oo, -oo, -1), printer='presentation') == \
'<mfenced close="}" open="{"><mi>…</mi><mn>1</mn><mn>0</mn><mn>-1</mn><mi>…</mi></mfenced>'
def test_float_roundtrip():
x = sympify(0.8975979010256552)
y = float(mp.doprint(x).strip('</cn>'))
assert x == y
|
da234d13da7b1ed2bd2aee1b4eb8c0dea14c4afdfe9746e4d90a747f6792f4ae | from sympy.core import (S, pi, oo, symbols, Function, Rational, Integer,
Tuple, Symbol, EulerGamma, GoldenRatio, Catalan,
Lambda, Mul, Pow, Mod, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.functions import (arg, atan2, bernoulli, beta, ceiling, chebyshevu,
chebyshevt, conjugate, DiracDelta, exp, expint,
factorial, floor, harmonic, Heaviside, im,
laguerre, LambertW, log, Max, Min, Piecewise,
polylog, re, RisingFactorial, sign, sinc, sqrt,
zeta, binomial, legendre)
from sympy.functions import (sin, cos, tan, cot, sec, csc, asin, acos, acot,
atan, asec, acsc, sinh, cosh, tanh, coth, csch,
sech, asinh, acosh, atanh, acoth, asech, acsch)
from sympy.testing.pytest import raises, XFAIL
from sympy.utilities.lambdify import implemented_function
from sympy.matrices import (eye, Matrix, MatrixSymbol, Identity,
HadamardProduct, SparseMatrix, HadamardPower)
from sympy.functions.special.bessel import (jn, yn, besselj, bessely, besseli,
besselk, hankel1, hankel2, airyai,
airybi, airyaiprime, airybiprime)
from sympy.functions.special.gamma_functions import (gamma, lowergamma,
uppergamma, loggamma,
polygamma)
from sympy.functions.special.error_functions import (Chi, Ci, erf, erfc, erfi,
erfcinv, erfinv, fresnelc,
fresnels, li, Shi, Si, Li,
erf2)
from sympy import octave_code
from sympy import octave_code as mcode
x, y, z = symbols('x,y,z')
def test_Integer():
assert mcode(Integer(67)) == "67"
assert mcode(Integer(-1)) == "-1"
def test_Rational():
assert mcode(Rational(3, 7)) == "3/7"
assert mcode(Rational(18, 9)) == "2"
assert mcode(Rational(3, -7)) == "-3/7"
assert mcode(Rational(-3, -7)) == "3/7"
assert mcode(x + Rational(3, 7)) == "x + 3/7"
assert mcode(Rational(3, 7)*x) == "3*x/7"
def test_Relational():
assert mcode(Eq(x, y)) == "x == y"
assert mcode(Ne(x, y)) == "x != y"
assert mcode(Le(x, y)) == "x <= y"
assert mcode(Lt(x, y)) == "x < y"
assert mcode(Gt(x, y)) == "x > y"
assert mcode(Ge(x, y)) == "x >= y"
def test_Function():
assert mcode(sin(x) ** cos(x)) == "sin(x).^cos(x)"
assert mcode(sign(x)) == "sign(x)"
assert mcode(exp(x)) == "exp(x)"
assert mcode(log(x)) == "log(x)"
assert mcode(factorial(x)) == "factorial(x)"
assert mcode(floor(x)) == "floor(x)"
assert mcode(atan2(y, x)) == "atan2(y, x)"
assert mcode(beta(x, y)) == 'beta(x, y)'
assert mcode(polylog(x, y)) == 'polylog(x, y)'
assert mcode(harmonic(x)) == 'harmonic(x)'
assert mcode(bernoulli(x)) == "bernoulli(x)"
assert mcode(bernoulli(x, y)) == "bernoulli(x, y)"
assert mcode(legendre(x, y)) == "legendre(x, y)"
def test_Function_change_name():
assert mcode(abs(x)) == "abs(x)"
assert mcode(ceiling(x)) == "ceil(x)"
assert mcode(arg(x)) == "angle(x)"
assert mcode(im(x)) == "imag(x)"
assert mcode(re(x)) == "real(x)"
assert mcode(conjugate(x)) == "conj(x)"
assert mcode(chebyshevt(y, x)) == "chebyshevT(y, x)"
assert mcode(chebyshevu(y, x)) == "chebyshevU(y, x)"
assert mcode(laguerre(x, y)) == "laguerreL(x, y)"
assert mcode(Chi(x)) == "coshint(x)"
assert mcode(Shi(x)) == "sinhint(x)"
assert mcode(Ci(x)) == "cosint(x)"
assert mcode(Si(x)) == "sinint(x)"
assert mcode(li(x)) == "logint(x)"
assert mcode(loggamma(x)) == "gammaln(x)"
assert mcode(polygamma(x, y)) == "psi(x, y)"
assert mcode(RisingFactorial(x, y)) == "pochhammer(x, y)"
assert mcode(DiracDelta(x)) == "dirac(x)"
assert mcode(DiracDelta(x, 3)) == "dirac(3, x)"
assert mcode(Heaviside(x)) == "heaviside(x)"
assert mcode(Heaviside(x, y)) == "heaviside(x, y)"
assert mcode(binomial(x, y)) == "bincoeff(x, y)"
assert mcode(Mod(x, y)) == "mod(x, y)"
def test_minmax():
assert mcode(Max(x, y) + Min(x, y)) == "max(x, y) + min(x, y)"
assert mcode(Max(x, y, z)) == "max(x, max(y, z))"
assert mcode(Min(x, y, z)) == "min(x, min(y, z))"
def test_Pow():
assert mcode(x**3) == "x.^3"
assert mcode(x**(y**3)) == "x.^(y.^3)"
assert mcode(x**Rational(2, 3)) == 'x.^(2/3)'
g = implemented_function('g', Lambda(x, 2*x))
assert mcode(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \
"(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
# For issue 14160
assert mcode(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x./(y.*y)'
def test_basic_ops():
assert mcode(x*y) == "x.*y"
assert mcode(x + y) == "x + y"
assert mcode(x - y) == "x - y"
assert mcode(-x) == "-x"
def test_1_over_x_and_sqrt():
# 1.0 and 0.5 would do something different in regular StrPrinter,
# but these are exact in IEEE floating point so no different here.
assert mcode(1/x) == '1./x'
assert mcode(x**-1) == mcode(x**-1.0) == '1./x'
assert mcode(1/sqrt(x)) == '1./sqrt(x)'
assert mcode(x**-S.Half) == mcode(x**-0.5) == '1./sqrt(x)'
assert mcode(sqrt(x)) == 'sqrt(x)'
assert mcode(x**S.Half) == mcode(x**0.5) == 'sqrt(x)'
assert mcode(1/pi) == '1/pi'
assert mcode(pi**-1) == mcode(pi**-1.0) == '1/pi'
assert mcode(pi**-0.5) == '1/sqrt(pi)'
def test_mix_number_mult_symbols():
assert mcode(3*x) == "3*x"
assert mcode(pi*x) == "pi*x"
assert mcode(3/x) == "3./x"
assert mcode(pi/x) == "pi./x"
assert mcode(x/3) == "x/3"
assert mcode(x/pi) == "x/pi"
assert mcode(x*y) == "x.*y"
assert mcode(3*x*y) == "3*x.*y"
assert mcode(3*pi*x*y) == "3*pi*x.*y"
assert mcode(x/y) == "x./y"
assert mcode(3*x/y) == "3*x./y"
assert mcode(x*y/z) == "x.*y./z"
assert mcode(x/y*z) == "x.*z./y"
assert mcode(1/x/y) == "1./(x.*y)"
assert mcode(2*pi*x/y/z) == "2*pi*x./(y.*z)"
assert mcode(3*pi/x) == "3*pi./x"
assert mcode(S(3)/5) == "3/5"
assert mcode(S(3)/5*x) == "3*x/5"
assert mcode(x/y/z) == "x./(y.*z)"
assert mcode((x+y)/z) == "(x + y)./z"
assert mcode((x+y)/(z+x)) == "(x + y)./(x + z)"
assert mcode((x+y)/EulerGamma) == "(x + y)/%s" % EulerGamma.evalf(17)
assert mcode(x/3/pi) == "x/(3*pi)"
assert mcode(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)"
def test_mix_number_pow_symbols():
assert mcode(pi**3) == 'pi^3'
assert mcode(x**2) == 'x.^2'
assert mcode(x**(pi**3)) == 'x.^(pi^3)'
assert mcode(x**y) == 'x.^y'
assert mcode(x**(y**z)) == 'x.^(y.^z)'
assert mcode((x**y)**z) == '(x.^y).^z'
def test_imag():
I = S('I')
assert mcode(I) == "1i"
assert mcode(5*I) == "5i"
assert mcode((S(3)/2)*I) == "3*1i/2"
assert mcode(3+4*I) == "3 + 4i"
assert mcode(sqrt(3)*I) == "sqrt(3)*1i"
def test_constants():
assert mcode(pi) == "pi"
assert mcode(oo) == "inf"
assert mcode(-oo) == "-inf"
assert mcode(S.NegativeInfinity) == "-inf"
assert mcode(S.NaN) == "NaN"
assert mcode(S.Exp1) == "exp(1)"
assert mcode(exp(1)) == "exp(1)"
def test_constants_other():
assert mcode(2*GoldenRatio) == "2*(1+sqrt(5))/2"
assert mcode(2*Catalan) == "2*%s" % Catalan.evalf(17)
assert mcode(2*EulerGamma) == "2*%s" % EulerGamma.evalf(17)
def test_boolean():
assert mcode(x & y) == "x & y"
assert mcode(x | y) == "x | y"
assert mcode(~x) == "~x"
assert mcode(x & y & z) == "x & y & z"
assert mcode(x | y | z) == "x | y | z"
assert mcode((x & y) | z) == "z | x & y"
assert mcode((x | y) & z) == "z & (x | y)"
def test_KroneckerDelta():
from sympy.functions import KroneckerDelta
assert mcode(KroneckerDelta(x, y)) == "double(x == y)"
assert mcode(KroneckerDelta(x, y + 1)) == "double(x == (y + 1))"
assert mcode(KroneckerDelta(2**x, y)) == "double((2.^x) == y)"
def test_Matrices():
assert mcode(Matrix(1, 1, [10])) == "10"
A = Matrix([[1, sin(x/2), abs(x)],
[0, 1, pi],
[0, exp(1), ceiling(x)]]);
expected = "[1 sin(x/2) abs(x); 0 1 pi; 0 exp(1) ceil(x)]"
assert mcode(A) == expected
# row and columns
assert mcode(A[:,0]) == "[1; 0; 0]"
assert mcode(A[0,:]) == "[1 sin(x/2) abs(x)]"
# empty matrices
assert mcode(Matrix(0, 0, [])) == '[]'
assert mcode(Matrix(0, 3, [])) == 'zeros(0, 3)'
# annoying to read but correct
assert mcode(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_vector_entries_hadamard():
# For a row or column, user might to use the other dimension
A = Matrix([[1, sin(2/x), 3*pi/x/5]])
assert mcode(A) == "[1 sin(2./x) 3*pi./(5*x)]"
assert mcode(A.T) == "[1; sin(2./x); 3*pi./(5*x)]"
@XFAIL
def test_Matrices_entries_not_hadamard():
# For Matrix with col >= 2, row >= 2, they need to be scalars
# FIXME: is it worth worrying about this? Its not wrong, just
# leave it user's responsibility to put scalar data for x.
A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]])
expected = ("[1 sin(2/x) 3*pi/(5*x);\n"
"1 2 x*y]") # <- we give x.*y
assert mcode(A) == expected
def test_MatrixSymbol():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
B = MatrixSymbol('B', n, n)
assert mcode(A*B) == "A*B"
assert mcode(B*A) == "B*A"
assert mcode(2*A*B) == "2*A*B"
assert mcode(B*2*A) == "2*B*A"
assert mcode(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)"
assert mcode(A**(x**2)) == "A^(x.^2)"
assert mcode(A**3) == "A^3"
assert mcode(A**S.Half) == "A^(1/2)"
def test_MatrixSolve():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
x = MatrixSymbol('x', n, 1)
assert mcode(MatrixSolve(A, x)) == "A \\ x"
def test_special_matrices():
assert mcode(6*Identity(3)) == "6*eye(3)"
def test_containers():
assert mcode([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
"{1, 2, 3, {4, 5, {6, 7}}, 8, {9, 10}, 11}"
assert mcode((1, 2, (3, 4))) == "{1, 2, {3, 4}}"
assert mcode([1]) == "{1}"
assert mcode((1,)) == "{1}"
assert mcode(Tuple(*[1, 2, 3])) == "{1, 2, 3}"
assert mcode((1, x*y, (3, x**2))) == "{1, x.*y, {3, x.^2}}"
# scalar, matrix, empty matrix and empty list
assert mcode((1, eye(3), Matrix(0, 0, []), [])) == "{1, [1 0 0; 0 1 0; 0 0 1], [], {}}"
def test_octave_noninline():
source = mcode((x+y)/Catalan, assign_to='me', inline=False)
expected = (
"Catalan = %s;\n"
"me = (x + y)/Catalan;"
) % Catalan.evalf(17)
assert source == expected
def test_octave_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
assert mcode(expr) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))"
assert mcode(expr, assign_to="r") == (
"r = ((x < 1).*(x) + (~(x < 1)).*(x.^2));")
assert mcode(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x;\n"
"else\n"
" r = x.^2;\n"
"end")
expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True))
expected = ("((x < 1).*(x.^2) + (~(x < 1)).*( ...\n"
"(x < 2).*(x.^3) + (~(x < 2)).*( ...\n"
"(x < 3).*(x.^4) + (~(x < 3)).*(x.^5))))")
assert mcode(expr) == expected
assert mcode(expr, assign_to="r") == "r = " + expected + ";"
assert mcode(expr, assign_to="r", inline=False) == (
"if (x < 1)\n"
" r = x.^2;\n"
"elseif (x < 2)\n"
" r = x.^3;\n"
"elseif (x < 3)\n"
" r = x.^4;\n"
"else\n"
" r = x.^5;\n"
"end")
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0))
raises(ValueError, lambda: mcode(expr))
def test_octave_piecewise_times_const():
pw = Piecewise((x, x < 1), (x**2, True))
assert mcode(2*pw) == "2*((x < 1).*(x) + (~(x < 1)).*(x.^2))"
assert mcode(pw/x) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./x"
assert mcode(pw/(x*y)) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))./(x.*y)"
assert mcode(pw/3) == "((x < 1).*(x) + (~(x < 1)).*(x.^2))/3"
def test_octave_matrix_assign_to():
A = Matrix([[1, 2, 3]])
assert mcode(A, assign_to='a') == "a = [1 2 3];"
A = Matrix([[1, 2], [3, 4]])
assert mcode(A, assign_to='A') == "A = [1 2; 3 4];"
def test_octave_matrix_assign_to_more():
# assigning to Symbol or MatrixSymbol requires lhs/rhs match
A = Matrix([[1, 2, 3]])
B = MatrixSymbol('B', 1, 3)
C = MatrixSymbol('C', 2, 3)
assert mcode(A, assign_to=B) == "B = [1 2 3];"
raises(ValueError, lambda: mcode(A, assign_to=x))
raises(ValueError, lambda: mcode(A, assign_to=C))
def test_octave_matrix_1x1():
A = Matrix([[3]])
B = MatrixSymbol('B', 1, 1)
C = MatrixSymbol('C', 1, 2)
assert mcode(A, assign_to=B) == "B = 3;"
# FIXME?
#assert mcode(A, assign_to=x) == "x = 3;"
raises(ValueError, lambda: mcode(A, assign_to=C))
def test_octave_matrix_elements():
A = Matrix([[x, 2, x*y]])
assert mcode(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2"
A = MatrixSymbol('AA', 1, 3)
assert mcode(A) == "AA"
assert mcode(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \
"sin(AA(1, 2)) + AA(1, 1).^2 + AA(1, 3)"
assert mcode(sum(A)) == "AA(1, 1) + AA(1, 2) + AA(1, 3)"
def test_octave_boolean():
assert mcode(True) == "true"
assert mcode(S.true) == "true"
assert mcode(False) == "false"
assert mcode(S.false) == "false"
def test_octave_not_supported():
assert mcode(S.ComplexInfinity) == (
"% Not supported in Octave:\n"
"% ComplexInfinity\n"
"zoo"
)
f = Function('f')
assert mcode(f(x).diff(x)) == (
"% Not supported in Octave:\n"
"% Derivative\n"
"Derivative(f(x), x)"
)
def test_octave_not_supported_not_on_whitelist():
from sympy import assoc_laguerre
assert mcode(assoc_laguerre(x, y, z)) == (
"% Not supported in Octave:\n"
"% assoc_laguerre\n"
"assoc_laguerre(x, y, z)"
)
def test_octave_expint():
assert mcode(expint(1, x)) == "expint(x)"
assert mcode(expint(2, x)) == (
"% Not supported in Octave:\n"
"% expint\n"
"expint(2, x)"
)
assert mcode(expint(y, x)) == (
"% Not supported in Octave:\n"
"% expint\n"
"expint(y, x)"
)
def test_trick_indent_with_end_else_words():
# words starting with "end" or "else" do not confuse the indenter
t1 = S('endless');
t2 = S('elsewhere');
pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True))
assert mcode(pw, inline=False) == (
"if (x < 0)\n"
" endless\n"
"elseif (x <= 1)\n"
" elsewhere\n"
"else\n"
" 1\n"
"end")
def test_hadamard():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
v = MatrixSymbol('v', 3, 1)
h = MatrixSymbol('h', 1, 3)
C = HadamardProduct(A, B)
n = Symbol('n')
assert mcode(C) == "A.*B"
assert mcode(C*v) == "(A.*B)*v"
assert mcode(h*C*v) == "h*(A.*B)*v"
assert mcode(C*A) == "(A.*B)*A"
# mixing Hadamard and scalar strange b/c we vectorize scalars
assert mcode(C*x*y) == "(x.*y)*(A.*B)"
# Testing HadamardPower:
assert mcode(HadamardPower(A, n)) == "A.**n"
assert mcode(HadamardPower(A, 1+n)) == "A.**(n + 1)"
assert mcode(HadamardPower(A*B.T, 1+n)) == "(A*B.T).**(n + 1)"
def test_sparse():
M = SparseMatrix(5, 6, {})
M[2, 2] = 10;
M[1, 2] = 20;
M[1, 3] = 22;
M[0, 3] = 30;
M[3, 0] = x*y;
assert mcode(M) == (
"sparse([4 2 3 1 2], [1 3 3 4 4], [x.*y 20 10 30 22], 5, 6)"
)
def test_sinc():
assert mcode(sinc(x)) == 'sinc(x/pi)'
assert mcode(sinc(x + 3)) == 'sinc((x + 3)/pi)'
assert mcode(sinc(pi*(x + 3))) == 'sinc(x + 3)'
def test_trigfun():
for f in (sin, cos, tan, cot, sec, csc, asin, acos, acot, atan, asec, acsc,
sinh, cosh, tanh, coth, csch, sech, asinh, acosh, atanh, acoth,
asech, acsch):
assert octave_code(f(x) == f.__name__ + '(x)')
def test_specfun():
n = Symbol('n')
for f in [besselj, bessely, besseli, besselk]:
assert octave_code(f(n, x)) == f.__name__ + '(n, x)'
for f in (erfc, erfi, erf, erfinv, erfcinv, fresnelc, fresnels, gamma):
assert octave_code(f(x)) == f.__name__ + '(x)'
assert octave_code(hankel1(n, x)) == 'besselh(n, 1, x)'
assert octave_code(hankel2(n, x)) == 'besselh(n, 2, x)'
assert octave_code(airyai(x)) == 'airy(0, x)'
assert octave_code(airyaiprime(x)) == 'airy(1, x)'
assert octave_code(airybi(x)) == 'airy(2, x)'
assert octave_code(airybiprime(x)) == 'airy(3, x)'
assert octave_code(uppergamma(n, x)) == '(gammainc(x, n, \'upper\').*gamma(n))'
assert octave_code(lowergamma(n, x)) == '(gammainc(x, n).*gamma(n))'
assert octave_code(z**lowergamma(n, x)) == 'z.^(gammainc(x, n).*gamma(n))'
assert octave_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2'
assert octave_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
assert octave_code(LambertW(x)) == 'lambertw(x)'
assert octave_code(LambertW(x, n)) == 'lambertw(n, x)'
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert mcode(A[0, 0]) == "A(1, 1)"
assert mcode(3 * A[0, 0]) == "3*A(1, 1)"
F = C[0, 0].subs(C, A - B)
assert mcode(F) == "(A - B)(1, 1)"
def test_zeta_printing_issue_14820():
assert octave_code(zeta(x)) == 'zeta(x)'
assert octave_code(zeta(x, y)) == '% Not supported in Octave:\n% zeta\nzeta(x, y)'
def test_automatic_rewrite():
assert octave_code(Li(x)) == 'logint(x) - logint(2)'
assert octave_code(erf2(x, y)) == '-erf(x) + erf(y)'
|
768d7bf0984936aeae3eea815bf09daa44dde772f33e4e2d3f99168bb2e47e2d | from sympy.external import import_module
from sympy.testing.pytest import raises
import ctypes
if import_module('llvmlite'):
import sympy.printing.llvmjitcode as g
else:
disabled = True
import sympy
from sympy.abc import a, b, n
# copied from numpy.isclose documentation
def isclose(a, b):
rtol = 1e-5
atol = 1e-8
return abs(a-b) <= atol + rtol*abs(b)
def test_simple_expr():
e = a + 1.0
f = g.llvm_callable([a], e)
res = float(e.subs({a: 4.0}).evalf())
jit_res = f(4.0)
assert isclose(jit_res, res)
def test_two_arg():
e = 4.0*a + b + 3.0
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 4.0, b: 3.0}).evalf())
jit_res = f(4.0, 3.0)
assert isclose(jit_res, res)
def test_func():
e = 4.0*sympy.exp(-a)
f = g.llvm_callable([a], e)
res = float(e.subs({a: 1.5}).evalf())
jit_res = f(1.5)
assert isclose(jit_res, res)
def test_two_func():
e = 4.0*sympy.exp(-a) + sympy.exp(b)
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 1.5, b: 2.0}).evalf())
jit_res = f(1.5, 2.0)
assert isclose(jit_res, res)
def test_two_sqrt():
e = 4.0*sympy.sqrt(a) + sympy.sqrt(b)
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 1.5, b: 2.0}).evalf())
jit_res = f(1.5, 2.0)
assert isclose(jit_res, res)
def test_two_pow():
e = a**1.5 + b**7
f = g.llvm_callable([a, b], e)
res = float(e.subs({a: 1.5, b: 2.0}).evalf())
jit_res = f(1.5, 2.0)
assert isclose(jit_res, res)
def test_callback():
e = a + 1.2
f = g.llvm_callable([a], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(1)
array_type = ctypes.c_double * 1
inp = {a: 2.2}
array = array_type(inp[a])
jit_res = f(m, array)
res = float(e.subs(inp).evalf())
assert isclose(jit_res, res)
def test_callback_cubature():
e = a + 1.2
f = g.llvm_callable([a], e, callback_type='cubature')
m = ctypes.c_int(1)
array_type = ctypes.c_double * 1
inp = {a: 2.2}
array = array_type(inp[a])
out_array = array_type(0.0)
jit_ret = f(m, array, None, m, out_array)
assert jit_ret == 0
res = float(e.subs(inp).evalf())
assert isclose(out_array[0], res)
def test_callback_two():
e = 3*a*b
f = g.llvm_callable([a, b], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(2)
array_type = ctypes.c_double * 2
inp = {a: 0.2, b: 1.7}
array = array_type(inp[a], inp[b])
jit_res = f(m, array)
res = float(e.subs(inp).evalf())
assert isclose(jit_res, res)
def test_callback_alt_two():
d = sympy.IndexedBase('d')
e = 3*d[0]*d[1]
f = g.llvm_callable([n, d], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(2)
array_type = ctypes.c_double * 2
inp = {d[0]: 0.2, d[1]: 1.7}
array = array_type(inp[d[0]], inp[d[1]])
jit_res = f(m, array)
res = float(e.subs(inp).evalf())
assert isclose(jit_res, res)
def test_multiple_statements():
# Match return from CSE
e = [[(b, 4.0*a)], [b + 5]]
f = g.llvm_callable([a], e)
b_val = e[0][0][1].subs({a: 1.5})
res = float(e[1][0].subs({b: b_val}).evalf())
jit_res = f(1.5)
assert isclose(jit_res, res)
f_callback = g.llvm_callable([a], e, callback_type='scipy.integrate.test')
m = ctypes.c_int(1)
array_type = ctypes.c_double * 1
array = array_type(1.5)
jit_callback_res = f_callback(m, array)
assert isclose(jit_callback_res, res)
def test_cse():
e = a*a + b*b + sympy.exp(-a*a - b*b)
e2 = sympy.cse(e)
f = g.llvm_callable([a, b], e2)
res = float(e.subs({a: 2.3, b: 0.1}).evalf())
jit_res = f(2.3, 0.1)
assert isclose(jit_res, res)
def eval_cse(e, sub_dict):
tmp_dict = dict()
for tmp_name, tmp_expr in e[0]:
e2 = tmp_expr.subs(sub_dict)
e3 = e2.subs(tmp_dict)
tmp_dict[tmp_name] = e3
return [e.subs(sub_dict).subs(tmp_dict) for e in e[1]]
def test_cse_multiple():
e1 = a*a
e2 = a*a + b*b
e3 = sympy.cse([e1, e2])
raises(NotImplementedError,
lambda: g.llvm_callable([a, b], e3, callback_type='scipy.integrate'))
f = g.llvm_callable([a, b], e3)
jit_res = f(0.1, 1.5)
assert len(jit_res) == 2
res = eval_cse(e3, {a: 0.1, b: 1.5})
assert isclose(res[0], jit_res[0])
assert isclose(res[1], jit_res[1])
def test_callback_cubature_multiple():
e1 = a*a
e2 = a*a + b*b
e3 = sympy.cse([e1, e2, 4*e2])
f = g.llvm_callable([a, b], e3, callback_type='cubature')
# Number of input variables
ndim = 2
# Number of output expression values
outdim = 3
m = ctypes.c_int(ndim)
fdim = ctypes.c_int(outdim)
array_type = ctypes.c_double * ndim
out_array_type = ctypes.c_double * outdim
inp = {a: 0.2, b: 1.5}
array = array_type(inp[a], inp[b])
out_array = out_array_type()
jit_ret = f(m, array, None, fdim, out_array)
assert jit_ret == 0
res = eval_cse(e3, inp)
assert isclose(out_array[0], res[0])
assert isclose(out_array[1], res[1])
assert isclose(out_array[2], res[2])
def test_symbol_not_found():
e = a*a + b
raises(LookupError, lambda: g.llvm_callable([a], e))
def test_bad_callback():
e = a
raises(ValueError, lambda: g.llvm_callable([a], e, callback_type='bad_callback'))
|
ccfc6da5b234c4b82583cf216c540c03901ca54625e4eb3366dbefaee5630026 | # -*- coding: utf-8 -*-
from sympy import (
Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF,
FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction,
Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or,
Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S,
Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate,
groebner, oo, pi, symbols, ilex, grlex, Range, Contains,
SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE,
Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio,
LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels,
Heaviside, dirichlet_eta, diag, MatrixSlice)
from sympy.codegen.ast import (Assignment, AddAugmentedAssignment,
SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment)
from sympy.core.expr import UnevaluatedExpr
from sympy.core.trace import Tr
from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta,
Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos,
euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log,
meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi,
elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell,
bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus,
mathieusprime, mathieucprime)
from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct
from sympy.matrices.expressions import hadamard_power
from sympy.physics import mechanics
from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback
from sympy.physics.units import joule, degree
from sympy.printing.pretty import pprint, pretty as xpretty
from sympy.printing.pretty.pretty_symbology import center_accent, is_combining
from sympy import ConditionSet
from sympy.sets import ImageSet, ProductSet
from sympy.sets.setexpr import SetExpr
from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct)
from sympy.tensor.functions import TensorProduct
from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead,
TensorElement, tensor_heads)
from sympy.testing.pytest import raises
from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian
import sympy as sym
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
a, b, c, d, x, y, z, k, n, s, p = symbols('a,b,c,d,x,y,z,k,n,s,p')
f = Function("f")
th = Symbol('theta')
ph = Symbol('phi')
"""
Expressions whose pretty-printing is tested here:
(A '#' to the right of an expression indicates that its various acceptable
orderings are accounted for by the tests.)
BASIC EXPRESSIONS:
oo
(x**2)
1/x
y*x**-2
x**Rational(-5,2)
(-2)**x
Pow(3, 1, evaluate=False)
(x**2 + x + 1) #
1-x #
1-2*x #
x/y
-x/y
(x+2)/y #
(1+x)*y #3
-5*x/(x+10) # correct placement of negative sign
1 - Rational(3,2)*(x+1)
-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524
ORDERING:
x**2 + x + 1
1 - x
1 - 2*x
2*x**4 + y**2 - x**2 + y**3
RELATIONAL:
Eq(x, y)
Lt(x, y)
Gt(x, y)
Le(x, y)
Ge(x, y)
Ne(x/(y+1), y**2) #
RATIONAL NUMBERS:
y*x**-2
y**Rational(3,2) * x**Rational(-5,2)
sin(x)**3/tan(x)**2
FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING):
(2*x + exp(x)) #
Abs(x)
Abs(x/(x**2+1)) #
Abs(1 / (y - Abs(x)))
factorial(n)
factorial(2*n)
subfactorial(n)
subfactorial(2*n)
factorial(factorial(factorial(n)))
factorial(n+1) #
conjugate(x)
conjugate(f(x+1)) #
f(x)
f(x, y)
f(x/(y+1), y) #
f(x**x**x**x**x**x)
sin(x)**2
conjugate(a+b*I)
conjugate(exp(a+b*I))
conjugate( f(1 + conjugate(f(x))) ) #
f(x/(y+1), y) # denom of first arg
floor(1 / (y - floor(x)))
ceiling(1 / (y - ceiling(x)))
SQRT:
sqrt(2)
2**Rational(1,3)
2**Rational(1,1000)
sqrt(x**2 + 1)
(1 + sqrt(5))**Rational(1,3)
2**(1/x)
sqrt(2+pi)
(2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2)
DERIVATIVES:
Derivative(log(x), x, evaluate=False)
Derivative(log(x), x, evaluate=False) + x #
Derivative(log(x) + x**2, x, y, evaluate=False)
Derivative(2*x*y, y, x, evaluate=False) + x**2 #
beta(alpha).diff(alpha)
INTEGRALS:
Integral(log(x), x)
Integral(x**2, x)
Integral((sin(x))**2 / (tan(x))**2)
Integral(x**(2**x), x)
Integral(x**2, (x,1,2))
Integral(x**2, (x,Rational(1,2),10))
Integral(x**2*y**2, x,y)
Integral(x**2, (x, None, 1))
Integral(x**2, (x, 1, None))
Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi))
MATRICES:
Matrix([[x**2+1, 1], [y, x+y]]) #
Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
PIECEWISE:
Piecewise((x,x<1),(x**2,True))
ITE:
ITE(x, y, z)
SEQUENCES (TUPLES, LISTS, DICTIONARIES):
()
[]
{}
(1/x,)
[x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
{x: sin(x)}
{1/x: 1/y, x: sin(x)**2} #
[x**2]
(x**2,)
{x**2: 1}
LIMITS:
Limit(x, x, oo)
Limit(x**2, x, 0)
Limit(1/x, x, 0)
Limit(sin(x)/x, x, 0)
UNITS:
joule => kg*m**2/s
SUBS:
Subs(f(x), x, ph**2)
Subs(f(x).diff(x), x, 0)
Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ORDER:
O(1)
O(1/x)
O(x**2 + y**2)
"""
def pretty(expr, order=None):
"""ASCII pretty-printing"""
return xpretty(expr, order=order, use_unicode=False, wrap_line=False)
def upretty(expr, order=None):
"""Unicode pretty-printing"""
return xpretty(expr, order=order, use_unicode=True, wrap_line=False)
def test_pretty_ascii_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( "xxx" ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_pretty_unicode_str():
assert pretty( 'xxx' ) == 'xxx'
assert pretty( 'xxx' ) == 'xxx'
assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx'
assert pretty( 'xxx"xxx' ) == 'xxx\"xxx'
assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx'
assert pretty( "xxx'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\'xxx" ) == 'xxx\'xxx'
assert pretty( "xxx\"xxx" ) == 'xxx\"xxx'
assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx'
assert pretty( "xxx\nxxx" ) == 'xxx\nxxx'
def test_upretty_greek():
assert upretty( oo ) == '∞'
assert upretty( Symbol('alpha^+_1') ) == 'α⁺₁'
assert upretty( Symbol('beta') ) == 'β'
assert upretty(Symbol('lambda')) == 'λ'
def test_upretty_multiindex():
assert upretty( Symbol('beta12') ) == 'β₁₂'
assert upretty( Symbol('Y00') ) == 'Y₀₀'
assert upretty( Symbol('Y_00') ) == 'Y₀₀'
assert upretty( Symbol('F^+-') ) == 'F⁺⁻'
def test_upretty_sub_super():
assert upretty( Symbol('beta_1_2') ) == 'β₁ ₂'
assert upretty( Symbol('beta^1^2') ) == 'β¹ ²'
assert upretty( Symbol('beta_1^2') ) == 'β²₁'
assert upretty( Symbol('beta_10_20') ) == 'β₁₀ ₂₀'
assert upretty( Symbol('beta_ax_gamma^i') ) == 'βⁱₐₓ ᵧ'
assert upretty( Symbol("F^1^2_3_4") ) == 'F¹ ²₃ ₄'
assert upretty( Symbol("F_1_2^3^4") ) == 'F³ ⁴₁ ₂'
assert upretty( Symbol("F_1_2_3_4") ) == 'F₁ ₂ ₃ ₄'
assert upretty( Symbol("F^1^2^3^4") ) == 'F¹ ² ³ ⁴'
def test_upretty_subs_missing_in_24():
assert upretty( Symbol('F_beta') ) == 'Fᵦ'
assert upretty( Symbol('F_gamma') ) == 'Fᵧ'
assert upretty( Symbol('F_rho') ) == 'Fᵨ'
assert upretty( Symbol('F_phi') ) == 'Fᵩ'
assert upretty( Symbol('F_chi') ) == 'Fᵪ'
assert upretty( Symbol('F_a') ) == 'Fₐ'
assert upretty( Symbol('F_e') ) == 'Fₑ'
assert upretty( Symbol('F_i') ) == 'Fᵢ'
assert upretty( Symbol('F_o') ) == 'Fₒ'
assert upretty( Symbol('F_u') ) == 'Fᵤ'
assert upretty( Symbol('F_r') ) == 'Fᵣ'
assert upretty( Symbol('F_v') ) == 'Fᵥ'
assert upretty( Symbol('F_x') ) == 'Fₓ'
def test_missing_in_2X_issue_9047():
assert upretty( Symbol('F_h') ) == 'Fₕ'
assert upretty( Symbol('F_k') ) == 'Fₖ'
assert upretty( Symbol('F_l') ) == 'Fₗ'
assert upretty( Symbol('F_m') ) == 'Fₘ'
assert upretty( Symbol('F_n') ) == 'Fₙ'
assert upretty( Symbol('F_p') ) == 'Fₚ'
assert upretty( Symbol('F_s') ) == 'Fₛ'
assert upretty( Symbol('F_t') ) == 'Fₜ'
def test_upretty_modifiers():
# Accents
assert upretty( Symbol('Fmathring') ) == 'F̊'
assert upretty( Symbol('Fddddot') ) == 'F⃜'
assert upretty( Symbol('Fdddot') ) == 'F⃛'
assert upretty( Symbol('Fddot') ) == 'F̈'
assert upretty( Symbol('Fdot') ) == 'Ḟ'
assert upretty( Symbol('Fcheck') ) == 'F̌'
assert upretty( Symbol('Fbreve') ) == 'F̆'
assert upretty( Symbol('Facute') ) == 'F́'
assert upretty( Symbol('Fgrave') ) == 'F̀'
assert upretty( Symbol('Ftilde') ) == 'F̃'
assert upretty( Symbol('Fhat') ) == 'F̂'
assert upretty( Symbol('Fbar') ) == 'F̅'
assert upretty( Symbol('Fvec') ) == 'F⃗'
assert upretty( Symbol('Fprime') ) == 'F′'
assert upretty( Symbol('Fprm') ) == 'F′'
# No faces are actually implemented, but test to make sure the modifiers are stripped
assert upretty( Symbol('Fbold') ) == 'Fbold'
assert upretty( Symbol('Fbm') ) == 'Fbm'
assert upretty( Symbol('Fcal') ) == 'Fcal'
assert upretty( Symbol('Fscr') ) == 'Fscr'
assert upretty( Symbol('Ffrak') ) == 'Ffrak'
# Brackets
assert upretty( Symbol('Fnorm') ) == '‖F‖'
assert upretty( Symbol('Favg') ) == '⟨F⟩'
assert upretty( Symbol('Fabs') ) == '|F|'
assert upretty( Symbol('Fmag') ) == '|F|'
# Combinations
assert upretty( Symbol('xvecdot') ) == 'x⃗̇'
assert upretty( Symbol('xDotVec') ) == 'ẋ⃗'
assert upretty( Symbol('xHATNorm') ) == '‖x̂‖'
assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == 'x̊_y̌′__|z̆|'
assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == 'α̇̂_n⃗̇__t̃′'
assert upretty( Symbol('x_dot') ) == 'x_dot'
assert upretty( Symbol('x__dot') ) == 'x__dot'
def test_pretty_Cycle():
from sympy.combinatorics.permutations import Cycle
assert pretty(Cycle(1, 2)) == '(1 2)'
assert pretty(Cycle(2)) == '(2)'
assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)'
assert pretty(Cycle()) == '()'
def test_pretty_Permutation():
from sympy.combinatorics.permutations import Permutation
p1 = Permutation(1, 2)(3, 4)
assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)"
assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \
'⎛0 1 2 3 4⎞\n'\
'⎝0 2 1 4 3⎠'
assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \
"/0 1 2 3 4\\\n"\
"\\0 2 1 4 3/"
def test_pretty_basic():
assert pretty( -Rational(1)/2 ) == '-1/2'
assert pretty( -Rational(13)/22 ) == \
"""\
-13 \n\
----\n\
22 \
"""
expr = oo
ascii_str = \
"""\
oo\
"""
ucode_str = \
"""\
∞\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2)
ascii_str = \
"""\
2\n\
x \
"""
ucode_str = \
"""\
2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 1/x
ascii_str = \
"""\
1\n\
-\n\
x\
"""
ucode_str = \
"""\
1\n\
─\n\
x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# not the same as 1/x
expr = x**-1.0
ascii_str = \
"""\
-1.0\n\
x \
"""
ucode_str = \
"""\
-1.0\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# see issue #2860
expr = Pow(S(2), -1.0, evaluate=False)
ascii_str = \
"""\
-1.0\n\
2 \
"""
ucode_str = \
"""\
-1.0\n\
2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
"""\
y \n\
──\n\
2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
#see issue #14033
expr = x**Rational(1, 3)
ascii_str = \
"""\
1/3\n\
x \
"""
ucode_str = \
"""\
1/3\n\
x \
"""
assert xpretty(expr, use_unicode=False, wrap_line=False,\
root_notation = False) == ascii_str
assert xpretty(expr, use_unicode=True, wrap_line=False,\
root_notation = False) == ucode_str
expr = x**Rational(-5, 2)
ascii_str = \
"""\
1 \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
"""\
1 \n\
────\n\
5/2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (-2)**x
ascii_str = \
"""\
x\n\
(-2) \
"""
ucode_str = \
"""\
x\n\
(-2) \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# See issue 4923
expr = Pow(3, 1, evaluate=False)
ascii_str = \
"""\
1\n\
3 \
"""
ucode_str = \
"""\
1\n\
3 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2 + x + 1)
ascii_str_1 = \
"""\
2\n\
1 + x + x \
"""
ascii_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ascii_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
ucode_str_1 = \
"""\
2\n\
1 + x + x \
"""
ucode_str_2 = \
"""\
2 \n\
x + x + 1\
"""
ucode_str_3 = \
"""\
2 \n\
x + 1 + x\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
expr = 1 - x
ascii_str_1 = \
"""\
1 - x\
"""
ascii_str_2 = \
"""\
-x + 1\
"""
ucode_str_1 = \
"""\
1 - x\
"""
ucode_str_2 = \
"""\
-x + 1\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 1 - 2*x
ascii_str_1 = \
"""\
1 - 2*x\
"""
ascii_str_2 = \
"""\
-2*x + 1\
"""
ucode_str_1 = \
"""\
1 - 2⋅x\
"""
ucode_str_2 = \
"""\
-2⋅x + 1\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = x/y
ascii_str = \
"""\
x\n\
-\n\
y\
"""
ucode_str = \
"""\
x\n\
─\n\
y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/y
ascii_str = \
"""\
-x \n\
---\n\
y \
"""
ucode_str = \
"""\
-x \n\
───\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x + 2)/y
ascii_str_1 = \
"""\
2 + x\n\
-----\n\
y \
"""
ascii_str_2 = \
"""\
x + 2\n\
-----\n\
y \
"""
ucode_str_1 = \
"""\
2 + x\n\
─────\n\
y \
"""
ucode_str_2 = \
"""\
x + 2\n\
─────\n\
y \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = (1 + x)*y
ascii_str_1 = \
"""\
y*(1 + x)\
"""
ascii_str_2 = \
"""\
(1 + x)*y\
"""
ascii_str_3 = \
"""\
y*(x + 1)\
"""
ucode_str_1 = \
"""\
y⋅(1 + x)\
"""
ucode_str_2 = \
"""\
(1 + x)⋅y\
"""
ucode_str_3 = \
"""\
y⋅(x + 1)\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3]
assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3]
# Test for correct placement of the negative sign
expr = -5*x/(x + 10)
ascii_str_1 = \
"""\
-5*x \n\
------\n\
10 + x\
"""
ascii_str_2 = \
"""\
-5*x \n\
------\n\
x + 10\
"""
ucode_str_1 = \
"""\
-5⋅x \n\
──────\n\
10 + x\
"""
ucode_str_2 = \
"""\
-5⋅x \n\
──────\n\
x + 10\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = -S.Half - 3*x
ascii_str = \
"""\
-3*x - 1/2\
"""
ucode_str = \
"""\
-3⋅x - 1/2\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x
ascii_str = \
"""\
1/2 - 3*x\
"""
ucode_str = \
"""\
1/2 - 3⋅x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -S.Half - 3*x/2
ascii_str = \
"""\
3*x 1\n\
- --- - -\n\
2 2\
"""
ucode_str = \
"""\
3⋅x 1\n\
- ─── - ─\n\
2 2\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = S.Half - 3*x/2
ascii_str = \
"""\
1 3*x\n\
- - ---\n\
2 2 \
"""
ucode_str = \
"""\
1 3⋅x\n\
─ - ───\n\
2 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_negative_fractions():
expr = -x/y
ascii_str =\
"""\
-x \n\
---\n\
y \
"""
ucode_str =\
"""\
-x \n\
───\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x*z/y
ascii_str =\
"""\
-x*z \n\
-----\n\
y \
"""
ucode_str =\
"""\
-x⋅z \n\
─────\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x**2/y
ascii_str =\
"""\
2\n\
x \n\
--\n\
y \
"""
ucode_str =\
"""\
2\n\
x \n\
──\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x**2/y
ascii_str =\
"""\
2 \n\
-x \n\
----\n\
y \
"""
ucode_str =\
"""\
2 \n\
-x \n\
────\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -x/(y*z)
ascii_str =\
"""\
-x \n\
---\n\
y*z\
"""
ucode_str =\
"""\
-x \n\
───\n\
y⋅z\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -a/y**2
ascii_str =\
"""\
-a \n\
---\n\
2\n\
y \
"""
ucode_str =\
"""\
-a \n\
───\n\
2\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**(-a/b)
ascii_str =\
"""\
-a \n\
---\n\
b \n\
y \
"""
ucode_str =\
"""\
-a \n\
───\n\
b \n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -1/y**2
ascii_str =\
"""\
-1 \n\
---\n\
2\n\
y \
"""
ucode_str =\
"""\
-1 \n\
───\n\
2\n\
y \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -10/b**2
ascii_str =\
"""\
-10 \n\
----\n\
2 \n\
b \
"""
ucode_str =\
"""\
-10 \n\
────\n\
2 \n\
b \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Rational(-200, 37)
ascii_str =\
"""\
-200 \n\
-----\n\
37 \
"""
ucode_str =\
"""\
-200 \n\
─────\n\
37 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Mul(0, 1, evaluate=False)
assert pretty(expr) == "0*1"
assert upretty(expr) == "0⋅1"
expr = Mul(1, 0, evaluate=False)
assert pretty(expr) == "1*0"
assert upretty(expr) == "1⋅0"
expr = Mul(1, 1, evaluate=False)
assert pretty(expr) == "1*1"
assert upretty(expr) == "1⋅1"
expr = Mul(1, 1, 1, evaluate=False)
assert pretty(expr) == "1*1*1"
assert upretty(expr) == "1⋅1⋅1"
expr = Mul(1, 2, evaluate=False)
assert pretty(expr) == "1*2"
assert upretty(expr) == "1⋅2"
expr = Add(0, 1, evaluate=False)
assert pretty(expr) == "0 + 1"
assert upretty(expr) == "0 + 1"
expr = Mul(1, 1, 2, evaluate=False)
assert pretty(expr) == "1*1*2"
assert upretty(expr) == "1⋅1⋅2"
expr = Add(0, 0, 1, evaluate=False)
assert pretty(expr) == "0 + 0 + 1"
assert upretty(expr) == "0 + 0 + 1"
expr = Mul(1, -1, evaluate=False)
assert pretty(expr) == "1*(-1)"
assert upretty(expr) == "1⋅(-1)"
expr = Mul(1.0, x, evaluate=False)
assert pretty(expr) == "1.0*x"
assert upretty(expr) == "1.0⋅x"
expr = Mul(1, 1, 2, 3, x, evaluate=False)
assert pretty(expr) == "1*1*2*3*x"
assert upretty(expr) == "1⋅1⋅2⋅3⋅x"
expr = Mul(-1, 1, evaluate=False)
assert pretty(expr) == "-1*1"
assert upretty(expr) == "-1⋅1"
expr = Mul(4, 3, 2, 1, 0, y, x, evaluate=False)
assert pretty(expr) == "4*3*2*1*0*y*x"
assert upretty(expr) == "4⋅3⋅2⋅1⋅0⋅y⋅x"
expr = Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)
assert pretty(expr) == "4*3*2*(z + 1)*0*y*x"
assert upretty(expr) == "4⋅3⋅2⋅(z + 1)⋅0⋅y⋅x"
expr = Mul(Rational(2, 3), Rational(5, 7), evaluate=False)
assert pretty(expr) == "2/3*5/7"
assert upretty(expr) == "2/3⋅5/7"
def test_issue_5524():
assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 / ___ \\\n\
- (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\
"""
assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \
"""\
2 \n\
- (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\
"""
def test_pretty_ordering():
assert pretty(x**2 + x + 1, order='lex') == \
"""\
2 \n\
x + x + 1\
"""
assert pretty(x**2 + x + 1, order='rev-lex') == \
"""\
2\n\
1 + x + x \
"""
assert pretty(1 - x, order='lex') == '-x + 1'
assert pretty(1 - x, order='rev-lex') == '1 - x'
assert pretty(1 - 2*x, order='lex') == '-2*x + 1'
assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x'
f = 2*x**4 + y**2 - x**2 + y**3
assert pretty(f, order=None) == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='lex') == \
"""\
4 2 3 2\n\
2*x - x + y + y \
"""
assert pretty(f, order='rev-lex') == \
"""\
2 3 2 4\n\
y + y - x + 2*x \
"""
expr = x - x**3/6 + x**5/120 + O(x**6)
ascii_str = \
"""\
3 5 \n\
x x / 6\\\n\
x - -- + --- + O\\x /\n\
6 120 \
"""
ucode_str = \
"""\
3 5 \n\
x x ⎛ 6⎞\n\
x - ── + ─── + O⎝x ⎠\n\
6 120 \
"""
assert pretty(expr, order=None) == ascii_str
assert upretty(expr, order=None) == ucode_str
assert pretty(expr, order='lex') == ascii_str
assert upretty(expr, order='lex') == ucode_str
assert pretty(expr, order='rev-lex') == ascii_str
assert upretty(expr, order='rev-lex') == ucode_str
def test_EulerGamma():
assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma"
assert upretty(EulerGamma) == "γ"
def test_GoldenRatio():
assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio"
assert upretty(GoldenRatio) == "φ"
def test_pretty_relational():
expr = Eq(x, y)
ascii_str = \
"""\
x = y\
"""
ucode_str = \
"""\
x = y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lt(x, y)
ascii_str = \
"""\
x < y\
"""
ucode_str = \
"""\
x < y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Gt(x, y)
ascii_str = \
"""\
x > y\
"""
ucode_str = \
"""\
x > y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Le(x, y)
ascii_str = \
"""\
x <= y\
"""
ucode_str = \
"""\
x ≤ y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ge(x, y)
ascii_str = \
"""\
x >= y\
"""
ucode_str = \
"""\
x ≥ y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Ne(x/(y + 1), y**2)
ascii_str_1 = \
"""\
x 2\n\
----- != y \n\
1 + y \
"""
ascii_str_2 = \
"""\
x 2\n\
----- != y \n\
y + 1 \
"""
ucode_str_1 = \
"""\
x 2\n\
───── ≠ y \n\
1 + y \
"""
ucode_str_2 = \
"""\
x 2\n\
───── ≠ y \n\
y + 1 \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
def test_Assignment():
expr = Assignment(x, y)
ascii_str = \
"""\
x := y\
"""
ucode_str = \
"""\
x := y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_AugmentedAssignment():
expr = AddAugmentedAssignment(x, y)
ascii_str = \
"""\
x += y\
"""
ucode_str = \
"""\
x += y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = SubAugmentedAssignment(x, y)
ascii_str = \
"""\
x -= y\
"""
ucode_str = \
"""\
x -= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = MulAugmentedAssignment(x, y)
ascii_str = \
"""\
x *= y\
"""
ucode_str = \
"""\
x *= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = DivAugmentedAssignment(x, y)
ascii_str = \
"""\
x /= y\
"""
ucode_str = \
"""\
x /= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ModAugmentedAssignment(x, y)
ascii_str = \
"""\
x %= y\
"""
ucode_str = \
"""\
x %= y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_rational():
expr = y*x**-2
ascii_str = \
"""\
y \n\
--\n\
2\n\
x \
"""
ucode_str = \
"""\
y \n\
──\n\
2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = y**Rational(3, 2) * x**Rational(-5, 2)
ascii_str = \
"""\
3/2\n\
y \n\
----\n\
5/2\n\
x \
"""
ucode_str = \
"""\
3/2\n\
y \n\
────\n\
5/2\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**3/tan(x)**2
ascii_str = \
"""\
3 \n\
sin (x)\n\
-------\n\
2 \n\
tan (x)\
"""
ucode_str = \
"""\
3 \n\
sin (x)\n\
───────\n\
2 \n\
tan (x)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_functions():
"""Tests for Abs, conjugate, exp, function braces, and factorial."""
expr = (2*x + exp(x))
ascii_str_1 = \
"""\
x\n\
2*x + e \
"""
ascii_str_2 = \
"""\
x \n\
e + 2*x\
"""
ucode_str_1 = \
"""\
x\n\
2⋅x + ℯ \
"""
ucode_str_2 = \
"""\
x \n\
ℯ + 2⋅x\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(x)
ascii_str = \
"""\
|x|\
"""
ucode_str = \
"""\
│x│\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Abs(x/(x**2 + 1))
ascii_str_1 = \
"""\
| x |\n\
|------|\n\
| 2|\n\
|1 + x |\
"""
ascii_str_2 = \
"""\
| x |\n\
|------|\n\
| 2 |\n\
|x + 1|\
"""
ucode_str_1 = \
"""\
│ x │\n\
│──────│\n\
│ 2│\n\
│1 + x │\
"""
ucode_str_2 = \
"""\
│ x │\n\
│──────│\n\
│ 2 │\n\
│x + 1│\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Abs(1 / (y - Abs(x)))
ascii_str = \
"""\
1 \n\
---------\n\
|y - |x||\
"""
ucode_str = \
"""\
1 \n\
─────────\n\
│y - │x││\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial(n)
ascii_str = \
"""\
n!\
"""
ucode_str = \
"""\
n!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(2*n)
ascii_str = \
"""\
(2*n)!\
"""
ucode_str = \
"""\
(2⋅n)!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(factorial(factorial(n)))
ascii_str = \
"""\
((n!)!)!\
"""
ucode_str = \
"""\
((n!)!)!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial(n + 1)
ascii_str_1 = \
"""\
(1 + n)!\
"""
ascii_str_2 = \
"""\
(n + 1)!\
"""
ucode_str_1 = \
"""\
(1 + n)!\
"""
ucode_str_2 = \
"""\
(n + 1)!\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = subfactorial(n)
ascii_str = \
"""\
!n\
"""
ucode_str = \
"""\
!n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = subfactorial(2*n)
ascii_str = \
"""\
!(2*n)\
"""
ucode_str = \
"""\
!(2⋅n)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
n = Symbol('n', integer=True)
expr = factorial2(n)
ascii_str = \
"""\
n!!\
"""
ucode_str = \
"""\
n!!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(2*n)
ascii_str = \
"""\
(2*n)!!\
"""
ucode_str = \
"""\
(2⋅n)!!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(factorial2(factorial2(n)))
ascii_str = \
"""\
((n!!)!!)!!\
"""
ucode_str = \
"""\
((n!!)!!)!!\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = factorial2(n + 1)
ascii_str_1 = \
"""\
(1 + n)!!\
"""
ascii_str_2 = \
"""\
(n + 1)!!\
"""
ucode_str_1 = \
"""\
(1 + n)!!\
"""
ucode_str_2 = \
"""\
(n + 1)!!\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = 2*binomial(n, k)
ascii_str = \
"""\
/n\\\n\
2*| |\n\
\\k/\
"""
ucode_str = \
"""\
⎛n⎞\n\
2⋅⎜ ⎟\n\
⎝k⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(2*n, k)
ascii_str = \
"""\
/2*n\\\n\
2*| |\n\
\\ k /\
"""
ucode_str = \
"""\
⎛2⋅n⎞\n\
2⋅⎜ ⎟\n\
⎝ k ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*binomial(n**2, k)
ascii_str = \
"""\
/ 2\\\n\
|n |\n\
2*| |\n\
\\k /\
"""
ucode_str = \
"""\
⎛ 2⎞\n\
⎜n ⎟\n\
2⋅⎜ ⎟\n\
⎝k ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
"""\
C \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = catalan(n)
ascii_str = \
"""\
C \n\
n\
"""
ucode_str = \
"""\
C \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bell(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
"""\
B \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n)
ascii_str = \
"""\
B \n\
n\
"""
ucode_str = \
"""\
B \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = bernoulli(n, x)
ascii_str = \
"""\
B (x)\n\
n \
"""
ucode_str = \
"""\
B (x)\n\
n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = fibonacci(n)
ascii_str = \
"""\
F \n\
n\
"""
ucode_str = \
"""\
F \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = lucas(n)
ascii_str = \
"""\
L \n\
n\
"""
ucode_str = \
"""\
L \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = tribonacci(n)
ascii_str = \
"""\
T \n\
n\
"""
ucode_str = \
"""\
T \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n)
ascii_str = \
"""\
stieltjes \n\
n\
"""
ucode_str = \
"""\
γ \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = stieltjes(n, x)
ascii_str = \
"""\
stieltjes (x)\n\
n \
"""
ucode_str = \
"""\
γ (x)\n\
n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieuc(x, y, z)
ascii_str = 'C(x, y, z)'
ucode_str = 'C(x, y, z)'
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieus(x, y, z)
ascii_str = 'S(x, y, z)'
ucode_str = 'S(x, y, z)'
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieucprime(x, y, z)
ascii_str = "C'(x, y, z)"
ucode_str = "C'(x, y, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = mathieusprime(x, y, z)
ascii_str = "S'(x, y, z)"
ucode_str = "S'(x, y, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(x)
ascii_str = \
"""\
_\n\
x\
"""
ucode_str = \
"""\
_\n\
x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
f = Function('f')
expr = conjugate(f(x + 1))
ascii_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ascii_str_2 = \
"""\
________\n\
f(x + 1)\
"""
ucode_str_1 = \
"""\
________\n\
f(1 + x)\
"""
ucode_str_2 = \
"""\
________\n\
f(x + 1)\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x)
ascii_str = \
"""\
f(x)\
"""
ucode_str = \
"""\
f(x)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x, y)
ascii_str = \
"""\
f(x, y)\
"""
ucode_str = \
"""\
f(x, y)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
"""
ucode_str_2 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x**x**x**x**x**x)
ascii_str = \
"""\
/ / / / / x\\\\\\\\\\
| | | | \\x /||||
| | | \\x /|||
| | \\x /||
| \\x /|
f\\x /\
"""
ucode_str = \
"""\
⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞
⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟
⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟
⎜ ⎜ ⎝x ⎠⎟⎟
⎜ ⎝x ⎠⎟
f⎝x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sin(x)**2
ascii_str = \
"""\
2 \n\
sin (x)\
"""
ucode_str = \
"""\
2 \n\
sin (x)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(a + b*I)
ascii_str = \
"""\
_ _\n\
a - I*b\
"""
ucode_str = \
"""\
_ _\n\
a - ⅈ⋅b\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate(exp(a + b*I))
ascii_str = \
"""\
_ _\n\
a - I*b\n\
e \
"""
ucode_str = \
"""\
_ _\n\
a - ⅈ⋅b\n\
ℯ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = conjugate( f(1 + conjugate(f(x))) )
ascii_str_1 = \
"""\
___________\n\
/ ____\\\n\
f\\1 + f(x)/\
"""
ascii_str_2 = \
"""\
___________\n\
/____ \\\n\
f\\f(x) + 1/\
"""
ucode_str_1 = \
"""\
___________\n\
⎛ ____⎞\n\
f⎝1 + f(x)⎠\
"""
ucode_str_2 = \
"""\
___________\n\
⎛____ ⎞\n\
f⎝f(x) + 1⎠\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = f(x/(y + 1), y)
ascii_str_1 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\1 + y /\
"""
ascii_str_2 = \
"""\
/ x \\\n\
f|-----, y|\n\
\\y + 1 /\
"""
ucode_str_1 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝1 + y ⎠\
"""
ucode_str_2 = \
"""\
⎛ x ⎞\n\
f⎜─────, y⎟\n\
⎝y + 1 ⎠\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = floor(1 / (y - floor(x)))
ascii_str = \
"""\
/ 1 \\\n\
floor|------------|\n\
\\y - floor(x)/\
"""
ucode_str = \
"""\
⎢ 1 ⎥\n\
⎢───────⎥\n\
⎣y - ⌊x⌋⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = ceiling(1 / (y - ceiling(x)))
ascii_str = \
"""\
/ 1 \\\n\
ceiling|--------------|\n\
\\y - ceiling(x)/\
"""
ucode_str = \
"""\
⎡ 1 ⎤\n\
⎢───────⎥\n\
⎢y - ⌈x⌉⎥\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n)
ascii_str = \
"""\
E \n\
n\
"""
ucode_str = \
"""\
E \n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(1/(1 + 1/(1 + 1/n)))
ascii_str = \
"""\
E \n\
1 \n\
---------\n\
1 \n\
1 + -----\n\
1\n\
1 + -\n\
n\
"""
ucode_str = \
"""\
E \n\
1 \n\
─────────\n\
1 \n\
1 + ─────\n\
1\n\
1 + ─\n\
n\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x)
ascii_str = \
"""\
E (x)\n\
n \
"""
ucode_str = \
"""\
E (x)\n\
n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = euler(n, x/2)
ascii_str = \
"""\
/x\\\n\
E |-|\n\
n\\2/\
"""
ucode_str = \
"""\
⎛x⎞\n\
E ⎜─⎟\n\
n⎝2⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt():
expr = sqrt(2)
ascii_str = \
"""\
___\n\
\\/ 2 \
"""
ucode_str = \
"√2"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 3)
ascii_str = \
"""\
3 ___\n\
\\/ 2 \
"""
ucode_str = \
"""\
3 ___\n\
╲╱ 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**Rational(1, 1000)
ascii_str = \
"""\
1000___\n\
\\/ 2 \
"""
ucode_str = \
"""\
1000___\n\
╲╱ 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(x**2 + 1)
ascii_str = \
"""\
________\n\
/ 2 \n\
\\/ x + 1 \
"""
ucode_str = \
"""\
________\n\
╱ 2 \n\
╲╱ x + 1 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1 + sqrt(5))**Rational(1, 3)
ascii_str = \
"""\
___________\n\
3 / ___ \n\
\\/ 1 + \\/ 5 \
"""
ucode_str = \
"""\
3 ________\n\
╲╱ 1 + √5 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2**(1/x)
ascii_str = \
"""\
x ___\n\
\\/ 2 \
"""
ucode_str = \
"""\
x ___\n\
╲╱ 2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = sqrt(2 + pi)
ascii_str = \
"""\
________\n\
\\/ 2 + pi \
"""
ucode_str = \
"""\
_______\n\
╲╱ 2 + π \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (2 + (
1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2)
ascii_str = \
"""\
____________ \n\
/ 2 1000___ \n\
/ x + 1 \\/ x + 1\n\
4 / 2 + ------ + -----------\n\
\\/ x + 2 ________\n\
/ 2 \n\
\\/ x + 3 \
"""
ucode_str = \
"""\
____________ \n\
╱ 2 1000___ \n\
╱ x + 1 ╲╱ x + 1\n\
4 ╱ 2 + ────── + ───────────\n\
╲╱ x + 2 ________\n\
╱ 2 \n\
╲╱ x + 3 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_sqrt_char_knob():
# See PR #9234.
expr = sqrt(2)
ucode_str1 = \
"""\
___\n\
╲╱ 2 \
"""
ucode_str2 = \
"√2"
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=False) == ucode_str1
assert xpretty(expr, use_unicode=True,
use_unicode_sqrt_char=True) == ucode_str2
def test_pretty_sqrt_longsymbol_no_sqrt_char():
# Do not use unicode sqrt char for long symbols (see PR #9234).
expr = sqrt(Symbol('C1'))
ucode_str = \
"""\
____\n\
╲╱ C₁ \
"""
assert upretty(expr) == ucode_str
def test_pretty_KroneckerDelta():
x, y = symbols("x, y")
expr = KroneckerDelta(x, y)
ascii_str = \
"""\
d \n\
x,y\
"""
ucode_str = \
"""\
δ \n\
x,y\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_product():
n, m, k, l = symbols('n m k l')
f = symbols('f', cls=Function)
expr = Product(f((n/3)**2), (n, k**2, l))
unicode_str = \
"""\
l \n\
─┬──────┬─ \n\
│ │ ⎛ 2⎞\n\
│ │ ⎜n ⎟\n\
│ │ f⎜──⎟\n\
│ │ ⎝9 ⎠\n\
│ │ \n\
2 \n\
n = k """
ascii_str = \
"""\
l \n\
__________ \n\
| | / 2\\\n\
| | |n |\n\
| | f|--|\n\
| | \\9 /\n\
| | \n\
2 \n\
n = k """
expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m))
unicode_str = \
"""\
m l \n\
─┬──────┬─ ─┬──────┬─ \n\
│ │ │ │ ⎛ 2⎞\n\
│ │ │ │ ⎜n ⎟\n\
│ │ │ │ f⎜──⎟\n\
│ │ │ │ ⎝9 ⎠\n\
│ │ │ │ \n\
l = 1 2 \n\
n = k """
ascii_str = \
"""\
m l \n\
__________ __________ \n\
| | | | / 2\\\n\
| | | | |n |\n\
| | | | f|--|\n\
| | | | \\9 /\n\
| | | | \n\
l = 1 2 \n\
n = k """
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_pretty_Lambda():
# S.IdentityFunction is a special case
expr = Lambda(y, y)
assert pretty(expr) == "x -> x"
assert upretty(expr) == "x ↦ x"
expr = Lambda(x, x+1)
assert pretty(expr) == "x -> x + 1"
assert upretty(expr) == "x ↦ x + 1"
expr = Lambda(x, x**2)
ascii_str = \
"""\
2\n\
x -> x \
"""
ucode_str = \
"""\
2\n\
x ↦ x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(x, x**2)**2
ascii_str = \
"""\
2
/ 2\\ \n\
\\x -> x / \
"""
ucode_str = \
"""\
2
⎛ 2⎞ \n\
⎝x ↦ x ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x)
ascii_str = "(x, y) -> x"
ucode_str = "(x, y) ↦ x"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda((x, y), x**2)
ascii_str = \
"""\
2\n\
(x, y) -> x \
"""
ucode_str = \
"""\
2\n\
(x, y) ↦ x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Lambda(((x, y),), x**2)
ascii_str = \
"""\
2\n\
((x, y),) -> x \
"""
ucode_str = \
"""\
2\n\
((x, y),) ↦ x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_TransferFunction():
tf1 = TransferFunction(s - 1, s + 1, s)
assert upretty(tf1) == "s - 1\n─────\ns + 1"
tf2 = TransferFunction(2*s + 1, 3 - p, s)
assert upretty(tf2) == "2⋅s + 1\n───────\n 3 - p "
tf3 = TransferFunction(p, p + 1, p)
assert upretty(tf3) == " p \n─────\np + 1"
def test_pretty_Series():
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(x**2 + y, y - x, y)
expected1 = \
"""\
⎛ 2 ⎞\n\
⎛ x + y ⎞ ⎜x + y⎟\n\
⎜───────⎟⋅⎜──────⎟\n\
⎝x - 2⋅y⎠ ⎝-x + y⎠\
"""
expected2 = \
"""\
⎛-x + y⎞ ⎛ -x - y⎞\n\
⎜──────⎟⋅⎜───────⎟\n\
⎝x + y ⎠ ⎝x - 2⋅y⎠\
"""
expected3 = \
"""\
⎛ 2 ⎞ \n\
⎜x + y⎟ ⎛ x + y ⎞ ⎛ -x - y x - y⎞\n\
⎜──────⎟⋅⎜───────⎟⋅⎜─────── + ─────⎟\n\
⎝-x + y⎠ ⎝x - 2⋅y⎠ ⎝x - 2⋅y x + y⎠\
"""
expected4 = \
"""\
⎛ 2 ⎞\n\
⎛ x + y x - y⎞ ⎜x - y x + y⎟\n\
⎜─────── + ─────⎟⋅⎜───── + ──────⎟\n\
⎝x - 2⋅y x + y⎠ ⎝x + y -x + y⎠\
"""
assert upretty(Series(tf1, tf3)) == expected1
assert upretty(Series(-tf2, -tf1)) == expected2
assert upretty(Series(tf3, tf1, Parallel(-tf1, tf2))) == expected3
assert upretty(Series(Parallel(tf1, tf2), Parallel(tf2, tf3))) == expected4
def test_pretty_Parallel():
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(x**2 + y, y - x, y)
expected1 = \
"""\
x + y x - y\n\
─────── + ─────\n\
x - 2⋅y x + y\
"""
expected2 = \
"""\
-x + y -x - y\n\
────── + ───────\n\
x + y x - 2⋅y\
"""
expected3 = \
"""\
2 \n\
x + y x + y ⎛ -x - y⎞ ⎛x - y⎞\n\
────── + ─────── + ⎜───────⎟⋅⎜─────⎟\n\
-x + y x - 2⋅y ⎝x - 2⋅y⎠ ⎝x + y⎠\
"""
expected4 = \
"""\
⎛ 2 ⎞\n\
⎛ x + y ⎞ ⎛x - y⎞ ⎛x - y⎞ ⎜x + y⎟\n\
⎜───────⎟⋅⎜─────⎟ + ⎜─────⎟⋅⎜──────⎟\n\
⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x + y⎠ ⎝-x + y⎠\
"""
assert upretty(Parallel(tf1, tf2)) == expected1
assert upretty(Parallel(-tf2, -tf1)) == expected2
assert upretty(Parallel(tf3, tf1, Series(-tf1, tf2))) == expected3
assert upretty(Parallel(Series(tf1, tf2), Series(tf2, tf3))) == expected4
def test_pretty_Feedback():
tf = TransferFunction(1, 1, y)
tf1 = TransferFunction(x + y, x - 2*y, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(y**2 - 2*y + 1, y + 5, y)
tf4 = TransferFunction(x - 2*y**3, x + y, x)
tf5 = TransferFunction(1 - x, x - y, y)
tf6 = TransferFunction(2, 2, x)
expected1 = \
"""\
⎛1⎞ \n\
⎜─⎟ \n\
⎝1⎠ \n\
───────────\n\
1 x + y \n\
─ + ───────\n\
1 x - 2⋅y\
"""
expected2 = \
"""\
⎛1⎞ \n\
⎜─⎟ \n\
⎝1⎠ \n\
────────────────────────────────────\n\
⎛ 2 ⎞\n\
1 ⎛x - y⎞ ⎛ x + y ⎞ ⎜y - 2⋅y + 1⎟\n\
─ + ⎜─────⎟⋅⎜───────⎟⋅⎜────────────⎟\n\
1 ⎝x + y⎠ ⎝x - 2⋅y⎠ ⎝ y + 5 ⎠\
"""
expected3 = \
"""\
⎛ x + y ⎞ \n\
⎜───────⎟ \n\
⎝x - 2⋅y⎠ \n\
────────────────────────────────────────────\n\
⎛ 2 ⎞ \n\
1 ⎛ x + y ⎞ ⎛x - y⎞ ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞\n\
─ + ⎜───────⎟⋅⎜─────⎟⋅⎜────────────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝ y + 5 ⎠ ⎝x - y⎠\
"""
expected4 = \
"""\
⎛ x + y ⎞ ⎛x - y⎞ \n\
⎜───────⎟⋅⎜─────⎟ \n\
⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
─────────────────────\n\
1 ⎛ x + y ⎞ ⎛x - y⎞\n\
─ + ⎜───────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠\
"""
expected5 = \
"""\
⎛ x + y ⎞ ⎛x - y⎞ \n\
⎜───────⎟⋅⎜─────⎟ \n\
⎝x - 2⋅y⎠ ⎝x + y⎠ \n\
─────────────────────────────\n\
1 ⎛ x + y ⎞ ⎛x - y⎞ ⎛1 - x⎞\n\
─ + ⎜───────⎟⋅⎜─────⎟⋅⎜─────⎟\n\
1 ⎝x - 2⋅y⎠ ⎝x + y⎠ ⎝x - y⎠\
"""
expected6 = \
"""\
⎛ 2 ⎞ \n\
⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ \n\
⎜────────────⎟⋅⎜─────⎟ \n\
⎝ y + 5 ⎠ ⎝x - y⎠ \n\
────────────────────────────────────────────\n\
⎛ 2 ⎞ \n\
1 ⎜y - 2⋅y + 1⎟ ⎛1 - x⎞ ⎛x - y⎞ ⎛ x + y ⎞\n\
─ + ⎜────────────⎟⋅⎜─────⎟⋅⎜─────⎟⋅⎜───────⎟\n\
1 ⎝ y + 5 ⎠ ⎝x - y⎠ ⎝x + y⎠ ⎝x - 2⋅y⎠\
"""
expected7 = \
"""\
⎛ 3⎞ \n\
⎜x - 2⋅y ⎟ \n\
⎜────────⎟ \n\
⎝ x + y ⎠ \n\
──────────────────\n\
⎛ 3⎞ \n\
1 ⎜x - 2⋅y ⎟ ⎛2⎞\n\
─ + ⎜────────⎟⋅⎜─⎟\n\
1 ⎝ x + y ⎠ ⎝2⎠\
"""
expected8 = \
"""\
⎛1 - x⎞ \n\
⎜─────⎟ \n\
⎝x - y⎠ \n\
─────────\n\
1 1 - x\n\
─ + ─────\n\
1 x - y\
"""
assert upretty(Feedback(tf, tf1)) == expected1
assert upretty(Feedback(tf, tf2*tf1*tf3)) == expected2
assert upretty(Feedback(tf1, tf2*tf3*tf5)) == expected3
assert upretty(Feedback(tf1*tf2, tf)) == expected4
assert upretty(Feedback(tf1*tf2, tf5)) == expected5
assert upretty(Feedback(tf3*tf5, tf2*tf1)) == expected6
assert upretty(Feedback(tf4, tf6)) == expected7
assert upretty(Feedback(tf5, tf)) == expected8
def test_pretty_order():
expr = O(1)
ascii_str = \
"""\
O(1)\
"""
ucode_str = \
"""\
O(1)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x)
ascii_str = \
"""\
/1\\\n\
O|-|\n\
\\x/\
"""
ucode_str = \
"""\
⎛1⎞\n\
O⎜─⎟\n\
⎝x⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2)
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (0, 0)/\
"""
ucode_str = \
"""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (0, 0)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1, (x, oo))
ascii_str = \
"""\
O(1; x -> oo)\
"""
ucode_str = \
"""\
O(1; x → ∞)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(1/x, (x, oo))
ascii_str = \
"""\
/1 \\\n\
O|-; x -> oo|\n\
\\x /\
"""
ucode_str = \
"""\
⎛1 ⎞\n\
O⎜─; x → ∞⎟\n\
⎝x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = O(x**2 + y**2, (x, oo), (y, oo))
ascii_str = \
"""\
/ 2 2 \\\n\
O\\x + y ; (x, y) -> (oo, oo)/\
"""
ucode_str = \
"""\
⎛ 2 2 ⎞\n\
O⎝x + y ; (x, y) → (∞, ∞)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_derivatives():
# Simple
expr = Derivative(log(x), x, evaluate=False)
ascii_str = \
"""\
d \n\
--(log(x))\n\
dx \
"""
ucode_str = \
"""\
d \n\
──(log(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(log(x), x, evaluate=False) + x
ascii_str_1 = \
"""\
d \n\
x + --(log(x))\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(log(x)) + x\n\
dx \
"""
ucode_str_1 = \
"""\
d \n\
x + ──(log(x))\n\
dx \
"""
ucode_str_2 = \
"""\
d \n\
──(log(x)) + x\n\
dx \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
# basic partial derivatives
expr = Derivative(log(x + y) + x, x)
ascii_str_1 = \
"""\
d \n\
--(log(x + y) + x)\n\
dx \
"""
ascii_str_2 = \
"""\
d \n\
--(x + log(x + y))\n\
dx \
"""
ucode_str_1 = \
"""\
∂ \n\
──(log(x + y) + x)\n\
∂x \
"""
ucode_str_2 = \
"""\
∂ \n\
──(x + log(x + y))\n\
∂x \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr)
# Multiple symbols
expr = Derivative(log(x) + x**2, x, y)
ascii_str_1 = \
"""\
2 \n\
d / 2\\\n\
-----\\log(x) + x /\n\
dy dx \
"""
ascii_str_2 = \
"""\
2 \n\
d / 2 \\\n\
-----\\x + log(x)/\n\
dy dx \
"""
ucode_str_1 = \
"""\
2 \n\
d ⎛ 2⎞\n\
─────⎝log(x) + x ⎠\n\
dy dx \
"""
ucode_str_2 = \
"""\
2 \n\
d ⎛ 2 ⎞\n\
─────⎝x + log(x)⎠\n\
dy dx \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, y, x) + x**2
ascii_str_1 = \
"""\
2 \n\
d 2\n\
-----(2*x*y) + x \n\
dx dy \
"""
ascii_str_2 = \
"""\
2 \n\
2 d \n\
x + -----(2*x*y)\n\
dx dy \
"""
ucode_str_1 = \
"""\
2 \n\
∂ 2\n\
─────(2⋅x⋅y) + x \n\
∂x ∂y \
"""
ucode_str_2 = \
"""\
2 \n\
2 ∂ \n\
x + ─────(2⋅x⋅y)\n\
∂x ∂y \
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Derivative(2*x*y, x, x)
ascii_str = \
"""\
2 \n\
d \n\
---(2*x*y)\n\
2 \n\
dx \
"""
ucode_str = \
"""\
2 \n\
∂ \n\
───(2⋅x⋅y)\n\
2 \n\
∂x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, 17)
ascii_str = \
"""\
17 \n\
d \n\
----(2*x*y)\n\
17 \n\
dx \
"""
ucode_str = \
"""\
17 \n\
∂ \n\
────(2⋅x⋅y)\n\
17 \n\
∂x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(2*x*y, x, x, y)
ascii_str = \
"""\
3 \n\
d \n\
------(2*x*y)\n\
2 \n\
dy dx \
"""
ucode_str = \
"""\
3 \n\
∂ \n\
──────(2⋅x⋅y)\n\
2 \n\
∂y ∂x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# Greek letters
alpha = Symbol('alpha')
beta = Function('beta')
expr = beta(alpha).diff(alpha)
ascii_str = \
"""\
d \n\
------(beta(alpha))\n\
dalpha \
"""
ucode_str = \
"""\
d \n\
──(β(α))\n\
dα \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Derivative(f(x), (x, n))
ascii_str = \
"""\
n \n\
d \n\
---(f(x))\n\
n \n\
dx \
"""
ucode_str = \
"""\
n \n\
d \n\
───(f(x))\n\
n \n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_integrals():
expr = Integral(log(x), x)
ascii_str = \
"""\
/ \n\
| \n\
| log(x) dx\n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ log(x) dx\n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, x)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral((sin(x))**2 / (tan(x))**2)
ascii_str = \
"""\
/ \n\
| \n\
| 2 \n\
| sin (x) \n\
| ------- dx\n\
| 2 \n\
| tan (x) \n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ 2 \n\
⎮ sin (x) \n\
⎮ ─────── dx\n\
⎮ 2 \n\
⎮ tan (x) \n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**(2**x), x)
ascii_str = \
"""\
/ \n\
| \n\
| / x\\ \n\
| \\2 / \n\
| x dx\n\
| \n\
/ \
"""
ucode_str = \
"""\
⌠ \n\
⎮ ⎛ x⎞ \n\
⎮ ⎝2 ⎠ \n\
⎮ x dx\n\
⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, 1, 2))
ascii_str = \
"""\
2 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1 \
"""
ucode_str = \
"""\
2 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2, (x, Rational(1, 2), 10))
ascii_str = \
"""\
10 \n\
/ \n\
| \n\
| 2 \n\
| x dx\n\
| \n\
/ \n\
1/2 \
"""
ucode_str = \
"""\
10 \n\
⌠ \n\
⎮ 2 \n\
⎮ x dx\n\
⌡ \n\
1/2 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(x**2*y**2, x, y)
ascii_str = \
"""\
/ / \n\
| | \n\
| | 2 2 \n\
| | x *y dx dy\n\
| | \n\
/ / \
"""
ucode_str = \
"""\
⌠ ⌠ \n\
⎮ ⎮ 2 2 \n\
⎮ ⎮ x ⋅y dx dy\n\
⌡ ⌡ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi))
ascii_str = \
"""\
2*pi pi \n\
/ / \n\
| | \n\
| | sin(theta) \n\
| | ---------- d(theta) d(phi)\n\
| | cos(phi) \n\
| | \n\
/ / \n\
0 0 \
"""
ucode_str = \
"""\
2⋅π π \n\
⌠ ⌠ \n\
⎮ ⎮ sin(θ) \n\
⎮ ⎮ ────── dθ dφ\n\
⎮ ⎮ cos(φ) \n\
⌡ ⌡ \n\
0 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_matrix():
# Empty Matrix
expr = Matrix()
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(2, 0, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix(0, 2, lambda i, j: 0)
ascii_str = "[]"
unicode_str = "[]"
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Matrix([[x**2 + 1, 1], [y, x + y]])
ascii_str_1 = \
"""\
[ 2 ]
[1 + x 1 ]
[ ]
[ y x + y]\
"""
ascii_str_2 = \
"""\
[ 2 ]
[x + 1 1 ]
[ ]
[ y x + y]\
"""
ucode_str_1 = \
"""\
⎡ 2 ⎤
⎢1 + x 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
"""
ucode_str_2 = \
"""\
⎡ 2 ⎤
⎢x + 1 1 ⎥
⎢ ⎥
⎣ y x + y⎦\
"""
assert pretty(expr) in [ascii_str_1, ascii_str_2]
assert upretty(expr) in [ucode_str_1, ucode_str_2]
expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]])
ascii_str = \
"""\
[x ]
[- y theta]
[y ]
[ ]
[ I*k*phi ]
[0 e 1 ]\
"""
ucode_str = \
"""\
⎡x ⎤
⎢─ y θ⎥
⎢y ⎥
⎢ ⎥
⎢ ⅈ⋅k⋅φ ⎥
⎣0 ℯ 1⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
unicode_str = \
"""\
⎡v̇_msc_00 0 0 ⎤
⎢ ⎥
⎢ 0 v̇_msc_01 0 ⎥
⎢ ⎥
⎣ 0 0 v̇_msc_02⎦\
"""
expr = diag(*MatrixSymbol('vdot_msc',1,3))
assert upretty(expr) == unicode_str
def test_pretty_ndim_arrays():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert pretty(M) == "x"
assert upretty(M) == "x"
M = ArrayType([[1/x, y], [z, w]])
M1 = ArrayType([1/x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
ascii_str = \
"""\
[1 ]\n\
[- y]\n\
[x ]\n\
[ ]\n\
[z w]\
"""
ucode_str = \
"""\
⎡1 ⎤\n\
⎢─ y⎥\n\
⎢x ⎥\n\
⎢ ⎥\n\
⎣z w⎦\
"""
assert pretty(M) == ascii_str
assert upretty(M) == ucode_str
ascii_str = \
"""\
[1 ]\n\
[- y z]\n\
[x ]\
"""
ucode_str = \
"""\
⎡1 ⎤\n\
⎢─ y z⎥\n\
⎣x ⎦\
"""
assert pretty(M1) == ascii_str
assert upretty(M1) == ucode_str
ascii_str = \
"""\
[[1 y] ]\n\
[[-- -] [z ]]\n\
[[ 2 x] [ y 2 ] [- y*z]]\n\
[[x ] [ - y ] [x ]]\n\
[[ ] [ x ] [ ]]\n\
[[z w] [ ] [ 2 ]]\n\
[[- -] [y*z w*y] [z w*z]]\n\
[[x x] ]\
"""
ucode_str = \
"""\
⎡⎡1 y⎤ ⎤\n\
⎢⎢── ─⎥ ⎡z ⎤⎥\n\
⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\
⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\
⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\
⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\
⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\
⎣⎣x x⎦ ⎦\
"""
assert pretty(M2) == ascii_str
assert upretty(M2) == ucode_str
ascii_str = \
"""\
[ [1 y] ]\n\
[ [-- -] ]\n\
[ [ 2 x] [ y 2 ]]\n\
[ [x ] [ - y ]]\n\
[ [ ] [ x ]]\n\
[ [z w] [ ]]\n\
[ [- -] [y*z w*y]]\n\
[ [x x] ]\n\
[ ]\n\
[[z ] [ w ]]\n\
[[- y*z] [ - w*y]]\n\
[[x ] [ x ]]\n\
[[ ] [ ]]\n\
[[ 2 ] [ 2 ]]\n\
[[z w*z] [w*z w ]]\
"""
ucode_str = \
"""\
⎡ ⎡1 y⎤ ⎤\n\
⎢ ⎢── ─⎥ ⎥\n\
⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\
⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\
⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\
⎢ ⎢z w⎥ ⎢ ⎥⎥\n\
⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\
⎢ ⎣x x⎦ ⎥\n\
⎢ ⎥\n\
⎢⎡z ⎤ ⎡ w ⎤⎥\n\
⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\
⎢⎢x ⎥ ⎢ x ⎥⎥\n\
⎢⎢ ⎥ ⎢ ⎥⎥\n\
⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\
⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\
"""
assert pretty(M3) == ascii_str
assert upretty(M3) == ucode_str
Mrow = ArrayType([[x, y, 1 / z]])
Mcolumn = ArrayType([[x], [y], [1 / z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
ascii_str = \
"""\
[[ 1]]\n\
[[x y -]]\n\
[[ z]]\
"""
ucode_str = \
"""\
⎡⎡ 1⎤⎤\n\
⎢⎢x y ─⎥⎥\n\
⎣⎣ z⎦⎦\
"""
assert pretty(Mrow) == ascii_str
assert upretty(Mrow) == ucode_str
ascii_str = \
"""\
[x]\n\
[ ]\n\
[y]\n\
[ ]\n\
[1]\n\
[-]\n\
[z]\
"""
ucode_str = \
"""\
⎡x⎤\n\
⎢ ⎥\n\
⎢y⎥\n\
⎢ ⎥\n\
⎢1⎥\n\
⎢─⎥\n\
⎣z⎦\
"""
assert pretty(Mcolumn) == ascii_str
assert upretty(Mcolumn) == ucode_str
ascii_str = \
"""\
[[x]]\n\
[[ ]]\n\
[[y]]\n\
[[ ]]\n\
[[1]]\n\
[[-]]\n\
[[z]]\
"""
ucode_str = \
"""\
⎡⎡x⎤⎤\n\
⎢⎢ ⎥⎥\n\
⎢⎢y⎥⎥\n\
⎢⎢ ⎥⎥\n\
⎢⎢1⎥⎥\n\
⎢⎢─⎥⎥\n\
⎣⎣z⎦⎦\
"""
assert pretty(Mcol2) == ascii_str
assert upretty(Mcol2) == ucode_str
def test_tensor_TensorProduct():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert upretty(TensorProduct(A, B)) == "A\u2297B"
assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A"
def test_diffgeom_print_WedgeProduct():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert upretty(wp) == "ⅆ x∧ⅆ y"
def test_Adjoint():
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert pretty(Adjoint(X)) == " +\nX "
assert pretty(Adjoint(X + Y)) == " +\n(X + Y) "
assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y "
assert pretty(Adjoint(X*Y)) == " +\n(X*Y) "
assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X "
assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / "
assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / "
assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / "
assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / "
assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / "
assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / "
assert upretty(Adjoint(X)) == " †\nX "
assert upretty(Adjoint(X + Y)) == " †\n(X + Y) "
assert upretty(Adjoint(X) + Adjoint(Y)) == " † †\nX + Y "
assert upretty(Adjoint(X*Y)) == " †\n(X⋅Y) "
assert upretty(Adjoint(Y)*Adjoint(X)) == " † †\nY ⋅X "
assert upretty(Adjoint(X**2)) == \
" †\n⎛ 2⎞ \n⎝X ⎠ "
assert upretty(Adjoint(X)**2) == \
" 2\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Inverse(X))) == \
" †\n⎛ -1⎞ \n⎝X ⎠ "
assert upretty(Inverse(Adjoint(X))) == \
" -1\n⎛ †⎞ \n⎝X ⎠ "
assert upretty(Adjoint(Transpose(X))) == \
" †\n⎛ T⎞ \n⎝X ⎠ "
assert upretty(Transpose(Adjoint(X))) == \
" T\n⎛ †⎞ \n⎝X ⎠ "
def test_pretty_Trace_issue_9044():
X = Matrix([[1, 2], [3, 4]])
Y = Matrix([[2, 4], [6, 8]])
ascii_str_1 = \
"""\
/[1 2]\\
tr|[ ]|
\\[3 4]/\
"""
ucode_str_1 = \
"""\
⎛⎡1 2⎤⎞
tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠\
"""
ascii_str_2 = \
"""\
/[1 2]\\ /[2 4]\\
tr|[ ]| + tr|[ ]|
\\[3 4]/ \\[6 8]/\
"""
ucode_str_2 = \
"""\
⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞
tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟
⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\
"""
assert pretty(Trace(X)) == ascii_str_1
assert upretty(Trace(X)) == ucode_str_1
assert pretty(Trace(X) + Trace(Y)) == ascii_str_2
assert upretty(Trace(X) + Trace(Y)) == ucode_str_2
def test_MatrixSlice():
n = Symbol('n', integer=True)
x, y, z, w, t, = symbols('x y z w t')
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
expr = MatrixSlice(X, (None, None, None), (None, None, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = X[x:x + 1, y:y + 1]
assert pretty(expr) == upretty(expr) == 'X[x:x + 1, y:y + 1]'
expr = X[x:x + 1:2, y:y + 1:2]
assert pretty(expr) == upretty(expr) == 'X[x:x + 1:2, y:y + 1:2]'
expr = X[:x, y:]
assert pretty(expr) == upretty(expr) == 'X[:x, y:]'
expr = X[:x, y:]
assert pretty(expr) == upretty(expr) == 'X[:x, y:]'
expr = X[x:, :y]
assert pretty(expr) == upretty(expr) == 'X[x:, :y]'
expr = X[x:y, z:w]
assert pretty(expr) == upretty(expr) == 'X[x:y, z:w]'
expr = X[x:y:t, w:t:x]
assert pretty(expr) == upretty(expr) == 'X[x:y:t, w:t:x]'
expr = X[x::y, t::w]
assert pretty(expr) == upretty(expr) == 'X[x::y, t::w]'
expr = X[:x:y, :t:w]
assert pretty(expr) == upretty(expr) == 'X[:x:y, :t:w]'
expr = X[::x, ::y]
assert pretty(expr) == upretty(expr) == 'X[::x, ::y]'
expr = MatrixSlice(X, (0, None, None), (0, None, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = MatrixSlice(X, (None, n, None), (None, n, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = MatrixSlice(X, (0, n, None), (0, n, None))
assert pretty(expr) == upretty(expr) == 'X[:, :]'
expr = MatrixSlice(X, (0, n, 2), (0, n, 2))
assert pretty(expr) == upretty(expr) == 'X[::2, ::2]'
expr = X[1:2:3, 4:5:6]
assert pretty(expr) == upretty(expr) == 'X[1:2:3, 4:5:6]'
expr = X[1:3:5, 4:6:8]
assert pretty(expr) == upretty(expr) == 'X[1:3:5, 4:6:8]'
expr = X[1:10:2]
assert pretty(expr) == upretty(expr) == 'X[1:10:2, :]'
expr = Y[:5, 1:9:2]
assert pretty(expr) == upretty(expr) == 'Y[:5, 1:9:2]'
expr = Y[:5, 1:10:2]
assert pretty(expr) == upretty(expr) == 'Y[:5, 1::2]'
expr = Y[5, :5:2]
assert pretty(expr) == upretty(expr) == 'Y[5:6, :5:2]'
expr = X[0:1, 0:1]
assert pretty(expr) == upretty(expr) == 'X[:1, :1]'
expr = X[0:1:2, 0:1:2]
assert pretty(expr) == upretty(expr) == 'X[:1:2, :1:2]'
expr = (Y + Z)[2:, 2:]
assert pretty(expr) == upretty(expr) == '(Y + Z)[2:, 2:]'
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert pretty(X) == upretty(X) == "X"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
ascii_str = """\
/ T \\\n\
(d -> sin(d)).\\X *X/\
"""
ucode_str = """\
⎛ T ⎞\n\
(d ↦ sin(d))˳⎝X ⋅X⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
ascii_str = """\
/ 1\\ \n\
|x -> -|.(n*X)\n\
\\ x/ \
"""
ucode_str = """\
⎛ 1⎞ \n\
⎜x ↦ ─⎟˳(n⋅X)\n\
⎝ x⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_dotproduct():
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.dotproduct import DotProduct
n = symbols("n", integer=True)
A = MatrixSymbol('A', n, 1)
B = MatrixSymbol('B', n, 1)
C = Matrix(1, 3, [1, 2, 3])
D = Matrix(1, 3, [1, 3, 4])
assert pretty(DotProduct(A, B)) == "A*B"
assert pretty(DotProduct(C, D)) == "[1 2 3]*[1 3 4]"
assert upretty(DotProduct(A, B)) == "A⋅B"
assert upretty(DotProduct(C, D)) == "[1 2 3]⋅[1 3 4]"
def test_pretty_piecewise():
expr = Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
/x for x < 1\n\
| \n\
< 2 \n\
|x otherwise\n\
\\ \
"""
ucode_str = \
"""\
⎧x for x < 1\n\
⎪ \n\
⎨ 2 \n\
⎪x otherwise\n\
⎩ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x < 1), (x**2, True))
ascii_str = \
"""\
//x for x < 1\\\n\
|| |\n\
-|< 2 |\n\
||x otherwise|\n\
\\\\ /\
"""
ucode_str = \
"""\
⎛⎧x for x < 1⎞\n\
⎜⎪ ⎟\n\
-⎜⎨ 2 ⎟\n\
⎜⎪x otherwise⎟\n\
⎝⎩ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x + |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
"""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2),
(y**2, x > 2), (1, True)) + 1
ascii_str = \
"""\
//x \\ \n\
||- for x < 2| \n\
||y | \n\
//x for x > 0\\ || | \n\
x - |< | + |< 2 | + 1\n\
\\\\y otherwise/ ||y for x > 2| \n\
|| | \n\
||1 otherwise| \n\
\\\\ / \
"""
ucode_str = \
"""\
⎛⎧x ⎞ \n\
⎜⎪─ for x < 2⎟ \n\
⎜⎪y ⎟ \n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\
x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\
⎜⎪ ⎟ \n\
⎜⎪1 otherwise⎟ \n\
⎝⎩ ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = x*Piecewise((x, x > 0), (y, True))
ascii_str = \
"""\
//x for x > 0\\\n\
x*|< |\n\
\\\\y otherwise/\
"""
ucode_str = \
"""\
⎛⎧x for x > 0⎞\n\
x⋅⎜⎨ ⎟\n\
⎝⎩y otherwise⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x >
2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
"""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x
> 2), (1, True))
ascii_str = \
"""\
//x \\\n\
||- for x < 2|\n\
||y |\n\
//x for x > 0\\ || |\n\
-|< |*|< 2 |\n\
\\\\y otherwise/ ||y for x > 2|\n\
|| |\n\
||1 otherwise|\n\
\\\\ /\
"""
ucode_str = \
"""\
⎛⎧x ⎞\n\
⎜⎪─ for x < 2⎟\n\
⎜⎪y ⎟\n\
⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\
-⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\
⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\
⎜⎪ ⎟\n\
⎜⎪1 otherwise⎟\n\
⎝⎩ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1),
()), ((), (1, 0)), 1/y), True))
ascii_str = \
"""\
/ 1 \n\
| 0 for --- < 1\n\
| |y| \n\
| \n\
< 1 for |y| < 1\n\
| \n\
| __0, 2 /2, 1 | 1\\ \n\
|y*/__ | | -| otherwise \n\
\\ \\_|2, 2 \\ 1, 0 | y/ \
"""
ucode_str = \
"""\
⎧ 1 \n\
⎪ 0 for ─── < 1\n\
⎪ │y│ \n\
⎪ \n\
⎨ 1 for │y│ < 1\n\
⎪ \n\
⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\
⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\
⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
# XXX: We have to use evaluate=False here because Piecewise._eval_power
# denests the power.
expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False)
ascii_str = \
"""\
2\n\
//x for x > 0\\ \n\
|< | \n\
\\\\y otherwise/ \
"""
ucode_str = \
"""\
2\n\
⎛⎧x for x > 0⎞ \n\
⎜⎨ ⎟ \n\
⎝⎩y otherwise⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ITE():
expr = ITE(x, y, z)
assert pretty(expr) == (
'/y for x \n'
'< \n'
'\\z otherwise'
)
assert upretty(expr) == """\
⎧y for x \n\
⎨ \n\
⎩z otherwise\
"""
def test_pretty_seq():
expr = ()
ascii_str = \
"""\
()\
"""
ucode_str = \
"""\
()\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = []
ascii_str = \
"""\
[]\
"""
ucode_str = \
"""\
[]\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {}
expr_2 = {}
ascii_str = \
"""\
{}\
"""
ucode_str = \
"""\
{}\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = (1/x,)
ascii_str = \
"""\
1 \n\
(-,)\n\
x \
"""
ucode_str = \
"""\
⎛1 ⎞\n\
⎜─,⎟\n\
⎝x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2]
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
[x , -, x, y, -----------]\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
"""\
⎡ 2 ⎤\n\
⎢ 2 1 sin (θ)⎥\n\
⎢x , ─, x, y, ───────⎥\n\
⎢ x 2 ⎥\n\
⎣ cos (φ)⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2)
ascii_str = \
"""\
2 \n\
2 1 sin (theta) \n\
(x , -, x, y, -----------)\n\
x 2 \n\
cos (phi) \
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎜ 2 1 sin (θ)⎟\n\
⎜x , ─, x, y, ───────⎟\n\
⎜ x 2 ⎟\n\
⎝ cos (φ)⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x: sin(x)}
expr_2 = Dict({x: sin(x)})
ascii_str = \
"""\
{x: sin(x)}\
"""
ucode_str = \
"""\
{x: sin(x)}\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
expr = {1/x: 1/y, x: sin(x)**2}
expr_2 = Dict({1/x: 1/y, x: sin(x)**2})
ascii_str = \
"""\
1 1 2 \n\
{-: -, x: sin (x)}\n\
x y \
"""
ucode_str = \
"""\
⎧1 1 2 ⎫\n\
⎨─: ─, x: sin (x)⎬\n\
⎩x y ⎭\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
# There used to be a bug with pretty-printing sequences of even height.
expr = [x**2]
ascii_str = \
"""\
2 \n\
[x ]\
"""
ucode_str = \
"""\
⎡ 2⎤\n\
⎣x ⎦\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (x**2,)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎝x ,⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Tuple(x**2)
ascii_str = \
"""\
2 \n\
(x ,)\
"""
ucode_str = \
"""\
⎛ 2 ⎞\n\
⎝x ,⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = {x**2: 1}
expr_2 = Dict({x**2: 1})
ascii_str = \
"""\
2 \n\
{x : 1}\
"""
ucode_str = \
"""\
⎧ 2 ⎫\n\
⎨x : 1⎬\n\
⎩ ⎭\
"""
assert pretty(expr) == ascii_str
assert pretty(expr_2) == ascii_str
assert upretty(expr) == ucode_str
assert upretty(expr_2) == ucode_str
def test_any_object_in_sequence():
# Cf. issue 5306
b1 = Basic()
b2 = Basic(Basic())
expr = [b2, b1]
assert pretty(expr) == "[Basic(Basic()), Basic()]"
assert upretty(expr) == "[Basic(Basic()), Basic()]"
expr = {b2, b1}
assert pretty(expr) == "{Basic(), Basic(Basic())}"
assert upretty(expr) == "{Basic(), Basic(Basic())}"
expr = {b2: b1, b1: b2}
expr2 = Dict({b2: b1, b1: b2})
assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert pretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
assert upretty(
expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}"
def test_print_builtin_set():
assert pretty(set()) == 'set()'
assert upretty(set()) == 'set()'
assert pretty(frozenset()) == 'frozenset()'
assert upretty(frozenset()) == 'frozenset()'
s1 = {1/x, x}
s2 = frozenset(s1)
assert pretty(s1) == \
"""\
1 \n\
{-, x}
x \
"""
assert upretty(s1) == \
"""\
⎧1 ⎫
⎨─, x⎬
⎩x ⎭\
"""
assert pretty(s2) == \
"""\
1 \n\
frozenset({-, x})
x \
"""
assert upretty(s2) == \
"""\
⎛⎧1 ⎫⎞
frozenset⎜⎨─, x⎬⎟
⎝⎩x ⎭⎠\
"""
def test_pretty_sets():
s = FiniteSet
assert pretty(s(*[x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty({x*y, x**2}) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(set(range(1, 13))) == \
"{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
assert pretty(frozenset([x*y, x**2])) == \
"""\
2 \n\
frozenset({x , x*y})\
"""
assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})"
assert pretty(frozenset(range(1, 13))) == \
"frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})"
assert pretty(Range(0, 3, 1)) == '{0, 1, 2}'
ascii_str = '{0, 1, ..., 29}'
ucode_str = '{0, 1, …, 29}'
assert pretty(Range(0, 30, 1)) == ascii_str
assert upretty(Range(0, 30, 1)) == ucode_str
ascii_str = '{30, 29, ..., 2}'
ucode_str = '{30, 29, …, 2}'
assert pretty(Range(30, 1, -1)) == ascii_str
assert upretty(Range(30, 1, -1)) == ucode_str
ascii_str = '{0, 2, ...}'
ucode_str = '{0, 2, …}'
assert pretty(Range(0, oo, 2)) == ascii_str
assert upretty(Range(0, oo, 2)) == ucode_str
ascii_str = '{..., 2, 0}'
ucode_str = '{…, 2, 0}'
assert pretty(Range(oo, -2, -2)) == ascii_str
assert upretty(Range(oo, -2, -2)) == ucode_str
ascii_str = '{-2, -3, ...}'
ucode_str = '{-2, -3, …}'
assert pretty(Range(-2, -oo, -1)) == ascii_str
assert upretty(Range(-2, -oo, -1)) == ucode_str
def test_pretty_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
ascii_str = "SetExpr([1, 3])"
ucode_str = "SetExpr([1, 3])"
assert pretty(se) == ascii_str
assert upretty(se) == ucode_str
def test_pretty_ImageSet():
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}'
ucode_str = '{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}'
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}'
ucode_str = '{x + y | (x, y) ∊ {1, 2, 3} × {3, 4}}'
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
imgset = ImageSet(Lambda(x, x**2), S.Naturals)
ascii_str = \
' 2 \n'\
'{x | x in Naturals}'
ucode_str = '''\
⎧ 2 ⎫\n\
⎨x | x ∊ ℕ⎬\n\
⎩ ⎭'''
assert pretty(imgset) == ascii_str
assert upretty(imgset) == ucode_str
def test_pretty_ConditionSet():
from sympy import ConditionSet
ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}'
ucode_str = '{x | x ∊ ℝ ∧ (sin(x) = 0)}'
assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str
assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str
assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}'
assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet"
assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "∅"
assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}'
def test_pretty_ComplexRegion():
from sympy import ComplexRegion
ucode_str = '{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}'
assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str
ucode_str = '{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}'
assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str
def test_pretty_Union_issue_10414():
a, b = Interval(2, 3), Interval(4, 7)
ucode_str = '[2, 3] ∪ [4, 7]'
ascii_str = '[2, 3] U [4, 7]'
assert upretty(Union(a, b)) == ucode_str
assert pretty(Union(a, b)) == ascii_str
def test_pretty_Intersection_issue_10414():
x, y, z, w = symbols('x, y, z, w')
a, b = Interval(x, y), Interval(z, w)
ucode_str = '[x, y] ∩ [z, w]'
ascii_str = '[x, y] n [z, w]'
assert upretty(Intersection(a, b)) == ucode_str
assert pretty(Intersection(a, b)) == ascii_str
def test_ProductSet_exponent():
ucode_str = ' 1\n[0, 1] '
assert upretty(Interval(0, 1)**1) == ucode_str
ucode_str = ' 2\n[0, 1] '
assert upretty(Interval(0, 1)**2) == ucode_str
def test_ProductSet_parenthesis():
ucode_str = '([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])'
a, b = Interval(2, 3), Interval(4, 7)
assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str
def test_ProductSet_prod_char_issue_10413():
ascii_str = '[2, 3] x [4, 7]'
ucode_str = '[2, 3] × [4, 7]'
a, b = Interval(2, 3), Interval(4, 7)
assert pretty(a*b) == ascii_str
assert upretty(a*b) == ucode_str
def test_pretty_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
ascii_str = '[0, 1, 4, 9, ...]'
ucode_str = '[0, 1, 4, 9, …]'
assert pretty(s1) == ascii_str
assert upretty(s1) == ucode_str
ascii_str = '[1, 2, 1, 2, ...]'
ucode_str = '[1, 2, 1, 2, …]'
assert pretty(s2) == ascii_str
assert upretty(s2) == ucode_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
ascii_str = '[0, 1, 4]'
ucode_str = '[0, 1, 4]'
assert pretty(s3) == ascii_str
assert upretty(s3) == ucode_str
ascii_str = '[1, 2, 1]'
ucode_str = '[1, 2, 1]'
assert pretty(s4) == ascii_str
assert upretty(s4) == ucode_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
ascii_str = '[..., 9, 4, 1, 0]'
ucode_str = '[…, 9, 4, 1, 0]'
assert pretty(s5) == ascii_str
assert upretty(s5) == ucode_str
ascii_str = '[..., 2, 1, 2, 1]'
ucode_str = '[…, 2, 1, 2, 1]'
assert pretty(s6) == ascii_str
assert upretty(s6) == ucode_str
ascii_str = '[1, 3, 5, 11, ...]'
ucode_str = '[1, 3, 5, 11, …]'
assert pretty(SeqAdd(s1, s2)) == ascii_str
assert upretty(SeqAdd(s1, s2)) == ucode_str
ascii_str = '[1, 3, 5]'
ucode_str = '[1, 3, 5]'
assert pretty(SeqAdd(s3, s4)) == ascii_str
assert upretty(SeqAdd(s3, s4)) == ucode_str
ascii_str = '[..., 11, 5, 3, 1]'
ucode_str = '[…, 11, 5, 3, 1]'
assert pretty(SeqAdd(s5, s6)) == ascii_str
assert upretty(SeqAdd(s5, s6)) == ucode_str
ascii_str = '[0, 2, 4, 18, ...]'
ucode_str = '[0, 2, 4, 18, …]'
assert pretty(SeqMul(s1, s2)) == ascii_str
assert upretty(SeqMul(s1, s2)) == ucode_str
ascii_str = '[0, 2, 4]'
ucode_str = '[0, 2, 4]'
assert pretty(SeqMul(s3, s4)) == ascii_str
assert upretty(SeqMul(s3, s4)) == ucode_str
ascii_str = '[..., 18, 4, 2, 0]'
ucode_str = '[…, 18, 4, 2, 0]'
assert pretty(SeqMul(s5, s6)) == ascii_str
assert upretty(SeqMul(s5, s6)) == ucode_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
raises(NotImplementedError, lambda: pretty(s7))
raises(NotImplementedError, lambda: upretty(s7))
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
ascii_str = '[0, b, 4*b]'
ucode_str = '[0, b, 4⋅b]'
assert pretty(s8) == ascii_str
assert upretty(s8) == ucode_str
def test_pretty_FourierSeries():
f = fourier_series(x, (x, -pi, pi))
ascii_str = \
"""\
2*sin(3*x) \n\
2*sin(x) - sin(2*x) + ---------- + ...\n\
3 \
"""
ucode_str = \
"""\
2⋅sin(3⋅x) \n\
2⋅sin(x) - sin(2⋅x) + ────────── + …\n\
3 \
"""
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_FormalPowerSeries():
f = fps(log(1 + x))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -k k \n\
\\ -(-1) *x \n\
/ -----------\n\
/ k \n\
/___, \n\
k = 1 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ -k k \n\
╲ -(-1) ⋅x \n\
╱ ───────────\n\
╱ k \n\
╱ \n\
‾‾‾‾ \n\
k = 1 \
"""
assert pretty(f) == ascii_str
assert upretty(f) == ucode_str
def test_pretty_limits():
expr = Limit(x, x, oo)
ascii_str = \
"""\
lim x\n\
x->oo \
"""
ucode_str = \
"""\
lim x\n\
x─→∞ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x**2, x, 0)
ascii_str = \
"""\
2\n\
lim x \n\
x->0+ \
"""
ucode_str = \
"""\
2\n\
lim x \n\
x─→0⁺ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(1/x, x, 0)
ascii_str = \
"""\
1\n\
lim -\n\
x->0+x\
"""
ucode_str = \
"""\
1\n\
lim ─\n\
x─→0⁺x\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0)
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0+\\ x /\
"""
ucode_str = \
"""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁺⎝ x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x)/x, x, 0, "-")
ascii_str = \
"""\
/sin(x)\\\n\
lim |------|\n\
x->0-\\ x /\
"""
ucode_str = \
"""\
⎛sin(x)⎞\n\
lim ⎜──────⎟\n\
x─→0⁻⎝ x ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x + sin(x), x, 0)
ascii_str = \
"""\
lim (x + sin(x))\n\
x->0+ \
"""
ucode_str = \
"""\
lim (x + sin(x))\n\
x─→0⁺ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x, x, 0)**2
ascii_str = \
"""\
2\n\
/ lim x\\ \n\
\\x->0+ / \
"""
ucode_str = \
"""\
2\n\
⎛ lim x⎞ \n\
⎝x─→0⁺ ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
"""\
⎛ ⎛y⎞⎞\n\
lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = 2*Limit(x*Limit(y/2,y,0), x, 0)
ascii_str = \
"""\
/ /y\\\\\n\
2* lim |x* lim |-||\n\
x->0+\\ y->0+\\2//\
"""
ucode_str = \
"""\
⎛ ⎛y⎞⎞\n\
2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\
x─→0⁺⎝ y─→0⁺⎝2⎠⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Limit(sin(x), x, 0, dir='+-')
ascii_str = \
"""\
lim sin(x)\n\
x->0 \
"""
ucode_str = \
"""\
lim sin(x)\n\
x─→0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_ComplexRootOf():
expr = rootof(x**5 + 11*x - 2, 0)
ascii_str = \
"""\
/ 5 \\\n\
CRootOf\\x + 11*x - 2, 0/\
"""
ucode_str = \
"""\
⎛ 5 ⎞\n\
CRootOf⎝x + 11⋅x - 2, 0⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_RootSum():
expr = RootSum(x**5 + 11*x - 2, auto=False)
ascii_str = \
"""\
/ 5 \\\n\
RootSum\\x + 11*x - 2/\
"""
ucode_str = \
"""\
⎛ 5 ⎞\n\
RootSum⎝x + 11⋅x - 2⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z)))
ascii_str = \
"""\
/ 5 z\\\n\
RootSum\\x + 11*x - 2, z -> e /\
"""
ucode_str = \
"""\
⎛ 5 z⎞\n\
RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_GroebnerBasis():
expr = groebner([], x, y)
ascii_str = \
"""\
GroebnerBasis([], x, y, domain=ZZ, order=lex)\
"""
ucode_str = \
"""\
GroebnerBasis([], x, y, domain=ℤ, order=lex)\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
expr = groebner(F, x, y, order='grlex')
ascii_str = \
"""\
/[ 2 2 ] \\\n\
GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\
"""
ucode_str = \
"""\
⎛⎡ 2 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = expr.fglm('lex')
ascii_str = \
"""\
/[ 2 4 3 2 ] \\\n\
GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\
"""
ucode_str = \
"""\
⎛⎡ 2 4 3 2 ⎤ ⎞\n\
GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_UniversalSet():
assert pretty(S.UniversalSet) == "UniversalSet"
assert upretty(S.UniversalSet) == '𝕌'
def test_pretty_Boolean():
expr = Not(x, evaluate=False)
assert pretty(expr) == "Not(x)"
assert upretty(expr) == "¬x"
expr = And(x, y)
assert pretty(expr) == "And(x, y)"
assert upretty(expr) == "x ∧ y"
expr = Or(x, y)
assert pretty(expr) == "Or(x, y)"
assert upretty(expr) == "x ∨ y"
syms = symbols('a:f')
expr = And(*syms)
assert pretty(expr) == "And(a, b, c, d, e, f)"
assert upretty(expr) == "a ∧ b ∧ c ∧ d ∧ e ∧ f"
expr = Or(*syms)
assert pretty(expr) == "Or(a, b, c, d, e, f)"
assert upretty(expr) == "a ∨ b ∨ c ∨ d ∨ e ∨ f"
expr = Xor(x, y, evaluate=False)
assert pretty(expr) == "Xor(x, y)"
assert upretty(expr) == "x ⊻ y"
expr = Nand(x, y, evaluate=False)
assert pretty(expr) == "Nand(x, y)"
assert upretty(expr) == "x ⊼ y"
expr = Nor(x, y, evaluate=False)
assert pretty(expr) == "Nor(x, y)"
assert upretty(expr) == "x ⊽ y"
expr = Implies(x, y, evaluate=False)
assert pretty(expr) == "Implies(x, y)"
assert upretty(expr) == "x → y"
# don't sort args
expr = Implies(y, x, evaluate=False)
assert pretty(expr) == "Implies(y, x)"
assert upretty(expr) == "y → x"
expr = Equivalent(x, y, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == "x ⇔ y"
expr = Equivalent(y, x, evaluate=False)
assert pretty(expr) == "Equivalent(x, y)"
assert upretty(expr) == "x ⇔ y"
def test_pretty_Domain():
expr = FF(23)
assert pretty(expr) == "GF(23)"
assert upretty(expr) == "ℤ₂₃"
expr = ZZ
assert pretty(expr) == "ZZ"
assert upretty(expr) == "ℤ"
expr = QQ
assert pretty(expr) == "QQ"
assert upretty(expr) == "ℚ"
expr = RR
assert pretty(expr) == "RR"
assert upretty(expr) == "ℝ"
expr = QQ[x]
assert pretty(expr) == "QQ[x]"
assert upretty(expr) == "ℚ[x]"
expr = QQ[x, y]
assert pretty(expr) == "QQ[x, y]"
assert upretty(expr) == "ℚ[x, y]"
expr = ZZ.frac_field(x)
assert pretty(expr) == "ZZ(x)"
assert upretty(expr) == "ℤ(x)"
expr = ZZ.frac_field(x, y)
assert pretty(expr) == "ZZ(x, y)"
assert upretty(expr) == "ℤ(x, y)"
expr = QQ.poly_ring(x, y, order=grlex)
assert pretty(expr) == "QQ[x, y, order=grlex]"
assert upretty(expr) == "ℚ[x, y, order=grlex]"
expr = QQ.poly_ring(x, y, order=ilex)
assert pretty(expr) == "QQ[x, y, order=ilex]"
assert upretty(expr) == "ℚ[x, y, order=ilex]"
def test_pretty_prec():
assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000"
assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3"
assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [
"0.3*x",
"x*0.3"
]
def test_pprint():
import sys
from sympy.core.compatibility import StringIO
fd = StringIO()
sso = sys.stdout
sys.stdout = fd
try:
pprint(pi, use_unicode=False, wrap_line=False)
finally:
sys.stdout = sso
assert fd.getvalue() == 'pi\n'
def test_pretty_class():
"""Test that the printer dispatcher correctly handles classes."""
class C:
pass # C has no .__class__ and this was causing problems
class D:
pass
assert pretty( C ) == str( C )
assert pretty( D ) == str( D )
def test_pretty_no_wrap_line():
huge_expr = 0
for i in range(20):
huge_expr += i*sin(i + x)
assert xpretty(huge_expr ).find('\n') != -1
assert xpretty(huge_expr, wrap_line=False).find('\n') == -1
def test_settings():
raises(TypeError, lambda: pretty(S(4), method="garbage"))
def test_pretty_sum():
from sympy.abc import x, a, b, k, m, n
expr = Sum(k**k, (k, 0, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = 0 \
"""
ucode_str = \
"""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**k, (k, oo, n))
ascii_str = \
"""\
n \n\
___ \n\
\\ ` \n\
\\ k\n\
/ k \n\
/__, \n\
k = oo \
"""
ucode_str = \
"""\
n \n\
___ \n\
╲ \n\
╲ k\n\
╱ k \n\
╱ \n\
‾‾‾ \n\
k = ∞ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n))
ascii_str = \
"""\
n \n\
n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
"""\
n \n\
n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
"""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (
k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo))))
ascii_str = \
"""\
oo \n\
/ \n\
| \n\
| x \n\
| x dx \n\
| \n\
/ \n\
-oo \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
2 2 1 x \n\
k = n + n + x + x + - + - \n\
x n \
"""
ucode_str = \
"""\
∞ \n\
⌠ \n\
⎮ x \n\
⎮ x dx \n\
⌡ \n\
-∞ \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
2 2 1 x \n\
k = n + n + x + x + ─ + ─ \n\
x n \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(k**(
Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x)))
ascii_str = \
"""\
2 2 1 x \n\
n + n + x + x + - + - \n\
x n \n\
______ \n\
\\ ` \n\
\\ oo \n\
\\ / \n\
\\ | \n\
\\ | n \n\
) | x dx\n\
/ | \n\
/ / \n\
/ -oo \n\
/ k \n\
/_____, \n\
k = 0 \
"""
ucode_str = \
"""\
2 2 1 x \n\
n + n + x + x + ─ + ─ \n\
x n \n\
______ \n\
╲ \n\
╲ \n\
╲ ∞ \n\
╲ ⌠ \n\
╲ ⎮ n \n\
╱ ⎮ x dx\n\
╱ ⌡ \n\
╱ -∞ \n\
╱ k \n\
╱ \n\
‾‾‾‾‾‾ \n\
k = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x, (x, 0, oo))
ascii_str = \
"""\
oo \n\
__ \n\
\\ ` \n\
) x\n\
/_, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
___ \n\
╲ \n\
╲ \n\
╱ x\n\
╱ \n\
‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ 2\n\
/ x \n\
/__, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
___ \n\
╲ \n\
╲ 2\n\
╱ x \n\
╱ \n\
‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
___ \n\
\\ ` \n\
\\ x\n\
) -\n\
/ 2\n\
/__, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ \n\
╲ x\n\
╱ ─\n\
╱ 2\n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(x**3/2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 3\n\
\\ x \n\
/ --\n\
/ 2 \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ 3\n\
╲ x \n\
╱ ──\n\
╱ 2 \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum((x**3*y**(x/2))**n, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ n\n\
\\ / x\\ \n\
) | -| \n\
/ | 3 2| \n\
/ \\x *y / \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
_____ \n\
╲ \n\
╲ \n\
╲ n\n\
╲ ⎛ x⎞ \n\
╱ ⎜ ─⎟ \n\
╱ ⎜ 3 2⎟ \n\
╱ ⎝x ⋅y ⎠ \n\
╱ \n\
‾‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/x**2, (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ 1 \n\
\\ --\n\
/ 2\n\
/ x \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ 1 \n\
╲ ──\n\
╱ 2\n\
╱ x \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo))
ascii_str = \
"""\
oo \n\
____ \n\
\\ ` \n\
\\ -a \n\
\\ ---\n\
/ b \n\
/ y \n\
/___, \n\
x = 0 \
"""
ucode_str = \
"""\
∞ \n\
____ \n\
╲ \n\
╲ -a \n\
╲ ───\n\
╱ b \n\
╱ y \n\
╱ \n\
‾‾‾‾ \n\
x = 0 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2))
ascii_str = \
"""\
2 oo \n\
____ ____ \n\
\\ ` \\ ` \n\
\\ \\ -a\n\
\\ \\ --\n\
/ / b \n\
/ / y \n\
/___, /___, \n\
y = 1 x = 0 \
"""
ucode_str = \
"""\
2 ∞ \n\
____ ____ \n\
╲ ╲ \n\
╲ ╲ -a\n\
╲ ╲ ──\n\
╱ ╱ b \n\
╱ ╱ y \n\
╱ ╱ \n\
‾‾‾‾ ‾‾‾‾ \n\
y = 1 x = 0 \
"""
expr = Sum(1/(1 + 1/(
1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k)
ascii_str = \
"""\
1 \n\
1 + - \n\
oo n \n\
_____ _____ \n\
\\ ` \\ ` \n\
\\ \\ / 1 \\ \n\
\\ \\ |1 + ---------| \n\
\\ \\ | 1 | 1 \n\
) ) | 1 + -----| + -----\n\
/ / | 1| 1\n\
/ / | 1 + -| 1 + -\n\
/ / \\ k/ k\n\
/____, /____, \n\
1 k = 111 \n\
k = ----- \n\
m + 1 \
"""
ucode_str = \
"""\
1 \n\
1 + ─ \n\
∞ n \n\
______ ______ \n\
╲ ╲ \n\
╲ ╲ \n\
╲ ╲ ⎛ 1 ⎞ \n\
╲ ╲ ⎜1 + ─────────⎟ \n\
╲ ╲ ⎜ 1 ⎟ 1 \n\
╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\
╱ ╱ ⎜ 1⎟ 1\n\
╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\
╱ ╱ ⎝ k⎠ k\n\
╱ ╱ \n\
‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\
1 k = 111 \n\
k = ───── \n\
m + 1 \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_units():
expr = joule
ascii_str1 = \
"""\
2\n\
kilogram*meter \n\
---------------\n\
2 \n\
second \
"""
unicode_str1 = \
"""\
2\n\
kilogram⋅meter \n\
───────────────\n\
2 \n\
second \
"""
ascii_str2 = \
"""\
2\n\
3*x*y*kilogram*meter \n\
---------------------\n\
2 \n\
second \
"""
unicode_str2 = \
"""\
2\n\
3⋅x⋅y⋅kilogram⋅meter \n\
─────────────────────\n\
2 \n\
second \
"""
from sympy.physics.units import kg, m, s
assert upretty(expr) == "joule"
assert pretty(expr) == "joule"
assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1
assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1
assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2
assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2
def test_pretty_Subs():
f = Function('f')
expr = Subs(f(x), x, ph**2)
ascii_str = \
"""\
(f(x))| 2\n\
|x=phi \
"""
unicode_str = \
"""\
(f(x))│ 2\n\
│x=φ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x), x, 0)
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
\\dx /|x=0\
"""
unicode_str = \
"""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎝dx ⎠│x=0\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2)))
ascii_str = \
"""\
/d \\| \n\
|--(f(x))|| \n\
|dx || \n\
|--------|| \n\
\\ y /|x=0, y=1/2\
"""
unicode_str = \
"""\
⎛d ⎞│ \n\
⎜──(f(x))⎟│ \n\
⎜dx ⎟│ \n\
⎜────────⎟│ \n\
⎝ y ⎠│x=0, y=1/2\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == unicode_str
def test_gammas():
assert upretty(lowergamma(x, y)) == "γ(x, y)"
assert upretty(uppergamma(x, y)) == "Γ(x, y)"
assert xpretty(gamma(x), use_unicode=True) == 'Γ(x)'
assert xpretty(gamma, use_unicode=True) == 'Γ'
assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == 'γ(x)'
assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == 'γ'
def test_beta():
assert xpretty(beta(x,y), use_unicode=True) == 'Β(x, y)'
assert xpretty(beta(x,y), use_unicode=False) == 'B(x, y)'
assert xpretty(beta, use_unicode=True) == 'Β'
assert xpretty(beta, use_unicode=False) == 'B'
mybeta = Function('beta')
assert xpretty(mybeta(x), use_unicode=True) == 'β(x)'
assert xpretty(mybeta(x, y, z), use_unicode=False) == 'beta(x, y, z)'
assert xpretty(mybeta, use_unicode=True) == 'β'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert xpretty(mygamma, use_unicode=True) == r"mygamma"
assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)"
def test_SingularityFunction():
assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == (
"""\
n\n\
<x - y> \
""")
assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == (
"""\
n\n\
<x> \
""")
assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == (
"""\
n\n\
<x - 1> \
""")
assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == (
"""\
n\n\
<x + 1> \
""")
assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == (
"""\
n\n\
<-a + x> \
""")
assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == (
"""\
n\n\
<x - y> \
""")
def test_deltas():
assert xpretty(DiracDelta(x), use_unicode=True) == 'δ(x)'
assert xpretty(DiracDelta(x, 1), use_unicode=True) == \
"""\
(1) \n\
δ (x)\
"""
assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \
"""\
(1) \n\
x⋅δ (x)\
"""
def test_hyper():
expr = hyper((), (), z)
ucode_str = \
"""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ z⎟\n\
0╵ 0 ⎝ │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | z|\n\
0 0 \\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((), (1,), x)
ucode_str = \
"""\
┌─ ⎛ │ ⎞\n\
├─ ⎜ │ x⎟\n\
0╵ 1 ⎝1 │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ / | \\\n\
| | | x|\n\
0 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([2], [1], x)
ucode_str = \
"""\
┌─ ⎛2 │ ⎞\n\
├─ ⎜ │ x⎟\n\
1╵ 1 ⎝1 │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ /2 | \\\n\
| | | x|\n\
1 1 \\1 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x)
ucode_str = \
"""\
⎛ π │ ⎞\n\
┌─ ⎜ ─, -2⋅k │ ⎟\n\
├─ ⎜ 3 │ x⎟\n\
2╵ 4 ⎜ │ ⎟\n\
⎝3, 4, 5, -3 │ ⎠\
"""
ascii_str = \
"""\
\n\
_ / pi | \\\n\
|_ | --, -2*k | |\n\
| | 3 | x|\n\
2 4 | | |\n\
\\3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2)
ucode_str = \
"""\
┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\
├─ ⎜ │ x ⎟\n\
3╵ 4 ⎝3, 4, 5, -3 │ ⎠\
"""
ascii_str = \
"""\
_ \n\
|_ /pi, 2/3, -2*k | 2\\\n\
| | | x |\n\
3 4 \\ 3, 4, 5, -3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
┌─ ⎜1, 2 │ 1 + ─────────⎟\n\
├─ ⎜ │ 1 ⎟\n\
2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
"""
ascii_str = \
"""\
\n\
/ | 1 \\\n\
| | -------------|\n\
_ | | 1 |\n\
|_ |1, 2 | 1 + ---------|\n\
| | | 1 |\n\
2 2 |3, 4 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_meijerg():
expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z)
ucode_str = \
"""\
╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\
"""
ascii_str = \
"""\
__2, 3 /pi, pi, x 1 | \\\n\
/__ | | z|\n\
\\_|4, 5 \\ 0, 1 1, 2, 3 | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2)
ucode_str = \
"""\
⎛ π │ ⎞\n\
╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\
│╶┐ ⎜ 7 │ z ⎟\n\
╰─╯5, 0 ⎜ │ ⎟\n\
⎝ │ ⎠\
"""
ascii_str = \
"""\
/ pi | \\\n\
__0, 2 |1, -- 2, pi, 5 | 2|\n\
/__ | 7 | z |\n\
\\_|5, 0 | | |\n\
\\ | /\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ucode_str = \
"""\
╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\
│╶┐ ⎜ │ z⎟\n\
╰─╯11, 2 ⎝ 1 1 │ ⎠\
"""
ascii_str = \
"""\
__ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\
/__ | | z|\n\
\\_|11, 2 \\ 1 1 | /\
"""
expr = meijerg([1]*10, [1], [1], [1], z)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1))
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
⎜ │ ─────────────⎟\n\
⎜ │ 1 ⎟\n\
╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\
│╶┐ ⎜ │ 1 ⎟\n\
╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\
⎜ │ 1⎟\n\
⎜ │ 1 + ─⎟\n\
⎝ │ x⎠\
"""
ascii_str = \
"""\
/ | 1 \\\n\
| | -------------|\n\
| | 1 |\n\
__1, 2 |1, 2 4, 3 | 1 + ---------|\n\
/__ | | 1 |\n\
\\_|4, 3 | 3 4, 5 | 1 + -----|\n\
| | 1|\n\
| | 1 + -|\n\
\\ | x/\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = Integral(expr, x)
ucode_str = \
"""\
⌠ \n\
⎮ ⎛ │ 1 ⎞ \n\
⎮ ⎜ │ ─────────────⎟ \n\
⎮ ⎜ │ 1 ⎟ \n\
⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\
⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\
⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\
⎮ ⎜ │ 1⎟ \n\
⎮ ⎜ │ 1 + ─⎟ \n\
⎮ ⎝ │ x⎠ \n\
⌡ \
"""
ascii_str = \
"""\
/ \n\
| \n\
| / | 1 \\ \n\
| | | -------------| \n\
| | | 1 | \n\
| __1, 2 |1, 2 4, 3 | 1 + ---------| \n\
| /__ | | 1 | dx\n\
| \\_|4, 3 | 3 4, 5 | 1 + -----| \n\
| | | 1| \n\
| | | 1 + -| \n\
| \\ | x/ \n\
| \n\
/ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
expr = A*B*C**-1
ascii_str = \
"""\
-1\n\
A*B*C \
"""
ucode_str = \
"""\
-1\n\
A⋅B⋅C \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = C**-1*A*B
ascii_str = \
"""\
-1 \n\
C *A*B\
"""
ucode_str = \
"""\
-1 \n\
C ⋅A⋅B\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B
ascii_str = \
"""\
-1 \n\
A*C *B\
"""
ucode_str = \
"""\
-1 \n\
A⋅C ⋅B\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A*C**-1*B/x
ascii_str = \
"""\
-1 \n\
A*C *B\n\
-------\n\
x \
"""
ucode_str = \
"""\
-1 \n\
A⋅C ⋅B\n\
───────\n\
x \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
"""\
⎛√2⋅y ⎞\n\
atan2⎜────, √x⎟\n\
⎝ 20 ⎠\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_geometry():
e = Segment((0, 1), (0, 2))
assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))'
e = Ray((1, 1), angle=4.02*pi)
assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))'
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = "E₁(z)"
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
def test_elliptic_functions():
ascii_str = \
"""\
/ 1 \\\n\
K|-----|\n\
\\z + 1/\
"""
ucode_str = \
"""\
⎛ 1 ⎞\n\
K⎜─────⎟\n\
⎝z + 1⎠\
"""
expr = elliptic_k(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
F|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
F⎜1│─────⎟\n\
⎝ │z + 1⎠\
"""
expr = elliptic_f(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 1 \\\n\
E|-----|\n\
\\z + 1/\
"""
ucode_str = \
"""\
⎛ 1 ⎞\n\
E⎜─────⎟\n\
⎝z + 1⎠\
"""
expr = elliptic_e(1/(z + 1))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ | 1 \\\n\
E|1|-----|\n\
\\ |z + 1/\
"""
ucode_str = \
"""\
⎛ │ 1 ⎞\n\
E⎜1│─────⎟\n\
⎝ │z + 1⎠\
"""
expr = elliptic_e(1, 1/(1 + z))
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ |4\\\n\
Pi|3|-|\n\
\\ |x/\
"""
ucode_str = \
"""\
⎛ │4⎞\n\
Π⎜3│─⎟\n\
⎝ │x⎠\
"""
expr = elliptic_pi(3, 4/x)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
ascii_str = \
"""\
/ 4| \\\n\
Pi|3; -|6|\n\
\\ x| /\
"""
ucode_str = \
"""\
⎛ 4│ ⎞\n\
Π⎜3; ─│6⎟\n\
⎝ x│ ⎠\
"""
expr = elliptic_pi(3, 4/x, 6)
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == "Domain: 0 < x₁ ∧ x₁ < ∞"
D = Die('d1', 6)
assert upretty(where(D > 4)) == 'Domain: d₁ = 5 ∨ d₁ = 6'
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == \
'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ.poly_ring(x, y)
expr = F.convert(x/(x + y))
assert pretty(expr) == "x/(x + y)"
assert upretty(expr) == "x/(x + y)"
expr = R.convert(x + y)
assert pretty(expr) == "x + y"
assert upretty(expr) == "x + y"
def test_issue_6285():
assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 '
assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x '
def test_issue_6359():
assert pretty(Integral(x**2, x)**2) == \
"""\
2
/ / \\ \n\
| | | \n\
| | 2 | \n\
| | x dx| \n\
| | | \n\
\\/ / \
"""
assert upretty(Integral(x**2, x)**2) == \
"""\
2
⎛⌠ ⎞ \n\
⎜⎮ 2 ⎟ \n\
⎜⎮ x dx⎟ \n\
⎝⌡ ⎠ \
"""
assert pretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
/ 1 \\ \n\
| ___ | \n\
| \\ ` | \n\
| \\ 2| \n\
| / x | \n\
| /__, | \n\
\\x = 0 / \
"""
assert upretty(Sum(x**2, (x, 0, 1))**2) == \
"""\
2
⎛ 1 ⎞ \n\
⎜ ___ ⎟ \n\
⎜ ╲ ⎟ \n\
⎜ ╲ 2⎟ \n\
⎜ ╱ x ⎟ \n\
⎜ ╱ ⎟ \n\
⎜ ‾‾‾ ⎟ \n\
⎝x = 0 ⎠ \
"""
assert pretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
/ 2 \\ \n\
|______ | \n\
| | | 2| \n\
| | | x | \n\
| | | | \n\
\\x = 1 / \
"""
assert upretty(Product(x**2, (x, 1, 2))**2) == \
"""\
2
⎛ 2 ⎞ \n\
⎜─┬──┬─ ⎟ \n\
⎜ │ │ 2⎟ \n\
⎜ │ │ x ⎟ \n\
⎜ │ │ ⎟ \n\
⎝x = 1 ⎠ \
"""
f = Function('f')
assert pretty(Derivative(f(x), x)**2) == \
"""\
2
/d \\ \n\
|--(f(x))| \n\
\\dx / \
"""
assert upretty(Derivative(f(x), x)**2) == \
"""\
2
⎛d ⎞ \n\
⎜──(f(x))⎟ \n\
⎝dx ⎠ \
"""
def test_issue_6739():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\\/ x \
"""
ucode_str = \
"""\
1 \n\
──\n\
√x\
"""
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
def test_complicated_symbol_unchanged():
for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]:
assert pretty(Symbol(symb_name)) == symb_name
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram, DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert pretty(A1) == "A1"
assert upretty(A1) == "A₁"
assert pretty(f1) == "f1:A1-->A2"
assert upretty(f1) == "f₁:A₁——▶A₂"
assert pretty(id_A1) == "id:A1-->A1"
assert upretty(id_A1) == "id:A₁——▶A₁"
assert pretty(f2*f1) == "f2*f1:A1-->A3"
assert upretty(f2*f1) == "f₂∘f₁:A₁——▶A₃"
assert pretty(K1) == "K1"
assert upretty(K1) == "K₁"
# Test how diagrams are printed.
d = Diagram()
assert pretty(d) == "EmptySet"
assert upretty(d) == "∅"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}"
assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \
"id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \
"EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \
"EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \
" ==> {f2*f1:A1-->A3: {unique}}"
assert upretty(d) == "{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \
"∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \
" ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}"
grid = DiagramGrid(d)
assert pretty(grid) == "A1 A2\n \nA3 "
assert upretty(grid) == "A₁ A₂\n \nA₃ "
def test_PrettyModules():
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
ucode_str = \
"""\
2\n\
ℚ[x, y] \
"""
ascii_str = \
"""\
2\n\
QQ[x, y] \
"""
assert upretty(F) == ucode_str
assert pretty(F) == ascii_str
ucode_str = \
"""\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
"""
ascii_str = \
"""\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(M) == ucode_str
assert pretty(M) == ascii_str
I = R.ideal(x**2, y)
ucode_str = \
"""\
╱ 2 ╲\n\
╲x , y╱\
"""
ascii_str = \
"""\
2 \n\
<x , y>\
"""
assert upretty(I) == ucode_str
assert pretty(I) == ascii_str
Q = F / M
ucode_str = \
"""\
2 \n\
ℚ[x, y] \n\
─────────────────\n\
╱ ⎡ 2⎤╲\n\
╲[x, y], ⎣1, x ⎦╱\
"""
ascii_str = \
"""\
2 \n\
QQ[x, y] \n\
-----------------\n\
2 \n\
<[x, y], [1, x ]>\
"""
assert upretty(Q) == ucode_str
assert pretty(Q) == ascii_str
ucode_str = \
"""\
╱⎡ 3⎤ ╲\n\
│⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\
│⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\
╲⎣ 2 ⎦ ╱\
"""
ascii_str = \
"""\
3 \n\
x 2 2 \n\
<[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\
2 \
"""
def test_QuotientRing():
R = QQ.old_poly_ring(x)/[x**2 + 1]
ucode_str = \
"""\
ℚ[x] \n\
────────\n\
╱ 2 ╲\n\
╲x + 1╱\
"""
ascii_str = \
"""\
QQ[x] \n\
--------\n\
2 \n\
<x + 1>\
"""
assert upretty(R) == ucode_str
assert pretty(R) == ascii_str
ucode_str = \
"""\
╱ 2 ╲\n\
1 + ╲x + 1╱\
"""
ascii_str = \
"""\
2 \n\
1 + <x + 1>\
"""
assert upretty(R.one) == ucode_str
assert pretty(R.one) == ascii_str
def test_Homomorphism():
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x)
expr = homomorphism(R.free_module(1), R.free_module(1), [0])
ucode_str = \
"""\
1 1\n\
[0] : ℚ[x] ──> ℚ[x] \
"""
ascii_str = \
"""\
1 1\n\
[0] : QQ[x] --> QQ[x] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0])
ucode_str = \
"""\
⎡0 0⎤ 2 2\n\
⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\
⎣0 0⎦ \
"""
ascii_str = \
"""\
[0 0] 2 2\n\
[ ] : QQ[x] --> QQ[x] \n\
[0 0] \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0])
ucode_str = \
"""\
1\n\
1 ℚ[x] \n\
[0] : ℚ[x] ──> ─────\n\
<[x]>\
"""
ascii_str = \
"""\
1\n\
1 QQ[x] \n\
[0] : QQ[x] --> ------\n\
<[x]> \
"""
assert upretty(expr) == ucode_str
assert pretty(expr) == ascii_str
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert pretty(t) == r'Tr(A*B)'
assert upretty(t) == 'Tr(A⋅B)'
def test_pretty_Add():
eq = Mul(-2, x - 2, evaluate=False) + 5
assert pretty(eq) == '5 - 2*(x - 2)'
def test_issue_7179():
assert upretty(Not(Equivalent(x, y))) == 'x ⇎ y'
assert upretty(Not(Implies(x, y))) == 'x ↛ y'
def test_issue_7180():
assert upretty(Equivalent(x, y)) == 'x ⇔ y'
def test_pretty_Complement():
assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals'
assert upretty(S.Reals - S.Naturals) == 'ℝ \\ ℕ'
assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0'
assert upretty(S.Reals - S.Naturals0) == 'ℝ \\ ℕ₀'
def test_pretty_SymmetricDifference():
from sympy import SymmetricDifference, Interval
from sympy.testing.pytest import raises
assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \
evaluate = False)) == '[2, 3] ∆ [3, 5]'
with raises(NotImplementedError):
pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False))
def test_pretty_Contains():
assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)'
assert upretty(Contains(x, S.Integers)) == 'x ∈ ℤ'
def test_issue_8292():
from sympy.core import sympify
e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False)
ucode_str = \
"""\
4 4 \n\
2⋅(x - 1) x + x\n\
- ────────── + ──────\n\
4 x - 1 \n\
(x - 1) \
"""
ascii_str = \
"""\
4 4 \n\
2*(x - 1) x + x\n\
- ---------- + ------\n\
4 x - 1 \n\
(x - 1) \
"""
assert pretty(e) == ascii_str
assert upretty(e) == ucode_str
def test_issue_4335():
y = Function('y')
expr = -y(x).diff(x)
ucode_str = \
"""\
d \n\
-──(y(x))\n\
dx \
"""
ascii_str = \
"""\
d \n\
- --(y(x))\n\
dx \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_8344():
from sympy.core import sympify
e = sympify('2*x*y**2/1**2 + 1', evaluate=False)
ucode_str = \
"""\
2 \n\
2⋅x⋅y \n\
────── + 1\n\
2 \n\
1 \
"""
assert upretty(e) == ucode_str
def test_issue_6324():
x = Pow(2, 3, evaluate=False)
y = Pow(10, -2, evaluate=False)
e = Mul(x, y, evaluate=False)
ucode_str = \
"""\
3\n\
2 \n\
───\n\
2\n\
10 \
"""
assert upretty(e) == ucode_str
def test_issue_7927():
e = sin(x/2)**cos(x/2)
ucode_str = \
"""\
⎛x⎞\n\
cos⎜─⎟\n\
⎝2⎠\n\
⎛ ⎛x⎞⎞ \n\
⎜sin⎜─⎟⎟ \n\
⎝ ⎝2⎠⎠ \
"""
assert upretty(e) == ucode_str
e = sin(x)**(S(11)/13)
ucode_str = \
"""\
11\n\
──\n\
13\n\
(sin(x)) \
"""
assert upretty(e) == ucode_str
def test_issue_6134():
from sympy.abc import lamda, t
phi = Function('phi')
e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1))
ucode_str = \
"""\
1 1 \n\
2 ⌠ ⌠ \n\
λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\
⌡ ⌡ \n\
0 0 \
"""
assert upretty(e) == ucode_str
def test_issue_9877():
ucode_str1 = '(2, 3) ∪ ([1, 2] \\ {x})'
a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x)
assert upretty(Union(a, Complement(b, c))) == ucode_str1
ucode_str2 = '{x} ∩ {y} ∩ ({z} \\ [1, 2])'
d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2)
assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2
def test_issue_13651():
expr1 = c + Mul(-1, a + b, evaluate=False)
assert pretty(expr1) == 'c - (a + b)'
expr2 = c + Mul(-1, a - b + d, evaluate=False)
assert pretty(expr2) == 'c - (a - b + d)'
def test_pretty_primenu():
from sympy.ntheory.factor_ import primenu
ascii_str1 = "nu(n)"
ucode_str1 = "ν(n)"
n = symbols('n', integer=True)
assert pretty(primenu(n)) == ascii_str1
assert upretty(primenu(n)) == ucode_str1
def test_pretty_primeomega():
from sympy.ntheory.factor_ import primeomega
ascii_str1 = "Omega(n)"
ucode_str1 = "Ω(n)"
n = symbols('n', integer=True)
assert pretty(primeomega(n)) == ascii_str1
assert upretty(primeomega(n)) == ucode_str1
def test_pretty_Mod():
from sympy.core import Mod
ascii_str1 = "x mod 7"
ucode_str1 = "x mod 7"
ascii_str2 = "(x + 1) mod 7"
ucode_str2 = "(x + 1) mod 7"
ascii_str3 = "2*x mod 7"
ucode_str3 = "2⋅x mod 7"
ascii_str4 = "(x mod 7) + 1"
ucode_str4 = "(x mod 7) + 1"
ascii_str5 = "2*(x mod 7)"
ucode_str5 = "2⋅(x mod 7)"
x = symbols('x', integer=True)
assert pretty(Mod(x, 7)) == ascii_str1
assert upretty(Mod(x, 7)) == ucode_str1
assert pretty(Mod(x + 1, 7)) == ascii_str2
assert upretty(Mod(x + 1, 7)) == ucode_str2
assert pretty(Mod(2 * x, 7)) == ascii_str3
assert upretty(Mod(2 * x, 7)) == ucode_str3
assert pretty(Mod(x, 7) + 1) == ascii_str4
assert upretty(Mod(x, 7) + 1) == ucode_str4
assert pretty(2 * Mod(x, 7)) == ascii_str5
assert upretty(2 * Mod(x, 7)) == ucode_str5
def test_issue_11801():
assert pretty(Symbol("")) == ""
assert upretty(Symbol("")) == ""
def test_pretty_UnevaluatedExpr():
x = symbols('x')
he = UnevaluatedExpr(1/x)
ucode_str = \
"""\
1\n\
─\n\
x\
"""
assert upretty(he) == ucode_str
ucode_str = \
"""\
2\n\
⎛1⎞ \n\
⎜─⎟ \n\
⎝x⎠ \
"""
assert upretty(he**2) == ucode_str
ucode_str = \
"""\
1\n\
1 + ─\n\
x\
"""
assert upretty(he + 1) == ucode_str
ucode_str = \
('''\
1\n\
x⋅─\n\
x\
''')
assert upretty(x*he) == ucode_str
def test_issue_10472():
M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0]))
ucode_str = \
"""\
⎛⎡0 0⎤ ⎡0⎤⎞
⎜⎢ ⎥, ⎢ ⎥⎟
⎝⎣0 0⎦ ⎣0⎦⎠\
"""
assert upretty(M) == ucode_str
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
ascii_str1 = "A_00"
ucode_str1 = "A₀₀"
assert pretty(A[0, 0]) == ascii_str1
assert upretty(A[0, 0]) == ucode_str1
ascii_str1 = "3*A_00"
ucode_str1 = "3⋅A₀₀"
assert pretty(3*A[0, 0]) == ascii_str1
assert upretty(3*A[0, 0]) == ucode_str1
ascii_str1 = "(-B + A)[0, 0]"
ucode_str1 = "(-B + A)[0, 0]"
F = C[0, 0].subs(C, A - B)
assert pretty(F) == ascii_str1
assert upretty(F) == ucode_str1
def test_issue_12675():
from sympy.vector import CoordSys3D
x, y, t, j = symbols('x y t j')
e = CoordSys3D('e')
ucode_str = \
"""\
⎛ t⎞ \n\
⎜⎛x⎞ ⎟ j_e\n\
⎜⎜─⎟ ⎟ \n\
⎝⎝y⎠ ⎠ \
"""
assert upretty((x/y)**t*e.j) == ucode_str
ucode_str = \
"""\
⎛1⎞ \n\
⎜─⎟ j_e\n\
⎝y⎠ \
"""
assert upretty((1/y)*e.j) == ucode_str
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert pretty(-A*B*C) == "-A*B*C"
assert pretty(A - B) == "-B + A"
assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C"
# issue #14814
x = MatrixSymbol('x', n, n)
y = MatrixSymbol('y*', n, n)
assert pretty(x + y) == "x + y*"
ascii_str = \
"""\
2 \n\
-2*y* -a*x\
"""
assert pretty(-a*x + -2*y*y) == ascii_str
def test_degree_printing():
expr1 = 90*degree
assert pretty(expr1) == '90°'
expr2 = x*degree
assert pretty(expr2) == 'x°'
expr3 = cos(x*degree + 90*degree)
assert pretty(expr3) == 'cos(x° + 90°)'
def test_vector_expr_pretty_printing():
A = CoordSys3D('A')
assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)×((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(x*Cross(A.i, A.j)) == 'x⋅(i_A)×(j_A)'
assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == "∇×((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == "∇⋅((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == "(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)"
assert upretty(Gradient(A.x+3*A.y)) == "∇(x_A + 3⋅y_A)"
assert upretty(Laplacian(A.x+3*A.y)) == "∆(x_A + 3⋅y_A)"
# TODO: add support for ASCII pretty.
def test_pretty_print_tensor_expr():
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = -i
ascii_str = \
"""\
-i\
"""
ucode_str = \
"""\
-i\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)
ascii_str = \
"""\
i\n\
A \n\
\
"""
ucode_str = \
"""\
i\n\
A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i0)
ascii_str = \
"""\
i_0\n\
A \n\
\
"""
ucode_str = \
"""\
i₀\n\
A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(-i)
ascii_str = \
"""\
\n\
A \n\
i\
"""
ucode_str = \
"""\
\n\
A \n\
i\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = -3*A(-i)
ascii_str = \
"""\
\n\
-3*A \n\
i\
"""
ucode_str = \
"""\
\n\
-3⋅A \n\
i\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)
ascii_str = \
"""\
i \n\
H \n\
j\
"""
ucode_str = \
"""\
i \n\
H \n\
j\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -i)
ascii_str = \
"""\
L_0 \n\
H \n\
L_0\
"""
ucode_str = \
"""\
L₀ \n\
H \n\
L₀\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = H(i, -j)*A(j)*B(k)
ascii_str = \
"""\
i L_0 k\n\
H *A *B \n\
L_0 \
"""
ucode_str = \
"""\
i L₀ k\n\
H ⋅A ⋅B \n\
L₀ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (1+x)*A(i)
ascii_str = \
"""\
i\n\
(x + 1)*A \n\
\
"""
ucode_str = \
"""\
i\n\
(x + 1)⋅A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i) + 3*B(i)
ascii_str = \
"""\
i i\n\
3*B + A \n\
\
"""
ucode_str = \
"""\
i i\n\
3⋅B + A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_pretty_print_tensor_partial_deriv():
from sympy.tensor.toperators import PartialDerivative
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k = tensor_indices("i j k", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
expr = PartialDerivative(A(i), A(j))
ascii_str = \
"""\
d / i\\\n\
---|A |\n\
j\\ /\n\
dA \n\
\
"""
ucode_str = \
"""\
∂ ⎛ i⎞\n\
───⎜A ⎟\n\
j⎝ ⎠\n\
∂A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k \\\n\
A *---|H |\n\
j\\ L_0/\n\
dA \n\
\
"""
ucode_str = \
"""\
L₀ ∂ ⎛ k ⎞\n\
A ⋅───⎜H ⎟\n\
j⎝ L₀⎠\n\
∂A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j))
ascii_str = \
"""\
L_0 d / k k \\\n\
A *---|3*H + B *C |\n\
j\\ L_0 L_0/\n\
dA \n\
\
"""
ucode_str = \
"""\
L₀ ∂ ⎛ k k ⎞\n\
A ⋅───⎜3⋅H + B ⋅C ⎟\n\
j⎝ L₀ L₀⎠\n\
∂A \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(j), D(j))
ascii_str = \
"""\
/ i i\\ d / L_0\\\n\
|A + B |*-----|C |\n\
\\ / L_0\\ /\n\
dD \n\
\
"""
ucode_str = \
"""\
⎛ i i⎞ ∂ ⎛ L₀⎞\n\
⎜A + B ⎟⋅────⎜C ⎟\n\
⎝ ⎠ L₀⎝ ⎠\n\
∂D \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j))
ascii_str = \
"""\
/ L_0 L_0\\ d / \\\n\
|A + B |*---|C |\n\
\\ / j\\ L_0/\n\
dD \n\
\
"""
ucode_str = \
"""\
⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\
⎜A + B ⎟⋅───⎜C ⎟\n\
⎝ ⎠ j⎝ L₀⎠\n\
∂D \n\
\
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
ucode_str = """\
2 \n\
∂ ⎛ ⎞\n\
───────⎜A + B ⎟\n\
⎝ i i⎠\n\
∂A ∂A \n\
n j \
"""
assert upretty(expr) == ucode_str
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
ucode_str = """\
2 \n\
∂ ⎛ ⎞\n\
───────⎜3⋅A ⎟\n\
⎝ i⎠\n\
∂A ∂A \n\
n j \
"""
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i:1})
ascii_str = \
"""\
i=1,j\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {i: 1, j: 1})
ascii_str = \
"""\
i=1,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = TensorElement(H(i, j), {j: 1})
ascii_str = \
"""\
i,j=1\n\
H \n\
\
"""
ucode_str = ascii_str
expr = TensorElement(H(-i, j), {-i: 1})
ascii_str = \
"""\
j\n\
H \n\
i=1 \
"""
ucode_str = ascii_str
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_15560():
a = MatrixSymbol('a', 1, 1)
e = pretty(a*(KroneckerProduct(a, a)))
result = 'a*(a x a)'
assert e == result
def test_print_lerchphi():
# Part of issue 6013
a = Symbol('a')
pretty(lerchphi(a, 1, 2))
uresult = 'Φ(a, 1, 2)'
aresult = 'lerchphi(a, 1, 2)'
assert pretty(lerchphi(a, 1, 2)) == aresult
assert upretty(lerchphi(a, 1, 2)) == uresult
def test_issue_15583():
N = mechanics.ReferenceFrame('N')
result = '(n_x, n_y, n_z)'
e = pretty((N.x, N.y, N.z))
assert e == result
def test_matrixSymbolBold():
# Issue 15871
def boldpretty(expr):
return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold")
from sympy import trace
A = MatrixSymbol("A", 2, 2)
assert boldpretty(trace(A)) == 'tr(𝐀)'
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert boldpretty(-A) == '-𝐀'
assert boldpretty(A - A*B - B) == '-𝐁 -𝐀⋅𝐁 + 𝐀'
assert boldpretty(-A*B - A*B*C - B) == '-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂'
A = MatrixSymbol("Addot", 3, 3)
assert boldpretty(A) == '𝐀̈'
omega = MatrixSymbol("omega", 3, 3)
assert boldpretty(omega) == 'ω'
omega = MatrixSymbol("omeganorm", 3, 3)
assert boldpretty(omega) == '‖ω‖'
a = Symbol('alpha')
b = Symbol('b')
c = MatrixSymbol("c", 3, 1)
d = MatrixSymbol("d", 3, 1)
assert boldpretty(a*B*c+b*d) == 'b⋅𝐝 + α⋅𝐁⋅𝐜'
d = MatrixSymbol("delta", 3, 1)
B = MatrixSymbol("Beta", 3, 3)
assert boldpretty(a*B*c+b*d) == 'b⋅δ + α⋅Β⋅𝐜'
A = MatrixSymbol("A_2", 3, 3)
assert boldpretty(A) == '𝐀₂'
def test_center_accent():
assert center_accent('a', '\N{COMBINING TILDE}') == 'ã'
assert center_accent('aa', '\N{COMBINING TILDE}') == 'aã'
assert center_accent('aaa', '\N{COMBINING TILDE}') == 'aãa'
assert center_accent('aaaa', '\N{COMBINING TILDE}') == 'aaãa'
assert center_accent('aaaaa', '\N{COMBINING TILDE}') == 'aaãaa'
assert center_accent('abcdefg', '\N{COMBINING FOUR DOTS ABOVE}') == 'abcd⃜efg'
def test_imaginary_unit():
from sympy import pretty # As it is redefined above
assert pretty(1 + I, use_unicode=False) == '1 + I'
assert pretty(1 + I, use_unicode=True) == '1 + ⅈ'
assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I'
assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == '1 + ⅉ'
raises(TypeError, lambda: pretty(I, imaginary_unit=I))
raises(ValueError, lambda: pretty(I, imaginary_unit="kkk"))
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert pretty(Identity(4)) == 'I'
assert upretty(Identity(4)) == '𝕀'
assert pretty(ZeroMatrix(2, 2)) == '0'
assert upretty(ZeroMatrix(2, 2)) == '𝟘'
assert pretty(OneMatrix(2, 2)) == '1'
assert upretty(OneMatrix(2, 2)) == '𝟙'
def test_pretty_misc_functions():
assert pretty(LambertW(x)) == 'W(x)'
assert upretty(LambertW(x)) == 'W(x)'
assert pretty(LambertW(x, y)) == 'W(x, y)'
assert upretty(LambertW(x, y)) == 'W(x, y)'
assert pretty(airyai(x)) == 'Ai(x)'
assert upretty(airyai(x)) == 'Ai(x)'
assert pretty(airybi(x)) == 'Bi(x)'
assert upretty(airybi(x)) == 'Bi(x)'
assert pretty(airyaiprime(x)) == "Ai'(x)"
assert upretty(airyaiprime(x)) == "Ai'(x)"
assert pretty(airybiprime(x)) == "Bi'(x)"
assert upretty(airybiprime(x)) == "Bi'(x)"
assert pretty(fresnelc(x)) == 'C(x)'
assert upretty(fresnelc(x)) == 'C(x)'
assert pretty(fresnels(x)) == 'S(x)'
assert upretty(fresnels(x)) == 'S(x)'
assert pretty(Heaviside(x)) == 'Heaviside(x)'
assert upretty(Heaviside(x)) == 'θ(x)'
assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)'
assert upretty(Heaviside(x, y)) == 'θ(x, y)'
assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)'
assert upretty(dirichlet_eta(x)) == 'η(x)'
def test_hadamard_power():
m, n, p = symbols('m, n, p', integer=True)
A = MatrixSymbol('A', m, n)
B = MatrixSymbol('B', m, n)
# Testing printer:
expr = hadamard_power(A, n)
ascii_str = \
"""\
.n\n\
A \
"""
ucode_str = \
"""\
∘n\n\
A \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
A \
"""
ucode_str = \
"""\
∘(n + 1)\n\
A \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
expr = hadamard_power(A*B.T, 1+n)
ascii_str = \
"""\
.(n + 1)\n\
/ T\\ \n\
\\A*B / \
"""
ucode_str = \
"""\
∘(n + 1)\n\
⎛ T⎞ \n\
⎝A⋅B ⎠ \
"""
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
def test_issue_17258():
n = Symbol('n', integer=True)
assert pretty(Sum(n, (n, -oo, 1))) == \
' 1 \n'\
' __ \n'\
' \\ ` \n'\
' ) n\n'\
' /_, \n'\
'n = -oo '
assert upretty(Sum(n, (n, -oo, 1))) == \
"""\
1 \n\
___ \n\
╲ \n\
╲ \n\
╱ n\n\
╱ \n\
‾‾‾ \n\
n = -∞ \
"""
def test_is_combining():
line = "v̇_m"
assert [is_combining(sym) for sym in line] == \
[False, True, False, False]
def test_issue_17857():
assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}'
assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
def test_issue_18272():
x = Symbol('x')
n = Symbol('n')
assert upretty(ConditionSet(x, Eq(-x + exp(x), 0), S.Complexes)) == \
'⎧ ⎛ x ⎞⎫\n'\
'⎨x | x ∊ ℂ ∧ ⎝-x + ℯ = 0⎠⎬\n'\
'⎩ ⎭'
assert upretty(ConditionSet(x, Contains(n/2, Interval(0, oo)), FiniteSet(-n/2, n/2))) == \
'⎧ ⎧-n n⎫ ⎛n ⎞⎫\n'\
'⎨x | x ∊ ⎨───, ─⎬ ∧ ⎜─ ∈ [0, ∞)⎟⎬\n'\
'⎩ ⎩ 2 2⎭ ⎝2 ⎠⎭'
assert upretty(ConditionSet(x, Eq(Piecewise((1, x >= 3), (x/2 - 1/2, x >= 2), (1/2, x >= 1),
(x/2, True)) - 1/2, 0), Interval(0, 3))) == \
'⎧ ⎛⎛⎧ 1 for x ≥ 3⎞ ⎞⎫\n'\
'⎪ ⎜⎜⎪ ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪x ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪─ - 0.5 for x ≥ 2⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪2 ⎟ ⎟⎪\n'\
'⎨x | x ∊ [0, 3] ∧ ⎜⎜⎨ ⎟ - 0.5 = 0⎟⎬\n'\
'⎪ ⎜⎜⎪ 0.5 for x ≥ 1⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪ ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪ x ⎟ ⎟⎪\n'\
'⎪ ⎜⎜⎪ ─ otherwise⎟ ⎟⎪\n'\
'⎩ ⎝⎝⎩ 2 ⎠ ⎠⎭'
def test_Str():
from sympy.core.symbol import Str
assert pretty(Str('x')) == 'x'
def test_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert pretty(m) == 'M'
p = Patch('P', m)
assert pretty(p) == "P"
rect = CoordSystem('rect', p, [x, y])
assert pretty(rect) == "rect"
b = BaseScalarField(rect, 0)
assert pretty(b) == "x"
|
0fb3cede01b51b53ae96bb60500ed27ba3b52b2bfc5dcf8401d96614e2364327 | """Test whether all elements of cls.args are instances of Basic. """
# NOTE: keep tests sorted by (module, class name) key. If a class can't
# be instantiated, add it here anyway with @SKIP("abstract class) (see
# e.g. Function).
import os
import re
from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi,
Eq, log, Function, Rational)
from sympy.testing.pytest import XFAIL, SKIP
a, b, c, x, y, z = symbols('a,b,c,x,y,z')
def test_all_classes_are_tested():
this = os.path.split(__file__)[0]
path = os.path.join(this, os.pardir, os.pardir)
sympy_path = os.path.abspath(path)
prefix = os.path.split(sympy_path)[0] + os.sep
re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE)
modules = {}
for root, dirs, files in os.walk(sympy_path):
module = root.replace(prefix, "").replace(os.sep, ".")
for file in files:
if file.startswith(("_", "test_", "bench_")):
continue
if not file.endswith(".py"):
continue
with open(os.path.join(root, file), encoding='utf-8') as f:
text = f.read()
submodule = module + '.' + file[:-3]
names = re_cls.findall(text)
if not names:
continue
try:
mod = __import__(submodule, fromlist=names)
except ImportError:
continue
def is_Basic(name):
cls = getattr(mod, name)
if hasattr(cls, '_sympy_deprecated_func'):
cls = cls._sympy_deprecated_func
return issubclass(cls, Basic)
names = list(filter(is_Basic, names))
if names:
modules[submodule] = names
ns = globals()
failed = []
for module, names in modules.items():
mod = module.replace('.', '__')
for name in names:
test = 'test_' + mod + '__' + name
if test not in ns:
failed.append(module + '.' + name)
assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed)
def _test_args(obj):
all_basic = all(isinstance(arg, Basic) for arg in obj.args)
# Ideally obj.func(*obj.args) would always recreate the object, but for
# now, we only require it for objects with non-empty .args
recreatable = not obj.args or obj.func(*obj.args) == obj
return all_basic and recreatable
def test_sympy__assumptions__assume__AppliedPredicate():
from sympy.assumptions.assume import AppliedPredicate, Predicate
from sympy import Q
assert _test_args(AppliedPredicate(Predicate("test"), 2))
assert _test_args(Q.is_true(True))
def test_sympy__assumptions__assume__Predicate():
from sympy.assumptions.assume import Predicate
assert _test_args(Predicate("test"))
def test_sympy__assumptions__sathandlers__UnevaluatedOnFree():
from sympy.assumptions.sathandlers import UnevaluatedOnFree
from sympy import Q
assert _test_args(UnevaluatedOnFree(Q.positive))
def test_sympy__assumptions__sathandlers__AllArgs():
from sympy.assumptions.sathandlers import AllArgs
from sympy import Q
assert _test_args(AllArgs(Q.positive))
def test_sympy__assumptions__sathandlers__AnyArgs():
from sympy.assumptions.sathandlers import AnyArgs
from sympy import Q
assert _test_args(AnyArgs(Q.positive))
def test_sympy__assumptions__sathandlers__ExactlyOneArg():
from sympy.assumptions.sathandlers import ExactlyOneArg
from sympy import Q
assert _test_args(ExactlyOneArg(Q.positive))
def test_sympy__assumptions__sathandlers__CheckOldAssump():
from sympy.assumptions.sathandlers import CheckOldAssump
from sympy import Q
assert _test_args(CheckOldAssump(Q.positive))
def test_sympy__assumptions__sathandlers__CheckIsPrime():
from sympy.assumptions.sathandlers import CheckIsPrime
from sympy import Q
# Input must be a number
assert _test_args(CheckIsPrime(Q.positive))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AssignmentBase():
from sympy.codegen.ast import AssignmentBase
assert _test_args(AssignmentBase(x, 1))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AugmentedAssignment():
from sympy.codegen.ast import AugmentedAssignment
assert _test_args(AugmentedAssignment(x, 1))
def test_sympy__codegen__ast__AddAugmentedAssignment():
from sympy.codegen.ast import AddAugmentedAssignment
assert _test_args(AddAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__SubAugmentedAssignment():
from sympy.codegen.ast import SubAugmentedAssignment
assert _test_args(SubAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__MulAugmentedAssignment():
from sympy.codegen.ast import MulAugmentedAssignment
assert _test_args(MulAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__DivAugmentedAssignment():
from sympy.codegen.ast import DivAugmentedAssignment
assert _test_args(DivAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__ModAugmentedAssignment():
from sympy.codegen.ast import ModAugmentedAssignment
assert _test_args(ModAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__CodeBlock():
from sympy.codegen.ast import CodeBlock, Assignment
assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2)))
def test_sympy__codegen__ast__For():
from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment
from sympy import Range
assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1))))
def test_sympy__codegen__ast__Token():
from sympy.codegen.ast import Token
assert _test_args(Token())
def test_sympy__codegen__ast__ContinueToken():
from sympy.codegen.ast import ContinueToken
assert _test_args(ContinueToken())
def test_sympy__codegen__ast__BreakToken():
from sympy.codegen.ast import BreakToken
assert _test_args(BreakToken())
def test_sympy__codegen__ast__NoneToken():
from sympy.codegen.ast import NoneToken
assert _test_args(NoneToken())
def test_sympy__codegen__ast__String():
from sympy.codegen.ast import String
assert _test_args(String('foobar'))
def test_sympy__codegen__ast__QuotedString():
from sympy.codegen.ast import QuotedString
assert _test_args(QuotedString('foobar'))
def test_sympy__codegen__ast__Comment():
from sympy.codegen.ast import Comment
assert _test_args(Comment('this is a comment'))
def test_sympy__codegen__ast__Node():
from sympy.codegen.ast import Node
assert _test_args(Node())
assert _test_args(Node(attrs={1, 2, 3}))
def test_sympy__codegen__ast__Type():
from sympy.codegen.ast import Type
assert _test_args(Type('float128'))
def test_sympy__codegen__ast__IntBaseType():
from sympy.codegen.ast import IntBaseType
assert _test_args(IntBaseType('bigint'))
def test_sympy__codegen__ast___SizedIntType():
from sympy.codegen.ast import _SizedIntType
assert _test_args(_SizedIntType('int128', 128))
def test_sympy__codegen__ast__SignedIntType():
from sympy.codegen.ast import SignedIntType
assert _test_args(SignedIntType('int128_with_sign', 128))
def test_sympy__codegen__ast__UnsignedIntType():
from sympy.codegen.ast import UnsignedIntType
assert _test_args(UnsignedIntType('unt128', 128))
def test_sympy__codegen__ast__FloatBaseType():
from sympy.codegen.ast import FloatBaseType
assert _test_args(FloatBaseType('positive_real'))
def test_sympy__codegen__ast__FloatType():
from sympy.codegen.ast import FloatType
assert _test_args(FloatType('float242', 242, nmant=142, nexp=99))
def test_sympy__codegen__ast__ComplexBaseType():
from sympy.codegen.ast import ComplexBaseType
assert _test_args(ComplexBaseType('positive_cmplx'))
def test_sympy__codegen__ast__ComplexType():
from sympy.codegen.ast import ComplexType
assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5))
def test_sympy__codegen__ast__Attribute():
from sympy.codegen.ast import Attribute
assert _test_args(Attribute('noexcept'))
def test_sympy__codegen__ast__Variable():
from sympy.codegen.ast import Variable, Type, value_const
assert _test_args(Variable(x))
assert _test_args(Variable(y, Type('float32'), {value_const}))
assert _test_args(Variable(z, type=Type('float64')))
def test_sympy__codegen__ast__Pointer():
from sympy.codegen.ast import Pointer, Type, pointer_const
assert _test_args(Pointer(x))
assert _test_args(Pointer(y, type=Type('float32')))
assert _test_args(Pointer(z, Type('float64'), {pointer_const}))
def test_sympy__codegen__ast__Declaration():
from sympy.codegen.ast import Declaration, Variable, Type
vx = Variable(x, type=Type('float'))
assert _test_args(Declaration(vx))
def test_sympy__codegen__ast__While():
from sympy.codegen.ast import While, AddAugmentedAssignment
assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Scope():
from sympy.codegen.ast import Scope, AddAugmentedAssignment
assert _test_args(Scope([AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Stream():
from sympy.codegen.ast import Stream
assert _test_args(Stream('stdin'))
def test_sympy__codegen__ast__Print():
from sympy.codegen.ast import Print
assert _test_args(Print([x, y]))
assert _test_args(Print([x, y], "%d %d"))
def test_sympy__codegen__ast__FunctionPrototype():
from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionPrototype(real, 'pwer', [inp_x]))
def test_sympy__codegen__ast__FunctionDefinition():
from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)]))
def test_sympy__codegen__ast__Return():
from sympy.codegen.ast import Return
assert _test_args(Return(x))
def test_sympy__codegen__ast__FunctionCall():
from sympy.codegen.ast import FunctionCall
assert _test_args(FunctionCall('pwer', [x]))
def test_sympy__codegen__ast__Element():
from sympy.codegen.ast import Element
assert _test_args(Element('x', range(3)))
def test_sympy__codegen__cnodes__CommaOperator():
from sympy.codegen.cnodes import CommaOperator
assert _test_args(CommaOperator(1, 2))
def test_sympy__codegen__cnodes__goto():
from sympy.codegen.cnodes import goto
assert _test_args(goto('early_exit'))
def test_sympy__codegen__cnodes__Label():
from sympy.codegen.cnodes import Label
assert _test_args(Label('early_exit'))
def test_sympy__codegen__cnodes__PreDecrement():
from sympy.codegen.cnodes import PreDecrement
assert _test_args(PreDecrement(x))
def test_sympy__codegen__cnodes__PostDecrement():
from sympy.codegen.cnodes import PostDecrement
assert _test_args(PostDecrement(x))
def test_sympy__codegen__cnodes__PreIncrement():
from sympy.codegen.cnodes import PreIncrement
assert _test_args(PreIncrement(x))
def test_sympy__codegen__cnodes__PostIncrement():
from sympy.codegen.cnodes import PostIncrement
assert _test_args(PostIncrement(x))
def test_sympy__codegen__cnodes__struct():
from sympy.codegen.ast import real, Variable
from sympy.codegen.cnodes import struct
assert _test_args(struct(declarations=[
Variable(x, type=real),
Variable(y, type=real)
]))
def test_sympy__codegen__cnodes__union():
from sympy.codegen.ast import float32, int32, Variable
from sympy.codegen.cnodes import union
assert _test_args(union(declarations=[
Variable(x, type=float32),
Variable(y, type=int32)
]))
def test_sympy__codegen__cxxnodes__using():
from sympy.codegen.cxxnodes import using
assert _test_args(using('std::vector'))
assert _test_args(using('std::vector', 'vec'))
def test_sympy__codegen__fnodes__Program():
from sympy.codegen.fnodes import Program
assert _test_args(Program('foobar', []))
def test_sympy__codegen__fnodes__Module():
from sympy.codegen.fnodes import Module
assert _test_args(Module('foobar', [], []))
def test_sympy__codegen__fnodes__Subroutine():
from sympy.codegen.fnodes import Subroutine
x = symbols('x', real=True)
assert _test_args(Subroutine('foo', [x], []))
def test_sympy__codegen__fnodes__GoTo():
from sympy.codegen.fnodes import GoTo
assert _test_args(GoTo([10]))
assert _test_args(GoTo([10, 20], x > 1))
def test_sympy__codegen__fnodes__FortranReturn():
from sympy.codegen.fnodes import FortranReturn
assert _test_args(FortranReturn(10))
def test_sympy__codegen__fnodes__Extent():
from sympy.codegen.fnodes import Extent
assert _test_args(Extent())
assert _test_args(Extent(None))
assert _test_args(Extent(':'))
assert _test_args(Extent(-3, 4))
assert _test_args(Extent(x, y))
def test_sympy__codegen__fnodes__use_rename():
from sympy.codegen.fnodes import use_rename
assert _test_args(use_rename('loc', 'glob'))
def test_sympy__codegen__fnodes__use():
from sympy.codegen.fnodes import use
assert _test_args(use('modfoo', only='bar'))
def test_sympy__codegen__fnodes__SubroutineCall():
from sympy.codegen.fnodes import SubroutineCall
assert _test_args(SubroutineCall('foo', ['bar', 'baz']))
def test_sympy__codegen__fnodes__Do():
from sympy.codegen.fnodes import Do
assert _test_args(Do([], 'i', 1, 42))
def test_sympy__codegen__fnodes__ImpliedDoLoop():
from sympy.codegen.fnodes import ImpliedDoLoop
assert _test_args(ImpliedDoLoop('i', 'i', 1, 42))
def test_sympy__codegen__fnodes__ArrayConstructor():
from sympy.codegen.fnodes import ArrayConstructor
assert _test_args(ArrayConstructor([1, 2, 3]))
from sympy.codegen.fnodes import ImpliedDoLoop
idl = ImpliedDoLoop('i', 'i', 1, 42)
assert _test_args(ArrayConstructor([1, idl, 3]))
def test_sympy__codegen__fnodes__sum_():
from sympy.codegen.fnodes import sum_
assert _test_args(sum_('arr'))
def test_sympy__codegen__fnodes__product_():
from sympy.codegen.fnodes import product_
assert _test_args(product_('arr'))
def test_sympy__codegen__numpy_nodes__logaddexp():
from sympy.codegen.numpy_nodes import logaddexp
assert _test_args(logaddexp(x, y))
def test_sympy__codegen__numpy_nodes__logaddexp2():
from sympy.codegen.numpy_nodes import logaddexp2
assert _test_args(logaddexp2(x, y))
def test_sympy__codegen__scipy_nodes__cosm1():
from sympy.codegen.scipy_nodes import cosm1
assert _test_args(cosm1(x))
@XFAIL
def test_sympy__combinatorics__graycode__GrayCode():
from sympy.combinatorics.graycode import GrayCode
# an integer is given and returned from GrayCode as the arg
assert _test_args(GrayCode(3, start='100'))
assert _test_args(GrayCode(3, rank=1))
def test_sympy__combinatorics__subsets__Subset():
from sympy.combinatorics.subsets import Subset
assert _test_args(Subset([0, 1], [0, 1, 2, 3]))
assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd']))
def test_sympy__combinatorics__permutations__Permutation():
from sympy.combinatorics.permutations import Permutation
assert _test_args(Permutation([0, 1, 2, 3]))
def test_sympy__combinatorics__permutations__AppliedPermutation():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.permutations import AppliedPermutation
p = Permutation([0, 1, 2, 3])
assert _test_args(AppliedPermutation(p, 1))
def test_sympy__combinatorics__perm_groups__PermutationGroup():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
assert _test_args(PermutationGroup([Permutation([0, 1])]))
def test_sympy__combinatorics__polyhedron__Polyhedron():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import Polyhedron
from sympy.abc import w, x, y, z
pgroup = [Permutation([[0, 1, 2], [3]]),
Permutation([[0, 1, 3], [2]]),
Permutation([[0, 2, 3], [1]]),
Permutation([[1, 2, 3], [0]]),
Permutation([[0, 1], [2, 3]]),
Permutation([[0, 2], [1, 3]]),
Permutation([[0, 3], [1, 2]]),
Permutation([[0, 1, 2, 3]])]
corners = [w, x, y, z]
faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)]
assert _test_args(Polyhedron(corners, faces, pgroup))
@XFAIL
def test_sympy__combinatorics__prufer__Prufer():
from sympy.combinatorics.prufer import Prufer
assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4))
def test_sympy__combinatorics__partitions__Partition():
from sympy.combinatorics.partitions import Partition
assert _test_args(Partition([1]))
@XFAIL
def test_sympy__combinatorics__partitions__IntegerPartition():
from sympy.combinatorics.partitions import IntegerPartition
assert _test_args(IntegerPartition([1]))
def test_sympy__concrete__products__Product():
from sympy.concrete.products import Product
assert _test_args(Product(x, (x, 0, 10)))
assert _test_args(Product(x, (x, 0, y), (y, 0, 10)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__ExprWithLimits():
from sympy.concrete.expr_with_limits import ExprWithLimits
assert _test_args(ExprWithLimits(x, (x, 0, 10)))
assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__AddWithLimits():
from sympy.concrete.expr_with_limits import AddWithLimits
assert _test_args(AddWithLimits(x, (x, 0, 10)))
assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits():
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
assert _test_args(ExprWithIntLimits(x, (x, 0, 10)))
assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3)))
def test_sympy__concrete__summations__Sum():
from sympy.concrete.summations import Sum
assert _test_args(Sum(x, (x, 0, 10)))
assert _test_args(Sum(x, (x, 0, y), (y, 0, 10)))
def test_sympy__core__add__Add():
from sympy.core.add import Add
assert _test_args(Add(x, y, z, 2))
def test_sympy__core__basic__Atom():
from sympy.core.basic import Atom
assert _test_args(Atom())
def test_sympy__core__basic__Basic():
from sympy.core.basic import Basic
assert _test_args(Basic())
def test_sympy__core__containers__Dict():
from sympy.core.containers import Dict
assert _test_args(Dict({x: y, y: z}))
def test_sympy__core__containers__Tuple():
from sympy.core.containers import Tuple
assert _test_args(Tuple(x, y, z, 2))
def test_sympy__core__expr__AtomicExpr():
from sympy.core.expr import AtomicExpr
assert _test_args(AtomicExpr())
def test_sympy__core__expr__Expr():
from sympy.core.expr import Expr
assert _test_args(Expr())
def test_sympy__core__expr__UnevaluatedExpr():
from sympy.core.expr import UnevaluatedExpr
from sympy.abc import x
assert _test_args(UnevaluatedExpr(x))
def test_sympy__core__function__Application():
from sympy.core.function import Application
assert _test_args(Application(1, 2, 3))
def test_sympy__core__function__AppliedUndef():
from sympy.core.function import AppliedUndef
assert _test_args(AppliedUndef(1, 2, 3))
def test_sympy__core__function__Derivative():
from sympy.core.function import Derivative
assert _test_args(Derivative(2, x, y, 3))
@SKIP("abstract class")
def test_sympy__core__function__Function():
pass
def test_sympy__core__function__Lambda():
assert _test_args(Lambda((x, y), x + y + z))
def test_sympy__core__function__Subs():
from sympy.core.function import Subs
assert _test_args(Subs(x + y, x, 2))
def test_sympy__core__function__WildFunction():
from sympy.core.function import WildFunction
assert _test_args(WildFunction('f'))
def test_sympy__core__mod__Mod():
from sympy.core.mod import Mod
assert _test_args(Mod(x, 2))
def test_sympy__core__mul__Mul():
from sympy.core.mul import Mul
assert _test_args(Mul(2, x, y, z))
def test_sympy__core__numbers__Catalan():
from sympy.core.numbers import Catalan
assert _test_args(Catalan())
def test_sympy__core__numbers__ComplexInfinity():
from sympy.core.numbers import ComplexInfinity
assert _test_args(ComplexInfinity())
def test_sympy__core__numbers__EulerGamma():
from sympy.core.numbers import EulerGamma
assert _test_args(EulerGamma())
def test_sympy__core__numbers__Exp1():
from sympy.core.numbers import Exp1
assert _test_args(Exp1())
def test_sympy__core__numbers__Float():
from sympy.core.numbers import Float
assert _test_args(Float(1.23))
def test_sympy__core__numbers__GoldenRatio():
from sympy.core.numbers import GoldenRatio
assert _test_args(GoldenRatio())
def test_sympy__core__numbers__TribonacciConstant():
from sympy.core.numbers import TribonacciConstant
assert _test_args(TribonacciConstant())
def test_sympy__core__numbers__Half():
from sympy.core.numbers import Half
assert _test_args(Half())
def test_sympy__core__numbers__ImaginaryUnit():
from sympy.core.numbers import ImaginaryUnit
assert _test_args(ImaginaryUnit())
def test_sympy__core__numbers__Infinity():
from sympy.core.numbers import Infinity
assert _test_args(Infinity())
def test_sympy__core__numbers__Integer():
from sympy.core.numbers import Integer
assert _test_args(Integer(7))
@SKIP("abstract class")
def test_sympy__core__numbers__IntegerConstant():
pass
def test_sympy__core__numbers__NaN():
from sympy.core.numbers import NaN
assert _test_args(NaN())
def test_sympy__core__numbers__NegativeInfinity():
from sympy.core.numbers import NegativeInfinity
assert _test_args(NegativeInfinity())
def test_sympy__core__numbers__NegativeOne():
from sympy.core.numbers import NegativeOne
assert _test_args(NegativeOne())
def test_sympy__core__numbers__Number():
from sympy.core.numbers import Number
assert _test_args(Number(1, 7))
def test_sympy__core__numbers__NumberSymbol():
from sympy.core.numbers import NumberSymbol
assert _test_args(NumberSymbol())
def test_sympy__core__numbers__One():
from sympy.core.numbers import One
assert _test_args(One())
def test_sympy__core__numbers__Pi():
from sympy.core.numbers import Pi
assert _test_args(Pi())
def test_sympy__core__numbers__Rational():
from sympy.core.numbers import Rational
assert _test_args(Rational(1, 7))
@SKIP("abstract class")
def test_sympy__core__numbers__RationalConstant():
pass
def test_sympy__core__numbers__Zero():
from sympy.core.numbers import Zero
assert _test_args(Zero())
@SKIP("abstract class")
def test_sympy__core__operations__AssocOp():
pass
@SKIP("abstract class")
def test_sympy__core__operations__LatticeOp():
pass
def test_sympy__core__power__Pow():
from sympy.core.power import Pow
assert _test_args(Pow(x, 2))
def test_sympy__algebras__quaternion__Quaternion():
from sympy.algebras.quaternion import Quaternion
assert _test_args(Quaternion(x, 1, 2, 3))
def test_sympy__core__relational__Equality():
from sympy.core.relational import Equality
assert _test_args(Equality(x, 2))
def test_sympy__core__relational__GreaterThan():
from sympy.core.relational import GreaterThan
assert _test_args(GreaterThan(x, 2))
def test_sympy__core__relational__LessThan():
from sympy.core.relational import LessThan
assert _test_args(LessThan(x, 2))
@SKIP("abstract class")
def test_sympy__core__relational__Relational():
pass
def test_sympy__core__relational__StrictGreaterThan():
from sympy.core.relational import StrictGreaterThan
assert _test_args(StrictGreaterThan(x, 2))
def test_sympy__core__relational__StrictLessThan():
from sympy.core.relational import StrictLessThan
assert _test_args(StrictLessThan(x, 2))
def test_sympy__core__relational__Unequality():
from sympy.core.relational import Unequality
assert _test_args(Unequality(x, 2))
def test_sympy__sandbox__indexed_integrals__IndexedIntegral():
from sympy.tensor import IndexedBase, Idx
from sympy.sandbox.indexed_integrals import IndexedIntegral
A = IndexedBase('A')
i, j = symbols('i j', integer=True)
a1, a2 = symbols('a1:3', cls=Idx)
assert _test_args(IndexedIntegral(A[a1], A[a2]))
assert _test_args(IndexedIntegral(A[i], A[j]))
def test_sympy__calculus__util__AccumulationBounds():
from sympy.calculus.util import AccumulationBounds
assert _test_args(AccumulationBounds(0, 1))
def test_sympy__sets__ordinals__OmegaPower():
from sympy.sets.ordinals import OmegaPower
assert _test_args(OmegaPower(1, 1))
def test_sympy__sets__ordinals__Ordinal():
from sympy.sets.ordinals import Ordinal, OmegaPower
assert _test_args(Ordinal(OmegaPower(2, 1)))
def test_sympy__sets__ordinals__OrdinalOmega():
from sympy.sets.ordinals import OrdinalOmega
assert _test_args(OrdinalOmega())
def test_sympy__sets__ordinals__OrdinalZero():
from sympy.sets.ordinals import OrdinalZero
assert _test_args(OrdinalZero())
def test_sympy__sets__powerset__PowerSet():
from sympy.sets.powerset import PowerSet
from sympy.core.singleton import S
assert _test_args(PowerSet(S.EmptySet))
def test_sympy__sets__sets__EmptySet():
from sympy.sets.sets import EmptySet
assert _test_args(EmptySet())
def test_sympy__sets__sets__UniversalSet():
from sympy.sets.sets import UniversalSet
assert _test_args(UniversalSet())
def test_sympy__sets__sets__FiniteSet():
from sympy.sets.sets import FiniteSet
assert _test_args(FiniteSet(x, y, z))
def test_sympy__sets__sets__Interval():
from sympy.sets.sets import Interval
assert _test_args(Interval(0, 1))
def test_sympy__sets__sets__ProductSet():
from sympy.sets.sets import ProductSet, Interval
assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1)))
@SKIP("does it make sense to test this?")
def test_sympy__sets__sets__Set():
from sympy.sets.sets import Set
assert _test_args(Set())
def test_sympy__sets__sets__Intersection():
from sympy.sets.sets import Intersection, Interval
from sympy.core.symbol import Symbol
x = Symbol('x')
y = Symbol('y')
S = Intersection(Interval(0, x), Interval(y, 1))
assert isinstance(S, Intersection)
assert _test_args(S)
def test_sympy__sets__sets__Union():
from sympy.sets.sets import Union, Interval
assert _test_args(Union(Interval(0, 1), Interval(2, 3)))
def test_sympy__sets__sets__Complement():
from sympy.sets.sets import Complement
assert _test_args(Complement(Interval(0, 2), Interval(0, 1)))
def test_sympy__sets__sets__SymmetricDifference():
from sympy.sets.sets import FiniteSet, SymmetricDifference
assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__sets__sets__DisjointUnion():
from sympy.sets.sets import FiniteSet, DisjointUnion
assert _test_args(DisjointUnion(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__core__trace__Tr():
from sympy.core.trace import Tr
a, b = symbols('a b')
assert _test_args(Tr(a + b))
def test_sympy__sets__setexpr__SetExpr():
from sympy.sets.setexpr import SetExpr
assert _test_args(SetExpr(Interval(0, 1)))
def test_sympy__sets__fancysets__Rationals():
from sympy.sets.fancysets import Rationals
assert _test_args(Rationals())
def test_sympy__sets__fancysets__Naturals():
from sympy.sets.fancysets import Naturals
assert _test_args(Naturals())
def test_sympy__sets__fancysets__Naturals0():
from sympy.sets.fancysets import Naturals0
assert _test_args(Naturals0())
def test_sympy__sets__fancysets__Integers():
from sympy.sets.fancysets import Integers
assert _test_args(Integers())
def test_sympy__sets__fancysets__Reals():
from sympy.sets.fancysets import Reals
assert _test_args(Reals())
def test_sympy__sets__fancysets__Complexes():
from sympy.sets.fancysets import Complexes
assert _test_args(Complexes())
def test_sympy__sets__fancysets__ComplexRegion():
from sympy.sets.fancysets import ComplexRegion
from sympy import S
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
theta = Interval(0, 2*S.Pi)
assert _test_args(ComplexRegion(a*b))
assert _test_args(ComplexRegion(a*theta, polar=True))
def test_sympy__sets__fancysets__CartesianComplexRegion():
from sympy.sets.fancysets import CartesianComplexRegion
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
assert _test_args(CartesianComplexRegion(a*b))
def test_sympy__sets__fancysets__PolarComplexRegion():
from sympy.sets.fancysets import PolarComplexRegion
from sympy import S
from sympy.sets import Interval
a = Interval(0, 1)
theta = Interval(0, 2*S.Pi)
assert _test_args(PolarComplexRegion(a*theta))
def test_sympy__sets__fancysets__ImageSet():
from sympy.sets.fancysets import ImageSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals))
def test_sympy__sets__fancysets__Range():
from sympy.sets.fancysets import Range
assert _test_args(Range(1, 5, 1))
def test_sympy__sets__conditionset__ConditionSet():
from sympy.sets.conditionset import ConditionSet
from sympy import S, Symbol
x = Symbol('x')
assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals))
def test_sympy__sets__contains__Contains():
from sympy.sets.fancysets import Range
from sympy.sets.contains import Contains
assert _test_args(Contains(x, Range(0, 10, 2)))
# STATS
from sympy.stats.crv_types import NormalDistribution
nd = NormalDistribution(0, 1)
from sympy.stats.frv_types import DieDistribution
die = DieDistribution(6)
def test_sympy__stats__crv__ContinuousDomain():
from sympy.stats.crv import ContinuousDomain
assert _test_args(ContinuousDomain({x}, Interval(-oo, oo)))
def test_sympy__stats__crv__SingleContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain
assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo)))
def test_sympy__stats__crv__ProductContinuousDomain():
from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
E = SingleContinuousDomain(y, Interval(0, oo))
assert _test_args(ProductContinuousDomain(D, E))
def test_sympy__stats__crv__ConditionalContinuousDomain():
from sympy.stats.crv import (SingleContinuousDomain,
ConditionalContinuousDomain)
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ConditionalContinuousDomain(D, x > 0))
def test_sympy__stats__crv__ContinuousPSpace():
from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ContinuousPSpace(D, nd))
def test_sympy__stats__crv__SingleContinuousPSpace():
from sympy.stats.crv import SingleContinuousPSpace
assert _test_args(SingleContinuousPSpace(x, nd))
@SKIP("abstract class")
def test_sympy__stats__crv__SingleContinuousDistribution():
pass
def test_sympy__stats__drv__SingleDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain
assert _test_args(SingleDiscreteDomain(x, S.Naturals))
def test_sympy__stats__drv__ProductDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals)
Y = SingleDiscreteDomain(y, S.Integers)
assert _test_args(ProductDiscreteDomain(X, Y))
def test_sympy__stats__drv__SingleDiscretePSpace():
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1)))
def test_sympy__stats__drv__DiscretePSpace():
from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain
density = Lambda(x, 2**(-x))
domain = SingleDiscreteDomain(x, S.Naturals)
assert _test_args(DiscretePSpace(domain, density))
def test_sympy__stats__drv__ConditionalDiscreteDomain():
from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals0)
assert _test_args(ConditionalDiscreteDomain(X, x > 2))
def test_sympy__stats__joint_rv__JointPSpace():
from sympy.stats.joint_rv import JointPSpace, JointDistribution
assert _test_args(JointPSpace('X', JointDistribution(1)))
def test_sympy__stats__joint_rv__JointRandomSymbol():
from sympy.stats.joint_rv import JointRandomSymbol
assert _test_args(JointRandomSymbol(x))
def test_sympy__stats__joint_rv_types__JointDistributionHandmade():
from sympy import Indexed
from sympy.stats.joint_rv_types import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2))
def test_sympy__stats__joint_rv__MarginalDistribution():
from sympy.stats.rv import RandomSymbol
from sympy.stats.joint_rv import MarginalDistribution
r = RandomSymbol(S('r'))
assert _test_args(MarginalDistribution(r, (r,)))
def test_sympy__stats__compound_rv__CompoundDistribution():
from sympy.stats.compound_rv import CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution, Poisson
r = Poisson('r', 10)
assert _test_args(CompoundDistribution(PoissonDistribution(r)))
def test_sympy__stats__compound_rv__CompoundPSpace():
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution, Poisson
r = Poisson('r', 5)
C = CompoundDistribution(PoissonDistribution(r))
assert _test_args(CompoundPSpace('C', C))
@SKIP("abstract class")
def test_sympy__stats__drv__SingleDiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDomain():
pass
def test_sympy__stats__rv__RandomDomain():
from sympy.stats.rv import RandomDomain
from sympy.sets.sets import FiniteSet
assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__SingleDomain():
from sympy.stats.rv import SingleDomain
from sympy.sets.sets import FiniteSet
assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__ConditionalDomain():
from sympy.stats.rv import ConditionalDomain, RandomDomain
from sympy.sets.sets import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2))
assert _test_args(ConditionalDomain(D, x > 1))
def test_sympy__stats__rv__MatrixDomain():
from sympy.stats.rv import MatrixDomain
from sympy.matrices import MatrixSet
from sympy import S
assert _test_args(MatrixDomain(x, MatrixSet(2, 2, S.Reals)))
def test_sympy__stats__rv__PSpace():
from sympy.stats.rv import PSpace, RandomDomain
from sympy import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6))
assert _test_args(PSpace(D, die))
@SKIP("abstract Class")
def test_sympy__stats__rv__SinglePSpace():
pass
def test_sympy__stats__rv__RandomSymbol():
from sympy.stats.rv import RandomSymbol
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
assert _test_args(RandomSymbol(x, A))
@SKIP("abstract Class")
def test_sympy__stats__rv__ProductPSpace():
pass
def test_sympy__stats__rv__IndependentProductPSpace():
from sympy.stats.rv import IndependentProductPSpace
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
B = SingleContinuousPSpace(y, nd)
assert _test_args(IndependentProductPSpace(A, B))
def test_sympy__stats__rv__ProductDomain():
from sympy.stats.rv import ProductDomain, SingleDomain
D = SingleDomain(x, Interval(-oo, oo))
E = SingleDomain(y, Interval(0, oo))
assert _test_args(ProductDomain(D, E))
def test_sympy__stats__symbolic_probability__Probability():
from sympy.stats.symbolic_probability import Probability
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Probability(X > 0))
def test_sympy__stats__symbolic_probability__Expectation():
from sympy.stats.symbolic_probability import Expectation
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Expectation(X > 0))
def test_sympy__stats__symbolic_probability__Covariance():
from sympy.stats.symbolic_probability import Covariance
from sympy.stats import Normal
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 3)
assert _test_args(Covariance(X, Y))
def test_sympy__stats__symbolic_probability__Variance():
from sympy.stats.symbolic_probability import Variance
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Variance(X))
def test_sympy__stats__symbolic_probability__Moment():
from sympy.stats.symbolic_probability import Moment
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Moment(X, 3, 2, X > 3))
def test_sympy__stats__symbolic_probability__CentralMoment():
from sympy.stats.symbolic_probability import CentralMoment
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(CentralMoment(X, 2, X > 1))
def test_sympy__stats__frv_types__DiscreteUniformDistribution():
from sympy.stats.frv_types import DiscreteUniformDistribution
from sympy.core.containers import Tuple
assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6)))))
def test_sympy__stats__frv_types__DieDistribution():
assert _test_args(die)
def test_sympy__stats__frv_types__BernoulliDistribution():
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(BernoulliDistribution(S.Half, 0, 1))
def test_sympy__stats__frv_types__BinomialDistribution():
from sympy.stats.frv_types import BinomialDistribution
assert _test_args(BinomialDistribution(5, S.Half, 1, 0))
def test_sympy__stats__frv_types__BetaBinomialDistribution():
from sympy.stats.frv_types import BetaBinomialDistribution
assert _test_args(BetaBinomialDistribution(5, 1, 1))
def test_sympy__stats__frv_types__HypergeometricDistribution():
from sympy.stats.frv_types import HypergeometricDistribution
assert _test_args(HypergeometricDistribution(10, 5, 3))
def test_sympy__stats__frv_types__RademacherDistribution():
from sympy.stats.frv_types import RademacherDistribution
assert _test_args(RademacherDistribution())
def test_sympy__stats__frv__FiniteDomain():
from sympy.stats.frv import FiniteDomain
assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2
def test_sympy__stats__frv__SingleFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain
assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2
def test_sympy__stats__frv__ProductFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
yd = SingleFiniteDomain(y, {1, 2})
assert _test_args(ProductFiniteDomain(xd, yd))
def test_sympy__stats__frv__ConditionalFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(ConditionalFiniteDomain(xd, x > 1))
def test_sympy__stats__frv__FinitePSpace():
from sympy.stats.frv import FinitePSpace, SingleFiniteDomain
xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
def test_sympy__stats__frv__SingleFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace
from sympy import Symbol
assert _test_args(SingleFinitePSpace(Symbol('x'), die))
def test_sympy__stats__frv__ProductFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace
from sympy import Symbol
xp = SingleFinitePSpace(Symbol('x'), die)
yp = SingleFinitePSpace(Symbol('y'), die)
assert _test_args(ProductFinitePSpace(xp, yp))
@SKIP("abstract class")
def test_sympy__stats__frv__SingleFiniteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__ContinuousDistribution():
pass
def test_sympy__stats__frv_types__FiniteDistributionHandmade():
from sympy.stats.frv_types import FiniteDistributionHandmade
from sympy import Dict
assert _test_args(FiniteDistributionHandmade(Dict({1: 1})))
def test_sympy__stats__crv_types__ContinuousDistributionHandmade():
from sympy.stats.crv_types import ContinuousDistributionHandmade
from sympy import Interval, Lambda
from sympy.abc import x
assert _test_args(ContinuousDistributionHandmade(Lambda(x, 2*x),
Interval(0, 1)))
def test_sympy__stats__drv_types__DiscreteDistributionHandmade():
from sympy.stats.drv_types import DiscreteDistributionHandmade
from sympy import Lambda, FiniteSet
from sympy.abc import x
assert _test_args(DiscreteDistributionHandmade(Lambda(x, Rational(1, 10)),
FiniteSet(*range(10))))
def test_sympy__stats__rv__Density():
from sympy.stats.rv import Density
from sympy.stats.crv_types import Normal
assert _test_args(Density(Normal('x', 0, 1)))
def test_sympy__stats__crv_types__ArcsinDistribution():
from sympy.stats.crv_types import ArcsinDistribution
assert _test_args(ArcsinDistribution(0, 1))
def test_sympy__stats__crv_types__BeniniDistribution():
from sympy.stats.crv_types import BeniniDistribution
assert _test_args(BeniniDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaDistribution():
from sympy.stats.crv_types import BetaDistribution
assert _test_args(BetaDistribution(1, 1))
def test_sympy__stats__crv_types__BetaNoncentralDistribution():
from sympy.stats.crv_types import BetaNoncentralDistribution
assert _test_args(BetaNoncentralDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaPrimeDistribution():
from sympy.stats.crv_types import BetaPrimeDistribution
assert _test_args(BetaPrimeDistribution(1, 1))
def test_sympy__stats__crv_types__BoundedParetoDistribution():
from sympy.stats.crv_types import BoundedParetoDistribution
assert _test_args(BoundedParetoDistribution(1, 1, 2))
def test_sympy__stats__crv_types__CauchyDistribution():
from sympy.stats.crv_types import CauchyDistribution
assert _test_args(CauchyDistribution(0, 1))
def test_sympy__stats__crv_types__ChiDistribution():
from sympy.stats.crv_types import ChiDistribution
assert _test_args(ChiDistribution(1))
def test_sympy__stats__crv_types__ChiNoncentralDistribution():
from sympy.stats.crv_types import ChiNoncentralDistribution
assert _test_args(ChiNoncentralDistribution(1,1))
def test_sympy__stats__crv_types__ChiSquaredDistribution():
from sympy.stats.crv_types import ChiSquaredDistribution
assert _test_args(ChiSquaredDistribution(1))
def test_sympy__stats__crv_types__DagumDistribution():
from sympy.stats.crv_types import DagumDistribution
assert _test_args(DagumDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExGaussianDistribution():
from sympy.stats.crv_types import ExGaussianDistribution
assert _test_args(ExGaussianDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExponentialDistribution():
from sympy.stats.crv_types import ExponentialDistribution
assert _test_args(ExponentialDistribution(1))
def test_sympy__stats__crv_types__ExponentialPowerDistribution():
from sympy.stats.crv_types import ExponentialPowerDistribution
assert _test_args(ExponentialPowerDistribution(0, 1, 1))
def test_sympy__stats__crv_types__FDistributionDistribution():
from sympy.stats.crv_types import FDistributionDistribution
assert _test_args(FDistributionDistribution(1, 1))
def test_sympy__stats__crv_types__FisherZDistribution():
from sympy.stats.crv_types import FisherZDistribution
assert _test_args(FisherZDistribution(1, 1))
def test_sympy__stats__crv_types__FrechetDistribution():
from sympy.stats.crv_types import FrechetDistribution
assert _test_args(FrechetDistribution(1, 1, 1))
def test_sympy__stats__crv_types__GammaInverseDistribution():
from sympy.stats.crv_types import GammaInverseDistribution
assert _test_args(GammaInverseDistribution(1, 1))
def test_sympy__stats__crv_types__GammaDistribution():
from sympy.stats.crv_types import GammaDistribution
assert _test_args(GammaDistribution(1, 1))
def test_sympy__stats__crv_types__GumbelDistribution():
from sympy.stats.crv_types import GumbelDistribution
assert _test_args(GumbelDistribution(1, 1, False))
def test_sympy__stats__crv_types__GompertzDistribution():
from sympy.stats.crv_types import GompertzDistribution
assert _test_args(GompertzDistribution(1, 1))
def test_sympy__stats__crv_types__KumaraswamyDistribution():
from sympy.stats.crv_types import KumaraswamyDistribution
assert _test_args(KumaraswamyDistribution(1, 1))
def test_sympy__stats__crv_types__LaplaceDistribution():
from sympy.stats.crv_types import LaplaceDistribution
assert _test_args(LaplaceDistribution(0, 1))
def test_sympy__stats__crv_types__LevyDistribution():
from sympy.stats.crv_types import LevyDistribution
assert _test_args(LevyDistribution(0, 1))
def test_sympy__stats__crv_types__LogisticDistribution():
from sympy.stats.crv_types import LogisticDistribution
assert _test_args(LogisticDistribution(0, 1))
def test_sympy__stats__crv_types__LogLogisticDistribution():
from sympy.stats.crv_types import LogLogisticDistribution
assert _test_args(LogLogisticDistribution(1, 1))
def test_sympy__stats__crv_types__LogNormalDistribution():
from sympy.stats.crv_types import LogNormalDistribution
assert _test_args(LogNormalDistribution(0, 1))
def test_sympy__stats__crv_types__LomaxDistribution():
from sympy.stats.crv_types import LomaxDistribution
assert _test_args(LomaxDistribution(1, 2))
def test_sympy__stats__crv_types__MaxwellDistribution():
from sympy.stats.crv_types import MaxwellDistribution
assert _test_args(MaxwellDistribution(1))
def test_sympy__stats__crv_types__MoyalDistribution():
from sympy.stats.crv_types import MoyalDistribution
assert _test_args(MoyalDistribution(1,2))
def test_sympy__stats__crv_types__NakagamiDistribution():
from sympy.stats.crv_types import NakagamiDistribution
assert _test_args(NakagamiDistribution(1, 1))
def test_sympy__stats__crv_types__NormalDistribution():
from sympy.stats.crv_types import NormalDistribution
assert _test_args(NormalDistribution(0, 1))
def test_sympy__stats__crv_types__GaussianInverseDistribution():
from sympy.stats.crv_types import GaussianInverseDistribution
assert _test_args(GaussianInverseDistribution(1, 1))
def test_sympy__stats__crv_types__ParetoDistribution():
from sympy.stats.crv_types import ParetoDistribution
assert _test_args(ParetoDistribution(1, 1))
def test_sympy__stats__crv_types__PowerFunctionDistribution():
from sympy.stats.crv_types import PowerFunctionDistribution
assert _test_args(PowerFunctionDistribution(2,0,1))
def test_sympy__stats__crv_types__QuadraticUDistribution():
from sympy.stats.crv_types import QuadraticUDistribution
assert _test_args(QuadraticUDistribution(1, 2))
def test_sympy__stats__crv_types__RaisedCosineDistribution():
from sympy.stats.crv_types import RaisedCosineDistribution
assert _test_args(RaisedCosineDistribution(1, 1))
def test_sympy__stats__crv_types__RayleighDistribution():
from sympy.stats.crv_types import RayleighDistribution
assert _test_args(RayleighDistribution(1))
def test_sympy__stats__crv_types__ReciprocalDistribution():
from sympy.stats.crv_types import ReciprocalDistribution
assert _test_args(ReciprocalDistribution(5, 30))
def test_sympy__stats__crv_types__ShiftedGompertzDistribution():
from sympy.stats.crv_types import ShiftedGompertzDistribution
assert _test_args(ShiftedGompertzDistribution(1, 1))
def test_sympy__stats__crv_types__StudentTDistribution():
from sympy.stats.crv_types import StudentTDistribution
assert _test_args(StudentTDistribution(1))
def test_sympy__stats__crv_types__TrapezoidalDistribution():
from sympy.stats.crv_types import TrapezoidalDistribution
assert _test_args(TrapezoidalDistribution(1, 2, 3, 4))
def test_sympy__stats__crv_types__TriangularDistribution():
from sympy.stats.crv_types import TriangularDistribution
assert _test_args(TriangularDistribution(-1, 0, 1))
def test_sympy__stats__crv_types__UniformDistribution():
from sympy.stats.crv_types import UniformDistribution
assert _test_args(UniformDistribution(0, 1))
def test_sympy__stats__crv_types__UniformSumDistribution():
from sympy.stats.crv_types import UniformSumDistribution
assert _test_args(UniformSumDistribution(1))
def test_sympy__stats__crv_types__VonMisesDistribution():
from sympy.stats.crv_types import VonMisesDistribution
assert _test_args(VonMisesDistribution(1, 1))
def test_sympy__stats__crv_types__WeibullDistribution():
from sympy.stats.crv_types import WeibullDistribution
assert _test_args(WeibullDistribution(1, 1))
def test_sympy__stats__crv_types__WignerSemicircleDistribution():
from sympy.stats.crv_types import WignerSemicircleDistribution
assert _test_args(WignerSemicircleDistribution(1))
def test_sympy__stats__drv_types__GeometricDistribution():
from sympy.stats.drv_types import GeometricDistribution
assert _test_args(GeometricDistribution(.5))
def test_sympy__stats__drv_types__HermiteDistribution():
from sympy.stats.drv_types import HermiteDistribution
assert _test_args(HermiteDistribution(1, 2))
def test_sympy__stats__drv_types__LogarithmicDistribution():
from sympy.stats.drv_types import LogarithmicDistribution
assert _test_args(LogarithmicDistribution(.5))
def test_sympy__stats__drv_types__NegativeBinomialDistribution():
from sympy.stats.drv_types import NegativeBinomialDistribution
assert _test_args(NegativeBinomialDistribution(.5, .5))
def test_sympy__stats__drv_types__PoissonDistribution():
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(PoissonDistribution(1))
def test_sympy__stats__drv_types__SkellamDistribution():
from sympy.stats.drv_types import SkellamDistribution
assert _test_args(SkellamDistribution(1, 1))
def test_sympy__stats__drv_types__YuleSimonDistribution():
from sympy.stats.drv_types import YuleSimonDistribution
assert _test_args(YuleSimonDistribution(.5))
def test_sympy__stats__drv_types__ZetaDistribution():
from sympy.stats.drv_types import ZetaDistribution
assert _test_args(ZetaDistribution(1.5))
def test_sympy__stats__joint_rv__JointDistribution():
from sympy.stats.joint_rv import JointDistribution
assert _test_args(JointDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution():
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
assert _test_args(
MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution():
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateTDistribution():
from sympy.stats.joint_rv_types import MultivariateTDistribution
assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1))
def test_sympy__stats__joint_rv_types__NormalGammaDistribution():
from sympy.stats.joint_rv_types import NormalGammaDistribution
assert _test_args(NormalGammaDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution():
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution
v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu))
def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution():
from sympy.stats.joint_rv_types import MultivariateBetaDistribution
assert _test_args(MultivariateBetaDistribution([1, 2, 3]))
def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution():
from sympy.stats.joint_rv_types import MultivariateEwensDistribution
assert _test_args(MultivariateEwensDistribution(5, 1))
def test_sympy__stats__joint_rv_types__MultinomialDistribution():
from sympy.stats.joint_rv_types import MultinomialDistribution
assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution():
from sympy.stats.joint_rv_types import NegativeMultinomialDistribution
assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__rv__RandomIndexedSymbol():
from sympy.stats.rv import RandomIndexedSymbol, pspace
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
X = DiscreteMarkovChain("X")
assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0])))
def test_sympy__stats__rv__RandomMatrixSymbol():
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.random_matrix import RandomMatrixPSpace
pspace = RandomMatrixPSpace('P')
assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace))
def test_sympy__stats__stochastic_process__StochasticPSpace():
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.stochastic_process_types import StochasticProcess
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0)))
def test_sympy__stats__stochastic_process_types__StochasticProcess():
from sympy.stats.stochastic_process_types import StochasticProcess
assert _test_args(StochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__MarkovProcess():
from sympy.stats.stochastic_process_types import MarkovProcess
assert _test_args(MarkovProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess():
from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess
assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess():
from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess
assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__TransitionMatrixOf():
from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain
from sympy import MatrixSymbol
DMC = DiscreteMarkovChain("Y")
assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf():
from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain
from sympy import MatrixSymbol
DMC = ContinuousMarkovChain("Y")
assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf():
from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain
DMC = DiscreteMarkovChain("Y")
assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2]))
def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain():
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
from sympy import MatrixSymbol
assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain():
from sympy.stats.stochastic_process_types import ContinuousMarkovChain
from sympy import MatrixSymbol
assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__BernoulliProcess():
from sympy.stats.stochastic_process_types import BernoulliProcess
assert _test_args(BernoulliProcess("B", 0.5, 1, 0))
def test_sympy__stats__stochastic_process_types__CountingProcess():
from sympy.stats.stochastic_process_types import CountingProcess
assert _test_args(CountingProcess("C"))
def test_sympy__stats__stochastic_process_types__PoissonProcess():
from sympy.stats.stochastic_process_types import PoissonProcess
assert _test_args(PoissonProcess("X", 2))
def test_sympy__stats__stochastic_process_types__WienerProcess():
from sympy.stats.stochastic_process_types import WienerProcess
assert _test_args(WienerProcess("X"))
def test_sympy__stats__stochastic_process_types__GammaProcess():
from sympy.stats.stochastic_process_types import GammaProcess
assert _test_args(GammaProcess("X", 1, 2))
def test_sympy__stats__random_matrix__RandomMatrixPSpace():
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel
model = RandomMatrixEnsembleModel('R', 3)
assert _test_args(RandomMatrixPSpace('P', model=model))
def test_sympy__stats__random_matrix_models__RandomMatrixEnsembleModel():
from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel
assert _test_args(RandomMatrixEnsembleModel('R', 3))
def test_sympy__stats__random_matrix_models__GaussianEnsembleModel():
from sympy.stats.random_matrix_models import GaussianEnsembleModel
assert _test_args(GaussianEnsembleModel('G', 3))
def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsembleModel():
from sympy.stats.random_matrix_models import GaussianUnitaryEnsembleModel
assert _test_args(GaussianUnitaryEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsembleModel():
from sympy.stats.random_matrix_models import GaussianOrthogonalEnsembleModel
assert _test_args(GaussianOrthogonalEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsembleModel():
from sympy.stats.random_matrix_models import GaussianSymplecticEnsembleModel
assert _test_args(GaussianSymplecticEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__CircularEnsembleModel():
from sympy.stats.random_matrix_models import CircularEnsembleModel
assert _test_args(CircularEnsembleModel('C', 3))
def test_sympy__stats__random_matrix_models__CircularUnitaryEnsembleModel():
from sympy.stats.random_matrix_models import CircularUnitaryEnsembleModel
assert _test_args(CircularUnitaryEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsembleModel():
from sympy.stats.random_matrix_models import CircularOrthogonalEnsembleModel
assert _test_args(CircularOrthogonalEnsembleModel('O', 3))
def test_sympy__stats__random_matrix_models__CircularSymplecticEnsembleModel():
from sympy.stats.random_matrix_models import CircularSymplecticEnsembleModel
assert _test_args(CircularSymplecticEnsembleModel('S', 3))
def test_sympy__stats__symbolic_multivariate_probability__ExpectationMatrix():
from sympy.stats import ExpectationMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(ExpectationMatrix(RandomMatrixSymbol('R', 2, 1)))
def test_sympy__stats__symbolic_multivariate_probability__VarianceMatrix():
from sympy.stats import VarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(VarianceMatrix(RandomMatrixSymbol('R', 3, 1)))
def test_sympy__stats__symbolic_multivariate_probability__CrossCovarianceMatrix():
from sympy.stats import CrossCovarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(CrossCovarianceMatrix(RandomMatrixSymbol('R', 3, 1),
RandomMatrixSymbol('X', 3, 1)))
def test_sympy__stats__matrix_distributions__MatrixPSpace():
from sympy.stats.matrix_distributions import MatrixDistribution, MatrixPSpace
from sympy import Matrix
M = MatrixDistribution(1, Matrix([[1, 0], [0, 1]]))
assert _test_args(MatrixPSpace('M', M, 2, 2))
def test_sympy__stats__matrix_distributions__MatrixDistribution():
from sympy.stats.matrix_distributions import MatrixDistribution
from sympy import Matrix
assert _test_args(MatrixDistribution(1, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__MatrixGammaDistribution():
from sympy.stats.matrix_distributions import MatrixGammaDistribution
from sympy import Matrix
assert _test_args(MatrixGammaDistribution(3, 4, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__WishartDistribution():
from sympy.stats.matrix_distributions import WishartDistribution
from sympy import Matrix
assert _test_args(WishartDistribution(3, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__MatrixNormalDistribution():
from sympy.stats.matrix_distributions import MatrixNormalDistribution
from sympy import MatrixSymbol
L = MatrixSymbol('L', 1, 2)
S1 = MatrixSymbol('S1', 1, 1)
S2 = MatrixSymbol('S2', 2, 2)
assert _test_args(MatrixNormalDistribution(L, S1, S2))
def test_sympy__core__symbol__Str():
from sympy.core.symbol import Str
assert _test_args(Str('t'))
def test_sympy__core__symbol__Dummy():
from sympy.core.symbol import Dummy
assert _test_args(Dummy('t'))
def test_sympy__core__symbol__Symbol():
from sympy.core.symbol import Symbol
assert _test_args(Symbol('t'))
def test_sympy__core__symbol__Wild():
from sympy.core.symbol import Wild
assert _test_args(Wild('x', exclude=[x]))
@SKIP("abstract class")
def test_sympy__functions__combinatorial__factorials__CombinatorialFunction():
pass
def test_sympy__functions__combinatorial__factorials__FallingFactorial():
from sympy.functions.combinatorial.factorials import FallingFactorial
assert _test_args(FallingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__MultiFactorial():
from sympy.functions.combinatorial.factorials import MultiFactorial
assert _test_args(MultiFactorial(x))
def test_sympy__functions__combinatorial__factorials__RisingFactorial():
from sympy.functions.combinatorial.factorials import RisingFactorial
assert _test_args(RisingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__binomial():
from sympy.functions.combinatorial.factorials import binomial
assert _test_args(binomial(2, x))
def test_sympy__functions__combinatorial__factorials__subfactorial():
from sympy.functions.combinatorial.factorials import subfactorial
assert _test_args(subfactorial(1))
def test_sympy__functions__combinatorial__factorials__factorial():
from sympy.functions.combinatorial.factorials import factorial
assert _test_args(factorial(x))
def test_sympy__functions__combinatorial__factorials__factorial2():
from sympy.functions.combinatorial.factorials import factorial2
assert _test_args(factorial2(x))
def test_sympy__functions__combinatorial__numbers__bell():
from sympy.functions.combinatorial.numbers import bell
assert _test_args(bell(x, y))
def test_sympy__functions__combinatorial__numbers__bernoulli():
from sympy.functions.combinatorial.numbers import bernoulli
assert _test_args(bernoulli(x))
def test_sympy__functions__combinatorial__numbers__catalan():
from sympy.functions.combinatorial.numbers import catalan
assert _test_args(catalan(x))
def test_sympy__functions__combinatorial__numbers__genocchi():
from sympy.functions.combinatorial.numbers import genocchi
assert _test_args(genocchi(x))
def test_sympy__functions__combinatorial__numbers__euler():
from sympy.functions.combinatorial.numbers import euler
assert _test_args(euler(x))
def test_sympy__functions__combinatorial__numbers__carmichael():
from sympy.functions.combinatorial.numbers import carmichael
assert _test_args(carmichael(x))
def test_sympy__functions__combinatorial__numbers__fibonacci():
from sympy.functions.combinatorial.numbers import fibonacci
assert _test_args(fibonacci(x))
def test_sympy__functions__combinatorial__numbers__tribonacci():
from sympy.functions.combinatorial.numbers import tribonacci
assert _test_args(tribonacci(x))
def test_sympy__functions__combinatorial__numbers__harmonic():
from sympy.functions.combinatorial.numbers import harmonic
assert _test_args(harmonic(x, 2))
def test_sympy__functions__combinatorial__numbers__lucas():
from sympy.functions.combinatorial.numbers import lucas
assert _test_args(lucas(x))
def test_sympy__functions__combinatorial__numbers__partition():
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.numbers import partition
assert _test_args(partition(Symbol('a', integer=True)))
def test_sympy__functions__elementary__complexes__Abs():
from sympy.functions.elementary.complexes import Abs
assert _test_args(Abs(x))
def test_sympy__functions__elementary__complexes__adjoint():
from sympy.functions.elementary.complexes import adjoint
assert _test_args(adjoint(x))
def test_sympy__functions__elementary__complexes__arg():
from sympy.functions.elementary.complexes import arg
assert _test_args(arg(x))
def test_sympy__functions__elementary__complexes__conjugate():
from sympy.functions.elementary.complexes import conjugate
assert _test_args(conjugate(x))
def test_sympy__functions__elementary__complexes__im():
from sympy.functions.elementary.complexes import im
assert _test_args(im(x))
def test_sympy__functions__elementary__complexes__re():
from sympy.functions.elementary.complexes import re
assert _test_args(re(x))
def test_sympy__functions__elementary__complexes__sign():
from sympy.functions.elementary.complexes import sign
assert _test_args(sign(x))
def test_sympy__functions__elementary__complexes__polar_lift():
from sympy.functions.elementary.complexes import polar_lift
assert _test_args(polar_lift(x))
def test_sympy__functions__elementary__complexes__periodic_argument():
from sympy.functions.elementary.complexes import periodic_argument
assert _test_args(periodic_argument(x, y))
def test_sympy__functions__elementary__complexes__principal_branch():
from sympy.functions.elementary.complexes import principal_branch
assert _test_args(principal_branch(x, y))
def test_sympy__functions__elementary__complexes__transpose():
from sympy.functions.elementary.complexes import transpose
assert _test_args(transpose(x))
def test_sympy__functions__elementary__exponential__LambertW():
from sympy.functions.elementary.exponential import LambertW
assert _test_args(LambertW(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__exponential__ExpBase():
pass
def test_sympy__functions__elementary__exponential__exp():
from sympy.functions.elementary.exponential import exp
assert _test_args(exp(2))
def test_sympy__functions__elementary__exponential__exp_polar():
from sympy.functions.elementary.exponential import exp_polar
assert _test_args(exp_polar(2))
def test_sympy__functions__elementary__exponential__log():
from sympy.functions.elementary.exponential import log
assert _test_args(log(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction():
pass
def test_sympy__functions__elementary__hyperbolic__acosh():
from sympy.functions.elementary.hyperbolic import acosh
assert _test_args(acosh(2))
def test_sympy__functions__elementary__hyperbolic__acoth():
from sympy.functions.elementary.hyperbolic import acoth
assert _test_args(acoth(2))
def test_sympy__functions__elementary__hyperbolic__asinh():
from sympy.functions.elementary.hyperbolic import asinh
assert _test_args(asinh(2))
def test_sympy__functions__elementary__hyperbolic__atanh():
from sympy.functions.elementary.hyperbolic import atanh
assert _test_args(atanh(2))
def test_sympy__functions__elementary__hyperbolic__asech():
from sympy.functions.elementary.hyperbolic import asech
assert _test_args(asech(2))
def test_sympy__functions__elementary__hyperbolic__acsch():
from sympy.functions.elementary.hyperbolic import acsch
assert _test_args(acsch(2))
def test_sympy__functions__elementary__hyperbolic__cosh():
from sympy.functions.elementary.hyperbolic import cosh
assert _test_args(cosh(2))
def test_sympy__functions__elementary__hyperbolic__coth():
from sympy.functions.elementary.hyperbolic import coth
assert _test_args(coth(2))
def test_sympy__functions__elementary__hyperbolic__csch():
from sympy.functions.elementary.hyperbolic import csch
assert _test_args(csch(2))
def test_sympy__functions__elementary__hyperbolic__sech():
from sympy.functions.elementary.hyperbolic import sech
assert _test_args(sech(2))
def test_sympy__functions__elementary__hyperbolic__sinh():
from sympy.functions.elementary.hyperbolic import sinh
assert _test_args(sinh(2))
def test_sympy__functions__elementary__hyperbolic__tanh():
from sympy.functions.elementary.hyperbolic import tanh
assert _test_args(tanh(2))
@SKIP("does this work at all?")
def test_sympy__functions__elementary__integers__RoundFunction():
from sympy.functions.elementary.integers import RoundFunction
assert _test_args(RoundFunction())
def test_sympy__functions__elementary__integers__ceiling():
from sympy.functions.elementary.integers import ceiling
assert _test_args(ceiling(x))
def test_sympy__functions__elementary__integers__floor():
from sympy.functions.elementary.integers import floor
assert _test_args(floor(x))
def test_sympy__functions__elementary__integers__frac():
from sympy.functions.elementary.integers import frac
assert _test_args(frac(x))
def test_sympy__functions__elementary__miscellaneous__IdentityFunction():
from sympy.functions.elementary.miscellaneous import IdentityFunction
assert _test_args(IdentityFunction())
def test_sympy__functions__elementary__miscellaneous__Max():
from sympy.functions.elementary.miscellaneous import Max
assert _test_args(Max(x, 2))
def test_sympy__functions__elementary__miscellaneous__Min():
from sympy.functions.elementary.miscellaneous import Min
assert _test_args(Min(x, 2))
@SKIP("abstract class")
def test_sympy__functions__elementary__miscellaneous__MinMaxBase():
pass
def test_sympy__functions__elementary__piecewise__ExprCondPair():
from sympy.functions.elementary.piecewise import ExprCondPair
assert _test_args(ExprCondPair(1, True))
def test_sympy__functions__elementary__piecewise__Piecewise():
from sympy.functions.elementary.piecewise import Piecewise
assert _test_args(Piecewise((1, x >= 0), (0, True)))
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__TrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction():
pass
def test_sympy__functions__elementary__trigonometric__acos():
from sympy.functions.elementary.trigonometric import acos
assert _test_args(acos(2))
def test_sympy__functions__elementary__trigonometric__acot():
from sympy.functions.elementary.trigonometric import acot
assert _test_args(acot(2))
def test_sympy__functions__elementary__trigonometric__asin():
from sympy.functions.elementary.trigonometric import asin
assert _test_args(asin(2))
def test_sympy__functions__elementary__trigonometric__asec():
from sympy.functions.elementary.trigonometric import asec
assert _test_args(asec(2))
def test_sympy__functions__elementary__trigonometric__acsc():
from sympy.functions.elementary.trigonometric import acsc
assert _test_args(acsc(2))
def test_sympy__functions__elementary__trigonometric__atan():
from sympy.functions.elementary.trigonometric import atan
assert _test_args(atan(2))
def test_sympy__functions__elementary__trigonometric__atan2():
from sympy.functions.elementary.trigonometric import atan2
assert _test_args(atan2(2, 3))
def test_sympy__functions__elementary__trigonometric__cos():
from sympy.functions.elementary.trigonometric import cos
assert _test_args(cos(2))
def test_sympy__functions__elementary__trigonometric__csc():
from sympy.functions.elementary.trigonometric import csc
assert _test_args(csc(2))
def test_sympy__functions__elementary__trigonometric__cot():
from sympy.functions.elementary.trigonometric import cot
assert _test_args(cot(2))
def test_sympy__functions__elementary__trigonometric__sin():
assert _test_args(sin(2))
def test_sympy__functions__elementary__trigonometric__sinc():
from sympy.functions.elementary.trigonometric import sinc
assert _test_args(sinc(2))
def test_sympy__functions__elementary__trigonometric__sec():
from sympy.functions.elementary.trigonometric import sec
assert _test_args(sec(2))
def test_sympy__functions__elementary__trigonometric__tan():
from sympy.functions.elementary.trigonometric import tan
assert _test_args(tan(2))
@SKIP("abstract class")
def test_sympy__functions__special__bessel__BesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalBesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalHankelBase():
pass
def test_sympy__functions__special__bessel__besseli():
from sympy.functions.special.bessel import besseli
assert _test_args(besseli(x, 1))
def test_sympy__functions__special__bessel__besselj():
from sympy.functions.special.bessel import besselj
assert _test_args(besselj(x, 1))
def test_sympy__functions__special__bessel__besselk():
from sympy.functions.special.bessel import besselk
assert _test_args(besselk(x, 1))
def test_sympy__functions__special__bessel__bessely():
from sympy.functions.special.bessel import bessely
assert _test_args(bessely(x, 1))
def test_sympy__functions__special__bessel__hankel1():
from sympy.functions.special.bessel import hankel1
assert _test_args(hankel1(x, 1))
def test_sympy__functions__special__bessel__hankel2():
from sympy.functions.special.bessel import hankel2
assert _test_args(hankel2(x, 1))
def test_sympy__functions__special__bessel__jn():
from sympy.functions.special.bessel import jn
assert _test_args(jn(0, x))
def test_sympy__functions__special__bessel__yn():
from sympy.functions.special.bessel import yn
assert _test_args(yn(0, x))
def test_sympy__functions__special__bessel__hn1():
from sympy.functions.special.bessel import hn1
assert _test_args(hn1(0, x))
def test_sympy__functions__special__bessel__hn2():
from sympy.functions.special.bessel import hn2
assert _test_args(hn2(0, x))
def test_sympy__functions__special__bessel__AiryBase():
pass
def test_sympy__functions__special__bessel__airyai():
from sympy.functions.special.bessel import airyai
assert _test_args(airyai(2))
def test_sympy__functions__special__bessel__airybi():
from sympy.functions.special.bessel import airybi
assert _test_args(airybi(2))
def test_sympy__functions__special__bessel__airyaiprime():
from sympy.functions.special.bessel import airyaiprime
assert _test_args(airyaiprime(2))
def test_sympy__functions__special__bessel__airybiprime():
from sympy.functions.special.bessel import airybiprime
assert _test_args(airybiprime(2))
def test_sympy__functions__special__bessel__marcumq():
from sympy.functions.special.bessel import marcumq
assert _test_args(marcumq(x, y, z))
def test_sympy__functions__special__elliptic_integrals__elliptic_k():
from sympy.functions.special.elliptic_integrals import elliptic_k as K
assert _test_args(K(x))
def test_sympy__functions__special__elliptic_integrals__elliptic_f():
from sympy.functions.special.elliptic_integrals import elliptic_f as F
assert _test_args(F(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_e():
from sympy.functions.special.elliptic_integrals import elliptic_e as E
assert _test_args(E(x))
assert _test_args(E(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_pi():
from sympy.functions.special.elliptic_integrals import elliptic_pi as P
assert _test_args(P(x, y))
assert _test_args(P(x, y, z))
def test_sympy__functions__special__delta_functions__DiracDelta():
from sympy.functions.special.delta_functions import DiracDelta
assert _test_args(DiracDelta(x, 1))
def test_sympy__functions__special__singularity_functions__SingularityFunction():
from sympy.functions.special.singularity_functions import SingularityFunction
assert _test_args(SingularityFunction(x, y, z))
def test_sympy__functions__special__delta_functions__Heaviside():
from sympy.functions.special.delta_functions import Heaviside
assert _test_args(Heaviside(x))
def test_sympy__functions__special__error_functions__erf():
from sympy.functions.special.error_functions import erf
assert _test_args(erf(2))
def test_sympy__functions__special__error_functions__erfc():
from sympy.functions.special.error_functions import erfc
assert _test_args(erfc(2))
def test_sympy__functions__special__error_functions__erfi():
from sympy.functions.special.error_functions import erfi
assert _test_args(erfi(2))
def test_sympy__functions__special__error_functions__erf2():
from sympy.functions.special.error_functions import erf2
assert _test_args(erf2(2, 3))
def test_sympy__functions__special__error_functions__erfinv():
from sympy.functions.special.error_functions import erfinv
assert _test_args(erfinv(2))
def test_sympy__functions__special__error_functions__erfcinv():
from sympy.functions.special.error_functions import erfcinv
assert _test_args(erfcinv(2))
def test_sympy__functions__special__error_functions__erf2inv():
from sympy.functions.special.error_functions import erf2inv
assert _test_args(erf2inv(2, 3))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__FresnelIntegral():
pass
def test_sympy__functions__special__error_functions__fresnels():
from sympy.functions.special.error_functions import fresnels
assert _test_args(fresnels(2))
def test_sympy__functions__special__error_functions__fresnelc():
from sympy.functions.special.error_functions import fresnelc
assert _test_args(fresnelc(2))
def test_sympy__functions__special__error_functions__erfs():
from sympy.functions.special.error_functions import _erfs
assert _test_args(_erfs(2))
def test_sympy__functions__special__error_functions__Ei():
from sympy.functions.special.error_functions import Ei
assert _test_args(Ei(2))
def test_sympy__functions__special__error_functions__li():
from sympy.functions.special.error_functions import li
assert _test_args(li(2))
def test_sympy__functions__special__error_functions__Li():
from sympy.functions.special.error_functions import Li
assert _test_args(Li(2))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__TrigonometricIntegral():
pass
def test_sympy__functions__special__error_functions__Si():
from sympy.functions.special.error_functions import Si
assert _test_args(Si(2))
def test_sympy__functions__special__error_functions__Ci():
from sympy.functions.special.error_functions import Ci
assert _test_args(Ci(2))
def test_sympy__functions__special__error_functions__Shi():
from sympy.functions.special.error_functions import Shi
assert _test_args(Shi(2))
def test_sympy__functions__special__error_functions__Chi():
from sympy.functions.special.error_functions import Chi
assert _test_args(Chi(2))
def test_sympy__functions__special__error_functions__expint():
from sympy.functions.special.error_functions import expint
assert _test_args(expint(y, x))
def test_sympy__functions__special__gamma_functions__gamma():
from sympy.functions.special.gamma_functions import gamma
assert _test_args(gamma(x))
def test_sympy__functions__special__gamma_functions__loggamma():
from sympy.functions.special.gamma_functions import loggamma
assert _test_args(loggamma(2))
def test_sympy__functions__special__gamma_functions__lowergamma():
from sympy.functions.special.gamma_functions import lowergamma
assert _test_args(lowergamma(x, 2))
def test_sympy__functions__special__gamma_functions__polygamma():
from sympy.functions.special.gamma_functions import polygamma
assert _test_args(polygamma(x, 2))
def test_sympy__functions__special__gamma_functions__digamma():
from sympy.functions.special.gamma_functions import digamma
assert _test_args(digamma(x))
def test_sympy__functions__special__gamma_functions__trigamma():
from sympy.functions.special.gamma_functions import trigamma
assert _test_args(trigamma(x))
def test_sympy__functions__special__gamma_functions__uppergamma():
from sympy.functions.special.gamma_functions import uppergamma
assert _test_args(uppergamma(x, 2))
def test_sympy__functions__special__gamma_functions__multigamma():
from sympy.functions.special.gamma_functions import multigamma
assert _test_args(multigamma(x, 1))
def test_sympy__functions__special__beta_functions__beta():
from sympy.functions.special.beta_functions import beta
assert _test_args(beta(x, x))
def test_sympy__functions__special__mathieu_functions__MathieuBase():
pass
def test_sympy__functions__special__mathieu_functions__mathieus():
from sympy.functions.special.mathieu_functions import mathieus
assert _test_args(mathieus(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieuc():
from sympy.functions.special.mathieu_functions import mathieuc
assert _test_args(mathieuc(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieusprime():
from sympy.functions.special.mathieu_functions import mathieusprime
assert _test_args(mathieusprime(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieucprime():
from sympy.functions.special.mathieu_functions import mathieucprime
assert _test_args(mathieucprime(1, 1, 1))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleParametersBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleArg():
pass
def test_sympy__functions__special__hyper__hyper():
from sympy.functions.special.hyper import hyper
assert _test_args(hyper([1, 2, 3], [4, 5], x))
def test_sympy__functions__special__hyper__meijerg():
from sympy.functions.special.hyper import meijerg
assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__HyperRep():
pass
def test_sympy__functions__special__hyper__HyperRep_power1():
from sympy.functions.special.hyper import HyperRep_power1
assert _test_args(HyperRep_power1(x, y))
def test_sympy__functions__special__hyper__HyperRep_power2():
from sympy.functions.special.hyper import HyperRep_power2
assert _test_args(HyperRep_power2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log1():
from sympy.functions.special.hyper import HyperRep_log1
assert _test_args(HyperRep_log1(x))
def test_sympy__functions__special__hyper__HyperRep_atanh():
from sympy.functions.special.hyper import HyperRep_atanh
assert _test_args(HyperRep_atanh(x))
def test_sympy__functions__special__hyper__HyperRep_asin1():
from sympy.functions.special.hyper import HyperRep_asin1
assert _test_args(HyperRep_asin1(x))
def test_sympy__functions__special__hyper__HyperRep_asin2():
from sympy.functions.special.hyper import HyperRep_asin2
assert _test_args(HyperRep_asin2(x))
def test_sympy__functions__special__hyper__HyperRep_sqrts1():
from sympy.functions.special.hyper import HyperRep_sqrts1
assert _test_args(HyperRep_sqrts1(x, y))
def test_sympy__functions__special__hyper__HyperRep_sqrts2():
from sympy.functions.special.hyper import HyperRep_sqrts2
assert _test_args(HyperRep_sqrts2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log2():
from sympy.functions.special.hyper import HyperRep_log2
assert _test_args(HyperRep_log2(x))
def test_sympy__functions__special__hyper__HyperRep_cosasin():
from sympy.functions.special.hyper import HyperRep_cosasin
assert _test_args(HyperRep_cosasin(x, y))
def test_sympy__functions__special__hyper__HyperRep_sinasin():
from sympy.functions.special.hyper import HyperRep_sinasin
assert _test_args(HyperRep_sinasin(x, y))
def test_sympy__functions__special__hyper__appellf1():
from sympy.functions.special.hyper import appellf1
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
assert _test_args(appellf1(a, b1, b2, c, x, y))
@SKIP("abstract class")
def test_sympy__functions__special__polynomials__OrthogonalPolynomial():
pass
def test_sympy__functions__special__polynomials__jacobi():
from sympy.functions.special.polynomials import jacobi
assert _test_args(jacobi(x, 2, 2, 2))
def test_sympy__functions__special__polynomials__gegenbauer():
from sympy.functions.special.polynomials import gegenbauer
assert _test_args(gegenbauer(x, 2, 2))
def test_sympy__functions__special__polynomials__chebyshevt():
from sympy.functions.special.polynomials import chebyshevt
assert _test_args(chebyshevt(x, 2))
def test_sympy__functions__special__polynomials__chebyshevt_root():
from sympy.functions.special.polynomials import chebyshevt_root
assert _test_args(chebyshevt_root(3, 2))
def test_sympy__functions__special__polynomials__chebyshevu():
from sympy.functions.special.polynomials import chebyshevu
assert _test_args(chebyshevu(x, 2))
def test_sympy__functions__special__polynomials__chebyshevu_root():
from sympy.functions.special.polynomials import chebyshevu_root
assert _test_args(chebyshevu_root(3, 2))
def test_sympy__functions__special__polynomials__hermite():
from sympy.functions.special.polynomials import hermite
assert _test_args(hermite(x, 2))
def test_sympy__functions__special__polynomials__legendre():
from sympy.functions.special.polynomials import legendre
assert _test_args(legendre(x, 2))
def test_sympy__functions__special__polynomials__assoc_legendre():
from sympy.functions.special.polynomials import assoc_legendre
assert _test_args(assoc_legendre(x, 0, y))
def test_sympy__functions__special__polynomials__laguerre():
from sympy.functions.special.polynomials import laguerre
assert _test_args(laguerre(x, 2))
def test_sympy__functions__special__polynomials__assoc_laguerre():
from sympy.functions.special.polynomials import assoc_laguerre
assert _test_args(assoc_laguerre(x, 0, y))
def test_sympy__functions__special__spherical_harmonics__Ynm():
from sympy.functions.special.spherical_harmonics import Ynm
assert _test_args(Ynm(1, 1, x, y))
def test_sympy__functions__special__spherical_harmonics__Znm():
from sympy.functions.special.spherical_harmonics import Znm
assert _test_args(Znm(1, 1, x, y))
def test_sympy__functions__special__tensor_functions__LeviCivita():
from sympy.functions.special.tensor_functions import LeviCivita
assert _test_args(LeviCivita(x, y, 2))
def test_sympy__functions__special__tensor_functions__KroneckerDelta():
from sympy.functions.special.tensor_functions import KroneckerDelta
assert _test_args(KroneckerDelta(x, y))
def test_sympy__functions__special__zeta_functions__dirichlet_eta():
from sympy.functions.special.zeta_functions import dirichlet_eta
assert _test_args(dirichlet_eta(x))
def test_sympy__functions__special__zeta_functions__zeta():
from sympy.functions.special.zeta_functions import zeta
assert _test_args(zeta(101))
def test_sympy__functions__special__zeta_functions__lerchphi():
from sympy.functions.special.zeta_functions import lerchphi
assert _test_args(lerchphi(x, y, z))
def test_sympy__functions__special__zeta_functions__polylog():
from sympy.functions.special.zeta_functions import polylog
assert _test_args(polylog(x, y))
def test_sympy__functions__special__zeta_functions__stieltjes():
from sympy.functions.special.zeta_functions import stieltjes
assert _test_args(stieltjes(x, y))
def test_sympy__integrals__integrals__Integral():
from sympy.integrals.integrals import Integral
assert _test_args(Integral(2, (x, 0, 1)))
def test_sympy__integrals__risch__NonElementaryIntegral():
from sympy.integrals.risch import NonElementaryIntegral
assert _test_args(NonElementaryIntegral(exp(-x**2), x))
@SKIP("abstract class")
def test_sympy__integrals__transforms__IntegralTransform():
pass
def test_sympy__integrals__transforms__MellinTransform():
from sympy.integrals.transforms import MellinTransform
assert _test_args(MellinTransform(2, x, y))
def test_sympy__integrals__transforms__InverseMellinTransform():
from sympy.integrals.transforms import InverseMellinTransform
assert _test_args(InverseMellinTransform(2, x, y, 0, 1))
def test_sympy__integrals__transforms__LaplaceTransform():
from sympy.integrals.transforms import LaplaceTransform
assert _test_args(LaplaceTransform(2, x, y))
def test_sympy__integrals__transforms__InverseLaplaceTransform():
from sympy.integrals.transforms import InverseLaplaceTransform
assert _test_args(InverseLaplaceTransform(2, x, y, 0))
@SKIP("abstract class")
def test_sympy__integrals__transforms__FourierTypeTransform():
pass
def test_sympy__integrals__transforms__InverseFourierTransform():
from sympy.integrals.transforms import InverseFourierTransform
assert _test_args(InverseFourierTransform(2, x, y))
def test_sympy__integrals__transforms__FourierTransform():
from sympy.integrals.transforms import FourierTransform
assert _test_args(FourierTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__SineCosineTypeTransform():
pass
def test_sympy__integrals__transforms__InverseSineTransform():
from sympy.integrals.transforms import InverseSineTransform
assert _test_args(InverseSineTransform(2, x, y))
def test_sympy__integrals__transforms__SineTransform():
from sympy.integrals.transforms import SineTransform
assert _test_args(SineTransform(2, x, y))
def test_sympy__integrals__transforms__InverseCosineTransform():
from sympy.integrals.transforms import InverseCosineTransform
assert _test_args(InverseCosineTransform(2, x, y))
def test_sympy__integrals__transforms__CosineTransform():
from sympy.integrals.transforms import CosineTransform
assert _test_args(CosineTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__HankelTypeTransform():
pass
def test_sympy__integrals__transforms__InverseHankelTransform():
from sympy.integrals.transforms import InverseHankelTransform
assert _test_args(InverseHankelTransform(2, x, y, 0))
def test_sympy__integrals__transforms__HankelTransform():
from sympy.integrals.transforms import HankelTransform
assert _test_args(HankelTransform(2, x, y, 0))
@XFAIL
def test_sympy__liealgebras__cartan_type__CartanType_generator():
from sympy.liealgebras.cartan_type import CartanType_generator
assert _test_args(CartanType_generator("A2"))
@XFAIL
def test_sympy__liealgebras__cartan_type__Standard_Cartan():
from sympy.liealgebras.cartan_type import Standard_Cartan
assert _test_args(Standard_Cartan("A", 2))
@XFAIL
def test_sympy__liealgebras__weyl_group__WeylGroup():
from sympy.liealgebras.weyl_group import WeylGroup
assert _test_args(WeylGroup("B4"))
@XFAIL
def test_sympy__liealgebras__root_system__RootSystem():
from sympy.liealgebras.root_system import RootSystem
assert _test_args(RootSystem("A2"))
@XFAIL
def test_sympy__liealgebras__type_a__TypeA():
from sympy.liealgebras.type_a import TypeA
assert _test_args(TypeA(2))
@XFAIL
def test_sympy__liealgebras__type_b__TypeB():
from sympy.liealgebras.type_b import TypeB
assert _test_args(TypeB(4))
@XFAIL
def test_sympy__liealgebras__type_c__TypeC():
from sympy.liealgebras.type_c import TypeC
assert _test_args(TypeC(4))
@XFAIL
def test_sympy__liealgebras__type_d__TypeD():
from sympy.liealgebras.type_d import TypeD
assert _test_args(TypeD(4))
@XFAIL
def test_sympy__liealgebras__type_e__TypeE():
from sympy.liealgebras.type_e import TypeE
assert _test_args(TypeE(6))
@XFAIL
def test_sympy__liealgebras__type_f__TypeF():
from sympy.liealgebras.type_f import TypeF
assert _test_args(TypeF(4))
@XFAIL
def test_sympy__liealgebras__type_g__TypeG():
from sympy.liealgebras.type_g import TypeG
assert _test_args(TypeG(2))
def test_sympy__logic__boolalg__And():
from sympy.logic.boolalg import And
assert _test_args(And(x, y, 1))
@SKIP("abstract class")
def test_sympy__logic__boolalg__Boolean():
pass
def test_sympy__logic__boolalg__BooleanFunction():
from sympy.logic.boolalg import BooleanFunction
assert _test_args(BooleanFunction(1, 2, 3))
@SKIP("abstract class")
def test_sympy__logic__boolalg__BooleanAtom():
pass
def test_sympy__logic__boolalg__BooleanTrue():
from sympy.logic.boolalg import true
assert _test_args(true)
def test_sympy__logic__boolalg__BooleanFalse():
from sympy.logic.boolalg import false
assert _test_args(false)
def test_sympy__logic__boolalg__Equivalent():
from sympy.logic.boolalg import Equivalent
assert _test_args(Equivalent(x, 2))
def test_sympy__logic__boolalg__ITE():
from sympy.logic.boolalg import ITE
assert _test_args(ITE(x, y, 1))
def test_sympy__logic__boolalg__Implies():
from sympy.logic.boolalg import Implies
assert _test_args(Implies(x, y))
def test_sympy__logic__boolalg__Nand():
from sympy.logic.boolalg import Nand
assert _test_args(Nand(x, y, 1))
def test_sympy__logic__boolalg__Nor():
from sympy.logic.boolalg import Nor
assert _test_args(Nor(x, y))
def test_sympy__logic__boolalg__Not():
from sympy.logic.boolalg import Not
assert _test_args(Not(x))
def test_sympy__logic__boolalg__Or():
from sympy.logic.boolalg import Or
assert _test_args(Or(x, y))
def test_sympy__logic__boolalg__Xor():
from sympy.logic.boolalg import Xor
assert _test_args(Xor(x, y, 2))
def test_sympy__logic__boolalg__Xnor():
from sympy.logic.boolalg import Xnor
assert _test_args(Xnor(x, y, 2))
def test_sympy__matrices__matrices__DeferredVector():
from sympy.matrices.matrices import DeferredVector
assert _test_args(DeferredVector("X"))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixBase():
pass
def test_sympy__matrices__immutable__ImmutableDenseMatrix():
from sympy.matrices.immutable import ImmutableDenseMatrix
m = ImmutableDenseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__immutable__ImmutableSparseMatrix():
from sympy.matrices.immutable import ImmutableSparseMatrix
m = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, {(0, 0): 1})
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__expressions__slice__MatrixSlice():
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 4, 4)
assert _test_args(MatrixSlice(X, (0, 2), (0, 2)))
def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction():
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol("X", x, x)
func = Lambda(x, x**2)
assert _test_args(ElementwiseApplyFunction(func, X))
def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix():
from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
assert _test_args(BlockDiagMatrix(X, Y))
def test_sympy__matrices__expressions__blockmatrix__BlockMatrix():
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
Z = MatrixSymbol('Z', x, y)
O = ZeroMatrix(y, x)
assert _test_args(BlockMatrix([[X, Z], [O, Y]]))
def test_sympy__matrices__expressions__inverse__Inverse():
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Inverse(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__matadd__MatAdd():
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(MatAdd(X, Y))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixExpr():
pass
def test_sympy__matrices__expressions__matexpr__MatrixElement():
from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement
from sympy import S
assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3)))
def test_sympy__matrices__expressions__matexpr__MatrixSymbol():
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(MatrixSymbol('A', 3, 5))
def test_sympy__matrices__expressions__special__OneMatrix():
from sympy.matrices.expressions.special import OneMatrix
assert _test_args(OneMatrix(3, 5))
def test_sympy__matrices__expressions__special__ZeroMatrix():
from sympy.matrices.expressions.special import ZeroMatrix
assert _test_args(ZeroMatrix(3, 5))
def test_sympy__matrices__expressions__special__GenericZeroMatrix():
from sympy.matrices.expressions.special import GenericZeroMatrix
assert _test_args(GenericZeroMatrix())
def test_sympy__matrices__expressions__special__Identity():
from sympy.matrices.expressions.special import Identity
assert _test_args(Identity(3))
def test_sympy__matrices__expressions__special__GenericIdentity():
from sympy.matrices.expressions.special import GenericIdentity
assert _test_args(GenericIdentity())
def test_sympy__matrices__expressions__sets__MatrixSet():
from sympy.matrices.expressions.sets import MatrixSet
from sympy import S
assert _test_args(MatrixSet(2, 2, S.Reals))
def test_sympy__matrices__expressions__matmul__MatMul():
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', y, x)
assert _test_args(MatMul(X, Y))
def test_sympy__matrices__expressions__dotproduct__DotProduct():
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, 1)
Y = MatrixSymbol('Y', x, 1)
assert _test_args(DotProduct(X, Y))
def test_sympy__matrices__expressions__diagonal__DiagonalMatrix():
from sympy.matrices.expressions.diagonal import DiagonalMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalMatrix(x))
def test_sympy__matrices__expressions__diagonal__DiagonalOf():
from sympy.matrices.expressions.diagonal import DiagonalOf
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('x', 10, 10)
assert _test_args(DiagonalOf(X))
def test_sympy__matrices__expressions__diagonal__DiagMatrix():
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagMatrix(x))
def test_sympy__matrices__expressions__hadamard__HadamardProduct():
from sympy.matrices.expressions.hadamard import HadamardProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(HadamardProduct(X, Y))
def test_sympy__matrices__expressions__hadamard__HadamardPower():
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions import MatrixSymbol
from sympy import Symbol
X = MatrixSymbol('X', x, y)
n = Symbol("n")
assert _test_args(HadamardPower(X, n))
def test_sympy__matrices__expressions__kronecker__KroneckerProduct():
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(KroneckerProduct(X, Y))
def test_sympy__matrices__expressions__matpow__MatPow():
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
assert _test_args(MatPow(X, 2))
def test_sympy__matrices__expressions__transpose__Transpose():
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Transpose(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__adjoint__Adjoint():
from sympy.matrices.expressions.adjoint import Adjoint
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Adjoint(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__trace__Trace():
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Trace(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Determinant():
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Determinant(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Permanent():
from sympy.matrices.expressions.determinant import Permanent
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Permanent(MatrixSymbol('A', 3, 4)))
def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix():
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy import symbols
i, j = symbols('i,j')
assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) ))
def test_sympy__matrices__expressions__fourier__DFT():
from sympy.matrices.expressions.fourier import DFT
from sympy import S
assert _test_args(DFT(S(2)))
def test_sympy__matrices__expressions__fourier__IDFT():
from sympy.matrices.expressions.fourier import IDFT
from sympy import S
assert _test_args(IDFT(S(2)))
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 10, 10)
def test_sympy__matrices__expressions__factorizations__LofLU():
from sympy.matrices.expressions.factorizations import LofLU
assert _test_args(LofLU(X))
def test_sympy__matrices__expressions__factorizations__UofLU():
from sympy.matrices.expressions.factorizations import UofLU
assert _test_args(UofLU(X))
def test_sympy__matrices__expressions__factorizations__QofQR():
from sympy.matrices.expressions.factorizations import QofQR
assert _test_args(QofQR(X))
def test_sympy__matrices__expressions__factorizations__RofQR():
from sympy.matrices.expressions.factorizations import RofQR
assert _test_args(RofQR(X))
def test_sympy__matrices__expressions__factorizations__LofCholesky():
from sympy.matrices.expressions.factorizations import LofCholesky
assert _test_args(LofCholesky(X))
def test_sympy__matrices__expressions__factorizations__UofCholesky():
from sympy.matrices.expressions.factorizations import UofCholesky
assert _test_args(UofCholesky(X))
def test_sympy__matrices__expressions__factorizations__EigenVectors():
from sympy.matrices.expressions.factorizations import EigenVectors
assert _test_args(EigenVectors(X))
def test_sympy__matrices__expressions__factorizations__EigenValues():
from sympy.matrices.expressions.factorizations import EigenValues
assert _test_args(EigenValues(X))
def test_sympy__matrices__expressions__factorizations__UofSVD():
from sympy.matrices.expressions.factorizations import UofSVD
assert _test_args(UofSVD(X))
def test_sympy__matrices__expressions__factorizations__VofSVD():
from sympy.matrices.expressions.factorizations import VofSVD
assert _test_args(VofSVD(X))
def test_sympy__matrices__expressions__factorizations__SofSVD():
from sympy.matrices.expressions.factorizations import SofSVD
assert _test_args(SofSVD(X))
@SKIP("abstract class")
def test_sympy__matrices__expressions__factorizations__Factorization():
pass
def test_sympy__matrices__expressions__permutation__PermutationMatrix():
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.permutation import PermutationMatrix
assert _test_args(PermutationMatrix(Permutation([2, 0, 1])))
def test_sympy__matrices__expressions__permutation__MatrixPermute():
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.permutation import MatrixPermute
A = MatrixSymbol('A', 3, 3)
assert _test_args(MatrixPermute(A, Permutation([2, 0, 1])))
def test_sympy__matrices__expressions__companion__CompanionMatrix():
from sympy.core.symbol import Symbol
from sympy.matrices.expressions.companion import CompanionMatrix
from sympy.polys.polytools import Poly
x = Symbol('x')
p = Poly([1, 2, 3], x)
assert _test_args(CompanionMatrix(p))
def test_sympy__physics__vector__frame__CoordinateSym():
from sympy.physics.vector import CoordinateSym
from sympy.physics.vector import ReferenceFrame
assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0))
def test_sympy__physics__paulialgebra__Pauli():
from sympy.physics.paulialgebra import Pauli
assert _test_args(Pauli(1))
def test_sympy__physics__quantum__anticommutator__AntiCommutator():
from sympy.physics.quantum.anticommutator import AntiCommutator
assert _test_args(AntiCommutator(x, y))
def test_sympy__physics__quantum__cartesian__PositionBra3D():
from sympy.physics.quantum.cartesian import PositionBra3D
assert _test_args(PositionBra3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionKet3D():
from sympy.physics.quantum.cartesian import PositionKet3D
assert _test_args(PositionKet3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionState3D():
from sympy.physics.quantum.cartesian import PositionState3D
assert _test_args(PositionState3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PxBra():
from sympy.physics.quantum.cartesian import PxBra
assert _test_args(PxBra(x, y, z))
def test_sympy__physics__quantum__cartesian__PxKet():
from sympy.physics.quantum.cartesian import PxKet
assert _test_args(PxKet(x, y, z))
def test_sympy__physics__quantum__cartesian__PxOp():
from sympy.physics.quantum.cartesian import PxOp
assert _test_args(PxOp(x, y, z))
def test_sympy__physics__quantum__cartesian__XBra():
from sympy.physics.quantum.cartesian import XBra
assert _test_args(XBra(x))
def test_sympy__physics__quantum__cartesian__XKet():
from sympy.physics.quantum.cartesian import XKet
assert _test_args(XKet(x))
def test_sympy__physics__quantum__cartesian__XOp():
from sympy.physics.quantum.cartesian import XOp
assert _test_args(XOp(x))
def test_sympy__physics__quantum__cartesian__YOp():
from sympy.physics.quantum.cartesian import YOp
assert _test_args(YOp(x))
def test_sympy__physics__quantum__cartesian__ZOp():
from sympy.physics.quantum.cartesian import ZOp
assert _test_args(ZOp(x))
def test_sympy__physics__quantum__cg__CG():
from sympy.physics.quantum.cg import CG
from sympy import S
assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1))
def test_sympy__physics__quantum__cg__Wigner3j():
from sympy.physics.quantum.cg import Wigner3j
assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0))
def test_sympy__physics__quantum__cg__Wigner6j():
from sympy.physics.quantum.cg import Wigner6j
assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2))
def test_sympy__physics__quantum__cg__Wigner9j():
from sympy.physics.quantum.cg import Wigner9j
assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0))
def test_sympy__physics__quantum__circuitplot__Mz():
from sympy.physics.quantum.circuitplot import Mz
assert _test_args(Mz(0))
def test_sympy__physics__quantum__circuitplot__Mx():
from sympy.physics.quantum.circuitplot import Mx
assert _test_args(Mx(0))
def test_sympy__physics__quantum__commutator__Commutator():
from sympy.physics.quantum.commutator import Commutator
A, B = symbols('A,B', commutative=False)
assert _test_args(Commutator(A, B))
def test_sympy__physics__quantum__constants__HBar():
from sympy.physics.quantum.constants import HBar
assert _test_args(HBar())
def test_sympy__physics__quantum__dagger__Dagger():
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.state import Ket
assert _test_args(Dagger(Dagger(Ket('psi'))))
def test_sympy__physics__quantum__gate__CGate():
from sympy.physics.quantum.gate import CGate, Gate
assert _test_args(CGate((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CGateS():
from sympy.physics.quantum.gate import CGateS, Gate
assert _test_args(CGateS((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CNotGate():
from sympy.physics.quantum.gate import CNotGate
assert _test_args(CNotGate(0, 1))
def test_sympy__physics__quantum__gate__Gate():
from sympy.physics.quantum.gate import Gate
assert _test_args(Gate(0))
def test_sympy__physics__quantum__gate__HadamardGate():
from sympy.physics.quantum.gate import HadamardGate
assert _test_args(HadamardGate(0))
def test_sympy__physics__quantum__gate__IdentityGate():
from sympy.physics.quantum.gate import IdentityGate
assert _test_args(IdentityGate(0))
def test_sympy__physics__quantum__gate__OneQubitGate():
from sympy.physics.quantum.gate import OneQubitGate
assert _test_args(OneQubitGate(0))
def test_sympy__physics__quantum__gate__PhaseGate():
from sympy.physics.quantum.gate import PhaseGate
assert _test_args(PhaseGate(0))
def test_sympy__physics__quantum__gate__SwapGate():
from sympy.physics.quantum.gate import SwapGate
assert _test_args(SwapGate(0, 1))
def test_sympy__physics__quantum__gate__TGate():
from sympy.physics.quantum.gate import TGate
assert _test_args(TGate(0))
def test_sympy__physics__quantum__gate__TwoQubitGate():
from sympy.physics.quantum.gate import TwoQubitGate
assert _test_args(TwoQubitGate(0))
def test_sympy__physics__quantum__gate__UGate():
from sympy.physics.quantum.gate import UGate
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy import Integer, Tuple
assert _test_args(
UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]])))
def test_sympy__physics__quantum__gate__XGate():
from sympy.physics.quantum.gate import XGate
assert _test_args(XGate(0))
def test_sympy__physics__quantum__gate__YGate():
from sympy.physics.quantum.gate import YGate
assert _test_args(YGate(0))
def test_sympy__physics__quantum__gate__ZGate():
from sympy.physics.quantum.gate import ZGate
assert _test_args(ZGate(0))
@SKIP("TODO: sympy.physics")
def test_sympy__physics__quantum__grover__OracleGate():
from sympy.physics.quantum.grover import OracleGate
assert _test_args(OracleGate())
def test_sympy__physics__quantum__grover__WGate():
from sympy.physics.quantum.grover import WGate
assert _test_args(WGate(1))
def test_sympy__physics__quantum__hilbert__ComplexSpace():
from sympy.physics.quantum.hilbert import ComplexSpace
assert _test_args(ComplexSpace(x))
def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace():
from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(DirectSumHilbertSpace(c, f))
def test_sympy__physics__quantum__hilbert__FockSpace():
from sympy.physics.quantum.hilbert import FockSpace
assert _test_args(FockSpace())
def test_sympy__physics__quantum__hilbert__HilbertSpace():
from sympy.physics.quantum.hilbert import HilbertSpace
assert _test_args(HilbertSpace())
def test_sympy__physics__quantum__hilbert__L2():
from sympy.physics.quantum.hilbert import L2
from sympy import oo, Interval
assert _test_args(L2(Interval(0, oo)))
def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace():
from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace
f = FockSpace()
assert _test_args(TensorPowerHilbertSpace(f, 2))
def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace():
from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(TensorProductHilbertSpace(f, c))
def test_sympy__physics__quantum__innerproduct__InnerProduct():
from sympy.physics.quantum import Bra, Ket, InnerProduct
b = Bra('b')
k = Ket('k')
assert _test_args(InnerProduct(b, k))
def test_sympy__physics__quantum__operator__DifferentialOperator():
from sympy.physics.quantum.operator import DifferentialOperator
from sympy import Derivative, Function
f = Function('f')
assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x)))
def test_sympy__physics__quantum__operator__HermitianOperator():
from sympy.physics.quantum.operator import HermitianOperator
assert _test_args(HermitianOperator('H'))
def test_sympy__physics__quantum__operator__IdentityOperator():
from sympy.physics.quantum.operator import IdentityOperator
assert _test_args(IdentityOperator(5))
def test_sympy__physics__quantum__operator__Operator():
from sympy.physics.quantum.operator import Operator
assert _test_args(Operator('A'))
def test_sympy__physics__quantum__operator__OuterProduct():
from sympy.physics.quantum.operator import OuterProduct
from sympy.physics.quantum import Ket, Bra
b = Bra('b')
k = Ket('k')
assert _test_args(OuterProduct(k, b))
def test_sympy__physics__quantum__operator__UnitaryOperator():
from sympy.physics.quantum.operator import UnitaryOperator
assert _test_args(UnitaryOperator('U'))
def test_sympy__physics__quantum__piab__PIABBra():
from sympy.physics.quantum.piab import PIABBra
assert _test_args(PIABBra('B'))
def test_sympy__physics__quantum__boson__BosonOp():
from sympy.physics.quantum.boson import BosonOp
assert _test_args(BosonOp('a'))
assert _test_args(BosonOp('a', False))
def test_sympy__physics__quantum__boson__BosonFockKet():
from sympy.physics.quantum.boson import BosonFockKet
assert _test_args(BosonFockKet(1))
def test_sympy__physics__quantum__boson__BosonFockBra():
from sympy.physics.quantum.boson import BosonFockBra
assert _test_args(BosonFockBra(1))
def test_sympy__physics__quantum__boson__BosonCoherentKet():
from sympy.physics.quantum.boson import BosonCoherentKet
assert _test_args(BosonCoherentKet(1))
def test_sympy__physics__quantum__boson__BosonCoherentBra():
from sympy.physics.quantum.boson import BosonCoherentBra
assert _test_args(BosonCoherentBra(1))
def test_sympy__physics__quantum__fermion__FermionOp():
from sympy.physics.quantum.fermion import FermionOp
assert _test_args(FermionOp('c'))
assert _test_args(FermionOp('c', False))
def test_sympy__physics__quantum__fermion__FermionFockKet():
from sympy.physics.quantum.fermion import FermionFockKet
assert _test_args(FermionFockKet(1))
def test_sympy__physics__quantum__fermion__FermionFockBra():
from sympy.physics.quantum.fermion import FermionFockBra
assert _test_args(FermionFockBra(1))
def test_sympy__physics__quantum__pauli__SigmaOpBase():
from sympy.physics.quantum.pauli import SigmaOpBase
assert _test_args(SigmaOpBase())
def test_sympy__physics__quantum__pauli__SigmaX():
from sympy.physics.quantum.pauli import SigmaX
assert _test_args(SigmaX())
def test_sympy__physics__quantum__pauli__SigmaY():
from sympy.physics.quantum.pauli import SigmaY
assert _test_args(SigmaY())
def test_sympy__physics__quantum__pauli__SigmaZ():
from sympy.physics.quantum.pauli import SigmaZ
assert _test_args(SigmaZ())
def test_sympy__physics__quantum__pauli__SigmaMinus():
from sympy.physics.quantum.pauli import SigmaMinus
assert _test_args(SigmaMinus())
def test_sympy__physics__quantum__pauli__SigmaPlus():
from sympy.physics.quantum.pauli import SigmaPlus
assert _test_args(SigmaPlus())
def test_sympy__physics__quantum__pauli__SigmaZKet():
from sympy.physics.quantum.pauli import SigmaZKet
assert _test_args(SigmaZKet(0))
def test_sympy__physics__quantum__pauli__SigmaZBra():
from sympy.physics.quantum.pauli import SigmaZBra
assert _test_args(SigmaZBra(0))
def test_sympy__physics__quantum__piab__PIABHamiltonian():
from sympy.physics.quantum.piab import PIABHamiltonian
assert _test_args(PIABHamiltonian('P'))
def test_sympy__physics__quantum__piab__PIABKet():
from sympy.physics.quantum.piab import PIABKet
assert _test_args(PIABKet('K'))
def test_sympy__physics__quantum__qexpr__QExpr():
from sympy.physics.quantum.qexpr import QExpr
assert _test_args(QExpr(0))
def test_sympy__physics__quantum__qft__Fourier():
from sympy.physics.quantum.qft import Fourier
assert _test_args(Fourier(0, 1))
def test_sympy__physics__quantum__qft__IQFT():
from sympy.physics.quantum.qft import IQFT
assert _test_args(IQFT(0, 1))
def test_sympy__physics__quantum__qft__QFT():
from sympy.physics.quantum.qft import QFT
assert _test_args(QFT(0, 1))
def test_sympy__physics__quantum__qft__RkGate():
from sympy.physics.quantum.qft import RkGate
assert _test_args(RkGate(0, 1))
def test_sympy__physics__quantum__qubit__IntQubit():
from sympy.physics.quantum.qubit import IntQubit
assert _test_args(IntQubit(0))
def test_sympy__physics__quantum__qubit__IntQubitBra():
from sympy.physics.quantum.qubit import IntQubitBra
assert _test_args(IntQubitBra(0))
def test_sympy__physics__quantum__qubit__IntQubitState():
from sympy.physics.quantum.qubit import IntQubitState, QubitState
assert _test_args(IntQubitState(QubitState(0, 1)))
def test_sympy__physics__quantum__qubit__Qubit():
from sympy.physics.quantum.qubit import Qubit
assert _test_args(Qubit(0, 0, 0))
def test_sympy__physics__quantum__qubit__QubitBra():
from sympy.physics.quantum.qubit import QubitBra
assert _test_args(QubitBra('1', 0))
def test_sympy__physics__quantum__qubit__QubitState():
from sympy.physics.quantum.qubit import QubitState
assert _test_args(QubitState(0, 1))
def test_sympy__physics__quantum__density__Density():
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.state import Ket
assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5]))
@SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented")
def test_sympy__physics__quantum__shor__CMod():
from sympy.physics.quantum.shor import CMod
assert _test_args(CMod())
def test_sympy__physics__quantum__spin__CoupledSpinState():
from sympy.physics.quantum.spin import CoupledSpinState
assert _test_args(CoupledSpinState(1, 0, (1, 1)))
assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half)))
assert _test_args(CoupledSpinState(
1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) ))
j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x')
assert CoupledSpinState(
j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3))
assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \
CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) )
def test_sympy__physics__quantum__spin__J2Op():
from sympy.physics.quantum.spin import J2Op
assert _test_args(J2Op('J'))
def test_sympy__physics__quantum__spin__JminusOp():
from sympy.physics.quantum.spin import JminusOp
assert _test_args(JminusOp('J'))
def test_sympy__physics__quantum__spin__JplusOp():
from sympy.physics.quantum.spin import JplusOp
assert _test_args(JplusOp('J'))
def test_sympy__physics__quantum__spin__JxBra():
from sympy.physics.quantum.spin import JxBra
assert _test_args(JxBra(1, 0))
def test_sympy__physics__quantum__spin__JxBraCoupled():
from sympy.physics.quantum.spin import JxBraCoupled
assert _test_args(JxBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxKet():
from sympy.physics.quantum.spin import JxKet
assert _test_args(JxKet(1, 0))
def test_sympy__physics__quantum__spin__JxKetCoupled():
from sympy.physics.quantum.spin import JxKetCoupled
assert _test_args(JxKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxOp():
from sympy.physics.quantum.spin import JxOp
assert _test_args(JxOp('J'))
def test_sympy__physics__quantum__spin__JyBra():
from sympy.physics.quantum.spin import JyBra
assert _test_args(JyBra(1, 0))
def test_sympy__physics__quantum__spin__JyBraCoupled():
from sympy.physics.quantum.spin import JyBraCoupled
assert _test_args(JyBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyKet():
from sympy.physics.quantum.spin import JyKet
assert _test_args(JyKet(1, 0))
def test_sympy__physics__quantum__spin__JyKetCoupled():
from sympy.physics.quantum.spin import JyKetCoupled
assert _test_args(JyKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyOp():
from sympy.physics.quantum.spin import JyOp
assert _test_args(JyOp('J'))
def test_sympy__physics__quantum__spin__JzBra():
from sympy.physics.quantum.spin import JzBra
assert _test_args(JzBra(1, 0))
def test_sympy__physics__quantum__spin__JzBraCoupled():
from sympy.physics.quantum.spin import JzBraCoupled
assert _test_args(JzBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzKet():
from sympy.physics.quantum.spin import JzKet
assert _test_args(JzKet(1, 0))
def test_sympy__physics__quantum__spin__JzKetCoupled():
from sympy.physics.quantum.spin import JzKetCoupled
assert _test_args(JzKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzOp():
from sympy.physics.quantum.spin import JzOp
assert _test_args(JzOp('J'))
def test_sympy__physics__quantum__spin__Rotation():
from sympy.physics.quantum.spin import Rotation
assert _test_args(Rotation(pi, 0, pi/2))
def test_sympy__physics__quantum__spin__SpinState():
from sympy.physics.quantum.spin import SpinState
assert _test_args(SpinState(1, 0))
def test_sympy__physics__quantum__spin__WignerD():
from sympy.physics.quantum.spin import WignerD
assert _test_args(WignerD(0, 1, 2, 3, 4, 5))
def test_sympy__physics__quantum__state__Bra():
from sympy.physics.quantum.state import Bra
assert _test_args(Bra(0))
def test_sympy__physics__quantum__state__BraBase():
from sympy.physics.quantum.state import BraBase
assert _test_args(BraBase(0))
def test_sympy__physics__quantum__state__Ket():
from sympy.physics.quantum.state import Ket
assert _test_args(Ket(0))
def test_sympy__physics__quantum__state__KetBase():
from sympy.physics.quantum.state import KetBase
assert _test_args(KetBase(0))
def test_sympy__physics__quantum__state__State():
from sympy.physics.quantum.state import State
assert _test_args(State(0))
def test_sympy__physics__quantum__state__StateBase():
from sympy.physics.quantum.state import StateBase
assert _test_args(StateBase(0))
def test_sympy__physics__quantum__state__OrthogonalBra():
from sympy.physics.quantum.state import OrthogonalBra
assert _test_args(OrthogonalBra(0))
def test_sympy__physics__quantum__state__OrthogonalKet():
from sympy.physics.quantum.state import OrthogonalKet
assert _test_args(OrthogonalKet(0))
def test_sympy__physics__quantum__state__OrthogonalState():
from sympy.physics.quantum.state import OrthogonalState
assert _test_args(OrthogonalState(0))
def test_sympy__physics__quantum__state__TimeDepBra():
from sympy.physics.quantum.state import TimeDepBra
assert _test_args(TimeDepBra('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepKet():
from sympy.physics.quantum.state import TimeDepKet
assert _test_args(TimeDepKet('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepState():
from sympy.physics.quantum.state import TimeDepState
assert _test_args(TimeDepState('psi', 't'))
def test_sympy__physics__quantum__state__Wavefunction():
from sympy.physics.quantum.state import Wavefunction
from sympy.functions import sin
from sympy import Piecewise
n = 1
L = 1
g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
assert _test_args(Wavefunction(g, x))
def test_sympy__physics__quantum__tensorproduct__TensorProduct():
from sympy.physics.quantum.tensorproduct import TensorProduct
assert _test_args(TensorProduct(x, y))
def test_sympy__physics__quantum__identitysearch__GateIdentity():
from sympy.physics.quantum.gate import X
from sympy.physics.quantum.identitysearch import GateIdentity
assert _test_args(GateIdentity(X(0), X(0)))
def test_sympy__physics__quantum__sho1d__SHOOp():
from sympy.physics.quantum.sho1d import SHOOp
assert _test_args(SHOOp('a'))
def test_sympy__physics__quantum__sho1d__RaisingOp():
from sympy.physics.quantum.sho1d import RaisingOp
assert _test_args(RaisingOp('a'))
def test_sympy__physics__quantum__sho1d__LoweringOp():
from sympy.physics.quantum.sho1d import LoweringOp
assert _test_args(LoweringOp('a'))
def test_sympy__physics__quantum__sho1d__NumberOp():
from sympy.physics.quantum.sho1d import NumberOp
assert _test_args(NumberOp('N'))
def test_sympy__physics__quantum__sho1d__Hamiltonian():
from sympy.physics.quantum.sho1d import Hamiltonian
assert _test_args(Hamiltonian('H'))
def test_sympy__physics__quantum__sho1d__SHOState():
from sympy.physics.quantum.sho1d import SHOState
assert _test_args(SHOState(0))
def test_sympy__physics__quantum__sho1d__SHOKet():
from sympy.physics.quantum.sho1d import SHOKet
assert _test_args(SHOKet(0))
def test_sympy__physics__quantum__sho1d__SHOBra():
from sympy.physics.quantum.sho1d import SHOBra
assert _test_args(SHOBra(0))
def test_sympy__physics__secondquant__AnnihilateBoson():
from sympy.physics.secondquant import AnnihilateBoson
assert _test_args(AnnihilateBoson(0))
def test_sympy__physics__secondquant__AnnihilateFermion():
from sympy.physics.secondquant import AnnihilateFermion
assert _test_args(AnnihilateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Annihilator():
pass
def test_sympy__physics__secondquant__AntiSymmetricTensor():
from sympy.physics.secondquant import AntiSymmetricTensor
i, j = symbols('i j', below_fermi=True)
a, b = symbols('a b', above_fermi=True)
assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j)))
def test_sympy__physics__secondquant__BosonState():
from sympy.physics.secondquant import BosonState
assert _test_args(BosonState((0, 1)))
@SKIP("abstract class")
def test_sympy__physics__secondquant__BosonicOperator():
pass
def test_sympy__physics__secondquant__Commutator():
from sympy.physics.secondquant import Commutator
assert _test_args(Commutator(x, y))
def test_sympy__physics__secondquant__CreateBoson():
from sympy.physics.secondquant import CreateBoson
assert _test_args(CreateBoson(0))
def test_sympy__physics__secondquant__CreateFermion():
from sympy.physics.secondquant import CreateFermion
assert _test_args(CreateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Creator():
pass
def test_sympy__physics__secondquant__Dagger():
from sympy.physics.secondquant import Dagger
from sympy import I
assert _test_args(Dagger(2*I))
def test_sympy__physics__secondquant__FermionState():
from sympy.physics.secondquant import FermionState
assert _test_args(FermionState((0, 1)))
def test_sympy__physics__secondquant__FermionicOperator():
from sympy.physics.secondquant import FermionicOperator
assert _test_args(FermionicOperator(0))
def test_sympy__physics__secondquant__FockState():
from sympy.physics.secondquant import FockState
assert _test_args(FockState((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonBra():
from sympy.physics.secondquant import FockStateBosonBra
assert _test_args(FockStateBosonBra((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonKet():
from sympy.physics.secondquant import FockStateBosonKet
assert _test_args(FockStateBosonKet((0, 1)))
def test_sympy__physics__secondquant__FockStateBra():
from sympy.physics.secondquant import FockStateBra
assert _test_args(FockStateBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionBra():
from sympy.physics.secondquant import FockStateFermionBra
assert _test_args(FockStateFermionBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionKet():
from sympy.physics.secondquant import FockStateFermionKet
assert _test_args(FockStateFermionKet((0, 1)))
def test_sympy__physics__secondquant__FockStateKet():
from sympy.physics.secondquant import FockStateKet
assert _test_args(FockStateKet((0, 1)))
def test_sympy__physics__secondquant__InnerProduct():
from sympy.physics.secondquant import InnerProduct
from sympy.physics.secondquant import FockStateKet, FockStateBra
assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1))))
def test_sympy__physics__secondquant__NO():
from sympy.physics.secondquant import NO, F, Fd
assert _test_args(NO(Fd(x)*F(y)))
def test_sympy__physics__secondquant__PermutationOperator():
from sympy.physics.secondquant import PermutationOperator
assert _test_args(PermutationOperator(0, 1))
def test_sympy__physics__secondquant__SqOperator():
from sympy.physics.secondquant import SqOperator
assert _test_args(SqOperator(0))
def test_sympy__physics__secondquant__TensorSymbol():
from sympy.physics.secondquant import TensorSymbol
assert _test_args(TensorSymbol(x))
def test_sympy__physics__control__lti__TransferFunction():
from sympy.physics.control.lti import TransferFunction
assert _test_args(TransferFunction(2, 3, x))
def test_sympy__physics__control__lti__Series():
from sympy.physics.control import Series, TransferFunction
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Series(tf1, tf2))
def test_sympy__physics__control__lti__Parallel():
from sympy.physics.control import Parallel, TransferFunction
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Parallel(tf1, tf2))
def test_sympy__physics__control__lti__Feedback():
from sympy.physics.control import TransferFunction, Feedback
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Feedback(tf1, tf2))
def test_sympy__physics__units__dimensions__Dimension():
from sympy.physics.units.dimensions import Dimension
assert _test_args(Dimension("length", "L"))
def test_sympy__physics__units__dimensions__DimensionSystem():
from sympy.physics.units.dimensions import DimensionSystem
from sympy.physics.units.definitions.dimension_definitions import length, time, velocity
assert _test_args(DimensionSystem((length, time), (velocity,)))
def test_sympy__physics__units__quantities__Quantity():
from sympy.physics.units.quantities import Quantity
assert _test_args(Quantity("dam"))
def test_sympy__physics__units__prefixes__Prefix():
from sympy.physics.units.prefixes import Prefix
assert _test_args(Prefix('kilo', 'k', 3))
def test_sympy__core__numbers__AlgebraicNumber():
from sympy.core.numbers import AlgebraicNumber
assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3]))
def test_sympy__polys__polytools__GroebnerBasis():
from sympy.polys.polytools import GroebnerBasis
assert _test_args(GroebnerBasis([x, y, z], x, y, z))
def test_sympy__polys__polytools__Poly():
from sympy.polys.polytools import Poly
assert _test_args(Poly(2, x, y))
def test_sympy__polys__polytools__PurePoly():
from sympy.polys.polytools import PurePoly
assert _test_args(PurePoly(2, x, y))
@SKIP('abstract class')
def test_sympy__polys__rootoftools__RootOf():
pass
def test_sympy__polys__rootoftools__ComplexRootOf():
from sympy.polys.rootoftools import ComplexRootOf
assert _test_args(ComplexRootOf(x**3 + x + 1, 0))
def test_sympy__polys__rootoftools__RootSum():
from sympy.polys.rootoftools import RootSum
assert _test_args(RootSum(x**3 + x + 1, sin))
def test_sympy__series__limits__Limit():
from sympy.series.limits import Limit
assert _test_args(Limit(x, x, 0, dir='-'))
def test_sympy__series__order__Order():
from sympy.series.order import Order
assert _test_args(Order(1, x, y))
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqBase():
pass
def test_sympy__series__sequences__EmptySequence():
# Need to imort the instance from series not the class from
# series.sequence
from sympy.series import EmptySequence
assert _test_args(EmptySequence)
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqExpr():
pass
def test_sympy__series__sequences__SeqPer():
from sympy.series.sequences import SeqPer
assert _test_args(SeqPer((1, 2, 3), (0, 10)))
def test_sympy__series__sequences__SeqFormula():
from sympy.series.sequences import SeqFormula
assert _test_args(SeqFormula(x**2, (0, 10)))
def test_sympy__series__sequences__RecursiveSeq():
from sympy.series.sequences import RecursiveSeq
y = Function("y")
n = symbols("n")
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, (0, 1)))
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n))
def test_sympy__series__sequences__SeqExprOp():
from sympy.series.sequences import SeqExprOp, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqExprOp(s1, s2))
def test_sympy__series__sequences__SeqAdd():
from sympy.series.sequences import SeqAdd, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqAdd(s1, s2))
def test_sympy__series__sequences__SeqMul():
from sympy.series.sequences import SeqMul, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqMul(s1, s2))
@SKIP('Abstract Class')
def test_sympy__series__series_class__SeriesBase():
pass
def test_sympy__series__fourier__FourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(x, (x, -pi, pi)))
def test_sympy__series__fourier__FiniteFourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(sin(pi*x), (x, -1, 1)))
def test_sympy__series__formal__FormalPowerSeries():
from sympy.series.formal import fps
assert _test_args(fps(log(1 + x), x))
def test_sympy__series__formal__Coeff():
from sympy.series.formal import fps
assert _test_args(fps(x**2 + x + 1, x))
@SKIP('Abstract Class')
def test_sympy__series__formal__FiniteFormalPowerSeries():
pass
def test_sympy__series__formal__FormalPowerSeriesProduct():
from sympy.series.formal import fps
f1, f2 = fps(sin(x)), fps(exp(x))
assert _test_args(f1.product(f2, x))
def test_sympy__series__formal__FormalPowerSeriesCompose():
from sympy.series.formal import fps
f1, f2 = fps(exp(x)), fps(sin(x))
assert _test_args(f1.compose(f2, x))
def test_sympy__series__formal__FormalPowerSeriesInverse():
from sympy.series.formal import fps
f1 = fps(exp(x))
assert _test_args(f1.inverse(x))
def test_sympy__simplify__hyperexpand__Hyper_Function():
from sympy.simplify.hyperexpand import Hyper_Function
assert _test_args(Hyper_Function([2], [1]))
def test_sympy__simplify__hyperexpand__G_Function():
from sympy.simplify.hyperexpand import G_Function
assert _test_args(G_Function([2], [1], [], []))
@SKIP("abstract class")
def test_sympy__tensor__array__ndim_array__ImmutableNDimArray():
pass
def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray():
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(densarr)
def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray():
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(sparr)
def test_sympy__tensor__array__array_comprehension__ArrayComprehension():
from sympy.tensor.array.array_comprehension import ArrayComprehension
arrcom = ArrayComprehension(x, (x, 1, 5))
assert _test_args(arrcom)
def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap():
from sympy.tensor.array.array_comprehension import ArrayComprehensionMap
arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5))
assert _test_args(arrcomma)
def test_sympy__tensor__array__arrayop__Flatten():
from sympy.tensor.array.arrayop import Flatten
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
fla = Flatten(ImmutableDenseNDimArray(range(24)).reshape(2, 3, 4))
assert _test_args(fla)
def test_sympy__tensor__array__array_derivatives__ArrayDerivative():
from sympy.tensor.array.array_derivatives import ArrayDerivative
A = MatrixSymbol("A", 2, 2)
arrder = ArrayDerivative(A, A, evaluate=False)
assert _test_args(arrder)
def test_sympy__tensor__functions__TensorProduct():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
tp = TensorProduct(A, B)
assert _test_args(tp)
def test_sympy__tensor__indexed__Idx():
from sympy.tensor.indexed import Idx
assert _test_args(Idx('test'))
assert _test_args(Idx(1, (0, 10)))
def test_sympy__tensor__indexed__Indexed():
from sympy.tensor.indexed import Indexed, Idx
assert _test_args(Indexed('A', Idx('i'), Idx('j')))
def test_sympy__tensor__indexed__IndexedBase():
from sympy.tensor.indexed import IndexedBase
assert _test_args(IndexedBase('A', shape=(x, y)))
assert _test_args(IndexedBase('A', 1))
assert _test_args(IndexedBase('A')[0, 1])
def test_sympy__tensor__tensor__TensorIndexType():
from sympy.tensor.tensor import TensorIndexType
assert _test_args(TensorIndexType('Lorentz'))
@SKIP("deprecated class")
def test_sympy__tensor__tensor__TensorType():
pass
def test_sympy__tensor__tensor__TensorSymmetry():
from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs
assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2)))
def test_sympy__tensor__tensor__TensorHead():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
assert _test_args(TensorHead('p', [Lorentz], sym, 0))
def test_sympy__tensor__tensor__TensorIndex():
from sympy.tensor.tensor import TensorIndexType, TensorIndex
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
assert _test_args(TensorIndex('i', Lorentz))
@SKIP("abstract class")
def test_sympy__tensor__tensor__TensExpr():
pass
def test_sympy__tensor__tensor__TensAdd():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p, q = tensor_heads('p,q', [Lorentz], sym)
t1 = p(a)
t2 = q(a)
assert _test_args(TensAdd(t1, t2))
def test_sympy__tensor__tensor__Tensor():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p = TensorHead('p', [Lorentz], sym)
assert _test_args(p(a))
def test_sympy__tensor__tensor__TensMul():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p, q = tensor_heads('p, q', [Lorentz], sym)
assert _test_args(3*p(a)*q(b))
def test_sympy__tensor__tensor__TensorElement():
from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement
L = TensorIndexType("L")
A = TensorHead("A", [L, L])
telem = TensorElement(A(x, y), {x: 1})
assert _test_args(telem)
def test_sympy__tensor__toperators__PartialDerivative():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
from sympy.tensor.toperators import PartialDerivative
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
A = TensorHead("A", [Lorentz])
assert _test_args(PartialDerivative(A(a), A(b)))
def test_as_coeff_add():
assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add()
def test_sympy__geometry__curve__Curve():
from sympy.geometry.curve import Curve
assert _test_args(Curve((x, 1), (x, 0, 1)))
def test_sympy__geometry__point__Point():
from sympy.geometry.point import Point
assert _test_args(Point(0, 1))
def test_sympy__geometry__point__Point2D():
from sympy.geometry.point import Point2D
assert _test_args(Point2D(0, 1))
def test_sympy__geometry__point__Point3D():
from sympy.geometry.point import Point3D
assert _test_args(Point3D(0, 1, 2))
def test_sympy__geometry__ellipse__Ellipse():
from sympy.geometry.ellipse import Ellipse
assert _test_args(Ellipse((0, 1), 2, 3))
def test_sympy__geometry__ellipse__Circle():
from sympy.geometry.ellipse import Circle
assert _test_args(Circle((0, 1), 2))
def test_sympy__geometry__parabola__Parabola():
from sympy.geometry.parabola import Parabola
from sympy.geometry.line import Line
assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3))))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity():
pass
def test_sympy__geometry__line__Line():
from sympy.geometry.line import Line
assert _test_args(Line((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray():
from sympy.geometry.line import Ray
assert _test_args(Ray((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment():
from sympy.geometry.line import Segment
assert _test_args(Segment((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity2D():
pass
def test_sympy__geometry__line__Line2D():
from sympy.geometry.line import Line2D
assert _test_args(Line2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray2D():
from sympy.geometry.line import Ray2D
assert _test_args(Ray2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment2D():
from sympy.geometry.line import Segment2D
assert _test_args(Segment2D((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity3D():
pass
def test_sympy__geometry__line__Line3D():
from sympy.geometry.line import Line3D
assert _test_args(Line3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Segment3D():
from sympy.geometry.line import Segment3D
assert _test_args(Segment3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Ray3D():
from sympy.geometry.line import Ray3D
assert _test_args(Ray3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__plane__Plane():
from sympy.geometry.plane import Plane
assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3)))
def test_sympy__geometry__polygon__Polygon():
from sympy.geometry.polygon import Polygon
assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7)))
def test_sympy__geometry__polygon__RegularPolygon():
from sympy.geometry.polygon import RegularPolygon
assert _test_args(RegularPolygon((0, 1), 2, 3, 4))
def test_sympy__geometry__polygon__Triangle():
from sympy.geometry.polygon import Triangle
assert _test_args(Triangle((0, 1), (2, 3), (4, 5)))
def test_sympy__geometry__entity__GeometryEntity():
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2]))
@SKIP("abstract class")
def test_sympy__geometry__entity__GeometrySet():
pass
def test_sympy__diffgeom__diffgeom__Manifold():
from sympy.diffgeom import Manifold
assert _test_args(Manifold('name', 3))
def test_sympy__diffgeom__diffgeom__Patch():
from sympy.diffgeom import Manifold, Patch
assert _test_args(Patch('name', Manifold('name', 3)))
def test_sympy__diffgeom__diffgeom__CoordSystem():
from sympy.diffgeom import Manifold, Patch, CoordSystem
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3))))
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]))
def test_sympy__diffgeom__diffgeom__CoordinateSymbol():
from sympy.diffgeom import Manifold, Patch, CoordSystem, CoordinateSymbol
assert _test_args(CoordinateSymbol(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), 0))
def test_sympy__diffgeom__diffgeom__Point():
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
assert _test_args(Point(
CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), [x, y]))
def test_sympy__diffgeom__diffgeom__BaseScalarField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseScalarField(cs, 0))
def test_sympy__diffgeom__diffgeom__BaseVectorField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseVectorField(cs, 0))
def test_sympy__diffgeom__diffgeom__Differential():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(Differential(BaseScalarField(cs, 0)))
def test_sympy__diffgeom__diffgeom__Commutator():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)), [a, b, c])
v = BaseVectorField(cs, 0)
v1 = BaseVectorField(cs1, 0)
assert _test_args(Commutator(v, v1))
def test_sympy__diffgeom__diffgeom__TensorProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
assert _test_args(TensorProduct(d, d))
def test_sympy__diffgeom__diffgeom__WedgeProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
d1 = Differential(BaseScalarField(cs, 1))
assert _test_args(WedgeProduct(d, d1))
def test_sympy__diffgeom__diffgeom__LieDerivative():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
v = BaseVectorField(cs, 0)
assert _test_args(LieDerivative(v, d))
@XFAIL
def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3))
def test_sympy__diffgeom__diffgeom__CovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
v = BaseVectorField(cs, 0)
_test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3))
def test_sympy__categories__baseclasses__Class():
from sympy.categories.baseclasses import Class
assert _test_args(Class())
def test_sympy__categories__baseclasses__Object():
from sympy.categories import Object
assert _test_args(Object("A"))
@XFAIL
def test_sympy__categories__baseclasses__Morphism():
from sympy.categories import Object, Morphism
assert _test_args(Morphism(Object("A"), Object("B")))
def test_sympy__categories__baseclasses__IdentityMorphism():
from sympy.categories import Object, IdentityMorphism
assert _test_args(IdentityMorphism(Object("A")))
def test_sympy__categories__baseclasses__NamedMorphism():
from sympy.categories import Object, NamedMorphism
assert _test_args(NamedMorphism(Object("A"), Object("B"), "f"))
def test_sympy__categories__baseclasses__CompositeMorphism():
from sympy.categories import Object, NamedMorphism, CompositeMorphism
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
assert _test_args(CompositeMorphism(f, g))
def test_sympy__categories__baseclasses__Diagram():
from sympy.categories import Object, NamedMorphism, Diagram
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
d = Diagram([f])
assert _test_args(d)
def test_sympy__categories__baseclasses__Category():
from sympy.categories import Object, NamedMorphism, Diagram, Category
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d1 = Diagram([f, g])
d2 = Diagram([f])
K = Category("K", commutative_diagrams=[d1, d2])
assert _test_args(K)
def test_sympy__ntheory__factor___totient():
from sympy.ntheory.factor_ import totient
k = symbols('k', integer=True)
t = totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___reduced_totient():
from sympy.ntheory.factor_ import reduced_totient
k = symbols('k', integer=True)
t = reduced_totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___divisor_sigma():
from sympy.ntheory.factor_ import divisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = divisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___udivisor_sigma():
from sympy.ntheory.factor_ import udivisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = udivisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___primenu():
from sympy.ntheory.factor_ import primenu
n = symbols('n', integer=True)
t = primenu(n)
assert _test_args(t)
def test_sympy__ntheory__factor___primeomega():
from sympy.ntheory.factor_ import primeomega
n = symbols('n', integer=True)
t = primeomega(n)
assert _test_args(t)
def test_sympy__ntheory__residue_ntheory__mobius():
from sympy.ntheory import mobius
assert _test_args(mobius(2))
def test_sympy__ntheory__generate__primepi():
from sympy.ntheory import primepi
n = symbols('n')
t = primepi(n)
assert _test_args(t)
def test_sympy__physics__optics__waves__TWave():
from sympy.physics.optics import TWave
A, f, phi = symbols('A, f, phi')
assert _test_args(TWave(A, f, phi))
def test_sympy__physics__optics__gaussopt__BeamParameter():
from sympy.physics.optics import BeamParameter
assert _test_args(BeamParameter(530e-9, 1, w=1e-3))
def test_sympy__physics__optics__medium__Medium():
from sympy.physics.optics import Medium
assert _test_args(Medium('m'))
def test_sympy__codegen__array_utils__CodegenArrayContraction():
from sympy.codegen.array_utils import CodegenArrayContraction
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayContraction(A, (0, 1)))
def test_sympy__codegen__array_utils__CodegenArrayDiagonal():
from sympy.codegen.array_utils import CodegenArrayDiagonal
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayDiagonal(A, (0, 1)))
def test_sympy__codegen__array_utils__CodegenArrayTensorProduct():
from sympy.codegen.array_utils import CodegenArrayTensorProduct
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(CodegenArrayTensorProduct(A, B))
def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd():
from sympy.codegen.array_utils import CodegenArrayElementwiseAdd
from sympy import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(CodegenArrayElementwiseAdd(A, B))
def test_sympy__codegen__array_utils__CodegenArrayPermuteDims():
from sympy.codegen.array_utils import CodegenArrayPermuteDims
from sympy import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(CodegenArrayPermuteDims(A, (1, 0)))
def test_sympy__codegen__ast__Assignment():
from sympy.codegen.ast import Assignment
assert _test_args(Assignment(x, y))
def test_sympy__codegen__cfunctions__expm1():
from sympy.codegen.cfunctions import expm1
assert _test_args(expm1(x))
def test_sympy__codegen__cfunctions__log1p():
from sympy.codegen.cfunctions import log1p
assert _test_args(log1p(x))
def test_sympy__codegen__cfunctions__exp2():
from sympy.codegen.cfunctions import exp2
assert _test_args(exp2(x))
def test_sympy__codegen__cfunctions__log2():
from sympy.codegen.cfunctions import log2
assert _test_args(log2(x))
def test_sympy__codegen__cfunctions__fma():
from sympy.codegen.cfunctions import fma
assert _test_args(fma(x, y, z))
def test_sympy__codegen__cfunctions__log10():
from sympy.codegen.cfunctions import log10
assert _test_args(log10(x))
def test_sympy__codegen__cfunctions__Sqrt():
from sympy.codegen.cfunctions import Sqrt
assert _test_args(Sqrt(x))
def test_sympy__codegen__cfunctions__Cbrt():
from sympy.codegen.cfunctions import Cbrt
assert _test_args(Cbrt(x))
def test_sympy__codegen__cfunctions__hypot():
from sympy.codegen.cfunctions import hypot
assert _test_args(hypot(x, y))
def test_sympy__codegen__fnodes__FFunction():
from sympy.codegen.fnodes import FFunction
assert _test_args(FFunction('f'))
def test_sympy__codegen__fnodes__F95Function():
from sympy.codegen.fnodes import F95Function
assert _test_args(F95Function('f'))
def test_sympy__codegen__fnodes__isign():
from sympy.codegen.fnodes import isign
assert _test_args(isign(1, x))
def test_sympy__codegen__fnodes__dsign():
from sympy.codegen.fnodes import dsign
assert _test_args(dsign(1, x))
def test_sympy__codegen__fnodes__cmplx():
from sympy.codegen.fnodes import cmplx
assert _test_args(cmplx(x, y))
def test_sympy__codegen__fnodes__kind():
from sympy.codegen.fnodes import kind
assert _test_args(kind(x))
def test_sympy__codegen__fnodes__merge():
from sympy.codegen.fnodes import merge
assert _test_args(merge(1, 2, Eq(x, 0)))
def test_sympy__codegen__fnodes___literal():
from sympy.codegen.fnodes import _literal
assert _test_args(_literal(1))
def test_sympy__codegen__fnodes__literal_sp():
from sympy.codegen.fnodes import literal_sp
assert _test_args(literal_sp(1))
def test_sympy__codegen__fnodes__literal_dp():
from sympy.codegen.fnodes import literal_dp
assert _test_args(literal_dp(1))
def test_sympy__codegen__matrix_nodes__MatrixSolve():
from sympy.matrices import MatrixSymbol
from sympy.codegen.matrix_nodes import MatrixSolve
A = MatrixSymbol('A', 3, 3)
v = MatrixSymbol('x', 3, 1)
assert _test_args(MatrixSolve(A, v))
def test_sympy__vector__coordsysrect__CoordSys3D():
from sympy.vector.coordsysrect import CoordSys3D
assert _test_args(CoordSys3D('C'))
def test_sympy__vector__point__Point():
from sympy.vector.point import Point
assert _test_args(Point('P'))
def test_sympy__vector__basisdependent__BasisDependent():
#from sympy.vector.basisdependent import BasisDependent
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentMul():
#from sympy.vector.basisdependent import BasisDependentMul
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentAdd():
#from sympy.vector.basisdependent import BasisDependentAdd
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentZero():
#from sympy.vector.basisdependent import BasisDependentZero
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__vector__BaseVector():
from sympy.vector.vector import BaseVector
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseVector(0, C, ' ', ' '))
def test_sympy__vector__vector__VectorAdd():
from sympy.vector.vector import VectorAdd, VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a, b, c, x, y, z
v1 = a*C.i + b*C.j + c*C.k
v2 = x*C.i + y*C.j + z*C.k
assert _test_args(VectorAdd(v1, v2))
assert _test_args(VectorMul(x, v1))
def test_sympy__vector__vector__VectorMul():
from sympy.vector.vector import VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a
assert _test_args(VectorMul(a, C.i))
def test_sympy__vector__vector__VectorZero():
from sympy.vector.vector import VectorZero
assert _test_args(VectorZero())
def test_sympy__vector__vector__Vector():
#from sympy.vector.vector import Vector
#Vector is never to be initialized using args
pass
def test_sympy__vector__vector__Cross():
from sympy.vector.vector import Cross
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Cross(C.i, C.j))
def test_sympy__vector__vector__Dot():
from sympy.vector.vector import Dot
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Dot(C.i, C.j))
def test_sympy__vector__dyadic__Dyadic():
#from sympy.vector.dyadic import Dyadic
#Dyadic is never to be initialized using args
pass
def test_sympy__vector__dyadic__BaseDyadic():
from sympy.vector.dyadic import BaseDyadic
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseDyadic(C.i, C.j))
def test_sympy__vector__dyadic__DyadicMul():
from sympy.vector.dyadic import BaseDyadic, DyadicMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicAdd():
from sympy.vector.dyadic import BaseDyadic, DyadicAdd
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i),
BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicZero():
from sympy.vector.dyadic import DyadicZero
assert _test_args(DyadicZero())
def test_sympy__vector__deloperator__Del():
from sympy.vector.deloperator import Del
assert _test_args(Del())
def test_sympy__vector__implicitregion__ImplicitRegion():
from sympy.vector.implicitregion import ImplicitRegion
from sympy.abc import x, y
assert _test_args(ImplicitRegion((x, y), y**3 - 4*x))
def test_sympy__vector__integrals__ParametricIntegral():
from sympy.vector.integrals import ParametricIntegral
from sympy.vector.parametricregion import ParametricRegion
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(ParametricIntegral(C.y*C.i - 10*C.j,\
ParametricRegion((x, y), (x, 1, 3), (y, -2, 2))))
def test_sympy__vector__operators__Curl():
from sympy.vector.operators import Curl
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Curl(C.i))
def test_sympy__vector__operators__Laplacian():
from sympy.vector.operators import Laplacian
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Laplacian(C.i))
def test_sympy__vector__operators__Divergence():
from sympy.vector.operators import Divergence
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Divergence(C.i))
def test_sympy__vector__operators__Gradient():
from sympy.vector.operators import Gradient
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Gradient(C.x))
def test_sympy__vector__orienters__Orienter():
#from sympy.vector.orienters import Orienter
#Not to be initialized
pass
def test_sympy__vector__orienters__ThreeAngleOrienter():
#from sympy.vector.orienters import ThreeAngleOrienter
#Not to be initialized
pass
def test_sympy__vector__orienters__AxisOrienter():
from sympy.vector.orienters import AxisOrienter
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(AxisOrienter(x, C.i))
def test_sympy__vector__orienters__BodyOrienter():
from sympy.vector.orienters import BodyOrienter
assert _test_args(BodyOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__SpaceOrienter():
from sympy.vector.orienters import SpaceOrienter
assert _test_args(SpaceOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__QuaternionOrienter():
from sympy.vector.orienters import QuaternionOrienter
a, b, c, d = symbols('a b c d')
assert _test_args(QuaternionOrienter(a, b, c, d))
def test_sympy__vector__parametricregion__ParametricRegion():
from sympy.abc import t
from sympy.vector.parametricregion import ParametricRegion
assert _test_args(ParametricRegion((t, t**3), (t, 0, 2)))
def test_sympy__vector__scalar__BaseScalar():
from sympy.vector.scalar import BaseScalar
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseScalar(0, C, ' ', ' '))
def test_sympy__physics__wigner__Wigner3j():
from sympy.physics.wigner import Wigner3j
assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0))
def test_sympy__integrals__rubi__symbol__matchpyWC():
from sympy.integrals.rubi.symbol import matchpyWC
assert _test_args(matchpyWC(1, True, 'a'))
def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr():
from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr
a = symbols('a')
assert _test_args(rubi_unevaluated_expr(a))
def test_sympy__integrals__rubi__utility_function__rubi_exp():
from sympy.integrals.rubi.utility_function import rubi_exp
assert _test_args(rubi_exp(5))
def test_sympy__integrals__rubi__utility_function__rubi_log():
from sympy.integrals.rubi.utility_function import rubi_log
assert _test_args(rubi_log(5))
def test_sympy__integrals__rubi__utility_function__Int():
from sympy.integrals.rubi.utility_function import Int
assert _test_args(Int(5, x))
def test_sympy__integrals__rubi__utility_function__Util_Coefficient():
from sympy.integrals.rubi.utility_function import Util_Coefficient
a, x = symbols('a x')
assert _test_args(Util_Coefficient(a, x))
def test_sympy__integrals__rubi__utility_function__Gamma():
from sympy.integrals.rubi.utility_function import Gamma
assert _test_args(Gamma(5))
def test_sympy__integrals__rubi__utility_function__Util_Part():
from sympy.integrals.rubi.utility_function import Util_Part
a, b = symbols('a b')
assert _test_args(Util_Part(a + b, 0))
def test_sympy__integrals__rubi__utility_function__PolyGamma():
from sympy.integrals.rubi.utility_function import PolyGamma
assert _test_args(PolyGamma(1, 1))
def test_sympy__integrals__rubi__utility_function__ProductLog():
from sympy.integrals.rubi.utility_function import ProductLog
assert _test_args(ProductLog(1))
def test_sympy__combinatorics__schur_number__SchurNumber():
from sympy.combinatorics.schur_number import SchurNumber
assert _test_args(SchurNumber(1))
def test_sympy__combinatorics__perm_groups__SymmetricPermutationGroup():
from sympy.combinatorics.perm_groups import SymmetricPermutationGroup
assert _test_args(SymmetricPermutationGroup(5))
def test_sympy__combinatorics__perm_groups__Coset():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup, Coset
a = Permutation(1, 2)
b = Permutation(0, 1)
G = PermutationGroup([a, b])
assert _test_args(Coset(a, G))
|
5821ec20767b718d16afe95ef0bc1c08041dd20bccfcb5e660cf131a53ed0fdd | from sympy.core import (
Basic, Rational, Symbol, S, Float, Integer, Mul, Number, Pow,
Expr, I, nan, pi, symbols, oo, zoo, N)
from sympy.core.tests.test_evalf import NS
from sympy.core.function import expand_multinomial
from sympy.functions.elementary.miscellaneous import sqrt, cbrt
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.special.error_functions import erf
from sympy.functions.elementary.trigonometric import (
sin, cos, tan, sec, csc, sinh, cosh, tanh, atan)
from sympy.polys import Poly
from sympy.series.order import O
from sympy.sets import FiniteSet
from sympy.core.expr import unchanged
from sympy.core.power import power
from sympy.testing.pytest import warns_deprecated_sympy
def test_rational():
a = Rational(1, 5)
r = sqrt(5)/5
assert sqrt(a) == r
assert 2*sqrt(a) == 2*r
r = a*a**S.Half
assert a**Rational(3, 2) == r
assert 2*a**Rational(3, 2) == 2*r
r = a**5*a**Rational(2, 3)
assert a**Rational(17, 3) == r
assert 2 * a**Rational(17, 3) == 2*r
def test_large_rational():
e = (Rational(123712**12 - 1, 7) + Rational(1, 7))**Rational(1, 3)
assert e == 234232585392159195136 * (Rational(1, 7)**Rational(1, 3))
def test_negative_real():
def feq(a, b):
return abs(a - b) < 1E-10
assert feq(S.One / Float(-0.5), -Integer(2))
def test_expand():
x = Symbol('x')
assert (2**(-1 - x)).expand() == S.Half*2**(-x)
def test_issue_3449():
#test if powers are simplified correctly
#see also issue 3995
x = Symbol('x')
assert ((x**Rational(1, 3))**Rational(2)) == x**Rational(2, 3)
assert (
(x**Rational(3))**Rational(2, 5)) == (x**Rational(3))**Rational(2, 5)
a = Symbol('a', real=True)
b = Symbol('b', real=True)
assert (a**2)**b == (abs(a)**b)**2
assert sqrt(1/a) != 1/sqrt(a) # e.g. for a = -1
assert (a**3)**Rational(1, 3) != a
assert (x**a)**b != x**(a*b) # e.g. x = -1, a=2, b=1/2
assert (x**.5)**b == x**(.5*b)
assert (x**.5)**.5 == x**.25
assert (x**2.5)**.5 != x**1.25 # e.g. for x = 5*I
k = Symbol('k', integer=True)
m = Symbol('m', integer=True)
assert (x**k)**m == x**(k*m)
assert Number(5)**Rational(2, 3) == Number(25)**Rational(1, 3)
assert (x**.5)**2 == x**1.0
assert (x**2)**k == (x**k)**2 == x**(2*k)
a = Symbol('a', positive=True)
assert (a**3)**Rational(2, 5) == a**Rational(6, 5)
assert (a**2)**b == (a**b)**2
assert (a**Rational(2, 3))**x == a**(x*Rational(2, 3)) != (a**x)**Rational(2, 3)
def test_issue_3866():
assert --sqrt(sqrt(5) - 1) == sqrt(sqrt(5) - 1)
def test_negative_one():
x = Symbol('x', complex=True)
y = Symbol('y', complex=True)
assert 1/x**y == x**(-y)
def test_issue_4362():
neg = Symbol('neg', negative=True)
nonneg = Symbol('nonneg', nonnegative=True)
any = Symbol('any')
num, den = sqrt(1/neg).as_numer_denom()
assert num == sqrt(-1)
assert den == sqrt(-neg)
num, den = sqrt(1/nonneg).as_numer_denom()
assert num == 1
assert den == sqrt(nonneg)
num, den = sqrt(1/any).as_numer_denom()
assert num == sqrt(1/any)
assert den == 1
def eqn(num, den, pow):
return (num/den)**pow
npos = 1
nneg = -1
dpos = 2 - sqrt(3)
dneg = 1 - sqrt(3)
assert dpos > 0 and dneg < 0 and npos > 0 and nneg < 0
# pos or neg integer
eq = eqn(npos, dpos, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dpos**2)
eq = eqn(npos, dneg, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dneg**2)
eq = eqn(nneg, dpos, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dpos**2)
eq = eqn(nneg, dneg, 2)
assert eq.is_Pow and eq.as_numer_denom() == (1, dneg**2)
eq = eqn(npos, dpos, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**2, 1)
eq = eqn(npos, dneg, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dneg**2, 1)
eq = eqn(nneg, dpos, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**2, 1)
eq = eqn(nneg, dneg, -2)
assert eq.is_Pow and eq.as_numer_denom() == (dneg**2, 1)
# pos or neg rational
pow = S.Half
eq = eqn(npos, dpos, pow)
assert eq.is_Pow and eq.as_numer_denom() == (npos**pow, dpos**pow)
eq = eqn(npos, dneg, pow)
assert eq.is_Pow is False and eq.as_numer_denom() == ((-npos)**pow, (-dneg)**pow)
eq = eqn(nneg, dpos, pow)
assert not eq.is_Pow or eq.as_numer_denom() == (nneg**pow, dpos**pow)
eq = eqn(nneg, dneg, pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-nneg)**pow, (-dneg)**pow)
eq = eqn(npos, dpos, -pow)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**pow, npos**pow)
eq = eqn(npos, dneg, -pow)
assert eq.is_Pow is False and eq.as_numer_denom() == (-(-npos)**pow*(-dneg)**pow, npos)
eq = eqn(nneg, dpos, -pow)
assert not eq.is_Pow or eq.as_numer_denom() == (dpos**pow, nneg**pow)
eq = eqn(nneg, dneg, -pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-nneg)**pow)
# unknown exponent
pow = 2*any
eq = eqn(npos, dpos, pow)
assert eq.is_Pow and eq.as_numer_denom() == (npos**pow, dpos**pow)
eq = eqn(npos, dneg, pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-npos)**pow, (-dneg)**pow)
eq = eqn(nneg, dpos, pow)
assert eq.is_Pow and eq.as_numer_denom() == (nneg**pow, dpos**pow)
eq = eqn(nneg, dneg, pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-nneg)**pow, (-dneg)**pow)
eq = eqn(npos, dpos, -pow)
assert eq.as_numer_denom() == (dpos**pow, npos**pow)
eq = eqn(npos, dneg, -pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-npos)**pow)
eq = eqn(nneg, dpos, -pow)
assert eq.is_Pow and eq.as_numer_denom() == (dpos**pow, nneg**pow)
eq = eqn(nneg, dneg, -pow)
assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-nneg)**pow)
x = Symbol('x')
y = Symbol('y')
assert ((1/(1 + x/3))**(-S.One)).as_numer_denom() == (3 + x, 3)
notp = Symbol('notp', positive=False) # not positive does not imply real
b = ((1 + x/notp)**-2)
assert (b**(-y)).as_numer_denom() == (1, b**y)
assert (b**(-S.One)).as_numer_denom() == ((notp + x)**2, notp**2)
nonp = Symbol('nonp', nonpositive=True)
assert (((1 + x/nonp)**-2)**(-S.One)).as_numer_denom() == ((-nonp -
x)**2, nonp**2)
n = Symbol('n', negative=True)
assert (x**n).as_numer_denom() == (1, x**-n)
assert sqrt(1/n).as_numer_denom() == (S.ImaginaryUnit, sqrt(-n))
n = Symbol('0 or neg', nonpositive=True)
# if x and n are split up without negating each term and n is negative
# then the answer might be wrong; if n is 0 it won't matter since
# 1/oo and 1/zoo are both zero as is sqrt(0)/sqrt(-x) unless x is also
# zero (in which case the negative sign doesn't matter):
# 1/sqrt(1/-1) = -I but sqrt(-1)/sqrt(1) = I
assert (1/sqrt(x/n)).as_numer_denom() == (sqrt(-n), sqrt(-x))
c = Symbol('c', complex=True)
e = sqrt(1/c)
assert e.as_numer_denom() == (e, 1)
i = Symbol('i', integer=True)
assert ((1 + x/y)**i).as_numer_denom() == ((x + y)**i, y**i)
def test_Pow_Expr_args():
x = Symbol('x')
bases = [Basic(), Poly(x, x), FiniteSet(x)]
for base in bases:
with warns_deprecated_sympy():
Pow(base, S.One)
def test_Pow_signs():
"""Cf. issues 4595 and 5250"""
x = Symbol('x')
y = Symbol('y')
n = Symbol('n', even=True)
assert (3 - y)**2 != (y - 3)**2
assert (3 - y)**n != (y - 3)**n
assert (-3 + y - x)**2 != (3 - y + x)**2
assert (y - 3)**3 != -(3 - y)**3
def test_power_with_noncommutative_mul_as_base():
x = Symbol('x', commutative=False)
y = Symbol('y', commutative=False)
assert not (x*y)**3 == x**3*y**3
assert (2*x*y)**3 == 8*(x*y)**3
def test_power_rewrite_exp():
assert (I**I).rewrite(exp) == exp(-pi/2)
expr = (2 + 3*I)**(4 + 5*I)
assert expr.rewrite(exp) == exp((4 + 5*I)*(log(sqrt(13)) + I*atan(Rational(3, 2))))
assert expr.rewrite(exp).expand() == \
169*exp(5*I*log(13)/2)*exp(4*I*atan(Rational(3, 2)))*exp(-5*atan(Rational(3, 2)))
assert ((6 + 7*I)**5).rewrite(exp) == 7225*sqrt(85)*exp(5*I*atan(Rational(7, 6)))
expr = 5**(6 + 7*I)
assert expr.rewrite(exp) == exp((6 + 7*I)*log(5))
assert expr.rewrite(exp).expand() == 15625*exp(7*I*log(5))
assert Pow(123, 789, evaluate=False).rewrite(exp) == 123**789
assert (1**I).rewrite(exp) == 1**I
assert (0**I).rewrite(exp) == 0**I
expr = (-2)**(2 + 5*I)
assert expr.rewrite(exp) == exp((2 + 5*I)*(log(2) + I*pi))
assert expr.rewrite(exp).expand() == 4*exp(-5*pi)*exp(5*I*log(2))
assert ((-2)**S(-5)).rewrite(exp) == (-2)**S(-5)
x, y = symbols('x y')
assert (x**y).rewrite(exp) == exp(y*log(x))
assert (7**x).rewrite(exp) == exp(x*log(7), evaluate=False)
assert ((2 + 3*I)**x).rewrite(exp) == exp(x*(log(sqrt(13)) + I*atan(Rational(3, 2))))
assert (y**(5 + 6*I)).rewrite(exp) == exp(log(y)*(5 + 6*I))
assert all((1/func(x)).rewrite(exp) == 1/(func(x).rewrite(exp)) for func in
(sin, cos, tan, sec, csc, sinh, cosh, tanh))
def test_zero():
x = Symbol('x')
y = Symbol('y')
assert 0**x != 0
assert 0**(2*x) == 0**x
assert 0**(1.0*x) == 0**x
assert 0**(2.0*x) == 0**x
assert (0**(2 - x)).as_base_exp() == (0, 2 - x)
assert 0**(x - 2) != S.Infinity**(2 - x)
assert 0**(2*x*y) == 0**(x*y)
assert 0**(-2*x*y) == S.ComplexInfinity**(x*y)
#Test issue 19572
assert 0 ** -oo is zoo
assert power(0, -oo) is zoo
def test_pow_as_base_exp():
x = Symbol('x')
assert (S.Infinity**(2 - x)).as_base_exp() == (S.Infinity, 2 - x)
assert (S.Infinity**(x - 2)).as_base_exp() == (S.Infinity, x - 2)
p = S.Half**x
assert p.base, p.exp == p.as_base_exp() == (S(2), -x)
# issue 8344:
assert Pow(1, 2, evaluate=False).as_base_exp() == (S.One, S(2))
def test_nseries():
x = Symbol('x')
assert sqrt(I*x - 1)._eval_nseries(x, 4, None, 1) == I + x/2 + I*x**2/8 - x**3/16 + O(x**4)
assert sqrt(I*x - 1)._eval_nseries(x, 4, None, -1) == -I - x/2 - I*x**2/8 + x**3/16 + O(x**4)
assert cbrt(I*x - 1)._eval_nseries(x, 4, None, 1) == (-1)**(S(1)/3) - (-1)**(S(5)/6)*x/3 + \
(-1)**(S(1)/3)*x**2/9 + 5*(-1)**(S(5)/6)*x**3/81 + O(x**4)
assert cbrt(I*x - 1)._eval_nseries(x, 4, None, -1) == (-1)**(S(1)/3)*exp(-2*I*pi/3) - \
(-1)**(S(5)/6)*x*exp(-2*I*pi/3)/3 + (-1)**(S(1)/3)*x**2*exp(-2*I*pi/3)/9 + \
5*(-1)**(S(5)/6)*x**3*exp(-2*I*pi/3)/81 + O(x**4)
assert (1 / (exp(-1/x) + 1/x))._eval_nseries(x, 2, None) == -x**2*exp(-1/x) + x
def test_issue_6100_12942_4473():
x = Symbol('x')
y = Symbol('y')
assert x**1.0 != x
assert x != x**1.0
assert True != x**1.0
assert x**1.0 is not True
assert x is not True
assert x*y != (x*y)**1.0
# Pow != Symbol
assert (x**1.0)**1.0 != x
assert (x**1.0)**2.0 != x**2
b = Expr()
assert Pow(b, 1.0, evaluate=False) != b
# if the following gets distributed as a Mul (x**1.0*y**1.0 then
# __eq__ methods could be added to Symbol and Pow to detect the
# power-of-1.0 case.
assert ((x*y)**1.0).func is Pow
def test_issue_6208():
from sympy import root, Rational
I = S.ImaginaryUnit
assert sqrt(33**(I*Rational(9, 10))) == -33**(I*Rational(9, 20))
assert root((6*I)**(2*I), 3).as_base_exp()[1] == Rational(1, 3) # != 2*I/3
assert root((6*I)**(I/3), 3).as_base_exp()[1] == I/9
assert sqrt(exp(3*I)) == exp(I*Rational(3, 2))
assert sqrt(-sqrt(3)*(1 + 2*I)) == sqrt(sqrt(3))*sqrt(-1 - 2*I)
assert sqrt(exp(5*I)) == -exp(I*Rational(5, 2))
assert root(exp(5*I), 3).exp == Rational(1, 3)
def test_issue_6990():
x = Symbol('x')
a = Symbol('a')
b = Symbol('b')
assert (sqrt(a + b*x + x**2)).series(x, 0, 3).removeO() == \
sqrt(a)*x**2*(1/(2*a) - b**2/(8*a**2)) + sqrt(a) + b*x/(2*sqrt(a))
def test_issue_6068():
x = Symbol('x')
assert sqrt(sin(x)).series(x, 0, 7) == \
sqrt(x) - x**Rational(5, 2)/12 + x**Rational(9, 2)/1440 - \
x**Rational(13, 2)/24192 + O(x**7)
assert sqrt(sin(x)).series(x, 0, 9) == \
sqrt(x) - x**Rational(5, 2)/12 + x**Rational(9, 2)/1440 - \
x**Rational(13, 2)/24192 - 67*x**Rational(17, 2)/29030400 + O(x**9)
assert sqrt(sin(x**3)).series(x, 0, 19) == \
x**Rational(3, 2) - x**Rational(15, 2)/12 + x**Rational(27, 2)/1440 + O(x**19)
assert sqrt(sin(x**3)).series(x, 0, 20) == \
x**Rational(3, 2) - x**Rational(15, 2)/12 + x**Rational(27, 2)/1440 - \
x**Rational(39, 2)/24192 + O(x**20)
def test_issue_6782():
x = Symbol('x')
assert sqrt(sin(x**3)).series(x, 0, 7) == x**Rational(3, 2) + O(x**7)
assert sqrt(sin(x**4)).series(x, 0, 3) == x**2 + O(x**3)
def test_issue_6653():
x = Symbol('x')
assert (1 / sqrt(1 + sin(x**2))).series(x, 0, 3) == 1 - x**2/2 + O(x**3)
def test_issue_6429():
x = Symbol('x')
c = Symbol('c')
f = (c**2 + x)**(0.5)
assert f.series(x, x0=0, n=1) == (c**2)**0.5 + O(x)
assert f.taylor_term(0, x) == (c**2)**0.5
assert f.taylor_term(1, x) == 0.5*x*(c**2)**(-0.5)
assert f.taylor_term(2, x) == -0.125*x**2*(c**2)**(-1.5)
def test_issue_7638():
f = pi/log(sqrt(2))
assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f)
# if 1/3 -> 1.0/3 this should fail since it cannot be shown that the
# sign will be +/-1; for the previous "small arg" case, it didn't matter
# that this could not be proved
assert (1 + I)**(4*I*f) == ((1 + I)**(12*I*f))**Rational(1, 3)
assert (((1 + I)**(I*(1 + 7*f)))**Rational(1, 3)).exp == Rational(1, 3)
r = symbols('r', real=True)
assert sqrt(r**2) == abs(r)
assert cbrt(r**3) != r
assert sqrt(Pow(2*I, 5*S.Half)) != (2*I)**Rational(5, 4)
p = symbols('p', positive=True)
assert cbrt(p**2) == p**Rational(2, 3)
assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I'
assert sqrt(1/(1 + I)) == sqrt(1 - I)/sqrt(2) # or 1/sqrt(1 + I)
e = 1/(1 - sqrt(2))
assert sqrt(e) == I/sqrt(-1 + sqrt(2))
assert e**Rational(-1, 2) == -I*sqrt(-1 + sqrt(2))
assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp in [S.Half,
Rational(3, 2) + I/2]
assert sqrt(r**Rational(4, 3)) != r**Rational(2, 3)
assert sqrt((p + I)**Rational(4, 3)) == (p + I)**Rational(2, 3)
assert sqrt((p - p**2*I)**2) == p - p**2*I
assert sqrt((p + r*I)**2) != p + r*I
e = (1 + I/5)
assert sqrt(e**5) == e**(5*S.Half)
assert sqrt(e**6) == e**3
assert sqrt((1 + I*r)**6) != (1 + I*r)**3
def test_issue_8582():
assert 1**oo is nan
assert 1**(-oo) is nan
assert 1**zoo is nan
assert 1**(oo + I) is nan
assert 1**(1 + I*oo) is nan
assert 1**(oo + I*oo) is nan
def test_issue_8650():
n = Symbol('n', integer=True, nonnegative=True)
assert (n**n).is_positive is True
x = 5*n + 5
assert (x**(5*(n + 1))).is_positive is True
def test_issue_13914():
b = Symbol('b')
assert (-1)**zoo is nan
assert 2**zoo is nan
assert (S.Half)**(1 + zoo) is nan
assert I**(zoo + I) is nan
assert b**(I + zoo) is nan
def test_better_sqrt():
n = Symbol('n', integer=True, nonnegative=True)
assert sqrt(3 + 4*I) == 2 + I
assert sqrt(3 - 4*I) == 2 - I
assert sqrt(-3 - 4*I) == 1 - 2*I
assert sqrt(-3 + 4*I) == 1 + 2*I
assert sqrt(32 + 24*I) == 6 + 2*I
assert sqrt(32 - 24*I) == 6 - 2*I
assert sqrt(-32 - 24*I) == 2 - 6*I
assert sqrt(-32 + 24*I) == 2 + 6*I
# triple (3, 4, 5):
# parity of 3 matches parity of 5 and
# den, 4, is a square
assert sqrt((3 + 4*I)/4) == 1 + I/2
# triple (8, 15, 17)
# parity of 8 doesn't match parity of 17 but
# den/2, 8/2, is a square
assert sqrt((8 + 15*I)/8) == (5 + 3*I)/4
# handle the denominator
assert sqrt((3 - 4*I)/25) == (2 - I)/5
assert sqrt((3 - 4*I)/26) == (2 - I)/sqrt(26)
# mul
# issue #12739
assert sqrt((3 + 4*I)/(3 - 4*I)) == (3 + 4*I)/5
assert sqrt(2/(3 + 4*I)) == sqrt(2)/5*(2 - I)
assert sqrt(n/(3 + 4*I)).subs(n, 2) == sqrt(2)/5*(2 - I)
assert sqrt(-2/(3 + 4*I)) == sqrt(2)/5*(1 + 2*I)
assert sqrt(-n/(3 + 4*I)).subs(n, 2) == sqrt(2)/5*(1 + 2*I)
# power
assert sqrt(1/(3 + I*4)) == (2 - I)/5
assert sqrt(1/(3 - I)) == sqrt(10)*sqrt(3 + I)/10
# symbolic
i = symbols('i', imaginary=True)
assert sqrt(3/i) == Mul(sqrt(3), 1/sqrt(i), evaluate=False)
# multiples of 1/2; don't make this too automatic
assert sqrt(3 + 4*I)**3 == (2 + I)**3
assert Pow(3 + 4*I, Rational(3, 2)) == 2 + 11*I
assert Pow(6 + 8*I, Rational(3, 2)) == 2*sqrt(2)*(2 + 11*I)
n, d = (3 + 4*I), (3 - 4*I)**3
a = n/d
assert a.args == (1/d, n)
eq = sqrt(a)
assert eq.args == (a, S.Half)
assert expand_multinomial(eq) == sqrt((-117 + 44*I)*(3 + 4*I))/125
assert eq.expand() == (7 - 24*I)/125
# issue 12775
# pos im part
assert sqrt(2*I) == (1 + I)
assert sqrt(2*9*I) == Mul(3, 1 + I, evaluate=False)
assert Pow(2*I, 3*S.Half) == (1 + I)**3
# neg im part
assert sqrt(-I/2) == Mul(S.Half, 1 - I, evaluate=False)
# fractional im part
assert Pow(Rational(-9, 2)*I, Rational(3, 2)) == 27*(1 - I)**3/8
def test_issue_2993():
x = Symbol('x')
assert str((2.3*x - 4)**0.3) == '1.5157165665104*(0.575*x - 1)**0.3'
assert str((2.3*x + 4)**0.3) == '1.5157165665104*(0.575*x + 1)**0.3'
assert str((-2.3*x + 4)**0.3) == '1.5157165665104*(1 - 0.575*x)**0.3'
assert str((-2.3*x - 4)**0.3) == '1.5157165665104*(-0.575*x - 1)**0.3'
assert str((2.3*x - 2)**0.3) == '1.28386201800527*(x - 0.869565217391304)**0.3'
assert str((-2.3*x - 2)**0.3) == '1.28386201800527*(-x - 0.869565217391304)**0.3'
assert str((-2.3*x + 2)**0.3) == '1.28386201800527*(0.869565217391304 - x)**0.3'
assert str((2.3*x + 2)**0.3) == '1.28386201800527*(x + 0.869565217391304)**0.3'
assert str((2.3*x - 4)**Rational(1, 3)) == '2**(2/3)*(0.575*x - 1)**(1/3)'
eq = (2.3*x + 4)
assert eq**2 == 16*(0.575*x + 1)**2
assert (1/eq).args == (eq, -1) # don't change trivial power
# issue 17735
q=.5*exp(x) - .5*exp(-x) + 0.1
assert int((q**2).subs(x, 1)) == 1
# issue 17756
y = Symbol('y')
assert len(sqrt(x/(x + y)**2 + Float('0.008', 30)).subs(y, pi.n(25)).atoms(Float)) == 2
# issue 17756
a, b, c, d, e, f, g = symbols('a:g')
expr = sqrt(1 + a*(c**4 + g*d - 2*g*e - f*(-g + d))**2/
(c**3*b**2*(d - 3*e + 2*f)**2))/2
r = [
(a, N('0.0170992456333788667034850458615', 30)),
(b, N('0.0966594956075474769169134801223', 30)),
(c, N('0.390911862903463913632151616184', 30)),
(d, N('0.152812084558656566271750185933', 30)),
(e, N('0.137562344465103337106561623432', 30)),
(f, N('0.174259178881496659302933610355', 30)),
(g, N('0.220745448491223779615401870086', 30))]
tru = expr.n(30, subs=dict(r))
seq = expr.subs(r)
# although `tru` is the right way to evaluate
# expr with numerical values, `seq` will have
# significant loss of precision if extraction of
# the largest coefficient of a power's base's terms
# is done improperly
assert seq == tru
def test_issue_17450():
assert (erf(cosh(1)**7)**I).is_real is None
assert (erf(cosh(1)**7)**I).is_imaginary is False
assert (Pow(exp(1+sqrt(2)), ((1-sqrt(2))*I*pi), evaluate=False)).is_real is None
assert ((-10)**(10*I*pi/3)).is_real is False
assert ((-5)**(4*I*pi)).is_real is False
def test_issue_18190():
assert sqrt(1 / tan(1 + I)) == 1 / sqrt(tan(1 + I))
def test_issue_14815():
x = Symbol('x', real=True)
assert sqrt(x).is_extended_negative is False
x = Symbol('x', real=False)
assert sqrt(x).is_extended_negative is None
x = Symbol('x', complex=True)
assert sqrt(x).is_extended_negative is False
x = Symbol('x', extended_real=True)
assert sqrt(x).is_extended_negative is False
assert sqrt(zoo, evaluate=False).is_extended_negative is None
assert sqrt(nan, evaluate=False).is_extended_negative is None
def test_issue_18509():
assert unchanged(Mul, oo, 1/pi**oo)
assert (1/pi**oo).is_extended_positive == False
def test_issue_18762():
e, p = symbols('e p')
g0 = sqrt(1 + e**2 - 2*e*cos(p))
assert len(g0.series(e, 1, 3).args) == 4
def test_power_dispatcher():
class NewBase(Expr):
pass
class NewPow(NewBase, Pow):
pass
a, b = Symbol('a'), NewBase()
@power.register(Expr, NewBase)
@power.register(NewBase, Expr)
@power.register(NewBase, NewBase)
def _(a, b):
return NewPow(a, b)
# Pow called as fallback
assert power(2, 3) == 8*S.One
assert power(a, 2) == Pow(a, 2)
assert power(a, a) == Pow(a, a)
# NewPow called by dispatch
assert power(a, b) == NewPow(a, b)
assert power(b, a) == NewPow(b, a)
assert power(b, b) == NewPow(b, b)
|
3dba29cbd94e0eb77f3f8ebfc71956c4bc2a3df1baff8277096582e08a9f0cbe | from sympy.interactive.session import int_to_Integer
def test_int_to_Integer():
assert int_to_Integer("1 + 2.2 + 0x3 + 40") == \
'Integer (1 )+2.2 +Integer (0x3 )+Integer (40 )'
assert int_to_Integer("0b101") == 'Integer (0b101 )'
assert int_to_Integer("ab1 + 1 + '1 + 2'") == "ab1 +Integer (1 )+'1 + 2'"
assert int_to_Integer("(2 + \n3)") == '(Integer (2 )+\nInteger (3 ))'
assert int_to_Integer("2 + 2.0 + 2j + 2e-10") == 'Integer (2 )+2.0 +2j +2e-10 '
|
4dff516c71c4bbb063af757124aa5cad85379990bc6c3d79c4a481873325a6c1 | """Benchmarks for polynomials over Galois fields. """
from sympy.polys.galoistools import gf_from_dict, gf_factor_sqf
from sympy.polys.domains import ZZ
from sympy import pi, nextprime
def gathen_poly(n, p, K):
return gf_from_dict({n: K.one, 1: K.one, 0: K.one}, p, K)
def shoup_poly(n, p, K):
f = [K.one] * (n + 1)
for i in range(1, n + 1):
f[i] = (f[i - 1]**2 + K.one) % p
return f
def genprime(n, K):
return K(nextprime(int((2**n * pi).evalf())))
p_10 = genprime(10, ZZ)
f_10 = gathen_poly(10, p_10, ZZ)
p_20 = genprime(20, ZZ)
f_20 = gathen_poly(20, p_20, ZZ)
def timeit_gathen_poly_f10_zassenhaus():
gf_factor_sqf(f_10, p_10, ZZ, method='zassenhaus')
def timeit_gathen_poly_f10_shoup():
gf_factor_sqf(f_10, p_10, ZZ, method='shoup')
def timeit_gathen_poly_f20_zassenhaus():
gf_factor_sqf(f_20, p_20, ZZ, method='zassenhaus')
def timeit_gathen_poly_f20_shoup():
gf_factor_sqf(f_20, p_20, ZZ, method='shoup')
P_08 = genprime(8, ZZ)
F_10 = shoup_poly(10, P_08, ZZ)
P_18 = genprime(18, ZZ)
F_20 = shoup_poly(20, P_18, ZZ)
def timeit_shoup_poly_F10_zassenhaus():
gf_factor_sqf(F_10, P_08, ZZ, method='zassenhaus')
def timeit_shoup_poly_F10_shoup():
gf_factor_sqf(F_10, P_08, ZZ, method='shoup')
def timeit_shoup_poly_F20_zassenhaus():
gf_factor_sqf(F_20, P_18, ZZ, method='zassenhaus')
def timeit_shoup_poly_F20_shoup():
gf_factor_sqf(F_20, P_18, ZZ, method='shoup')
|
c1105e4b71f887727ba8c438214b78f0f0ba0edacabb3d4a08ab5a85fe4a0d03 | from sympy.polys.rings import ring
from sympy.polys.fields import field
from sympy.polys.domains import ZZ, QQ
from sympy.polys.solvers import solve_lin_sys
# Expected times on 3.4 GHz i7:
# In [1]: %timeit time_solve_lin_sys_189x49()
# 1 loops, best of 3: 864 ms per loop
# In [2]: %timeit time_solve_lin_sys_165x165()
# 1 loops, best of 3: 1.83 s per loop
# In [3]: %timeit time_solve_lin_sys_10x8()
# 1 loops, best of 3: 2.31 s per loop
# Benchmark R_165: shows how fast are arithmetics in QQ.
R_165, uk_0, uk_1, uk_2, uk_3, uk_4, uk_5, uk_6, uk_7, uk_8, uk_9, uk_10, uk_11, uk_12, uk_13, uk_14, uk_15, uk_16, uk_17, uk_18, uk_19, uk_20, uk_21, uk_22, uk_23, uk_24, uk_25, uk_26, uk_27, uk_28, uk_29, uk_30, uk_31, uk_32, uk_33, uk_34, uk_35, uk_36, uk_37, uk_38, uk_39, uk_40, uk_41, uk_42, uk_43, uk_44, uk_45, uk_46, uk_47, uk_48, uk_49, uk_50, uk_51, uk_52, uk_53, uk_54, uk_55, uk_56, uk_57, uk_58, uk_59, uk_60, uk_61, uk_62, uk_63, uk_64, uk_65, uk_66, uk_67, uk_68, uk_69, uk_70, uk_71, uk_72, uk_73, uk_74, uk_75, uk_76, uk_77, uk_78, uk_79, uk_80, uk_81, uk_82, uk_83, uk_84, uk_85, uk_86, uk_87, uk_88, uk_89, uk_90, uk_91, uk_92, uk_93, uk_94, uk_95, uk_96, uk_97, uk_98, uk_99, uk_100, uk_101, uk_102, uk_103, uk_104, uk_105, uk_106, uk_107, uk_108, uk_109, uk_110, uk_111, uk_112, uk_113, uk_114, uk_115, uk_116, uk_117, uk_118, uk_119, uk_120, uk_121, uk_122, uk_123, uk_124, uk_125, uk_126, uk_127, uk_128, uk_129, uk_130, uk_131, uk_132, uk_133, uk_134, uk_135, uk_136, uk_137, uk_138, uk_139, uk_140, uk_141, uk_142, uk_143, uk_144, uk_145, uk_146, uk_147, uk_148, uk_149, uk_150, uk_151, uk_152, uk_153, uk_154, uk_155, uk_156, uk_157, uk_158, uk_159, uk_160, uk_161, uk_162, uk_163, uk_164 = ring("uk_:165", QQ)
def eqs_165x165():
return [
uk_0 + 50719*uk_1 + 2789545*uk_10 + 411400*uk_100 + 1683000*uk_101 + 166375*uk_103 + 680625*uk_104 + 2784375*uk_106 + 729*uk_109 + 456471*uk_11 + 4131*uk_110 + 11016*uk_111 + 4455*uk_112 + 18225*uk_113 + 23409*uk_115 + 62424*uk_116 + 25245*uk_117 + 103275*uk_118 + 2586669*uk_12 + 166464*uk_120 + 67320*uk_121 + 275400*uk_122 + 27225*uk_124 + 111375*uk_125 + 455625*uk_127 + 6897784*uk_13 + 132651*uk_130 + 353736*uk_131 + 143055*uk_132 + 585225*uk_133 + 943296*uk_135 + 381480*uk_136 + 1560600*uk_137 + 154275*uk_139 + 2789545*uk_14 + 631125*uk_140 + 2581875*uk_142 + 2515456*uk_145 + 1017280*uk_146 + 4161600*uk_147 + 411400*uk_149 + 11411775*uk_15 + 1683000*uk_150 + 6885000*uk_152 + 166375*uk_155 + 680625*uk_156 + 2784375*uk_158 + 11390625*uk_161 + 3025*uk_17 + 495*uk_18 + 2805*uk_19 + 55*uk_2 + 7480*uk_20 + 3025*uk_21 + 12375*uk_22 + 81*uk_24 + 459*uk_25 + 1224*uk_26 + 495*uk_27 + 2025*uk_28 + 9*uk_3 + 2601*uk_30 + 6936*uk_31 + 2805*uk_32 + 11475*uk_33 + 18496*uk_35 + 7480*uk_36 + 30600*uk_37 + 3025*uk_39 + 51*uk_4 + 12375*uk_40 + 50625*uk_42 + 130470415844959*uk_45 + 141482932855*uk_46 + 23151752649*uk_47 + 131193265011*uk_48 + 349848706696*uk_49 + 136*uk_5 + 141482932855*uk_50 + 578793816225*uk_51 + 153424975*uk_53 + 25105905*uk_54 + 142266795*uk_55 + 379378120*uk_56 + 153424975*uk_57 + 627647625*uk_58 + 55*uk_6 + 4108239*uk_60 + 23280021*uk_61 + 62080056*uk_62 + 25105905*uk_63 + 102705975*uk_64 + 131920119*uk_66 + 351786984*uk_67 + 142266795*uk_68 + 582000525*uk_69 + 225*uk_7 + 938098624*uk_71 + 379378120*uk_72 + 1552001400*uk_73 + 153424975*uk_75 + 627647625*uk_76 + 2567649375*uk_78 + 166375*uk_81 + 27225*uk_82 + 154275*uk_83 + 411400*uk_84 + 166375*uk_85 + 680625*uk_86 + 4455*uk_88 + 25245*uk_89 + 2572416961*uk_9 + 67320*uk_90 + 27225*uk_91 + 111375*uk_92 + 143055*uk_94 + 381480*uk_95 + 154275*uk_96 + 631125*uk_97 + 1017280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 413820*uk_100 + 1633500*uk_101 + 65340*uk_102 + 178695*uk_103 + 705375*uk_104 + 28215*uk_105 + 2784375*uk_106 + 111375*uk_107 + 4455*uk_108 + 97336*uk_109 + 2333074*uk_11 + 19044*uk_110 + 279312*uk_111 + 120612*uk_112 + 476100*uk_113 + 19044*uk_114 + 3726*uk_115 + 54648*uk_116 + 23598*uk_117 + 93150*uk_118 + 3726*uk_119 + 456471*uk_12 + 801504*uk_120 + 346104*uk_121 + 1366200*uk_122 + 54648*uk_123 + 149454*uk_124 + 589950*uk_125 + 23598*uk_126 + 2328750*uk_127 + 93150*uk_128 + 3726*uk_129 + 6694908*uk_13 + 729*uk_130 + 10692*uk_131 + 4617*uk_132 + 18225*uk_133 + 729*uk_134 + 156816*uk_135 + 67716*uk_136 + 267300*uk_137 + 10692*uk_138 + 29241*uk_139 + 2890983*uk_14 + 115425*uk_140 + 4617*uk_141 + 455625*uk_142 + 18225*uk_143 + 729*uk_144 + 2299968*uk_145 + 993168*uk_146 + 3920400*uk_147 + 156816*uk_148 + 428868*uk_149 + 11411775*uk_15 + 1692900*uk_150 + 67716*uk_151 + 6682500*uk_152 + 267300*uk_153 + 10692*uk_154 + 185193*uk_155 + 731025*uk_156 + 29241*uk_157 + 2885625*uk_158 + 115425*uk_159 + 456471*uk_16 + 4617*uk_160 + 11390625*uk_161 + 455625*uk_162 + 18225*uk_163 + 729*uk_164 + 3025*uk_17 + 2530*uk_18 + 495*uk_19 + 55*uk_2 + 7260*uk_20 + 3135*uk_21 + 12375*uk_22 + 495*uk_23 + 2116*uk_24 + 414*uk_25 + 6072*uk_26 + 2622*uk_27 + 10350*uk_28 + 414*uk_29 + 46*uk_3 + 81*uk_30 + 1188*uk_31 + 513*uk_32 + 2025*uk_33 + 81*uk_34 + 17424*uk_35 + 7524*uk_36 + 29700*uk_37 + 1188*uk_38 + 3249*uk_39 + 9*uk_4 + 12825*uk_40 + 513*uk_41 + 50625*uk_42 + 2025*uk_43 + 81*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 118331180206*uk_47 + 23151752649*uk_48 + 339559038852*uk_49 + 132*uk_5 + 146627766777*uk_50 + 578793816225*uk_51 + 23151752649*uk_52 + 153424975*uk_53 + 128319070*uk_54 + 25105905*uk_55 + 368219940*uk_56 + 159004065*uk_57 + 627647625*uk_58 + 25105905*uk_59 + 57*uk_6 + 107321404*uk_60 + 20997666*uk_61 + 307965768*uk_62 + 132985218*uk_63 + 524941650*uk_64 + 20997666*uk_65 + 4108239*uk_66 + 60254172*uk_67 + 26018847*uk_68 + 102705975*uk_69 + 225*uk_7 + 4108239*uk_70 + 883727856*uk_71 + 381609756*uk_72 + 1506354300*uk_73 + 60254172*uk_74 + 164786031*uk_75 + 650471175*uk_76 + 26018847*uk_77 + 2567649375*uk_78 + 102705975*uk_79 + 9*uk_8 + 4108239*uk_80 + 166375*uk_81 + 139150*uk_82 + 27225*uk_83 + 399300*uk_84 + 172425*uk_85 + 680625*uk_86 + 27225*uk_87 + 116380*uk_88 + 22770*uk_89 + 2572416961*uk_9 + 333960*uk_90 + 144210*uk_91 + 569250*uk_92 + 22770*uk_93 + 4455*uk_94 + 65340*uk_95 + 28215*uk_96 + 111375*uk_97 + 4455*uk_98 + 958320*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 402380*uk_100 + 1534500*uk_101 + 313720*uk_102 + 191455*uk_103 + 730125*uk_104 + 149270*uk_105 + 2784375*uk_106 + 569250*uk_107 + 116380*uk_108 + 912673*uk_109 + 4919743*uk_11 + 432814*uk_110 + 1166716*uk_111 + 555131*uk_112 + 2117025*uk_113 + 432814*uk_114 + 205252*uk_115 + 553288*uk_116 + 263258*uk_117 + 1003950*uk_118 + 205252*uk_119 + 2333074*uk_12 + 1491472*uk_120 + 709652*uk_121 + 2706300*uk_122 + 553288*uk_123 + 337657*uk_124 + 1287675*uk_125 + 263258*uk_126 + 4910625*uk_127 + 1003950*uk_128 + 205252*uk_129 + 6289156*uk_13 + 97336*uk_130 + 262384*uk_131 + 124844*uk_132 + 476100*uk_133 + 97336*uk_134 + 707296*uk_135 + 336536*uk_136 + 1283400*uk_137 + 262384*uk_138 + 160126*uk_139 + 2992421*uk_14 + 610650*uk_140 + 124844*uk_141 + 2328750*uk_142 + 476100*uk_143 + 97336*uk_144 + 1906624*uk_145 + 907184*uk_146 + 3459600*uk_147 + 707296*uk_148 + 431644*uk_149 + 11411775*uk_15 + 1646100*uk_150 + 336536*uk_151 + 6277500*uk_152 + 1283400*uk_153 + 262384*uk_154 + 205379*uk_155 + 783225*uk_156 + 160126*uk_157 + 2986875*uk_158 + 610650*uk_159 + 2333074*uk_16 + 124844*uk_160 + 11390625*uk_161 + 2328750*uk_162 + 476100*uk_163 + 97336*uk_164 + 3025*uk_17 + 5335*uk_18 + 2530*uk_19 + 55*uk_2 + 6820*uk_20 + 3245*uk_21 + 12375*uk_22 + 2530*uk_23 + 9409*uk_24 + 4462*uk_25 + 12028*uk_26 + 5723*uk_27 + 21825*uk_28 + 4462*uk_29 + 97*uk_3 + 2116*uk_30 + 5704*uk_31 + 2714*uk_32 + 10350*uk_33 + 2116*uk_34 + 15376*uk_35 + 7316*uk_36 + 27900*uk_37 + 5704*uk_38 + 3481*uk_39 + 46*uk_4 + 13275*uk_40 + 2714*uk_41 + 50625*uk_42 + 10350*uk_43 + 2116*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 249524445217*uk_47 + 118331180206*uk_48 + 318979703164*uk_49 + 124*uk_5 + 151772600699*uk_50 + 578793816225*uk_51 + 118331180206*uk_52 + 153424975*uk_53 + 270585865*uk_54 + 128319070*uk_55 + 345903580*uk_56 + 164583155*uk_57 + 627647625*uk_58 + 128319070*uk_59 + 59*uk_6 + 477215071*uk_60 + 226308178*uk_61 + 610048132*uk_62 + 290264837*uk_63 + 1106942175*uk_64 + 226308178*uk_65 + 107321404*uk_66 + 289301176*uk_67 + 137651366*uk_68 + 524941650*uk_69 + 225*uk_7 + 107321404*uk_70 + 779855344*uk_71 + 371060204*uk_72 + 1415060100*uk_73 + 289301176*uk_74 + 176552839*uk_75 + 673294725*uk_76 + 137651366*uk_77 + 2567649375*uk_78 + 524941650*uk_79 + 46*uk_8 + 107321404*uk_80 + 166375*uk_81 + 293425*uk_82 + 139150*uk_83 + 375100*uk_84 + 178475*uk_85 + 680625*uk_86 + 139150*uk_87 + 517495*uk_88 + 245410*uk_89 + 2572416961*uk_9 + 661540*uk_90 + 314765*uk_91 + 1200375*uk_92 + 245410*uk_93 + 116380*uk_94 + 313720*uk_95 + 149270*uk_96 + 569250*uk_97 + 116380*uk_98 + 845680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 389180*uk_100 + 1435500*uk_101 + 618860*uk_102 + 204655*uk_103 + 754875*uk_104 + 325435*uk_105 + 2784375*uk_106 + 1200375*uk_107 + 517495*uk_108 + 3375000*uk_109 + 7607850*uk_11 + 2182500*uk_110 + 2610000*uk_111 + 1372500*uk_112 + 5062500*uk_113 + 2182500*uk_114 + 1411350*uk_115 + 1687800*uk_116 + 887550*uk_117 + 3273750*uk_118 + 1411350*uk_119 + 4919743*uk_12 + 2018400*uk_120 + 1061400*uk_121 + 3915000*uk_122 + 1687800*uk_123 + 558150*uk_124 + 2058750*uk_125 + 887550*uk_126 + 7593750*uk_127 + 3273750*uk_128 + 1411350*uk_129 + 5883404*uk_13 + 912673*uk_130 + 1091444*uk_131 + 573949*uk_132 + 2117025*uk_133 + 912673*uk_134 + 1305232*uk_135 + 686372*uk_136 + 2531700*uk_137 + 1091444*uk_138 + 360937*uk_139 + 3093859*uk_14 + 1331325*uk_140 + 573949*uk_141 + 4910625*uk_142 + 2117025*uk_143 + 912673*uk_144 + 1560896*uk_145 + 820816*uk_146 + 3027600*uk_147 + 1305232*uk_148 + 431636*uk_149 + 11411775*uk_15 + 1592100*uk_150 + 686372*uk_151 + 5872500*uk_152 + 2531700*uk_153 + 1091444*uk_154 + 226981*uk_155 + 837225*uk_156 + 360937*uk_157 + 3088125*uk_158 + 1331325*uk_159 + 4919743*uk_16 + 573949*uk_160 + 11390625*uk_161 + 4910625*uk_162 + 2117025*uk_163 + 912673*uk_164 + 3025*uk_17 + 8250*uk_18 + 5335*uk_19 + 55*uk_2 + 6380*uk_20 + 3355*uk_21 + 12375*uk_22 + 5335*uk_23 + 22500*uk_24 + 14550*uk_25 + 17400*uk_26 + 9150*uk_27 + 33750*uk_28 + 14550*uk_29 + 150*uk_3 + 9409*uk_30 + 11252*uk_31 + 5917*uk_32 + 21825*uk_33 + 9409*uk_34 + 13456*uk_35 + 7076*uk_36 + 26100*uk_37 + 11252*uk_38 + 3721*uk_39 + 97*uk_4 + 13725*uk_40 + 5917*uk_41 + 50625*uk_42 + 21825*uk_43 + 9409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 385862544150*uk_47 + 249524445217*uk_48 + 298400367476*uk_49 + 116*uk_5 + 156917434621*uk_50 + 578793816225*uk_51 + 249524445217*uk_52 + 153424975*uk_53 + 418431750*uk_54 + 270585865*uk_55 + 323587220*uk_56 + 170162245*uk_57 + 627647625*uk_58 + 270585865*uk_59 + 61*uk_6 + 1141177500*uk_60 + 737961450*uk_61 + 882510600*uk_62 + 464078850*uk_63 + 1711766250*uk_64 + 737961450*uk_65 + 477215071*uk_66 + 570690188*uk_67 + 300104323*uk_68 + 1106942175*uk_69 + 225*uk_7 + 477215071*uk_70 + 682474864*uk_71 + 358887644*uk_72 + 1323765900*uk_73 + 570690188*uk_74 + 188725399*uk_75 + 696118275*uk_76 + 300104323*uk_77 + 2567649375*uk_78 + 1106942175*uk_79 + 97*uk_8 + 477215071*uk_80 + 166375*uk_81 + 453750*uk_82 + 293425*uk_83 + 350900*uk_84 + 184525*uk_85 + 680625*uk_86 + 293425*uk_87 + 1237500*uk_88 + 800250*uk_89 + 2572416961*uk_9 + 957000*uk_90 + 503250*uk_91 + 1856250*uk_92 + 800250*uk_93 + 517495*uk_94 + 618860*uk_95 + 325435*uk_96 + 1200375*uk_97 + 517495*uk_98 + 740080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 374220*uk_100 + 1336500*uk_101 + 891000*uk_102 + 218295*uk_103 + 779625*uk_104 + 519750*uk_105 + 2784375*uk_106 + 1856250*uk_107 + 1237500*uk_108 + 7189057*uk_109 + 9788767*uk_11 + 5587350*uk_110 + 4022892*uk_111 + 2346687*uk_112 + 8381025*uk_113 + 5587350*uk_114 + 4342500*uk_115 + 3126600*uk_116 + 1823850*uk_117 + 6513750*uk_118 + 4342500*uk_119 + 7607850*uk_12 + 2251152*uk_120 + 1313172*uk_121 + 4689900*uk_122 + 3126600*uk_123 + 766017*uk_124 + 2735775*uk_125 + 1823850*uk_126 + 9770625*uk_127 + 6513750*uk_128 + 4342500*uk_129 + 5477652*uk_13 + 3375000*uk_130 + 2430000*uk_131 + 1417500*uk_132 + 5062500*uk_133 + 3375000*uk_134 + 1749600*uk_135 + 1020600*uk_136 + 3645000*uk_137 + 2430000*uk_138 + 595350*uk_139 + 3195297*uk_14 + 2126250*uk_140 + 1417500*uk_141 + 7593750*uk_142 + 5062500*uk_143 + 3375000*uk_144 + 1259712*uk_145 + 734832*uk_146 + 2624400*uk_147 + 1749600*uk_148 + 428652*uk_149 + 11411775*uk_15 + 1530900*uk_150 + 1020600*uk_151 + 5467500*uk_152 + 3645000*uk_153 + 2430000*uk_154 + 250047*uk_155 + 893025*uk_156 + 595350*uk_157 + 3189375*uk_158 + 2126250*uk_159 + 7607850*uk_16 + 1417500*uk_160 + 11390625*uk_161 + 7593750*uk_162 + 5062500*uk_163 + 3375000*uk_164 + 3025*uk_17 + 10615*uk_18 + 8250*uk_19 + 55*uk_2 + 5940*uk_20 + 3465*uk_21 + 12375*uk_22 + 8250*uk_23 + 37249*uk_24 + 28950*uk_25 + 20844*uk_26 + 12159*uk_27 + 43425*uk_28 + 28950*uk_29 + 193*uk_3 + 22500*uk_30 + 16200*uk_31 + 9450*uk_32 + 33750*uk_33 + 22500*uk_34 + 11664*uk_35 + 6804*uk_36 + 24300*uk_37 + 16200*uk_38 + 3969*uk_39 + 150*uk_4 + 14175*uk_40 + 9450*uk_41 + 50625*uk_42 + 33750*uk_43 + 22500*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 496476473473*uk_47 + 385862544150*uk_48 + 277821031788*uk_49 + 108*uk_5 + 162062268543*uk_50 + 578793816225*uk_51 + 385862544150*uk_52 + 153424975*uk_53 + 538382185*uk_54 + 418431750*uk_55 + 301270860*uk_56 + 175741335*uk_57 + 627647625*uk_58 + 418431750*uk_59 + 63*uk_6 + 1889232031*uk_60 + 1468315050*uk_61 + 1057186836*uk_62 + 616692321*uk_63 + 2202472575*uk_64 + 1468315050*uk_65 + 1141177500*uk_66 + 821647800*uk_67 + 479294550*uk_68 + 1711766250*uk_69 + 225*uk_7 + 1141177500*uk_70 + 591586416*uk_71 + 345092076*uk_72 + 1232471700*uk_73 + 821647800*uk_74 + 201303711*uk_75 + 718941825*uk_76 + 479294550*uk_77 + 2567649375*uk_78 + 1711766250*uk_79 + 150*uk_8 + 1141177500*uk_80 + 166375*uk_81 + 583825*uk_82 + 453750*uk_83 + 326700*uk_84 + 190575*uk_85 + 680625*uk_86 + 453750*uk_87 + 2048695*uk_88 + 1592250*uk_89 + 2572416961*uk_9 + 1146420*uk_90 + 668745*uk_91 + 2388375*uk_92 + 1592250*uk_93 + 1237500*uk_94 + 891000*uk_95 + 519750*uk_96 + 1856250*uk_97 + 1237500*uk_98 + 641520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 357500*uk_100 + 1237500*uk_101 + 1061500*uk_102 + 232375*uk_103 + 804375*uk_104 + 689975*uk_105 + 2784375*uk_106 + 2388375*uk_107 + 2048695*uk_108 + 9800344*uk_109 + 10853866*uk_11 + 8838628*uk_110 + 4579600*uk_111 + 2976740*uk_112 + 10304100*uk_113 + 8838628*uk_114 + 7971286*uk_115 + 4130200*uk_116 + 2684630*uk_117 + 9292950*uk_118 + 7971286*uk_119 + 9788767*uk_12 + 2140000*uk_120 + 1391000*uk_121 + 4815000*uk_122 + 4130200*uk_123 + 904150*uk_124 + 3129750*uk_125 + 2684630*uk_126 + 10833750*uk_127 + 9292950*uk_128 + 7971286*uk_129 + 5071900*uk_13 + 7189057*uk_130 + 3724900*uk_131 + 2421185*uk_132 + 8381025*uk_133 + 7189057*uk_134 + 1930000*uk_135 + 1254500*uk_136 + 4342500*uk_137 + 3724900*uk_138 + 815425*uk_139 + 3296735*uk_14 + 2822625*uk_140 + 2421185*uk_141 + 9770625*uk_142 + 8381025*uk_143 + 7189057*uk_144 + 1000000*uk_145 + 650000*uk_146 + 2250000*uk_147 + 1930000*uk_148 + 422500*uk_149 + 11411775*uk_15 + 1462500*uk_150 + 1254500*uk_151 + 5062500*uk_152 + 4342500*uk_153 + 3724900*uk_154 + 274625*uk_155 + 950625*uk_156 + 815425*uk_157 + 3290625*uk_158 + 2822625*uk_159 + 9788767*uk_16 + 2421185*uk_160 + 11390625*uk_161 + 9770625*uk_162 + 8381025*uk_163 + 7189057*uk_164 + 3025*uk_17 + 11770*uk_18 + 10615*uk_19 + 55*uk_2 + 5500*uk_20 + 3575*uk_21 + 12375*uk_22 + 10615*uk_23 + 45796*uk_24 + 41302*uk_25 + 21400*uk_26 + 13910*uk_27 + 48150*uk_28 + 41302*uk_29 + 214*uk_3 + 37249*uk_30 + 19300*uk_31 + 12545*uk_32 + 43425*uk_33 + 37249*uk_34 + 10000*uk_35 + 6500*uk_36 + 22500*uk_37 + 19300*uk_38 + 4225*uk_39 + 193*uk_4 + 14625*uk_40 + 12545*uk_41 + 50625*uk_42 + 43425*uk_43 + 37249*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 550497229654*uk_47 + 496476473473*uk_48 + 257241696100*uk_49 + 100*uk_5 + 167207102465*uk_50 + 578793816225*uk_51 + 496476473473*uk_52 + 153424975*uk_53 + 596962630*uk_54 + 538382185*uk_55 + 278954500*uk_56 + 181320425*uk_57 + 627647625*uk_58 + 538382185*uk_59 + 65*uk_6 + 2322727324*uk_60 + 2094796138*uk_61 + 1085386600*uk_62 + 705501290*uk_63 + 2442119850*uk_64 + 2094796138*uk_65 + 1889232031*uk_66 + 978876700*uk_67 + 636269855*uk_68 + 2202472575*uk_69 + 225*uk_7 + 1889232031*uk_70 + 507190000*uk_71 + 329673500*uk_72 + 1141177500*uk_73 + 978876700*uk_74 + 214287775*uk_75 + 741765375*uk_76 + 636269855*uk_77 + 2567649375*uk_78 + 2202472575*uk_79 + 193*uk_8 + 1889232031*uk_80 + 166375*uk_81 + 647350*uk_82 + 583825*uk_83 + 302500*uk_84 + 196625*uk_85 + 680625*uk_86 + 583825*uk_87 + 2518780*uk_88 + 2271610*uk_89 + 2572416961*uk_9 + 1177000*uk_90 + 765050*uk_91 + 2648250*uk_92 + 2271610*uk_93 + 2048695*uk_94 + 1061500*uk_95 + 689975*uk_96 + 2388375*uk_97 + 2048695*uk_98 + 550000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 339020*uk_100 + 1138500*uk_101 + 1082840*uk_102 + 246895*uk_103 + 829125*uk_104 + 788590*uk_105 + 2784375*uk_106 + 2648250*uk_107 + 2518780*uk_108 + 8120601*uk_109 + 10194519*uk_11 + 8645814*uk_110 + 3716892*uk_111 + 2706867*uk_112 + 9090225*uk_113 + 8645814*uk_114 + 9204996*uk_115 + 3957288*uk_116 + 2881938*uk_117 + 9678150*uk_118 + 9204996*uk_119 + 10853866*uk_12 + 1701264*uk_120 + 1238964*uk_121 + 4160700*uk_122 + 3957288*uk_123 + 902289*uk_124 + 3030075*uk_125 + 2881938*uk_126 + 10175625*uk_127 + 9678150*uk_128 + 9204996*uk_129 + 4666148*uk_13 + 9800344*uk_130 + 4213232*uk_131 + 3068332*uk_132 + 10304100*uk_133 + 9800344*uk_134 + 1811296*uk_135 + 1319096*uk_136 + 4429800*uk_137 + 4213232*uk_138 + 960646*uk_139 + 3398173*uk_14 + 3226050*uk_140 + 3068332*uk_141 + 10833750*uk_142 + 10304100*uk_143 + 9800344*uk_144 + 778688*uk_145 + 567088*uk_146 + 1904400*uk_147 + 1811296*uk_148 + 412988*uk_149 + 11411775*uk_15 + 1386900*uk_150 + 1319096*uk_151 + 4657500*uk_152 + 4429800*uk_153 + 4213232*uk_154 + 300763*uk_155 + 1010025*uk_156 + 960646*uk_157 + 3391875*uk_158 + 3226050*uk_159 + 10853866*uk_16 + 3068332*uk_160 + 11390625*uk_161 + 10833750*uk_162 + 10304100*uk_163 + 9800344*uk_164 + 3025*uk_17 + 11055*uk_18 + 11770*uk_19 + 55*uk_2 + 5060*uk_20 + 3685*uk_21 + 12375*uk_22 + 11770*uk_23 + 40401*uk_24 + 43014*uk_25 + 18492*uk_26 + 13467*uk_27 + 45225*uk_28 + 43014*uk_29 + 201*uk_3 + 45796*uk_30 + 19688*uk_31 + 14338*uk_32 + 48150*uk_33 + 45796*uk_34 + 8464*uk_35 + 6164*uk_36 + 20700*uk_37 + 19688*uk_38 + 4489*uk_39 + 214*uk_4 + 15075*uk_40 + 14338*uk_41 + 50625*uk_42 + 48150*uk_43 + 45796*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 517055809161*uk_47 + 550497229654*uk_48 + 236662360412*uk_49 + 92*uk_5 + 172351936387*uk_50 + 578793816225*uk_51 + 550497229654*uk_52 + 153424975*uk_53 + 560698545*uk_54 + 596962630*uk_55 + 256638140*uk_56 + 186899515*uk_57 + 627647625*uk_58 + 596962630*uk_59 + 67*uk_6 + 2049098319*uk_60 + 2181627066*uk_61 + 937895748*uk_62 + 683032773*uk_63 + 2293766775*uk_64 + 2181627066*uk_65 + 2322727324*uk_66 + 998555672*uk_67 + 727209022*uk_68 + 2442119850*uk_69 + 225*uk_7 + 2322727324*uk_70 + 429285616*uk_71 + 312631916*uk_72 + 1049883300*uk_73 + 998555672*uk_74 + 227677591*uk_75 + 764588925*uk_76 + 727209022*uk_77 + 2567649375*uk_78 + 2442119850*uk_79 + 214*uk_8 + 2322727324*uk_80 + 166375*uk_81 + 608025*uk_82 + 647350*uk_83 + 278300*uk_84 + 202675*uk_85 + 680625*uk_86 + 647350*uk_87 + 2222055*uk_88 + 2365770*uk_89 + 2572416961*uk_9 + 1017060*uk_90 + 740685*uk_91 + 2487375*uk_92 + 2365770*uk_93 + 2518780*uk_94 + 1082840*uk_95 + 788590*uk_96 + 2648250*uk_97 + 2518780*uk_98 + 465520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 318780*uk_100 + 1039500*uk_101 + 928620*uk_102 + 261855*uk_103 + 853875*uk_104 + 762795*uk_105 + 2784375*uk_106 + 2487375*uk_107 + 2222055*uk_108 + 2863288*uk_109 + 7202098*uk_11 + 4052964*uk_110 + 1693776*uk_111 + 1391316*uk_112 + 4536900*uk_113 + 4052964*uk_114 + 5736942*uk_115 + 2397528*uk_116 + 1969398*uk_117 + 6421950*uk_118 + 5736942*uk_119 + 10194519*uk_12 + 1001952*uk_120 + 823032*uk_121 + 2683800*uk_122 + 2397528*uk_123 + 676062*uk_124 + 2204550*uk_125 + 1969398*uk_126 + 7188750*uk_127 + 6421950*uk_128 + 5736942*uk_129 + 4260396*uk_13 + 8120601*uk_130 + 3393684*uk_131 + 2787669*uk_132 + 9090225*uk_133 + 8120601*uk_134 + 1418256*uk_135 + 1164996*uk_136 + 3798900*uk_137 + 3393684*uk_138 + 956961*uk_139 + 3499611*uk_14 + 3120525*uk_140 + 2787669*uk_141 + 10175625*uk_142 + 9090225*uk_143 + 8120601*uk_144 + 592704*uk_145 + 486864*uk_146 + 1587600*uk_147 + 1418256*uk_148 + 399924*uk_149 + 11411775*uk_15 + 1304100*uk_150 + 1164996*uk_151 + 4252500*uk_152 + 3798900*uk_153 + 3393684*uk_154 + 328509*uk_155 + 1071225*uk_156 + 956961*uk_157 + 3493125*uk_158 + 3120525*uk_159 + 10194519*uk_16 + 2787669*uk_160 + 11390625*uk_161 + 10175625*uk_162 + 9090225*uk_163 + 8120601*uk_164 + 3025*uk_17 + 7810*uk_18 + 11055*uk_19 + 55*uk_2 + 4620*uk_20 + 3795*uk_21 + 12375*uk_22 + 11055*uk_23 + 20164*uk_24 + 28542*uk_25 + 11928*uk_26 + 9798*uk_27 + 31950*uk_28 + 28542*uk_29 + 142*uk_3 + 40401*uk_30 + 16884*uk_31 + 13869*uk_32 + 45225*uk_33 + 40401*uk_34 + 7056*uk_35 + 5796*uk_36 + 18900*uk_37 + 16884*uk_38 + 4761*uk_39 + 201*uk_4 + 15525*uk_40 + 13869*uk_41 + 50625*uk_42 + 45225*uk_43 + 40401*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 365283208462*uk_47 + 517055809161*uk_48 + 216083024724*uk_49 + 84*uk_5 + 177496770309*uk_50 + 578793816225*uk_51 + 517055809161*uk_52 + 153424975*uk_53 + 396115390*uk_54 + 560698545*uk_55 + 234321780*uk_56 + 192478605*uk_57 + 627647625*uk_58 + 560698545*uk_59 + 69*uk_6 + 1022697916*uk_60 + 1447621698*uk_61 + 604976232*uk_62 + 496944762*uk_63 + 1620472050*uk_64 + 1447621698*uk_65 + 2049098319*uk_66 + 856339596*uk_67 + 703421811*uk_68 + 2293766775*uk_69 + 225*uk_7 + 2049098319*uk_70 + 357873264*uk_71 + 293967324*uk_72 + 958589100*uk_73 + 856339596*uk_74 + 241473159*uk_75 + 787412475*uk_76 + 703421811*uk_77 + 2567649375*uk_78 + 2293766775*uk_79 + 201*uk_8 + 2049098319*uk_80 + 166375*uk_81 + 429550*uk_82 + 608025*uk_83 + 254100*uk_84 + 208725*uk_85 + 680625*uk_86 + 608025*uk_87 + 1109020*uk_88 + 1569810*uk_89 + 2572416961*uk_9 + 656040*uk_90 + 538890*uk_91 + 1757250*uk_92 + 1569810*uk_93 + 2222055*uk_94 + 928620*uk_95 + 762795*uk_96 + 2487375*uk_97 + 2222055*uk_98 + 388080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 296780*uk_100 + 940500*uk_101 + 593560*uk_102 + 277255*uk_103 + 878625*uk_104 + 554510*uk_105 + 2784375*uk_106 + 1757250*uk_107 + 1109020*uk_108 + 15625*uk_109 + 1267975*uk_11 + 88750*uk_110 + 47500*uk_111 + 44375*uk_112 + 140625*uk_113 + 88750*uk_114 + 504100*uk_115 + 269800*uk_116 + 252050*uk_117 + 798750*uk_118 + 504100*uk_119 + 7202098*uk_12 + 144400*uk_120 + 134900*uk_121 + 427500*uk_122 + 269800*uk_123 + 126025*uk_124 + 399375*uk_125 + 252050*uk_126 + 1265625*uk_127 + 798750*uk_128 + 504100*uk_129 + 3854644*uk_13 + 2863288*uk_130 + 1532464*uk_131 + 1431644*uk_132 + 4536900*uk_133 + 2863288*uk_134 + 820192*uk_135 + 766232*uk_136 + 2428200*uk_137 + 1532464*uk_138 + 715822*uk_139 + 3601049*uk_14 + 2268450*uk_140 + 1431644*uk_141 + 7188750*uk_142 + 4536900*uk_143 + 2863288*uk_144 + 438976*uk_145 + 410096*uk_146 + 1299600*uk_147 + 820192*uk_148 + 383116*uk_149 + 11411775*uk_15 + 1214100*uk_150 + 766232*uk_151 + 3847500*uk_152 + 2428200*uk_153 + 1532464*uk_154 + 357911*uk_155 + 1134225*uk_156 + 715822*uk_157 + 3594375*uk_158 + 2268450*uk_159 + 7202098*uk_16 + 1431644*uk_160 + 11390625*uk_161 + 7188750*uk_162 + 4536900*uk_163 + 2863288*uk_164 + 3025*uk_17 + 1375*uk_18 + 7810*uk_19 + 55*uk_2 + 4180*uk_20 + 3905*uk_21 + 12375*uk_22 + 7810*uk_23 + 625*uk_24 + 3550*uk_25 + 1900*uk_26 + 1775*uk_27 + 5625*uk_28 + 3550*uk_29 + 25*uk_3 + 20164*uk_30 + 10792*uk_31 + 10082*uk_32 + 31950*uk_33 + 20164*uk_34 + 5776*uk_35 + 5396*uk_36 + 17100*uk_37 + 10792*uk_38 + 5041*uk_39 + 142*uk_4 + 15975*uk_40 + 10082*uk_41 + 50625*uk_42 + 31950*uk_43 + 20164*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 64310424025*uk_47 + 365283208462*uk_48 + 195503689036*uk_49 + 76*uk_5 + 182641604231*uk_50 + 578793816225*uk_51 + 365283208462*uk_52 + 153424975*uk_53 + 69738625*uk_54 + 396115390*uk_55 + 212005420*uk_56 + 198057695*uk_57 + 627647625*uk_58 + 396115390*uk_59 + 71*uk_6 + 31699375*uk_60 + 180052450*uk_61 + 96366100*uk_62 + 90026225*uk_63 + 285294375*uk_64 + 180052450*uk_65 + 1022697916*uk_66 + 547359448*uk_67 + 511348958*uk_68 + 1620472050*uk_69 + 225*uk_7 + 1022697916*uk_70 + 292952944*uk_71 + 273679724*uk_72 + 867294900*uk_73 + 547359448*uk_74 + 255674479*uk_75 + 810236025*uk_76 + 511348958*uk_77 + 2567649375*uk_78 + 1620472050*uk_79 + 142*uk_8 + 1022697916*uk_80 + 166375*uk_81 + 75625*uk_82 + 429550*uk_83 + 229900*uk_84 + 214775*uk_85 + 680625*uk_86 + 429550*uk_87 + 34375*uk_88 + 195250*uk_89 + 2572416961*uk_9 + 104500*uk_90 + 97625*uk_91 + 309375*uk_92 + 195250*uk_93 + 1109020*uk_94 + 593560*uk_95 + 554510*uk_96 + 1757250*uk_97 + 1109020*uk_98 + 317680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 321200*uk_100 + 990000*uk_101 + 110000*uk_102 + 293095*uk_103 + 903375*uk_104 + 100375*uk_105 + 2784375*uk_106 + 309375*uk_107 + 34375*uk_108 + 185193*uk_109 + 2890983*uk_11 + 81225*uk_110 + 259920*uk_111 + 237177*uk_112 + 731025*uk_113 + 81225*uk_114 + 35625*uk_115 + 114000*uk_116 + 104025*uk_117 + 320625*uk_118 + 35625*uk_119 + 1267975*uk_12 + 364800*uk_120 + 332880*uk_121 + 1026000*uk_122 + 114000*uk_123 + 303753*uk_124 + 936225*uk_125 + 104025*uk_126 + 2885625*uk_127 + 320625*uk_128 + 35625*uk_129 + 4057520*uk_13 + 15625*uk_130 + 50000*uk_131 + 45625*uk_132 + 140625*uk_133 + 15625*uk_134 + 160000*uk_135 + 146000*uk_136 + 450000*uk_137 + 50000*uk_138 + 133225*uk_139 + 3702487*uk_14 + 410625*uk_140 + 45625*uk_141 + 1265625*uk_142 + 140625*uk_143 + 15625*uk_144 + 512000*uk_145 + 467200*uk_146 + 1440000*uk_147 + 160000*uk_148 + 426320*uk_149 + 11411775*uk_15 + 1314000*uk_150 + 146000*uk_151 + 4050000*uk_152 + 450000*uk_153 + 50000*uk_154 + 389017*uk_155 + 1199025*uk_156 + 133225*uk_157 + 3695625*uk_158 + 410625*uk_159 + 1267975*uk_16 + 45625*uk_160 + 11390625*uk_161 + 1265625*uk_162 + 140625*uk_163 + 15625*uk_164 + 3025*uk_17 + 3135*uk_18 + 1375*uk_19 + 55*uk_2 + 4400*uk_20 + 4015*uk_21 + 12375*uk_22 + 1375*uk_23 + 3249*uk_24 + 1425*uk_25 + 4560*uk_26 + 4161*uk_27 + 12825*uk_28 + 1425*uk_29 + 57*uk_3 + 625*uk_30 + 2000*uk_31 + 1825*uk_32 + 5625*uk_33 + 625*uk_34 + 6400*uk_35 + 5840*uk_36 + 18000*uk_37 + 2000*uk_38 + 5329*uk_39 + 25*uk_4 + 16425*uk_40 + 1825*uk_41 + 50625*uk_42 + 5625*uk_43 + 625*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 146627766777*uk_47 + 64310424025*uk_48 + 205793356880*uk_49 + 80*uk_5 + 187786438153*uk_50 + 578793816225*uk_51 + 64310424025*uk_52 + 153424975*uk_53 + 159004065*uk_54 + 69738625*uk_55 + 223163600*uk_56 + 203636785*uk_57 + 627647625*uk_58 + 69738625*uk_59 + 73*uk_6 + 164786031*uk_60 + 72274575*uk_61 + 231278640*uk_62 + 211041759*uk_63 + 650471175*uk_64 + 72274575*uk_65 + 31699375*uk_66 + 101438000*uk_67 + 92562175*uk_68 + 285294375*uk_69 + 225*uk_7 + 31699375*uk_70 + 324601600*uk_71 + 296198960*uk_72 + 912942000*uk_73 + 101438000*uk_74 + 270281551*uk_75 + 833059575*uk_76 + 92562175*uk_77 + 2567649375*uk_78 + 285294375*uk_79 + 25*uk_8 + 31699375*uk_80 + 166375*uk_81 + 172425*uk_82 + 75625*uk_83 + 242000*uk_84 + 220825*uk_85 + 680625*uk_86 + 75625*uk_87 + 178695*uk_88 + 78375*uk_89 + 2572416961*uk_9 + 250800*uk_90 + 228855*uk_91 + 705375*uk_92 + 78375*uk_93 + 34375*uk_94 + 110000*uk_95 + 100375*uk_96 + 309375*uk_97 + 34375*uk_98 + 352000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 297000*uk_100 + 891000*uk_101 + 225720*uk_102 + 309375*uk_103 + 928125*uk_104 + 235125*uk_105 + 2784375*uk_106 + 705375*uk_107 + 178695*uk_108 + 6859*uk_109 + 963661*uk_11 + 20577*uk_110 + 25992*uk_111 + 27075*uk_112 + 81225*uk_113 + 20577*uk_114 + 61731*uk_115 + 77976*uk_116 + 81225*uk_117 + 243675*uk_118 + 61731*uk_119 + 2890983*uk_12 + 98496*uk_120 + 102600*uk_121 + 307800*uk_122 + 77976*uk_123 + 106875*uk_124 + 320625*uk_125 + 81225*uk_126 + 961875*uk_127 + 243675*uk_128 + 61731*uk_129 + 3651768*uk_13 + 185193*uk_130 + 233928*uk_131 + 243675*uk_132 + 731025*uk_133 + 185193*uk_134 + 295488*uk_135 + 307800*uk_136 + 923400*uk_137 + 233928*uk_138 + 320625*uk_139 + 3803925*uk_14 + 961875*uk_140 + 243675*uk_141 + 2885625*uk_142 + 731025*uk_143 + 185193*uk_144 + 373248*uk_145 + 388800*uk_146 + 1166400*uk_147 + 295488*uk_148 + 405000*uk_149 + 11411775*uk_15 + 1215000*uk_150 + 307800*uk_151 + 3645000*uk_152 + 923400*uk_153 + 233928*uk_154 + 421875*uk_155 + 1265625*uk_156 + 320625*uk_157 + 3796875*uk_158 + 961875*uk_159 + 2890983*uk_16 + 243675*uk_160 + 11390625*uk_161 + 2885625*uk_162 + 731025*uk_163 + 185193*uk_164 + 3025*uk_17 + 1045*uk_18 + 3135*uk_19 + 55*uk_2 + 3960*uk_20 + 4125*uk_21 + 12375*uk_22 + 3135*uk_23 + 361*uk_24 + 1083*uk_25 + 1368*uk_26 + 1425*uk_27 + 4275*uk_28 + 1083*uk_29 + 19*uk_3 + 3249*uk_30 + 4104*uk_31 + 4275*uk_32 + 12825*uk_33 + 3249*uk_34 + 5184*uk_35 + 5400*uk_36 + 16200*uk_37 + 4104*uk_38 + 5625*uk_39 + 57*uk_4 + 16875*uk_40 + 4275*uk_41 + 50625*uk_42 + 12825*uk_43 + 3249*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 48875922259*uk_47 + 146627766777*uk_48 + 185214021192*uk_49 + 72*uk_5 + 192931272075*uk_50 + 578793816225*uk_51 + 146627766777*uk_52 + 153424975*uk_53 + 53001355*uk_54 + 159004065*uk_55 + 200847240*uk_56 + 209215875*uk_57 + 627647625*uk_58 + 159004065*uk_59 + 75*uk_6 + 18309559*uk_60 + 54928677*uk_61 + 69383592*uk_62 + 72274575*uk_63 + 216823725*uk_64 + 54928677*uk_65 + 164786031*uk_66 + 208150776*uk_67 + 216823725*uk_68 + 650471175*uk_69 + 225*uk_7 + 164786031*uk_70 + 262927296*uk_71 + 273882600*uk_72 + 821647800*uk_73 + 208150776*uk_74 + 285294375*uk_75 + 855883125*uk_76 + 216823725*uk_77 + 2567649375*uk_78 + 650471175*uk_79 + 57*uk_8 + 164786031*uk_80 + 166375*uk_81 + 57475*uk_82 + 172425*uk_83 + 217800*uk_84 + 226875*uk_85 + 680625*uk_86 + 172425*uk_87 + 19855*uk_88 + 59565*uk_89 + 2572416961*uk_9 + 75240*uk_90 + 78375*uk_91 + 235125*uk_92 + 59565*uk_93 + 178695*uk_94 + 225720*uk_95 + 235125*uk_96 + 705375*uk_97 + 178695*uk_98 + 285120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 304920*uk_100 + 891000*uk_101 + 75240*uk_102 + 326095*uk_103 + 952875*uk_104 + 80465*uk_105 + 2784375*uk_106 + 235125*uk_107 + 19855*uk_108 + 148877*uk_109 + 2688107*uk_11 + 53371*uk_110 + 202248*uk_111 + 216293*uk_112 + 632025*uk_113 + 53371*uk_114 + 19133*uk_115 + 72504*uk_116 + 77539*uk_117 + 226575*uk_118 + 19133*uk_119 + 963661*uk_12 + 274752*uk_120 + 293832*uk_121 + 858600*uk_122 + 72504*uk_123 + 314237*uk_124 + 918225*uk_125 + 77539*uk_126 + 2683125*uk_127 + 226575*uk_128 + 19133*uk_129 + 3651768*uk_13 + 6859*uk_130 + 25992*uk_131 + 27797*uk_132 + 81225*uk_133 + 6859*uk_134 + 98496*uk_135 + 105336*uk_136 + 307800*uk_137 + 25992*uk_138 + 112651*uk_139 + 3905363*uk_14 + 329175*uk_140 + 27797*uk_141 + 961875*uk_142 + 81225*uk_143 + 6859*uk_144 + 373248*uk_145 + 399168*uk_146 + 1166400*uk_147 + 98496*uk_148 + 426888*uk_149 + 11411775*uk_15 + 1247400*uk_150 + 105336*uk_151 + 3645000*uk_152 + 307800*uk_153 + 25992*uk_154 + 456533*uk_155 + 1334025*uk_156 + 112651*uk_157 + 3898125*uk_158 + 329175*uk_159 + 963661*uk_16 + 27797*uk_160 + 11390625*uk_161 + 961875*uk_162 + 81225*uk_163 + 6859*uk_164 + 3025*uk_17 + 2915*uk_18 + 1045*uk_19 + 55*uk_2 + 3960*uk_20 + 4235*uk_21 + 12375*uk_22 + 1045*uk_23 + 2809*uk_24 + 1007*uk_25 + 3816*uk_26 + 4081*uk_27 + 11925*uk_28 + 1007*uk_29 + 53*uk_3 + 361*uk_30 + 1368*uk_31 + 1463*uk_32 + 4275*uk_33 + 361*uk_34 + 5184*uk_35 + 5544*uk_36 + 16200*uk_37 + 1368*uk_38 + 5929*uk_39 + 19*uk_4 + 17325*uk_40 + 1463*uk_41 + 50625*uk_42 + 4275*uk_43 + 361*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 136338098933*uk_47 + 48875922259*uk_48 + 185214021192*uk_49 + 72*uk_5 + 198076105997*uk_50 + 578793816225*uk_51 + 48875922259*uk_52 + 153424975*uk_53 + 147845885*uk_54 + 53001355*uk_55 + 200847240*uk_56 + 214794965*uk_57 + 627647625*uk_58 + 53001355*uk_59 + 77*uk_6 + 142469671*uk_60 + 51074033*uk_61 + 193543704*uk_62 + 206984239*uk_63 + 604824075*uk_64 + 51074033*uk_65 + 18309559*uk_66 + 69383592*uk_67 + 74201897*uk_68 + 216823725*uk_69 + 225*uk_7 + 18309559*uk_70 + 262927296*uk_71 + 281186136*uk_72 + 821647800*uk_73 + 69383592*uk_74 + 300712951*uk_75 + 878706675*uk_76 + 74201897*uk_77 + 2567649375*uk_78 + 216823725*uk_79 + 19*uk_8 + 18309559*uk_80 + 166375*uk_81 + 160325*uk_82 + 57475*uk_83 + 217800*uk_84 + 232925*uk_85 + 680625*uk_86 + 57475*uk_87 + 154495*uk_88 + 55385*uk_89 + 2572416961*uk_9 + 209880*uk_90 + 224455*uk_91 + 655875*uk_92 + 55385*uk_93 + 19855*uk_94 + 75240*uk_95 + 80465*uk_96 + 235125*uk_97 + 19855*uk_98 + 285120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 278080*uk_100 + 792000*uk_101 + 186560*uk_102 + 343255*uk_103 + 977625*uk_104 + 230285*uk_105 + 2784375*uk_106 + 655875*uk_107 + 154495*uk_108 + uk_109 + 50719*uk_11 + 53*uk_110 + 64*uk_111 + 79*uk_112 + 225*uk_113 + 53*uk_114 + 2809*uk_115 + 3392*uk_116 + 4187*uk_117 + 11925*uk_118 + 2809*uk_119 + 2688107*uk_12 + 4096*uk_120 + 5056*uk_121 + 14400*uk_122 + 3392*uk_123 + 6241*uk_124 + 17775*uk_125 + 4187*uk_126 + 50625*uk_127 + 11925*uk_128 + 2809*uk_129 + 3246016*uk_13 + 148877*uk_130 + 179776*uk_131 + 221911*uk_132 + 632025*uk_133 + 148877*uk_134 + 217088*uk_135 + 267968*uk_136 + 763200*uk_137 + 179776*uk_138 + 330773*uk_139 + 4006801*uk_14 + 942075*uk_140 + 221911*uk_141 + 2683125*uk_142 + 632025*uk_143 + 148877*uk_144 + 262144*uk_145 + 323584*uk_146 + 921600*uk_147 + 217088*uk_148 + 399424*uk_149 + 11411775*uk_15 + 1137600*uk_150 + 267968*uk_151 + 3240000*uk_152 + 763200*uk_153 + 179776*uk_154 + 493039*uk_155 + 1404225*uk_156 + 330773*uk_157 + 3999375*uk_158 + 942075*uk_159 + 2688107*uk_16 + 221911*uk_160 + 11390625*uk_161 + 2683125*uk_162 + 632025*uk_163 + 148877*uk_164 + 3025*uk_17 + 55*uk_18 + 2915*uk_19 + 55*uk_2 + 3520*uk_20 + 4345*uk_21 + 12375*uk_22 + 2915*uk_23 + uk_24 + 53*uk_25 + 64*uk_26 + 79*uk_27 + 225*uk_28 + 53*uk_29 + uk_3 + 2809*uk_30 + 3392*uk_31 + 4187*uk_32 + 11925*uk_33 + 2809*uk_34 + 4096*uk_35 + 5056*uk_36 + 14400*uk_37 + 3392*uk_38 + 6241*uk_39 + 53*uk_4 + 17775*uk_40 + 4187*uk_41 + 50625*uk_42 + 11925*uk_43 + 2809*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 2572416961*uk_47 + 136338098933*uk_48 + 164634685504*uk_49 + 64*uk_5 + 203220939919*uk_50 + 578793816225*uk_51 + 136338098933*uk_52 + 153424975*uk_53 + 2789545*uk_54 + 147845885*uk_55 + 178530880*uk_56 + 220374055*uk_57 + 627647625*uk_58 + 147845885*uk_59 + 79*uk_6 + 50719*uk_60 + 2688107*uk_61 + 3246016*uk_62 + 4006801*uk_63 + 11411775*uk_64 + 2688107*uk_65 + 142469671*uk_66 + 172038848*uk_67 + 212360453*uk_68 + 604824075*uk_69 + 225*uk_7 + 142469671*uk_70 + 207745024*uk_71 + 256435264*uk_72 + 730353600*uk_73 + 172038848*uk_74 + 316537279*uk_75 + 901530225*uk_76 + 212360453*uk_77 + 2567649375*uk_78 + 604824075*uk_79 + 53*uk_8 + 142469671*uk_80 + 166375*uk_81 + 3025*uk_82 + 160325*uk_83 + 193600*uk_84 + 238975*uk_85 + 680625*uk_86 + 160325*uk_87 + 55*uk_88 + 2915*uk_89 + 2572416961*uk_9 + 3520*uk_90 + 4345*uk_91 + 12375*uk_92 + 2915*uk_93 + 154495*uk_94 + 186560*uk_95 + 230285*uk_96 + 655875*uk_97 + 154495*uk_98 + 225280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 285120*uk_100 + 792000*uk_101 + 3520*uk_102 + 360855*uk_103 + 1002375*uk_104 + 4455*uk_105 + 2784375*uk_106 + 12375*uk_107 + 55*uk_108 + 2197*uk_109 + 659347*uk_11 + 169*uk_110 + 10816*uk_111 + 13689*uk_112 + 38025*uk_113 + 169*uk_114 + 13*uk_115 + 832*uk_116 + 1053*uk_117 + 2925*uk_118 + 13*uk_119 + 50719*uk_12 + 53248*uk_120 + 67392*uk_121 + 187200*uk_122 + 832*uk_123 + 85293*uk_124 + 236925*uk_125 + 1053*uk_126 + 658125*uk_127 + 2925*uk_128 + 13*uk_129 + 3246016*uk_13 + uk_130 + 64*uk_131 + 81*uk_132 + 225*uk_133 + uk_134 + 4096*uk_135 + 5184*uk_136 + 14400*uk_137 + 64*uk_138 + 6561*uk_139 + 4108239*uk_14 + 18225*uk_140 + 81*uk_141 + 50625*uk_142 + 225*uk_143 + uk_144 + 262144*uk_145 + 331776*uk_146 + 921600*uk_147 + 4096*uk_148 + 419904*uk_149 + 11411775*uk_15 + 1166400*uk_150 + 5184*uk_151 + 3240000*uk_152 + 14400*uk_153 + 64*uk_154 + 531441*uk_155 + 1476225*uk_156 + 6561*uk_157 + 4100625*uk_158 + 18225*uk_159 + 50719*uk_16 + 81*uk_160 + 11390625*uk_161 + 50625*uk_162 + 225*uk_163 + uk_164 + 3025*uk_17 + 715*uk_18 + 55*uk_19 + 55*uk_2 + 3520*uk_20 + 4455*uk_21 + 12375*uk_22 + 55*uk_23 + 169*uk_24 + 13*uk_25 + 832*uk_26 + 1053*uk_27 + 2925*uk_28 + 13*uk_29 + 13*uk_3 + uk_30 + 64*uk_31 + 81*uk_32 + 225*uk_33 + uk_34 + 4096*uk_35 + 5184*uk_36 + 14400*uk_37 + 64*uk_38 + 6561*uk_39 + uk_4 + 18225*uk_40 + 81*uk_41 + 50625*uk_42 + 225*uk_43 + uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 33441420493*uk_47 + 2572416961*uk_48 + 164634685504*uk_49 + 64*uk_5 + 208365773841*uk_50 + 578793816225*uk_51 + 2572416961*uk_52 + 153424975*uk_53 + 36264085*uk_54 + 2789545*uk_55 + 178530880*uk_56 + 225953145*uk_57 + 627647625*uk_58 + 2789545*uk_59 + 81*uk_6 + 8571511*uk_60 + 659347*uk_61 + 42198208*uk_62 + 53407107*uk_63 + 148353075*uk_64 + 659347*uk_65 + 50719*uk_66 + 3246016*uk_67 + 4108239*uk_68 + 11411775*uk_69 + 225*uk_7 + 50719*uk_70 + 207745024*uk_71 + 262927296*uk_72 + 730353600*uk_73 + 3246016*uk_74 + 332767359*uk_75 + 924353775*uk_76 + 4108239*uk_77 + 2567649375*uk_78 + 11411775*uk_79 + uk_8 + 50719*uk_80 + 166375*uk_81 + 39325*uk_82 + 3025*uk_83 + 193600*uk_84 + 245025*uk_85 + 680625*uk_86 + 3025*uk_87 + 9295*uk_88 + 715*uk_89 + 2572416961*uk_9 + 45760*uk_90 + 57915*uk_91 + 160875*uk_92 + 715*uk_93 + 55*uk_94 + 3520*uk_95 + 4455*uk_96 + 12375*uk_97 + 55*uk_98 + 225280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 273900*uk_100 + 742500*uk_101 + 42900*uk_102 + 378895*uk_103 + 1027125*uk_104 + 59345*uk_105 + 2784375*uk_106 + 160875*uk_107 + 9295*uk_108 + 216*uk_109 + 304314*uk_11 + 468*uk_110 + 2160*uk_111 + 2988*uk_112 + 8100*uk_113 + 468*uk_114 + 1014*uk_115 + 4680*uk_116 + 6474*uk_117 + 17550*uk_118 + 1014*uk_119 + 659347*uk_12 + 21600*uk_120 + 29880*uk_121 + 81000*uk_122 + 4680*uk_123 + 41334*uk_124 + 112050*uk_125 + 6474*uk_126 + 303750*uk_127 + 17550*uk_128 + 1014*uk_129 + 3043140*uk_13 + 2197*uk_130 + 10140*uk_131 + 14027*uk_132 + 38025*uk_133 + 2197*uk_134 + 46800*uk_135 + 64740*uk_136 + 175500*uk_137 + 10140*uk_138 + 89557*uk_139 + 4209677*uk_14 + 242775*uk_140 + 14027*uk_141 + 658125*uk_142 + 38025*uk_143 + 2197*uk_144 + 216000*uk_145 + 298800*uk_146 + 810000*uk_147 + 46800*uk_148 + 413340*uk_149 + 11411775*uk_15 + 1120500*uk_150 + 64740*uk_151 + 3037500*uk_152 + 175500*uk_153 + 10140*uk_154 + 571787*uk_155 + 1550025*uk_156 + 89557*uk_157 + 4201875*uk_158 + 242775*uk_159 + 659347*uk_16 + 14027*uk_160 + 11390625*uk_161 + 658125*uk_162 + 38025*uk_163 + 2197*uk_164 + 3025*uk_17 + 330*uk_18 + 715*uk_19 + 55*uk_2 + 3300*uk_20 + 4565*uk_21 + 12375*uk_22 + 715*uk_23 + 36*uk_24 + 78*uk_25 + 360*uk_26 + 498*uk_27 + 1350*uk_28 + 78*uk_29 + 6*uk_3 + 169*uk_30 + 780*uk_31 + 1079*uk_32 + 2925*uk_33 + 169*uk_34 + 3600*uk_35 + 4980*uk_36 + 13500*uk_37 + 780*uk_38 + 6889*uk_39 + 13*uk_4 + 18675*uk_40 + 1079*uk_41 + 50625*uk_42 + 2925*uk_43 + 169*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 15434501766*uk_47 + 33441420493*uk_48 + 154345017660*uk_49 + 60*uk_5 + 213510607763*uk_50 + 578793816225*uk_51 + 33441420493*uk_52 + 153424975*uk_53 + 16737270*uk_54 + 36264085*uk_55 + 167372700*uk_56 + 231532235*uk_57 + 627647625*uk_58 + 36264085*uk_59 + 83*uk_6 + 1825884*uk_60 + 3956082*uk_61 + 18258840*uk_62 + 25258062*uk_63 + 68470650*uk_64 + 3956082*uk_65 + 8571511*uk_66 + 39560820*uk_67 + 54725801*uk_68 + 148353075*uk_69 + 225*uk_7 + 8571511*uk_70 + 182588400*uk_71 + 252580620*uk_72 + 684706500*uk_73 + 39560820*uk_74 + 349403191*uk_75 + 947177325*uk_76 + 54725801*uk_77 + 2567649375*uk_78 + 148353075*uk_79 + 13*uk_8 + 8571511*uk_80 + 166375*uk_81 + 18150*uk_82 + 39325*uk_83 + 181500*uk_84 + 251075*uk_85 + 680625*uk_86 + 39325*uk_87 + 1980*uk_88 + 4290*uk_89 + 2572416961*uk_9 + 19800*uk_90 + 27390*uk_91 + 74250*uk_92 + 4290*uk_93 + 9295*uk_94 + 42900*uk_95 + 59345*uk_96 + 160875*uk_97 + 9295*uk_98 + 198000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 280500*uk_100 + 742500*uk_101 + 19800*uk_102 + 397375*uk_103 + 1051875*uk_104 + 28050*uk_105 + 2784375*uk_106 + 74250*uk_107 + 1980*uk_108 + 205379*uk_109 + 2992421*uk_11 + 20886*uk_110 + 208860*uk_111 + 295885*uk_112 + 783225*uk_113 + 20886*uk_114 + 2124*uk_115 + 21240*uk_116 + 30090*uk_117 + 79650*uk_118 + 2124*uk_119 + 304314*uk_12 + 212400*uk_120 + 300900*uk_121 + 796500*uk_122 + 21240*uk_123 + 426275*uk_124 + 1128375*uk_125 + 30090*uk_126 + 2986875*uk_127 + 79650*uk_128 + 2124*uk_129 + 3043140*uk_13 + 216*uk_130 + 2160*uk_131 + 3060*uk_132 + 8100*uk_133 + 216*uk_134 + 21600*uk_135 + 30600*uk_136 + 81000*uk_137 + 2160*uk_138 + 43350*uk_139 + 4311115*uk_14 + 114750*uk_140 + 3060*uk_141 + 303750*uk_142 + 8100*uk_143 + 216*uk_144 + 216000*uk_145 + 306000*uk_146 + 810000*uk_147 + 21600*uk_148 + 433500*uk_149 + 11411775*uk_15 + 1147500*uk_150 + 30600*uk_151 + 3037500*uk_152 + 81000*uk_153 + 2160*uk_154 + 614125*uk_155 + 1625625*uk_156 + 43350*uk_157 + 4303125*uk_158 + 114750*uk_159 + 304314*uk_16 + 3060*uk_160 + 11390625*uk_161 + 303750*uk_162 + 8100*uk_163 + 216*uk_164 + 3025*uk_17 + 3245*uk_18 + 330*uk_19 + 55*uk_2 + 3300*uk_20 + 4675*uk_21 + 12375*uk_22 + 330*uk_23 + 3481*uk_24 + 354*uk_25 + 3540*uk_26 + 5015*uk_27 + 13275*uk_28 + 354*uk_29 + 59*uk_3 + 36*uk_30 + 360*uk_31 + 510*uk_32 + 1350*uk_33 + 36*uk_34 + 3600*uk_35 + 5100*uk_36 + 13500*uk_37 + 360*uk_38 + 7225*uk_39 + 6*uk_4 + 19125*uk_40 + 510*uk_41 + 50625*uk_42 + 1350*uk_43 + 36*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 151772600699*uk_47 + 15434501766*uk_48 + 154345017660*uk_49 + 60*uk_5 + 218655441685*uk_50 + 578793816225*uk_51 + 15434501766*uk_52 + 153424975*uk_53 + 164583155*uk_54 + 16737270*uk_55 + 167372700*uk_56 + 237111325*uk_57 + 627647625*uk_58 + 16737270*uk_59 + 85*uk_6 + 176552839*uk_60 + 17954526*uk_61 + 179545260*uk_62 + 254355785*uk_63 + 673294725*uk_64 + 17954526*uk_65 + 1825884*uk_66 + 18258840*uk_67 + 25866690*uk_68 + 68470650*uk_69 + 225*uk_7 + 1825884*uk_70 + 182588400*uk_71 + 258666900*uk_72 + 684706500*uk_73 + 18258840*uk_74 + 366444775*uk_75 + 970000875*uk_76 + 25866690*uk_77 + 2567649375*uk_78 + 68470650*uk_79 + 6*uk_8 + 1825884*uk_80 + 166375*uk_81 + 178475*uk_82 + 18150*uk_83 + 181500*uk_84 + 257125*uk_85 + 680625*uk_86 + 18150*uk_87 + 191455*uk_88 + 19470*uk_89 + 2572416961*uk_9 + 194700*uk_90 + 275825*uk_91 + 730125*uk_92 + 19470*uk_93 + 1980*uk_94 + 19800*uk_95 + 28050*uk_96 + 74250*uk_97 + 1980*uk_98 + 198000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 267960*uk_100 + 693000*uk_101 + 181720*uk_102 + 416295*uk_103 + 1076625*uk_104 + 282315*uk_105 + 2784375*uk_106 + 730125*uk_107 + 191455*uk_108 + 614125*uk_109 + 4311115*uk_11 + 426275*uk_110 + 404600*uk_111 + 628575*uk_112 + 1625625*uk_113 + 426275*uk_114 + 295885*uk_115 + 280840*uk_116 + 436305*uk_117 + 1128375*uk_118 + 295885*uk_119 + 2992421*uk_12 + 266560*uk_120 + 414120*uk_121 + 1071000*uk_122 + 280840*uk_123 + 643365*uk_124 + 1663875*uk_125 + 436305*uk_126 + 4303125*uk_127 + 1128375*uk_128 + 295885*uk_129 + 2840264*uk_13 + 205379*uk_130 + 194936*uk_131 + 302847*uk_132 + 783225*uk_133 + 205379*uk_134 + 185024*uk_135 + 287448*uk_136 + 743400*uk_137 + 194936*uk_138 + 446571*uk_139 + 4412553*uk_14 + 1154925*uk_140 + 302847*uk_141 + 2986875*uk_142 + 783225*uk_143 + 205379*uk_144 + 175616*uk_145 + 272832*uk_146 + 705600*uk_147 + 185024*uk_148 + 423864*uk_149 + 11411775*uk_15 + 1096200*uk_150 + 287448*uk_151 + 2835000*uk_152 + 743400*uk_153 + 194936*uk_154 + 658503*uk_155 + 1703025*uk_156 + 446571*uk_157 + 4404375*uk_158 + 1154925*uk_159 + 2992421*uk_16 + 302847*uk_160 + 11390625*uk_161 + 2986875*uk_162 + 783225*uk_163 + 205379*uk_164 + 3025*uk_17 + 4675*uk_18 + 3245*uk_19 + 55*uk_2 + 3080*uk_20 + 4785*uk_21 + 12375*uk_22 + 3245*uk_23 + 7225*uk_24 + 5015*uk_25 + 4760*uk_26 + 7395*uk_27 + 19125*uk_28 + 5015*uk_29 + 85*uk_3 + 3481*uk_30 + 3304*uk_31 + 5133*uk_32 + 13275*uk_33 + 3481*uk_34 + 3136*uk_35 + 4872*uk_36 + 12600*uk_37 + 3304*uk_38 + 7569*uk_39 + 59*uk_4 + 19575*uk_40 + 5133*uk_41 + 50625*uk_42 + 13275*uk_43 + 3481*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 218655441685*uk_47 + 151772600699*uk_48 + 144055349816*uk_49 + 56*uk_5 + 223800275607*uk_50 + 578793816225*uk_51 + 151772600699*uk_52 + 153424975*uk_53 + 237111325*uk_54 + 164583155*uk_55 + 156214520*uk_56 + 242690415*uk_57 + 627647625*uk_58 + 164583155*uk_59 + 87*uk_6 + 366444775*uk_60 + 254355785*uk_61 + 241422440*uk_62 + 375067005*uk_63 + 970000875*uk_64 + 254355785*uk_65 + 176552839*uk_66 + 167575576*uk_67 + 260340627*uk_68 + 673294725*uk_69 + 225*uk_7 + 176552839*uk_70 + 159054784*uk_71 + 247102968*uk_72 + 639059400*uk_73 + 167575576*uk_74 + 383892111*uk_75 + 992824425*uk_76 + 260340627*uk_77 + 2567649375*uk_78 + 673294725*uk_79 + 59*uk_8 + 176552839*uk_80 + 166375*uk_81 + 257125*uk_82 + 178475*uk_83 + 169400*uk_84 + 263175*uk_85 + 680625*uk_86 + 178475*uk_87 + 397375*uk_88 + 275825*uk_89 + 2572416961*uk_9 + 261800*uk_90 + 406725*uk_91 + 1051875*uk_92 + 275825*uk_93 + 191455*uk_94 + 181720*uk_95 + 282315*uk_96 + 730125*uk_97 + 191455*uk_98 + 172480*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 254540*uk_100 + 643500*uk_101 + 243100*uk_102 + 435655*uk_103 + 1101375*uk_104 + 416075*uk_105 + 2784375*uk_106 + 1051875*uk_107 + 397375*uk_108 + 474552*uk_109 + 3956082*uk_11 + 517140*uk_110 + 316368*uk_111 + 541476*uk_112 + 1368900*uk_113 + 517140*uk_114 + 563550*uk_115 + 344760*uk_116 + 590070*uk_117 + 1491750*uk_118 + 563550*uk_119 + 4311115*uk_12 + 210912*uk_120 + 360984*uk_121 + 912600*uk_122 + 344760*uk_123 + 617838*uk_124 + 1561950*uk_125 + 590070*uk_126 + 3948750*uk_127 + 1491750*uk_128 + 563550*uk_129 + 2637388*uk_13 + 614125*uk_130 + 375700*uk_131 + 643025*uk_132 + 1625625*uk_133 + 614125*uk_134 + 229840*uk_135 + 393380*uk_136 + 994500*uk_137 + 375700*uk_138 + 673285*uk_139 + 4513991*uk_14 + 1702125*uk_140 + 643025*uk_141 + 4303125*uk_142 + 1625625*uk_143 + 614125*uk_144 + 140608*uk_145 + 240656*uk_146 + 608400*uk_147 + 229840*uk_148 + 411892*uk_149 + 11411775*uk_15 + 1041300*uk_150 + 393380*uk_151 + 2632500*uk_152 + 994500*uk_153 + 375700*uk_154 + 704969*uk_155 + 1782225*uk_156 + 673285*uk_157 + 4505625*uk_158 + 1702125*uk_159 + 4311115*uk_16 + 643025*uk_160 + 11390625*uk_161 + 4303125*uk_162 + 1625625*uk_163 + 614125*uk_164 + 3025*uk_17 + 4290*uk_18 + 4675*uk_19 + 55*uk_2 + 2860*uk_20 + 4895*uk_21 + 12375*uk_22 + 4675*uk_23 + 6084*uk_24 + 6630*uk_25 + 4056*uk_26 + 6942*uk_27 + 17550*uk_28 + 6630*uk_29 + 78*uk_3 + 7225*uk_30 + 4420*uk_31 + 7565*uk_32 + 19125*uk_33 + 7225*uk_34 + 2704*uk_35 + 4628*uk_36 + 11700*uk_37 + 4420*uk_38 + 7921*uk_39 + 85*uk_4 + 20025*uk_40 + 7565*uk_41 + 50625*uk_42 + 19125*uk_43 + 7225*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 200648522958*uk_47 + 218655441685*uk_48 + 133765681972*uk_49 + 52*uk_5 + 228945109529*uk_50 + 578793816225*uk_51 + 218655441685*uk_52 + 153424975*uk_53 + 217584510*uk_54 + 237111325*uk_55 + 145056340*uk_56 + 248269505*uk_57 + 627647625*uk_58 + 237111325*uk_59 + 89*uk_6 + 308574396*uk_60 + 336266970*uk_61 + 205716264*uk_62 + 352091298*uk_63 + 890118450*uk_64 + 336266970*uk_65 + 366444775*uk_66 + 224177980*uk_67 + 383689235*uk_68 + 970000875*uk_69 + 225*uk_7 + 366444775*uk_70 + 137144176*uk_71 + 234727532*uk_72 + 593412300*uk_73 + 224177980*uk_74 + 401745199*uk_75 + 1015647975*uk_76 + 383689235*uk_77 + 2567649375*uk_78 + 970000875*uk_79 + 85*uk_8 + 366444775*uk_80 + 166375*uk_81 + 235950*uk_82 + 257125*uk_83 + 157300*uk_84 + 269225*uk_85 + 680625*uk_86 + 257125*uk_87 + 334620*uk_88 + 364650*uk_89 + 2572416961*uk_9 + 223080*uk_90 + 381810*uk_91 + 965250*uk_92 + 364650*uk_93 + 397375*uk_94 + 243100*uk_95 + 416075*uk_96 + 1051875*uk_97 + 397375*uk_98 + 148720*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 240240*uk_100 + 594000*uk_101 + 205920*uk_102 + 455455*uk_103 + 1126125*uk_104 + 390390*uk_105 + 2784375*uk_106 + 965250*uk_107 + 334620*uk_108 + 32768*uk_109 + 1623008*uk_11 + 79872*uk_110 + 49152*uk_111 + 93184*uk_112 + 230400*uk_113 + 79872*uk_114 + 194688*uk_115 + 119808*uk_116 + 227136*uk_117 + 561600*uk_118 + 194688*uk_119 + 3956082*uk_12 + 73728*uk_120 + 139776*uk_121 + 345600*uk_122 + 119808*uk_123 + 264992*uk_124 + 655200*uk_125 + 227136*uk_126 + 1620000*uk_127 + 561600*uk_128 + 194688*uk_129 + 2434512*uk_13 + 474552*uk_130 + 292032*uk_131 + 553644*uk_132 + 1368900*uk_133 + 474552*uk_134 + 179712*uk_135 + 340704*uk_136 + 842400*uk_137 + 292032*uk_138 + 645918*uk_139 + 4615429*uk_14 + 1597050*uk_140 + 553644*uk_141 + 3948750*uk_142 + 1368900*uk_143 + 474552*uk_144 + 110592*uk_145 + 209664*uk_146 + 518400*uk_147 + 179712*uk_148 + 397488*uk_149 + 11411775*uk_15 + 982800*uk_150 + 340704*uk_151 + 2430000*uk_152 + 842400*uk_153 + 292032*uk_154 + 753571*uk_155 + 1863225*uk_156 + 645918*uk_157 + 4606875*uk_158 + 1597050*uk_159 + 3956082*uk_16 + 553644*uk_160 + 11390625*uk_161 + 3948750*uk_162 + 1368900*uk_163 + 474552*uk_164 + 3025*uk_17 + 1760*uk_18 + 4290*uk_19 + 55*uk_2 + 2640*uk_20 + 5005*uk_21 + 12375*uk_22 + 4290*uk_23 + 1024*uk_24 + 2496*uk_25 + 1536*uk_26 + 2912*uk_27 + 7200*uk_28 + 2496*uk_29 + 32*uk_3 + 6084*uk_30 + 3744*uk_31 + 7098*uk_32 + 17550*uk_33 + 6084*uk_34 + 2304*uk_35 + 4368*uk_36 + 10800*uk_37 + 3744*uk_38 + 8281*uk_39 + 78*uk_4 + 20475*uk_40 + 7098*uk_41 + 50625*uk_42 + 17550*uk_43 + 6084*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 82317342752*uk_47 + 200648522958*uk_48 + 123476014128*uk_49 + 48*uk_5 + 234089943451*uk_50 + 578793816225*uk_51 + 200648522958*uk_52 + 153424975*uk_53 + 89265440*uk_54 + 217584510*uk_55 + 133898160*uk_56 + 253848595*uk_57 + 627647625*uk_58 + 217584510*uk_59 + 91*uk_6 + 51936256*uk_60 + 126594624*uk_61 + 77904384*uk_62 + 147693728*uk_63 + 365176800*uk_64 + 126594624*uk_65 + 308574396*uk_66 + 189891936*uk_67 + 360003462*uk_68 + 890118450*uk_69 + 225*uk_7 + 308574396*uk_70 + 116856576*uk_71 + 221540592*uk_72 + 547765200*uk_73 + 189891936*uk_74 + 420004039*uk_75 + 1038471525*uk_76 + 360003462*uk_77 + 2567649375*uk_78 + 890118450*uk_79 + 78*uk_8 + 308574396*uk_80 + 166375*uk_81 + 96800*uk_82 + 235950*uk_83 + 145200*uk_84 + 275275*uk_85 + 680625*uk_86 + 235950*uk_87 + 56320*uk_88 + 137280*uk_89 + 2572416961*uk_9 + 84480*uk_90 + 160160*uk_91 + 396000*uk_92 + 137280*uk_93 + 334620*uk_94 + 205920*uk_95 + 390390*uk_96 + 965250*uk_97 + 334620*uk_98 + 126720*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 245520*uk_100 + 594000*uk_101 + 84480*uk_102 + 475695*uk_103 + 1150875*uk_104 + 163680*uk_105 + 2784375*uk_106 + 396000*uk_107 + 56320*uk_108 + 39304*uk_109 + 1724446*uk_11 + 36992*uk_110 + 55488*uk_111 + 107508*uk_112 + 260100*uk_113 + 36992*uk_114 + 34816*uk_115 + 52224*uk_116 + 101184*uk_117 + 244800*uk_118 + 34816*uk_119 + 1623008*uk_12 + 78336*uk_120 + 151776*uk_121 + 367200*uk_122 + 52224*uk_123 + 294066*uk_124 + 711450*uk_125 + 101184*uk_126 + 1721250*uk_127 + 244800*uk_128 + 34816*uk_129 + 2434512*uk_13 + 32768*uk_130 + 49152*uk_131 + 95232*uk_132 + 230400*uk_133 + 32768*uk_134 + 73728*uk_135 + 142848*uk_136 + 345600*uk_137 + 49152*uk_138 + 276768*uk_139 + 4716867*uk_14 + 669600*uk_140 + 95232*uk_141 + 1620000*uk_142 + 230400*uk_143 + 32768*uk_144 + 110592*uk_145 + 214272*uk_146 + 518400*uk_147 + 73728*uk_148 + 415152*uk_149 + 11411775*uk_15 + 1004400*uk_150 + 142848*uk_151 + 2430000*uk_152 + 345600*uk_153 + 49152*uk_154 + 804357*uk_155 + 1946025*uk_156 + 276768*uk_157 + 4708125*uk_158 + 669600*uk_159 + 1623008*uk_16 + 95232*uk_160 + 11390625*uk_161 + 1620000*uk_162 + 230400*uk_163 + 32768*uk_164 + 3025*uk_17 + 1870*uk_18 + 1760*uk_19 + 55*uk_2 + 2640*uk_20 + 5115*uk_21 + 12375*uk_22 + 1760*uk_23 + 1156*uk_24 + 1088*uk_25 + 1632*uk_26 + 3162*uk_27 + 7650*uk_28 + 1088*uk_29 + 34*uk_3 + 1024*uk_30 + 1536*uk_31 + 2976*uk_32 + 7200*uk_33 + 1024*uk_34 + 2304*uk_35 + 4464*uk_36 + 10800*uk_37 + 1536*uk_38 + 8649*uk_39 + 32*uk_4 + 20925*uk_40 + 2976*uk_41 + 50625*uk_42 + 7200*uk_43 + 1024*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 87462176674*uk_47 + 82317342752*uk_48 + 123476014128*uk_49 + 48*uk_5 + 239234777373*uk_50 + 578793816225*uk_51 + 82317342752*uk_52 + 153424975*uk_53 + 94844530*uk_54 + 89265440*uk_55 + 133898160*uk_56 + 259427685*uk_57 + 627647625*uk_58 + 89265440*uk_59 + 93*uk_6 + 58631164*uk_60 + 55182272*uk_61 + 82773408*uk_62 + 160373478*uk_63 + 388000350*uk_64 + 55182272*uk_65 + 51936256*uk_66 + 77904384*uk_67 + 150939744*uk_68 + 365176800*uk_69 + 225*uk_7 + 51936256*uk_70 + 116856576*uk_71 + 226409616*uk_72 + 547765200*uk_73 + 77904384*uk_74 + 438668631*uk_75 + 1061295075*uk_76 + 150939744*uk_77 + 2567649375*uk_78 + 365176800*uk_79 + 32*uk_8 + 51936256*uk_80 + 166375*uk_81 + 102850*uk_82 + 96800*uk_83 + 145200*uk_84 + 281325*uk_85 + 680625*uk_86 + 96800*uk_87 + 63580*uk_88 + 59840*uk_89 + 2572416961*uk_9 + 89760*uk_90 + 173910*uk_91 + 420750*uk_92 + 59840*uk_93 + 56320*uk_94 + 84480*uk_95 + 163680*uk_96 + 396000*uk_97 + 56320*uk_98 + 126720*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 250800*uk_100 + 594000*uk_101 + 89760*uk_102 + 496375*uk_103 + 1175625*uk_104 + 177650*uk_105 + 2784375*uk_106 + 420750*uk_107 + 63580*uk_108 + 592704*uk_109 + 4260396*uk_11 + 239904*uk_110 + 338688*uk_111 + 670320*uk_112 + 1587600*uk_113 + 239904*uk_114 + 97104*uk_115 + 137088*uk_116 + 271320*uk_117 + 642600*uk_118 + 97104*uk_119 + 1724446*uk_12 + 193536*uk_120 + 383040*uk_121 + 907200*uk_122 + 137088*uk_123 + 758100*uk_124 + 1795500*uk_125 + 271320*uk_126 + 4252500*uk_127 + 642600*uk_128 + 97104*uk_129 + 2434512*uk_13 + 39304*uk_130 + 55488*uk_131 + 109820*uk_132 + 260100*uk_133 + 39304*uk_134 + 78336*uk_135 + 155040*uk_136 + 367200*uk_137 + 55488*uk_138 + 306850*uk_139 + 4818305*uk_14 + 726750*uk_140 + 109820*uk_141 + 1721250*uk_142 + 260100*uk_143 + 39304*uk_144 + 110592*uk_145 + 218880*uk_146 + 518400*uk_147 + 78336*uk_148 + 433200*uk_149 + 11411775*uk_15 + 1026000*uk_150 + 155040*uk_151 + 2430000*uk_152 + 367200*uk_153 + 55488*uk_154 + 857375*uk_155 + 2030625*uk_156 + 306850*uk_157 + 4809375*uk_158 + 726750*uk_159 + 1724446*uk_16 + 109820*uk_160 + 11390625*uk_161 + 1721250*uk_162 + 260100*uk_163 + 39304*uk_164 + 3025*uk_17 + 4620*uk_18 + 1870*uk_19 + 55*uk_2 + 2640*uk_20 + 5225*uk_21 + 12375*uk_22 + 1870*uk_23 + 7056*uk_24 + 2856*uk_25 + 4032*uk_26 + 7980*uk_27 + 18900*uk_28 + 2856*uk_29 + 84*uk_3 + 1156*uk_30 + 1632*uk_31 + 3230*uk_32 + 7650*uk_33 + 1156*uk_34 + 2304*uk_35 + 4560*uk_36 + 10800*uk_37 + 1632*uk_38 + 9025*uk_39 + 34*uk_4 + 21375*uk_40 + 3230*uk_41 + 50625*uk_42 + 7650*uk_43 + 1156*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 216083024724*uk_47 + 87462176674*uk_48 + 123476014128*uk_49 + 48*uk_5 + 244379611295*uk_50 + 578793816225*uk_51 + 87462176674*uk_52 + 153424975*uk_53 + 234321780*uk_54 + 94844530*uk_55 + 133898160*uk_56 + 265006775*uk_57 + 627647625*uk_58 + 94844530*uk_59 + 95*uk_6 + 357873264*uk_60 + 144853464*uk_61 + 204499008*uk_62 + 404737620*uk_63 + 958589100*uk_64 + 144853464*uk_65 + 58631164*uk_66 + 82773408*uk_67 + 163822370*uk_68 + 388000350*uk_69 + 225*uk_7 + 58631164*uk_70 + 116856576*uk_71 + 231278640*uk_72 + 547765200*uk_73 + 82773408*uk_74 + 457738975*uk_75 + 1084118625*uk_76 + 163822370*uk_77 + 2567649375*uk_78 + 388000350*uk_79 + 34*uk_8 + 58631164*uk_80 + 166375*uk_81 + 254100*uk_82 + 102850*uk_83 + 145200*uk_84 + 287375*uk_85 + 680625*uk_86 + 102850*uk_87 + 388080*uk_88 + 157080*uk_89 + 2572416961*uk_9 + 221760*uk_90 + 438900*uk_91 + 1039500*uk_92 + 157080*uk_93 + 63580*uk_94 + 89760*uk_95 + 177650*uk_96 + 420750*uk_97 + 63580*uk_98 + 126720*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 234740*uk_100 + 544500*uk_101 + 203280*uk_102 + 517495*uk_103 + 1200375*uk_104 + 448140*uk_105 + 2784375*uk_106 + 1039500*uk_107 + 388080*uk_108 + 614125*uk_109 + 4311115*uk_11 + 606900*uk_110 + 317900*uk_111 + 700825*uk_112 + 1625625*uk_113 + 606900*uk_114 + 599760*uk_115 + 314160*uk_116 + 692580*uk_117 + 1606500*uk_118 + 599760*uk_119 + 4260396*uk_12 + 164560*uk_120 + 362780*uk_121 + 841500*uk_122 + 314160*uk_123 + 799765*uk_124 + 1855125*uk_125 + 692580*uk_126 + 4303125*uk_127 + 1606500*uk_128 + 599760*uk_129 + 2231636*uk_13 + 592704*uk_130 + 310464*uk_131 + 684432*uk_132 + 1587600*uk_133 + 592704*uk_134 + 162624*uk_135 + 358512*uk_136 + 831600*uk_137 + 310464*uk_138 + 790356*uk_139 + 4919743*uk_14 + 1833300*uk_140 + 684432*uk_141 + 4252500*uk_142 + 1587600*uk_143 + 592704*uk_144 + 85184*uk_145 + 187792*uk_146 + 435600*uk_147 + 162624*uk_148 + 413996*uk_149 + 11411775*uk_15 + 960300*uk_150 + 358512*uk_151 + 2227500*uk_152 + 831600*uk_153 + 310464*uk_154 + 912673*uk_155 + 2117025*uk_156 + 790356*uk_157 + 4910625*uk_158 + 1833300*uk_159 + 4260396*uk_16 + 684432*uk_160 + 11390625*uk_161 + 4252500*uk_162 + 1587600*uk_163 + 592704*uk_164 + 3025*uk_17 + 4675*uk_18 + 4620*uk_19 + 55*uk_2 + 2420*uk_20 + 5335*uk_21 + 12375*uk_22 + 4620*uk_23 + 7225*uk_24 + 7140*uk_25 + 3740*uk_26 + 8245*uk_27 + 19125*uk_28 + 7140*uk_29 + 85*uk_3 + 7056*uk_30 + 3696*uk_31 + 8148*uk_32 + 18900*uk_33 + 7056*uk_34 + 1936*uk_35 + 4268*uk_36 + 9900*uk_37 + 3696*uk_38 + 9409*uk_39 + 84*uk_4 + 21825*uk_40 + 8148*uk_41 + 50625*uk_42 + 18900*uk_43 + 7056*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 218655441685*uk_47 + 216083024724*uk_48 + 113186346284*uk_49 + 44*uk_5 + 249524445217*uk_50 + 578793816225*uk_51 + 216083024724*uk_52 + 153424975*uk_53 + 237111325*uk_54 + 234321780*uk_55 + 122739980*uk_56 + 270585865*uk_57 + 627647625*uk_58 + 234321780*uk_59 + 97*uk_6 + 366444775*uk_60 + 362133660*uk_61 + 189689060*uk_62 + 418178155*uk_63 + 970000875*uk_64 + 362133660*uk_65 + 357873264*uk_66 + 187457424*uk_67 + 413258412*uk_68 + 958589100*uk_69 + 225*uk_7 + 357873264*uk_70 + 98191984*uk_71 + 216468692*uk_72 + 502118100*uk_73 + 187457424*uk_74 + 477215071*uk_75 + 1106942175*uk_76 + 413258412*uk_77 + 2567649375*uk_78 + 958589100*uk_79 + 84*uk_8 + 357873264*uk_80 + 166375*uk_81 + 257125*uk_82 + 254100*uk_83 + 133100*uk_84 + 293425*uk_85 + 680625*uk_86 + 254100*uk_87 + 397375*uk_88 + 392700*uk_89 + 2572416961*uk_9 + 205700*uk_90 + 453475*uk_91 + 1051875*uk_92 + 392700*uk_93 + 388080*uk_94 + 203280*uk_95 + 448140*uk_96 + 1039500*uk_97 + 388080*uk_98 + 106480*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 217800*uk_100 + 495000*uk_101 + 187000*uk_102 + 539055*uk_103 + 1225125*uk_104 + 462825*uk_105 + 2784375*uk_106 + 1051875*uk_107 + 397375*uk_108 + 29791*uk_109 + 1572289*uk_11 + 81685*uk_110 + 38440*uk_111 + 95139*uk_112 + 216225*uk_113 + 81685*uk_114 + 223975*uk_115 + 105400*uk_116 + 260865*uk_117 + 592875*uk_118 + 223975*uk_119 + 4311115*uk_12 + 49600*uk_120 + 122760*uk_121 + 279000*uk_122 + 105400*uk_123 + 303831*uk_124 + 690525*uk_125 + 260865*uk_126 + 1569375*uk_127 + 592875*uk_128 + 223975*uk_129 + 2028760*uk_13 + 614125*uk_130 + 289000*uk_131 + 715275*uk_132 + 1625625*uk_133 + 614125*uk_134 + 136000*uk_135 + 336600*uk_136 + 765000*uk_137 + 289000*uk_138 + 833085*uk_139 + 5021181*uk_14 + 1893375*uk_140 + 715275*uk_141 + 4303125*uk_142 + 1625625*uk_143 + 614125*uk_144 + 64000*uk_145 + 158400*uk_146 + 360000*uk_147 + 136000*uk_148 + 392040*uk_149 + 11411775*uk_15 + 891000*uk_150 + 336600*uk_151 + 2025000*uk_152 + 765000*uk_153 + 289000*uk_154 + 970299*uk_155 + 2205225*uk_156 + 833085*uk_157 + 5011875*uk_158 + 1893375*uk_159 + 4311115*uk_16 + 715275*uk_160 + 11390625*uk_161 + 4303125*uk_162 + 1625625*uk_163 + 614125*uk_164 + 3025*uk_17 + 1705*uk_18 + 4675*uk_19 + 55*uk_2 + 2200*uk_20 + 5445*uk_21 + 12375*uk_22 + 4675*uk_23 + 961*uk_24 + 2635*uk_25 + 1240*uk_26 + 3069*uk_27 + 6975*uk_28 + 2635*uk_29 + 31*uk_3 + 7225*uk_30 + 3400*uk_31 + 8415*uk_32 + 19125*uk_33 + 7225*uk_34 + 1600*uk_35 + 3960*uk_36 + 9000*uk_37 + 3400*uk_38 + 9801*uk_39 + 85*uk_4 + 22275*uk_40 + 8415*uk_41 + 50625*uk_42 + 19125*uk_43 + 7225*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 79744925791*uk_47 + 218655441685*uk_48 + 102896678440*uk_49 + 40*uk_5 + 254669279139*uk_50 + 578793816225*uk_51 + 218655441685*uk_52 + 153424975*uk_53 + 86475895*uk_54 + 237111325*uk_55 + 111581800*uk_56 + 276164955*uk_57 + 627647625*uk_58 + 237111325*uk_59 + 99*uk_6 + 48740959*uk_60 + 133644565*uk_61 + 62891560*uk_62 + 155656611*uk_63 + 353765025*uk_64 + 133644565*uk_65 + 366444775*uk_66 + 172444600*uk_67 + 426800385*uk_68 + 970000875*uk_69 + 225*uk_7 + 366444775*uk_70 + 81150400*uk_71 + 200847240*uk_72 + 456471000*uk_73 + 172444600*uk_74 + 497096919*uk_75 + 1129765725*uk_76 + 426800385*uk_77 + 2567649375*uk_78 + 970000875*uk_79 + 85*uk_8 + 366444775*uk_80 + 166375*uk_81 + 93775*uk_82 + 257125*uk_83 + 121000*uk_84 + 299475*uk_85 + 680625*uk_86 + 257125*uk_87 + 52855*uk_88 + 144925*uk_89 + 2572416961*uk_9 + 68200*uk_90 + 168795*uk_91 + 383625*uk_92 + 144925*uk_93 + 397375*uk_94 + 187000*uk_95 + 462825*uk_96 + 1051875*uk_97 + 397375*uk_98 + 88000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 222200*uk_100 + 495000*uk_101 + 68200*uk_102 + 561055*uk_103 + 1249875*uk_104 + 172205*uk_105 + 2784375*uk_106 + 383625*uk_107 + 52855*uk_108 + 4913*uk_109 + 862223*uk_11 + 8959*uk_110 + 11560*uk_111 + 29189*uk_112 + 65025*uk_113 + 8959*uk_114 + 16337*uk_115 + 21080*uk_116 + 53227*uk_117 + 118575*uk_118 + 16337*uk_119 + 1572289*uk_12 + 27200*uk_120 + 68680*uk_121 + 153000*uk_122 + 21080*uk_123 + 173417*uk_124 + 386325*uk_125 + 53227*uk_126 + 860625*uk_127 + 118575*uk_128 + 16337*uk_129 + 2028760*uk_13 + 29791*uk_130 + 38440*uk_131 + 97061*uk_132 + 216225*uk_133 + 29791*uk_134 + 49600*uk_135 + 125240*uk_136 + 279000*uk_137 + 38440*uk_138 + 316231*uk_139 + 5122619*uk_14 + 704475*uk_140 + 97061*uk_141 + 1569375*uk_142 + 216225*uk_143 + 29791*uk_144 + 64000*uk_145 + 161600*uk_146 + 360000*uk_147 + 49600*uk_148 + 408040*uk_149 + 11411775*uk_15 + 909000*uk_150 + 125240*uk_151 + 2025000*uk_152 + 279000*uk_153 + 38440*uk_154 + 1030301*uk_155 + 2295225*uk_156 + 316231*uk_157 + 5113125*uk_158 + 704475*uk_159 + 1572289*uk_16 + 97061*uk_160 + 11390625*uk_161 + 1569375*uk_162 + 216225*uk_163 + 29791*uk_164 + 3025*uk_17 + 935*uk_18 + 1705*uk_19 + 55*uk_2 + 2200*uk_20 + 5555*uk_21 + 12375*uk_22 + 1705*uk_23 + 289*uk_24 + 527*uk_25 + 680*uk_26 + 1717*uk_27 + 3825*uk_28 + 527*uk_29 + 17*uk_3 + 961*uk_30 + 1240*uk_31 + 3131*uk_32 + 6975*uk_33 + 961*uk_34 + 1600*uk_35 + 4040*uk_36 + 9000*uk_37 + 1240*uk_38 + 10201*uk_39 + 31*uk_4 + 22725*uk_40 + 3131*uk_41 + 50625*uk_42 + 6975*uk_43 + 961*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 43731088337*uk_47 + 79744925791*uk_48 + 102896678440*uk_49 + 40*uk_5 + 259814113061*uk_50 + 578793816225*uk_51 + 79744925791*uk_52 + 153424975*uk_53 + 47422265*uk_54 + 86475895*uk_55 + 111581800*uk_56 + 281744045*uk_57 + 627647625*uk_58 + 86475895*uk_59 + 101*uk_6 + 14657791*uk_60 + 26728913*uk_61 + 34488920*uk_62 + 87084523*uk_63 + 194000175*uk_64 + 26728913*uk_65 + 48740959*uk_66 + 62891560*uk_67 + 158801189*uk_68 + 353765025*uk_69 + 225*uk_7 + 48740959*uk_70 + 81150400*uk_71 + 204904760*uk_72 + 456471000*uk_73 + 62891560*uk_74 + 517384519*uk_75 + 1152589275*uk_76 + 158801189*uk_77 + 2567649375*uk_78 + 353765025*uk_79 + 31*uk_8 + 48740959*uk_80 + 166375*uk_81 + 51425*uk_82 + 93775*uk_83 + 121000*uk_84 + 305525*uk_85 + 680625*uk_86 + 93775*uk_87 + 15895*uk_88 + 28985*uk_89 + 2572416961*uk_9 + 37400*uk_90 + 94435*uk_91 + 210375*uk_92 + 28985*uk_93 + 52855*uk_94 + 68200*uk_95 + 172205*uk_96 + 383625*uk_97 + 52855*uk_98 + 88000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 226600*uk_100 + 495000*uk_101 + 37400*uk_102 + 583495*uk_103 + 1274625*uk_104 + 96305*uk_105 + 2784375*uk_106 + 210375*uk_107 + 15895*uk_108 + 79507*uk_109 + 2180917*uk_11 + 31433*uk_110 + 73960*uk_111 + 190447*uk_112 + 416025*uk_113 + 31433*uk_114 + 12427*uk_115 + 29240*uk_116 + 75293*uk_117 + 164475*uk_118 + 12427*uk_119 + 862223*uk_12 + 68800*uk_120 + 177160*uk_121 + 387000*uk_122 + 29240*uk_123 + 456187*uk_124 + 996525*uk_125 + 75293*uk_126 + 2176875*uk_127 + 164475*uk_128 + 12427*uk_129 + 2028760*uk_13 + 4913*uk_130 + 11560*uk_131 + 29767*uk_132 + 65025*uk_133 + 4913*uk_134 + 27200*uk_135 + 70040*uk_136 + 153000*uk_137 + 11560*uk_138 + 180353*uk_139 + 5224057*uk_14 + 393975*uk_140 + 29767*uk_141 + 860625*uk_142 + 65025*uk_143 + 4913*uk_144 + 64000*uk_145 + 164800*uk_146 + 360000*uk_147 + 27200*uk_148 + 424360*uk_149 + 11411775*uk_15 + 927000*uk_150 + 70040*uk_151 + 2025000*uk_152 + 153000*uk_153 + 11560*uk_154 + 1092727*uk_155 + 2387025*uk_156 + 180353*uk_157 + 5214375*uk_158 + 393975*uk_159 + 862223*uk_16 + 29767*uk_160 + 11390625*uk_161 + 860625*uk_162 + 65025*uk_163 + 4913*uk_164 + 3025*uk_17 + 2365*uk_18 + 935*uk_19 + 55*uk_2 + 2200*uk_20 + 5665*uk_21 + 12375*uk_22 + 935*uk_23 + 1849*uk_24 + 731*uk_25 + 1720*uk_26 + 4429*uk_27 + 9675*uk_28 + 731*uk_29 + 43*uk_3 + 289*uk_30 + 680*uk_31 + 1751*uk_32 + 3825*uk_33 + 289*uk_34 + 1600*uk_35 + 4120*uk_36 + 9000*uk_37 + 680*uk_38 + 10609*uk_39 + 17*uk_4 + 23175*uk_40 + 1751*uk_41 + 50625*uk_42 + 3825*uk_43 + 289*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 110613929323*uk_47 + 43731088337*uk_48 + 102896678440*uk_49 + 40*uk_5 + 264958946983*uk_50 + 578793816225*uk_51 + 43731088337*uk_52 + 153424975*uk_53 + 119950435*uk_54 + 47422265*uk_55 + 111581800*uk_56 + 287323135*uk_57 + 627647625*uk_58 + 47422265*uk_59 + 103*uk_6 + 93779431*uk_60 + 37075589*uk_61 + 87236680*uk_62 + 224634451*uk_63 + 490706325*uk_64 + 37075589*uk_65 + 14657791*uk_66 + 34488920*uk_67 + 88808969*uk_68 + 194000175*uk_69 + 225*uk_7 + 14657791*uk_70 + 81150400*uk_71 + 208962280*uk_72 + 456471000*uk_73 + 34488920*uk_74 + 538077871*uk_75 + 1175412825*uk_76 + 88808969*uk_77 + 2567649375*uk_78 + 194000175*uk_79 + 17*uk_8 + 14657791*uk_80 + 166375*uk_81 + 130075*uk_82 + 51425*uk_83 + 121000*uk_84 + 311575*uk_85 + 680625*uk_86 + 51425*uk_87 + 101695*uk_88 + 40205*uk_89 + 2572416961*uk_9 + 94600*uk_90 + 243595*uk_91 + 532125*uk_92 + 40205*uk_93 + 15895*uk_94 + 37400*uk_95 + 96305*uk_96 + 210375*uk_97 + 15895*uk_98 + 88000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 207900*uk_100 + 445500*uk_101 + 85140*uk_102 + 606375*uk_103 + 1299375*uk_104 + 248325*uk_105 + 2784375*uk_106 + 532125*uk_107 + 101695*uk_108 + 64*uk_109 + 202876*uk_11 + 688*uk_110 + 576*uk_111 + 1680*uk_112 + 3600*uk_113 + 688*uk_114 + 7396*uk_115 + 6192*uk_116 + 18060*uk_117 + 38700*uk_118 + 7396*uk_119 + 2180917*uk_12 + 5184*uk_120 + 15120*uk_121 + 32400*uk_122 + 6192*uk_123 + 44100*uk_124 + 94500*uk_125 + 18060*uk_126 + 202500*uk_127 + 38700*uk_128 + 7396*uk_129 + 1825884*uk_13 + 79507*uk_130 + 66564*uk_131 + 194145*uk_132 + 416025*uk_133 + 79507*uk_134 + 55728*uk_135 + 162540*uk_136 + 348300*uk_137 + 66564*uk_138 + 474075*uk_139 + 5325495*uk_14 + 1015875*uk_140 + 194145*uk_141 + 2176875*uk_142 + 416025*uk_143 + 79507*uk_144 + 46656*uk_145 + 136080*uk_146 + 291600*uk_147 + 55728*uk_148 + 396900*uk_149 + 11411775*uk_15 + 850500*uk_150 + 162540*uk_151 + 1822500*uk_152 + 348300*uk_153 + 66564*uk_154 + 1157625*uk_155 + 2480625*uk_156 + 474075*uk_157 + 5315625*uk_158 + 1015875*uk_159 + 2180917*uk_16 + 194145*uk_160 + 11390625*uk_161 + 2176875*uk_162 + 416025*uk_163 + 79507*uk_164 + 3025*uk_17 + 220*uk_18 + 2365*uk_19 + 55*uk_2 + 1980*uk_20 + 5775*uk_21 + 12375*uk_22 + 2365*uk_23 + 16*uk_24 + 172*uk_25 + 144*uk_26 + 420*uk_27 + 900*uk_28 + 172*uk_29 + 4*uk_3 + 1849*uk_30 + 1548*uk_31 + 4515*uk_32 + 9675*uk_33 + 1849*uk_34 + 1296*uk_35 + 3780*uk_36 + 8100*uk_37 + 1548*uk_38 + 11025*uk_39 + 43*uk_4 + 23625*uk_40 + 4515*uk_41 + 50625*uk_42 + 9675*uk_43 + 1849*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 110613929323*uk_48 + 92607010596*uk_49 + 36*uk_5 + 270103780905*uk_50 + 578793816225*uk_51 + 110613929323*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 119950435*uk_55 + 100423620*uk_56 + 292902225*uk_57 + 627647625*uk_58 + 119950435*uk_59 + 105*uk_6 + 811504*uk_60 + 8723668*uk_61 + 7303536*uk_62 + 21301980*uk_63 + 45647100*uk_64 + 8723668*uk_65 + 93779431*uk_66 + 78513012*uk_67 + 228996285*uk_68 + 490706325*uk_69 + 225*uk_7 + 93779431*uk_70 + 65731824*uk_71 + 191717820*uk_72 + 410823900*uk_73 + 78513012*uk_74 + 559176975*uk_75 + 1198236375*uk_76 + 228996285*uk_77 + 2567649375*uk_78 + 490706325*uk_79 + 43*uk_8 + 93779431*uk_80 + 166375*uk_81 + 12100*uk_82 + 130075*uk_83 + 108900*uk_84 + 317625*uk_85 + 680625*uk_86 + 130075*uk_87 + 880*uk_88 + 9460*uk_89 + 2572416961*uk_9 + 7920*uk_90 + 23100*uk_91 + 49500*uk_92 + 9460*uk_93 + 101695*uk_94 + 85140*uk_95 + 248325*uk_96 + 532125*uk_97 + 101695*uk_98 + 71280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 211860*uk_100 + 445500*uk_101 + 7920*uk_102 + 629695*uk_103 + 1324125*uk_104 + 23540*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + uk_109 + 50719*uk_11 + 4*uk_110 + 36*uk_111 + 107*uk_112 + 225*uk_113 + 4*uk_114 + 16*uk_115 + 144*uk_116 + 428*uk_117 + 900*uk_118 + 16*uk_119 + 202876*uk_12 + 1296*uk_120 + 3852*uk_121 + 8100*uk_122 + 144*uk_123 + 11449*uk_124 + 24075*uk_125 + 428*uk_126 + 50625*uk_127 + 900*uk_128 + 16*uk_129 + 1825884*uk_13 + 64*uk_130 + 576*uk_131 + 1712*uk_132 + 3600*uk_133 + 64*uk_134 + 5184*uk_135 + 15408*uk_136 + 32400*uk_137 + 576*uk_138 + 45796*uk_139 + 5426933*uk_14 + 96300*uk_140 + 1712*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 46656*uk_145 + 138672*uk_146 + 291600*uk_147 + 5184*uk_148 + 412164*uk_149 + 11411775*uk_15 + 866700*uk_150 + 15408*uk_151 + 1822500*uk_152 + 32400*uk_153 + 576*uk_154 + 1225043*uk_155 + 2576025*uk_156 + 45796*uk_157 + 5416875*uk_158 + 96300*uk_159 + 202876*uk_16 + 1712*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 55*uk_18 + 220*uk_19 + 55*uk_2 + 1980*uk_20 + 5885*uk_21 + 12375*uk_22 + 220*uk_23 + uk_24 + 4*uk_25 + 36*uk_26 + 107*uk_27 + 225*uk_28 + 4*uk_29 + uk_3 + 16*uk_30 + 144*uk_31 + 428*uk_32 + 900*uk_33 + 16*uk_34 + 1296*uk_35 + 3852*uk_36 + 8100*uk_37 + 144*uk_38 + 11449*uk_39 + 4*uk_4 + 24075*uk_40 + 428*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 2572416961*uk_47 + 10289667844*uk_48 + 92607010596*uk_49 + 36*uk_5 + 275248614827*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 2789545*uk_54 + 11158180*uk_55 + 100423620*uk_56 + 298481315*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 107*uk_6 + 50719*uk_60 + 202876*uk_61 + 1825884*uk_62 + 5426933*uk_63 + 11411775*uk_64 + 202876*uk_65 + 811504*uk_66 + 7303536*uk_67 + 21707732*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 65731824*uk_71 + 195369588*uk_72 + 410823900*uk_73 + 7303536*uk_74 + 580681831*uk_75 + 1221059925*uk_76 + 21707732*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 3025*uk_82 + 12100*uk_83 + 108900*uk_84 + 323675*uk_85 + 680625*uk_86 + 12100*uk_87 + 55*uk_88 + 220*uk_89 + 2572416961*uk_9 + 1980*uk_90 + 5885*uk_91 + 12375*uk_92 + 220*uk_93 + 880*uk_94 + 7920*uk_95 + 23540*uk_96 + 49500*uk_97 + 880*uk_98 + 71280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 215820*uk_100 + 445500*uk_101 + 1980*uk_102 + 653455*uk_103 + 1348875*uk_104 + 5995*uk_105 + 2784375*uk_106 + 12375*uk_107 + 55*uk_108 + 39304*uk_109 + 1724446*uk_11 + 1156*uk_110 + 41616*uk_111 + 126004*uk_112 + 260100*uk_113 + 1156*uk_114 + 34*uk_115 + 1224*uk_116 + 3706*uk_117 + 7650*uk_118 + 34*uk_119 + 50719*uk_12 + 44064*uk_120 + 133416*uk_121 + 275400*uk_122 + 1224*uk_123 + 403954*uk_124 + 833850*uk_125 + 3706*uk_126 + 1721250*uk_127 + 7650*uk_128 + 34*uk_129 + 1825884*uk_13 + uk_130 + 36*uk_131 + 109*uk_132 + 225*uk_133 + uk_134 + 1296*uk_135 + 3924*uk_136 + 8100*uk_137 + 36*uk_138 + 11881*uk_139 + 5528371*uk_14 + 24525*uk_140 + 109*uk_141 + 50625*uk_142 + 225*uk_143 + uk_144 + 46656*uk_145 + 141264*uk_146 + 291600*uk_147 + 1296*uk_148 + 427716*uk_149 + 11411775*uk_15 + 882900*uk_150 + 3924*uk_151 + 1822500*uk_152 + 8100*uk_153 + 36*uk_154 + 1295029*uk_155 + 2673225*uk_156 + 11881*uk_157 + 5518125*uk_158 + 24525*uk_159 + 50719*uk_16 + 109*uk_160 + 11390625*uk_161 + 50625*uk_162 + 225*uk_163 + uk_164 + 3025*uk_17 + 1870*uk_18 + 55*uk_19 + 55*uk_2 + 1980*uk_20 + 5995*uk_21 + 12375*uk_22 + 55*uk_23 + 1156*uk_24 + 34*uk_25 + 1224*uk_26 + 3706*uk_27 + 7650*uk_28 + 34*uk_29 + 34*uk_3 + uk_30 + 36*uk_31 + 109*uk_32 + 225*uk_33 + uk_34 + 1296*uk_35 + 3924*uk_36 + 8100*uk_37 + 36*uk_38 + 11881*uk_39 + uk_4 + 24525*uk_40 + 109*uk_41 + 50625*uk_42 + 225*uk_43 + uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 87462176674*uk_47 + 2572416961*uk_48 + 92607010596*uk_49 + 36*uk_5 + 280393448749*uk_50 + 578793816225*uk_51 + 2572416961*uk_52 + 153424975*uk_53 + 94844530*uk_54 + 2789545*uk_55 + 100423620*uk_56 + 304060405*uk_57 + 627647625*uk_58 + 2789545*uk_59 + 109*uk_6 + 58631164*uk_60 + 1724446*uk_61 + 62080056*uk_62 + 187964614*uk_63 + 388000350*uk_64 + 1724446*uk_65 + 50719*uk_66 + 1825884*uk_67 + 5528371*uk_68 + 11411775*uk_69 + 225*uk_7 + 50719*uk_70 + 65731824*uk_71 + 199021356*uk_72 + 410823900*uk_73 + 1825884*uk_74 + 602592439*uk_75 + 1243883475*uk_76 + 5528371*uk_77 + 2567649375*uk_78 + 11411775*uk_79 + uk_8 + 50719*uk_80 + 166375*uk_81 + 102850*uk_82 + 3025*uk_83 + 108900*uk_84 + 329725*uk_85 + 680625*uk_86 + 3025*uk_87 + 63580*uk_88 + 1870*uk_89 + 2572416961*uk_9 + 67320*uk_90 + 203830*uk_91 + 420750*uk_92 + 1870*uk_93 + 55*uk_94 + 1980*uk_95 + 5995*uk_96 + 12375*uk_97 + 55*uk_98 + 71280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 219780*uk_100 + 445500*uk_101 + 67320*uk_102 + 677655*uk_103 + 1373625*uk_104 + 207570*uk_105 + 2784375*uk_106 + 420750*uk_107 + 63580*uk_108 + 1092727*uk_109 + 5224057*uk_11 + 360706*uk_110 + 381924*uk_111 + 1177599*uk_112 + 2387025*uk_113 + 360706*uk_114 + 119068*uk_115 + 126072*uk_116 + 388722*uk_117 + 787950*uk_118 + 119068*uk_119 + 1724446*uk_12 + 133488*uk_120 + 411588*uk_121 + 834300*uk_122 + 126072*uk_123 + 1269063*uk_124 + 2572425*uk_125 + 388722*uk_126 + 5214375*uk_127 + 787950*uk_128 + 119068*uk_129 + 1825884*uk_13 + 39304*uk_130 + 41616*uk_131 + 128316*uk_132 + 260100*uk_133 + 39304*uk_134 + 44064*uk_135 + 135864*uk_136 + 275400*uk_137 + 41616*uk_138 + 418914*uk_139 + 5629809*uk_14 + 849150*uk_140 + 128316*uk_141 + 1721250*uk_142 + 260100*uk_143 + 39304*uk_144 + 46656*uk_145 + 143856*uk_146 + 291600*uk_147 + 44064*uk_148 + 443556*uk_149 + 11411775*uk_15 + 899100*uk_150 + 135864*uk_151 + 1822500*uk_152 + 275400*uk_153 + 41616*uk_154 + 1367631*uk_155 + 2772225*uk_156 + 418914*uk_157 + 5619375*uk_158 + 849150*uk_159 + 1724446*uk_16 + 128316*uk_160 + 11390625*uk_161 + 1721250*uk_162 + 260100*uk_163 + 39304*uk_164 + 3025*uk_17 + 5665*uk_18 + 1870*uk_19 + 55*uk_2 + 1980*uk_20 + 6105*uk_21 + 12375*uk_22 + 1870*uk_23 + 10609*uk_24 + 3502*uk_25 + 3708*uk_26 + 11433*uk_27 + 23175*uk_28 + 3502*uk_29 + 103*uk_3 + 1156*uk_30 + 1224*uk_31 + 3774*uk_32 + 7650*uk_33 + 1156*uk_34 + 1296*uk_35 + 3996*uk_36 + 8100*uk_37 + 1224*uk_38 + 12321*uk_39 + 34*uk_4 + 24975*uk_40 + 3774*uk_41 + 50625*uk_42 + 7650*uk_43 + 1156*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 264958946983*uk_47 + 87462176674*uk_48 + 92607010596*uk_49 + 36*uk_5 + 285538282671*uk_50 + 578793816225*uk_51 + 87462176674*uk_52 + 153424975*uk_53 + 287323135*uk_54 + 94844530*uk_55 + 100423620*uk_56 + 309639495*uk_57 + 627647625*uk_58 + 94844530*uk_59 + 111*uk_6 + 538077871*uk_60 + 177617938*uk_61 + 188066052*uk_62 + 579870327*uk_63 + 1175412825*uk_64 + 177617938*uk_65 + 58631164*uk_66 + 62080056*uk_67 + 191413506*uk_68 + 388000350*uk_69 + 225*uk_7 + 58631164*uk_70 + 65731824*uk_71 + 202673124*uk_72 + 410823900*uk_73 + 62080056*uk_74 + 624908799*uk_75 + 1266707025*uk_76 + 191413506*uk_77 + 2567649375*uk_78 + 388000350*uk_79 + 34*uk_8 + 58631164*uk_80 + 166375*uk_81 + 311575*uk_82 + 102850*uk_83 + 108900*uk_84 + 335775*uk_85 + 680625*uk_86 + 102850*uk_87 + 583495*uk_88 + 192610*uk_89 + 2572416961*uk_9 + 203940*uk_90 + 628815*uk_91 + 1274625*uk_92 + 192610*uk_93 + 63580*uk_94 + 67320*uk_95 + 207570*uk_96 + 420750*uk_97 + 63580*uk_98 + 71280*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 198880*uk_100 + 396000*uk_101 + 181280*uk_102 + 702295*uk_103 + 1398375*uk_104 + 640145*uk_105 + 2784375*uk_106 + 1274625*uk_107 + 583495*uk_108 + 857375*uk_109 + 4818305*uk_11 + 929575*uk_110 + 288800*uk_111 + 1019825*uk_112 + 2030625*uk_113 + 929575*uk_114 + 1007855*uk_115 + 313120*uk_116 + 1105705*uk_117 + 2201625*uk_118 + 1007855*uk_119 + 5224057*uk_12 + 97280*uk_120 + 343520*uk_121 + 684000*uk_122 + 313120*uk_123 + 1213055*uk_124 + 2415375*uk_125 + 1105705*uk_126 + 4809375*uk_127 + 2201625*uk_128 + 1007855*uk_129 + 1623008*uk_13 + 1092727*uk_130 + 339488*uk_131 + 1198817*uk_132 + 2387025*uk_133 + 1092727*uk_134 + 105472*uk_135 + 372448*uk_136 + 741600*uk_137 + 339488*uk_138 + 1315207*uk_139 + 5731247*uk_14 + 2618775*uk_140 + 1198817*uk_141 + 5214375*uk_142 + 2387025*uk_143 + 1092727*uk_144 + 32768*uk_145 + 115712*uk_146 + 230400*uk_147 + 105472*uk_148 + 408608*uk_149 + 11411775*uk_15 + 813600*uk_150 + 372448*uk_151 + 1620000*uk_152 + 741600*uk_153 + 339488*uk_154 + 1442897*uk_155 + 2873025*uk_156 + 1315207*uk_157 + 5720625*uk_158 + 2618775*uk_159 + 5224057*uk_16 + 1198817*uk_160 + 11390625*uk_161 + 5214375*uk_162 + 2387025*uk_163 + 1092727*uk_164 + 3025*uk_17 + 5225*uk_18 + 5665*uk_19 + 55*uk_2 + 1760*uk_20 + 6215*uk_21 + 12375*uk_22 + 5665*uk_23 + 9025*uk_24 + 9785*uk_25 + 3040*uk_26 + 10735*uk_27 + 21375*uk_28 + 9785*uk_29 + 95*uk_3 + 10609*uk_30 + 3296*uk_31 + 11639*uk_32 + 23175*uk_33 + 10609*uk_34 + 1024*uk_35 + 3616*uk_36 + 7200*uk_37 + 3296*uk_38 + 12769*uk_39 + 103*uk_4 + 25425*uk_40 + 11639*uk_41 + 50625*uk_42 + 23175*uk_43 + 10609*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 244379611295*uk_47 + 264958946983*uk_48 + 82317342752*uk_49 + 32*uk_5 + 290683116593*uk_50 + 578793816225*uk_51 + 264958946983*uk_52 + 153424975*uk_53 + 265006775*uk_54 + 287323135*uk_55 + 89265440*uk_56 + 315218585*uk_57 + 627647625*uk_58 + 287323135*uk_59 + 113*uk_6 + 457738975*uk_60 + 496285415*uk_61 + 154185760*uk_62 + 544468465*uk_63 + 1084118625*uk_64 + 496285415*uk_65 + 538077871*uk_66 + 167169824*uk_67 + 590318441*uk_68 + 1175412825*uk_69 + 225*uk_7 + 538077871*uk_70 + 51936256*uk_71 + 183399904*uk_72 + 365176800*uk_73 + 167169824*uk_74 + 647630911*uk_75 + 1289530575*uk_76 + 590318441*uk_77 + 2567649375*uk_78 + 1175412825*uk_79 + 103*uk_8 + 538077871*uk_80 + 166375*uk_81 + 287375*uk_82 + 311575*uk_83 + 96800*uk_84 + 341825*uk_85 + 680625*uk_86 + 311575*uk_87 + 496375*uk_88 + 538175*uk_89 + 2572416961*uk_9 + 167200*uk_90 + 590425*uk_91 + 1175625*uk_92 + 538175*uk_93 + 583495*uk_94 + 181280*uk_95 + 640145*uk_96 + 1274625*uk_97 + 583495*uk_98 + 56320*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 177100*uk_100 + 346500*uk_101 + 146300*uk_102 + 727375*uk_103 + 1423125*uk_104 + 600875*uk_105 + 2784375*uk_106 + 1175625*uk_107 + 496375*uk_108 + 64*uk_109 + 202876*uk_11 + 1520*uk_110 + 448*uk_111 + 1840*uk_112 + 3600*uk_113 + 1520*uk_114 + 36100*uk_115 + 10640*uk_116 + 43700*uk_117 + 85500*uk_118 + 36100*uk_119 + 4818305*uk_12 + 3136*uk_120 + 12880*uk_121 + 25200*uk_122 + 10640*uk_123 + 52900*uk_124 + 103500*uk_125 + 43700*uk_126 + 202500*uk_127 + 85500*uk_128 + 36100*uk_129 + 1420132*uk_13 + 857375*uk_130 + 252700*uk_131 + 1037875*uk_132 + 2030625*uk_133 + 857375*uk_134 + 74480*uk_135 + 305900*uk_136 + 598500*uk_137 + 252700*uk_138 + 1256375*uk_139 + 5832685*uk_14 + 2458125*uk_140 + 1037875*uk_141 + 4809375*uk_142 + 2030625*uk_143 + 857375*uk_144 + 21952*uk_145 + 90160*uk_146 + 176400*uk_147 + 74480*uk_148 + 370300*uk_149 + 11411775*uk_15 + 724500*uk_150 + 305900*uk_151 + 1417500*uk_152 + 598500*uk_153 + 252700*uk_154 + 1520875*uk_155 + 2975625*uk_156 + 1256375*uk_157 + 5821875*uk_158 + 2458125*uk_159 + 4818305*uk_16 + 1037875*uk_160 + 11390625*uk_161 + 4809375*uk_162 + 2030625*uk_163 + 857375*uk_164 + 3025*uk_17 + 220*uk_18 + 5225*uk_19 + 55*uk_2 + 1540*uk_20 + 6325*uk_21 + 12375*uk_22 + 5225*uk_23 + 16*uk_24 + 380*uk_25 + 112*uk_26 + 460*uk_27 + 900*uk_28 + 380*uk_29 + 4*uk_3 + 9025*uk_30 + 2660*uk_31 + 10925*uk_32 + 21375*uk_33 + 9025*uk_34 + 784*uk_35 + 3220*uk_36 + 6300*uk_37 + 2660*uk_38 + 13225*uk_39 + 95*uk_4 + 25875*uk_40 + 10925*uk_41 + 50625*uk_42 + 21375*uk_43 + 9025*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 244379611295*uk_48 + 72027674908*uk_49 + 28*uk_5 + 295827950515*uk_50 + 578793816225*uk_51 + 244379611295*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 265006775*uk_55 + 78107260*uk_56 + 320797675*uk_57 + 627647625*uk_58 + 265006775*uk_59 + 115*uk_6 + 811504*uk_60 + 19273220*uk_61 + 5680528*uk_62 + 23330740*uk_63 + 45647100*uk_64 + 19273220*uk_65 + 457738975*uk_66 + 134912540*uk_67 + 554105075*uk_68 + 1084118625*uk_69 + 225*uk_7 + 457738975*uk_70 + 39763696*uk_71 + 163315180*uk_72 + 319529700*uk_73 + 134912540*uk_74 + 670758775*uk_75 + 1312354125*uk_76 + 554105075*uk_77 + 2567649375*uk_78 + 1084118625*uk_79 + 95*uk_8 + 457738975*uk_80 + 166375*uk_81 + 12100*uk_82 + 287375*uk_83 + 84700*uk_84 + 347875*uk_85 + 680625*uk_86 + 287375*uk_87 + 880*uk_88 + 20900*uk_89 + 2572416961*uk_9 + 6160*uk_90 + 25300*uk_91 + 49500*uk_92 + 20900*uk_93 + 496375*uk_94 + 146300*uk_95 + 600875*uk_96 + 1175625*uk_97 + 496375*uk_98 + 43120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 205920*uk_100 + 396000*uk_101 + 7040*uk_102 + 752895*uk_103 + 1447875*uk_104 + 25740*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 195112*uk_109 + 2941702*uk_11 + 13456*uk_110 + 107648*uk_111 + 393588*uk_112 + 756900*uk_113 + 13456*uk_114 + 928*uk_115 + 7424*uk_116 + 27144*uk_117 + 52200*uk_118 + 928*uk_119 + 202876*uk_12 + 59392*uk_120 + 217152*uk_121 + 417600*uk_122 + 7424*uk_123 + 793962*uk_124 + 1526850*uk_125 + 27144*uk_126 + 2936250*uk_127 + 52200*uk_128 + 928*uk_129 + 1623008*uk_13 + 64*uk_130 + 512*uk_131 + 1872*uk_132 + 3600*uk_133 + 64*uk_134 + 4096*uk_135 + 14976*uk_136 + 28800*uk_137 + 512*uk_138 + 54756*uk_139 + 5934123*uk_14 + 105300*uk_140 + 1872*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 32768*uk_145 + 119808*uk_146 + 230400*uk_147 + 4096*uk_148 + 438048*uk_149 + 11411775*uk_15 + 842400*uk_150 + 14976*uk_151 + 1620000*uk_152 + 28800*uk_153 + 512*uk_154 + 1601613*uk_155 + 3080025*uk_156 + 54756*uk_157 + 5923125*uk_158 + 105300*uk_159 + 202876*uk_16 + 1872*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 3190*uk_18 + 220*uk_19 + 55*uk_2 + 1760*uk_20 + 6435*uk_21 + 12375*uk_22 + 220*uk_23 + 3364*uk_24 + 232*uk_25 + 1856*uk_26 + 6786*uk_27 + 13050*uk_28 + 232*uk_29 + 58*uk_3 + 16*uk_30 + 128*uk_31 + 468*uk_32 + 900*uk_33 + 16*uk_34 + 1024*uk_35 + 3744*uk_36 + 7200*uk_37 + 128*uk_38 + 13689*uk_39 + 4*uk_4 + 26325*uk_40 + 468*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 149200183738*uk_47 + 10289667844*uk_48 + 82317342752*uk_49 + 32*uk_5 + 300972784437*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 161793610*uk_54 + 11158180*uk_55 + 89265440*uk_56 + 326376765*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 117*uk_6 + 170618716*uk_60 + 11766808*uk_61 + 94134464*uk_62 + 344179134*uk_63 + 661882950*uk_64 + 11766808*uk_65 + 811504*uk_66 + 6492032*uk_67 + 23736492*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 51936256*uk_71 + 189891936*uk_72 + 365176800*uk_73 + 6492032*uk_74 + 694292391*uk_75 + 1335177675*uk_76 + 23736492*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 175450*uk_82 + 12100*uk_83 + 96800*uk_84 + 353925*uk_85 + 680625*uk_86 + 12100*uk_87 + 185020*uk_88 + 12760*uk_89 + 2572416961*uk_9 + 102080*uk_90 + 373230*uk_91 + 717750*uk_92 + 12760*uk_93 + 880*uk_94 + 7040*uk_95 + 25740*uk_96 + 49500*uk_97 + 880*uk_98 + 56320*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 183260*uk_100 + 346500*uk_101 + 89320*uk_102 + 778855*uk_103 + 1472625*uk_104 + 379610*uk_105 + 2784375*uk_106 + 717750*uk_107 + 185020*uk_108 + 15625*uk_109 + 1267975*uk_11 + 36250*uk_110 + 17500*uk_111 + 74375*uk_112 + 140625*uk_113 + 36250*uk_114 + 84100*uk_115 + 40600*uk_116 + 172550*uk_117 + 326250*uk_118 + 84100*uk_119 + 2941702*uk_12 + 19600*uk_120 + 83300*uk_121 + 157500*uk_122 + 40600*uk_123 + 354025*uk_124 + 669375*uk_125 + 172550*uk_126 + 1265625*uk_127 + 326250*uk_128 + 84100*uk_129 + 1420132*uk_13 + 195112*uk_130 + 94192*uk_131 + 400316*uk_132 + 756900*uk_133 + 195112*uk_134 + 45472*uk_135 + 193256*uk_136 + 365400*uk_137 + 94192*uk_138 + 821338*uk_139 + 6035561*uk_14 + 1552950*uk_140 + 400316*uk_141 + 2936250*uk_142 + 756900*uk_143 + 195112*uk_144 + 21952*uk_145 + 93296*uk_146 + 176400*uk_147 + 45472*uk_148 + 396508*uk_149 + 11411775*uk_15 + 749700*uk_150 + 193256*uk_151 + 1417500*uk_152 + 365400*uk_153 + 94192*uk_154 + 1685159*uk_155 + 3186225*uk_156 + 821338*uk_157 + 6024375*uk_158 + 1552950*uk_159 + 2941702*uk_16 + 400316*uk_160 + 11390625*uk_161 + 2936250*uk_162 + 756900*uk_163 + 195112*uk_164 + 3025*uk_17 + 1375*uk_18 + 3190*uk_19 + 55*uk_2 + 1540*uk_20 + 6545*uk_21 + 12375*uk_22 + 3190*uk_23 + 625*uk_24 + 1450*uk_25 + 700*uk_26 + 2975*uk_27 + 5625*uk_28 + 1450*uk_29 + 25*uk_3 + 3364*uk_30 + 1624*uk_31 + 6902*uk_32 + 13050*uk_33 + 3364*uk_34 + 784*uk_35 + 3332*uk_36 + 6300*uk_37 + 1624*uk_38 + 14161*uk_39 + 58*uk_4 + 26775*uk_40 + 6902*uk_41 + 50625*uk_42 + 13050*uk_43 + 3364*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 64310424025*uk_47 + 149200183738*uk_48 + 72027674908*uk_49 + 28*uk_5 + 306117618359*uk_50 + 578793816225*uk_51 + 149200183738*uk_52 + 153424975*uk_53 + 69738625*uk_54 + 161793610*uk_55 + 78107260*uk_56 + 331955855*uk_57 + 627647625*uk_58 + 161793610*uk_59 + 119*uk_6 + 31699375*uk_60 + 73542550*uk_61 + 35503300*uk_62 + 150889025*uk_63 + 285294375*uk_64 + 73542550*uk_65 + 170618716*uk_66 + 82367656*uk_67 + 350062538*uk_68 + 661882950*uk_69 + 225*uk_7 + 170618716*uk_70 + 39763696*uk_71 + 168995708*uk_72 + 319529700*uk_73 + 82367656*uk_74 + 718231759*uk_75 + 1358001225*uk_76 + 350062538*uk_77 + 2567649375*uk_78 + 661882950*uk_79 + 58*uk_8 + 170618716*uk_80 + 166375*uk_81 + 75625*uk_82 + 175450*uk_83 + 84700*uk_84 + 359975*uk_85 + 680625*uk_86 + 175450*uk_87 + 34375*uk_88 + 79750*uk_89 + 2572416961*uk_9 + 38500*uk_90 + 163625*uk_91 + 309375*uk_92 + 79750*uk_93 + 185020*uk_94 + 89320*uk_95 + 379610*uk_96 + 717750*uk_97 + 185020*uk_98 + 43120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 186340*uk_100 + 346500*uk_101 + 38500*uk_102 + 805255*uk_103 + 1497375*uk_104 + 166375*uk_105 + 2784375*uk_106 + 309375*uk_107 + 34375*uk_108 + 8000*uk_109 + 1014380*uk_11 + 10000*uk_110 + 11200*uk_111 + 48400*uk_112 + 90000*uk_113 + 10000*uk_114 + 12500*uk_115 + 14000*uk_116 + 60500*uk_117 + 112500*uk_118 + 12500*uk_119 + 1267975*uk_12 + 15680*uk_120 + 67760*uk_121 + 126000*uk_122 + 14000*uk_123 + 292820*uk_124 + 544500*uk_125 + 60500*uk_126 + 1012500*uk_127 + 112500*uk_128 + 12500*uk_129 + 1420132*uk_13 + 15625*uk_130 + 17500*uk_131 + 75625*uk_132 + 140625*uk_133 + 15625*uk_134 + 19600*uk_135 + 84700*uk_136 + 157500*uk_137 + 17500*uk_138 + 366025*uk_139 + 6136999*uk_14 + 680625*uk_140 + 75625*uk_141 + 1265625*uk_142 + 140625*uk_143 + 15625*uk_144 + 21952*uk_145 + 94864*uk_146 + 176400*uk_147 + 19600*uk_148 + 409948*uk_149 + 11411775*uk_15 + 762300*uk_150 + 84700*uk_151 + 1417500*uk_152 + 157500*uk_153 + 17500*uk_154 + 1771561*uk_155 + 3294225*uk_156 + 366025*uk_157 + 6125625*uk_158 + 680625*uk_159 + 1267975*uk_16 + 75625*uk_160 + 11390625*uk_161 + 1265625*uk_162 + 140625*uk_163 + 15625*uk_164 + 3025*uk_17 + 1100*uk_18 + 1375*uk_19 + 55*uk_2 + 1540*uk_20 + 6655*uk_21 + 12375*uk_22 + 1375*uk_23 + 400*uk_24 + 500*uk_25 + 560*uk_26 + 2420*uk_27 + 4500*uk_28 + 500*uk_29 + 20*uk_3 + 625*uk_30 + 700*uk_31 + 3025*uk_32 + 5625*uk_33 + 625*uk_34 + 784*uk_35 + 3388*uk_36 + 6300*uk_37 + 700*uk_38 + 14641*uk_39 + 25*uk_4 + 27225*uk_40 + 3025*uk_41 + 50625*uk_42 + 5625*uk_43 + 625*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 51448339220*uk_47 + 64310424025*uk_48 + 72027674908*uk_49 + 28*uk_5 + 311262452281*uk_50 + 578793816225*uk_51 + 64310424025*uk_52 + 153424975*uk_53 + 55790900*uk_54 + 69738625*uk_55 + 78107260*uk_56 + 337534945*uk_57 + 627647625*uk_58 + 69738625*uk_59 + 121*uk_6 + 20287600*uk_60 + 25359500*uk_61 + 28402640*uk_62 + 122739980*uk_63 + 228235500*uk_64 + 25359500*uk_65 + 31699375*uk_66 + 35503300*uk_67 + 153424975*uk_68 + 285294375*uk_69 + 225*uk_7 + 31699375*uk_70 + 39763696*uk_71 + 171835972*uk_72 + 319529700*uk_73 + 35503300*uk_74 + 742576879*uk_75 + 1380824775*uk_76 + 153424975*uk_77 + 2567649375*uk_78 + 285294375*uk_79 + 25*uk_8 + 31699375*uk_80 + 166375*uk_81 + 60500*uk_82 + 75625*uk_83 + 84700*uk_84 + 366025*uk_85 + 680625*uk_86 + 75625*uk_87 + 22000*uk_88 + 27500*uk_89 + 2572416961*uk_9 + 30800*uk_90 + 133100*uk_91 + 247500*uk_92 + 27500*uk_93 + 34375*uk_94 + 38500*uk_95 + 166375*uk_96 + 309375*uk_97 + 34375*uk_98 + 43120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 189420*uk_100 + 346500*uk_101 + 30800*uk_102 + 832095*uk_103 + 1522125*uk_104 + 135300*uk_105 + 2784375*uk_106 + 247500*uk_107 + 22000*uk_108 + 79507*uk_109 + 2180917*uk_11 + 36980*uk_110 + 51772*uk_111 + 227427*uk_112 + 416025*uk_113 + 36980*uk_114 + 17200*uk_115 + 24080*uk_116 + 105780*uk_117 + 193500*uk_118 + 17200*uk_119 + 1014380*uk_12 + 33712*uk_120 + 148092*uk_121 + 270900*uk_122 + 24080*uk_123 + 650547*uk_124 + 1190025*uk_125 + 105780*uk_126 + 2176875*uk_127 + 193500*uk_128 + 17200*uk_129 + 1420132*uk_13 + 8000*uk_130 + 11200*uk_131 + 49200*uk_132 + 90000*uk_133 + 8000*uk_134 + 15680*uk_135 + 68880*uk_136 + 126000*uk_137 + 11200*uk_138 + 302580*uk_139 + 6238437*uk_14 + 553500*uk_140 + 49200*uk_141 + 1012500*uk_142 + 90000*uk_143 + 8000*uk_144 + 21952*uk_145 + 96432*uk_146 + 176400*uk_147 + 15680*uk_148 + 423612*uk_149 + 11411775*uk_15 + 774900*uk_150 + 68880*uk_151 + 1417500*uk_152 + 126000*uk_153 + 11200*uk_154 + 1860867*uk_155 + 3404025*uk_156 + 302580*uk_157 + 6226875*uk_158 + 553500*uk_159 + 1014380*uk_16 + 49200*uk_160 + 11390625*uk_161 + 1012500*uk_162 + 90000*uk_163 + 8000*uk_164 + 3025*uk_17 + 2365*uk_18 + 1100*uk_19 + 55*uk_2 + 1540*uk_20 + 6765*uk_21 + 12375*uk_22 + 1100*uk_23 + 1849*uk_24 + 860*uk_25 + 1204*uk_26 + 5289*uk_27 + 9675*uk_28 + 860*uk_29 + 43*uk_3 + 400*uk_30 + 560*uk_31 + 2460*uk_32 + 4500*uk_33 + 400*uk_34 + 784*uk_35 + 3444*uk_36 + 6300*uk_37 + 560*uk_38 + 15129*uk_39 + 20*uk_4 + 27675*uk_40 + 2460*uk_41 + 50625*uk_42 + 4500*uk_43 + 400*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 110613929323*uk_47 + 51448339220*uk_48 + 72027674908*uk_49 + 28*uk_5 + 316407286203*uk_50 + 578793816225*uk_51 + 51448339220*uk_52 + 153424975*uk_53 + 119950435*uk_54 + 55790900*uk_55 + 78107260*uk_56 + 343114035*uk_57 + 627647625*uk_58 + 55790900*uk_59 + 123*uk_6 + 93779431*uk_60 + 43618340*uk_61 + 61065676*uk_62 + 268252791*uk_63 + 490706325*uk_64 + 43618340*uk_65 + 20287600*uk_66 + 28402640*uk_67 + 124768740*uk_68 + 228235500*uk_69 + 225*uk_7 + 20287600*uk_70 + 39763696*uk_71 + 174676236*uk_72 + 319529700*uk_73 + 28402640*uk_74 + 767327751*uk_75 + 1403648325*uk_76 + 124768740*uk_77 + 2567649375*uk_78 + 228235500*uk_79 + 20*uk_8 + 20287600*uk_80 + 166375*uk_81 + 130075*uk_82 + 60500*uk_83 + 84700*uk_84 + 372075*uk_85 + 680625*uk_86 + 60500*uk_87 + 101695*uk_88 + 47300*uk_89 + 2572416961*uk_9 + 66220*uk_90 + 290895*uk_91 + 532125*uk_92 + 47300*uk_93 + 22000*uk_94 + 30800*uk_95 + 135300*uk_96 + 247500*uk_97 + 22000*uk_98 + 43120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 192500*uk_100 + 346500*uk_101 + 66220*uk_102 + 859375*uk_103 + 1546875*uk_104 + 295625*uk_105 + 2784375*uk_106 + 532125*uk_107 + 101695*uk_108 + 830584*uk_109 + 4767586*uk_11 + 379948*uk_110 + 247408*uk_111 + 1104500*uk_112 + 1988100*uk_113 + 379948*uk_114 + 173806*uk_115 + 113176*uk_116 + 505250*uk_117 + 909450*uk_118 + 173806*uk_119 + 2180917*uk_12 + 73696*uk_120 + 329000*uk_121 + 592200*uk_122 + 113176*uk_123 + 1468750*uk_124 + 2643750*uk_125 + 505250*uk_126 + 4758750*uk_127 + 909450*uk_128 + 173806*uk_129 + 1420132*uk_13 + 79507*uk_130 + 51772*uk_131 + 231125*uk_132 + 416025*uk_133 + 79507*uk_134 + 33712*uk_135 + 150500*uk_136 + 270900*uk_137 + 51772*uk_138 + 671875*uk_139 + 6339875*uk_14 + 1209375*uk_140 + 231125*uk_141 + 2176875*uk_142 + 416025*uk_143 + 79507*uk_144 + 21952*uk_145 + 98000*uk_146 + 176400*uk_147 + 33712*uk_148 + 437500*uk_149 + 11411775*uk_15 + 787500*uk_150 + 150500*uk_151 + 1417500*uk_152 + 270900*uk_153 + 51772*uk_154 + 1953125*uk_155 + 3515625*uk_156 + 671875*uk_157 + 6328125*uk_158 + 1209375*uk_159 + 2180917*uk_16 + 231125*uk_160 + 11390625*uk_161 + 2176875*uk_162 + 416025*uk_163 + 79507*uk_164 + 3025*uk_17 + 5170*uk_18 + 2365*uk_19 + 55*uk_2 + 1540*uk_20 + 6875*uk_21 + 12375*uk_22 + 2365*uk_23 + 8836*uk_24 + 4042*uk_25 + 2632*uk_26 + 11750*uk_27 + 21150*uk_28 + 4042*uk_29 + 94*uk_3 + 1849*uk_30 + 1204*uk_31 + 5375*uk_32 + 9675*uk_33 + 1849*uk_34 + 784*uk_35 + 3500*uk_36 + 6300*uk_37 + 1204*uk_38 + 15625*uk_39 + 43*uk_4 + 28125*uk_40 + 5375*uk_41 + 50625*uk_42 + 9675*uk_43 + 1849*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 241807194334*uk_47 + 110613929323*uk_48 + 72027674908*uk_49 + 28*uk_5 + 321552120125*uk_50 + 578793816225*uk_51 + 110613929323*uk_52 + 153424975*uk_53 + 262217230*uk_54 + 119950435*uk_55 + 78107260*uk_56 + 348693125*uk_57 + 627647625*uk_58 + 119950435*uk_59 + 125*uk_6 + 448153084*uk_60 + 205006198*uk_61 + 133492408*uk_62 + 595948250*uk_63 + 1072706850*uk_64 + 205006198*uk_65 + 93779431*uk_66 + 61065676*uk_67 + 272614625*uk_68 + 490706325*uk_69 + 225*uk_7 + 93779431*uk_70 + 39763696*uk_71 + 177516500*uk_72 + 319529700*uk_73 + 61065676*uk_74 + 792484375*uk_75 + 1426471875*uk_76 + 272614625*uk_77 + 2567649375*uk_78 + 490706325*uk_79 + 43*uk_8 + 93779431*uk_80 + 166375*uk_81 + 284350*uk_82 + 130075*uk_83 + 84700*uk_84 + 378125*uk_85 + 680625*uk_86 + 130075*uk_87 + 485980*uk_88 + 222310*uk_89 + 2572416961*uk_9 + 144760*uk_90 + 646250*uk_91 + 1163250*uk_92 + 222310*uk_93 + 101695*uk_94 + 66220*uk_95 + 295625*uk_96 + 532125*uk_97 + 101695*uk_98 + 43120*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 167640*uk_100 + 297000*uk_101 + 124080*uk_102 + 887095*uk_103 + 1571625*uk_104 + 656590*uk_105 + 2784375*uk_106 + 1163250*uk_107 + 485980*uk_108 + 97336*uk_109 + 2333074*uk_11 + 198904*uk_110 + 50784*uk_111 + 268732*uk_112 + 476100*uk_113 + 198904*uk_114 + 406456*uk_115 + 103776*uk_116 + 549148*uk_117 + 972900*uk_118 + 406456*uk_119 + 4767586*uk_12 + 26496*uk_120 + 140208*uk_121 + 248400*uk_122 + 103776*uk_123 + 741934*uk_124 + 1314450*uk_125 + 549148*uk_126 + 2328750*uk_127 + 972900*uk_128 + 406456*uk_129 + 1217256*uk_13 + 830584*uk_130 + 212064*uk_131 + 1122172*uk_132 + 1988100*uk_133 + 830584*uk_134 + 54144*uk_135 + 286512*uk_136 + 507600*uk_137 + 212064*uk_138 + 1516126*uk_139 + 6441313*uk_14 + 2686050*uk_140 + 1122172*uk_141 + 4758750*uk_142 + 1988100*uk_143 + 830584*uk_144 + 13824*uk_145 + 73152*uk_146 + 129600*uk_147 + 54144*uk_148 + 387096*uk_149 + 11411775*uk_15 + 685800*uk_150 + 286512*uk_151 + 1215000*uk_152 + 507600*uk_153 + 212064*uk_154 + 2048383*uk_155 + 3629025*uk_156 + 1516126*uk_157 + 6429375*uk_158 + 2686050*uk_159 + 4767586*uk_16 + 1122172*uk_160 + 11390625*uk_161 + 4758750*uk_162 + 1988100*uk_163 + 830584*uk_164 + 3025*uk_17 + 2530*uk_18 + 5170*uk_19 + 55*uk_2 + 1320*uk_20 + 6985*uk_21 + 12375*uk_22 + 5170*uk_23 + 2116*uk_24 + 4324*uk_25 + 1104*uk_26 + 5842*uk_27 + 10350*uk_28 + 4324*uk_29 + 46*uk_3 + 8836*uk_30 + 2256*uk_31 + 11938*uk_32 + 21150*uk_33 + 8836*uk_34 + 576*uk_35 + 3048*uk_36 + 5400*uk_37 + 2256*uk_38 + 16129*uk_39 + 94*uk_4 + 28575*uk_40 + 11938*uk_41 + 50625*uk_42 + 21150*uk_43 + 8836*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 118331180206*uk_47 + 241807194334*uk_48 + 61738007064*uk_49 + 24*uk_5 + 326696954047*uk_50 + 578793816225*uk_51 + 241807194334*uk_52 + 153424975*uk_53 + 128319070*uk_54 + 262217230*uk_55 + 66949080*uk_56 + 354272215*uk_57 + 627647625*uk_58 + 262217230*uk_59 + 127*uk_6 + 107321404*uk_60 + 219308956*uk_61 + 55993776*uk_62 + 296300398*uk_63 + 524941650*uk_64 + 219308956*uk_65 + 448153084*uk_66 + 114422064*uk_67 + 605483422*uk_68 + 1072706850*uk_69 + 225*uk_7 + 448153084*uk_70 + 29214144*uk_71 + 154591512*uk_72 + 273882600*uk_73 + 114422064*uk_74 + 818046751*uk_75 + 1449295425*uk_76 + 605483422*uk_77 + 2567649375*uk_78 + 1072706850*uk_79 + 94*uk_8 + 448153084*uk_80 + 166375*uk_81 + 139150*uk_82 + 284350*uk_83 + 72600*uk_84 + 384175*uk_85 + 680625*uk_86 + 284350*uk_87 + 116380*uk_88 + 237820*uk_89 + 2572416961*uk_9 + 60720*uk_90 + 321310*uk_91 + 569250*uk_92 + 237820*uk_93 + 485980*uk_94 + 124080*uk_95 + 656590*uk_96 + 1163250*uk_97 + 485980*uk_98 + 31680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 170280*uk_100 + 297000*uk_101 + 60720*uk_102 + 915255*uk_103 + 1596375*uk_104 + 326370*uk_105 + 2784375*uk_106 + 569250*uk_107 + 116380*uk_108 + 10648*uk_109 + 1115818*uk_11 + 22264*uk_110 + 11616*uk_111 + 62436*uk_112 + 108900*uk_113 + 22264*uk_114 + 46552*uk_115 + 24288*uk_116 + 130548*uk_117 + 227700*uk_118 + 46552*uk_119 + 2333074*uk_12 + 12672*uk_120 + 68112*uk_121 + 118800*uk_122 + 24288*uk_123 + 366102*uk_124 + 638550*uk_125 + 130548*uk_126 + 1113750*uk_127 + 227700*uk_128 + 46552*uk_129 + 1217256*uk_13 + 97336*uk_130 + 50784*uk_131 + 272964*uk_132 + 476100*uk_133 + 97336*uk_134 + 26496*uk_135 + 142416*uk_136 + 248400*uk_137 + 50784*uk_138 + 765486*uk_139 + 6542751*uk_14 + 1335150*uk_140 + 272964*uk_141 + 2328750*uk_142 + 476100*uk_143 + 97336*uk_144 + 13824*uk_145 + 74304*uk_146 + 129600*uk_147 + 26496*uk_148 + 399384*uk_149 + 11411775*uk_15 + 696600*uk_150 + 142416*uk_151 + 1215000*uk_152 + 248400*uk_153 + 50784*uk_154 + 2146689*uk_155 + 3744225*uk_156 + 765486*uk_157 + 6530625*uk_158 + 1335150*uk_159 + 2333074*uk_16 + 272964*uk_160 + 11390625*uk_161 + 2328750*uk_162 + 476100*uk_163 + 97336*uk_164 + 3025*uk_17 + 1210*uk_18 + 2530*uk_19 + 55*uk_2 + 1320*uk_20 + 7095*uk_21 + 12375*uk_22 + 2530*uk_23 + 484*uk_24 + 1012*uk_25 + 528*uk_26 + 2838*uk_27 + 4950*uk_28 + 1012*uk_29 + 22*uk_3 + 2116*uk_30 + 1104*uk_31 + 5934*uk_32 + 10350*uk_33 + 2116*uk_34 + 576*uk_35 + 3096*uk_36 + 5400*uk_37 + 1104*uk_38 + 16641*uk_39 + 46*uk_4 + 29025*uk_40 + 5934*uk_41 + 50625*uk_42 + 10350*uk_43 + 2116*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 56593173142*uk_47 + 118331180206*uk_48 + 61738007064*uk_49 + 24*uk_5 + 331841787969*uk_50 + 578793816225*uk_51 + 118331180206*uk_52 + 153424975*uk_53 + 61369990*uk_54 + 128319070*uk_55 + 66949080*uk_56 + 359851305*uk_57 + 627647625*uk_58 + 128319070*uk_59 + 129*uk_6 + 24547996*uk_60 + 51327628*uk_61 + 26779632*uk_62 + 143940522*uk_63 + 251059050*uk_64 + 51327628*uk_65 + 107321404*uk_66 + 55993776*uk_67 + 300966546*uk_68 + 524941650*uk_69 + 225*uk_7 + 107321404*uk_70 + 29214144*uk_71 + 157026024*uk_72 + 273882600*uk_73 + 55993776*uk_74 + 844014879*uk_75 + 1472118975*uk_76 + 300966546*uk_77 + 2567649375*uk_78 + 524941650*uk_79 + 46*uk_8 + 107321404*uk_80 + 166375*uk_81 + 66550*uk_82 + 139150*uk_83 + 72600*uk_84 + 390225*uk_85 + 680625*uk_86 + 139150*uk_87 + 26620*uk_88 + 55660*uk_89 + 2572416961*uk_9 + 29040*uk_90 + 156090*uk_91 + 272250*uk_92 + 55660*uk_93 + 116380*uk_94 + 60720*uk_95 + 326370*uk_96 + 569250*uk_97 + 116380*uk_98 + 31680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 172920*uk_100 + 297000*uk_101 + 29040*uk_102 + 943855*uk_103 + 1621125*uk_104 + 158510*uk_105 + 2784375*uk_106 + 272250*uk_107 + 26620*uk_108 + 10648*uk_109 + 1115818*uk_11 + 10648*uk_110 + 11616*uk_111 + 63404*uk_112 + 108900*uk_113 + 10648*uk_114 + 10648*uk_115 + 11616*uk_116 + 63404*uk_117 + 108900*uk_118 + 10648*uk_119 + 1115818*uk_12 + 12672*uk_120 + 69168*uk_121 + 118800*uk_122 + 11616*uk_123 + 377542*uk_124 + 648450*uk_125 + 63404*uk_126 + 1113750*uk_127 + 108900*uk_128 + 10648*uk_129 + 1217256*uk_13 + 10648*uk_130 + 11616*uk_131 + 63404*uk_132 + 108900*uk_133 + 10648*uk_134 + 12672*uk_135 + 69168*uk_136 + 118800*uk_137 + 11616*uk_138 + 377542*uk_139 + 6644189*uk_14 + 648450*uk_140 + 63404*uk_141 + 1113750*uk_142 + 108900*uk_143 + 10648*uk_144 + 13824*uk_145 + 75456*uk_146 + 129600*uk_147 + 12672*uk_148 + 411864*uk_149 + 11411775*uk_15 + 707400*uk_150 + 69168*uk_151 + 1215000*uk_152 + 118800*uk_153 + 11616*uk_154 + 2248091*uk_155 + 3861225*uk_156 + 377542*uk_157 + 6631875*uk_158 + 648450*uk_159 + 1115818*uk_16 + 63404*uk_160 + 11390625*uk_161 + 1113750*uk_162 + 108900*uk_163 + 10648*uk_164 + 3025*uk_17 + 1210*uk_18 + 1210*uk_19 + 55*uk_2 + 1320*uk_20 + 7205*uk_21 + 12375*uk_22 + 1210*uk_23 + 484*uk_24 + 484*uk_25 + 528*uk_26 + 2882*uk_27 + 4950*uk_28 + 484*uk_29 + 22*uk_3 + 484*uk_30 + 528*uk_31 + 2882*uk_32 + 4950*uk_33 + 484*uk_34 + 576*uk_35 + 3144*uk_36 + 5400*uk_37 + 528*uk_38 + 17161*uk_39 + 22*uk_4 + 29475*uk_40 + 2882*uk_41 + 50625*uk_42 + 4950*uk_43 + 484*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 56593173142*uk_47 + 56593173142*uk_48 + 61738007064*uk_49 + 24*uk_5 + 336986621891*uk_50 + 578793816225*uk_51 + 56593173142*uk_52 + 153424975*uk_53 + 61369990*uk_54 + 61369990*uk_55 + 66949080*uk_56 + 365430395*uk_57 + 627647625*uk_58 + 61369990*uk_59 + 131*uk_6 + 24547996*uk_60 + 24547996*uk_61 + 26779632*uk_62 + 146172158*uk_63 + 251059050*uk_64 + 24547996*uk_65 + 24547996*uk_66 + 26779632*uk_67 + 146172158*uk_68 + 251059050*uk_69 + 225*uk_7 + 24547996*uk_70 + 29214144*uk_71 + 159460536*uk_72 + 273882600*uk_73 + 26779632*uk_74 + 870388759*uk_75 + 1494942525*uk_76 + 146172158*uk_77 + 2567649375*uk_78 + 251059050*uk_79 + 22*uk_8 + 24547996*uk_80 + 166375*uk_81 + 66550*uk_82 + 66550*uk_83 + 72600*uk_84 + 396275*uk_85 + 680625*uk_86 + 66550*uk_87 + 26620*uk_88 + 26620*uk_89 + 2572416961*uk_9 + 29040*uk_90 + 158510*uk_91 + 272250*uk_92 + 26620*uk_93 + 26620*uk_94 + 29040*uk_95 + 158510*uk_96 + 272250*uk_97 + 26620*uk_98 + 31680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 175560*uk_100 + 297000*uk_101 + 29040*uk_102 + 972895*uk_103 + 1645875*uk_104 + 160930*uk_105 + 2784375*uk_106 + 272250*uk_107 + 26620*uk_108 + 97336*uk_109 + 2333074*uk_11 + 46552*uk_110 + 50784*uk_111 + 281428*uk_112 + 476100*uk_113 + 46552*uk_114 + 22264*uk_115 + 24288*uk_116 + 134596*uk_117 + 227700*uk_118 + 22264*uk_119 + 1115818*uk_12 + 26496*uk_120 + 146832*uk_121 + 248400*uk_122 + 24288*uk_123 + 813694*uk_124 + 1376550*uk_125 + 134596*uk_126 + 2328750*uk_127 + 227700*uk_128 + 22264*uk_129 + 1217256*uk_13 + 10648*uk_130 + 11616*uk_131 + 64372*uk_132 + 108900*uk_133 + 10648*uk_134 + 12672*uk_135 + 70224*uk_136 + 118800*uk_137 + 11616*uk_138 + 389158*uk_139 + 6745627*uk_14 + 658350*uk_140 + 64372*uk_141 + 1113750*uk_142 + 108900*uk_143 + 10648*uk_144 + 13824*uk_145 + 76608*uk_146 + 129600*uk_147 + 12672*uk_148 + 424536*uk_149 + 11411775*uk_15 + 718200*uk_150 + 70224*uk_151 + 1215000*uk_152 + 118800*uk_153 + 11616*uk_154 + 2352637*uk_155 + 3980025*uk_156 + 389158*uk_157 + 6733125*uk_158 + 658350*uk_159 + 1115818*uk_16 + 64372*uk_160 + 11390625*uk_161 + 1113750*uk_162 + 108900*uk_163 + 10648*uk_164 + 3025*uk_17 + 2530*uk_18 + 1210*uk_19 + 55*uk_2 + 1320*uk_20 + 7315*uk_21 + 12375*uk_22 + 1210*uk_23 + 2116*uk_24 + 1012*uk_25 + 1104*uk_26 + 6118*uk_27 + 10350*uk_28 + 1012*uk_29 + 46*uk_3 + 484*uk_30 + 528*uk_31 + 2926*uk_32 + 4950*uk_33 + 484*uk_34 + 576*uk_35 + 3192*uk_36 + 5400*uk_37 + 528*uk_38 + 17689*uk_39 + 22*uk_4 + 29925*uk_40 + 2926*uk_41 + 50625*uk_42 + 4950*uk_43 + 484*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 118331180206*uk_47 + 56593173142*uk_48 + 61738007064*uk_49 + 24*uk_5 + 342131455813*uk_50 + 578793816225*uk_51 + 56593173142*uk_52 + 153424975*uk_53 + 128319070*uk_54 + 61369990*uk_55 + 66949080*uk_56 + 371009485*uk_57 + 627647625*uk_58 + 61369990*uk_59 + 133*uk_6 + 107321404*uk_60 + 51327628*uk_61 + 55993776*uk_62 + 310298842*uk_63 + 524941650*uk_64 + 51327628*uk_65 + 24547996*uk_66 + 26779632*uk_67 + 148403794*uk_68 + 251059050*uk_69 + 225*uk_7 + 24547996*uk_70 + 29214144*uk_71 + 161895048*uk_72 + 273882600*uk_73 + 26779632*uk_74 + 897168391*uk_75 + 1517766075*uk_76 + 148403794*uk_77 + 2567649375*uk_78 + 251059050*uk_79 + 22*uk_8 + 24547996*uk_80 + 166375*uk_81 + 139150*uk_82 + 66550*uk_83 + 72600*uk_84 + 402325*uk_85 + 680625*uk_86 + 66550*uk_87 + 116380*uk_88 + 55660*uk_89 + 2572416961*uk_9 + 60720*uk_90 + 336490*uk_91 + 569250*uk_92 + 55660*uk_93 + 26620*uk_94 + 29040*uk_95 + 160930*uk_96 + 272250*uk_97 + 26620*uk_98 + 31680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 178200*uk_100 + 297000*uk_101 + 60720*uk_102 + 1002375*uk_103 + 1670625*uk_104 + 341550*uk_105 + 2784375*uk_106 + 569250*uk_107 + 116380*uk_108 + 830584*uk_109 + 4767586*uk_11 + 406456*uk_110 + 212064*uk_111 + 1192860*uk_112 + 1988100*uk_113 + 406456*uk_114 + 198904*uk_115 + 103776*uk_116 + 583740*uk_117 + 972900*uk_118 + 198904*uk_119 + 2333074*uk_12 + 54144*uk_120 + 304560*uk_121 + 507600*uk_122 + 103776*uk_123 + 1713150*uk_124 + 2855250*uk_125 + 583740*uk_126 + 4758750*uk_127 + 972900*uk_128 + 198904*uk_129 + 1217256*uk_13 + 97336*uk_130 + 50784*uk_131 + 285660*uk_132 + 476100*uk_133 + 97336*uk_134 + 26496*uk_135 + 149040*uk_136 + 248400*uk_137 + 50784*uk_138 + 838350*uk_139 + 6847065*uk_14 + 1397250*uk_140 + 285660*uk_141 + 2328750*uk_142 + 476100*uk_143 + 97336*uk_144 + 13824*uk_145 + 77760*uk_146 + 129600*uk_147 + 26496*uk_148 + 437400*uk_149 + 11411775*uk_15 + 729000*uk_150 + 149040*uk_151 + 1215000*uk_152 + 248400*uk_153 + 50784*uk_154 + 2460375*uk_155 + 4100625*uk_156 + 838350*uk_157 + 6834375*uk_158 + 1397250*uk_159 + 2333074*uk_16 + 285660*uk_160 + 11390625*uk_161 + 2328750*uk_162 + 476100*uk_163 + 97336*uk_164 + 3025*uk_17 + 5170*uk_18 + 2530*uk_19 + 55*uk_2 + 1320*uk_20 + 7425*uk_21 + 12375*uk_22 + 2530*uk_23 + 8836*uk_24 + 4324*uk_25 + 2256*uk_26 + 12690*uk_27 + 21150*uk_28 + 4324*uk_29 + 94*uk_3 + 2116*uk_30 + 1104*uk_31 + 6210*uk_32 + 10350*uk_33 + 2116*uk_34 + 576*uk_35 + 3240*uk_36 + 5400*uk_37 + 1104*uk_38 + 18225*uk_39 + 46*uk_4 + 30375*uk_40 + 6210*uk_41 + 50625*uk_42 + 10350*uk_43 + 2116*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 241807194334*uk_47 + 118331180206*uk_48 + 61738007064*uk_49 + 24*uk_5 + 347276289735*uk_50 + 578793816225*uk_51 + 118331180206*uk_52 + 153424975*uk_53 + 262217230*uk_54 + 128319070*uk_55 + 66949080*uk_56 + 376588575*uk_57 + 627647625*uk_58 + 128319070*uk_59 + 135*uk_6 + 448153084*uk_60 + 219308956*uk_61 + 114422064*uk_62 + 643624110*uk_63 + 1072706850*uk_64 + 219308956*uk_65 + 107321404*uk_66 + 55993776*uk_67 + 314964990*uk_68 + 524941650*uk_69 + 225*uk_7 + 107321404*uk_70 + 29214144*uk_71 + 164329560*uk_72 + 273882600*uk_73 + 55993776*uk_74 + 924353775*uk_75 + 1540589625*uk_76 + 314964990*uk_77 + 2567649375*uk_78 + 524941650*uk_79 + 46*uk_8 + 107321404*uk_80 + 166375*uk_81 + 284350*uk_82 + 139150*uk_83 + 72600*uk_84 + 408375*uk_85 + 680625*uk_86 + 139150*uk_87 + 485980*uk_88 + 237820*uk_89 + 2572416961*uk_9 + 124080*uk_90 + 697950*uk_91 + 1163250*uk_92 + 237820*uk_93 + 116380*uk_94 + 60720*uk_95 + 341550*uk_96 + 569250*uk_97 + 116380*uk_98 + 31680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 150700*uk_100 + 247500*uk_101 + 103400*uk_102 + 1032295*uk_103 + 1695375*uk_104 + 708290*uk_105 + 2784375*uk_106 + 1163250*uk_107 + 485980*uk_108 + 24389*uk_109 + 1470851*uk_11 + 79054*uk_110 + 16820*uk_111 + 115217*uk_112 + 189225*uk_113 + 79054*uk_114 + 256244*uk_115 + 54520*uk_116 + 373462*uk_117 + 613350*uk_118 + 256244*uk_119 + 4767586*uk_12 + 11600*uk_120 + 79460*uk_121 + 130500*uk_122 + 54520*uk_123 + 544301*uk_124 + 893925*uk_125 + 373462*uk_126 + 1468125*uk_127 + 613350*uk_128 + 256244*uk_129 + 1014380*uk_13 + 830584*uk_130 + 176720*uk_131 + 1210532*uk_132 + 1988100*uk_133 + 830584*uk_134 + 37600*uk_135 + 257560*uk_136 + 423000*uk_137 + 176720*uk_138 + 1764286*uk_139 + 6948503*uk_14 + 2897550*uk_140 + 1210532*uk_141 + 4758750*uk_142 + 1988100*uk_143 + 830584*uk_144 + 8000*uk_145 + 54800*uk_146 + 90000*uk_147 + 37600*uk_148 + 375380*uk_149 + 11411775*uk_15 + 616500*uk_150 + 257560*uk_151 + 1012500*uk_152 + 423000*uk_153 + 176720*uk_154 + 2571353*uk_155 + 4223025*uk_156 + 1764286*uk_157 + 6935625*uk_158 + 2897550*uk_159 + 4767586*uk_16 + 1210532*uk_160 + 11390625*uk_161 + 4758750*uk_162 + 1988100*uk_163 + 830584*uk_164 + 3025*uk_17 + 1595*uk_18 + 5170*uk_19 + 55*uk_2 + 1100*uk_20 + 7535*uk_21 + 12375*uk_22 + 5170*uk_23 + 841*uk_24 + 2726*uk_25 + 580*uk_26 + 3973*uk_27 + 6525*uk_28 + 2726*uk_29 + 29*uk_3 + 8836*uk_30 + 1880*uk_31 + 12878*uk_32 + 21150*uk_33 + 8836*uk_34 + 400*uk_35 + 2740*uk_36 + 4500*uk_37 + 1880*uk_38 + 18769*uk_39 + 94*uk_4 + 30825*uk_40 + 12878*uk_41 + 50625*uk_42 + 21150*uk_43 + 8836*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 74600091869*uk_47 + 241807194334*uk_48 + 51448339220*uk_49 + 20*uk_5 + 352421123657*uk_50 + 578793816225*uk_51 + 241807194334*uk_52 + 153424975*uk_53 + 80896805*uk_54 + 262217230*uk_55 + 55790900*uk_56 + 382167665*uk_57 + 627647625*uk_58 + 262217230*uk_59 + 137*uk_6 + 42654679*uk_60 + 138259994*uk_61 + 29417020*uk_62 + 201506587*uk_63 + 330941475*uk_64 + 138259994*uk_65 + 448153084*uk_66 + 95351720*uk_67 + 653159282*uk_68 + 1072706850*uk_69 + 225*uk_7 + 448153084*uk_70 + 20287600*uk_71 + 138970060*uk_72 + 228235500*uk_73 + 95351720*uk_74 + 951944911*uk_75 + 1563413175*uk_76 + 653159282*uk_77 + 2567649375*uk_78 + 1072706850*uk_79 + 94*uk_8 + 448153084*uk_80 + 166375*uk_81 + 87725*uk_82 + 284350*uk_83 + 60500*uk_84 + 414425*uk_85 + 680625*uk_86 + 284350*uk_87 + 46255*uk_88 + 149930*uk_89 + 2572416961*uk_9 + 31900*uk_90 + 218515*uk_91 + 358875*uk_92 + 149930*uk_93 + 485980*uk_94 + 103400*uk_95 + 708290*uk_96 + 1163250*uk_97 + 485980*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 183480*uk_100 + 297000*uk_101 + 38280*uk_102 + 1062655*uk_103 + 1720125*uk_104 + 221705*uk_105 + 2784375*uk_106 + 358875*uk_107 + 46255*uk_108 + 1860867*uk_109 + 6238437*uk_11 + 438741*uk_110 + 363096*uk_111 + 2102931*uk_112 + 3404025*uk_113 + 438741*uk_114 + 103443*uk_115 + 85608*uk_116 + 495813*uk_117 + 802575*uk_118 + 103443*uk_119 + 1470851*uk_12 + 70848*uk_120 + 410328*uk_121 + 664200*uk_122 + 85608*uk_123 + 2376483*uk_124 + 3846825*uk_125 + 495813*uk_126 + 6226875*uk_127 + 802575*uk_128 + 103443*uk_129 + 1217256*uk_13 + 24389*uk_130 + 20184*uk_131 + 116899*uk_132 + 189225*uk_133 + 24389*uk_134 + 16704*uk_135 + 96744*uk_136 + 156600*uk_137 + 20184*uk_138 + 560309*uk_139 + 7049941*uk_14 + 906975*uk_140 + 116899*uk_141 + 1468125*uk_142 + 189225*uk_143 + 24389*uk_144 + 13824*uk_145 + 80064*uk_146 + 129600*uk_147 + 16704*uk_148 + 463704*uk_149 + 11411775*uk_15 + 750600*uk_150 + 96744*uk_151 + 1215000*uk_152 + 156600*uk_153 + 20184*uk_154 + 2685619*uk_155 + 4347225*uk_156 + 560309*uk_157 + 7036875*uk_158 + 906975*uk_159 + 1470851*uk_16 + 116899*uk_160 + 11390625*uk_161 + 1468125*uk_162 + 189225*uk_163 + 24389*uk_164 + 3025*uk_17 + 6765*uk_18 + 1595*uk_19 + 55*uk_2 + 1320*uk_20 + 7645*uk_21 + 12375*uk_22 + 1595*uk_23 + 15129*uk_24 + 3567*uk_25 + 2952*uk_26 + 17097*uk_27 + 27675*uk_28 + 3567*uk_29 + 123*uk_3 + 841*uk_30 + 696*uk_31 + 4031*uk_32 + 6525*uk_33 + 841*uk_34 + 576*uk_35 + 3336*uk_36 + 5400*uk_37 + 696*uk_38 + 19321*uk_39 + 29*uk_4 + 31275*uk_40 + 4031*uk_41 + 50625*uk_42 + 6525*uk_43 + 841*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 316407286203*uk_47 + 74600091869*uk_48 + 61738007064*uk_49 + 24*uk_5 + 357565957579*uk_50 + 578793816225*uk_51 + 74600091869*uk_52 + 153424975*uk_53 + 343114035*uk_54 + 80896805*uk_55 + 66949080*uk_56 + 387746755*uk_57 + 627647625*uk_58 + 80896805*uk_59 + 139*uk_6 + 767327751*uk_60 + 180914673*uk_61 + 149722488*uk_62 + 867142743*uk_63 + 1403648325*uk_64 + 180914673*uk_65 + 42654679*uk_66 + 35300424*uk_67 + 204448289*uk_68 + 330941475*uk_69 + 225*uk_7 + 42654679*uk_70 + 29214144*uk_71 + 169198584*uk_72 + 273882600*uk_73 + 35300424*uk_74 + 979941799*uk_75 + 1586236725*uk_76 + 204448289*uk_77 + 2567649375*uk_78 + 330941475*uk_79 + 29*uk_8 + 42654679*uk_80 + 166375*uk_81 + 372075*uk_82 + 87725*uk_83 + 72600*uk_84 + 420475*uk_85 + 680625*uk_86 + 87725*uk_87 + 832095*uk_88 + 196185*uk_89 + 2572416961*uk_9 + 162360*uk_90 + 940335*uk_91 + 1522125*uk_92 + 196185*uk_93 + 46255*uk_94 + 38280*uk_95 + 221705*uk_96 + 358875*uk_97 + 46255*uk_98 + 31680*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 155100*uk_100 + 247500*uk_101 + 135300*uk_102 + 1093455*uk_103 + 1744875*uk_104 + 953865*uk_105 + 2784375*uk_106 + 1522125*uk_107 + 832095*uk_108 + 1000000*uk_109 + 5071900*uk_11 + 1230000*uk_110 + 200000*uk_111 + 1410000*uk_112 + 2250000*uk_113 + 1230000*uk_114 + 1512900*uk_115 + 246000*uk_116 + 1734300*uk_117 + 2767500*uk_118 + 1512900*uk_119 + 6238437*uk_12 + 40000*uk_120 + 282000*uk_121 + 450000*uk_122 + 246000*uk_123 + 1988100*uk_124 + 3172500*uk_125 + 1734300*uk_126 + 5062500*uk_127 + 2767500*uk_128 + 1512900*uk_129 + 1014380*uk_13 + 1860867*uk_130 + 302580*uk_131 + 2133189*uk_132 + 3404025*uk_133 + 1860867*uk_134 + 49200*uk_135 + 346860*uk_136 + 553500*uk_137 + 302580*uk_138 + 2445363*uk_139 + 7151379*uk_14 + 3902175*uk_140 + 2133189*uk_141 + 6226875*uk_142 + 3404025*uk_143 + 1860867*uk_144 + 8000*uk_145 + 56400*uk_146 + 90000*uk_147 + 49200*uk_148 + 397620*uk_149 + 11411775*uk_15 + 634500*uk_150 + 346860*uk_151 + 1012500*uk_152 + 553500*uk_153 + 302580*uk_154 + 2803221*uk_155 + 4473225*uk_156 + 2445363*uk_157 + 7138125*uk_158 + 3902175*uk_159 + 6238437*uk_16 + 2133189*uk_160 + 11390625*uk_161 + 6226875*uk_162 + 3404025*uk_163 + 1860867*uk_164 + 3025*uk_17 + 5500*uk_18 + 6765*uk_19 + 55*uk_2 + 1100*uk_20 + 7755*uk_21 + 12375*uk_22 + 6765*uk_23 + 10000*uk_24 + 12300*uk_25 + 2000*uk_26 + 14100*uk_27 + 22500*uk_28 + 12300*uk_29 + 100*uk_3 + 15129*uk_30 + 2460*uk_31 + 17343*uk_32 + 27675*uk_33 + 15129*uk_34 + 400*uk_35 + 2820*uk_36 + 4500*uk_37 + 2460*uk_38 + 19881*uk_39 + 123*uk_4 + 31725*uk_40 + 17343*uk_41 + 50625*uk_42 + 27675*uk_43 + 15129*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 257241696100*uk_47 + 316407286203*uk_48 + 51448339220*uk_49 + 20*uk_5 + 362710791501*uk_50 + 578793816225*uk_51 + 316407286203*uk_52 + 153424975*uk_53 + 278954500*uk_54 + 343114035*uk_55 + 55790900*uk_56 + 393325845*uk_57 + 627647625*uk_58 + 343114035*uk_59 + 141*uk_6 + 507190000*uk_60 + 623843700*uk_61 + 101438000*uk_62 + 715137900*uk_63 + 1141177500*uk_64 + 623843700*uk_65 + 767327751*uk_66 + 124768740*uk_67 + 879619617*uk_68 + 1403648325*uk_69 + 225*uk_7 + 767327751*uk_70 + 20287600*uk_71 + 143027580*uk_72 + 228235500*uk_73 + 124768740*uk_74 + 1008344439*uk_75 + 1609060275*uk_76 + 879619617*uk_77 + 2567649375*uk_78 + 1403648325*uk_79 + 123*uk_8 + 767327751*uk_80 + 166375*uk_81 + 302500*uk_82 + 372075*uk_83 + 60500*uk_84 + 426525*uk_85 + 680625*uk_86 + 372075*uk_87 + 550000*uk_88 + 676500*uk_89 + 2572416961*uk_9 + 110000*uk_90 + 775500*uk_91 + 1237500*uk_92 + 676500*uk_93 + 832095*uk_94 + 135300*uk_95 + 953865*uk_96 + 1522125*uk_97 + 832095*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 157300*uk_100 + 247500*uk_101 + 110000*uk_102 + 1124695*uk_103 + 1769625*uk_104 + 786500*uk_105 + 2784375*uk_106 + 1237500*uk_107 + 550000*uk_108 + 912673*uk_109 + 4919743*uk_11 + 940900*uk_110 + 188180*uk_111 + 1345487*uk_112 + 2117025*uk_113 + 940900*uk_114 + 970000*uk_115 + 194000*uk_116 + 1387100*uk_117 + 2182500*uk_118 + 970000*uk_119 + 5071900*uk_12 + 38800*uk_120 + 277420*uk_121 + 436500*uk_122 + 194000*uk_123 + 1983553*uk_124 + 3120975*uk_125 + 1387100*uk_126 + 4910625*uk_127 + 2182500*uk_128 + 970000*uk_129 + 1014380*uk_13 + 1000000*uk_130 + 200000*uk_131 + 1430000*uk_132 + 2250000*uk_133 + 1000000*uk_134 + 40000*uk_135 + 286000*uk_136 + 450000*uk_137 + 200000*uk_138 + 2044900*uk_139 + 7252817*uk_14 + 3217500*uk_140 + 1430000*uk_141 + 5062500*uk_142 + 2250000*uk_143 + 1000000*uk_144 + 8000*uk_145 + 57200*uk_146 + 90000*uk_147 + 40000*uk_148 + 408980*uk_149 + 11411775*uk_15 + 643500*uk_150 + 286000*uk_151 + 1012500*uk_152 + 450000*uk_153 + 200000*uk_154 + 2924207*uk_155 + 4601025*uk_156 + 2044900*uk_157 + 7239375*uk_158 + 3217500*uk_159 + 5071900*uk_16 + 1430000*uk_160 + 11390625*uk_161 + 5062500*uk_162 + 2250000*uk_163 + 1000000*uk_164 + 3025*uk_17 + 5335*uk_18 + 5500*uk_19 + 55*uk_2 + 1100*uk_20 + 7865*uk_21 + 12375*uk_22 + 5500*uk_23 + 9409*uk_24 + 9700*uk_25 + 1940*uk_26 + 13871*uk_27 + 21825*uk_28 + 9700*uk_29 + 97*uk_3 + 10000*uk_30 + 2000*uk_31 + 14300*uk_32 + 22500*uk_33 + 10000*uk_34 + 400*uk_35 + 2860*uk_36 + 4500*uk_37 + 2000*uk_38 + 20449*uk_39 + 100*uk_4 + 32175*uk_40 + 14300*uk_41 + 50625*uk_42 + 22500*uk_43 + 10000*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 249524445217*uk_47 + 257241696100*uk_48 + 51448339220*uk_49 + 20*uk_5 + 367855625423*uk_50 + 578793816225*uk_51 + 257241696100*uk_52 + 153424975*uk_53 + 270585865*uk_54 + 278954500*uk_55 + 55790900*uk_56 + 398904935*uk_57 + 627647625*uk_58 + 278954500*uk_59 + 143*uk_6 + 477215071*uk_60 + 491974300*uk_61 + 98394860*uk_62 + 703523249*uk_63 + 1106942175*uk_64 + 491974300*uk_65 + 507190000*uk_66 + 101438000*uk_67 + 725281700*uk_68 + 1141177500*uk_69 + 225*uk_7 + 507190000*uk_70 + 20287600*uk_71 + 145056340*uk_72 + 228235500*uk_73 + 101438000*uk_74 + 1037152831*uk_75 + 1631883825*uk_76 + 725281700*uk_77 + 2567649375*uk_78 + 1141177500*uk_79 + 100*uk_8 + 507190000*uk_80 + 166375*uk_81 + 293425*uk_82 + 302500*uk_83 + 60500*uk_84 + 432575*uk_85 + 680625*uk_86 + 302500*uk_87 + 517495*uk_88 + 533500*uk_89 + 2572416961*uk_9 + 106700*uk_90 + 762905*uk_91 + 1200375*uk_92 + 533500*uk_93 + 550000*uk_94 + 110000*uk_95 + 786500*uk_96 + 1237500*uk_97 + 550000*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 159500*uk_100 + 247500*uk_101 + 106700*uk_102 + 1156375*uk_103 + 1794375*uk_104 + 773575*uk_105 + 2784375*uk_106 + 1200375*uk_107 + 517495*uk_108 + 1481544*uk_109 + 5781966*uk_11 + 1260612*uk_110 + 259920*uk_111 + 1884420*uk_112 + 2924100*uk_113 + 1260612*uk_114 + 1072626*uk_115 + 221160*uk_116 + 1603410*uk_117 + 2488050*uk_118 + 1072626*uk_119 + 4919743*uk_12 + 45600*uk_120 + 330600*uk_121 + 513000*uk_122 + 221160*uk_123 + 2396850*uk_124 + 3719250*uk_125 + 1603410*uk_126 + 5771250*uk_127 + 2488050*uk_128 + 1072626*uk_129 + 1014380*uk_13 + 912673*uk_130 + 188180*uk_131 + 1364305*uk_132 + 2117025*uk_133 + 912673*uk_134 + 38800*uk_135 + 281300*uk_136 + 436500*uk_137 + 188180*uk_138 + 2039425*uk_139 + 7354255*uk_14 + 3164625*uk_140 + 1364305*uk_141 + 4910625*uk_142 + 2117025*uk_143 + 912673*uk_144 + 8000*uk_145 + 58000*uk_146 + 90000*uk_147 + 38800*uk_148 + 420500*uk_149 + 11411775*uk_15 + 652500*uk_150 + 281300*uk_151 + 1012500*uk_152 + 436500*uk_153 + 188180*uk_154 + 3048625*uk_155 + 4730625*uk_156 + 2039425*uk_157 + 7340625*uk_158 + 3164625*uk_159 + 4919743*uk_16 + 1364305*uk_160 + 11390625*uk_161 + 4910625*uk_162 + 2117025*uk_163 + 912673*uk_164 + 3025*uk_17 + 6270*uk_18 + 5335*uk_19 + 55*uk_2 + 1100*uk_20 + 7975*uk_21 + 12375*uk_22 + 5335*uk_23 + 12996*uk_24 + 11058*uk_25 + 2280*uk_26 + 16530*uk_27 + 25650*uk_28 + 11058*uk_29 + 114*uk_3 + 9409*uk_30 + 1940*uk_31 + 14065*uk_32 + 21825*uk_33 + 9409*uk_34 + 400*uk_35 + 2900*uk_36 + 4500*uk_37 + 1940*uk_38 + 21025*uk_39 + 97*uk_4 + 32625*uk_40 + 14065*uk_41 + 50625*uk_42 + 21825*uk_43 + 9409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 293255533554*uk_47 + 249524445217*uk_48 + 51448339220*uk_49 + 20*uk_5 + 373000459345*uk_50 + 578793816225*uk_51 + 249524445217*uk_52 + 153424975*uk_53 + 318008130*uk_54 + 270585865*uk_55 + 55790900*uk_56 + 404484025*uk_57 + 627647625*uk_58 + 270585865*uk_59 + 145*uk_6 + 659144124*uk_60 + 560850702*uk_61 + 115639320*uk_62 + 838385070*uk_63 + 1300942350*uk_64 + 560850702*uk_65 + 477215071*uk_66 + 98394860*uk_67 + 713362735*uk_68 + 1106942175*uk_69 + 225*uk_7 + 477215071*uk_70 + 20287600*uk_71 + 147085100*uk_72 + 228235500*uk_73 + 98394860*uk_74 + 1066366975*uk_75 + 1654707375*uk_76 + 713362735*uk_77 + 2567649375*uk_78 + 1106942175*uk_79 + 97*uk_8 + 477215071*uk_80 + 166375*uk_81 + 344850*uk_82 + 293425*uk_83 + 60500*uk_84 + 438625*uk_85 + 680625*uk_86 + 293425*uk_87 + 714780*uk_88 + 608190*uk_89 + 2572416961*uk_9 + 125400*uk_90 + 909150*uk_91 + 1410750*uk_92 + 608190*uk_93 + 517495*uk_94 + 106700*uk_95 + 773575*uk_96 + 1200375*uk_97 + 517495*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 129360*uk_100 + 198000*uk_101 + 100320*uk_102 + 1188495*uk_103 + 1819125*uk_104 + 921690*uk_105 + 2784375*uk_106 + 1410750*uk_107 + 714780*uk_108 + 64*uk_109 + 202876*uk_11 + 1824*uk_110 + 256*uk_111 + 2352*uk_112 + 3600*uk_113 + 1824*uk_114 + 51984*uk_115 + 7296*uk_116 + 67032*uk_117 + 102600*uk_118 + 51984*uk_119 + 5781966*uk_12 + 1024*uk_120 + 9408*uk_121 + 14400*uk_122 + 7296*uk_123 + 86436*uk_124 + 132300*uk_125 + 67032*uk_126 + 202500*uk_127 + 102600*uk_128 + 51984*uk_129 + 811504*uk_13 + 1481544*uk_130 + 207936*uk_131 + 1910412*uk_132 + 2924100*uk_133 + 1481544*uk_134 + 29184*uk_135 + 268128*uk_136 + 410400*uk_137 + 207936*uk_138 + 2463426*uk_139 + 7455693*uk_14 + 3770550*uk_140 + 1910412*uk_141 + 5771250*uk_142 + 2924100*uk_143 + 1481544*uk_144 + 4096*uk_145 + 37632*uk_146 + 57600*uk_147 + 29184*uk_148 + 345744*uk_149 + 11411775*uk_15 + 529200*uk_150 + 268128*uk_151 + 810000*uk_152 + 410400*uk_153 + 207936*uk_154 + 3176523*uk_155 + 4862025*uk_156 + 2463426*uk_157 + 7441875*uk_158 + 3770550*uk_159 + 5781966*uk_16 + 1910412*uk_160 + 11390625*uk_161 + 5771250*uk_162 + 2924100*uk_163 + 1481544*uk_164 + 3025*uk_17 + 220*uk_18 + 6270*uk_19 + 55*uk_2 + 880*uk_20 + 8085*uk_21 + 12375*uk_22 + 6270*uk_23 + 16*uk_24 + 456*uk_25 + 64*uk_26 + 588*uk_27 + 900*uk_28 + 456*uk_29 + 4*uk_3 + 12996*uk_30 + 1824*uk_31 + 16758*uk_32 + 25650*uk_33 + 12996*uk_34 + 256*uk_35 + 2352*uk_36 + 3600*uk_37 + 1824*uk_38 + 21609*uk_39 + 114*uk_4 + 33075*uk_40 + 16758*uk_41 + 50625*uk_42 + 25650*uk_43 + 12996*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 293255533554*uk_48 + 41158671376*uk_49 + 16*uk_5 + 378145293267*uk_50 + 578793816225*uk_51 + 293255533554*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 318008130*uk_55 + 44632720*uk_56 + 410063115*uk_57 + 627647625*uk_58 + 318008130*uk_59 + 147*uk_6 + 811504*uk_60 + 23127864*uk_61 + 3246016*uk_62 + 29822772*uk_63 + 45647100*uk_64 + 23127864*uk_65 + 659144124*uk_66 + 92511456*uk_67 + 849949002*uk_68 + 1300942350*uk_69 + 225*uk_7 + 659144124*uk_70 + 12984064*uk_71 + 119291088*uk_72 + 182588400*uk_73 + 92511456*uk_74 + 1095986871*uk_75 + 1677530925*uk_76 + 849949002*uk_77 + 2567649375*uk_78 + 1300942350*uk_79 + 114*uk_8 + 659144124*uk_80 + 166375*uk_81 + 12100*uk_82 + 344850*uk_83 + 48400*uk_84 + 444675*uk_85 + 680625*uk_86 + 344850*uk_87 + 880*uk_88 + 25080*uk_89 + 2572416961*uk_9 + 3520*uk_90 + 32340*uk_91 + 49500*uk_92 + 25080*uk_93 + 714780*uk_94 + 100320*uk_95 + 921690*uk_96 + 1410750*uk_97 + 714780*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 163900*uk_100 + 247500*uk_101 + 4400*uk_102 + 1221055*uk_103 + 1843875*uk_104 + 32780*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 205379*uk_109 + 2992421*uk_11 + 13924*uk_110 + 69620*uk_111 + 518669*uk_112 + 783225*uk_113 + 13924*uk_114 + 944*uk_115 + 4720*uk_116 + 35164*uk_117 + 53100*uk_118 + 944*uk_119 + 202876*uk_12 + 23600*uk_120 + 175820*uk_121 + 265500*uk_122 + 4720*uk_123 + 1309859*uk_124 + 1977975*uk_125 + 35164*uk_126 + 2986875*uk_127 + 53100*uk_128 + 944*uk_129 + 1014380*uk_13 + 64*uk_130 + 320*uk_131 + 2384*uk_132 + 3600*uk_133 + 64*uk_134 + 1600*uk_135 + 11920*uk_136 + 18000*uk_137 + 320*uk_138 + 88804*uk_139 + 7557131*uk_14 + 134100*uk_140 + 2384*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 8000*uk_145 + 59600*uk_146 + 90000*uk_147 + 1600*uk_148 + 444020*uk_149 + 11411775*uk_15 + 670500*uk_150 + 11920*uk_151 + 1012500*uk_152 + 18000*uk_153 + 320*uk_154 + 3307949*uk_155 + 4995225*uk_156 + 88804*uk_157 + 7543125*uk_158 + 134100*uk_159 + 202876*uk_16 + 2384*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 3245*uk_18 + 220*uk_19 + 55*uk_2 + 1100*uk_20 + 8195*uk_21 + 12375*uk_22 + 220*uk_23 + 3481*uk_24 + 236*uk_25 + 1180*uk_26 + 8791*uk_27 + 13275*uk_28 + 236*uk_29 + 59*uk_3 + 16*uk_30 + 80*uk_31 + 596*uk_32 + 900*uk_33 + 16*uk_34 + 400*uk_35 + 2980*uk_36 + 4500*uk_37 + 80*uk_38 + 22201*uk_39 + 4*uk_4 + 33525*uk_40 + 596*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 151772600699*uk_47 + 10289667844*uk_48 + 51448339220*uk_49 + 20*uk_5 + 383290127189*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 164583155*uk_54 + 11158180*uk_55 + 55790900*uk_56 + 415642205*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 149*uk_6 + 176552839*uk_60 + 11969684*uk_61 + 59848420*uk_62 + 445870729*uk_63 + 673294725*uk_64 + 11969684*uk_65 + 811504*uk_66 + 4057520*uk_67 + 30228524*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 20287600*uk_71 + 151142620*uk_72 + 228235500*uk_73 + 4057520*uk_74 + 1126012519*uk_75 + 1700354475*uk_76 + 30228524*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 178475*uk_82 + 12100*uk_83 + 60500*uk_84 + 450725*uk_85 + 680625*uk_86 + 12100*uk_87 + 191455*uk_88 + 12980*uk_89 + 2572416961*uk_9 + 64900*uk_90 + 483505*uk_91 + 730125*uk_92 + 12980*uk_93 + 880*uk_94 + 4400*uk_95 + 32780*uk_96 + 49500*uk_97 + 880*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 166100*uk_100 + 247500*uk_101 + 64900*uk_102 + 1254055*uk_103 + 1868625*uk_104 + 489995*uk_105 + 2784375*uk_106 + 730125*uk_107 + 191455*uk_108 + 2406104*uk_109 + 6796346*uk_11 + 1059404*uk_110 + 359120*uk_111 + 2711356*uk_112 + 4040100*uk_113 + 1059404*uk_114 + 466454*uk_115 + 158120*uk_116 + 1193806*uk_117 + 1778850*uk_118 + 466454*uk_119 + 2992421*uk_12 + 53600*uk_120 + 404680*uk_121 + 603000*uk_122 + 158120*uk_123 + 3055334*uk_124 + 4552650*uk_125 + 1193806*uk_126 + 6783750*uk_127 + 1778850*uk_128 + 466454*uk_129 + 1014380*uk_13 + 205379*uk_130 + 69620*uk_131 + 525631*uk_132 + 783225*uk_133 + 205379*uk_134 + 23600*uk_135 + 178180*uk_136 + 265500*uk_137 + 69620*uk_138 + 1345259*uk_139 + 7658569*uk_14 + 2004525*uk_140 + 525631*uk_141 + 2986875*uk_142 + 783225*uk_143 + 205379*uk_144 + 8000*uk_145 + 60400*uk_146 + 90000*uk_147 + 23600*uk_148 + 456020*uk_149 + 11411775*uk_15 + 679500*uk_150 + 178180*uk_151 + 1012500*uk_152 + 265500*uk_153 + 69620*uk_154 + 3442951*uk_155 + 5130225*uk_156 + 1345259*uk_157 + 7644375*uk_158 + 2004525*uk_159 + 2992421*uk_16 + 525631*uk_160 + 11390625*uk_161 + 2986875*uk_162 + 783225*uk_163 + 205379*uk_164 + 3025*uk_17 + 7370*uk_18 + 3245*uk_19 + 55*uk_2 + 1100*uk_20 + 8305*uk_21 + 12375*uk_22 + 3245*uk_23 + 17956*uk_24 + 7906*uk_25 + 2680*uk_26 + 20234*uk_27 + 30150*uk_28 + 7906*uk_29 + 134*uk_3 + 3481*uk_30 + 1180*uk_31 + 8909*uk_32 + 13275*uk_33 + 3481*uk_34 + 400*uk_35 + 3020*uk_36 + 4500*uk_37 + 1180*uk_38 + 22801*uk_39 + 59*uk_4 + 33975*uk_40 + 8909*uk_41 + 50625*uk_42 + 13275*uk_43 + 3481*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 344703872774*uk_47 + 151772600699*uk_48 + 51448339220*uk_49 + 20*uk_5 + 388434961111*uk_50 + 578793816225*uk_51 + 151772600699*uk_52 + 153424975*uk_53 + 373799030*uk_54 + 164583155*uk_55 + 55790900*uk_56 + 421221295*uk_57 + 627647625*uk_58 + 164583155*uk_59 + 151*uk_6 + 910710364*uk_60 + 400984414*uk_61 + 135926920*uk_62 + 1026248246*uk_63 + 1529177850*uk_64 + 400984414*uk_65 + 176552839*uk_66 + 59848420*uk_67 + 451855571*uk_68 + 673294725*uk_69 + 225*uk_7 + 176552839*uk_70 + 20287600*uk_71 + 153171380*uk_72 + 228235500*uk_73 + 59848420*uk_74 + 1156443919*uk_75 + 1723178025*uk_76 + 451855571*uk_77 + 2567649375*uk_78 + 673294725*uk_79 + 59*uk_8 + 176552839*uk_80 + 166375*uk_81 + 405350*uk_82 + 178475*uk_83 + 60500*uk_84 + 456775*uk_85 + 680625*uk_86 + 178475*uk_87 + 987580*uk_88 + 434830*uk_89 + 2572416961*uk_9 + 147400*uk_90 + 1112870*uk_91 + 1658250*uk_92 + 434830*uk_93 + 191455*uk_94 + 64900*uk_95 + 489995*uk_96 + 730125*uk_97 + 191455*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 134640*uk_100 + 198000*uk_101 + 117920*uk_102 + 1287495*uk_103 + 1893375*uk_104 + 1127610*uk_105 + 2784375*uk_106 + 1658250*uk_107 + 987580*uk_108 + 438976*uk_109 + 3854644*uk_11 + 773984*uk_110 + 92416*uk_111 + 883728*uk_112 + 1299600*uk_113 + 773984*uk_114 + 1364656*uk_115 + 162944*uk_116 + 1558152*uk_117 + 2291400*uk_118 + 1364656*uk_119 + 6796346*uk_12 + 19456*uk_120 + 186048*uk_121 + 273600*uk_122 + 162944*uk_123 + 1779084*uk_124 + 2616300*uk_125 + 1558152*uk_126 + 3847500*uk_127 + 2291400*uk_128 + 1364656*uk_129 + 811504*uk_13 + 2406104*uk_130 + 287296*uk_131 + 2747268*uk_132 + 4040100*uk_133 + 2406104*uk_134 + 34304*uk_135 + 328032*uk_136 + 482400*uk_137 + 287296*uk_138 + 3136806*uk_139 + 7760007*uk_14 + 4612950*uk_140 + 2747268*uk_141 + 6783750*uk_142 + 4040100*uk_143 + 2406104*uk_144 + 4096*uk_145 + 39168*uk_146 + 57600*uk_147 + 34304*uk_148 + 374544*uk_149 + 11411775*uk_15 + 550800*uk_150 + 328032*uk_151 + 810000*uk_152 + 482400*uk_153 + 287296*uk_154 + 3581577*uk_155 + 5267025*uk_156 + 3136806*uk_157 + 7745625*uk_158 + 4612950*uk_159 + 6796346*uk_16 + 2747268*uk_160 + 11390625*uk_161 + 6783750*uk_162 + 4040100*uk_163 + 2406104*uk_164 + 3025*uk_17 + 4180*uk_18 + 7370*uk_19 + 55*uk_2 + 880*uk_20 + 8415*uk_21 + 12375*uk_22 + 7370*uk_23 + 5776*uk_24 + 10184*uk_25 + 1216*uk_26 + 11628*uk_27 + 17100*uk_28 + 10184*uk_29 + 76*uk_3 + 17956*uk_30 + 2144*uk_31 + 20502*uk_32 + 30150*uk_33 + 17956*uk_34 + 256*uk_35 + 2448*uk_36 + 3600*uk_37 + 2144*uk_38 + 23409*uk_39 + 134*uk_4 + 34425*uk_40 + 20502*uk_41 + 50625*uk_42 + 30150*uk_43 + 17956*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 195503689036*uk_47 + 344703872774*uk_48 + 41158671376*uk_49 + 16*uk_5 + 393579795033*uk_50 + 578793816225*uk_51 + 344703872774*uk_52 + 153424975*uk_53 + 212005420*uk_54 + 373799030*uk_55 + 44632720*uk_56 + 426800385*uk_57 + 627647625*uk_58 + 373799030*uk_59 + 153*uk_6 + 292952944*uk_60 + 516522296*uk_61 + 61674304*uk_62 + 589760532*uk_63 + 867294900*uk_64 + 516522296*uk_65 + 910710364*uk_66 + 108741536*uk_67 + 1039840938*uk_68 + 1529177850*uk_69 + 225*uk_7 + 910710364*uk_70 + 12984064*uk_71 + 124160112*uk_72 + 182588400*uk_73 + 108741536*uk_74 + 1187281071*uk_75 + 1746001575*uk_76 + 1039840938*uk_77 + 2567649375*uk_78 + 1529177850*uk_79 + 134*uk_8 + 910710364*uk_80 + 166375*uk_81 + 229900*uk_82 + 405350*uk_83 + 48400*uk_84 + 462825*uk_85 + 680625*uk_86 + 405350*uk_87 + 317680*uk_88 + 560120*uk_89 + 2572416961*uk_9 + 66880*uk_90 + 639540*uk_91 + 940500*uk_92 + 560120*uk_93 + 987580*uk_94 + 117920*uk_95 + 1127610*uk_96 + 1658250*uk_97 + 987580*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 136400*uk_100 + 198000*uk_101 + 66880*uk_102 + 1321375*uk_103 + 1918125*uk_104 + 647900*uk_105 + 2784375*uk_106 + 940500*uk_107 + 317680*uk_108 + 39304*uk_109 + 1724446*uk_11 + 87856*uk_110 + 18496*uk_111 + 179180*uk_112 + 260100*uk_113 + 87856*uk_114 + 196384*uk_115 + 41344*uk_116 + 400520*uk_117 + 581400*uk_118 + 196384*uk_119 + 3854644*uk_12 + 8704*uk_120 + 84320*uk_121 + 122400*uk_122 + 41344*uk_123 + 816850*uk_124 + 1185750*uk_125 + 400520*uk_126 + 1721250*uk_127 + 581400*uk_128 + 196384*uk_129 + 811504*uk_13 + 438976*uk_130 + 92416*uk_131 + 895280*uk_132 + 1299600*uk_133 + 438976*uk_134 + 19456*uk_135 + 188480*uk_136 + 273600*uk_137 + 92416*uk_138 + 1825900*uk_139 + 7861445*uk_14 + 2650500*uk_140 + 895280*uk_141 + 3847500*uk_142 + 1299600*uk_143 + 438976*uk_144 + 4096*uk_145 + 39680*uk_146 + 57600*uk_147 + 19456*uk_148 + 384400*uk_149 + 11411775*uk_15 + 558000*uk_150 + 188480*uk_151 + 810000*uk_152 + 273600*uk_153 + 92416*uk_154 + 3723875*uk_155 + 5405625*uk_156 + 1825900*uk_157 + 7846875*uk_158 + 2650500*uk_159 + 3854644*uk_16 + 895280*uk_160 + 11390625*uk_161 + 3847500*uk_162 + 1299600*uk_163 + 438976*uk_164 + 3025*uk_17 + 1870*uk_18 + 4180*uk_19 + 55*uk_2 + 880*uk_20 + 8525*uk_21 + 12375*uk_22 + 4180*uk_23 + 1156*uk_24 + 2584*uk_25 + 544*uk_26 + 5270*uk_27 + 7650*uk_28 + 2584*uk_29 + 34*uk_3 + 5776*uk_30 + 1216*uk_31 + 11780*uk_32 + 17100*uk_33 + 5776*uk_34 + 256*uk_35 + 2480*uk_36 + 3600*uk_37 + 1216*uk_38 + 24025*uk_39 + 76*uk_4 + 34875*uk_40 + 11780*uk_41 + 50625*uk_42 + 17100*uk_43 + 5776*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 87462176674*uk_47 + 195503689036*uk_48 + 41158671376*uk_49 + 16*uk_5 + 398724628955*uk_50 + 578793816225*uk_51 + 195503689036*uk_52 + 153424975*uk_53 + 94844530*uk_54 + 212005420*uk_55 + 44632720*uk_56 + 432379475*uk_57 + 627647625*uk_58 + 212005420*uk_59 + 155*uk_6 + 58631164*uk_60 + 131057896*uk_61 + 27591136*uk_62 + 267289130*uk_63 + 388000350*uk_64 + 131057896*uk_65 + 292952944*uk_66 + 61674304*uk_67 + 597469820*uk_68 + 867294900*uk_69 + 225*uk_7 + 292952944*uk_70 + 12984064*uk_71 + 125783120*uk_72 + 182588400*uk_73 + 61674304*uk_74 + 1218523975*uk_75 + 1768825125*uk_76 + 597469820*uk_77 + 2567649375*uk_78 + 867294900*uk_79 + 76*uk_8 + 292952944*uk_80 + 166375*uk_81 + 102850*uk_82 + 229900*uk_83 + 48400*uk_84 + 468875*uk_85 + 680625*uk_86 + 229900*uk_87 + 63580*uk_88 + 142120*uk_89 + 2572416961*uk_9 + 29920*uk_90 + 289850*uk_91 + 420750*uk_92 + 142120*uk_93 + 317680*uk_94 + 66880*uk_95 + 647900*uk_96 + 940500*uk_97 + 317680*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 138160*uk_100 + 198000*uk_101 + 29920*uk_102 + 1355695*uk_103 + 1942875*uk_104 + 293590*uk_105 + 2784375*uk_106 + 420750*uk_107 + 63580*uk_108 + 512*uk_109 + 405752*uk_11 + 2176*uk_110 + 1024*uk_111 + 10048*uk_112 + 14400*uk_113 + 2176*uk_114 + 9248*uk_115 + 4352*uk_116 + 42704*uk_117 + 61200*uk_118 + 9248*uk_119 + 1724446*uk_12 + 2048*uk_120 + 20096*uk_121 + 28800*uk_122 + 4352*uk_123 + 197192*uk_124 + 282600*uk_125 + 42704*uk_126 + 405000*uk_127 + 61200*uk_128 + 9248*uk_129 + 811504*uk_13 + 39304*uk_130 + 18496*uk_131 + 181492*uk_132 + 260100*uk_133 + 39304*uk_134 + 8704*uk_135 + 85408*uk_136 + 122400*uk_137 + 18496*uk_138 + 838066*uk_139 + 7962883*uk_14 + 1201050*uk_140 + 181492*uk_141 + 1721250*uk_142 + 260100*uk_143 + 39304*uk_144 + 4096*uk_145 + 40192*uk_146 + 57600*uk_147 + 8704*uk_148 + 394384*uk_149 + 11411775*uk_15 + 565200*uk_150 + 85408*uk_151 + 810000*uk_152 + 122400*uk_153 + 18496*uk_154 + 3869893*uk_155 + 5546025*uk_156 + 838066*uk_157 + 7948125*uk_158 + 1201050*uk_159 + 1724446*uk_16 + 181492*uk_160 + 11390625*uk_161 + 1721250*uk_162 + 260100*uk_163 + 39304*uk_164 + 3025*uk_17 + 440*uk_18 + 1870*uk_19 + 55*uk_2 + 880*uk_20 + 8635*uk_21 + 12375*uk_22 + 1870*uk_23 + 64*uk_24 + 272*uk_25 + 128*uk_26 + 1256*uk_27 + 1800*uk_28 + 272*uk_29 + 8*uk_3 + 1156*uk_30 + 544*uk_31 + 5338*uk_32 + 7650*uk_33 + 1156*uk_34 + 256*uk_35 + 2512*uk_36 + 3600*uk_37 + 544*uk_38 + 24649*uk_39 + 34*uk_4 + 35325*uk_40 + 5338*uk_41 + 50625*uk_42 + 7650*uk_43 + 1156*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 20579335688*uk_47 + 87462176674*uk_48 + 41158671376*uk_49 + 16*uk_5 + 403869462877*uk_50 + 578793816225*uk_51 + 87462176674*uk_52 + 153424975*uk_53 + 22316360*uk_54 + 94844530*uk_55 + 44632720*uk_56 + 437958565*uk_57 + 627647625*uk_58 + 94844530*uk_59 + 157*uk_6 + 3246016*uk_60 + 13795568*uk_61 + 6492032*uk_62 + 63703064*uk_63 + 91294200*uk_64 + 13795568*uk_65 + 58631164*uk_66 + 27591136*uk_67 + 270738022*uk_68 + 388000350*uk_69 + 225*uk_7 + 58631164*uk_70 + 12984064*uk_71 + 127406128*uk_72 + 182588400*uk_73 + 27591136*uk_74 + 1250172631*uk_75 + 1791648675*uk_76 + 270738022*uk_77 + 2567649375*uk_78 + 388000350*uk_79 + 34*uk_8 + 58631164*uk_80 + 166375*uk_81 + 24200*uk_82 + 102850*uk_83 + 48400*uk_84 + 474925*uk_85 + 680625*uk_86 + 102850*uk_87 + 3520*uk_88 + 14960*uk_89 + 2572416961*uk_9 + 7040*uk_90 + 69080*uk_91 + 99000*uk_92 + 14960*uk_93 + 63580*uk_94 + 29920*uk_95 + 293590*uk_96 + 420750*uk_97 + 63580*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 174900*uk_100 + 247500*uk_101 + 8800*uk_102 + 1390455*uk_103 + 1967625*uk_104 + 69960*uk_105 + 2784375*uk_106 + 99000*uk_107 + 3520*uk_108 + 3869893*uk_109 + 7962883*uk_11 + 197192*uk_110 + 492980*uk_111 + 3919191*uk_112 + 5546025*uk_113 + 197192*uk_114 + 10048*uk_115 + 25120*uk_116 + 199704*uk_117 + 282600*uk_118 + 10048*uk_119 + 405752*uk_12 + 62800*uk_120 + 499260*uk_121 + 706500*uk_122 + 25120*uk_123 + 3969117*uk_124 + 5616675*uk_125 + 199704*uk_126 + 7948125*uk_127 + 282600*uk_128 + 10048*uk_129 + 1014380*uk_13 + 512*uk_130 + 1280*uk_131 + 10176*uk_132 + 14400*uk_133 + 512*uk_134 + 3200*uk_135 + 25440*uk_136 + 36000*uk_137 + 1280*uk_138 + 202248*uk_139 + 8064321*uk_14 + 286200*uk_140 + 10176*uk_141 + 405000*uk_142 + 14400*uk_143 + 512*uk_144 + 8000*uk_145 + 63600*uk_146 + 90000*uk_147 + 3200*uk_148 + 505620*uk_149 + 11411775*uk_15 + 715500*uk_150 + 25440*uk_151 + 1012500*uk_152 + 36000*uk_153 + 1280*uk_154 + 4019679*uk_155 + 5688225*uk_156 + 202248*uk_157 + 8049375*uk_158 + 286200*uk_159 + 405752*uk_16 + 10176*uk_160 + 11390625*uk_161 + 405000*uk_162 + 14400*uk_163 + 512*uk_164 + 3025*uk_17 + 8635*uk_18 + 440*uk_19 + 55*uk_2 + 1100*uk_20 + 8745*uk_21 + 12375*uk_22 + 440*uk_23 + 24649*uk_24 + 1256*uk_25 + 3140*uk_26 + 24963*uk_27 + 35325*uk_28 + 1256*uk_29 + 157*uk_3 + 64*uk_30 + 160*uk_31 + 1272*uk_32 + 1800*uk_33 + 64*uk_34 + 400*uk_35 + 3180*uk_36 + 4500*uk_37 + 160*uk_38 + 25281*uk_39 + 8*uk_4 + 35775*uk_40 + 1272*uk_41 + 50625*uk_42 + 1800*uk_43 + 64*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 403869462877*uk_47 + 20579335688*uk_48 + 51448339220*uk_49 + 20*uk_5 + 409014296799*uk_50 + 578793816225*uk_51 + 20579335688*uk_52 + 153424975*uk_53 + 437958565*uk_54 + 22316360*uk_55 + 55790900*uk_56 + 443537655*uk_57 + 627647625*uk_58 + 22316360*uk_59 + 159*uk_6 + 1250172631*uk_60 + 63703064*uk_61 + 159257660*uk_62 + 1266098397*uk_63 + 1791648675*uk_64 + 63703064*uk_65 + 3246016*uk_66 + 8115040*uk_67 + 64514568*uk_68 + 91294200*uk_69 + 225*uk_7 + 3246016*uk_70 + 20287600*uk_71 + 161286420*uk_72 + 228235500*uk_73 + 8115040*uk_74 + 1282227039*uk_75 + 1814472225*uk_76 + 64514568*uk_77 + 2567649375*uk_78 + 91294200*uk_79 + 8*uk_8 + 3246016*uk_80 + 166375*uk_81 + 474925*uk_82 + 24200*uk_83 + 60500*uk_84 + 480975*uk_85 + 680625*uk_86 + 24200*uk_87 + 1355695*uk_88 + 69080*uk_89 + 2572416961*uk_9 + 172700*uk_90 + 1372965*uk_91 + 1942875*uk_92 + 69080*uk_93 + 3520*uk_94 + 8800*uk_95 + 69960*uk_96 + 99000*uk_97 + 3520*uk_98 + 22000*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 106260*uk_100 + 148500*uk_101 + 103620*uk_102 + 1425655*uk_103 + 1992375*uk_104 + 1390235*uk_105 + 2784375*uk_106 + 1942875*uk_107 + 1355695*uk_108 + 64*uk_109 + 202876*uk_11 + 2512*uk_110 + 192*uk_111 + 2576*uk_112 + 3600*uk_113 + 2512*uk_114 + 98596*uk_115 + 7536*uk_116 + 101108*uk_117 + 141300*uk_118 + 98596*uk_119 + 7962883*uk_12 + 576*uk_120 + 7728*uk_121 + 10800*uk_122 + 7536*uk_123 + 103684*uk_124 + 144900*uk_125 + 101108*uk_126 + 202500*uk_127 + 141300*uk_128 + 98596*uk_129 + 608628*uk_13 + 3869893*uk_130 + 295788*uk_131 + 3968489*uk_132 + 5546025*uk_133 + 3869893*uk_134 + 22608*uk_135 + 303324*uk_136 + 423900*uk_137 + 295788*uk_138 + 4069597*uk_139 + 8165759*uk_14 + 5687325*uk_140 + 3968489*uk_141 + 7948125*uk_142 + 5546025*uk_143 + 3869893*uk_144 + 1728*uk_145 + 23184*uk_146 + 32400*uk_147 + 22608*uk_148 + 311052*uk_149 + 11411775*uk_15 + 434700*uk_150 + 303324*uk_151 + 607500*uk_152 + 423900*uk_153 + 295788*uk_154 + 4173281*uk_155 + 5832225*uk_156 + 4069597*uk_157 + 8150625*uk_158 + 5687325*uk_159 + 7962883*uk_16 + 3968489*uk_160 + 11390625*uk_161 + 7948125*uk_162 + 5546025*uk_163 + 3869893*uk_164 + 3025*uk_17 + 220*uk_18 + 8635*uk_19 + 55*uk_2 + 660*uk_20 + 8855*uk_21 + 12375*uk_22 + 8635*uk_23 + 16*uk_24 + 628*uk_25 + 48*uk_26 + 644*uk_27 + 900*uk_28 + 628*uk_29 + 4*uk_3 + 24649*uk_30 + 1884*uk_31 + 25277*uk_32 + 35325*uk_33 + 24649*uk_34 + 144*uk_35 + 1932*uk_36 + 2700*uk_37 + 1884*uk_38 + 25921*uk_39 + 157*uk_4 + 36225*uk_40 + 25277*uk_41 + 50625*uk_42 + 35325*uk_43 + 24649*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 403869462877*uk_48 + 30869003532*uk_49 + 12*uk_5 + 414159130721*uk_50 + 578793816225*uk_51 + 403869462877*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 437958565*uk_55 + 33474540*uk_56 + 449116745*uk_57 + 627647625*uk_58 + 437958565*uk_59 + 161*uk_6 + 811504*uk_60 + 31851532*uk_61 + 2434512*uk_62 + 32663036*uk_63 + 45647100*uk_64 + 31851532*uk_65 + 1250172631*uk_66 + 95554596*uk_67 + 1282024163*uk_68 + 1791648675*uk_69 + 225*uk_7 + 1250172631*uk_70 + 7303536*uk_71 + 97989108*uk_72 + 136941300*uk_73 + 95554596*uk_74 + 1314687199*uk_75 + 1837295775*uk_76 + 1282024163*uk_77 + 2567649375*uk_78 + 1791648675*uk_79 + 157*uk_8 + 1250172631*uk_80 + 166375*uk_81 + 12100*uk_82 + 474925*uk_83 + 36300*uk_84 + 487025*uk_85 + 680625*uk_86 + 474925*uk_87 + 880*uk_88 + 34540*uk_89 + 2572416961*uk_9 + 2640*uk_90 + 35420*uk_91 + 49500*uk_92 + 34540*uk_93 + 1355695*uk_94 + 103620*uk_95 + 1390235*uk_96 + 1942875*uk_97 + 1355695*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 143440*uk_100 + 198000*uk_101 + 3520*uk_102 + 1461295*uk_103 + 2017125*uk_104 + 35860*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 17576*uk_109 + 1318694*uk_11 + 2704*uk_110 + 10816*uk_111 + 110188*uk_112 + 152100*uk_113 + 2704*uk_114 + 416*uk_115 + 1664*uk_116 + 16952*uk_117 + 23400*uk_118 + 416*uk_119 + 202876*uk_12 + 6656*uk_120 + 67808*uk_121 + 93600*uk_122 + 1664*uk_123 + 690794*uk_124 + 953550*uk_125 + 16952*uk_126 + 1316250*uk_127 + 23400*uk_128 + 416*uk_129 + 811504*uk_13 + 64*uk_130 + 256*uk_131 + 2608*uk_132 + 3600*uk_133 + 64*uk_134 + 1024*uk_135 + 10432*uk_136 + 14400*uk_137 + 256*uk_138 + 106276*uk_139 + 8267197*uk_14 + 146700*uk_140 + 2608*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 4096*uk_145 + 41728*uk_146 + 57600*uk_147 + 1024*uk_148 + 425104*uk_149 + 11411775*uk_15 + 586800*uk_150 + 10432*uk_151 + 810000*uk_152 + 14400*uk_153 + 256*uk_154 + 4330747*uk_155 + 5978025*uk_156 + 106276*uk_157 + 8251875*uk_158 + 146700*uk_159 + 202876*uk_16 + 2608*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 1430*uk_18 + 220*uk_19 + 55*uk_2 + 880*uk_20 + 8965*uk_21 + 12375*uk_22 + 220*uk_23 + 676*uk_24 + 104*uk_25 + 416*uk_26 + 4238*uk_27 + 5850*uk_28 + 104*uk_29 + 26*uk_3 + 16*uk_30 + 64*uk_31 + 652*uk_32 + 900*uk_33 + 16*uk_34 + 256*uk_35 + 2608*uk_36 + 3600*uk_37 + 64*uk_38 + 26569*uk_39 + 4*uk_4 + 36675*uk_40 + 652*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 66882840986*uk_47 + 10289667844*uk_48 + 41158671376*uk_49 + 16*uk_5 + 419303964643*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 72528170*uk_54 + 11158180*uk_55 + 44632720*uk_56 + 454695835*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 163*uk_6 + 34286044*uk_60 + 5274776*uk_61 + 21099104*uk_62 + 214947122*uk_63 + 296706150*uk_64 + 5274776*uk_65 + 811504*uk_66 + 3246016*uk_67 + 33068788*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 12984064*uk_71 + 132275152*uk_72 + 182588400*uk_73 + 3246016*uk_74 + 1347553111*uk_75 + 1860119325*uk_76 + 33068788*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 78650*uk_82 + 12100*uk_83 + 48400*uk_84 + 493075*uk_85 + 680625*uk_86 + 12100*uk_87 + 37180*uk_88 + 5720*uk_89 + 2572416961*uk_9 + 22880*uk_90 + 233090*uk_91 + 321750*uk_92 + 5720*uk_93 + 880*uk_94 + 3520*uk_95 + 35860*uk_96 + 49500*uk_97 + 880*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 145200*uk_100 + 198000*uk_101 + 22880*uk_102 + 1497375*uk_103 + 2041875*uk_104 + 235950*uk_105 + 2784375*uk_106 + 321750*uk_107 + 37180*uk_108 + 262144*uk_109 + 3246016*uk_11 + 106496*uk_110 + 65536*uk_111 + 675840*uk_112 + 921600*uk_113 + 106496*uk_114 + 43264*uk_115 + 26624*uk_116 + 274560*uk_117 + 374400*uk_118 + 43264*uk_119 + 1318694*uk_12 + 16384*uk_120 + 168960*uk_121 + 230400*uk_122 + 26624*uk_123 + 1742400*uk_124 + 2376000*uk_125 + 274560*uk_126 + 3240000*uk_127 + 374400*uk_128 + 43264*uk_129 + 811504*uk_13 + 17576*uk_130 + 10816*uk_131 + 111540*uk_132 + 152100*uk_133 + 17576*uk_134 + 6656*uk_135 + 68640*uk_136 + 93600*uk_137 + 10816*uk_138 + 707850*uk_139 + 8368635*uk_14 + 965250*uk_140 + 111540*uk_141 + 1316250*uk_142 + 152100*uk_143 + 17576*uk_144 + 4096*uk_145 + 42240*uk_146 + 57600*uk_147 + 6656*uk_148 + 435600*uk_149 + 11411775*uk_15 + 594000*uk_150 + 68640*uk_151 + 810000*uk_152 + 93600*uk_153 + 10816*uk_154 + 4492125*uk_155 + 6125625*uk_156 + 707850*uk_157 + 8353125*uk_158 + 965250*uk_159 + 1318694*uk_16 + 111540*uk_160 + 11390625*uk_161 + 1316250*uk_162 + 152100*uk_163 + 17576*uk_164 + 3025*uk_17 + 3520*uk_18 + 1430*uk_19 + 55*uk_2 + 880*uk_20 + 9075*uk_21 + 12375*uk_22 + 1430*uk_23 + 4096*uk_24 + 1664*uk_25 + 1024*uk_26 + 10560*uk_27 + 14400*uk_28 + 1664*uk_29 + 64*uk_3 + 676*uk_30 + 416*uk_31 + 4290*uk_32 + 5850*uk_33 + 676*uk_34 + 256*uk_35 + 2640*uk_36 + 3600*uk_37 + 416*uk_38 + 27225*uk_39 + 26*uk_4 + 37125*uk_40 + 4290*uk_41 + 50625*uk_42 + 5850*uk_43 + 676*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 164634685504*uk_47 + 66882840986*uk_48 + 41158671376*uk_49 + 16*uk_5 + 424448798565*uk_50 + 578793816225*uk_51 + 66882840986*uk_52 + 153424975*uk_53 + 178530880*uk_54 + 72528170*uk_55 + 44632720*uk_56 + 460274925*uk_57 + 627647625*uk_58 + 72528170*uk_59 + 165*uk_6 + 207745024*uk_60 + 84396416*uk_61 + 51936256*uk_62 + 535592640*uk_63 + 730353600*uk_64 + 84396416*uk_65 + 34286044*uk_66 + 21099104*uk_67 + 217584510*uk_68 + 296706150*uk_69 + 225*uk_7 + 34286044*uk_70 + 12984064*uk_71 + 133898160*uk_72 + 182588400*uk_73 + 21099104*uk_74 + 1380824775*uk_75 + 1882942875*uk_76 + 217584510*uk_77 + 2567649375*uk_78 + 296706150*uk_79 + 26*uk_8 + 34286044*uk_80 + 166375*uk_81 + 193600*uk_82 + 78650*uk_83 + 48400*uk_84 + 499125*uk_85 + 680625*uk_86 + 78650*uk_87 + 225280*uk_88 + 91520*uk_89 + 2572416961*uk_9 + 56320*uk_90 + 580800*uk_91 + 792000*uk_92 + 91520*uk_93 + 37180*uk_94 + 22880*uk_95 + 235950*uk_96 + 321750*uk_97 + 37180*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 146960*uk_100 + 198000*uk_101 + 56320*uk_102 + 1533895*uk_103 + 2066625*uk_104 + 587840*uk_105 + 2784375*uk_106 + 792000*uk_107 + 225280*uk_108 + 1643032*uk_109 + 5984842*uk_11 + 891136*uk_110 + 222784*uk_111 + 2325308*uk_112 + 3132900*uk_113 + 891136*uk_114 + 483328*uk_115 + 120832*uk_116 + 1261184*uk_117 + 1699200*uk_118 + 483328*uk_119 + 3246016*uk_12 + 30208*uk_120 + 315296*uk_121 + 424800*uk_122 + 120832*uk_123 + 3290902*uk_124 + 4433850*uk_125 + 1261184*uk_126 + 5973750*uk_127 + 1699200*uk_128 + 483328*uk_129 + 811504*uk_13 + 262144*uk_130 + 65536*uk_131 + 684032*uk_132 + 921600*uk_133 + 262144*uk_134 + 16384*uk_135 + 171008*uk_136 + 230400*uk_137 + 65536*uk_138 + 1784896*uk_139 + 8470073*uk_14 + 2404800*uk_140 + 684032*uk_141 + 3240000*uk_142 + 921600*uk_143 + 262144*uk_144 + 4096*uk_145 + 42752*uk_146 + 57600*uk_147 + 16384*uk_148 + 446224*uk_149 + 11411775*uk_15 + 601200*uk_150 + 171008*uk_151 + 810000*uk_152 + 230400*uk_153 + 65536*uk_154 + 4657463*uk_155 + 6275025*uk_156 + 1784896*uk_157 + 8454375*uk_158 + 2404800*uk_159 + 3246016*uk_16 + 684032*uk_160 + 11390625*uk_161 + 3240000*uk_162 + 921600*uk_163 + 262144*uk_164 + 3025*uk_17 + 6490*uk_18 + 3520*uk_19 + 55*uk_2 + 880*uk_20 + 9185*uk_21 + 12375*uk_22 + 3520*uk_23 + 13924*uk_24 + 7552*uk_25 + 1888*uk_26 + 19706*uk_27 + 26550*uk_28 + 7552*uk_29 + 118*uk_3 + 4096*uk_30 + 1024*uk_31 + 10688*uk_32 + 14400*uk_33 + 4096*uk_34 + 256*uk_35 + 2672*uk_36 + 3600*uk_37 + 1024*uk_38 + 27889*uk_39 + 64*uk_4 + 37575*uk_40 + 10688*uk_41 + 50625*uk_42 + 14400*uk_43 + 4096*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 303545201398*uk_47 + 164634685504*uk_48 + 41158671376*uk_49 + 16*uk_5 + 429593632487*uk_50 + 578793816225*uk_51 + 164634685504*uk_52 + 153424975*uk_53 + 329166310*uk_54 + 178530880*uk_55 + 44632720*uk_56 + 465854015*uk_57 + 627647625*uk_58 + 178530880*uk_59 + 167*uk_6 + 706211356*uk_60 + 383029888*uk_61 + 95757472*uk_62 + 999468614*uk_63 + 1346589450*uk_64 + 383029888*uk_65 + 207745024*uk_66 + 51936256*uk_67 + 542084672*uk_68 + 730353600*uk_69 + 225*uk_7 + 207745024*uk_70 + 12984064*uk_71 + 135521168*uk_72 + 182588400*uk_73 + 51936256*uk_74 + 1414502191*uk_75 + 1905766425*uk_76 + 542084672*uk_77 + 2567649375*uk_78 + 730353600*uk_79 + 64*uk_8 + 207745024*uk_80 + 166375*uk_81 + 356950*uk_82 + 193600*uk_83 + 48400*uk_84 + 505175*uk_85 + 680625*uk_86 + 193600*uk_87 + 765820*uk_88 + 415360*uk_89 + 2572416961*uk_9 + 103840*uk_90 + 1083830*uk_91 + 1460250*uk_92 + 415360*uk_93 + 225280*uk_94 + 56320*uk_95 + 587840*uk_96 + 792000*uk_97 + 225280*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 111540*uk_100 + 148500*uk_101 + 77880*uk_102 + 1570855*uk_103 + 2091375*uk_104 + 1096810*uk_105 + 2784375*uk_106 + 1460250*uk_107 + 765820*uk_108 + 6859*uk_109 + 963661*uk_11 + 42598*uk_110 + 4332*uk_111 + 61009*uk_112 + 81225*uk_113 + 42598*uk_114 + 264556*uk_115 + 26904*uk_116 + 378898*uk_117 + 504450*uk_118 + 264556*uk_119 + 5984842*uk_12 + 2736*uk_120 + 38532*uk_121 + 51300*uk_122 + 26904*uk_123 + 542659*uk_124 + 722475*uk_125 + 378898*uk_126 + 961875*uk_127 + 504450*uk_128 + 264556*uk_129 + 608628*uk_13 + 1643032*uk_130 + 167088*uk_131 + 2353156*uk_132 + 3132900*uk_133 + 1643032*uk_134 + 16992*uk_135 + 239304*uk_136 + 318600*uk_137 + 167088*uk_138 + 3370198*uk_139 + 8571511*uk_14 + 4486950*uk_140 + 2353156*uk_141 + 5973750*uk_142 + 3132900*uk_143 + 1643032*uk_144 + 1728*uk_145 + 24336*uk_146 + 32400*uk_147 + 16992*uk_148 + 342732*uk_149 + 11411775*uk_15 + 456300*uk_150 + 239304*uk_151 + 607500*uk_152 + 318600*uk_153 + 167088*uk_154 + 4826809*uk_155 + 6426225*uk_156 + 3370198*uk_157 + 8555625*uk_158 + 4486950*uk_159 + 5984842*uk_16 + 2353156*uk_160 + 11390625*uk_161 + 5973750*uk_162 + 3132900*uk_163 + 1643032*uk_164 + 3025*uk_17 + 1045*uk_18 + 6490*uk_19 + 55*uk_2 + 660*uk_20 + 9295*uk_21 + 12375*uk_22 + 6490*uk_23 + 361*uk_24 + 2242*uk_25 + 228*uk_26 + 3211*uk_27 + 4275*uk_28 + 2242*uk_29 + 19*uk_3 + 13924*uk_30 + 1416*uk_31 + 19942*uk_32 + 26550*uk_33 + 13924*uk_34 + 144*uk_35 + 2028*uk_36 + 2700*uk_37 + 1416*uk_38 + 28561*uk_39 + 118*uk_4 + 38025*uk_40 + 19942*uk_41 + 50625*uk_42 + 26550*uk_43 + 13924*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 48875922259*uk_47 + 303545201398*uk_48 + 30869003532*uk_49 + 12*uk_5 + 434738466409*uk_50 + 578793816225*uk_51 + 303545201398*uk_52 + 153424975*uk_53 + 53001355*uk_54 + 329166310*uk_55 + 33474540*uk_56 + 471433105*uk_57 + 627647625*uk_58 + 329166310*uk_59 + 169*uk_6 + 18309559*uk_60 + 113711998*uk_61 + 11563932*uk_62 + 162858709*uk_63 + 216823725*uk_64 + 113711998*uk_65 + 706211356*uk_66 + 71818104*uk_67 + 1011438298*uk_68 + 1346589450*uk_69 + 225*uk_7 + 706211356*uk_70 + 7303536*uk_71 + 102858132*uk_72 + 136941300*uk_73 + 71818104*uk_74 + 1448585359*uk_75 + 1928589975*uk_76 + 1011438298*uk_77 + 2567649375*uk_78 + 1346589450*uk_79 + 118*uk_8 + 706211356*uk_80 + 166375*uk_81 + 57475*uk_82 + 356950*uk_83 + 36300*uk_84 + 511225*uk_85 + 680625*uk_86 + 356950*uk_87 + 19855*uk_88 + 123310*uk_89 + 2572416961*uk_9 + 12540*uk_90 + 176605*uk_91 + 235125*uk_92 + 123310*uk_93 + 765820*uk_94 + 77880*uk_95 + 1096810*uk_96 + 1460250*uk_97 + 765820*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 150480*uk_100 + 198000*uk_101 + 16720*uk_102 + 1608255*uk_103 + 2116125*uk_104 + 178695*uk_105 + 2784375*uk_106 + 235125*uk_107 + 19855*uk_108 + 1092727*uk_109 + 5224057*uk_11 + 201571*uk_110 + 169744*uk_111 + 1814139*uk_112 + 2387025*uk_113 + 201571*uk_114 + 37183*uk_115 + 31312*uk_116 + 334647*uk_117 + 440325*uk_118 + 37183*uk_119 + 963661*uk_12 + 26368*uk_120 + 281808*uk_121 + 370800*uk_122 + 31312*uk_123 + 3011823*uk_124 + 3962925*uk_125 + 334647*uk_126 + 5214375*uk_127 + 440325*uk_128 + 37183*uk_129 + 811504*uk_13 + 6859*uk_130 + 5776*uk_131 + 61731*uk_132 + 81225*uk_133 + 6859*uk_134 + 4864*uk_135 + 51984*uk_136 + 68400*uk_137 + 5776*uk_138 + 555579*uk_139 + 8672949*uk_14 + 731025*uk_140 + 61731*uk_141 + 961875*uk_142 + 81225*uk_143 + 6859*uk_144 + 4096*uk_145 + 43776*uk_146 + 57600*uk_147 + 4864*uk_148 + 467856*uk_149 + 11411775*uk_15 + 615600*uk_150 + 51984*uk_151 + 810000*uk_152 + 68400*uk_153 + 5776*uk_154 + 5000211*uk_155 + 6579225*uk_156 + 555579*uk_157 + 8656875*uk_158 + 731025*uk_159 + 963661*uk_16 + 61731*uk_160 + 11390625*uk_161 + 961875*uk_162 + 81225*uk_163 + 6859*uk_164 + 3025*uk_17 + 5665*uk_18 + 1045*uk_19 + 55*uk_2 + 880*uk_20 + 9405*uk_21 + 12375*uk_22 + 1045*uk_23 + 10609*uk_24 + 1957*uk_25 + 1648*uk_26 + 17613*uk_27 + 23175*uk_28 + 1957*uk_29 + 103*uk_3 + 361*uk_30 + 304*uk_31 + 3249*uk_32 + 4275*uk_33 + 361*uk_34 + 256*uk_35 + 2736*uk_36 + 3600*uk_37 + 304*uk_38 + 29241*uk_39 + 19*uk_4 + 38475*uk_40 + 3249*uk_41 + 50625*uk_42 + 4275*uk_43 + 361*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 264958946983*uk_47 + 48875922259*uk_48 + 41158671376*uk_49 + 16*uk_5 + 439883300331*uk_50 + 578793816225*uk_51 + 48875922259*uk_52 + 153424975*uk_53 + 287323135*uk_54 + 53001355*uk_55 + 44632720*uk_56 + 477012195*uk_57 + 627647625*uk_58 + 53001355*uk_59 + 171*uk_6 + 538077871*uk_60 + 99257083*uk_61 + 83584912*uk_62 + 893313747*uk_63 + 1175412825*uk_64 + 99257083*uk_65 + 18309559*uk_66 + 15418576*uk_67 + 164786031*uk_68 + 216823725*uk_69 + 225*uk_7 + 18309559*uk_70 + 12984064*uk_71 + 138767184*uk_72 + 182588400*uk_73 + 15418576*uk_74 + 1483074279*uk_75 + 1951413525*uk_76 + 164786031*uk_77 + 2567649375*uk_78 + 216823725*uk_79 + 19*uk_8 + 18309559*uk_80 + 166375*uk_81 + 311575*uk_82 + 57475*uk_83 + 48400*uk_84 + 517275*uk_85 + 680625*uk_86 + 57475*uk_87 + 583495*uk_88 + 107635*uk_89 + 2572416961*uk_9 + 90640*uk_90 + 968715*uk_91 + 1274625*uk_92 + 107635*uk_93 + 19855*uk_94 + 16720*uk_95 + 178695*uk_96 + 235125*uk_97 + 19855*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 114180*uk_100 + 148500*uk_101 + 67980*uk_102 + 1646095*uk_103 + 2140875*uk_104 + 980045*uk_105 + 2784375*uk_106 + 1274625*uk_107 + 583495*uk_108 + 27000*uk_109 + 1521570*uk_11 + 92700*uk_110 + 10800*uk_111 + 155700*uk_112 + 202500*uk_113 + 92700*uk_114 + 318270*uk_115 + 37080*uk_116 + 534570*uk_117 + 695250*uk_118 + 318270*uk_119 + 5224057*uk_12 + 4320*uk_120 + 62280*uk_121 + 81000*uk_122 + 37080*uk_123 + 897870*uk_124 + 1167750*uk_125 + 534570*uk_126 + 1518750*uk_127 + 695250*uk_128 + 318270*uk_129 + 608628*uk_13 + 1092727*uk_130 + 127308*uk_131 + 1835357*uk_132 + 2387025*uk_133 + 1092727*uk_134 + 14832*uk_135 + 213828*uk_136 + 278100*uk_137 + 127308*uk_138 + 3082687*uk_139 + 8774387*uk_14 + 4009275*uk_140 + 1835357*uk_141 + 5214375*uk_142 + 2387025*uk_143 + 1092727*uk_144 + 1728*uk_145 + 24912*uk_146 + 32400*uk_147 + 14832*uk_148 + 359148*uk_149 + 11411775*uk_15 + 467100*uk_150 + 213828*uk_151 + 607500*uk_152 + 278100*uk_153 + 127308*uk_154 + 5177717*uk_155 + 6734025*uk_156 + 3082687*uk_157 + 8758125*uk_158 + 4009275*uk_159 + 5224057*uk_16 + 1835357*uk_160 + 11390625*uk_161 + 5214375*uk_162 + 2387025*uk_163 + 1092727*uk_164 + 3025*uk_17 + 1650*uk_18 + 5665*uk_19 + 55*uk_2 + 660*uk_20 + 9515*uk_21 + 12375*uk_22 + 5665*uk_23 + 900*uk_24 + 3090*uk_25 + 360*uk_26 + 5190*uk_27 + 6750*uk_28 + 3090*uk_29 + 30*uk_3 + 10609*uk_30 + 1236*uk_31 + 17819*uk_32 + 23175*uk_33 + 10609*uk_34 + 144*uk_35 + 2076*uk_36 + 2700*uk_37 + 1236*uk_38 + 29929*uk_39 + 103*uk_4 + 38925*uk_40 + 17819*uk_41 + 50625*uk_42 + 23175*uk_43 + 10609*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 77172508830*uk_47 + 264958946983*uk_48 + 30869003532*uk_49 + 12*uk_5 + 445028134253*uk_50 + 578793816225*uk_51 + 264958946983*uk_52 + 153424975*uk_53 + 83686350*uk_54 + 287323135*uk_55 + 33474540*uk_56 + 482591285*uk_57 + 627647625*uk_58 + 287323135*uk_59 + 173*uk_6 + 45647100*uk_60 + 156721710*uk_61 + 18258840*uk_62 + 263231610*uk_63 + 342353250*uk_64 + 156721710*uk_65 + 538077871*uk_66 + 62688684*uk_67 + 903761861*uk_68 + 1175412825*uk_69 + 225*uk_7 + 538077871*uk_70 + 7303536*uk_71 + 105292644*uk_72 + 136941300*uk_73 + 62688684*uk_74 + 1517968951*uk_75 + 1974237075*uk_76 + 903761861*uk_77 + 2567649375*uk_78 + 1175412825*uk_79 + 103*uk_8 + 538077871*uk_80 + 166375*uk_81 + 90750*uk_82 + 311575*uk_83 + 36300*uk_84 + 523325*uk_85 + 680625*uk_86 + 311575*uk_87 + 49500*uk_88 + 169950*uk_89 + 2572416961*uk_9 + 19800*uk_90 + 285450*uk_91 + 371250*uk_92 + 169950*uk_93 + 583495*uk_94 + 67980*uk_95 + 980045*uk_96 + 1274625*uk_97 + 583495*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 154000*uk_100 + 198000*uk_101 + 26400*uk_102 + 1684375*uk_103 + 2165625*uk_104 + 288750*uk_105 + 2784375*uk_106 + 371250*uk_107 + 49500*uk_108 + 2985984*uk_109 + 7303536*uk_11 + 622080*uk_110 + 331776*uk_111 + 3628800*uk_112 + 4665600*uk_113 + 622080*uk_114 + 129600*uk_115 + 69120*uk_116 + 756000*uk_117 + 972000*uk_118 + 129600*uk_119 + 1521570*uk_12 + 36864*uk_120 + 403200*uk_121 + 518400*uk_122 + 69120*uk_123 + 4410000*uk_124 + 5670000*uk_125 + 756000*uk_126 + 7290000*uk_127 + 972000*uk_128 + 129600*uk_129 + 811504*uk_13 + 27000*uk_130 + 14400*uk_131 + 157500*uk_132 + 202500*uk_133 + 27000*uk_134 + 7680*uk_135 + 84000*uk_136 + 108000*uk_137 + 14400*uk_138 + 918750*uk_139 + 8875825*uk_14 + 1181250*uk_140 + 157500*uk_141 + 1518750*uk_142 + 202500*uk_143 + 27000*uk_144 + 4096*uk_145 + 44800*uk_146 + 57600*uk_147 + 7680*uk_148 + 490000*uk_149 + 11411775*uk_15 + 630000*uk_150 + 84000*uk_151 + 810000*uk_152 + 108000*uk_153 + 14400*uk_154 + 5359375*uk_155 + 6890625*uk_156 + 918750*uk_157 + 8859375*uk_158 + 1181250*uk_159 + 1521570*uk_16 + 157500*uk_160 + 11390625*uk_161 + 1518750*uk_162 + 202500*uk_163 + 27000*uk_164 + 3025*uk_17 + 7920*uk_18 + 1650*uk_19 + 55*uk_2 + 880*uk_20 + 9625*uk_21 + 12375*uk_22 + 1650*uk_23 + 20736*uk_24 + 4320*uk_25 + 2304*uk_26 + 25200*uk_27 + 32400*uk_28 + 4320*uk_29 + 144*uk_3 + 900*uk_30 + 480*uk_31 + 5250*uk_32 + 6750*uk_33 + 900*uk_34 + 256*uk_35 + 2800*uk_36 + 3600*uk_37 + 480*uk_38 + 30625*uk_39 + 30*uk_4 + 39375*uk_40 + 5250*uk_41 + 50625*uk_42 + 6750*uk_43 + 900*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 370428042384*uk_47 + 77172508830*uk_48 + 41158671376*uk_49 + 16*uk_5 + 450172968175*uk_50 + 578793816225*uk_51 + 77172508830*uk_52 + 153424975*uk_53 + 401694480*uk_54 + 83686350*uk_55 + 44632720*uk_56 + 488170375*uk_57 + 627647625*uk_58 + 83686350*uk_59 + 175*uk_6 + 1051709184*uk_60 + 219106080*uk_61 + 116856576*uk_62 + 1278118800*uk_63 + 1643295600*uk_64 + 219106080*uk_65 + 45647100*uk_66 + 24345120*uk_67 + 266274750*uk_68 + 342353250*uk_69 + 225*uk_7 + 45647100*uk_70 + 12984064*uk_71 + 142013200*uk_72 + 182588400*uk_73 + 24345120*uk_74 + 1553269375*uk_75 + 1997060625*uk_76 + 266274750*uk_77 + 2567649375*uk_78 + 342353250*uk_79 + 30*uk_8 + 45647100*uk_80 + 166375*uk_81 + 435600*uk_82 + 90750*uk_83 + 48400*uk_84 + 529375*uk_85 + 680625*uk_86 + 90750*uk_87 + 1140480*uk_88 + 237600*uk_89 + 2572416961*uk_9 + 126720*uk_90 + 1386000*uk_91 + 1782000*uk_92 + 237600*uk_93 + 49500*uk_94 + 26400*uk_95 + 288750*uk_96 + 371250*uk_97 + 49500*uk_98 + 14080*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 116820*uk_100 + 148500*uk_101 + 95040*uk_102 + 1723095*uk_103 + 2190375*uk_104 + 1401840*uk_105 + 2784375*uk_106 + 1782000*uk_107 + 1140480*uk_108 + 912673*uk_109 + 4919743*uk_11 + 1354896*uk_110 + 112908*uk_111 + 1665393*uk_112 + 2117025*uk_113 + 1354896*uk_114 + 2011392*uk_115 + 167616*uk_116 + 2472336*uk_117 + 3142800*uk_118 + 2011392*uk_119 + 7303536*uk_12 + 13968*uk_120 + 206028*uk_121 + 261900*uk_122 + 167616*uk_123 + 3038913*uk_124 + 3863025*uk_125 + 2472336*uk_126 + 4910625*uk_127 + 3142800*uk_128 + 2011392*uk_129 + 608628*uk_13 + 2985984*uk_130 + 248832*uk_131 + 3670272*uk_132 + 4665600*uk_133 + 2985984*uk_134 + 20736*uk_135 + 305856*uk_136 + 388800*uk_137 + 248832*uk_138 + 4511376*uk_139 + 8977263*uk_14 + 5734800*uk_140 + 3670272*uk_141 + 7290000*uk_142 + 4665600*uk_143 + 2985984*uk_144 + 1728*uk_145 + 25488*uk_146 + 32400*uk_147 + 20736*uk_148 + 375948*uk_149 + 11411775*uk_15 + 477900*uk_150 + 305856*uk_151 + 607500*uk_152 + 388800*uk_153 + 248832*uk_154 + 5545233*uk_155 + 7049025*uk_156 + 4511376*uk_157 + 8960625*uk_158 + 5734800*uk_159 + 7303536*uk_16 + 3670272*uk_160 + 11390625*uk_161 + 7290000*uk_162 + 4665600*uk_163 + 2985984*uk_164 + 3025*uk_17 + 5335*uk_18 + 7920*uk_19 + 55*uk_2 + 660*uk_20 + 9735*uk_21 + 12375*uk_22 + 7920*uk_23 + 9409*uk_24 + 13968*uk_25 + 1164*uk_26 + 17169*uk_27 + 21825*uk_28 + 13968*uk_29 + 97*uk_3 + 20736*uk_30 + 1728*uk_31 + 25488*uk_32 + 32400*uk_33 + 20736*uk_34 + 144*uk_35 + 2124*uk_36 + 2700*uk_37 + 1728*uk_38 + 31329*uk_39 + 144*uk_4 + 39825*uk_40 + 25488*uk_41 + 50625*uk_42 + 32400*uk_43 + 20736*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 249524445217*uk_47 + 370428042384*uk_48 + 30869003532*uk_49 + 12*uk_5 + 455317802097*uk_50 + 578793816225*uk_51 + 370428042384*uk_52 + 153424975*uk_53 + 270585865*uk_54 + 401694480*uk_55 + 33474540*uk_56 + 493749465*uk_57 + 627647625*uk_58 + 401694480*uk_59 + 177*uk_6 + 477215071*uk_60 + 708442992*uk_61 + 59036916*uk_62 + 870794511*uk_63 + 1106942175*uk_64 + 708442992*uk_65 + 1051709184*uk_66 + 87642432*uk_67 + 1292725872*uk_68 + 1643295600*uk_69 + 225*uk_7 + 1051709184*uk_70 + 7303536*uk_71 + 107727156*uk_72 + 136941300*uk_73 + 87642432*uk_74 + 1588975551*uk_75 + 2019884175*uk_76 + 1292725872*uk_77 + 2567649375*uk_78 + 1643295600*uk_79 + 144*uk_8 + 1051709184*uk_80 + 166375*uk_81 + 293425*uk_82 + 435600*uk_83 + 36300*uk_84 + 535425*uk_85 + 680625*uk_86 + 435600*uk_87 + 517495*uk_88 + 768240*uk_89 + 2572416961*uk_9 + 64020*uk_90 + 944295*uk_91 + 1200375*uk_92 + 768240*uk_93 + 1140480*uk_94 + 95040*uk_95 + 1401840*uk_96 + 1782000*uk_97 + 1140480*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 118140*uk_100 + 148500*uk_101 + 64020*uk_102 + 1762255*uk_103 + 2215125*uk_104 + 954965*uk_105 + 2784375*uk_106 + 1200375*uk_107 + 517495*uk_108 + 238328*uk_109 + 3144578*uk_11 + 372868*uk_110 + 46128*uk_111 + 688076*uk_112 + 864900*uk_113 + 372868*uk_114 + 583358*uk_115 + 72168*uk_116 + 1076506*uk_117 + 1353150*uk_118 + 583358*uk_119 + 4919743*uk_12 + 8928*uk_120 + 133176*uk_121 + 167400*uk_122 + 72168*uk_123 + 1986542*uk_124 + 2497050*uk_125 + 1076506*uk_126 + 3138750*uk_127 + 1353150*uk_128 + 583358*uk_129 + 608628*uk_13 + 912673*uk_130 + 112908*uk_131 + 1684211*uk_132 + 2117025*uk_133 + 912673*uk_134 + 13968*uk_135 + 208356*uk_136 + 261900*uk_137 + 112908*uk_138 + 3107977*uk_139 + 9078701*uk_14 + 3906675*uk_140 + 1684211*uk_141 + 4910625*uk_142 + 2117025*uk_143 + 912673*uk_144 + 1728*uk_145 + 25776*uk_146 + 32400*uk_147 + 13968*uk_148 + 384492*uk_149 + 11411775*uk_15 + 483300*uk_150 + 208356*uk_151 + 607500*uk_152 + 261900*uk_153 + 112908*uk_154 + 5735339*uk_155 + 7209225*uk_156 + 3107977*uk_157 + 9061875*uk_158 + 3906675*uk_159 + 4919743*uk_16 + 1684211*uk_160 + 11390625*uk_161 + 4910625*uk_162 + 2117025*uk_163 + 912673*uk_164 + 3025*uk_17 + 3410*uk_18 + 5335*uk_19 + 55*uk_2 + 660*uk_20 + 9845*uk_21 + 12375*uk_22 + 5335*uk_23 + 3844*uk_24 + 6014*uk_25 + 744*uk_26 + 11098*uk_27 + 13950*uk_28 + 6014*uk_29 + 62*uk_3 + 9409*uk_30 + 1164*uk_31 + 17363*uk_32 + 21825*uk_33 + 9409*uk_34 + 144*uk_35 + 2148*uk_36 + 2700*uk_37 + 1164*uk_38 + 32041*uk_39 + 97*uk_4 + 40275*uk_40 + 17363*uk_41 + 50625*uk_42 + 21825*uk_43 + 9409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 159489851582*uk_47 + 249524445217*uk_48 + 30869003532*uk_49 + 12*uk_5 + 460462636019*uk_50 + 578793816225*uk_51 + 249524445217*uk_52 + 153424975*uk_53 + 172951790*uk_54 + 270585865*uk_55 + 33474540*uk_56 + 499328555*uk_57 + 627647625*uk_58 + 270585865*uk_59 + 179*uk_6 + 194963836*uk_60 + 305024066*uk_61 + 37734936*uk_62 + 562879462*uk_63 + 707530050*uk_64 + 305024066*uk_65 + 477215071*uk_66 + 59036916*uk_67 + 880633997*uk_68 + 1106942175*uk_69 + 225*uk_7 + 477215071*uk_70 + 7303536*uk_71 + 108944412*uk_72 + 136941300*uk_73 + 59036916*uk_74 + 1625087479*uk_75 + 2042707725*uk_76 + 880633997*uk_77 + 2567649375*uk_78 + 1106942175*uk_79 + 97*uk_8 + 477215071*uk_80 + 166375*uk_81 + 187550*uk_82 + 293425*uk_83 + 36300*uk_84 + 541475*uk_85 + 680625*uk_86 + 293425*uk_87 + 211420*uk_88 + 330770*uk_89 + 2572416961*uk_9 + 40920*uk_90 + 610390*uk_91 + 767250*uk_92 + 330770*uk_93 + 517495*uk_94 + 64020*uk_95 + 954965*uk_96 + 1200375*uk_97 + 517495*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 119460*uk_100 + 148500*uk_101 + 40920*uk_102 + 1801855*uk_103 + 2239875*uk_104 + 617210*uk_105 + 2784375*uk_106 + 767250*uk_107 + 211420*uk_108 + 59319*uk_109 + 1978041*uk_11 + 94302*uk_110 + 18252*uk_111 + 275301*uk_112 + 342225*uk_113 + 94302*uk_114 + 149916*uk_115 + 29016*uk_116 + 437658*uk_117 + 544050*uk_118 + 149916*uk_119 + 3144578*uk_12 + 5616*uk_120 + 84708*uk_121 + 105300*uk_122 + 29016*uk_123 + 1277679*uk_124 + 1588275*uk_125 + 437658*uk_126 + 1974375*uk_127 + 544050*uk_128 + 149916*uk_129 + 608628*uk_13 + 238328*uk_130 + 46128*uk_131 + 695764*uk_132 + 864900*uk_133 + 238328*uk_134 + 8928*uk_135 + 134664*uk_136 + 167400*uk_137 + 46128*uk_138 + 2031182*uk_139 + 9180139*uk_14 + 2524950*uk_140 + 695764*uk_141 + 3138750*uk_142 + 864900*uk_143 + 238328*uk_144 + 1728*uk_145 + 26064*uk_146 + 32400*uk_147 + 8928*uk_148 + 393132*uk_149 + 11411775*uk_15 + 488700*uk_150 + 134664*uk_151 + 607500*uk_152 + 167400*uk_153 + 46128*uk_154 + 5929741*uk_155 + 7371225*uk_156 + 2031182*uk_157 + 9163125*uk_158 + 2524950*uk_159 + 3144578*uk_16 + 695764*uk_160 + 11390625*uk_161 + 3138750*uk_162 + 864900*uk_163 + 238328*uk_164 + 3025*uk_17 + 2145*uk_18 + 3410*uk_19 + 55*uk_2 + 660*uk_20 + 9955*uk_21 + 12375*uk_22 + 3410*uk_23 + 1521*uk_24 + 2418*uk_25 + 468*uk_26 + 7059*uk_27 + 8775*uk_28 + 2418*uk_29 + 39*uk_3 + 3844*uk_30 + 744*uk_31 + 11222*uk_32 + 13950*uk_33 + 3844*uk_34 + 144*uk_35 + 2172*uk_36 + 2700*uk_37 + 744*uk_38 + 32761*uk_39 + 62*uk_4 + 40725*uk_40 + 11222*uk_41 + 50625*uk_42 + 13950*uk_43 + 3844*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 100324261479*uk_47 + 159489851582*uk_48 + 30869003532*uk_49 + 12*uk_5 + 465607469941*uk_50 + 578793816225*uk_51 + 159489851582*uk_52 + 153424975*uk_53 + 108792255*uk_54 + 172951790*uk_55 + 33474540*uk_56 + 504907645*uk_57 + 627647625*uk_58 + 172951790*uk_59 + 181*uk_6 + 77143599*uk_60 + 122638542*uk_61 + 23736492*uk_62 + 358025421*uk_63 + 445059225*uk_64 + 122638542*uk_65 + 194963836*uk_66 + 37734936*uk_67 + 569168618*uk_68 + 707530050*uk_69 + 225*uk_7 + 194963836*uk_70 + 7303536*uk_71 + 110161668*uk_72 + 136941300*uk_73 + 37734936*uk_74 + 1661605159*uk_75 + 2065531275*uk_76 + 569168618*uk_77 + 2567649375*uk_78 + 707530050*uk_79 + 62*uk_8 + 194963836*uk_80 + 166375*uk_81 + 117975*uk_82 + 187550*uk_83 + 36300*uk_84 + 547525*uk_85 + 680625*uk_86 + 187550*uk_87 + 83655*uk_88 + 132990*uk_89 + 2572416961*uk_9 + 25740*uk_90 + 388245*uk_91 + 482625*uk_92 + 132990*uk_93 + 211420*uk_94 + 40920*uk_95 + 617210*uk_96 + 767250*uk_97 + 211420*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 120780*uk_100 + 148500*uk_101 + 25740*uk_102 + 1841895*uk_103 + 2264625*uk_104 + 392535*uk_105 + 2784375*uk_106 + 482625*uk_107 + 83655*uk_108 + 21952*uk_109 + 1420132*uk_11 + 30576*uk_110 + 9408*uk_111 + 143472*uk_112 + 176400*uk_113 + 30576*uk_114 + 42588*uk_115 + 13104*uk_116 + 199836*uk_117 + 245700*uk_118 + 42588*uk_119 + 1978041*uk_12 + 4032*uk_120 + 61488*uk_121 + 75600*uk_122 + 13104*uk_123 + 937692*uk_124 + 1152900*uk_125 + 199836*uk_126 + 1417500*uk_127 + 245700*uk_128 + 42588*uk_129 + 608628*uk_13 + 59319*uk_130 + 18252*uk_131 + 278343*uk_132 + 342225*uk_133 + 59319*uk_134 + 5616*uk_135 + 85644*uk_136 + 105300*uk_137 + 18252*uk_138 + 1306071*uk_139 + 9281577*uk_14 + 1605825*uk_140 + 278343*uk_141 + 1974375*uk_142 + 342225*uk_143 + 59319*uk_144 + 1728*uk_145 + 26352*uk_146 + 32400*uk_147 + 5616*uk_148 + 401868*uk_149 + 11411775*uk_15 + 494100*uk_150 + 85644*uk_151 + 607500*uk_152 + 105300*uk_153 + 18252*uk_154 + 6128487*uk_155 + 7535025*uk_156 + 1306071*uk_157 + 9264375*uk_158 + 1605825*uk_159 + 1978041*uk_16 + 278343*uk_160 + 11390625*uk_161 + 1974375*uk_162 + 342225*uk_163 + 59319*uk_164 + 3025*uk_17 + 1540*uk_18 + 2145*uk_19 + 55*uk_2 + 660*uk_20 + 10065*uk_21 + 12375*uk_22 + 2145*uk_23 + 784*uk_24 + 1092*uk_25 + 336*uk_26 + 5124*uk_27 + 6300*uk_28 + 1092*uk_29 + 28*uk_3 + 1521*uk_30 + 468*uk_31 + 7137*uk_32 + 8775*uk_33 + 1521*uk_34 + 144*uk_35 + 2196*uk_36 + 2700*uk_37 + 468*uk_38 + 33489*uk_39 + 39*uk_4 + 41175*uk_40 + 7137*uk_41 + 50625*uk_42 + 8775*uk_43 + 1521*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 72027674908*uk_47 + 100324261479*uk_48 + 30869003532*uk_49 + 12*uk_5 + 470752303863*uk_50 + 578793816225*uk_51 + 100324261479*uk_52 + 153424975*uk_53 + 78107260*uk_54 + 108792255*uk_55 + 33474540*uk_56 + 510486735*uk_57 + 627647625*uk_58 + 108792255*uk_59 + 183*uk_6 + 39763696*uk_60 + 55385148*uk_61 + 17041584*uk_62 + 259884156*uk_63 + 319529700*uk_64 + 55385148*uk_65 + 77143599*uk_66 + 23736492*uk_67 + 361981503*uk_68 + 445059225*uk_69 + 225*uk_7 + 77143599*uk_70 + 7303536*uk_71 + 111378924*uk_72 + 136941300*uk_73 + 23736492*uk_74 + 1698528591*uk_75 + 2088354825*uk_76 + 361981503*uk_77 + 2567649375*uk_78 + 445059225*uk_79 + 39*uk_8 + 77143599*uk_80 + 166375*uk_81 + 84700*uk_82 + 117975*uk_83 + 36300*uk_84 + 553575*uk_85 + 680625*uk_86 + 117975*uk_87 + 43120*uk_88 + 60060*uk_89 + 2572416961*uk_9 + 18480*uk_90 + 281820*uk_91 + 346500*uk_92 + 60060*uk_93 + 83655*uk_94 + 25740*uk_95 + 392535*uk_96 + 482625*uk_97 + 83655*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 122100*uk_100 + 148500*uk_101 + 18480*uk_102 + 1882375*uk_103 + 2289375*uk_104 + 284900*uk_105 + 2784375*uk_106 + 346500*uk_107 + 43120*uk_108 + 24389*uk_109 + 1470851*uk_11 + 23548*uk_110 + 10092*uk_111 + 155585*uk_112 + 189225*uk_113 + 23548*uk_114 + 22736*uk_115 + 9744*uk_116 + 150220*uk_117 + 182700*uk_118 + 22736*uk_119 + 1420132*uk_12 + 4176*uk_120 + 64380*uk_121 + 78300*uk_122 + 9744*uk_123 + 992525*uk_124 + 1207125*uk_125 + 150220*uk_126 + 1468125*uk_127 + 182700*uk_128 + 22736*uk_129 + 608628*uk_13 + 21952*uk_130 + 9408*uk_131 + 145040*uk_132 + 176400*uk_133 + 21952*uk_134 + 4032*uk_135 + 62160*uk_136 + 75600*uk_137 + 9408*uk_138 + 958300*uk_139 + 9383015*uk_14 + 1165500*uk_140 + 145040*uk_141 + 1417500*uk_142 + 176400*uk_143 + 21952*uk_144 + 1728*uk_145 + 26640*uk_146 + 32400*uk_147 + 4032*uk_148 + 410700*uk_149 + 11411775*uk_15 + 499500*uk_150 + 62160*uk_151 + 607500*uk_152 + 75600*uk_153 + 9408*uk_154 + 6331625*uk_155 + 7700625*uk_156 + 958300*uk_157 + 9365625*uk_158 + 1165500*uk_159 + 1420132*uk_16 + 145040*uk_160 + 11390625*uk_161 + 1417500*uk_162 + 176400*uk_163 + 21952*uk_164 + 3025*uk_17 + 1595*uk_18 + 1540*uk_19 + 55*uk_2 + 660*uk_20 + 10175*uk_21 + 12375*uk_22 + 1540*uk_23 + 841*uk_24 + 812*uk_25 + 348*uk_26 + 5365*uk_27 + 6525*uk_28 + 812*uk_29 + 29*uk_3 + 784*uk_30 + 336*uk_31 + 5180*uk_32 + 6300*uk_33 + 784*uk_34 + 144*uk_35 + 2220*uk_36 + 2700*uk_37 + 336*uk_38 + 34225*uk_39 + 28*uk_4 + 41625*uk_40 + 5180*uk_41 + 50625*uk_42 + 6300*uk_43 + 784*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 74600091869*uk_47 + 72027674908*uk_48 + 30869003532*uk_49 + 12*uk_5 + 475897137785*uk_50 + 578793816225*uk_51 + 72027674908*uk_52 + 153424975*uk_53 + 80896805*uk_54 + 78107260*uk_55 + 33474540*uk_56 + 516065825*uk_57 + 627647625*uk_58 + 78107260*uk_59 + 185*uk_6 + 42654679*uk_60 + 41183828*uk_61 + 17650212*uk_62 + 272107435*uk_63 + 330941475*uk_64 + 41183828*uk_65 + 39763696*uk_66 + 17041584*uk_67 + 262724420*uk_68 + 319529700*uk_69 + 225*uk_7 + 39763696*uk_70 + 7303536*uk_71 + 112596180*uk_72 + 136941300*uk_73 + 17041584*uk_74 + 1735857775*uk_75 + 2111178375*uk_76 + 262724420*uk_77 + 2567649375*uk_78 + 319529700*uk_79 + 28*uk_8 + 39763696*uk_80 + 166375*uk_81 + 87725*uk_82 + 84700*uk_83 + 36300*uk_84 + 559625*uk_85 + 680625*uk_86 + 84700*uk_87 + 46255*uk_88 + 44660*uk_89 + 2572416961*uk_9 + 19140*uk_90 + 295075*uk_91 + 358875*uk_92 + 44660*uk_93 + 43120*uk_94 + 18480*uk_95 + 284900*uk_96 + 346500*uk_97 + 43120*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 123420*uk_100 + 148500*uk_101 + 19140*uk_102 + 1923295*uk_103 + 2314125*uk_104 + 298265*uk_105 + 2784375*uk_106 + 358875*uk_107 + 46255*uk_108 + 74088*uk_109 + 2130198*uk_11 + 51156*uk_110 + 21168*uk_111 + 329868*uk_112 + 396900*uk_113 + 51156*uk_114 + 35322*uk_115 + 14616*uk_116 + 227766*uk_117 + 274050*uk_118 + 35322*uk_119 + 1470851*uk_12 + 6048*uk_120 + 94248*uk_121 + 113400*uk_122 + 14616*uk_123 + 1468698*uk_124 + 1767150*uk_125 + 227766*uk_126 + 2126250*uk_127 + 274050*uk_128 + 35322*uk_129 + 608628*uk_13 + 24389*uk_130 + 10092*uk_131 + 157267*uk_132 + 189225*uk_133 + 24389*uk_134 + 4176*uk_135 + 65076*uk_136 + 78300*uk_137 + 10092*uk_138 + 1014101*uk_139 + 9484453*uk_14 + 1220175*uk_140 + 157267*uk_141 + 1468125*uk_142 + 189225*uk_143 + 24389*uk_144 + 1728*uk_145 + 26928*uk_146 + 32400*uk_147 + 4176*uk_148 + 419628*uk_149 + 11411775*uk_15 + 504900*uk_150 + 65076*uk_151 + 607500*uk_152 + 78300*uk_153 + 10092*uk_154 + 6539203*uk_155 + 7868025*uk_156 + 1014101*uk_157 + 9466875*uk_158 + 1220175*uk_159 + 1470851*uk_16 + 157267*uk_160 + 11390625*uk_161 + 1468125*uk_162 + 189225*uk_163 + 24389*uk_164 + 3025*uk_17 + 2310*uk_18 + 1595*uk_19 + 55*uk_2 + 660*uk_20 + 10285*uk_21 + 12375*uk_22 + 1595*uk_23 + 1764*uk_24 + 1218*uk_25 + 504*uk_26 + 7854*uk_27 + 9450*uk_28 + 1218*uk_29 + 42*uk_3 + 841*uk_30 + 348*uk_31 + 5423*uk_32 + 6525*uk_33 + 841*uk_34 + 144*uk_35 + 2244*uk_36 + 2700*uk_37 + 348*uk_38 + 34969*uk_39 + 29*uk_4 + 42075*uk_40 + 5423*uk_41 + 50625*uk_42 + 6525*uk_43 + 841*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 108041512362*uk_47 + 74600091869*uk_48 + 30869003532*uk_49 + 12*uk_5 + 481041971707*uk_50 + 578793816225*uk_51 + 74600091869*uk_52 + 153424975*uk_53 + 117160890*uk_54 + 80896805*uk_55 + 33474540*uk_56 + 521644915*uk_57 + 627647625*uk_58 + 80896805*uk_59 + 187*uk_6 + 89468316*uk_60 + 61775742*uk_61 + 25562376*uk_62 + 398347026*uk_63 + 479294550*uk_64 + 61775742*uk_65 + 42654679*uk_66 + 17650212*uk_67 + 275049137*uk_68 + 330941475*uk_69 + 225*uk_7 + 42654679*uk_70 + 7303536*uk_71 + 113813436*uk_72 + 136941300*uk_73 + 17650212*uk_74 + 1773592711*uk_75 + 2134001925*uk_76 + 275049137*uk_77 + 2567649375*uk_78 + 330941475*uk_79 + 29*uk_8 + 42654679*uk_80 + 166375*uk_81 + 127050*uk_82 + 87725*uk_83 + 36300*uk_84 + 565675*uk_85 + 680625*uk_86 + 87725*uk_87 + 97020*uk_88 + 66990*uk_89 + 2572416961*uk_9 + 27720*uk_90 + 431970*uk_91 + 519750*uk_92 + 66990*uk_93 + 46255*uk_94 + 19140*uk_95 + 298265*uk_96 + 358875*uk_97 + 46255*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 124740*uk_100 + 148500*uk_101 + 27720*uk_102 + 1964655*uk_103 + 2338875*uk_104 + 436590*uk_105 + 2784375*uk_106 + 519750*uk_107 + 97020*uk_108 + 300763*uk_109 + 3398173*uk_11 + 188538*uk_110 + 53868*uk_111 + 848421*uk_112 + 1010025*uk_113 + 188538*uk_114 + 118188*uk_115 + 33768*uk_116 + 531846*uk_117 + 633150*uk_118 + 118188*uk_119 + 2130198*uk_12 + 9648*uk_120 + 151956*uk_121 + 180900*uk_122 + 33768*uk_123 + 2393307*uk_124 + 2849175*uk_125 + 531846*uk_126 + 3391875*uk_127 + 633150*uk_128 + 118188*uk_129 + 608628*uk_13 + 74088*uk_130 + 21168*uk_131 + 333396*uk_132 + 396900*uk_133 + 74088*uk_134 + 6048*uk_135 + 95256*uk_136 + 113400*uk_137 + 21168*uk_138 + 1500282*uk_139 + 9585891*uk_14 + 1786050*uk_140 + 333396*uk_141 + 2126250*uk_142 + 396900*uk_143 + 74088*uk_144 + 1728*uk_145 + 27216*uk_146 + 32400*uk_147 + 6048*uk_148 + 428652*uk_149 + 11411775*uk_15 + 510300*uk_150 + 95256*uk_151 + 607500*uk_152 + 113400*uk_153 + 21168*uk_154 + 6751269*uk_155 + 8037225*uk_156 + 1500282*uk_157 + 9568125*uk_158 + 1786050*uk_159 + 2130198*uk_16 + 333396*uk_160 + 11390625*uk_161 + 2126250*uk_162 + 396900*uk_163 + 74088*uk_164 + 3025*uk_17 + 3685*uk_18 + 2310*uk_19 + 55*uk_2 + 660*uk_20 + 10395*uk_21 + 12375*uk_22 + 2310*uk_23 + 4489*uk_24 + 2814*uk_25 + 804*uk_26 + 12663*uk_27 + 15075*uk_28 + 2814*uk_29 + 67*uk_3 + 1764*uk_30 + 504*uk_31 + 7938*uk_32 + 9450*uk_33 + 1764*uk_34 + 144*uk_35 + 2268*uk_36 + 2700*uk_37 + 504*uk_38 + 35721*uk_39 + 42*uk_4 + 42525*uk_40 + 7938*uk_41 + 50625*uk_42 + 9450*uk_43 + 1764*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 172351936387*uk_47 + 108041512362*uk_48 + 30869003532*uk_49 + 12*uk_5 + 486186805629*uk_50 + 578793816225*uk_51 + 108041512362*uk_52 + 153424975*uk_53 + 186899515*uk_54 + 117160890*uk_55 + 33474540*uk_56 + 527224005*uk_57 + 627647625*uk_58 + 117160890*uk_59 + 189*uk_6 + 227677591*uk_60 + 142723266*uk_61 + 40778076*uk_62 + 642254697*uk_63 + 764588925*uk_64 + 142723266*uk_65 + 89468316*uk_66 + 25562376*uk_67 + 402607422*uk_68 + 479294550*uk_69 + 225*uk_7 + 89468316*uk_70 + 7303536*uk_71 + 115030692*uk_72 + 136941300*uk_73 + 25562376*uk_74 + 1811733399*uk_75 + 2156825475*uk_76 + 402607422*uk_77 + 2567649375*uk_78 + 479294550*uk_79 + 42*uk_8 + 89468316*uk_80 + 166375*uk_81 + 202675*uk_82 + 127050*uk_83 + 36300*uk_84 + 571725*uk_85 + 680625*uk_86 + 127050*uk_87 + 246895*uk_88 + 154770*uk_89 + 2572416961*uk_9 + 44220*uk_90 + 696465*uk_91 + 829125*uk_92 + 154770*uk_93 + 97020*uk_94 + 27720*uk_95 + 436590*uk_96 + 519750*uk_97 + 97020*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 126060*uk_100 + 148500*uk_101 + 44220*uk_102 + 2006455*uk_103 + 2363625*uk_104 + 703835*uk_105 + 2784375*uk_106 + 829125*uk_107 + 246895*uk_108 + 1124864*uk_109 + 5274776*uk_11 + 724672*uk_110 + 129792*uk_111 + 2065856*uk_112 + 2433600*uk_113 + 724672*uk_114 + 466856*uk_115 + 83616*uk_116 + 1330888*uk_117 + 1567800*uk_118 + 466856*uk_119 + 3398173*uk_12 + 14976*uk_120 + 238368*uk_121 + 280800*uk_122 + 83616*uk_123 + 3794024*uk_124 + 4469400*uk_125 + 1330888*uk_126 + 5265000*uk_127 + 1567800*uk_128 + 466856*uk_129 + 608628*uk_13 + 300763*uk_130 + 53868*uk_131 + 857399*uk_132 + 1010025*uk_133 + 300763*uk_134 + 9648*uk_135 + 153564*uk_136 + 180900*uk_137 + 53868*uk_138 + 2444227*uk_139 + 9687329*uk_14 + 2879325*uk_140 + 857399*uk_141 + 3391875*uk_142 + 1010025*uk_143 + 300763*uk_144 + 1728*uk_145 + 27504*uk_146 + 32400*uk_147 + 9648*uk_148 + 437772*uk_149 + 11411775*uk_15 + 515700*uk_150 + 153564*uk_151 + 607500*uk_152 + 180900*uk_153 + 53868*uk_154 + 6967871*uk_155 + 8208225*uk_156 + 2444227*uk_157 + 9669375*uk_158 + 2879325*uk_159 + 3398173*uk_16 + 857399*uk_160 + 11390625*uk_161 + 3391875*uk_162 + 1010025*uk_163 + 300763*uk_164 + 3025*uk_17 + 5720*uk_18 + 3685*uk_19 + 55*uk_2 + 660*uk_20 + 10505*uk_21 + 12375*uk_22 + 3685*uk_23 + 10816*uk_24 + 6968*uk_25 + 1248*uk_26 + 19864*uk_27 + 23400*uk_28 + 6968*uk_29 + 104*uk_3 + 4489*uk_30 + 804*uk_31 + 12797*uk_32 + 15075*uk_33 + 4489*uk_34 + 144*uk_35 + 2292*uk_36 + 2700*uk_37 + 804*uk_38 + 36481*uk_39 + 67*uk_4 + 42975*uk_40 + 12797*uk_41 + 50625*uk_42 + 15075*uk_43 + 4489*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 267531363944*uk_47 + 172351936387*uk_48 + 30869003532*uk_49 + 12*uk_5 + 491331639551*uk_50 + 578793816225*uk_51 + 172351936387*uk_52 + 153424975*uk_53 + 290112680*uk_54 + 186899515*uk_55 + 33474540*uk_56 + 532803095*uk_57 + 627647625*uk_58 + 186899515*uk_59 + 191*uk_6 + 548576704*uk_60 + 353409992*uk_61 + 63297312*uk_62 + 1007482216*uk_63 + 1186824600*uk_64 + 353409992*uk_65 + 227677591*uk_66 + 40778076*uk_67 + 649051043*uk_68 + 764588925*uk_69 + 225*uk_7 + 227677591*uk_70 + 7303536*uk_71 + 116247948*uk_72 + 136941300*uk_73 + 40778076*uk_74 + 1850279839*uk_75 + 2179649025*uk_76 + 649051043*uk_77 + 2567649375*uk_78 + 764588925*uk_79 + 67*uk_8 + 227677591*uk_80 + 166375*uk_81 + 314600*uk_82 + 202675*uk_83 + 36300*uk_84 + 577775*uk_85 + 680625*uk_86 + 202675*uk_87 + 594880*uk_88 + 383240*uk_89 + 2572416961*uk_9 + 68640*uk_90 + 1092520*uk_91 + 1287000*uk_92 + 383240*uk_93 + 246895*uk_94 + 44220*uk_95 + 703835*uk_96 + 829125*uk_97 + 246895*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 127380*uk_100 + 148500*uk_101 + 68640*uk_102 + 2048695*uk_103 + 2388375*uk_104 + 1103960*uk_105 + 2784375*uk_106 + 1287000*uk_107 + 594880*uk_108 + 3581577*uk_109 + 7760007*uk_11 + 2434536*uk_110 + 280908*uk_111 + 4517937*uk_112 + 5267025*uk_113 + 2434536*uk_114 + 1654848*uk_115 + 190944*uk_116 + 3071016*uk_117 + 3580200*uk_118 + 1654848*uk_119 + 5274776*uk_12 + 22032*uk_120 + 354348*uk_121 + 413100*uk_122 + 190944*uk_123 + 5699097*uk_124 + 6644025*uk_125 + 3071016*uk_126 + 7745625*uk_127 + 3580200*uk_128 + 1654848*uk_129 + 608628*uk_13 + 1124864*uk_130 + 129792*uk_131 + 2087488*uk_132 + 2433600*uk_133 + 1124864*uk_134 + 14976*uk_135 + 240864*uk_136 + 280800*uk_137 + 129792*uk_138 + 3873896*uk_139 + 9788767*uk_14 + 4516200*uk_140 + 2087488*uk_141 + 5265000*uk_142 + 2433600*uk_143 + 1124864*uk_144 + 1728*uk_145 + 27792*uk_146 + 32400*uk_147 + 14976*uk_148 + 446988*uk_149 + 11411775*uk_15 + 521100*uk_150 + 240864*uk_151 + 607500*uk_152 + 280800*uk_153 + 129792*uk_154 + 7189057*uk_155 + 8381025*uk_156 + 3873896*uk_157 + 9770625*uk_158 + 4516200*uk_159 + 5274776*uk_16 + 2087488*uk_160 + 11390625*uk_161 + 5265000*uk_162 + 2433600*uk_163 + 1124864*uk_164 + 3025*uk_17 + 8415*uk_18 + 5720*uk_19 + 55*uk_2 + 660*uk_20 + 10615*uk_21 + 12375*uk_22 + 5720*uk_23 + 23409*uk_24 + 15912*uk_25 + 1836*uk_26 + 29529*uk_27 + 34425*uk_28 + 15912*uk_29 + 153*uk_3 + 10816*uk_30 + 1248*uk_31 + 20072*uk_32 + 23400*uk_33 + 10816*uk_34 + 144*uk_35 + 2316*uk_36 + 2700*uk_37 + 1248*uk_38 + 37249*uk_39 + 104*uk_4 + 43425*uk_40 + 20072*uk_41 + 50625*uk_42 + 23400*uk_43 + 10816*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 393579795033*uk_47 + 267531363944*uk_48 + 30869003532*uk_49 + 12*uk_5 + 496476473473*uk_50 + 578793816225*uk_51 + 267531363944*uk_52 + 153424975*uk_53 + 426800385*uk_54 + 290112680*uk_55 + 33474540*uk_56 + 538382185*uk_57 + 627647625*uk_58 + 290112680*uk_59 + 193*uk_6 + 1187281071*uk_60 + 807040728*uk_61 + 93120084*uk_62 + 1497681351*uk_63 + 1746001575*uk_64 + 807040728*uk_65 + 548576704*uk_66 + 63297312*uk_67 + 1018031768*uk_68 + 1186824600*uk_69 + 225*uk_7 + 548576704*uk_70 + 7303536*uk_71 + 117465204*uk_72 + 136941300*uk_73 + 63297312*uk_74 + 1889232031*uk_75 + 2202472575*uk_76 + 1018031768*uk_77 + 2567649375*uk_78 + 1186824600*uk_79 + 104*uk_8 + 548576704*uk_80 + 166375*uk_81 + 462825*uk_82 + 314600*uk_83 + 36300*uk_84 + 583825*uk_85 + 680625*uk_86 + 314600*uk_87 + 1287495*uk_88 + 875160*uk_89 + 2572416961*uk_9 + 100980*uk_90 + 1624095*uk_91 + 1893375*uk_92 + 875160*uk_93 + 594880*uk_94 + 68640*uk_95 + 1103960*uk_96 + 1287000*uk_97 + 594880*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 85800*uk_100 + 99000*uk_101 + 67320*uk_102 + 2091375*uk_103 + 2413125*uk_104 + 1640925*uk_105 + 2784375*uk_106 + 1893375*uk_107 + 1287495*uk_108 + 6859*uk_109 + 963661*uk_11 + 55233*uk_110 + 2888*uk_111 + 70395*uk_112 + 81225*uk_113 + 55233*uk_114 + 444771*uk_115 + 23256*uk_116 + 566865*uk_117 + 654075*uk_118 + 444771*uk_119 + 7760007*uk_12 + 1216*uk_120 + 29640*uk_121 + 34200*uk_122 + 23256*uk_123 + 722475*uk_124 + 833625*uk_125 + 566865*uk_126 + 961875*uk_127 + 654075*uk_128 + 444771*uk_129 + 405752*uk_13 + 3581577*uk_130 + 187272*uk_131 + 4564755*uk_132 + 5267025*uk_133 + 3581577*uk_134 + 9792*uk_135 + 238680*uk_136 + 275400*uk_137 + 187272*uk_138 + 5817825*uk_139 + 9890205*uk_14 + 6712875*uk_140 + 4564755*uk_141 + 7745625*uk_142 + 5267025*uk_143 + 3581577*uk_144 + 512*uk_145 + 12480*uk_146 + 14400*uk_147 + 9792*uk_148 + 304200*uk_149 + 11411775*uk_15 + 351000*uk_150 + 238680*uk_151 + 405000*uk_152 + 275400*uk_153 + 187272*uk_154 + 7414875*uk_155 + 8555625*uk_156 + 5817825*uk_157 + 9871875*uk_158 + 6712875*uk_159 + 7760007*uk_16 + 4564755*uk_160 + 11390625*uk_161 + 7745625*uk_162 + 5267025*uk_163 + 3581577*uk_164 + 3025*uk_17 + 1045*uk_18 + 8415*uk_19 + 55*uk_2 + 440*uk_20 + 10725*uk_21 + 12375*uk_22 + 8415*uk_23 + 361*uk_24 + 2907*uk_25 + 152*uk_26 + 3705*uk_27 + 4275*uk_28 + 2907*uk_29 + 19*uk_3 + 23409*uk_30 + 1224*uk_31 + 29835*uk_32 + 34425*uk_33 + 23409*uk_34 + 64*uk_35 + 1560*uk_36 + 1800*uk_37 + 1224*uk_38 + 38025*uk_39 + 153*uk_4 + 43875*uk_40 + 29835*uk_41 + 50625*uk_42 + 34425*uk_43 + 23409*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 48875922259*uk_47 + 393579795033*uk_48 + 20579335688*uk_49 + 8*uk_5 + 501621307395*uk_50 + 578793816225*uk_51 + 393579795033*uk_52 + 153424975*uk_53 + 53001355*uk_54 + 426800385*uk_55 + 22316360*uk_56 + 543961275*uk_57 + 627647625*uk_58 + 426800385*uk_59 + 195*uk_6 + 18309559*uk_60 + 147440133*uk_61 + 7709288*uk_62 + 187913895*uk_63 + 216823725*uk_64 + 147440133*uk_65 + 1187281071*uk_66 + 62080056*uk_67 + 1513201365*uk_68 + 1746001575*uk_69 + 225*uk_7 + 1187281071*uk_70 + 3246016*uk_71 + 79121640*uk_72 + 91294200*uk_73 + 62080056*uk_74 + 1928589975*uk_75 + 2225296125*uk_76 + 1513201365*uk_77 + 2567649375*uk_78 + 1746001575*uk_79 + 153*uk_8 + 1187281071*uk_80 + 166375*uk_81 + 57475*uk_82 + 462825*uk_83 + 24200*uk_84 + 589875*uk_85 + 680625*uk_86 + 462825*uk_87 + 19855*uk_88 + 159885*uk_89 + 2572416961*uk_9 + 8360*uk_90 + 203775*uk_91 + 235125*uk_92 + 159885*uk_93 + 1287495*uk_94 + 67320*uk_95 + 1640925*uk_96 + 1893375*uk_97 + 1287495*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 130020*uk_100 + 148500*uk_101 + 12540*uk_102 + 2134495*uk_103 + 2437875*uk_104 + 205865*uk_105 + 2784375*uk_106 + 235125*uk_107 + 19855*uk_108 + 729000*uk_109 + 4564710*uk_11 + 153900*uk_110 + 97200*uk_111 + 1595700*uk_112 + 1822500*uk_113 + 153900*uk_114 + 32490*uk_115 + 20520*uk_116 + 336870*uk_117 + 384750*uk_118 + 32490*uk_119 + 963661*uk_12 + 12960*uk_120 + 212760*uk_121 + 243000*uk_122 + 20520*uk_123 + 3492810*uk_124 + 3989250*uk_125 + 336870*uk_126 + 4556250*uk_127 + 384750*uk_128 + 32490*uk_129 + 608628*uk_13 + 6859*uk_130 + 4332*uk_131 + 71117*uk_132 + 81225*uk_133 + 6859*uk_134 + 2736*uk_135 + 44916*uk_136 + 51300*uk_137 + 4332*uk_138 + 737371*uk_139 + 9991643*uk_14 + 842175*uk_140 + 71117*uk_141 + 961875*uk_142 + 81225*uk_143 + 6859*uk_144 + 1728*uk_145 + 28368*uk_146 + 32400*uk_147 + 2736*uk_148 + 465708*uk_149 + 11411775*uk_15 + 531900*uk_150 + 44916*uk_151 + 607500*uk_152 + 51300*uk_153 + 4332*uk_154 + 7645373*uk_155 + 8732025*uk_156 + 737371*uk_157 + 9973125*uk_158 + 842175*uk_159 + 963661*uk_16 + 71117*uk_160 + 11390625*uk_161 + 961875*uk_162 + 81225*uk_163 + 6859*uk_164 + 3025*uk_17 + 4950*uk_18 + 1045*uk_19 + 55*uk_2 + 660*uk_20 + 10835*uk_21 + 12375*uk_22 + 1045*uk_23 + 8100*uk_24 + 1710*uk_25 + 1080*uk_26 + 17730*uk_27 + 20250*uk_28 + 1710*uk_29 + 90*uk_3 + 361*uk_30 + 228*uk_31 + 3743*uk_32 + 4275*uk_33 + 361*uk_34 + 144*uk_35 + 2364*uk_36 + 2700*uk_37 + 228*uk_38 + 38809*uk_39 + 19*uk_4 + 44325*uk_40 + 3743*uk_41 + 50625*uk_42 + 4275*uk_43 + 361*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 231517526490*uk_47 + 48875922259*uk_48 + 30869003532*uk_49 + 12*uk_5 + 506766141317*uk_50 + 578793816225*uk_51 + 48875922259*uk_52 + 153424975*uk_53 + 251059050*uk_54 + 53001355*uk_55 + 33474540*uk_56 + 549540365*uk_57 + 627647625*uk_58 + 53001355*uk_59 + 197*uk_6 + 410823900*uk_60 + 86729490*uk_61 + 54776520*uk_62 + 899247870*uk_63 + 1027059750*uk_64 + 86729490*uk_65 + 18309559*uk_66 + 11563932*uk_67 + 189841217*uk_68 + 216823725*uk_69 + 225*uk_7 + 18309559*uk_70 + 7303536*uk_71 + 119899716*uk_72 + 136941300*uk_73 + 11563932*uk_74 + 1968353671*uk_75 + 2248119675*uk_76 + 189841217*uk_77 + 2567649375*uk_78 + 216823725*uk_79 + 19*uk_8 + 18309559*uk_80 + 166375*uk_81 + 272250*uk_82 + 57475*uk_83 + 36300*uk_84 + 595925*uk_85 + 680625*uk_86 + 57475*uk_87 + 445500*uk_88 + 94050*uk_89 + 2572416961*uk_9 + 59400*uk_90 + 975150*uk_91 + 1113750*uk_92 + 94050*uk_93 + 19855*uk_94 + 12540*uk_95 + 205865*uk_96 + 235125*uk_97 + 19855*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 131340*uk_100 + 148500*uk_101 + 59400*uk_102 + 2178055*uk_103 + 2462625*uk_104 + 985050*uk_105 + 2784375*uk_106 + 1113750*uk_107 + 445500*uk_108 + 5177717*uk_109 + 8774387*uk_11 + 2693610*uk_110 + 359148*uk_111 + 5955871*uk_112 + 6734025*uk_113 + 2693610*uk_114 + 1401300*uk_115 + 186840*uk_116 + 3098430*uk_117 + 3503250*uk_118 + 1401300*uk_119 + 4564710*uk_12 + 24912*uk_120 + 413124*uk_121 + 467100*uk_122 + 186840*uk_123 + 6850973*uk_124 + 7746075*uk_125 + 3098430*uk_126 + 8758125*uk_127 + 3503250*uk_128 + 1401300*uk_129 + 608628*uk_13 + 729000*uk_130 + 97200*uk_131 + 1611900*uk_132 + 1822500*uk_133 + 729000*uk_134 + 12960*uk_135 + 214920*uk_136 + 243000*uk_137 + 97200*uk_138 + 3564090*uk_139 + 10093081*uk_14 + 4029750*uk_140 + 1611900*uk_141 + 4556250*uk_142 + 1822500*uk_143 + 729000*uk_144 + 1728*uk_145 + 28656*uk_146 + 32400*uk_147 + 12960*uk_148 + 475212*uk_149 + 11411775*uk_15 + 537300*uk_150 + 214920*uk_151 + 607500*uk_152 + 243000*uk_153 + 97200*uk_154 + 7880599*uk_155 + 8910225*uk_156 + 3564090*uk_157 + 10074375*uk_158 + 4029750*uk_159 + 4564710*uk_16 + 1611900*uk_160 + 11390625*uk_161 + 4556250*uk_162 + 1822500*uk_163 + 729000*uk_164 + 3025*uk_17 + 9515*uk_18 + 4950*uk_19 + 55*uk_2 + 660*uk_20 + 10945*uk_21 + 12375*uk_22 + 4950*uk_23 + 29929*uk_24 + 15570*uk_25 + 2076*uk_26 + 34427*uk_27 + 38925*uk_28 + 15570*uk_29 + 173*uk_3 + 8100*uk_30 + 1080*uk_31 + 17910*uk_32 + 20250*uk_33 + 8100*uk_34 + 144*uk_35 + 2388*uk_36 + 2700*uk_37 + 1080*uk_38 + 39601*uk_39 + 90*uk_4 + 44775*uk_40 + 17910*uk_41 + 50625*uk_42 + 20250*uk_43 + 8100*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 445028134253*uk_47 + 231517526490*uk_48 + 30869003532*uk_49 + 12*uk_5 + 511910975239*uk_50 + 578793816225*uk_51 + 231517526490*uk_52 + 153424975*uk_53 + 482591285*uk_54 + 251059050*uk_55 + 33474540*uk_56 + 555119455*uk_57 + 627647625*uk_58 + 251059050*uk_59 + 199*uk_6 + 1517968951*uk_60 + 789694830*uk_61 + 105292644*uk_62 + 1746103013*uk_63 + 1974237075*uk_64 + 789694830*uk_65 + 410823900*uk_66 + 54776520*uk_67 + 908377290*uk_68 + 1027059750*uk_69 + 225*uk_7 + 410823900*uk_70 + 7303536*uk_71 + 121116972*uk_72 + 136941300*uk_73 + 54776520*uk_74 + 2008523119*uk_75 + 2270943225*uk_76 + 908377290*uk_77 + 2567649375*uk_78 + 1027059750*uk_79 + 90*uk_8 + 410823900*uk_80 + 166375*uk_81 + 523325*uk_82 + 272250*uk_83 + 36300*uk_84 + 601975*uk_85 + 680625*uk_86 + 272250*uk_87 + 1646095*uk_88 + 856350*uk_89 + 2572416961*uk_9 + 114180*uk_90 + 1893485*uk_91 + 2140875*uk_92 + 856350*uk_93 + 445500*uk_94 + 59400*uk_95 + 985050*uk_96 + 1113750*uk_97 + 445500*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 88440*uk_100 + 99000*uk_101 + 76120*uk_102 + 2222055*uk_103 + 2487375*uk_104 + 1912515*uk_105 + 2784375*uk_106 + 2140875*uk_107 + 1646095*uk_108 + 300763*uk_109 + 3398173*uk_11 + 776597*uk_110 + 35912*uk_111 + 902289*uk_112 + 1010025*uk_113 + 776597*uk_114 + 2005243*uk_115 + 92728*uk_116 + 2329791*uk_117 + 2607975*uk_118 + 2005243*uk_119 + 8774387*uk_12 + 4288*uk_120 + 107736*uk_121 + 120600*uk_122 + 92728*uk_123 + 2706867*uk_124 + 3030075*uk_125 + 2329791*uk_126 + 3391875*uk_127 + 2607975*uk_128 + 2005243*uk_129 + 405752*uk_13 + 5177717*uk_130 + 239432*uk_131 + 6015729*uk_132 + 6734025*uk_133 + 5177717*uk_134 + 11072*uk_135 + 278184*uk_136 + 311400*uk_137 + 239432*uk_138 + 6989373*uk_139 + 10194519*uk_14 + 7823925*uk_140 + 6015729*uk_141 + 8758125*uk_142 + 6734025*uk_143 + 5177717*uk_144 + 512*uk_145 + 12864*uk_146 + 14400*uk_147 + 11072*uk_148 + 323208*uk_149 + 11411775*uk_15 + 361800*uk_150 + 278184*uk_151 + 405000*uk_152 + 311400*uk_153 + 239432*uk_154 + 8120601*uk_155 + 9090225*uk_156 + 6989373*uk_157 + 10175625*uk_158 + 7823925*uk_159 + 8774387*uk_16 + 6015729*uk_160 + 11390625*uk_161 + 8758125*uk_162 + 6734025*uk_163 + 5177717*uk_164 + 3025*uk_17 + 3685*uk_18 + 9515*uk_19 + 55*uk_2 + 440*uk_20 + 11055*uk_21 + 12375*uk_22 + 9515*uk_23 + 4489*uk_24 + 11591*uk_25 + 536*uk_26 + 13467*uk_27 + 15075*uk_28 + 11591*uk_29 + 67*uk_3 + 29929*uk_30 + 1384*uk_31 + 34773*uk_32 + 38925*uk_33 + 29929*uk_34 + 64*uk_35 + 1608*uk_36 + 1800*uk_37 + 1384*uk_38 + 40401*uk_39 + 173*uk_4 + 45225*uk_40 + 34773*uk_41 + 50625*uk_42 + 38925*uk_43 + 29929*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 172351936387*uk_47 + 445028134253*uk_48 + 20579335688*uk_49 + 8*uk_5 + 517055809161*uk_50 + 578793816225*uk_51 + 445028134253*uk_52 + 153424975*uk_53 + 186899515*uk_54 + 482591285*uk_55 + 22316360*uk_56 + 560698545*uk_57 + 627647625*uk_58 + 482591285*uk_59 + 201*uk_6 + 227677591*uk_60 + 587883929*uk_61 + 27185384*uk_62 + 683032773*uk_63 + 764588925*uk_64 + 587883929*uk_65 + 1517968951*uk_66 + 70195096*uk_67 + 1763651787*uk_68 + 1974237075*uk_69 + 225*uk_7 + 1517968951*uk_70 + 3246016*uk_71 + 81556152*uk_72 + 91294200*uk_73 + 70195096*uk_74 + 2049098319*uk_75 + 2293766775*uk_76 + 1763651787*uk_77 + 2567649375*uk_78 + 1974237075*uk_79 + 173*uk_8 + 1517968951*uk_80 + 166375*uk_81 + 202675*uk_82 + 523325*uk_83 + 24200*uk_84 + 608025*uk_85 + 680625*uk_86 + 523325*uk_87 + 246895*uk_88 + 637505*uk_89 + 2572416961*uk_9 + 29480*uk_90 + 740685*uk_91 + 829125*uk_92 + 637505*uk_93 + 1646095*uk_94 + 76120*uk_95 + 1912515*uk_96 + 2140875*uk_97 + 1646095*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 133980*uk_100 + 148500*uk_101 + 44220*uk_102 + 2266495*uk_103 + 2512125*uk_104 + 748055*uk_105 + 2784375*uk_106 + 829125*uk_107 + 246895*uk_108 + 5088448*uk_109 + 8723668*uk_11 + 1982128*uk_110 + 355008*uk_111 + 6005552*uk_112 + 6656400*uk_113 + 1982128*uk_114 + 772108*uk_115 + 138288*uk_116 + 2339372*uk_117 + 2592900*uk_118 + 772108*uk_119 + 3398173*uk_12 + 24768*uk_120 + 418992*uk_121 + 464400*uk_122 + 138288*uk_123 + 7087948*uk_124 + 7856100*uk_125 + 2339372*uk_126 + 8707500*uk_127 + 2592900*uk_128 + 772108*uk_129 + 608628*uk_13 + 300763*uk_130 + 53868*uk_131 + 911267*uk_132 + 1010025*uk_133 + 300763*uk_134 + 9648*uk_135 + 163212*uk_136 + 180900*uk_137 + 53868*uk_138 + 2761003*uk_139 + 10295957*uk_14 + 3060225*uk_140 + 911267*uk_141 + 3391875*uk_142 + 1010025*uk_143 + 300763*uk_144 + 1728*uk_145 + 29232*uk_146 + 32400*uk_147 + 9648*uk_148 + 494508*uk_149 + 11411775*uk_15 + 548100*uk_150 + 163212*uk_151 + 607500*uk_152 + 180900*uk_153 + 53868*uk_154 + 8365427*uk_155 + 9272025*uk_156 + 2761003*uk_157 + 10276875*uk_158 + 3060225*uk_159 + 3398173*uk_16 + 911267*uk_160 + 11390625*uk_161 + 3391875*uk_162 + 1010025*uk_163 + 300763*uk_164 + 3025*uk_17 + 9460*uk_18 + 3685*uk_19 + 55*uk_2 + 660*uk_20 + 11165*uk_21 + 12375*uk_22 + 3685*uk_23 + 29584*uk_24 + 11524*uk_25 + 2064*uk_26 + 34916*uk_27 + 38700*uk_28 + 11524*uk_29 + 172*uk_3 + 4489*uk_30 + 804*uk_31 + 13601*uk_32 + 15075*uk_33 + 4489*uk_34 + 144*uk_35 + 2436*uk_36 + 2700*uk_37 + 804*uk_38 + 41209*uk_39 + 67*uk_4 + 45675*uk_40 + 13601*uk_41 + 50625*uk_42 + 15075*uk_43 + 4489*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 442455717292*uk_47 + 172351936387*uk_48 + 30869003532*uk_49 + 12*uk_5 + 522200643083*uk_50 + 578793816225*uk_51 + 172351936387*uk_52 + 153424975*uk_53 + 479801740*uk_54 + 186899515*uk_55 + 33474540*uk_56 + 566277635*uk_57 + 627647625*uk_58 + 186899515*uk_59 + 203*uk_6 + 1500470896*uk_60 + 584485756*uk_61 + 104684016*uk_62 + 1770904604*uk_63 + 1962825300*uk_64 + 584485756*uk_65 + 227677591*uk_66 + 40778076*uk_67 + 689829119*uk_68 + 764588925*uk_69 + 225*uk_7 + 227677591*uk_70 + 7303536*uk_71 + 123551484*uk_72 + 136941300*uk_73 + 40778076*uk_74 + 2090079271*uk_75 + 2316590325*uk_76 + 689829119*uk_77 + 2567649375*uk_78 + 764588925*uk_79 + 67*uk_8 + 227677591*uk_80 + 166375*uk_81 + 520300*uk_82 + 202675*uk_83 + 36300*uk_84 + 614075*uk_85 + 680625*uk_86 + 202675*uk_87 + 1627120*uk_88 + 633820*uk_89 + 2572416961*uk_9 + 113520*uk_90 + 1920380*uk_91 + 2128500*uk_92 + 633820*uk_93 + 246895*uk_94 + 44220*uk_95 + 748055*uk_96 + 829125*uk_97 + 246895*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 90200*uk_100 + 99000*uk_101 + 75680*uk_102 + 2311375*uk_103 + 2536875*uk_104 + 1939300*uk_105 + 2784375*uk_106 + 2128500*uk_107 + 1627120*uk_108 + 592704*uk_109 + 4260396*uk_11 + 1213632*uk_110 + 56448*uk_111 + 1446480*uk_112 + 1587600*uk_113 + 1213632*uk_114 + 2485056*uk_115 + 115584*uk_116 + 2961840*uk_117 + 3250800*uk_118 + 2485056*uk_119 + 8723668*uk_12 + 5376*uk_120 + 137760*uk_121 + 151200*uk_122 + 115584*uk_123 + 3530100*uk_124 + 3874500*uk_125 + 2961840*uk_126 + 4252500*uk_127 + 3250800*uk_128 + 2485056*uk_129 + 405752*uk_13 + 5088448*uk_130 + 236672*uk_131 + 6064720*uk_132 + 6656400*uk_133 + 5088448*uk_134 + 11008*uk_135 + 282080*uk_136 + 309600*uk_137 + 236672*uk_138 + 7228300*uk_139 + 10397395*uk_14 + 7933500*uk_140 + 6064720*uk_141 + 8707500*uk_142 + 6656400*uk_143 + 5088448*uk_144 + 512*uk_145 + 13120*uk_146 + 14400*uk_147 + 11008*uk_148 + 336200*uk_149 + 11411775*uk_15 + 369000*uk_150 + 282080*uk_151 + 405000*uk_152 + 309600*uk_153 + 236672*uk_154 + 8615125*uk_155 + 9455625*uk_156 + 7228300*uk_157 + 10378125*uk_158 + 7933500*uk_159 + 8723668*uk_16 + 6064720*uk_160 + 11390625*uk_161 + 8707500*uk_162 + 6656400*uk_163 + 5088448*uk_164 + 3025*uk_17 + 4620*uk_18 + 9460*uk_19 + 55*uk_2 + 440*uk_20 + 11275*uk_21 + 12375*uk_22 + 9460*uk_23 + 7056*uk_24 + 14448*uk_25 + 672*uk_26 + 17220*uk_27 + 18900*uk_28 + 14448*uk_29 + 84*uk_3 + 29584*uk_30 + 1376*uk_31 + 35260*uk_32 + 38700*uk_33 + 29584*uk_34 + 64*uk_35 + 1640*uk_36 + 1800*uk_37 + 1376*uk_38 + 42025*uk_39 + 172*uk_4 + 46125*uk_40 + 35260*uk_41 + 50625*uk_42 + 38700*uk_43 + 29584*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 216083024724*uk_47 + 442455717292*uk_48 + 20579335688*uk_49 + 8*uk_5 + 527345477005*uk_50 + 578793816225*uk_51 + 442455717292*uk_52 + 153424975*uk_53 + 234321780*uk_54 + 479801740*uk_55 + 22316360*uk_56 + 571856725*uk_57 + 627647625*uk_58 + 479801740*uk_59 + 205*uk_6 + 357873264*uk_60 + 732788112*uk_61 + 34083168*uk_62 + 873381180*uk_63 + 958589100*uk_64 + 732788112*uk_65 + 1500470896*uk_66 + 69789344*uk_67 + 1788351940*uk_68 + 1962825300*uk_69 + 225*uk_7 + 1500470896*uk_70 + 3246016*uk_71 + 83179160*uk_72 + 91294200*uk_73 + 69789344*uk_74 + 2131465975*uk_75 + 2339413875*uk_76 + 1788351940*uk_77 + 2567649375*uk_78 + 1962825300*uk_79 + 172*uk_8 + 1500470896*uk_80 + 166375*uk_81 + 254100*uk_82 + 520300*uk_83 + 24200*uk_84 + 620125*uk_85 + 680625*uk_86 + 520300*uk_87 + 388080*uk_88 + 794640*uk_89 + 2572416961*uk_9 + 36960*uk_90 + 947100*uk_91 + 1039500*uk_92 + 794640*uk_93 + 1627120*uk_94 + 75680*uk_95 + 1939300*uk_96 + 2128500*uk_97 + 1627120*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 91080*uk_100 + 99000*uk_101 + 36960*uk_102 + 2356695*uk_103 + 2561625*uk_104 + 956340*uk_105 + 2784375*uk_106 + 1039500*uk_107 + 388080*uk_108 + 64*uk_109 + 202876*uk_11 + 1344*uk_110 + 128*uk_111 + 3312*uk_112 + 3600*uk_113 + 1344*uk_114 + 28224*uk_115 + 2688*uk_116 + 69552*uk_117 + 75600*uk_118 + 28224*uk_119 + 4260396*uk_12 + 256*uk_120 + 6624*uk_121 + 7200*uk_122 + 2688*uk_123 + 171396*uk_124 + 186300*uk_125 + 69552*uk_126 + 202500*uk_127 + 75600*uk_128 + 28224*uk_129 + 405752*uk_13 + 592704*uk_130 + 56448*uk_131 + 1460592*uk_132 + 1587600*uk_133 + 592704*uk_134 + 5376*uk_135 + 139104*uk_136 + 151200*uk_137 + 56448*uk_138 + 3599316*uk_139 + 10498833*uk_14 + 3912300*uk_140 + 1460592*uk_141 + 4252500*uk_142 + 1587600*uk_143 + 592704*uk_144 + 512*uk_145 + 13248*uk_146 + 14400*uk_147 + 5376*uk_148 + 342792*uk_149 + 11411775*uk_15 + 372600*uk_150 + 139104*uk_151 + 405000*uk_152 + 151200*uk_153 + 56448*uk_154 + 8869743*uk_155 + 9641025*uk_156 + 3599316*uk_157 + 10479375*uk_158 + 3912300*uk_159 + 4260396*uk_16 + 1460592*uk_160 + 11390625*uk_161 + 4252500*uk_162 + 1587600*uk_163 + 592704*uk_164 + 3025*uk_17 + 220*uk_18 + 4620*uk_19 + 55*uk_2 + 440*uk_20 + 11385*uk_21 + 12375*uk_22 + 4620*uk_23 + 16*uk_24 + 336*uk_25 + 32*uk_26 + 828*uk_27 + 900*uk_28 + 336*uk_29 + 4*uk_3 + 7056*uk_30 + 672*uk_31 + 17388*uk_32 + 18900*uk_33 + 7056*uk_34 + 64*uk_35 + 1656*uk_36 + 1800*uk_37 + 672*uk_38 + 42849*uk_39 + 84*uk_4 + 46575*uk_40 + 17388*uk_41 + 50625*uk_42 + 18900*uk_43 + 7056*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 10289667844*uk_47 + 216083024724*uk_48 + 20579335688*uk_49 + 8*uk_5 + 532490310927*uk_50 + 578793816225*uk_51 + 216083024724*uk_52 + 153424975*uk_53 + 11158180*uk_54 + 234321780*uk_55 + 22316360*uk_56 + 577435815*uk_57 + 627647625*uk_58 + 234321780*uk_59 + 207*uk_6 + 811504*uk_60 + 17041584*uk_61 + 1623008*uk_62 + 41995332*uk_63 + 45647100*uk_64 + 17041584*uk_65 + 357873264*uk_66 + 34083168*uk_67 + 881901972*uk_68 + 958589100*uk_69 + 225*uk_7 + 357873264*uk_70 + 3246016*uk_71 + 83990664*uk_72 + 91294200*uk_73 + 34083168*uk_74 + 2173258431*uk_75 + 2362237425*uk_76 + 881901972*uk_77 + 2567649375*uk_78 + 958589100*uk_79 + 84*uk_8 + 357873264*uk_80 + 166375*uk_81 + 12100*uk_82 + 254100*uk_83 + 24200*uk_84 + 626175*uk_85 + 680625*uk_86 + 254100*uk_87 + 880*uk_88 + 18480*uk_89 + 2572416961*uk_9 + 1760*uk_90 + 45540*uk_91 + 49500*uk_92 + 18480*uk_93 + 388080*uk_94 + 36960*uk_95 + 956340*uk_96 + 1039500*uk_97 + 388080*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 137940*uk_100 + 148500*uk_101 + 2640*uk_102 + 2402455*uk_103 + 2586375*uk_104 + 45980*uk_105 + 2784375*uk_106 + 49500*uk_107 + 880*uk_108 + 2803221*uk_109 + 7151379*uk_11 + 79524*uk_110 + 238572*uk_111 + 4155129*uk_112 + 4473225*uk_113 + 79524*uk_114 + 2256*uk_115 + 6768*uk_116 + 117876*uk_117 + 126900*uk_118 + 2256*uk_119 + 202876*uk_12 + 20304*uk_120 + 353628*uk_121 + 380700*uk_122 + 6768*uk_123 + 6159021*uk_124 + 6630525*uk_125 + 117876*uk_126 + 7138125*uk_127 + 126900*uk_128 + 2256*uk_129 + 608628*uk_13 + 64*uk_130 + 192*uk_131 + 3344*uk_132 + 3600*uk_133 + 64*uk_134 + 576*uk_135 + 10032*uk_136 + 10800*uk_137 + 192*uk_138 + 174724*uk_139 + 10600271*uk_14 + 188100*uk_140 + 3344*uk_141 + 202500*uk_142 + 3600*uk_143 + 64*uk_144 + 1728*uk_145 + 30096*uk_146 + 32400*uk_147 + 576*uk_148 + 524172*uk_149 + 11411775*uk_15 + 564300*uk_150 + 10032*uk_151 + 607500*uk_152 + 10800*uk_153 + 192*uk_154 + 9129329*uk_155 + 9828225*uk_156 + 174724*uk_157 + 10580625*uk_158 + 188100*uk_159 + 202876*uk_16 + 3344*uk_160 + 11390625*uk_161 + 202500*uk_162 + 3600*uk_163 + 64*uk_164 + 3025*uk_17 + 7755*uk_18 + 220*uk_19 + 55*uk_2 + 660*uk_20 + 11495*uk_21 + 12375*uk_22 + 220*uk_23 + 19881*uk_24 + 564*uk_25 + 1692*uk_26 + 29469*uk_27 + 31725*uk_28 + 564*uk_29 + 141*uk_3 + 16*uk_30 + 48*uk_31 + 836*uk_32 + 900*uk_33 + 16*uk_34 + 144*uk_35 + 2508*uk_36 + 2700*uk_37 + 48*uk_38 + 43681*uk_39 + 4*uk_4 + 47025*uk_40 + 836*uk_41 + 50625*uk_42 + 900*uk_43 + 16*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 362710791501*uk_47 + 10289667844*uk_48 + 30869003532*uk_49 + 12*uk_5 + 537635144849*uk_50 + 578793816225*uk_51 + 10289667844*uk_52 + 153424975*uk_53 + 393325845*uk_54 + 11158180*uk_55 + 33474540*uk_56 + 583014905*uk_57 + 627647625*uk_58 + 11158180*uk_59 + 209*uk_6 + 1008344439*uk_60 + 28605516*uk_61 + 85816548*uk_62 + 1494638211*uk_63 + 1609060275*uk_64 + 28605516*uk_65 + 811504*uk_66 + 2434512*uk_67 + 42401084*uk_68 + 45647100*uk_69 + 225*uk_7 + 811504*uk_70 + 7303536*uk_71 + 127203252*uk_72 + 136941300*uk_73 + 2434512*uk_74 + 2215456639*uk_75 + 2385060975*uk_76 + 42401084*uk_77 + 2567649375*uk_78 + 45647100*uk_79 + 4*uk_8 + 811504*uk_80 + 166375*uk_81 + 426525*uk_82 + 12100*uk_83 + 36300*uk_84 + 632225*uk_85 + 680625*uk_86 + 12100*uk_87 + 1093455*uk_88 + 31020*uk_89 + 2572416961*uk_9 + 93060*uk_90 + 1620795*uk_91 + 1744875*uk_92 + 31020*uk_93 + 880*uk_94 + 2640*uk_95 + 45980*uk_96 + 49500*uk_97 + 880*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 92840*uk_100 + 99000*uk_101 + 62040*uk_102 + 2448655*uk_103 + 2611125*uk_104 + 1636305*uk_105 + 2784375*uk_106 + 1744875*uk_107 + 1093455*uk_108 + 493039*uk_109 + 4006801*uk_11 + 879981*uk_110 + 49928*uk_111 + 1316851*uk_112 + 1404225*uk_113 + 879981*uk_114 + 1570599*uk_115 + 89112*uk_116 + 2350329*uk_117 + 2506275*uk_118 + 1570599*uk_119 + 7151379*uk_12 + 5056*uk_120 + 133352*uk_121 + 142200*uk_122 + 89112*uk_123 + 3517159*uk_124 + 3750525*uk_125 + 2350329*uk_126 + 3999375*uk_127 + 2506275*uk_128 + 1570599*uk_129 + 405752*uk_13 + 2803221*uk_130 + 159048*uk_131 + 4194891*uk_132 + 4473225*uk_133 + 2803221*uk_134 + 9024*uk_135 + 238008*uk_136 + 253800*uk_137 + 159048*uk_138 + 6277461*uk_139 + 10701709*uk_14 + 6693975*uk_140 + 4194891*uk_141 + 7138125*uk_142 + 4473225*uk_143 + 2803221*uk_144 + 512*uk_145 + 13504*uk_146 + 14400*uk_147 + 9024*uk_148 + 356168*uk_149 + 11411775*uk_15 + 379800*uk_150 + 238008*uk_151 + 405000*uk_152 + 253800*uk_153 + 159048*uk_154 + 9393931*uk_155 + 10017225*uk_156 + 6277461*uk_157 + 10681875*uk_158 + 6693975*uk_159 + 7151379*uk_16 + 4194891*uk_160 + 11390625*uk_161 + 7138125*uk_162 + 4473225*uk_163 + 2803221*uk_164 + 3025*uk_17 + 4345*uk_18 + 7755*uk_19 + 55*uk_2 + 440*uk_20 + 11605*uk_21 + 12375*uk_22 + 7755*uk_23 + 6241*uk_24 + 11139*uk_25 + 632*uk_26 + 16669*uk_27 + 17775*uk_28 + 11139*uk_29 + 79*uk_3 + 19881*uk_30 + 1128*uk_31 + 29751*uk_32 + 31725*uk_33 + 19881*uk_34 + 64*uk_35 + 1688*uk_36 + 1800*uk_37 + 1128*uk_38 + 44521*uk_39 + 141*uk_4 + 47475*uk_40 + 29751*uk_41 + 50625*uk_42 + 31725*uk_43 + 19881*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 203220939919*uk_47 + 362710791501*uk_48 + 20579335688*uk_49 + 8*uk_5 + 542779978771*uk_50 + 578793816225*uk_51 + 362710791501*uk_52 + 153424975*uk_53 + 220374055*uk_54 + 393325845*uk_55 + 22316360*uk_56 + 588593995*uk_57 + 627647625*uk_58 + 393325845*uk_59 + 211*uk_6 + 316537279*uk_60 + 564958941*uk_61 + 32054408*uk_62 + 845435011*uk_63 + 901530225*uk_64 + 564958941*uk_65 + 1008344439*uk_66 + 57211032*uk_67 + 1508940969*uk_68 + 1609060275*uk_69 + 225*uk_7 + 1008344439*uk_70 + 3246016*uk_71 + 85613672*uk_72 + 91294200*uk_73 + 57211032*uk_74 + 2258060599*uk_75 + 2407884525*uk_76 + 1508940969*uk_77 + 2567649375*uk_78 + 1609060275*uk_79 + 141*uk_8 + 1008344439*uk_80 + 166375*uk_81 + 238975*uk_82 + 426525*uk_83 + 24200*uk_84 + 638275*uk_85 + 680625*uk_86 + 426525*uk_87 + 343255*uk_88 + 612645*uk_89 + 2572416961*uk_9 + 34760*uk_90 + 916795*uk_91 + 977625*uk_92 + 612645*uk_93 + 1093455*uk_94 + 62040*uk_95 + 1636305*uk_96 + 1744875*uk_97 + 1093455*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 93720*uk_100 + 99000*uk_101 + 34760*uk_102 + 2495295*uk_103 + 2635875*uk_104 + 925485*uk_105 + 2784375*uk_106 + 977625*uk_107 + 343255*uk_108 + 15625*uk_109 + 1267975*uk_11 + 49375*uk_110 + 5000*uk_111 + 133125*uk_112 + 140625*uk_113 + 49375*uk_114 + 156025*uk_115 + 15800*uk_116 + 420675*uk_117 + 444375*uk_118 + 156025*uk_119 + 4006801*uk_12 + 1600*uk_120 + 42600*uk_121 + 45000*uk_122 + 15800*uk_123 + 1134225*uk_124 + 1198125*uk_125 + 420675*uk_126 + 1265625*uk_127 + 444375*uk_128 + 156025*uk_129 + 405752*uk_13 + 493039*uk_130 + 49928*uk_131 + 1329333*uk_132 + 1404225*uk_133 + 493039*uk_134 + 5056*uk_135 + 134616*uk_136 + 142200*uk_137 + 49928*uk_138 + 3584151*uk_139 + 10803147*uk_14 + 3786075*uk_140 + 1329333*uk_141 + 3999375*uk_142 + 1404225*uk_143 + 493039*uk_144 + 512*uk_145 + 13632*uk_146 + 14400*uk_147 + 5056*uk_148 + 362952*uk_149 + 11411775*uk_15 + 383400*uk_150 + 134616*uk_151 + 405000*uk_152 + 142200*uk_153 + 49928*uk_154 + 9663597*uk_155 + 10208025*uk_156 + 3584151*uk_157 + 10783125*uk_158 + 3786075*uk_159 + 4006801*uk_16 + 1329333*uk_160 + 11390625*uk_161 + 3999375*uk_162 + 1404225*uk_163 + 493039*uk_164 + 3025*uk_17 + 1375*uk_18 + 4345*uk_19 + 55*uk_2 + 440*uk_20 + 11715*uk_21 + 12375*uk_22 + 4345*uk_23 + 625*uk_24 + 1975*uk_25 + 200*uk_26 + 5325*uk_27 + 5625*uk_28 + 1975*uk_29 + 25*uk_3 + 6241*uk_30 + 632*uk_31 + 16827*uk_32 + 17775*uk_33 + 6241*uk_34 + 64*uk_35 + 1704*uk_36 + 1800*uk_37 + 632*uk_38 + 45369*uk_39 + 79*uk_4 + 47925*uk_40 + 16827*uk_41 + 50625*uk_42 + 17775*uk_43 + 6241*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 64310424025*uk_47 + 203220939919*uk_48 + 20579335688*uk_49 + 8*uk_5 + 547924812693*uk_50 + 578793816225*uk_51 + 203220939919*uk_52 + 153424975*uk_53 + 69738625*uk_54 + 220374055*uk_55 + 22316360*uk_56 + 594173085*uk_57 + 627647625*uk_58 + 220374055*uk_59 + 213*uk_6 + 31699375*uk_60 + 100170025*uk_61 + 10143800*uk_62 + 270078675*uk_63 + 285294375*uk_64 + 100170025*uk_65 + 316537279*uk_66 + 32054408*uk_67 + 853448613*uk_68 + 901530225*uk_69 + 225*uk_7 + 316537279*uk_70 + 3246016*uk_71 + 86425176*uk_72 + 91294200*uk_73 + 32054408*uk_74 + 2301070311*uk_75 + 2430708075*uk_76 + 853448613*uk_77 + 2567649375*uk_78 + 901530225*uk_79 + 79*uk_8 + 316537279*uk_80 + 166375*uk_81 + 75625*uk_82 + 238975*uk_83 + 24200*uk_84 + 644325*uk_85 + 680625*uk_86 + 238975*uk_87 + 34375*uk_88 + 108625*uk_89 + 2572416961*uk_9 + 11000*uk_90 + 292875*uk_91 + 309375*uk_92 + 108625*uk_93 + 343255*uk_94 + 34760*uk_95 + 925485*uk_96 + 977625*uk_97 + 343255*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 141900*uk_100 + 148500*uk_101 + 16500*uk_102 + 2542375*uk_103 + 2660625*uk_104 + 295625*uk_105 + 2784375*uk_106 + 309375*uk_107 + 34375*uk_108 + 7301384*uk_109 + 9839486*uk_11 + 940900*uk_110 + 451632*uk_111 + 8091740*uk_112 + 8468100*uk_113 + 940900*uk_114 + 121250*uk_115 + 58200*uk_116 + 1042750*uk_117 + 1091250*uk_118 + 121250*uk_119 + 1267975*uk_12 + 27936*uk_120 + 500520*uk_121 + 523800*uk_122 + 58200*uk_123 + 8967650*uk_124 + 9384750*uk_125 + 1042750*uk_126 + 9821250*uk_127 + 1091250*uk_128 + 121250*uk_129 + 608628*uk_13 + 15625*uk_130 + 7500*uk_131 + 134375*uk_132 + 140625*uk_133 + 15625*uk_134 + 3600*uk_135 + 64500*uk_136 + 67500*uk_137 + 7500*uk_138 + 1155625*uk_139 + 10904585*uk_14 + 1209375*uk_140 + 134375*uk_141 + 1265625*uk_142 + 140625*uk_143 + 15625*uk_144 + 1728*uk_145 + 30960*uk_146 + 32400*uk_147 + 3600*uk_148 + 554700*uk_149 + 11411775*uk_15 + 580500*uk_150 + 64500*uk_151 + 607500*uk_152 + 67500*uk_153 + 7500*uk_154 + 9938375*uk_155 + 10400625*uk_156 + 1155625*uk_157 + 10884375*uk_158 + 1209375*uk_159 + 1267975*uk_16 + 134375*uk_160 + 11390625*uk_161 + 1265625*uk_162 + 140625*uk_163 + 15625*uk_164 + 3025*uk_17 + 10670*uk_18 + 1375*uk_19 + 55*uk_2 + 660*uk_20 + 11825*uk_21 + 12375*uk_22 + 1375*uk_23 + 37636*uk_24 + 4850*uk_25 + 2328*uk_26 + 41710*uk_27 + 43650*uk_28 + 4850*uk_29 + 194*uk_3 + 625*uk_30 + 300*uk_31 + 5375*uk_32 + 5625*uk_33 + 625*uk_34 + 144*uk_35 + 2580*uk_36 + 2700*uk_37 + 300*uk_38 + 46225*uk_39 + 25*uk_4 + 48375*uk_40 + 5375*uk_41 + 50625*uk_42 + 5625*uk_43 + 625*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 499048890434*uk_47 + 64310424025*uk_48 + 30869003532*uk_49 + 12*uk_5 + 553069646615*uk_50 + 578793816225*uk_51 + 64310424025*uk_52 + 153424975*uk_53 + 541171730*uk_54 + 69738625*uk_55 + 33474540*uk_56 + 599752175*uk_57 + 627647625*uk_58 + 69738625*uk_59 + 215*uk_6 + 1908860284*uk_60 + 245987150*uk_61 + 118073832*uk_62 + 2115489490*uk_63 + 2213884350*uk_64 + 245987150*uk_65 + 31699375*uk_66 + 15215700*uk_67 + 272614625*uk_68 + 285294375*uk_69 + 225*uk_7 + 31699375*uk_70 + 7303536*uk_71 + 130855020*uk_72 + 136941300*uk_73 + 15215700*uk_74 + 2344485775*uk_75 + 2453531625*uk_76 + 272614625*uk_77 + 2567649375*uk_78 + 285294375*uk_79 + 25*uk_8 + 31699375*uk_80 + 166375*uk_81 + 586850*uk_82 + 75625*uk_83 + 36300*uk_84 + 650375*uk_85 + 680625*uk_86 + 75625*uk_87 + 2069980*uk_88 + 266750*uk_89 + 2572416961*uk_9 + 128040*uk_90 + 2294050*uk_91 + 2400750*uk_92 + 266750*uk_93 + 34375*uk_94 + 16500*uk_95 + 295625*uk_96 + 309375*uk_97 + 34375*uk_98 + 7920*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 95480*uk_100 + 99000*uk_101 + 85360*uk_102 + 2589895*uk_103 + 2685375*uk_104 + 2315390*uk_105 + 2784375*uk_106 + 2400750*uk_107 + 2069980*uk_108 + 3944312*uk_109 + 8013602*uk_11 + 4843016*uk_110 + 199712*uk_111 + 5417188*uk_112 + 5616900*uk_113 + 4843016*uk_114 + 5946488*uk_115 + 245216*uk_116 + 6651484*uk_117 + 6896700*uk_118 + 5946488*uk_119 + 9839486*uk_12 + 10112*uk_120 + 274288*uk_121 + 284400*uk_122 + 245216*uk_123 + 7440062*uk_124 + 7714350*uk_125 + 6651484*uk_126 + 7998750*uk_127 + 6896700*uk_128 + 5946488*uk_129 + 405752*uk_13 + 7301384*uk_130 + 301088*uk_131 + 8167012*uk_132 + 8468100*uk_133 + 7301384*uk_134 + 12416*uk_135 + 336784*uk_136 + 349200*uk_137 + 301088*uk_138 + 9135266*uk_139 + 11006023*uk_14 + 9472050*uk_140 + 8167012*uk_141 + 9821250*uk_142 + 8468100*uk_143 + 7301384*uk_144 + 512*uk_145 + 13888*uk_146 + 14400*uk_147 + 12416*uk_148 + 376712*uk_149 + 11411775*uk_15 + 390600*uk_150 + 336784*uk_151 + 405000*uk_152 + 349200*uk_153 + 301088*uk_154 + 10218313*uk_155 + 10595025*uk_156 + 9135266*uk_157 + 10985625*uk_158 + 9472050*uk_159 + 9839486*uk_16 + 8167012*uk_160 + 11390625*uk_161 + 9821250*uk_162 + 8468100*uk_163 + 7301384*uk_164 + 3025*uk_17 + 8690*uk_18 + 10670*uk_19 + 55*uk_2 + 440*uk_20 + 11935*uk_21 + 12375*uk_22 + 10670*uk_23 + 24964*uk_24 + 30652*uk_25 + 1264*uk_26 + 34286*uk_27 + 35550*uk_28 + 30652*uk_29 + 158*uk_3 + 37636*uk_30 + 1552*uk_31 + 42098*uk_32 + 43650*uk_33 + 37636*uk_34 + 64*uk_35 + 1736*uk_36 + 1800*uk_37 + 1552*uk_38 + 47089*uk_39 + 194*uk_4 + 48825*uk_40 + 42098*uk_41 + 50625*uk_42 + 43650*uk_43 + 37636*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 406441879838*uk_47 + 499048890434*uk_48 + 20579335688*uk_49 + 8*uk_5 + 558214480537*uk_50 + 578793816225*uk_51 + 499048890434*uk_52 + 153424975*uk_53 + 440748110*uk_54 + 541171730*uk_55 + 22316360*uk_56 + 605331265*uk_57 + 627647625*uk_58 + 541171730*uk_59 + 217*uk_6 + 1266149116*uk_60 + 1554638788*uk_61 + 64108816*uk_62 + 1738951634*uk_63 + 1803060450*uk_64 + 1554638788*uk_65 + 1908860284*uk_66 + 78715888*uk_67 + 2135168462*uk_68 + 2213884350*uk_69 + 225*uk_7 + 1908860284*uk_70 + 3246016*uk_71 + 88048184*uk_72 + 91294200*uk_73 + 78715888*uk_74 + 2388306991*uk_75 + 2476355175*uk_76 + 2135168462*uk_77 + 2567649375*uk_78 + 2213884350*uk_79 + 194*uk_8 + 1908860284*uk_80 + 166375*uk_81 + 477950*uk_82 + 586850*uk_83 + 24200*uk_84 + 656425*uk_85 + 680625*uk_86 + 586850*uk_87 + 1373020*uk_88 + 1685860*uk_89 + 2572416961*uk_9 + 69520*uk_90 + 1885730*uk_91 + 1955250*uk_92 + 1685860*uk_93 + 2069980*uk_94 + 85360*uk_95 + 2315390*uk_96 + 2400750*uk_97 + 2069980*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 96360*uk_100 + 99000*uk_101 + 69520*uk_102 + 2637855*uk_103 + 2710125*uk_104 + 1903110*uk_105 + 2784375*uk_106 + 1955250*uk_107 + 1373020*uk_108 + 2197000*uk_109 + 6593470*uk_11 + 2670200*uk_110 + 135200*uk_111 + 3701100*uk_112 + 3802500*uk_113 + 2670200*uk_114 + 3245320*uk_115 + 164320*uk_116 + 4498260*uk_117 + 4621500*uk_118 + 3245320*uk_119 + 8013602*uk_12 + 8320*uk_120 + 227760*uk_121 + 234000*uk_122 + 164320*uk_123 + 6234930*uk_124 + 6405750*uk_125 + 4498260*uk_126 + 6581250*uk_127 + 4621500*uk_128 + 3245320*uk_129 + 405752*uk_13 + 3944312*uk_130 + 199712*uk_131 + 5467116*uk_132 + 5616900*uk_133 + 3944312*uk_134 + 10112*uk_135 + 276816*uk_136 + 284400*uk_137 + 199712*uk_138 + 7577838*uk_139 + 11107461*uk_14 + 7785450*uk_140 + 5467116*uk_141 + 7998750*uk_142 + 5616900*uk_143 + 3944312*uk_144 + 512*uk_145 + 14016*uk_146 + 14400*uk_147 + 10112*uk_148 + 383688*uk_149 + 11411775*uk_15 + 394200*uk_150 + 276816*uk_151 + 405000*uk_152 + 284400*uk_153 + 199712*uk_154 + 10503459*uk_155 + 10791225*uk_156 + 7577838*uk_157 + 11086875*uk_158 + 7785450*uk_159 + 8013602*uk_16 + 5467116*uk_160 + 11390625*uk_161 + 7998750*uk_162 + 5616900*uk_163 + 3944312*uk_164 + 3025*uk_17 + 7150*uk_18 + 8690*uk_19 + 55*uk_2 + 440*uk_20 + 12045*uk_21 + 12375*uk_22 + 8690*uk_23 + 16900*uk_24 + 20540*uk_25 + 1040*uk_26 + 28470*uk_27 + 29250*uk_28 + 20540*uk_29 + 130*uk_3 + 24964*uk_30 + 1264*uk_31 + 34602*uk_32 + 35550*uk_33 + 24964*uk_34 + 64*uk_35 + 1752*uk_36 + 1800*uk_37 + 1264*uk_38 + 47961*uk_39 + 158*uk_4 + 49275*uk_40 + 34602*uk_41 + 50625*uk_42 + 35550*uk_43 + 24964*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 334414204930*uk_47 + 406441879838*uk_48 + 20579335688*uk_49 + 8*uk_5 + 563359314459*uk_50 + 578793816225*uk_51 + 406441879838*uk_52 + 153424975*uk_53 + 362640850*uk_54 + 440748110*uk_55 + 22316360*uk_56 + 610910355*uk_57 + 627647625*uk_58 + 440748110*uk_59 + 219*uk_6 + 857151100*uk_60 + 1041768260*uk_61 + 52747760*uk_62 + 1443969930*uk_63 + 1483530750*uk_64 + 1041768260*uk_65 + 1266149116*uk_66 + 64108816*uk_67 + 1754978838*uk_68 + 1803060450*uk_69 + 225*uk_7 + 1266149116*uk_70 + 3246016*uk_71 + 88859688*uk_72 + 91294200*uk_73 + 64108816*uk_74 + 2432533959*uk_75 + 2499178725*uk_76 + 1754978838*uk_77 + 2567649375*uk_78 + 1803060450*uk_79 + 158*uk_8 + 1266149116*uk_80 + 166375*uk_81 + 393250*uk_82 + 477950*uk_83 + 24200*uk_84 + 662475*uk_85 + 680625*uk_86 + 477950*uk_87 + 929500*uk_88 + 1129700*uk_89 + 2572416961*uk_9 + 57200*uk_90 + 1565850*uk_91 + 1608750*uk_92 + 1129700*uk_93 + 1373020*uk_94 + 69520*uk_95 + 1903110*uk_96 + 1955250*uk_97 + 1373020*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 97240*uk_100 + 99000*uk_101 + 57200*uk_102 + 2686255*uk_103 + 2734875*uk_104 + 1580150*uk_105 + 2784375*uk_106 + 1608750*uk_107 + 929500*uk_108 + 1331000*uk_109 + 5579090*uk_11 + 1573000*uk_110 + 96800*uk_111 + 2674100*uk_112 + 2722500*uk_113 + 1573000*uk_114 + 1859000*uk_115 + 114400*uk_116 + 3160300*uk_117 + 3217500*uk_118 + 1859000*uk_119 + 6593470*uk_12 + 7040*uk_120 + 194480*uk_121 + 198000*uk_122 + 114400*uk_123 + 5372510*uk_124 + 5469750*uk_125 + 3160300*uk_126 + 5568750*uk_127 + 3217500*uk_128 + 1859000*uk_129 + 405752*uk_13 + 2197000*uk_130 + 135200*uk_131 + 3734900*uk_132 + 3802500*uk_133 + 2197000*uk_134 + 8320*uk_135 + 229840*uk_136 + 234000*uk_137 + 135200*uk_138 + 6349330*uk_139 + 11208899*uk_14 + 6464250*uk_140 + 3734900*uk_141 + 6581250*uk_142 + 3802500*uk_143 + 2197000*uk_144 + 512*uk_145 + 14144*uk_146 + 14400*uk_147 + 8320*uk_148 + 390728*uk_149 + 11411775*uk_15 + 397800*uk_150 + 229840*uk_151 + 405000*uk_152 + 234000*uk_153 + 135200*uk_154 + 10793861*uk_155 + 10989225*uk_156 + 6349330*uk_157 + 11188125*uk_158 + 6464250*uk_159 + 6593470*uk_16 + 3734900*uk_160 + 11390625*uk_161 + 6581250*uk_162 + 3802500*uk_163 + 2197000*uk_164 + 3025*uk_17 + 6050*uk_18 + 7150*uk_19 + 55*uk_2 + 440*uk_20 + 12155*uk_21 + 12375*uk_22 + 7150*uk_23 + 12100*uk_24 + 14300*uk_25 + 880*uk_26 + 24310*uk_27 + 24750*uk_28 + 14300*uk_29 + 110*uk_3 + 16900*uk_30 + 1040*uk_31 + 28730*uk_32 + 29250*uk_33 + 16900*uk_34 + 64*uk_35 + 1768*uk_36 + 1800*uk_37 + 1040*uk_38 + 48841*uk_39 + 130*uk_4 + 49725*uk_40 + 28730*uk_41 + 50625*uk_42 + 29250*uk_43 + 16900*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 282965865710*uk_47 + 334414204930*uk_48 + 20579335688*uk_49 + 8*uk_5 + 568504148381*uk_50 + 578793816225*uk_51 + 334414204930*uk_52 + 153424975*uk_53 + 306849950*uk_54 + 362640850*uk_55 + 22316360*uk_56 + 616489445*uk_57 + 627647625*uk_58 + 362640850*uk_59 + 221*uk_6 + 613699900*uk_60 + 725281700*uk_61 + 44632720*uk_62 + 1232978890*uk_63 + 1255295250*uk_64 + 725281700*uk_65 + 857151100*uk_66 + 52747760*uk_67 + 1457156870*uk_68 + 1483530750*uk_69 + 225*uk_7 + 857151100*uk_70 + 3246016*uk_71 + 89671192*uk_72 + 91294200*uk_73 + 52747760*uk_74 + 2477166679*uk_75 + 2522002275*uk_76 + 1457156870*uk_77 + 2567649375*uk_78 + 1483530750*uk_79 + 130*uk_8 + 857151100*uk_80 + 166375*uk_81 + 332750*uk_82 + 393250*uk_83 + 24200*uk_84 + 668525*uk_85 + 680625*uk_86 + 393250*uk_87 + 665500*uk_88 + 786500*uk_89 + 2572416961*uk_9 + 48400*uk_90 + 1337050*uk_91 + 1361250*uk_92 + 786500*uk_93 + 929500*uk_94 + 57200*uk_95 + 1580150*uk_96 + 1608750*uk_97 + 929500*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 98120*uk_100 + 99000*uk_101 + 48400*uk_102 + 2735095*uk_103 + 2759625*uk_104 + 1349150*uk_105 + 2784375*uk_106 + 1361250*uk_107 + 665500*uk_108 + 941192*uk_109 + 4970462*uk_11 + 1056440*uk_110 + 76832*uk_111 + 2141692*uk_112 + 2160900*uk_113 + 1056440*uk_114 + 1185800*uk_115 + 86240*uk_116 + 2403940*uk_117 + 2425500*uk_118 + 1185800*uk_119 + 5579090*uk_12 + 6272*uk_120 + 174832*uk_121 + 176400*uk_122 + 86240*uk_123 + 4873442*uk_124 + 4917150*uk_125 + 2403940*uk_126 + 4961250*uk_127 + 2425500*uk_128 + 1185800*uk_129 + 405752*uk_13 + 1331000*uk_130 + 96800*uk_131 + 2698300*uk_132 + 2722500*uk_133 + 1331000*uk_134 + 7040*uk_135 + 196240*uk_136 + 198000*uk_137 + 96800*uk_138 + 5470190*uk_139 + 11310337*uk_14 + 5519250*uk_140 + 2698300*uk_141 + 5568750*uk_142 + 2722500*uk_143 + 1331000*uk_144 + 512*uk_145 + 14272*uk_146 + 14400*uk_147 + 7040*uk_148 + 397832*uk_149 + 11411775*uk_15 + 401400*uk_150 + 196240*uk_151 + 405000*uk_152 + 198000*uk_153 + 96800*uk_154 + 11089567*uk_155 + 11189025*uk_156 + 5470190*uk_157 + 11289375*uk_158 + 5519250*uk_159 + 5579090*uk_16 + 2698300*uk_160 + 11390625*uk_161 + 5568750*uk_162 + 2722500*uk_163 + 1331000*uk_164 + 3025*uk_17 + 5390*uk_18 + 6050*uk_19 + 55*uk_2 + 440*uk_20 + 12265*uk_21 + 12375*uk_22 + 6050*uk_23 + 9604*uk_24 + 10780*uk_25 + 784*uk_26 + 21854*uk_27 + 22050*uk_28 + 10780*uk_29 + 98*uk_3 + 12100*uk_30 + 880*uk_31 + 24530*uk_32 + 24750*uk_33 + 12100*uk_34 + 64*uk_35 + 1784*uk_36 + 1800*uk_37 + 880*uk_38 + 49729*uk_39 + 110*uk_4 + 50175*uk_40 + 24530*uk_41 + 50625*uk_42 + 24750*uk_43 + 12100*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 252096862178*uk_47 + 282965865710*uk_48 + 20579335688*uk_49 + 8*uk_5 + 573648982303*uk_50 + 578793816225*uk_51 + 282965865710*uk_52 + 153424975*uk_53 + 273375410*uk_54 + 306849950*uk_55 + 22316360*uk_56 + 622068535*uk_57 + 627647625*uk_58 + 306849950*uk_59 + 223*uk_6 + 487105276*uk_60 + 546750820*uk_61 + 39763696*uk_62 + 1108413026*uk_63 + 1118353950*uk_64 + 546750820*uk_65 + 613699900*uk_66 + 44632720*uk_67 + 1244137070*uk_68 + 1255295250*uk_69 + 225*uk_7 + 613699900*uk_70 + 3246016*uk_71 + 90482696*uk_72 + 91294200*uk_73 + 44632720*uk_74 + 2522205151*uk_75 + 2544825825*uk_76 + 1244137070*uk_77 + 2567649375*uk_78 + 1255295250*uk_79 + 110*uk_8 + 613699900*uk_80 + 166375*uk_81 + 296450*uk_82 + 332750*uk_83 + 24200*uk_84 + 674575*uk_85 + 680625*uk_86 + 332750*uk_87 + 528220*uk_88 + 592900*uk_89 + 2572416961*uk_9 + 43120*uk_90 + 1201970*uk_91 + 1212750*uk_92 + 592900*uk_93 + 665500*uk_94 + 48400*uk_95 + 1349150*uk_96 + 1361250*uk_97 + 665500*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 99000*uk_100 + 99000*uk_101 + 43120*uk_102 + 2784375*uk_103 + 2784375*uk_104 + 1212750*uk_105 + 2784375*uk_106 + 1212750*uk_107 + 528220*uk_108 + 830584*uk_109 + 4767586*uk_11 + 865928*uk_110 + 70688*uk_111 + 1988100*uk_112 + 1988100*uk_113 + 865928*uk_114 + 902776*uk_115 + 73696*uk_116 + 2072700*uk_117 + 2072700*uk_118 + 902776*uk_119 + 4970462*uk_12 + 6016*uk_120 + 169200*uk_121 + 169200*uk_122 + 73696*uk_123 + 4758750*uk_124 + 4758750*uk_125 + 2072700*uk_126 + 4758750*uk_127 + 2072700*uk_128 + 902776*uk_129 + 405752*uk_13 + 941192*uk_130 + 76832*uk_131 + 2160900*uk_132 + 2160900*uk_133 + 941192*uk_134 + 6272*uk_135 + 176400*uk_136 + 176400*uk_137 + 76832*uk_138 + 4961250*uk_139 + 11411775*uk_14 + 4961250*uk_140 + 2160900*uk_141 + 4961250*uk_142 + 2160900*uk_143 + 941192*uk_144 + 512*uk_145 + 14400*uk_146 + 14400*uk_147 + 6272*uk_148 + 405000*uk_149 + 11411775*uk_15 + 405000*uk_150 + 176400*uk_151 + 405000*uk_152 + 176400*uk_153 + 76832*uk_154 + 11390625*uk_155 + 11390625*uk_156 + 4961250*uk_157 + 11390625*uk_158 + 4961250*uk_159 + 4970462*uk_16 + 2160900*uk_160 + 11390625*uk_161 + 4961250*uk_162 + 2160900*uk_163 + 941192*uk_164 + 3025*uk_17 + 5170*uk_18 + 5390*uk_19 + 55*uk_2 + 440*uk_20 + 12375*uk_21 + 12375*uk_22 + 5390*uk_23 + 8836*uk_24 + 9212*uk_25 + 752*uk_26 + 21150*uk_27 + 21150*uk_28 + 9212*uk_29 + 94*uk_3 + 9604*uk_30 + 784*uk_31 + 22050*uk_32 + 22050*uk_33 + 9604*uk_34 + 64*uk_35 + 1800*uk_36 + 1800*uk_37 + 784*uk_38 + 50625*uk_39 + 98*uk_4 + 50625*uk_40 + 22050*uk_41 + 50625*uk_42 + 22050*uk_43 + 9604*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 241807194334*uk_47 + 252096862178*uk_48 + 20579335688*uk_49 + 8*uk_5 + 578793816225*uk_50 + 578793816225*uk_51 + 252096862178*uk_52 + 153424975*uk_53 + 262217230*uk_54 + 273375410*uk_55 + 22316360*uk_56 + 627647625*uk_57 + 627647625*uk_58 + 273375410*uk_59 + 225*uk_6 + 448153084*uk_60 + 467223428*uk_61 + 38140688*uk_62 + 1072706850*uk_63 + 1072706850*uk_64 + 467223428*uk_65 + 487105276*uk_66 + 39763696*uk_67 + 1118353950*uk_68 + 1118353950*uk_69 + 225*uk_7 + 487105276*uk_70 + 3246016*uk_71 + 91294200*uk_72 + 91294200*uk_73 + 39763696*uk_74 + 2567649375*uk_75 + 2567649375*uk_76 + 1118353950*uk_77 + 2567649375*uk_78 + 1118353950*uk_79 + 98*uk_8 + 487105276*uk_80 + 166375*uk_81 + 284350*uk_82 + 296450*uk_83 + 24200*uk_84 + 680625*uk_85 + 680625*uk_86 + 296450*uk_87 + 485980*uk_88 + 506660*uk_89 + 2572416961*uk_9 + 41360*uk_90 + 1163250*uk_91 + 1163250*uk_92 + 506660*uk_93 + 528220*uk_94 + 43120*uk_95 + 1212750*uk_96 + 1212750*uk_97 + 528220*uk_98 + 3520*uk_99,
uk_0 + 50719*uk_1 + 2789545*uk_10 + 99880*uk_100 + 99000*uk_101 + 41360*uk_102 + 2834095*uk_103 + 2809125*uk_104 + 1173590*uk_105 + 2784375*uk_106 + 1163250*uk_107 + 485980*uk_108 + 941192*uk_109 + 4970462*uk_11 + 902776*uk_110 + 76832*uk_111 + 2180108*uk_112 + 2160900*uk_113 + 902776*uk_114 + 865928*uk_115 + 73696*uk_116 + 2091124*uk_117 + 2072700*uk_118 + 865928*uk_119 + 4767586*uk_12 + 6272*uk_120 + 177968*uk_121 + 176400*uk_122 + 73696*uk_123 + 5049842*uk_124 + 5005350*uk_125 + 2091124*uk_126 + 4961250*uk_127 + 2072700*uk_128 + 865928*uk_129 + 405752*uk_13 + 830584*uk_130 + 70688*uk_131 + 2005772*uk_132 + 1988100*uk_133 + 830584*uk_134 + 6016*uk_135 + 170704*uk_136 + 169200*uk_137 + 70688*uk_138 + 4843726*uk_139 + 11513213*uk_14 + 4801050*uk_140 + 2005772*uk_141 + 4758750*uk_142 + 1988100*uk_143 + 830584*uk_144 + 512*uk_145 + 14528*uk_146 + 14400*uk_147 + 6016*uk_148 + 412232*uk_149 + 11411775*uk_15 + 408600*uk_150 + 170704*uk_151 + 405000*uk_152 + 169200*uk_153 + 70688*uk_154 + 11697083*uk_155 + 11594025*uk_156 + 4843726*uk_157 + 11491875*uk_158 + 4801050*uk_159 + 4767586*uk_16 + 2005772*uk_160 + 11390625*uk_161 + 4758750*uk_162 + 1988100*uk_163 + 830584*uk_164 + 3025*uk_17 + 5390*uk_18 + 5170*uk_19 + 55*uk_2 + 440*uk_20 + 12485*uk_21 + 12375*uk_22 + 5170*uk_23 + 9604*uk_24 + 9212*uk_25 + 784*uk_26 + 22246*uk_27 + 22050*uk_28 + 9212*uk_29 + 98*uk_3 + 8836*uk_30 + 752*uk_31 + 21338*uk_32 + 21150*uk_33 + 8836*uk_34 + 64*uk_35 + 1816*uk_36 + 1800*uk_37 + 752*uk_38 + 51529*uk_39 + 94*uk_4 + 51075*uk_40 + 21338*uk_41 + 50625*uk_42 + 21150*uk_43 + 8836*uk_44 + 130470415844959*uk_45 + 141482932855*uk_46 + 252096862178*uk_47 + 241807194334*uk_48 + 20579335688*uk_49 + 8*uk_5 + 583938650147*uk_50 + 578793816225*uk_51 + 241807194334*uk_52 + 153424975*uk_53 + 273375410*uk_54 + 262217230*uk_55 + 22316360*uk_56 + 633226715*uk_57 + 627647625*uk_58 + 262217230*uk_59 + 227*uk_6 + 487105276*uk_60 + 467223428*uk_61 + 39763696*uk_62 + 1128294874*uk_63 + 1118353950*uk_64 + 467223428*uk_65 + 448153084*uk_66 + 38140688*uk_67 + 1082242022*uk_68 + 1072706850*uk_69 + 225*uk_7 + 448153084*uk_70 + 3246016*uk_71 + 92105704*uk_72 + 91294200*uk_73 + 38140688*uk_74 + 2613499351*uk_75 + 2590472925*uk_76 + 1082242022*uk_77 + 2567649375*uk_78 + 1072706850*uk_79 + 94*uk_8 + 448153084*uk_80 + 166375*uk_81 + 296450*uk_82 + 284350*uk_83 + 24200*uk_84 + 686675*uk_85 + 680625*uk_86 + 284350*uk_87 + 528220*uk_88 + 506660*uk_89 + 2572416961*uk_9 + 43120*uk_90 + 1223530*uk_91 + 1212750*uk_92 + 506660*uk_93 + 485980*uk_94 + 41360*uk_95 + 1173590*uk_96 + 1163250*uk_97 + 485980*uk_98 + 3520*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 396900*uk_100 + 1367100*uk_101 + 250047*uk_103 + 861273*uk_104 + 2966607*uk_106 + 64000*uk_109 + 1894120*uk_11 + 27200*uk_110 + 160000*uk_111 + 100800*uk_112 + 347200*uk_113 + 11560*uk_115 + 68000*uk_116 + 42840*uk_117 + 147560*uk_118 + 805001*uk_12 + 400000*uk_120 + 252000*uk_121 + 868000*uk_122 + 158760*uk_124 + 546840*uk_125 + 1883560*uk_127 + 4735300*uk_13 + 4913*uk_130 + 28900*uk_131 + 18207*uk_132 + 62713*uk_133 + 170000*uk_135 + 107100*uk_136 + 368900*uk_137 + 67473*uk_139 + 2983239*uk_14 + 232407*uk_140 + 800513*uk_142 + 1000000*uk_145 + 630000*uk_146 + 2170000*uk_147 + 396900*uk_149 + 10275601*uk_15 + 1367100*uk_150 + 4708900*uk_152 + 250047*uk_155 + 861273*uk_156 + 2966607*uk_158 + 10218313*uk_161 + 3969*uk_17 + 2520*uk_18 + 1071*uk_19 + 63*uk_2 + 6300*uk_20 + 3969*uk_21 + 13671*uk_22 + 1600*uk_24 + 680*uk_25 + 4000*uk_26 + 2520*uk_27 + 8680*uk_28 + 40*uk_3 + 289*uk_30 + 1700*uk_31 + 1071*uk_32 + 3689*uk_33 + 10000*uk_35 + 6300*uk_36 + 21700*uk_37 + 3969*uk_39 + 17*uk_4 + 13671*uk_40 + 47089*uk_42 + 106179944855977*uk_45 + 141265316367*uk_46 + 89692264360*uk_47 + 38119212353*uk_48 + 224230660900*uk_49 + 100*uk_5 + 141265316367*uk_50 + 486580534153*uk_51 + 187944057*uk_53 + 119329560*uk_54 + 50715063*uk_55 + 298323900*uk_56 + 187944057*uk_57 + 647362863*uk_58 + 63*uk_6 + 75764800*uk_60 + 32200040*uk_61 + 189412000*uk_62 + 119329560*uk_63 + 411024040*uk_64 + 13685017*uk_66 + 80500100*uk_67 + 50715063*uk_68 + 174685217*uk_69 + 217*uk_7 + 473530000*uk_71 + 298323900*uk_72 + 1027560100*uk_73 + 187944057*uk_75 + 647362863*uk_76 + 2229805417*uk_78 + 250047*uk_81 + 158760*uk_82 + 67473*uk_83 + 396900*uk_84 + 250047*uk_85 + 861273*uk_86 + 100800*uk_88 + 42840*uk_89 + 2242306609*uk_9 + 252000*uk_90 + 158760*uk_91 + 546840*uk_92 + 18207*uk_94 + 107100*uk_95 + 67473*uk_96 + 232407*uk_97 + 630000*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 376740*uk_100 + 1257732*uk_101 + 231840*uk_102 + 266175*uk_103 + 888615*uk_104 + 163800*uk_105 + 2966607*uk_106 + 546840*uk_107 + 100800*uk_108 + 35937*uk_109 + 1562649*uk_11 + 43560*uk_110 + 100188*uk_111 + 70785*uk_112 + 236313*uk_113 + 43560*uk_114 + 52800*uk_115 + 121440*uk_116 + 85800*uk_117 + 286440*uk_118 + 52800*uk_119 + 1894120*uk_12 + 279312*uk_120 + 197340*uk_121 + 658812*uk_122 + 121440*uk_123 + 139425*uk_124 + 465465*uk_125 + 85800*uk_126 + 1553937*uk_127 + 286440*uk_128 + 52800*uk_129 + 4356476*uk_13 + 64000*uk_130 + 147200*uk_131 + 104000*uk_132 + 347200*uk_133 + 64000*uk_134 + 338560*uk_135 + 239200*uk_136 + 798560*uk_137 + 147200*uk_138 + 169000*uk_139 + 3077945*uk_14 + 564200*uk_140 + 104000*uk_141 + 1883560*uk_142 + 347200*uk_143 + 64000*uk_144 + 778688*uk_145 + 550160*uk_146 + 1836688*uk_147 + 338560*uk_148 + 388700*uk_149 + 10275601*uk_15 + 1297660*uk_150 + 239200*uk_151 + 4332188*uk_152 + 798560*uk_153 + 147200*uk_154 + 274625*uk_155 + 916825*uk_156 + 169000*uk_157 + 3060785*uk_158 + 564200*uk_159 + 1894120*uk_16 + 104000*uk_160 + 10218313*uk_161 + 1883560*uk_162 + 347200*uk_163 + 64000*uk_164 + 3969*uk_17 + 2079*uk_18 + 2520*uk_19 + 63*uk_2 + 5796*uk_20 + 4095*uk_21 + 13671*uk_22 + 2520*uk_23 + 1089*uk_24 + 1320*uk_25 + 3036*uk_26 + 2145*uk_27 + 7161*uk_28 + 1320*uk_29 + 33*uk_3 + 1600*uk_30 + 3680*uk_31 + 2600*uk_32 + 8680*uk_33 + 1600*uk_34 + 8464*uk_35 + 5980*uk_36 + 19964*uk_37 + 3680*uk_38 + 4225*uk_39 + 40*uk_4 + 14105*uk_40 + 2600*uk_41 + 47089*uk_42 + 8680*uk_43 + 1600*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 73996118097*uk_47 + 89692264360*uk_48 + 206292208028*uk_49 + 92*uk_5 + 145749929585*uk_50 + 486580534153*uk_51 + 89692264360*uk_52 + 187944057*uk_53 + 98446887*uk_54 + 119329560*uk_55 + 274457988*uk_56 + 193910535*uk_57 + 647362863*uk_58 + 119329560*uk_59 + 65*uk_6 + 51567417*uk_60 + 62505960*uk_61 + 143763708*uk_62 + 101572185*uk_63 + 339094833*uk_64 + 62505960*uk_65 + 75764800*uk_66 + 174259040*uk_67 + 123117800*uk_68 + 411024040*uk_69 + 217*uk_7 + 75764800*uk_70 + 400795792*uk_71 + 283170940*uk_72 + 945355292*uk_73 + 174259040*uk_74 + 200066425*uk_75 + 667914065*uk_76 + 123117800*uk_77 + 2229805417*uk_78 + 411024040*uk_79 + 40*uk_8 + 75764800*uk_80 + 250047*uk_81 + 130977*uk_82 + 158760*uk_83 + 365148*uk_84 + 257985*uk_85 + 861273*uk_86 + 158760*uk_87 + 68607*uk_88 + 83160*uk_89 + 2242306609*uk_9 + 191268*uk_90 + 135135*uk_91 + 451143*uk_92 + 83160*uk_93 + 100800*uk_94 + 231840*uk_95 + 163800*uk_96 + 546840*uk_97 + 100800*uk_98 + 533232*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 371448*uk_100 + 1203048*uk_101 + 182952*uk_102 + 282807*uk_103 + 915957*uk_104 + 139293*uk_105 + 2966607*uk_106 + 451143*uk_107 + 68607*uk_108 + 132651*uk_109 + 2415003*uk_11 + 85833*uk_110 + 228888*uk_111 + 174267*uk_112 + 564417*uk_113 + 85833*uk_114 + 55539*uk_115 + 148104*uk_116 + 112761*uk_117 + 365211*uk_118 + 55539*uk_119 + 1562649*uk_12 + 394944*uk_120 + 300696*uk_121 + 973896*uk_122 + 148104*uk_123 + 228939*uk_124 + 741489*uk_125 + 112761*uk_126 + 2401539*uk_127 + 365211*uk_128 + 55539*uk_129 + 4167064*uk_13 + 35937*uk_130 + 95832*uk_131 + 72963*uk_132 + 236313*uk_133 + 35937*uk_134 + 255552*uk_135 + 194568*uk_136 + 630168*uk_137 + 95832*uk_138 + 148137*uk_139 + 3172651*uk_14 + 479787*uk_140 + 72963*uk_141 + 1553937*uk_142 + 236313*uk_143 + 35937*uk_144 + 681472*uk_145 + 518848*uk_146 + 1680448*uk_147 + 255552*uk_148 + 395032*uk_149 + 10275601*uk_15 + 1279432*uk_150 + 194568*uk_151 + 4143832*uk_152 + 630168*uk_153 + 95832*uk_154 + 300763*uk_155 + 974113*uk_156 + 148137*uk_157 + 3154963*uk_158 + 479787*uk_159 + 1562649*uk_16 + 72963*uk_160 + 10218313*uk_161 + 1553937*uk_162 + 236313*uk_163 + 35937*uk_164 + 3969*uk_17 + 3213*uk_18 + 2079*uk_19 + 63*uk_2 + 5544*uk_20 + 4221*uk_21 + 13671*uk_22 + 2079*uk_23 + 2601*uk_24 + 1683*uk_25 + 4488*uk_26 + 3417*uk_27 + 11067*uk_28 + 1683*uk_29 + 51*uk_3 + 1089*uk_30 + 2904*uk_31 + 2211*uk_32 + 7161*uk_33 + 1089*uk_34 + 7744*uk_35 + 5896*uk_36 + 19096*uk_37 + 2904*uk_38 + 4489*uk_39 + 33*uk_4 + 14539*uk_40 + 2211*uk_41 + 47089*uk_42 + 7161*uk_43 + 1089*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 114357637059*uk_47 + 73996118097*uk_48 + 197322981592*uk_49 + 88*uk_5 + 150234542803*uk_50 + 486580534153*uk_51 + 73996118097*uk_52 + 187944057*uk_53 + 152145189*uk_54 + 98446887*uk_55 + 262525032*uk_56 + 199877013*uk_57 + 647362863*uk_58 + 98446887*uk_59 + 67*uk_6 + 123165153*uk_60 + 79695099*uk_61 + 212520264*uk_62 + 161805201*uk_63 + 524055651*uk_64 + 79695099*uk_65 + 51567417*uk_66 + 137513112*uk_67 + 104697483*uk_68 + 339094833*uk_69 + 217*uk_7 + 51567417*uk_70 + 366701632*uk_71 + 279193288*uk_72 + 904252888*uk_73 + 137513112*uk_74 + 212567617*uk_75 + 688465267*uk_76 + 104697483*uk_77 + 2229805417*uk_78 + 339094833*uk_79 + 33*uk_8 + 51567417*uk_80 + 250047*uk_81 + 202419*uk_82 + 130977*uk_83 + 349272*uk_84 + 265923*uk_85 + 861273*uk_86 + 130977*uk_87 + 163863*uk_88 + 106029*uk_89 + 2242306609*uk_9 + 282744*uk_90 + 215271*uk_91 + 697221*uk_92 + 106029*uk_93 + 68607*uk_94 + 182952*uk_95 + 139293*uk_96 + 451143*uk_97 + 68607*uk_98 + 487872*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 347760*uk_100 + 1093680*uk_101 + 257040*uk_102 + 299943*uk_103 + 943299*uk_104 + 221697*uk_105 + 2966607*uk_106 + 697221*uk_107 + 163863*uk_108 + 6859*uk_109 + 899707*uk_11 + 18411*uk_110 + 28880*uk_111 + 24909*uk_112 + 78337*uk_113 + 18411*uk_114 + 49419*uk_115 + 77520*uk_116 + 66861*uk_117 + 210273*uk_118 + 49419*uk_119 + 2415003*uk_12 + 121600*uk_120 + 104880*uk_121 + 329840*uk_122 + 77520*uk_123 + 90459*uk_124 + 284487*uk_125 + 66861*uk_126 + 894691*uk_127 + 210273*uk_128 + 49419*uk_129 + 3788240*uk_13 + 132651*uk_130 + 208080*uk_131 + 179469*uk_132 + 564417*uk_133 + 132651*uk_134 + 326400*uk_135 + 281520*uk_136 + 885360*uk_137 + 208080*uk_138 + 242811*uk_139 + 3267357*uk_14 + 763623*uk_140 + 179469*uk_141 + 2401539*uk_142 + 564417*uk_143 + 132651*uk_144 + 512000*uk_145 + 441600*uk_146 + 1388800*uk_147 + 326400*uk_148 + 380880*uk_149 + 10275601*uk_15 + 1197840*uk_150 + 281520*uk_151 + 3767120*uk_152 + 885360*uk_153 + 208080*uk_154 + 328509*uk_155 + 1033137*uk_156 + 242811*uk_157 + 3249141*uk_158 + 763623*uk_159 + 2415003*uk_16 + 179469*uk_160 + 10218313*uk_161 + 2401539*uk_162 + 564417*uk_163 + 132651*uk_164 + 3969*uk_17 + 1197*uk_18 + 3213*uk_19 + 63*uk_2 + 5040*uk_20 + 4347*uk_21 + 13671*uk_22 + 3213*uk_23 + 361*uk_24 + 969*uk_25 + 1520*uk_26 + 1311*uk_27 + 4123*uk_28 + 969*uk_29 + 19*uk_3 + 2601*uk_30 + 4080*uk_31 + 3519*uk_32 + 11067*uk_33 + 2601*uk_34 + 6400*uk_35 + 5520*uk_36 + 17360*uk_37 + 4080*uk_38 + 4761*uk_39 + 51*uk_4 + 14973*uk_40 + 3519*uk_41 + 47089*uk_42 + 11067*uk_43 + 2601*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 42603825571*uk_47 + 114357637059*uk_48 + 179384528720*uk_49 + 80*uk_5 + 154719156021*uk_50 + 486580534153*uk_51 + 114357637059*uk_52 + 187944057*uk_53 + 56681541*uk_54 + 152145189*uk_55 + 238659120*uk_56 + 205843491*uk_57 + 647362863*uk_58 + 152145189*uk_59 + 69*uk_6 + 17094433*uk_60 + 45885057*uk_61 + 71976560*uk_62 + 62079783*uk_63 + 195236419*uk_64 + 45885057*uk_65 + 123165153*uk_66 + 193200240*uk_67 + 166635207*uk_68 + 524055651*uk_69 + 217*uk_7 + 123165153*uk_70 + 303059200*uk_71 + 261388560*uk_72 + 822048080*uk_73 + 193200240*uk_74 + 225447633*uk_75 + 709016469*uk_76 + 166635207*uk_77 + 2229805417*uk_78 + 524055651*uk_79 + 51*uk_8 + 123165153*uk_80 + 250047*uk_81 + 75411*uk_82 + 202419*uk_83 + 317520*uk_84 + 273861*uk_85 + 861273*uk_86 + 202419*uk_87 + 22743*uk_88 + 61047*uk_89 + 2242306609*uk_9 + 95760*uk_90 + 82593*uk_91 + 259749*uk_92 + 61047*uk_93 + 163863*uk_94 + 257040*uk_95 + 221697*uk_96 + 697221*uk_97 + 163863*uk_98 + 403200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 357840*uk_100 + 1093680*uk_101 + 95760*uk_102 + 317583*uk_103 + 970641*uk_104 + 84987*uk_105 + 2966607*uk_106 + 259749*uk_107 + 22743*uk_108 + 300763*uk_109 + 3172651*uk_11 + 85291*uk_110 + 359120*uk_111 + 318719*uk_112 + 974113*uk_113 + 85291*uk_114 + 24187*uk_115 + 101840*uk_116 + 90383*uk_117 + 276241*uk_118 + 24187*uk_119 + 899707*uk_12 + 428800*uk_120 + 380560*uk_121 + 1163120*uk_122 + 101840*uk_123 + 337747*uk_124 + 1032269*uk_125 + 90383*uk_126 + 3154963*uk_127 + 276241*uk_128 + 24187*uk_129 + 3788240*uk_13 + 6859*uk_130 + 28880*uk_131 + 25631*uk_132 + 78337*uk_133 + 6859*uk_134 + 121600*uk_135 + 107920*uk_136 + 329840*uk_137 + 28880*uk_138 + 95779*uk_139 + 3362063*uk_14 + 292733*uk_140 + 25631*uk_141 + 894691*uk_142 + 78337*uk_143 + 6859*uk_144 + 512000*uk_145 + 454400*uk_146 + 1388800*uk_147 + 121600*uk_148 + 403280*uk_149 + 10275601*uk_15 + 1232560*uk_150 + 107920*uk_151 + 3767120*uk_152 + 329840*uk_153 + 28880*uk_154 + 357911*uk_155 + 1093897*uk_156 + 95779*uk_157 + 3343319*uk_158 + 292733*uk_159 + 899707*uk_16 + 25631*uk_160 + 10218313*uk_161 + 894691*uk_162 + 78337*uk_163 + 6859*uk_164 + 3969*uk_17 + 4221*uk_18 + 1197*uk_19 + 63*uk_2 + 5040*uk_20 + 4473*uk_21 + 13671*uk_22 + 1197*uk_23 + 4489*uk_24 + 1273*uk_25 + 5360*uk_26 + 4757*uk_27 + 14539*uk_28 + 1273*uk_29 + 67*uk_3 + 361*uk_30 + 1520*uk_31 + 1349*uk_32 + 4123*uk_33 + 361*uk_34 + 6400*uk_35 + 5680*uk_36 + 17360*uk_37 + 1520*uk_38 + 5041*uk_39 + 19*uk_4 + 15407*uk_40 + 1349*uk_41 + 47089*uk_42 + 4123*uk_43 + 361*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 150234542803*uk_47 + 42603825571*uk_48 + 179384528720*uk_49 + 80*uk_5 + 159203769239*uk_50 + 486580534153*uk_51 + 42603825571*uk_52 + 187944057*uk_53 + 199877013*uk_54 + 56681541*uk_55 + 238659120*uk_56 + 211809969*uk_57 + 647362863*uk_58 + 56681541*uk_59 + 71*uk_6 + 212567617*uk_60 + 60280369*uk_61 + 253812080*uk_62 + 225258221*uk_63 + 688465267*uk_64 + 60280369*uk_65 + 17094433*uk_66 + 71976560*uk_67 + 63879197*uk_68 + 195236419*uk_69 + 217*uk_7 + 17094433*uk_70 + 303059200*uk_71 + 268965040*uk_72 + 822048080*uk_73 + 71976560*uk_74 + 238706473*uk_75 + 729567671*uk_76 + 63879197*uk_77 + 2229805417*uk_78 + 195236419*uk_79 + 19*uk_8 + 17094433*uk_80 + 250047*uk_81 + 265923*uk_82 + 75411*uk_83 + 317520*uk_84 + 281799*uk_85 + 861273*uk_86 + 75411*uk_87 + 282807*uk_88 + 80199*uk_89 + 2242306609*uk_9 + 337680*uk_90 + 299691*uk_91 + 915957*uk_92 + 80199*uk_93 + 22743*uk_94 + 95760*uk_95 + 84987*uk_96 + 259749*uk_97 + 22743*uk_98 + 403200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 331128*uk_100 + 984312*uk_101 + 303912*uk_102 + 335727*uk_103 + 997983*uk_104 + 308133*uk_105 + 2966607*uk_106 + 915957*uk_107 + 282807*uk_108 + 117649*uk_109 + 2320297*uk_11 + 160867*uk_110 + 172872*uk_111 + 175273*uk_112 + 521017*uk_113 + 160867*uk_114 + 219961*uk_115 + 236376*uk_116 + 239659*uk_117 + 712411*uk_118 + 219961*uk_119 + 3172651*uk_12 + 254016*uk_120 + 257544*uk_121 + 765576*uk_122 + 236376*uk_123 + 261121*uk_124 + 776209*uk_125 + 239659*uk_126 + 2307361*uk_127 + 712411*uk_128 + 219961*uk_129 + 3409416*uk_13 + 300763*uk_130 + 323208*uk_131 + 327697*uk_132 + 974113*uk_133 + 300763*uk_134 + 347328*uk_135 + 352152*uk_136 + 1046808*uk_137 + 323208*uk_138 + 357043*uk_139 + 3456769*uk_14 + 1061347*uk_140 + 327697*uk_141 + 3154963*uk_142 + 974113*uk_143 + 300763*uk_144 + 373248*uk_145 + 378432*uk_146 + 1124928*uk_147 + 347328*uk_148 + 383688*uk_149 + 10275601*uk_15 + 1140552*uk_150 + 352152*uk_151 + 3390408*uk_152 + 1046808*uk_153 + 323208*uk_154 + 389017*uk_155 + 1156393*uk_156 + 357043*uk_157 + 3437497*uk_158 + 1061347*uk_159 + 3172651*uk_16 + 327697*uk_160 + 10218313*uk_161 + 3154963*uk_162 + 974113*uk_163 + 300763*uk_164 + 3969*uk_17 + 3087*uk_18 + 4221*uk_19 + 63*uk_2 + 4536*uk_20 + 4599*uk_21 + 13671*uk_22 + 4221*uk_23 + 2401*uk_24 + 3283*uk_25 + 3528*uk_26 + 3577*uk_27 + 10633*uk_28 + 3283*uk_29 + 49*uk_3 + 4489*uk_30 + 4824*uk_31 + 4891*uk_32 + 14539*uk_33 + 4489*uk_34 + 5184*uk_35 + 5256*uk_36 + 15624*uk_37 + 4824*uk_38 + 5329*uk_39 + 67*uk_4 + 15841*uk_40 + 4891*uk_41 + 47089*uk_42 + 14539*uk_43 + 4489*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 109873023841*uk_47 + 150234542803*uk_48 + 161446075848*uk_49 + 72*uk_5 + 163688382457*uk_50 + 486580534153*uk_51 + 150234542803*uk_52 + 187944057*uk_53 + 146178711*uk_54 + 199877013*uk_55 + 214793208*uk_56 + 217776447*uk_57 + 647362863*uk_58 + 199877013*uk_59 + 73*uk_6 + 113694553*uk_60 + 155459899*uk_61 + 167061384*uk_62 + 169381681*uk_63 + 503504449*uk_64 + 155459899*uk_65 + 212567617*uk_66 + 228430872*uk_67 + 231603523*uk_68 + 688465267*uk_69 + 217*uk_7 + 212567617*uk_70 + 245477952*uk_71 + 248887368*uk_72 + 739843272*uk_73 + 228430872*uk_74 + 252344137*uk_75 + 750118873*uk_76 + 231603523*uk_77 + 2229805417*uk_78 + 688465267*uk_79 + 67*uk_8 + 212567617*uk_80 + 250047*uk_81 + 194481*uk_82 + 265923*uk_83 + 285768*uk_84 + 289737*uk_85 + 861273*uk_86 + 265923*uk_87 + 151263*uk_88 + 206829*uk_89 + 2242306609*uk_9 + 222264*uk_90 + 225351*uk_91 + 669879*uk_92 + 206829*uk_93 + 282807*uk_94 + 303912*uk_95 + 308133*uk_96 + 915957*uk_97 + 282807*uk_98 + 326592*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 321300*uk_100 + 929628*uk_101 + 209916*uk_102 + 354375*uk_103 + 1025325*uk_104 + 231525*uk_105 + 2966607*uk_106 + 669879*uk_107 + 151263*uk_108 + 21952*uk_109 + 1325884*uk_11 + 38416*uk_110 + 53312*uk_111 + 58800*uk_112 + 170128*uk_113 + 38416*uk_114 + 67228*uk_115 + 93296*uk_116 + 102900*uk_117 + 297724*uk_118 + 67228*uk_119 + 2320297*uk_12 + 129472*uk_120 + 142800*uk_121 + 413168*uk_122 + 93296*uk_123 + 157500*uk_124 + 455700*uk_125 + 102900*uk_126 + 1318492*uk_127 + 297724*uk_128 + 67228*uk_129 + 3220004*uk_13 + 117649*uk_130 + 163268*uk_131 + 180075*uk_132 + 521017*uk_133 + 117649*uk_134 + 226576*uk_135 + 249900*uk_136 + 723044*uk_137 + 163268*uk_138 + 275625*uk_139 + 3551475*uk_14 + 797475*uk_140 + 180075*uk_141 + 2307361*uk_142 + 521017*uk_143 + 117649*uk_144 + 314432*uk_145 + 346800*uk_146 + 1003408*uk_147 + 226576*uk_148 + 382500*uk_149 + 10275601*uk_15 + 1106700*uk_150 + 249900*uk_151 + 3202052*uk_152 + 723044*uk_153 + 163268*uk_154 + 421875*uk_155 + 1220625*uk_156 + 275625*uk_157 + 3531675*uk_158 + 797475*uk_159 + 2320297*uk_16 + 180075*uk_160 + 10218313*uk_161 + 2307361*uk_162 + 521017*uk_163 + 117649*uk_164 + 3969*uk_17 + 1764*uk_18 + 3087*uk_19 + 63*uk_2 + 4284*uk_20 + 4725*uk_21 + 13671*uk_22 + 3087*uk_23 + 784*uk_24 + 1372*uk_25 + 1904*uk_26 + 2100*uk_27 + 6076*uk_28 + 1372*uk_29 + 28*uk_3 + 2401*uk_30 + 3332*uk_31 + 3675*uk_32 + 10633*uk_33 + 2401*uk_34 + 4624*uk_35 + 5100*uk_36 + 14756*uk_37 + 3332*uk_38 + 5625*uk_39 + 49*uk_4 + 16275*uk_40 + 3675*uk_41 + 47089*uk_42 + 10633*uk_43 + 2401*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 62784585052*uk_47 + 109873023841*uk_48 + 152476849412*uk_49 + 68*uk_5 + 168172995675*uk_50 + 486580534153*uk_51 + 109873023841*uk_52 + 187944057*uk_53 + 83530692*uk_54 + 146178711*uk_55 + 202860252*uk_56 + 223742925*uk_57 + 647362863*uk_58 + 146178711*uk_59 + 75*uk_6 + 37124752*uk_60 + 64968316*uk_61 + 90160112*uk_62 + 99441300*uk_63 + 287716828*uk_64 + 64968316*uk_65 + 113694553*uk_66 + 157780196*uk_67 + 174022275*uk_68 + 503504449*uk_69 + 217*uk_7 + 113694553*uk_70 + 218960272*uk_71 + 241500300*uk_72 + 698740868*uk_73 + 157780196*uk_74 + 266360625*uk_75 + 770670075*uk_76 + 174022275*uk_77 + 2229805417*uk_78 + 503504449*uk_79 + 49*uk_8 + 113694553*uk_80 + 250047*uk_81 + 111132*uk_82 + 194481*uk_83 + 269892*uk_84 + 297675*uk_85 + 861273*uk_86 + 194481*uk_87 + 49392*uk_88 + 86436*uk_89 + 2242306609*uk_9 + 119952*uk_90 + 132300*uk_91 + 382788*uk_92 + 86436*uk_93 + 151263*uk_94 + 209916*uk_95 + 231525*uk_96 + 669879*uk_97 + 151263*uk_98 + 291312*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 329868*uk_100 + 929628*uk_101 + 119952*uk_102 + 373527*uk_103 + 1052667*uk_104 + 135828*uk_105 + 2966607*uk_106 + 382788*uk_107 + 49392*uk_108 + 421875*uk_109 + 3551475*uk_11 + 157500*uk_110 + 382500*uk_111 + 433125*uk_112 + 1220625*uk_113 + 157500*uk_114 + 58800*uk_115 + 142800*uk_116 + 161700*uk_117 + 455700*uk_118 + 58800*uk_119 + 1325884*uk_12 + 346800*uk_120 + 392700*uk_121 + 1106700*uk_122 + 142800*uk_123 + 444675*uk_124 + 1253175*uk_125 + 161700*uk_126 + 3531675*uk_127 + 455700*uk_128 + 58800*uk_129 + 3220004*uk_13 + 21952*uk_130 + 53312*uk_131 + 60368*uk_132 + 170128*uk_133 + 21952*uk_134 + 129472*uk_135 + 146608*uk_136 + 413168*uk_137 + 53312*uk_138 + 166012*uk_139 + 3646181*uk_14 + 467852*uk_140 + 60368*uk_141 + 1318492*uk_142 + 170128*uk_143 + 21952*uk_144 + 314432*uk_145 + 356048*uk_146 + 1003408*uk_147 + 129472*uk_148 + 403172*uk_149 + 10275601*uk_15 + 1136212*uk_150 + 146608*uk_151 + 3202052*uk_152 + 413168*uk_153 + 53312*uk_154 + 456533*uk_155 + 1286593*uk_156 + 166012*uk_157 + 3625853*uk_158 + 467852*uk_159 + 1325884*uk_16 + 60368*uk_160 + 10218313*uk_161 + 1318492*uk_162 + 170128*uk_163 + 21952*uk_164 + 3969*uk_17 + 4725*uk_18 + 1764*uk_19 + 63*uk_2 + 4284*uk_20 + 4851*uk_21 + 13671*uk_22 + 1764*uk_23 + 5625*uk_24 + 2100*uk_25 + 5100*uk_26 + 5775*uk_27 + 16275*uk_28 + 2100*uk_29 + 75*uk_3 + 784*uk_30 + 1904*uk_31 + 2156*uk_32 + 6076*uk_33 + 784*uk_34 + 4624*uk_35 + 5236*uk_36 + 14756*uk_37 + 1904*uk_38 + 5929*uk_39 + 28*uk_4 + 16709*uk_40 + 2156*uk_41 + 47089*uk_42 + 6076*uk_43 + 784*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 168172995675*uk_47 + 62784585052*uk_48 + 152476849412*uk_49 + 68*uk_5 + 172657608893*uk_50 + 486580534153*uk_51 + 62784585052*uk_52 + 187944057*uk_53 + 223742925*uk_54 + 83530692*uk_55 + 202860252*uk_56 + 229709403*uk_57 + 647362863*uk_58 + 83530692*uk_59 + 77*uk_6 + 266360625*uk_60 + 99441300*uk_61 + 241500300*uk_62 + 273463575*uk_63 + 770670075*uk_64 + 99441300*uk_65 + 37124752*uk_66 + 90160112*uk_67 + 102093068*uk_68 + 287716828*uk_69 + 217*uk_7 + 37124752*uk_70 + 218960272*uk_71 + 247940308*uk_72 + 698740868*uk_73 + 90160112*uk_74 + 280755937*uk_75 + 791221277*uk_76 + 102093068*uk_77 + 2229805417*uk_78 + 287716828*uk_79 + 28*uk_8 + 37124752*uk_80 + 250047*uk_81 + 297675*uk_82 + 111132*uk_83 + 269892*uk_84 + 305613*uk_85 + 861273*uk_86 + 111132*uk_87 + 354375*uk_88 + 132300*uk_89 + 2242306609*uk_9 + 321300*uk_90 + 363825*uk_91 + 1025325*uk_92 + 132300*uk_93 + 49392*uk_94 + 119952*uk_95 + 135828*uk_96 + 382788*uk_97 + 49392*uk_98 + 291312*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 298620*uk_100 + 820260*uk_101 + 283500*uk_102 + 393183*uk_103 + 1080009*uk_104 + 373275*uk_105 + 2966607*uk_106 + 1025325*uk_107 + 354375*uk_108 + 32768*uk_109 + 1515296*uk_11 + 76800*uk_110 + 61440*uk_111 + 80896*uk_112 + 222208*uk_113 + 76800*uk_114 + 180000*uk_115 + 144000*uk_116 + 189600*uk_117 + 520800*uk_118 + 180000*uk_119 + 3551475*uk_12 + 115200*uk_120 + 151680*uk_121 + 416640*uk_122 + 144000*uk_123 + 199712*uk_124 + 548576*uk_125 + 189600*uk_126 + 1506848*uk_127 + 520800*uk_128 + 180000*uk_129 + 2841180*uk_13 + 421875*uk_130 + 337500*uk_131 + 444375*uk_132 + 1220625*uk_133 + 421875*uk_134 + 270000*uk_135 + 355500*uk_136 + 976500*uk_137 + 337500*uk_138 + 468075*uk_139 + 3740887*uk_14 + 1285725*uk_140 + 444375*uk_141 + 3531675*uk_142 + 1220625*uk_143 + 421875*uk_144 + 216000*uk_145 + 284400*uk_146 + 781200*uk_147 + 270000*uk_148 + 374460*uk_149 + 10275601*uk_15 + 1028580*uk_150 + 355500*uk_151 + 2825340*uk_152 + 976500*uk_153 + 337500*uk_154 + 493039*uk_155 + 1354297*uk_156 + 468075*uk_157 + 3720031*uk_158 + 1285725*uk_159 + 3551475*uk_16 + 444375*uk_160 + 10218313*uk_161 + 3531675*uk_162 + 1220625*uk_163 + 421875*uk_164 + 3969*uk_17 + 2016*uk_18 + 4725*uk_19 + 63*uk_2 + 3780*uk_20 + 4977*uk_21 + 13671*uk_22 + 4725*uk_23 + 1024*uk_24 + 2400*uk_25 + 1920*uk_26 + 2528*uk_27 + 6944*uk_28 + 2400*uk_29 + 32*uk_3 + 5625*uk_30 + 4500*uk_31 + 5925*uk_32 + 16275*uk_33 + 5625*uk_34 + 3600*uk_35 + 4740*uk_36 + 13020*uk_37 + 4500*uk_38 + 6241*uk_39 + 75*uk_4 + 17143*uk_40 + 5925*uk_41 + 47089*uk_42 + 16275*uk_43 + 5625*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 71753811488*uk_47 + 168172995675*uk_48 + 134538396540*uk_49 + 60*uk_5 + 177142222111*uk_50 + 486580534153*uk_51 + 168172995675*uk_52 + 187944057*uk_53 + 95463648*uk_54 + 223742925*uk_55 + 178994340*uk_56 + 235675881*uk_57 + 647362863*uk_58 + 223742925*uk_59 + 79*uk_6 + 48489472*uk_60 + 113647200*uk_61 + 90917760*uk_62 + 119708384*uk_63 + 328819232*uk_64 + 113647200*uk_65 + 266360625*uk_66 + 213088500*uk_67 + 280566525*uk_68 + 770670075*uk_69 + 217*uk_7 + 266360625*uk_70 + 170470800*uk_71 + 224453220*uk_72 + 616536060*uk_73 + 213088500*uk_74 + 295530073*uk_75 + 811772479*uk_76 + 280566525*uk_77 + 2229805417*uk_78 + 770670075*uk_79 + 75*uk_8 + 266360625*uk_80 + 250047*uk_81 + 127008*uk_82 + 297675*uk_83 + 238140*uk_84 + 313551*uk_85 + 861273*uk_86 + 297675*uk_87 + 64512*uk_88 + 151200*uk_89 + 2242306609*uk_9 + 120960*uk_90 + 159264*uk_91 + 437472*uk_92 + 151200*uk_93 + 354375*uk_94 + 283500*uk_95 + 373275*uk_96 + 1025325*uk_97 + 354375*uk_98 + 226800*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 306180*uk_100 + 820260*uk_101 + 120960*uk_102 + 413343*uk_103 + 1107351*uk_104 + 163296*uk_105 + 2966607*uk_106 + 437472*uk_107 + 64512*uk_108 + 117649*uk_109 + 2320297*uk_11 + 76832*uk_110 + 144060*uk_111 + 194481*uk_112 + 521017*uk_113 + 76832*uk_114 + 50176*uk_115 + 94080*uk_116 + 127008*uk_117 + 340256*uk_118 + 50176*uk_119 + 1515296*uk_12 + 176400*uk_120 + 238140*uk_121 + 637980*uk_122 + 94080*uk_123 + 321489*uk_124 + 861273*uk_125 + 127008*uk_126 + 2307361*uk_127 + 340256*uk_128 + 50176*uk_129 + 2841180*uk_13 + 32768*uk_130 + 61440*uk_131 + 82944*uk_132 + 222208*uk_133 + 32768*uk_134 + 115200*uk_135 + 155520*uk_136 + 416640*uk_137 + 61440*uk_138 + 209952*uk_139 + 3835593*uk_14 + 562464*uk_140 + 82944*uk_141 + 1506848*uk_142 + 222208*uk_143 + 32768*uk_144 + 216000*uk_145 + 291600*uk_146 + 781200*uk_147 + 115200*uk_148 + 393660*uk_149 + 10275601*uk_15 + 1054620*uk_150 + 155520*uk_151 + 2825340*uk_152 + 416640*uk_153 + 61440*uk_154 + 531441*uk_155 + 1423737*uk_156 + 209952*uk_157 + 3814209*uk_158 + 562464*uk_159 + 1515296*uk_16 + 82944*uk_160 + 10218313*uk_161 + 1506848*uk_162 + 222208*uk_163 + 32768*uk_164 + 3969*uk_17 + 3087*uk_18 + 2016*uk_19 + 63*uk_2 + 3780*uk_20 + 5103*uk_21 + 13671*uk_22 + 2016*uk_23 + 2401*uk_24 + 1568*uk_25 + 2940*uk_26 + 3969*uk_27 + 10633*uk_28 + 1568*uk_29 + 49*uk_3 + 1024*uk_30 + 1920*uk_31 + 2592*uk_32 + 6944*uk_33 + 1024*uk_34 + 3600*uk_35 + 4860*uk_36 + 13020*uk_37 + 1920*uk_38 + 6561*uk_39 + 32*uk_4 + 17577*uk_40 + 2592*uk_41 + 47089*uk_42 + 6944*uk_43 + 1024*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 109873023841*uk_47 + 71753811488*uk_48 + 134538396540*uk_49 + 60*uk_5 + 181626835329*uk_50 + 486580534153*uk_51 + 71753811488*uk_52 + 187944057*uk_53 + 146178711*uk_54 + 95463648*uk_55 + 178994340*uk_56 + 241642359*uk_57 + 647362863*uk_58 + 95463648*uk_59 + 81*uk_6 + 113694553*uk_60 + 74249504*uk_61 + 139217820*uk_62 + 187944057*uk_63 + 503504449*uk_64 + 74249504*uk_65 + 48489472*uk_66 + 90917760*uk_67 + 122738976*uk_68 + 328819232*uk_69 + 217*uk_7 + 48489472*uk_70 + 170470800*uk_71 + 230135580*uk_72 + 616536060*uk_73 + 90917760*uk_74 + 310683033*uk_75 + 832323681*uk_76 + 122738976*uk_77 + 2229805417*uk_78 + 328819232*uk_79 + 32*uk_8 + 48489472*uk_80 + 250047*uk_81 + 194481*uk_82 + 127008*uk_83 + 238140*uk_84 + 321489*uk_85 + 861273*uk_86 + 127008*uk_87 + 151263*uk_88 + 98784*uk_89 + 2242306609*uk_9 + 185220*uk_90 + 250047*uk_91 + 669879*uk_92 + 98784*uk_93 + 64512*uk_94 + 120960*uk_95 + 163296*uk_96 + 437472*uk_97 + 64512*uk_98 + 226800*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 292824*uk_100 + 765576*uk_101 + 172872*uk_102 + 434007*uk_103 + 1134693*uk_104 + 256221*uk_105 + 2966607*uk_106 + 669879*uk_107 + 151263*uk_108 + 79507*uk_109 + 2036179*uk_11 + 90601*uk_110 + 103544*uk_111 + 153467*uk_112 + 401233*uk_113 + 90601*uk_114 + 103243*uk_115 + 117992*uk_116 + 174881*uk_117 + 457219*uk_118 + 103243*uk_119 + 2320297*uk_12 + 134848*uk_120 + 199864*uk_121 + 522536*uk_122 + 117992*uk_123 + 296227*uk_124 + 774473*uk_125 + 174881*uk_126 + 2024827*uk_127 + 457219*uk_128 + 103243*uk_129 + 2651768*uk_13 + 117649*uk_130 + 134456*uk_131 + 199283*uk_132 + 521017*uk_133 + 117649*uk_134 + 153664*uk_135 + 227752*uk_136 + 595448*uk_137 + 134456*uk_138 + 337561*uk_139 + 3930299*uk_14 + 882539*uk_140 + 199283*uk_141 + 2307361*uk_142 + 521017*uk_143 + 117649*uk_144 + 175616*uk_145 + 260288*uk_146 + 680512*uk_147 + 153664*uk_148 + 385784*uk_149 + 10275601*uk_15 + 1008616*uk_150 + 227752*uk_151 + 2636984*uk_152 + 595448*uk_153 + 134456*uk_154 + 571787*uk_155 + 1494913*uk_156 + 337561*uk_157 + 3908387*uk_158 + 882539*uk_159 + 2320297*uk_16 + 199283*uk_160 + 10218313*uk_161 + 2307361*uk_162 + 521017*uk_163 + 117649*uk_164 + 3969*uk_17 + 2709*uk_18 + 3087*uk_19 + 63*uk_2 + 3528*uk_20 + 5229*uk_21 + 13671*uk_22 + 3087*uk_23 + 1849*uk_24 + 2107*uk_25 + 2408*uk_26 + 3569*uk_27 + 9331*uk_28 + 2107*uk_29 + 43*uk_3 + 2401*uk_30 + 2744*uk_31 + 4067*uk_32 + 10633*uk_33 + 2401*uk_34 + 3136*uk_35 + 4648*uk_36 + 12152*uk_37 + 2744*uk_38 + 6889*uk_39 + 49*uk_4 + 18011*uk_40 + 4067*uk_41 + 47089*uk_42 + 10633*uk_43 + 2401*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 96419184187*uk_47 + 109873023841*uk_48 + 125569170104*uk_49 + 56*uk_5 + 186111448547*uk_50 + 486580534153*uk_51 + 109873023841*uk_52 + 187944057*uk_53 + 128279277*uk_54 + 146178711*uk_55 + 167061384*uk_56 + 247608837*uk_57 + 647362863*uk_58 + 146178711*uk_59 + 83*uk_6 + 87555697*uk_60 + 99772771*uk_61 + 114026024*uk_62 + 169002857*uk_63 + 441850843*uk_64 + 99772771*uk_65 + 113694553*uk_66 + 129936632*uk_67 + 192584651*uk_68 + 503504449*uk_69 + 217*uk_7 + 113694553*uk_70 + 148499008*uk_71 + 220096744*uk_72 + 575433656*uk_73 + 129936632*uk_74 + 326214817*uk_75 + 852874883*uk_76 + 192584651*uk_77 + 2229805417*uk_78 + 503504449*uk_79 + 49*uk_8 + 113694553*uk_80 + 250047*uk_81 + 170667*uk_82 + 194481*uk_83 + 222264*uk_84 + 329427*uk_85 + 861273*uk_86 + 194481*uk_87 + 116487*uk_88 + 132741*uk_89 + 2242306609*uk_9 + 151704*uk_90 + 224847*uk_91 + 587853*uk_92 + 132741*uk_93 + 151263*uk_94 + 172872*uk_95 + 256221*uk_96 + 669879*uk_97 + 151263*uk_98 + 197568*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 278460*uk_100 + 710892*uk_101 + 140868*uk_102 + 455175*uk_103 + 1162035*uk_104 + 230265*uk_105 + 2966607*uk_106 + 587853*uk_107 + 116487*uk_108 + 512*uk_109 + 378824*uk_11 + 2752*uk_110 + 3328*uk_111 + 5440*uk_112 + 13888*uk_113 + 2752*uk_114 + 14792*uk_115 + 17888*uk_116 + 29240*uk_117 + 74648*uk_118 + 14792*uk_119 + 2036179*uk_12 + 21632*uk_120 + 35360*uk_121 + 90272*uk_122 + 17888*uk_123 + 57800*uk_124 + 147560*uk_125 + 29240*uk_126 + 376712*uk_127 + 74648*uk_128 + 14792*uk_129 + 2462356*uk_13 + 79507*uk_130 + 96148*uk_131 + 157165*uk_132 + 401233*uk_133 + 79507*uk_134 + 116272*uk_135 + 190060*uk_136 + 485212*uk_137 + 96148*uk_138 + 310675*uk_139 + 4025005*uk_14 + 793135*uk_140 + 157165*uk_141 + 2024827*uk_142 + 401233*uk_143 + 79507*uk_144 + 140608*uk_145 + 229840*uk_146 + 586768*uk_147 + 116272*uk_148 + 375700*uk_149 + 10275601*uk_15 + 959140*uk_150 + 190060*uk_151 + 2448628*uk_152 + 485212*uk_153 + 96148*uk_154 + 614125*uk_155 + 1567825*uk_156 + 310675*uk_157 + 4002565*uk_158 + 793135*uk_159 + 2036179*uk_16 + 157165*uk_160 + 10218313*uk_161 + 2024827*uk_162 + 401233*uk_163 + 79507*uk_164 + 3969*uk_17 + 504*uk_18 + 2709*uk_19 + 63*uk_2 + 3276*uk_20 + 5355*uk_21 + 13671*uk_22 + 2709*uk_23 + 64*uk_24 + 344*uk_25 + 416*uk_26 + 680*uk_27 + 1736*uk_28 + 344*uk_29 + 8*uk_3 + 1849*uk_30 + 2236*uk_31 + 3655*uk_32 + 9331*uk_33 + 1849*uk_34 + 2704*uk_35 + 4420*uk_36 + 11284*uk_37 + 2236*uk_38 + 7225*uk_39 + 43*uk_4 + 18445*uk_40 + 3655*uk_41 + 47089*uk_42 + 9331*uk_43 + 1849*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 17938452872*uk_47 + 96419184187*uk_48 + 116599943668*uk_49 + 52*uk_5 + 190596061765*uk_50 + 486580534153*uk_51 + 96419184187*uk_52 + 187944057*uk_53 + 23865912*uk_54 + 128279277*uk_55 + 155128428*uk_56 + 253575315*uk_57 + 647362863*uk_58 + 128279277*uk_59 + 85*uk_6 + 3030592*uk_60 + 16289432*uk_61 + 19698848*uk_62 + 32200040*uk_63 + 82204808*uk_64 + 16289432*uk_65 + 87555697*uk_66 + 105881308*uk_67 + 173075215*uk_68 + 441850843*uk_69 + 217*uk_7 + 87555697*uk_70 + 128042512*uk_71 + 209300260*uk_72 + 534331252*uk_73 + 105881308*uk_74 + 342125425*uk_75 + 873426085*uk_76 + 173075215*uk_77 + 2229805417*uk_78 + 441850843*uk_79 + 43*uk_8 + 87555697*uk_80 + 250047*uk_81 + 31752*uk_82 + 170667*uk_83 + 206388*uk_84 + 337365*uk_85 + 861273*uk_86 + 170667*uk_87 + 4032*uk_88 + 21672*uk_89 + 2242306609*uk_9 + 26208*uk_90 + 42840*uk_91 + 109368*uk_92 + 21672*uk_93 + 116487*uk_94 + 140868*uk_95 + 230265*uk_96 + 587853*uk_97 + 116487*uk_98 + 170352*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 285012*uk_100 + 710892*uk_101 + 26208*uk_102 + 476847*uk_103 + 1189377*uk_104 + 43848*uk_105 + 2966607*uk_106 + 109368*uk_107 + 4032*uk_108 + 15625*uk_109 + 1183825*uk_11 + 5000*uk_110 + 32500*uk_111 + 54375*uk_112 + 135625*uk_113 + 5000*uk_114 + 1600*uk_115 + 10400*uk_116 + 17400*uk_117 + 43400*uk_118 + 1600*uk_119 + 378824*uk_12 + 67600*uk_120 + 113100*uk_121 + 282100*uk_122 + 10400*uk_123 + 189225*uk_124 + 471975*uk_125 + 17400*uk_126 + 1177225*uk_127 + 43400*uk_128 + 1600*uk_129 + 2462356*uk_13 + 512*uk_130 + 3328*uk_131 + 5568*uk_132 + 13888*uk_133 + 512*uk_134 + 21632*uk_135 + 36192*uk_136 + 90272*uk_137 + 3328*uk_138 + 60552*uk_139 + 4119711*uk_14 + 151032*uk_140 + 5568*uk_141 + 376712*uk_142 + 13888*uk_143 + 512*uk_144 + 140608*uk_145 + 235248*uk_146 + 586768*uk_147 + 21632*uk_148 + 393588*uk_149 + 10275601*uk_15 + 981708*uk_150 + 36192*uk_151 + 2448628*uk_152 + 90272*uk_153 + 3328*uk_154 + 658503*uk_155 + 1642473*uk_156 + 60552*uk_157 + 4096743*uk_158 + 151032*uk_159 + 378824*uk_16 + 5568*uk_160 + 10218313*uk_161 + 376712*uk_162 + 13888*uk_163 + 512*uk_164 + 3969*uk_17 + 1575*uk_18 + 504*uk_19 + 63*uk_2 + 3276*uk_20 + 5481*uk_21 + 13671*uk_22 + 504*uk_23 + 625*uk_24 + 200*uk_25 + 1300*uk_26 + 2175*uk_27 + 5425*uk_28 + 200*uk_29 + 25*uk_3 + 64*uk_30 + 416*uk_31 + 696*uk_32 + 1736*uk_33 + 64*uk_34 + 2704*uk_35 + 4524*uk_36 + 11284*uk_37 + 416*uk_38 + 7569*uk_39 + 8*uk_4 + 18879*uk_40 + 696*uk_41 + 47089*uk_42 + 1736*uk_43 + 64*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 56057665225*uk_47 + 17938452872*uk_48 + 116599943668*uk_49 + 52*uk_5 + 195080674983*uk_50 + 486580534153*uk_51 + 17938452872*uk_52 + 187944057*uk_53 + 74580975*uk_54 + 23865912*uk_55 + 155128428*uk_56 + 259541793*uk_57 + 647362863*uk_58 + 23865912*uk_59 + 87*uk_6 + 29595625*uk_60 + 9470600*uk_61 + 61558900*uk_62 + 102992775*uk_63 + 256890025*uk_64 + 9470600*uk_65 + 3030592*uk_66 + 19698848*uk_67 + 32957688*uk_68 + 82204808*uk_69 + 217*uk_7 + 3030592*uk_70 + 128042512*uk_71 + 214224972*uk_72 + 534331252*uk_73 + 19698848*uk_74 + 358414857*uk_75 + 893977287*uk_76 + 32957688*uk_77 + 2229805417*uk_78 + 82204808*uk_79 + 8*uk_8 + 3030592*uk_80 + 250047*uk_81 + 99225*uk_82 + 31752*uk_83 + 206388*uk_84 + 345303*uk_85 + 861273*uk_86 + 31752*uk_87 + 39375*uk_88 + 12600*uk_89 + 2242306609*uk_9 + 81900*uk_90 + 137025*uk_91 + 341775*uk_92 + 12600*uk_93 + 4032*uk_94 + 26208*uk_95 + 43848*uk_96 + 109368*uk_97 + 4032*uk_98 + 170352*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 269136*uk_100 + 656208*uk_101 + 75600*uk_102 + 499023*uk_103 + 1216719*uk_104 + 140175*uk_105 + 2966607*uk_106 + 341775*uk_107 + 39375*uk_108 + 125*uk_109 + 236765*uk_11 + 625*uk_110 + 1200*uk_111 + 2225*uk_112 + 5425*uk_113 + 625*uk_114 + 3125*uk_115 + 6000*uk_116 + 11125*uk_117 + 27125*uk_118 + 3125*uk_119 + 1183825*uk_12 + 11520*uk_120 + 21360*uk_121 + 52080*uk_122 + 6000*uk_123 + 39605*uk_124 + 96565*uk_125 + 11125*uk_126 + 235445*uk_127 + 27125*uk_128 + 3125*uk_129 + 2272944*uk_13 + 15625*uk_130 + 30000*uk_131 + 55625*uk_132 + 135625*uk_133 + 15625*uk_134 + 57600*uk_135 + 106800*uk_136 + 260400*uk_137 + 30000*uk_138 + 198025*uk_139 + 4214417*uk_14 + 482825*uk_140 + 55625*uk_141 + 1177225*uk_142 + 135625*uk_143 + 15625*uk_144 + 110592*uk_145 + 205056*uk_146 + 499968*uk_147 + 57600*uk_148 + 380208*uk_149 + 10275601*uk_15 + 927024*uk_150 + 106800*uk_151 + 2260272*uk_152 + 260400*uk_153 + 30000*uk_154 + 704969*uk_155 + 1718857*uk_156 + 198025*uk_157 + 4190921*uk_158 + 482825*uk_159 + 1183825*uk_16 + 55625*uk_160 + 10218313*uk_161 + 1177225*uk_162 + 135625*uk_163 + 15625*uk_164 + 3969*uk_17 + 315*uk_18 + 1575*uk_19 + 63*uk_2 + 3024*uk_20 + 5607*uk_21 + 13671*uk_22 + 1575*uk_23 + 25*uk_24 + 125*uk_25 + 240*uk_26 + 445*uk_27 + 1085*uk_28 + 125*uk_29 + 5*uk_3 + 625*uk_30 + 1200*uk_31 + 2225*uk_32 + 5425*uk_33 + 625*uk_34 + 2304*uk_35 + 4272*uk_36 + 10416*uk_37 + 1200*uk_38 + 7921*uk_39 + 25*uk_4 + 19313*uk_40 + 2225*uk_41 + 47089*uk_42 + 5425*uk_43 + 625*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 11211533045*uk_47 + 56057665225*uk_48 + 107630717232*uk_49 + 48*uk_5 + 199565288201*uk_50 + 486580534153*uk_51 + 56057665225*uk_52 + 187944057*uk_53 + 14916195*uk_54 + 74580975*uk_55 + 143195472*uk_56 + 265508271*uk_57 + 647362863*uk_58 + 74580975*uk_59 + 89*uk_6 + 1183825*uk_60 + 5919125*uk_61 + 11364720*uk_62 + 21072085*uk_63 + 51378005*uk_64 + 5919125*uk_65 + 29595625*uk_66 + 56823600*uk_67 + 105360425*uk_68 + 256890025*uk_69 + 217*uk_7 + 29595625*uk_70 + 109101312*uk_71 + 202292016*uk_72 + 493228848*uk_73 + 56823600*uk_74 + 375083113*uk_75 + 914528489*uk_76 + 105360425*uk_77 + 2229805417*uk_78 + 256890025*uk_79 + 25*uk_8 + 29595625*uk_80 + 250047*uk_81 + 19845*uk_82 + 99225*uk_83 + 190512*uk_84 + 353241*uk_85 + 861273*uk_86 + 99225*uk_87 + 1575*uk_88 + 7875*uk_89 + 2242306609*uk_9 + 15120*uk_90 + 28035*uk_91 + 68355*uk_92 + 7875*uk_93 + 39375*uk_94 + 75600*uk_95 + 140175*uk_96 + 341775*uk_97 + 39375*uk_98 + 145152*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 275184*uk_100 + 656208*uk_101 + 15120*uk_102 + 521703*uk_103 + 1244061*uk_104 + 28665*uk_105 + 2966607*uk_106 + 68355*uk_107 + 1575*uk_108 + 35937*uk_109 + 1562649*uk_11 + 5445*uk_110 + 52272*uk_111 + 99099*uk_112 + 236313*uk_113 + 5445*uk_114 + 825*uk_115 + 7920*uk_116 + 15015*uk_117 + 35805*uk_118 + 825*uk_119 + 236765*uk_12 + 76032*uk_120 + 144144*uk_121 + 343728*uk_122 + 7920*uk_123 + 273273*uk_124 + 651651*uk_125 + 15015*uk_126 + 1553937*uk_127 + 35805*uk_128 + 825*uk_129 + 2272944*uk_13 + 125*uk_130 + 1200*uk_131 + 2275*uk_132 + 5425*uk_133 + 125*uk_134 + 11520*uk_135 + 21840*uk_136 + 52080*uk_137 + 1200*uk_138 + 41405*uk_139 + 4309123*uk_14 + 98735*uk_140 + 2275*uk_141 + 235445*uk_142 + 5425*uk_143 + 125*uk_144 + 110592*uk_145 + 209664*uk_146 + 499968*uk_147 + 11520*uk_148 + 397488*uk_149 + 10275601*uk_15 + 947856*uk_150 + 21840*uk_151 + 2260272*uk_152 + 52080*uk_153 + 1200*uk_154 + 753571*uk_155 + 1796977*uk_156 + 41405*uk_157 + 4285099*uk_158 + 98735*uk_159 + 236765*uk_16 + 2275*uk_160 + 10218313*uk_161 + 235445*uk_162 + 5425*uk_163 + 125*uk_164 + 3969*uk_17 + 2079*uk_18 + 315*uk_19 + 63*uk_2 + 3024*uk_20 + 5733*uk_21 + 13671*uk_22 + 315*uk_23 + 1089*uk_24 + 165*uk_25 + 1584*uk_26 + 3003*uk_27 + 7161*uk_28 + 165*uk_29 + 33*uk_3 + 25*uk_30 + 240*uk_31 + 455*uk_32 + 1085*uk_33 + 25*uk_34 + 2304*uk_35 + 4368*uk_36 + 10416*uk_37 + 240*uk_38 + 8281*uk_39 + 5*uk_4 + 19747*uk_40 + 455*uk_41 + 47089*uk_42 + 1085*uk_43 + 25*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 73996118097*uk_47 + 11211533045*uk_48 + 107630717232*uk_49 + 48*uk_5 + 204049901419*uk_50 + 486580534153*uk_51 + 11211533045*uk_52 + 187944057*uk_53 + 98446887*uk_54 + 14916195*uk_55 + 143195472*uk_56 + 271474749*uk_57 + 647362863*uk_58 + 14916195*uk_59 + 91*uk_6 + 51567417*uk_60 + 7813245*uk_61 + 75007152*uk_62 + 142201059*uk_63 + 339094833*uk_64 + 7813245*uk_65 + 1183825*uk_66 + 11364720*uk_67 + 21545615*uk_68 + 51378005*uk_69 + 217*uk_7 + 1183825*uk_70 + 109101312*uk_71 + 206837904*uk_72 + 493228848*uk_73 + 11364720*uk_74 + 392130193*uk_75 + 935079691*uk_76 + 21545615*uk_77 + 2229805417*uk_78 + 51378005*uk_79 + 5*uk_8 + 1183825*uk_80 + 250047*uk_81 + 130977*uk_82 + 19845*uk_83 + 190512*uk_84 + 361179*uk_85 + 861273*uk_86 + 19845*uk_87 + 68607*uk_88 + 10395*uk_89 + 2242306609*uk_9 + 99792*uk_90 + 189189*uk_91 + 451143*uk_92 + 10395*uk_93 + 1575*uk_94 + 15120*uk_95 + 28665*uk_96 + 68355*uk_97 + 1575*uk_98 + 145152*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 257796*uk_100 + 601524*uk_101 + 91476*uk_102 + 544887*uk_103 + 1271403*uk_104 + 193347*uk_105 + 2966607*uk_106 + 451143*uk_107 + 68607*uk_108 + 4096*uk_109 + 757648*uk_11 + 8448*uk_110 + 11264*uk_111 + 23808*uk_112 + 55552*uk_113 + 8448*uk_114 + 17424*uk_115 + 23232*uk_116 + 49104*uk_117 + 114576*uk_118 + 17424*uk_119 + 1562649*uk_12 + 30976*uk_120 + 65472*uk_121 + 152768*uk_122 + 23232*uk_123 + 138384*uk_124 + 322896*uk_125 + 49104*uk_126 + 753424*uk_127 + 114576*uk_128 + 17424*uk_129 + 2083532*uk_13 + 35937*uk_130 + 47916*uk_131 + 101277*uk_132 + 236313*uk_133 + 35937*uk_134 + 63888*uk_135 + 135036*uk_136 + 315084*uk_137 + 47916*uk_138 + 285417*uk_139 + 4403829*uk_14 + 665973*uk_140 + 101277*uk_141 + 1553937*uk_142 + 236313*uk_143 + 35937*uk_144 + 85184*uk_145 + 180048*uk_146 + 420112*uk_147 + 63888*uk_148 + 380556*uk_149 + 10275601*uk_15 + 887964*uk_150 + 135036*uk_151 + 2071916*uk_152 + 315084*uk_153 + 47916*uk_154 + 804357*uk_155 + 1876833*uk_156 + 285417*uk_157 + 4379277*uk_158 + 665973*uk_159 + 1562649*uk_16 + 101277*uk_160 + 10218313*uk_161 + 1553937*uk_162 + 236313*uk_163 + 35937*uk_164 + 3969*uk_17 + 1008*uk_18 + 2079*uk_19 + 63*uk_2 + 2772*uk_20 + 5859*uk_21 + 13671*uk_22 + 2079*uk_23 + 256*uk_24 + 528*uk_25 + 704*uk_26 + 1488*uk_27 + 3472*uk_28 + 528*uk_29 + 16*uk_3 + 1089*uk_30 + 1452*uk_31 + 3069*uk_32 + 7161*uk_33 + 1089*uk_34 + 1936*uk_35 + 4092*uk_36 + 9548*uk_37 + 1452*uk_38 + 8649*uk_39 + 33*uk_4 + 20181*uk_40 + 3069*uk_41 + 47089*uk_42 + 7161*uk_43 + 1089*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 35876905744*uk_47 + 73996118097*uk_48 + 98661490796*uk_49 + 44*uk_5 + 208534514637*uk_50 + 486580534153*uk_51 + 73996118097*uk_52 + 187944057*uk_53 + 47731824*uk_54 + 98446887*uk_55 + 131262516*uk_56 + 277441227*uk_57 + 647362863*uk_58 + 98446887*uk_59 + 93*uk_6 + 12122368*uk_60 + 25002384*uk_61 + 33336512*uk_62 + 70461264*uk_63 + 164409616*uk_64 + 25002384*uk_65 + 51567417*uk_66 + 68756556*uk_67 + 145326357*uk_68 + 339094833*uk_69 + 217*uk_7 + 51567417*uk_70 + 91675408*uk_71 + 193768476*uk_72 + 452126444*uk_73 + 68756556*uk_74 + 409556097*uk_75 + 955630893*uk_76 + 145326357*uk_77 + 2229805417*uk_78 + 339094833*uk_79 + 33*uk_8 + 51567417*uk_80 + 250047*uk_81 + 63504*uk_82 + 130977*uk_83 + 174636*uk_84 + 369117*uk_85 + 861273*uk_86 + 130977*uk_87 + 16128*uk_88 + 33264*uk_89 + 2242306609*uk_9 + 44352*uk_90 + 93744*uk_91 + 218736*uk_92 + 33264*uk_93 + 68607*uk_94 + 91476*uk_95 + 193347*uk_96 + 451143*uk_97 + 68607*uk_98 + 121968*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 263340*uk_100 + 601524*uk_101 + 44352*uk_102 + 568575*uk_103 + 1298745*uk_104 + 95760*uk_105 + 2966607*uk_106 + 218736*uk_107 + 16128*uk_108 + 79507*uk_109 + 2036179*uk_11 + 29584*uk_110 + 81356*uk_111 + 175655*uk_112 + 401233*uk_113 + 29584*uk_114 + 11008*uk_115 + 30272*uk_116 + 65360*uk_117 + 149296*uk_118 + 11008*uk_119 + 757648*uk_12 + 83248*uk_120 + 179740*uk_121 + 410564*uk_122 + 30272*uk_123 + 388075*uk_124 + 886445*uk_125 + 65360*uk_126 + 2024827*uk_127 + 149296*uk_128 + 11008*uk_129 + 2083532*uk_13 + 4096*uk_130 + 11264*uk_131 + 24320*uk_132 + 55552*uk_133 + 4096*uk_134 + 30976*uk_135 + 66880*uk_136 + 152768*uk_137 + 11264*uk_138 + 144400*uk_139 + 4498535*uk_14 + 329840*uk_140 + 24320*uk_141 + 753424*uk_142 + 55552*uk_143 + 4096*uk_144 + 85184*uk_145 + 183920*uk_146 + 420112*uk_147 + 30976*uk_148 + 397100*uk_149 + 10275601*uk_15 + 907060*uk_150 + 66880*uk_151 + 2071916*uk_152 + 152768*uk_153 + 11264*uk_154 + 857375*uk_155 + 1958425*uk_156 + 144400*uk_157 + 4473455*uk_158 + 329840*uk_159 + 757648*uk_16 + 24320*uk_160 + 10218313*uk_161 + 753424*uk_162 + 55552*uk_163 + 4096*uk_164 + 3969*uk_17 + 2709*uk_18 + 1008*uk_19 + 63*uk_2 + 2772*uk_20 + 5985*uk_21 + 13671*uk_22 + 1008*uk_23 + 1849*uk_24 + 688*uk_25 + 1892*uk_26 + 4085*uk_27 + 9331*uk_28 + 688*uk_29 + 43*uk_3 + 256*uk_30 + 704*uk_31 + 1520*uk_32 + 3472*uk_33 + 256*uk_34 + 1936*uk_35 + 4180*uk_36 + 9548*uk_37 + 704*uk_38 + 9025*uk_39 + 16*uk_4 + 20615*uk_40 + 1520*uk_41 + 47089*uk_42 + 3472*uk_43 + 256*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 96419184187*uk_47 + 35876905744*uk_48 + 98661490796*uk_49 + 44*uk_5 + 213019127855*uk_50 + 486580534153*uk_51 + 35876905744*uk_52 + 187944057*uk_53 + 128279277*uk_54 + 47731824*uk_55 + 131262516*uk_56 + 283407705*uk_57 + 647362863*uk_58 + 47731824*uk_59 + 95*uk_6 + 87555697*uk_60 + 32578864*uk_61 + 89591876*uk_62 + 193437005*uk_63 + 441850843*uk_64 + 32578864*uk_65 + 12122368*uk_66 + 33336512*uk_67 + 71976560*uk_68 + 164409616*uk_69 + 217*uk_7 + 12122368*uk_70 + 91675408*uk_71 + 197935540*uk_72 + 452126444*uk_73 + 33336512*uk_74 + 427360825*uk_75 + 976182095*uk_76 + 71976560*uk_77 + 2229805417*uk_78 + 164409616*uk_79 + 16*uk_8 + 12122368*uk_80 + 250047*uk_81 + 170667*uk_82 + 63504*uk_83 + 174636*uk_84 + 377055*uk_85 + 861273*uk_86 + 63504*uk_87 + 116487*uk_88 + 43344*uk_89 + 2242306609*uk_9 + 119196*uk_90 + 257355*uk_91 + 587853*uk_92 + 43344*uk_93 + 16128*uk_94 + 44352*uk_95 + 95760*uk_96 + 218736*uk_97 + 16128*uk_98 + 121968*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 244440*uk_100 + 546840*uk_101 + 108360*uk_102 + 592767*uk_103 + 1326087*uk_104 + 262773*uk_105 + 2966607*uk_106 + 587853*uk_107 + 116487*uk_108 + 4913*uk_109 + 805001*uk_11 + 12427*uk_110 + 11560*uk_111 + 28033*uk_112 + 62713*uk_113 + 12427*uk_114 + 31433*uk_115 + 29240*uk_116 + 70907*uk_117 + 158627*uk_118 + 31433*uk_119 + 2036179*uk_12 + 27200*uk_120 + 65960*uk_121 + 147560*uk_122 + 29240*uk_123 + 159953*uk_124 + 357833*uk_125 + 70907*uk_126 + 800513*uk_127 + 158627*uk_128 + 31433*uk_129 + 1894120*uk_13 + 79507*uk_130 + 73960*uk_131 + 179353*uk_132 + 401233*uk_133 + 79507*uk_134 + 68800*uk_135 + 166840*uk_136 + 373240*uk_137 + 73960*uk_138 + 404587*uk_139 + 4593241*uk_14 + 905107*uk_140 + 179353*uk_141 + 2024827*uk_142 + 401233*uk_143 + 79507*uk_144 + 64000*uk_145 + 155200*uk_146 + 347200*uk_147 + 68800*uk_148 + 376360*uk_149 + 10275601*uk_15 + 841960*uk_150 + 166840*uk_151 + 1883560*uk_152 + 373240*uk_153 + 73960*uk_154 + 912673*uk_155 + 2041753*uk_156 + 404587*uk_157 + 4567633*uk_158 + 905107*uk_159 + 2036179*uk_16 + 179353*uk_160 + 10218313*uk_161 + 2024827*uk_162 + 401233*uk_163 + 79507*uk_164 + 3969*uk_17 + 1071*uk_18 + 2709*uk_19 + 63*uk_2 + 2520*uk_20 + 6111*uk_21 + 13671*uk_22 + 2709*uk_23 + 289*uk_24 + 731*uk_25 + 680*uk_26 + 1649*uk_27 + 3689*uk_28 + 731*uk_29 + 17*uk_3 + 1849*uk_30 + 1720*uk_31 + 4171*uk_32 + 9331*uk_33 + 1849*uk_34 + 1600*uk_35 + 3880*uk_36 + 8680*uk_37 + 1720*uk_38 + 9409*uk_39 + 43*uk_4 + 21049*uk_40 + 4171*uk_41 + 47089*uk_42 + 9331*uk_43 + 1849*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 38119212353*uk_47 + 96419184187*uk_48 + 89692264360*uk_49 + 40*uk_5 + 217503741073*uk_50 + 486580534153*uk_51 + 96419184187*uk_52 + 187944057*uk_53 + 50715063*uk_54 + 128279277*uk_55 + 119329560*uk_56 + 289374183*uk_57 + 647362863*uk_58 + 128279277*uk_59 + 97*uk_6 + 13685017*uk_60 + 34615043*uk_61 + 32200040*uk_62 + 78085097*uk_63 + 174685217*uk_64 + 34615043*uk_65 + 87555697*uk_66 + 81447160*uk_67 + 197509363*uk_68 + 441850843*uk_69 + 217*uk_7 + 87555697*uk_70 + 75764800*uk_71 + 183729640*uk_72 + 411024040*uk_73 + 81447160*uk_74 + 445544377*uk_75 + 996733297*uk_76 + 197509363*uk_77 + 2229805417*uk_78 + 441850843*uk_79 + 43*uk_8 + 87555697*uk_80 + 250047*uk_81 + 67473*uk_82 + 170667*uk_83 + 158760*uk_84 + 384993*uk_85 + 861273*uk_86 + 170667*uk_87 + 18207*uk_88 + 46053*uk_89 + 2242306609*uk_9 + 42840*uk_90 + 103887*uk_91 + 232407*uk_92 + 46053*uk_93 + 116487*uk_94 + 108360*uk_95 + 262773*uk_96 + 587853*uk_97 + 116487*uk_98 + 100800*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 249480*uk_100 + 546840*uk_101 + 42840*uk_102 + 617463*uk_103 + 1353429*uk_104 + 106029*uk_105 + 2966607*uk_106 + 232407*uk_107 + 18207*uk_108 + 29791*uk_109 + 1467943*uk_11 + 16337*uk_110 + 38440*uk_111 + 95139*uk_112 + 208537*uk_113 + 16337*uk_114 + 8959*uk_115 + 21080*uk_116 + 52173*uk_117 + 114359*uk_118 + 8959*uk_119 + 805001*uk_12 + 49600*uk_120 + 122760*uk_121 + 269080*uk_122 + 21080*uk_123 + 303831*uk_124 + 665973*uk_125 + 52173*uk_126 + 1459759*uk_127 + 114359*uk_128 + 8959*uk_129 + 1894120*uk_13 + 4913*uk_130 + 11560*uk_131 + 28611*uk_132 + 62713*uk_133 + 4913*uk_134 + 27200*uk_135 + 67320*uk_136 + 147560*uk_137 + 11560*uk_138 + 166617*uk_139 + 4687947*uk_14 + 365211*uk_140 + 28611*uk_141 + 800513*uk_142 + 62713*uk_143 + 4913*uk_144 + 64000*uk_145 + 158400*uk_146 + 347200*uk_147 + 27200*uk_148 + 392040*uk_149 + 10275601*uk_15 + 859320*uk_150 + 67320*uk_151 + 1883560*uk_152 + 147560*uk_153 + 11560*uk_154 + 970299*uk_155 + 2126817*uk_156 + 166617*uk_157 + 4661811*uk_158 + 365211*uk_159 + 805001*uk_16 + 28611*uk_160 + 10218313*uk_161 + 800513*uk_162 + 62713*uk_163 + 4913*uk_164 + 3969*uk_17 + 1953*uk_18 + 1071*uk_19 + 63*uk_2 + 2520*uk_20 + 6237*uk_21 + 13671*uk_22 + 1071*uk_23 + 961*uk_24 + 527*uk_25 + 1240*uk_26 + 3069*uk_27 + 6727*uk_28 + 527*uk_29 + 31*uk_3 + 289*uk_30 + 680*uk_31 + 1683*uk_32 + 3689*uk_33 + 289*uk_34 + 1600*uk_35 + 3960*uk_36 + 8680*uk_37 + 680*uk_38 + 9801*uk_39 + 17*uk_4 + 21483*uk_40 + 1683*uk_41 + 47089*uk_42 + 3689*uk_43 + 289*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 69511504879*uk_47 + 38119212353*uk_48 + 89692264360*uk_49 + 40*uk_5 + 221988354291*uk_50 + 486580534153*uk_51 + 38119212353*uk_52 + 187944057*uk_53 + 92480409*uk_54 + 50715063*uk_55 + 119329560*uk_56 + 295340661*uk_57 + 647362863*uk_58 + 50715063*uk_59 + 99*uk_6 + 45506233*uk_60 + 24955031*uk_61 + 58717720*uk_62 + 145326357*uk_63 + 318543631*uk_64 + 24955031*uk_65 + 13685017*uk_66 + 32200040*uk_67 + 79695099*uk_68 + 174685217*uk_69 + 217*uk_7 + 13685017*uk_70 + 75764800*uk_71 + 187517880*uk_72 + 411024040*uk_73 + 32200040*uk_74 + 464106753*uk_75 + 1017284499*uk_76 + 79695099*uk_77 + 2229805417*uk_78 + 174685217*uk_79 + 17*uk_8 + 13685017*uk_80 + 250047*uk_81 + 123039*uk_82 + 67473*uk_83 + 158760*uk_84 + 392931*uk_85 + 861273*uk_86 + 67473*uk_87 + 60543*uk_88 + 33201*uk_89 + 2242306609*uk_9 + 78120*uk_90 + 193347*uk_91 + 423801*uk_92 + 33201*uk_93 + 18207*uk_94 + 42840*uk_95 + 106029*uk_96 + 232407*uk_97 + 18207*uk_98 + 100800*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 254520*uk_100 + 546840*uk_101 + 78120*uk_102 + 642663*uk_103 + 1380771*uk_104 + 197253*uk_105 + 2966607*uk_106 + 423801*uk_107 + 60543*uk_108 + 614125*uk_109 + 4025005*uk_11 + 223975*uk_110 + 289000*uk_111 + 729725*uk_112 + 1567825*uk_113 + 223975*uk_114 + 81685*uk_115 + 105400*uk_116 + 266135*uk_117 + 571795*uk_118 + 81685*uk_119 + 1467943*uk_12 + 136000*uk_120 + 343400*uk_121 + 737800*uk_122 + 105400*uk_123 + 867085*uk_124 + 1862945*uk_125 + 266135*uk_126 + 4002565*uk_127 + 571795*uk_128 + 81685*uk_129 + 1894120*uk_13 + 29791*uk_130 + 38440*uk_131 + 97061*uk_132 + 208537*uk_133 + 29791*uk_134 + 49600*uk_135 + 125240*uk_136 + 269080*uk_137 + 38440*uk_138 + 316231*uk_139 + 4782653*uk_14 + 679427*uk_140 + 97061*uk_141 + 1459759*uk_142 + 208537*uk_143 + 29791*uk_144 + 64000*uk_145 + 161600*uk_146 + 347200*uk_147 + 49600*uk_148 + 408040*uk_149 + 10275601*uk_15 + 876680*uk_150 + 125240*uk_151 + 1883560*uk_152 + 269080*uk_153 + 38440*uk_154 + 1030301*uk_155 + 2213617*uk_156 + 316231*uk_157 + 4755989*uk_158 + 679427*uk_159 + 1467943*uk_16 + 97061*uk_160 + 10218313*uk_161 + 1459759*uk_162 + 208537*uk_163 + 29791*uk_164 + 3969*uk_17 + 5355*uk_18 + 1953*uk_19 + 63*uk_2 + 2520*uk_20 + 6363*uk_21 + 13671*uk_22 + 1953*uk_23 + 7225*uk_24 + 2635*uk_25 + 3400*uk_26 + 8585*uk_27 + 18445*uk_28 + 2635*uk_29 + 85*uk_3 + 961*uk_30 + 1240*uk_31 + 3131*uk_32 + 6727*uk_33 + 961*uk_34 + 1600*uk_35 + 4040*uk_36 + 8680*uk_37 + 1240*uk_38 + 10201*uk_39 + 31*uk_4 + 21917*uk_40 + 3131*uk_41 + 47089*uk_42 + 6727*uk_43 + 961*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 190596061765*uk_47 + 69511504879*uk_48 + 89692264360*uk_49 + 40*uk_5 + 226472967509*uk_50 + 486580534153*uk_51 + 69511504879*uk_52 + 187944057*uk_53 + 253575315*uk_54 + 92480409*uk_55 + 119329560*uk_56 + 301307139*uk_57 + 647362863*uk_58 + 92480409*uk_59 + 101*uk_6 + 342125425*uk_60 + 124775155*uk_61 + 161000200*uk_62 + 406525505*uk_63 + 873426085*uk_64 + 124775155*uk_65 + 45506233*uk_66 + 58717720*uk_67 + 148262243*uk_68 + 318543631*uk_69 + 217*uk_7 + 45506233*uk_70 + 75764800*uk_71 + 191306120*uk_72 + 411024040*uk_73 + 58717720*uk_74 + 483047953*uk_75 + 1037835701*uk_76 + 148262243*uk_77 + 2229805417*uk_78 + 318543631*uk_79 + 31*uk_8 + 45506233*uk_80 + 250047*uk_81 + 337365*uk_82 + 123039*uk_83 + 158760*uk_84 + 400869*uk_85 + 861273*uk_86 + 123039*uk_87 + 455175*uk_88 + 166005*uk_89 + 2242306609*uk_9 + 214200*uk_90 + 540855*uk_91 + 1162035*uk_92 + 166005*uk_93 + 60543*uk_94 + 78120*uk_95 + 197253*uk_96 + 423801*uk_97 + 60543*uk_98 + 100800*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 233604*uk_100 + 492156*uk_101 + 192780*uk_102 + 668367*uk_103 + 1408113*uk_104 + 551565*uk_105 + 2966607*uk_106 + 1162035*uk_107 + 455175*uk_108 + 438976*uk_109 + 3598828*uk_11 + 490960*uk_110 + 207936*uk_111 + 594928*uk_112 + 1253392*uk_113 + 490960*uk_114 + 549100*uk_115 + 232560*uk_116 + 665380*uk_117 + 1401820*uk_118 + 549100*uk_119 + 4025005*uk_12 + 98496*uk_120 + 281808*uk_121 + 593712*uk_122 + 232560*uk_123 + 806284*uk_124 + 1698676*uk_125 + 665380*uk_126 + 3578764*uk_127 + 1401820*uk_128 + 549100*uk_129 + 1704708*uk_13 + 614125*uk_130 + 260100*uk_131 + 744175*uk_132 + 1567825*uk_133 + 614125*uk_134 + 110160*uk_135 + 315180*uk_136 + 664020*uk_137 + 260100*uk_138 + 901765*uk_139 + 4877359*uk_14 + 1899835*uk_140 + 744175*uk_141 + 4002565*uk_142 + 1567825*uk_143 + 614125*uk_144 + 46656*uk_145 + 133488*uk_146 + 281232*uk_147 + 110160*uk_148 + 381924*uk_149 + 10275601*uk_15 + 804636*uk_150 + 315180*uk_151 + 1695204*uk_152 + 664020*uk_153 + 260100*uk_154 + 1092727*uk_155 + 2302153*uk_156 + 901765*uk_157 + 4850167*uk_158 + 1899835*uk_159 + 4025005*uk_16 + 744175*uk_160 + 10218313*uk_161 + 4002565*uk_162 + 1567825*uk_163 + 614125*uk_164 + 3969*uk_17 + 4788*uk_18 + 5355*uk_19 + 63*uk_2 + 2268*uk_20 + 6489*uk_21 + 13671*uk_22 + 5355*uk_23 + 5776*uk_24 + 6460*uk_25 + 2736*uk_26 + 7828*uk_27 + 16492*uk_28 + 6460*uk_29 + 76*uk_3 + 7225*uk_30 + 3060*uk_31 + 8755*uk_32 + 18445*uk_33 + 7225*uk_34 + 1296*uk_35 + 3708*uk_36 + 7812*uk_37 + 3060*uk_38 + 10609*uk_39 + 85*uk_4 + 22351*uk_40 + 8755*uk_41 + 47089*uk_42 + 18445*uk_43 + 7225*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 170415302284*uk_47 + 190596061765*uk_48 + 80723037924*uk_49 + 36*uk_5 + 230957580727*uk_50 + 486580534153*uk_51 + 190596061765*uk_52 + 187944057*uk_53 + 226726164*uk_54 + 253575315*uk_55 + 107396604*uk_56 + 307273617*uk_57 + 647362863*uk_58 + 253575315*uk_59 + 103*uk_6 + 273510928*uk_60 + 305900380*uk_61 + 129557808*uk_62 + 370679284*uk_63 + 780945676*uk_64 + 305900380*uk_65 + 342125425*uk_66 + 144900180*uk_67 + 414575515*uk_68 + 873426085*uk_69 + 217*uk_7 + 342125425*uk_70 + 61369488*uk_71 + 175584924*uk_72 + 369921636*uk_73 + 144900180*uk_74 + 502367977*uk_75 + 1058386903*uk_76 + 414575515*uk_77 + 2229805417*uk_78 + 873426085*uk_79 + 85*uk_8 + 342125425*uk_80 + 250047*uk_81 + 301644*uk_82 + 337365*uk_83 + 142884*uk_84 + 408807*uk_85 + 861273*uk_86 + 337365*uk_87 + 363888*uk_88 + 406980*uk_89 + 2242306609*uk_9 + 172368*uk_90 + 493164*uk_91 + 1038996*uk_92 + 406980*uk_93 + 455175*uk_94 + 192780*uk_95 + 551565*uk_96 + 1162035*uk_97 + 455175*uk_98 + 81648*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 238140*uk_100 + 492156*uk_101 + 172368*uk_102 + 694575*uk_103 + 1435455*uk_104 + 502740*uk_105 + 2966607*uk_106 + 1038996*uk_107 + 363888*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 806284*uk_110 + 381924*uk_111 + 1113945*uk_112 + 2302153*uk_113 + 806284*uk_114 + 594928*uk_115 + 281808*uk_116 + 821940*uk_117 + 1698676*uk_118 + 594928*uk_119 + 3598828*uk_12 + 133488*uk_120 + 389340*uk_121 + 804636*uk_122 + 281808*uk_123 + 1135575*uk_124 + 2346855*uk_125 + 821940*uk_126 + 4850167*uk_127 + 1698676*uk_128 + 594928*uk_129 + 1704708*uk_13 + 438976*uk_130 + 207936*uk_131 + 606480*uk_132 + 1253392*uk_133 + 438976*uk_134 + 98496*uk_135 + 287280*uk_136 + 593712*uk_137 + 207936*uk_138 + 837900*uk_139 + 4972065*uk_14 + 1731660*uk_140 + 606480*uk_141 + 3578764*uk_142 + 1253392*uk_143 + 438976*uk_144 + 46656*uk_145 + 136080*uk_146 + 281232*uk_147 + 98496*uk_148 + 396900*uk_149 + 10275601*uk_15 + 820260*uk_150 + 287280*uk_151 + 1695204*uk_152 + 593712*uk_153 + 207936*uk_154 + 1157625*uk_155 + 2392425*uk_156 + 837900*uk_157 + 4944345*uk_158 + 1731660*uk_159 + 3598828*uk_16 + 606480*uk_160 + 10218313*uk_161 + 3578764*uk_162 + 1253392*uk_163 + 438976*uk_164 + 3969*uk_17 + 6489*uk_18 + 4788*uk_19 + 63*uk_2 + 2268*uk_20 + 6615*uk_21 + 13671*uk_22 + 4788*uk_23 + 10609*uk_24 + 7828*uk_25 + 3708*uk_26 + 10815*uk_27 + 22351*uk_28 + 7828*uk_29 + 103*uk_3 + 5776*uk_30 + 2736*uk_31 + 7980*uk_32 + 16492*uk_33 + 5776*uk_34 + 1296*uk_35 + 3780*uk_36 + 7812*uk_37 + 2736*uk_38 + 11025*uk_39 + 76*uk_4 + 22785*uk_40 + 7980*uk_41 + 47089*uk_42 + 16492*uk_43 + 5776*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 170415302284*uk_48 + 80723037924*uk_49 + 36*uk_5 + 235442193945*uk_50 + 486580534153*uk_51 + 170415302284*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 226726164*uk_55 + 107396604*uk_56 + 313240095*uk_57 + 647362863*uk_58 + 226726164*uk_59 + 105*uk_6 + 502367977*uk_60 + 370679284*uk_61 + 175584924*uk_62 + 512122695*uk_63 + 1058386903*uk_64 + 370679284*uk_65 + 273510928*uk_66 + 129557808*uk_67 + 377876940*uk_68 + 780945676*uk_69 + 217*uk_7 + 273510928*uk_70 + 61369488*uk_71 + 178994340*uk_72 + 369921636*uk_73 + 129557808*uk_74 + 522066825*uk_75 + 1078938105*uk_76 + 377876940*uk_77 + 2229805417*uk_78 + 780945676*uk_79 + 76*uk_8 + 273510928*uk_80 + 250047*uk_81 + 408807*uk_82 + 301644*uk_83 + 142884*uk_84 + 416745*uk_85 + 861273*uk_86 + 301644*uk_87 + 668367*uk_88 + 493164*uk_89 + 2242306609*uk_9 + 233604*uk_90 + 681345*uk_91 + 1408113*uk_92 + 493164*uk_93 + 363888*uk_94 + 172368*uk_95 + 502740*uk_96 + 1038996*uk_97 + 363888*uk_98 + 81648*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 215712*uk_100 + 437472*uk_101 + 207648*uk_102 + 721287*uk_103 + 1462797*uk_104 + 694323*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 205379*uk_109 + 2793827*uk_11 + 358543*uk_110 + 111392*uk_111 + 372467*uk_112 + 755377*uk_113 + 358543*uk_114 + 625931*uk_115 + 194464*uk_116 + 650239*uk_117 + 1318709*uk_118 + 625931*uk_119 + 4877359*uk_12 + 60416*uk_120 + 202016*uk_121 + 409696*uk_122 + 194464*uk_123 + 675491*uk_124 + 1369921*uk_125 + 650239*uk_126 + 2778251*uk_127 + 1318709*uk_128 + 625931*uk_129 + 1515296*uk_13 + 1092727*uk_130 + 339488*uk_131 + 1135163*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 105472*uk_135 + 352672*uk_136 + 715232*uk_137 + 339488*uk_138 + 1179247*uk_139 + 5066771*uk_14 + 2391557*uk_140 + 1135163*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 32768*uk_145 + 109568*uk_146 + 222208*uk_147 + 105472*uk_148 + 366368*uk_149 + 10275601*uk_15 + 743008*uk_150 + 352672*uk_151 + 1506848*uk_152 + 715232*uk_153 + 339488*uk_154 + 1225043*uk_155 + 2484433*uk_156 + 1179247*uk_157 + 5038523*uk_158 + 2391557*uk_159 + 4877359*uk_16 + 1135163*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 3717*uk_18 + 6489*uk_19 + 63*uk_2 + 2016*uk_20 + 6741*uk_21 + 13671*uk_22 + 6489*uk_23 + 3481*uk_24 + 6077*uk_25 + 1888*uk_26 + 6313*uk_27 + 12803*uk_28 + 6077*uk_29 + 59*uk_3 + 10609*uk_30 + 3296*uk_31 + 11021*uk_32 + 22351*uk_33 + 10609*uk_34 + 1024*uk_35 + 3424*uk_36 + 6944*uk_37 + 3296*uk_38 + 11449*uk_39 + 103*uk_4 + 23219*uk_40 + 11021*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 132296089931*uk_47 + 230957580727*uk_48 + 71753811488*uk_49 + 32*uk_5 + 239926807163*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 176011101*uk_54 + 307273617*uk_55 + 95463648*uk_56 + 319206573*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 107*uk_6 + 164835793*uk_60 + 287764181*uk_61 + 89402464*uk_62 + 298939489*uk_63 + 606260459*uk_64 + 287764181*uk_65 + 502367977*uk_66 + 156075488*uk_67 + 521877413*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 48489472*uk_71 + 162136672*uk_72 + 328819232*uk_73 + 156075488*uk_74 + 542144497*uk_75 + 1099489307*uk_76 + 521877413*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 234171*uk_82 + 408807*uk_83 + 127008*uk_84 + 424683*uk_85 + 861273*uk_86 + 408807*uk_87 + 219303*uk_88 + 382851*uk_89 + 2242306609*uk_9 + 118944*uk_90 + 397719*uk_91 + 806589*uk_92 + 382851*uk_93 + 668367*uk_94 + 207648*uk_95 + 694323*uk_96 + 1408113*uk_97 + 668367*uk_98 + 64512*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 219744*uk_100 + 437472*uk_101 + 118944*uk_102 + 748503*uk_103 + 1490139*uk_104 + 405153*uk_105 + 2966607*uk_106 + 806589*uk_107 + 219303*uk_108 + 103823*uk_109 + 2225591*uk_11 + 130331*uk_110 + 70688*uk_111 + 240781*uk_112 + 479353*uk_113 + 130331*uk_114 + 163607*uk_115 + 88736*uk_116 + 302257*uk_117 + 601741*uk_118 + 163607*uk_119 + 2793827*uk_12 + 48128*uk_120 + 163936*uk_121 + 326368*uk_122 + 88736*uk_123 + 558407*uk_124 + 1111691*uk_125 + 302257*uk_126 + 2213183*uk_127 + 601741*uk_128 + 163607*uk_129 + 1515296*uk_13 + 205379*uk_130 + 111392*uk_131 + 379429*uk_132 + 755377*uk_133 + 205379*uk_134 + 60416*uk_135 + 205792*uk_136 + 409696*uk_137 + 111392*uk_138 + 700979*uk_139 + 5161477*uk_14 + 1395527*uk_140 + 379429*uk_141 + 2778251*uk_142 + 755377*uk_143 + 205379*uk_144 + 32768*uk_145 + 111616*uk_146 + 222208*uk_147 + 60416*uk_148 + 380192*uk_149 + 10275601*uk_15 + 756896*uk_150 + 205792*uk_151 + 1506848*uk_152 + 409696*uk_153 + 111392*uk_154 + 1295029*uk_155 + 2578177*uk_156 + 700979*uk_157 + 5132701*uk_158 + 1395527*uk_159 + 2793827*uk_16 + 379429*uk_160 + 10218313*uk_161 + 2778251*uk_162 + 755377*uk_163 + 205379*uk_164 + 3969*uk_17 + 2961*uk_18 + 3717*uk_19 + 63*uk_2 + 2016*uk_20 + 6867*uk_21 + 13671*uk_22 + 3717*uk_23 + 2209*uk_24 + 2773*uk_25 + 1504*uk_26 + 5123*uk_27 + 10199*uk_28 + 2773*uk_29 + 47*uk_3 + 3481*uk_30 + 1888*uk_31 + 6431*uk_32 + 12803*uk_33 + 3481*uk_34 + 1024*uk_35 + 3488*uk_36 + 6944*uk_37 + 1888*uk_38 + 11881*uk_39 + 59*uk_4 + 23653*uk_40 + 6431*uk_41 + 47089*uk_42 + 12803*uk_43 + 3481*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 105388410623*uk_47 + 132296089931*uk_48 + 71753811488*uk_49 + 32*uk_5 + 244411420381*uk_50 + 486580534153*uk_51 + 132296089931*uk_52 + 187944057*uk_53 + 140212233*uk_54 + 176011101*uk_55 + 95463648*uk_56 + 325173051*uk_57 + 647362863*uk_58 + 176011101*uk_59 + 109*uk_6 + 104602777*uk_60 + 131309869*uk_61 + 71218912*uk_62 + 242589419*uk_63 + 482953247*uk_64 + 131309869*uk_65 + 164835793*uk_66 + 89402464*uk_67 + 304527143*uk_68 + 606260459*uk_69 + 217*uk_7 + 164835793*uk_70 + 48489472*uk_71 + 165167264*uk_72 + 328819232*uk_73 + 89402464*uk_74 + 562600993*uk_75 + 1120040509*uk_76 + 304527143*uk_77 + 2229805417*uk_78 + 606260459*uk_79 + 59*uk_8 + 164835793*uk_80 + 250047*uk_81 + 186543*uk_82 + 234171*uk_83 + 127008*uk_84 + 432621*uk_85 + 861273*uk_86 + 234171*uk_87 + 139167*uk_88 + 174699*uk_89 + 2242306609*uk_9 + 94752*uk_90 + 322749*uk_91 + 642537*uk_92 + 174699*uk_93 + 219303*uk_94 + 118944*uk_95 + 405153*uk_96 + 806589*uk_97 + 219303*uk_98 + 64512*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 223776*uk_100 + 437472*uk_101 + 94752*uk_102 + 776223*uk_103 + 1517481*uk_104 + 328671*uk_105 + 2966607*uk_106 + 642537*uk_107 + 139167*uk_108 + 300763*uk_109 + 3172651*uk_11 + 210983*uk_110 + 143648*uk_111 + 498279*uk_112 + 974113*uk_113 + 210983*uk_114 + 148003*uk_115 + 100768*uk_116 + 349539*uk_117 + 683333*uk_118 + 148003*uk_119 + 2225591*uk_12 + 68608*uk_120 + 237984*uk_121 + 465248*uk_122 + 100768*uk_123 + 825507*uk_124 + 1613829*uk_125 + 349539*uk_126 + 3154963*uk_127 + 683333*uk_128 + 148003*uk_129 + 1515296*uk_13 + 103823*uk_130 + 70688*uk_131 + 245199*uk_132 + 479353*uk_133 + 103823*uk_134 + 48128*uk_135 + 166944*uk_136 + 326368*uk_137 + 70688*uk_138 + 579087*uk_139 + 5256183*uk_14 + 1132089*uk_140 + 245199*uk_141 + 2213183*uk_142 + 479353*uk_143 + 103823*uk_144 + 32768*uk_145 + 113664*uk_146 + 222208*uk_147 + 48128*uk_148 + 394272*uk_149 + 10275601*uk_15 + 770784*uk_150 + 166944*uk_151 + 1506848*uk_152 + 326368*uk_153 + 70688*uk_154 + 1367631*uk_155 + 2673657*uk_156 + 579087*uk_157 + 5226879*uk_158 + 1132089*uk_159 + 2225591*uk_16 + 245199*uk_160 + 10218313*uk_161 + 2213183*uk_162 + 479353*uk_163 + 103823*uk_164 + 3969*uk_17 + 4221*uk_18 + 2961*uk_19 + 63*uk_2 + 2016*uk_20 + 6993*uk_21 + 13671*uk_22 + 2961*uk_23 + 4489*uk_24 + 3149*uk_25 + 2144*uk_26 + 7437*uk_27 + 14539*uk_28 + 3149*uk_29 + 67*uk_3 + 2209*uk_30 + 1504*uk_31 + 5217*uk_32 + 10199*uk_33 + 2209*uk_34 + 1024*uk_35 + 3552*uk_36 + 6944*uk_37 + 1504*uk_38 + 12321*uk_39 + 47*uk_4 + 24087*uk_40 + 5217*uk_41 + 47089*uk_42 + 10199*uk_43 + 2209*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 150234542803*uk_47 + 105388410623*uk_48 + 71753811488*uk_49 + 32*uk_5 + 248896033599*uk_50 + 486580534153*uk_51 + 105388410623*uk_52 + 187944057*uk_53 + 199877013*uk_54 + 140212233*uk_55 + 95463648*uk_56 + 331139529*uk_57 + 647362863*uk_58 + 140212233*uk_59 + 111*uk_6 + 212567617*uk_60 + 149114597*uk_61 + 101524832*uk_62 + 352164261*uk_63 + 688465267*uk_64 + 149114597*uk_65 + 104602777*uk_66 + 71218912*uk_67 + 247040601*uk_68 + 482953247*uk_69 + 217*uk_7 + 104602777*uk_70 + 48489472*uk_71 + 168197856*uk_72 + 328819232*uk_73 + 71218912*uk_74 + 583436313*uk_75 + 1140591711*uk_76 + 247040601*uk_77 + 2229805417*uk_78 + 482953247*uk_79 + 47*uk_8 + 104602777*uk_80 + 250047*uk_81 + 265923*uk_82 + 186543*uk_83 + 127008*uk_84 + 440559*uk_85 + 861273*uk_86 + 186543*uk_87 + 282807*uk_88 + 198387*uk_89 + 2242306609*uk_9 + 135072*uk_90 + 468531*uk_91 + 915957*uk_92 + 198387*uk_93 + 139167*uk_94 + 94752*uk_95 + 328671*uk_96 + 642537*uk_97 + 139167*uk_98 + 64512*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 199332*uk_100 + 382788*uk_101 + 118188*uk_102 + 804447*uk_103 + 1544823*uk_104 + 476973*uk_105 + 2966607*uk_106 + 915957*uk_107 + 282807*uk_108 + 216*uk_109 + 284118*uk_11 + 2412*uk_110 + 1008*uk_111 + 4068*uk_112 + 7812*uk_113 + 2412*uk_114 + 26934*uk_115 + 11256*uk_116 + 45426*uk_117 + 87234*uk_118 + 26934*uk_119 + 3172651*uk_12 + 4704*uk_120 + 18984*uk_121 + 36456*uk_122 + 11256*uk_123 + 76614*uk_124 + 147126*uk_125 + 45426*uk_126 + 282534*uk_127 + 87234*uk_128 + 26934*uk_129 + 1325884*uk_13 + 300763*uk_130 + 125692*uk_131 + 507257*uk_132 + 974113*uk_133 + 300763*uk_134 + 52528*uk_135 + 211988*uk_136 + 407092*uk_137 + 125692*uk_138 + 855523*uk_139 + 5350889*uk_14 + 1642907*uk_140 + 507257*uk_141 + 3154963*uk_142 + 974113*uk_143 + 300763*uk_144 + 21952*uk_145 + 88592*uk_146 + 170128*uk_147 + 52528*uk_148 + 357532*uk_149 + 10275601*uk_15 + 686588*uk_150 + 211988*uk_151 + 1318492*uk_152 + 407092*uk_153 + 125692*uk_154 + 1442897*uk_155 + 2770873*uk_156 + 855523*uk_157 + 5321057*uk_158 + 1642907*uk_159 + 3172651*uk_16 + 507257*uk_160 + 10218313*uk_161 + 3154963*uk_162 + 974113*uk_163 + 300763*uk_164 + 3969*uk_17 + 378*uk_18 + 4221*uk_19 + 63*uk_2 + 1764*uk_20 + 7119*uk_21 + 13671*uk_22 + 4221*uk_23 + 36*uk_24 + 402*uk_25 + 168*uk_26 + 678*uk_27 + 1302*uk_28 + 402*uk_29 + 6*uk_3 + 4489*uk_30 + 1876*uk_31 + 7571*uk_32 + 14539*uk_33 + 4489*uk_34 + 784*uk_35 + 3164*uk_36 + 6076*uk_37 + 1876*uk_38 + 12769*uk_39 + 67*uk_4 + 24521*uk_40 + 7571*uk_41 + 47089*uk_42 + 14539*uk_43 + 4489*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 13453839654*uk_47 + 150234542803*uk_48 + 62784585052*uk_49 + 28*uk_5 + 253380646817*uk_50 + 486580534153*uk_51 + 150234542803*uk_52 + 187944057*uk_53 + 17899434*uk_54 + 199877013*uk_55 + 83530692*uk_56 + 337106007*uk_57 + 647362863*uk_58 + 199877013*uk_59 + 113*uk_6 + 1704708*uk_60 + 19035906*uk_61 + 7955304*uk_62 + 32105334*uk_63 + 61653606*uk_64 + 19035906*uk_65 + 212567617*uk_66 + 88834228*uk_67 + 358509563*uk_68 + 688465267*uk_69 + 217*uk_7 + 212567617*uk_70 + 37124752*uk_71 + 149824892*uk_72 + 287716828*uk_73 + 88834228*uk_74 + 604650457*uk_75 + 1161142913*uk_76 + 358509563*uk_77 + 2229805417*uk_78 + 688465267*uk_79 + 67*uk_8 + 212567617*uk_80 + 250047*uk_81 + 23814*uk_82 + 265923*uk_83 + 111132*uk_84 + 448497*uk_85 + 861273*uk_86 + 265923*uk_87 + 2268*uk_88 + 25326*uk_89 + 2242306609*uk_9 + 10584*uk_90 + 42714*uk_91 + 82026*uk_92 + 25326*uk_93 + 282807*uk_94 + 118188*uk_95 + 476973*uk_96 + 915957*uk_97 + 282807*uk_98 + 49392*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 231840*uk_100 + 437472*uk_101 + 12096*uk_102 + 833175*uk_103 + 1572165*uk_104 + 43470*uk_105 + 2966607*uk_106 + 82026*uk_107 + 2268*uk_108 + 681472*uk_109 + 4167064*uk_11 + 46464*uk_110 + 247808*uk_111 + 890560*uk_112 + 1680448*uk_113 + 46464*uk_114 + 3168*uk_115 + 16896*uk_116 + 60720*uk_117 + 114576*uk_118 + 3168*uk_119 + 284118*uk_12 + 90112*uk_120 + 323840*uk_121 + 611072*uk_122 + 16896*uk_123 + 1163800*uk_124 + 2196040*uk_125 + 60720*uk_126 + 4143832*uk_127 + 114576*uk_128 + 3168*uk_129 + 1515296*uk_13 + 216*uk_130 + 1152*uk_131 + 4140*uk_132 + 7812*uk_133 + 216*uk_134 + 6144*uk_135 + 22080*uk_136 + 41664*uk_137 + 1152*uk_138 + 79350*uk_139 + 5445595*uk_14 + 149730*uk_140 + 4140*uk_141 + 282534*uk_142 + 7812*uk_143 + 216*uk_144 + 32768*uk_145 + 117760*uk_146 + 222208*uk_147 + 6144*uk_148 + 423200*uk_149 + 10275601*uk_15 + 798560*uk_150 + 22080*uk_151 + 1506848*uk_152 + 41664*uk_153 + 1152*uk_154 + 1520875*uk_155 + 2869825*uk_156 + 79350*uk_157 + 5415235*uk_158 + 149730*uk_159 + 284118*uk_16 + 4140*uk_160 + 10218313*uk_161 + 282534*uk_162 + 7812*uk_163 + 216*uk_164 + 3969*uk_17 + 5544*uk_18 + 378*uk_19 + 63*uk_2 + 2016*uk_20 + 7245*uk_21 + 13671*uk_22 + 378*uk_23 + 7744*uk_24 + 528*uk_25 + 2816*uk_26 + 10120*uk_27 + 19096*uk_28 + 528*uk_29 + 88*uk_3 + 36*uk_30 + 192*uk_31 + 690*uk_32 + 1302*uk_33 + 36*uk_34 + 1024*uk_35 + 3680*uk_36 + 6944*uk_37 + 192*uk_38 + 13225*uk_39 + 6*uk_4 + 24955*uk_40 + 690*uk_41 + 47089*uk_42 + 1302*uk_43 + 36*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 197322981592*uk_47 + 13453839654*uk_48 + 71753811488*uk_49 + 32*uk_5 + 257865260035*uk_50 + 486580534153*uk_51 + 13453839654*uk_52 + 187944057*uk_53 + 262525032*uk_54 + 17899434*uk_55 + 95463648*uk_56 + 343072485*uk_57 + 647362863*uk_58 + 17899434*uk_59 + 115*uk_6 + 366701632*uk_60 + 25002384*uk_61 + 133346048*uk_62 + 479212360*uk_63 + 904252888*uk_64 + 25002384*uk_65 + 1704708*uk_66 + 9091776*uk_67 + 32673570*uk_68 + 61653606*uk_69 + 217*uk_7 + 1704708*uk_70 + 48489472*uk_71 + 174259040*uk_72 + 328819232*uk_73 + 9091776*uk_74 + 626243425*uk_75 + 1181694115*uk_76 + 32673570*uk_77 + 2229805417*uk_78 + 61653606*uk_79 + 6*uk_8 + 1704708*uk_80 + 250047*uk_81 + 349272*uk_82 + 23814*uk_83 + 127008*uk_84 + 456435*uk_85 + 861273*uk_86 + 23814*uk_87 + 487872*uk_88 + 33264*uk_89 + 2242306609*uk_9 + 177408*uk_90 + 637560*uk_91 + 1203048*uk_92 + 33264*uk_93 + 2268*uk_94 + 12096*uk_95 + 43470*uk_96 + 82026*uk_97 + 2268*uk_98 + 64512*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 206388*uk_100 + 382788*uk_101 + 155232*uk_102 + 862407*uk_103 + 1599507*uk_104 + 648648*uk_105 + 2966607*uk_106 + 1203048*uk_107 + 487872*uk_108 + 614125*uk_109 + 4025005*uk_11 + 635800*uk_110 + 202300*uk_111 + 845325*uk_112 + 1567825*uk_113 + 635800*uk_114 + 658240*uk_115 + 209440*uk_116 + 875160*uk_117 + 1623160*uk_118 + 658240*uk_119 + 4167064*uk_12 + 66640*uk_120 + 278460*uk_121 + 516460*uk_122 + 209440*uk_123 + 1163565*uk_124 + 2158065*uk_125 + 875160*uk_126 + 4002565*uk_127 + 1623160*uk_128 + 658240*uk_129 + 1325884*uk_13 + 681472*uk_130 + 216832*uk_131 + 906048*uk_132 + 1680448*uk_133 + 681472*uk_134 + 68992*uk_135 + 288288*uk_136 + 534688*uk_137 + 216832*uk_138 + 1204632*uk_139 + 5540301*uk_14 + 2234232*uk_140 + 906048*uk_141 + 4143832*uk_142 + 1680448*uk_143 + 681472*uk_144 + 21952*uk_145 + 91728*uk_146 + 170128*uk_147 + 68992*uk_148 + 383292*uk_149 + 10275601*uk_15 + 710892*uk_150 + 288288*uk_151 + 1318492*uk_152 + 534688*uk_153 + 216832*uk_154 + 1601613*uk_155 + 2970513*uk_156 + 1204632*uk_157 + 5509413*uk_158 + 2234232*uk_159 + 4167064*uk_16 + 906048*uk_160 + 10218313*uk_161 + 4143832*uk_162 + 1680448*uk_163 + 681472*uk_164 + 3969*uk_17 + 5355*uk_18 + 5544*uk_19 + 63*uk_2 + 1764*uk_20 + 7371*uk_21 + 13671*uk_22 + 5544*uk_23 + 7225*uk_24 + 7480*uk_25 + 2380*uk_26 + 9945*uk_27 + 18445*uk_28 + 7480*uk_29 + 85*uk_3 + 7744*uk_30 + 2464*uk_31 + 10296*uk_32 + 19096*uk_33 + 7744*uk_34 + 784*uk_35 + 3276*uk_36 + 6076*uk_37 + 2464*uk_38 + 13689*uk_39 + 88*uk_4 + 25389*uk_40 + 10296*uk_41 + 47089*uk_42 + 19096*uk_43 + 7744*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 190596061765*uk_47 + 197322981592*uk_48 + 62784585052*uk_49 + 28*uk_5 + 262349873253*uk_50 + 486580534153*uk_51 + 197322981592*uk_52 + 187944057*uk_53 + 253575315*uk_54 + 262525032*uk_55 + 83530692*uk_56 + 349038963*uk_57 + 647362863*uk_58 + 262525032*uk_59 + 117*uk_6 + 342125425*uk_60 + 354200440*uk_61 + 112700140*uk_62 + 470925585*uk_63 + 873426085*uk_64 + 354200440*uk_65 + 366701632*uk_66 + 116677792*uk_67 + 487546488*uk_68 + 904252888*uk_69 + 217*uk_7 + 366701632*uk_70 + 37124752*uk_71 + 155128428*uk_72 + 287716828*uk_73 + 116677792*uk_74 + 648215217*uk_75 + 1202245317*uk_76 + 487546488*uk_77 + 2229805417*uk_78 + 904252888*uk_79 + 88*uk_8 + 366701632*uk_80 + 250047*uk_81 + 337365*uk_82 + 349272*uk_83 + 111132*uk_84 + 464373*uk_85 + 861273*uk_86 + 349272*uk_87 + 455175*uk_88 + 471240*uk_89 + 2242306609*uk_9 + 149940*uk_90 + 626535*uk_91 + 1162035*uk_92 + 471240*uk_93 + 487872*uk_94 + 155232*uk_95 + 648648*uk_96 + 1203048*uk_97 + 487872*uk_98 + 49392*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 209916*uk_100 + 382788*uk_101 + 149940*uk_102 + 892143*uk_103 + 1626849*uk_104 + 637245*uk_105 + 2966607*uk_106 + 1162035*uk_107 + 455175*uk_108 + 1331000*uk_109 + 5208830*uk_11 + 1028500*uk_110 + 338800*uk_111 + 1439900*uk_112 + 2625700*uk_113 + 1028500*uk_114 + 794750*uk_115 + 261800*uk_116 + 1112650*uk_117 + 2028950*uk_118 + 794750*uk_119 + 4025005*uk_12 + 86240*uk_120 + 366520*uk_121 + 668360*uk_122 + 261800*uk_123 + 1557710*uk_124 + 2840530*uk_125 + 1112650*uk_126 + 5179790*uk_127 + 2028950*uk_128 + 794750*uk_129 + 1325884*uk_13 + 614125*uk_130 + 202300*uk_131 + 859775*uk_132 + 1567825*uk_133 + 614125*uk_134 + 66640*uk_135 + 283220*uk_136 + 516460*uk_137 + 202300*uk_138 + 1203685*uk_139 + 5635007*uk_14 + 2194955*uk_140 + 859775*uk_141 + 4002565*uk_142 + 1567825*uk_143 + 614125*uk_144 + 21952*uk_145 + 93296*uk_146 + 170128*uk_147 + 66640*uk_148 + 396508*uk_149 + 10275601*uk_15 + 723044*uk_150 + 283220*uk_151 + 1318492*uk_152 + 516460*uk_153 + 202300*uk_154 + 1685159*uk_155 + 3072937*uk_156 + 1203685*uk_157 + 5603591*uk_158 + 2194955*uk_159 + 4025005*uk_16 + 859775*uk_160 + 10218313*uk_161 + 4002565*uk_162 + 1567825*uk_163 + 614125*uk_164 + 3969*uk_17 + 6930*uk_18 + 5355*uk_19 + 63*uk_2 + 1764*uk_20 + 7497*uk_21 + 13671*uk_22 + 5355*uk_23 + 12100*uk_24 + 9350*uk_25 + 3080*uk_26 + 13090*uk_27 + 23870*uk_28 + 9350*uk_29 + 110*uk_3 + 7225*uk_30 + 2380*uk_31 + 10115*uk_32 + 18445*uk_33 + 7225*uk_34 + 784*uk_35 + 3332*uk_36 + 6076*uk_37 + 2380*uk_38 + 14161*uk_39 + 85*uk_4 + 25823*uk_40 + 10115*uk_41 + 47089*uk_42 + 18445*uk_43 + 7225*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 246653726990*uk_47 + 190596061765*uk_48 + 62784585052*uk_49 + 28*uk_5 + 266834486471*uk_50 + 486580534153*uk_51 + 190596061765*uk_52 + 187944057*uk_53 + 328156290*uk_54 + 253575315*uk_55 + 83530692*uk_56 + 355005441*uk_57 + 647362863*uk_58 + 253575315*uk_59 + 119*uk_6 + 572971300*uk_60 + 442750550*uk_61 + 145847240*uk_62 + 619850770*uk_63 + 1130316110*uk_64 + 442750550*uk_65 + 342125425*uk_66 + 112700140*uk_67 + 478975595*uk_68 + 873426085*uk_69 + 217*uk_7 + 342125425*uk_70 + 37124752*uk_71 + 157780196*uk_72 + 287716828*uk_73 + 112700140*uk_74 + 670565833*uk_75 + 1222796519*uk_76 + 478975595*uk_77 + 2229805417*uk_78 + 873426085*uk_79 + 85*uk_8 + 342125425*uk_80 + 250047*uk_81 + 436590*uk_82 + 337365*uk_83 + 111132*uk_84 + 472311*uk_85 + 861273*uk_86 + 337365*uk_87 + 762300*uk_88 + 589050*uk_89 + 2242306609*uk_9 + 194040*uk_90 + 824670*uk_91 + 1503810*uk_92 + 589050*uk_93 + 455175*uk_94 + 149940*uk_95 + 637245*uk_96 + 1162035*uk_97 + 455175*uk_98 + 49392*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 182952*uk_100 + 328104*uk_101 + 166320*uk_102 + 922383*uk_103 + 1654191*uk_104 + 838530*uk_105 + 2966607*uk_106 + 1503810*uk_107 + 762300*uk_108 + 74088*uk_109 + 1988826*uk_11 + 194040*uk_110 + 42336*uk_111 + 213444*uk_112 + 382788*uk_113 + 194040*uk_114 + 508200*uk_115 + 110880*uk_116 + 559020*uk_117 + 1002540*uk_118 + 508200*uk_119 + 5208830*uk_12 + 24192*uk_120 + 121968*uk_121 + 218736*uk_122 + 110880*uk_123 + 614922*uk_124 + 1102794*uk_125 + 559020*uk_126 + 1977738*uk_127 + 1002540*uk_128 + 508200*uk_129 + 1136472*uk_13 + 1331000*uk_130 + 290400*uk_131 + 1464100*uk_132 + 2625700*uk_133 + 1331000*uk_134 + 63360*uk_135 + 319440*uk_136 + 572880*uk_137 + 290400*uk_138 + 1610510*uk_139 + 5729713*uk_14 + 2888270*uk_140 + 1464100*uk_141 + 5179790*uk_142 + 2625700*uk_143 + 1331000*uk_144 + 13824*uk_145 + 69696*uk_146 + 124992*uk_147 + 63360*uk_148 + 351384*uk_149 + 10275601*uk_15 + 630168*uk_150 + 319440*uk_151 + 1130136*uk_152 + 572880*uk_153 + 290400*uk_154 + 1771561*uk_155 + 3177097*uk_156 + 1610510*uk_157 + 5697769*uk_158 + 2888270*uk_159 + 5208830*uk_16 + 1464100*uk_160 + 10218313*uk_161 + 5179790*uk_162 + 2625700*uk_163 + 1331000*uk_164 + 3969*uk_17 + 2646*uk_18 + 6930*uk_19 + 63*uk_2 + 1512*uk_20 + 7623*uk_21 + 13671*uk_22 + 6930*uk_23 + 1764*uk_24 + 4620*uk_25 + 1008*uk_26 + 5082*uk_27 + 9114*uk_28 + 4620*uk_29 + 42*uk_3 + 12100*uk_30 + 2640*uk_31 + 13310*uk_32 + 23870*uk_33 + 12100*uk_34 + 576*uk_35 + 2904*uk_36 + 5208*uk_37 + 2640*uk_38 + 14641*uk_39 + 110*uk_4 + 26257*uk_40 + 13310*uk_41 + 47089*uk_42 + 23870*uk_43 + 12100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 94176877578*uk_47 + 246653726990*uk_48 + 53815358616*uk_49 + 24*uk_5 + 271319099689*uk_50 + 486580534153*uk_51 + 246653726990*uk_52 + 187944057*uk_53 + 125296038*uk_54 + 328156290*uk_55 + 71597736*uk_56 + 360971919*uk_57 + 647362863*uk_58 + 328156290*uk_59 + 121*uk_6 + 83530692*uk_60 + 218770860*uk_61 + 47731824*uk_62 + 240647946*uk_63 + 431575242*uk_64 + 218770860*uk_65 + 572971300*uk_66 + 125011920*uk_67 + 630268430*uk_68 + 1130316110*uk_69 + 217*uk_7 + 572971300*uk_70 + 27275328*uk_71 + 137513112*uk_72 + 246614424*uk_73 + 125011920*uk_74 + 693295273*uk_75 + 1243347721*uk_76 + 630268430*uk_77 + 2229805417*uk_78 + 1130316110*uk_79 + 110*uk_8 + 572971300*uk_80 + 250047*uk_81 + 166698*uk_82 + 436590*uk_83 + 95256*uk_84 + 480249*uk_85 + 861273*uk_86 + 436590*uk_87 + 111132*uk_88 + 291060*uk_89 + 2242306609*uk_9 + 63504*uk_90 + 320166*uk_91 + 574182*uk_92 + 291060*uk_93 + 762300*uk_94 + 166320*uk_95 + 838530*uk_96 + 1503810*uk_97 + 762300*uk_98 + 36288*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 216972*uk_100 + 382788*uk_101 + 74088*uk_102 + 953127*uk_103 + 1681533*uk_104 + 325458*uk_105 + 2966607*uk_106 + 574182*uk_107 + 111132*uk_108 + 1771561*uk_109 + 5729713*uk_11 + 614922*uk_110 + 409948*uk_111 + 1800843*uk_112 + 3177097*uk_113 + 614922*uk_114 + 213444*uk_115 + 142296*uk_116 + 625086*uk_117 + 1102794*uk_118 + 213444*uk_119 + 1988826*uk_12 + 94864*uk_120 + 416724*uk_121 + 735196*uk_122 + 142296*uk_123 + 1830609*uk_124 + 3229611*uk_125 + 625086*uk_126 + 5697769*uk_127 + 1102794*uk_128 + 213444*uk_129 + 1325884*uk_13 + 74088*uk_130 + 49392*uk_131 + 216972*uk_132 + 382788*uk_133 + 74088*uk_134 + 32928*uk_135 + 144648*uk_136 + 255192*uk_137 + 49392*uk_138 + 635418*uk_139 + 5824419*uk_14 + 1121022*uk_140 + 216972*uk_141 + 1977738*uk_142 + 382788*uk_143 + 74088*uk_144 + 21952*uk_145 + 96432*uk_146 + 170128*uk_147 + 32928*uk_148 + 423612*uk_149 + 10275601*uk_15 + 747348*uk_150 + 144648*uk_151 + 1318492*uk_152 + 255192*uk_153 + 49392*uk_154 + 1860867*uk_155 + 3282993*uk_156 + 635418*uk_157 + 5791947*uk_158 + 1121022*uk_159 + 1988826*uk_16 + 216972*uk_160 + 10218313*uk_161 + 1977738*uk_162 + 382788*uk_163 + 74088*uk_164 + 3969*uk_17 + 7623*uk_18 + 2646*uk_19 + 63*uk_2 + 1764*uk_20 + 7749*uk_21 + 13671*uk_22 + 2646*uk_23 + 14641*uk_24 + 5082*uk_25 + 3388*uk_26 + 14883*uk_27 + 26257*uk_28 + 5082*uk_29 + 121*uk_3 + 1764*uk_30 + 1176*uk_31 + 5166*uk_32 + 9114*uk_33 + 1764*uk_34 + 784*uk_35 + 3444*uk_36 + 6076*uk_37 + 1176*uk_38 + 15129*uk_39 + 42*uk_4 + 26691*uk_40 + 5166*uk_41 + 47089*uk_42 + 9114*uk_43 + 1764*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 271319099689*uk_47 + 94176877578*uk_48 + 62784585052*uk_49 + 28*uk_5 + 275803712907*uk_50 + 486580534153*uk_51 + 94176877578*uk_52 + 187944057*uk_53 + 360971919*uk_54 + 125296038*uk_55 + 83530692*uk_56 + 366938397*uk_57 + 647362863*uk_58 + 125296038*uk_59 + 123*uk_6 + 693295273*uk_60 + 240647946*uk_61 + 160431964*uk_62 + 704754699*uk_63 + 1243347721*uk_64 + 240647946*uk_65 + 83530692*uk_66 + 55687128*uk_67 + 244625598*uk_68 + 431575242*uk_69 + 217*uk_7 + 83530692*uk_70 + 37124752*uk_71 + 163083732*uk_72 + 287716828*uk_73 + 55687128*uk_74 + 716403537*uk_75 + 1263898923*uk_76 + 244625598*uk_77 + 2229805417*uk_78 + 431575242*uk_79 + 42*uk_8 + 83530692*uk_80 + 250047*uk_81 + 480249*uk_82 + 166698*uk_83 + 111132*uk_84 + 488187*uk_85 + 861273*uk_86 + 166698*uk_87 + 922383*uk_88 + 320166*uk_89 + 2242306609*uk_9 + 213444*uk_90 + 937629*uk_91 + 1654191*uk_92 + 320166*uk_93 + 111132*uk_94 + 74088*uk_95 + 325458*uk_96 + 574182*uk_97 + 111132*uk_98 + 49392*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 189000*uk_100 + 328104*uk_101 + 182952*uk_102 + 984375*uk_103 + 1708875*uk_104 + 952875*uk_105 + 2966607*uk_106 + 1654191*uk_107 + 922383*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 1283689*uk_110 + 254616*uk_111 + 1326125*uk_112 + 2302153*uk_113 + 1283689*uk_114 + 1508023*uk_115 + 299112*uk_116 + 1557875*uk_117 + 2704471*uk_118 + 1508023*uk_119 + 5729713*uk_12 + 59328*uk_120 + 309000*uk_121 + 536424*uk_122 + 299112*uk_123 + 1609375*uk_124 + 2793875*uk_125 + 1557875*uk_126 + 4850167*uk_127 + 2704471*uk_128 + 1508023*uk_129 + 1136472*uk_13 + 1771561*uk_130 + 351384*uk_131 + 1830125*uk_132 + 3177097*uk_133 + 1771561*uk_134 + 69696*uk_135 + 363000*uk_136 + 630168*uk_137 + 351384*uk_138 + 1890625*uk_139 + 5919125*uk_14 + 3282125*uk_140 + 1830125*uk_141 + 5697769*uk_142 + 3177097*uk_143 + 1771561*uk_144 + 13824*uk_145 + 72000*uk_146 + 124992*uk_147 + 69696*uk_148 + 375000*uk_149 + 10275601*uk_15 + 651000*uk_150 + 363000*uk_151 + 1130136*uk_152 + 630168*uk_153 + 351384*uk_154 + 1953125*uk_155 + 3390625*uk_156 + 1890625*uk_157 + 5886125*uk_158 + 3282125*uk_159 + 5729713*uk_16 + 1830125*uk_160 + 10218313*uk_161 + 5697769*uk_162 + 3177097*uk_163 + 1771561*uk_164 + 3969*uk_17 + 6489*uk_18 + 7623*uk_19 + 63*uk_2 + 1512*uk_20 + 7875*uk_21 + 13671*uk_22 + 7623*uk_23 + 10609*uk_24 + 12463*uk_25 + 2472*uk_26 + 12875*uk_27 + 22351*uk_28 + 12463*uk_29 + 103*uk_3 + 14641*uk_30 + 2904*uk_31 + 15125*uk_32 + 26257*uk_33 + 14641*uk_34 + 576*uk_35 + 3000*uk_36 + 5208*uk_37 + 2904*uk_38 + 15625*uk_39 + 121*uk_4 + 27125*uk_40 + 15125*uk_41 + 47089*uk_42 + 26257*uk_43 + 14641*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 271319099689*uk_48 + 53815358616*uk_49 + 24*uk_5 + 280288326125*uk_50 + 486580534153*uk_51 + 271319099689*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 360971919*uk_55 + 71597736*uk_56 + 372904875*uk_57 + 647362863*uk_58 + 360971919*uk_59 + 125*uk_6 + 502367977*uk_60 + 590160439*uk_61 + 117056616*uk_62 + 609669875*uk_63 + 1058386903*uk_64 + 590160439*uk_65 + 693295273*uk_66 + 137513112*uk_67 + 716214125*uk_68 + 1243347721*uk_69 + 217*uk_7 + 693295273*uk_70 + 27275328*uk_71 + 142059000*uk_72 + 246614424*uk_73 + 137513112*uk_74 + 739890625*uk_75 + 1284450125*uk_76 + 716214125*uk_77 + 2229805417*uk_78 + 1243347721*uk_79 + 121*uk_8 + 693295273*uk_80 + 250047*uk_81 + 408807*uk_82 + 480249*uk_83 + 95256*uk_84 + 496125*uk_85 + 861273*uk_86 + 480249*uk_87 + 668367*uk_88 + 785169*uk_89 + 2242306609*uk_9 + 155736*uk_90 + 811125*uk_91 + 1408113*uk_92 + 785169*uk_93 + 922383*uk_94 + 182952*uk_95 + 952875*uk_96 + 1654191*uk_97 + 922383*uk_98 + 36288*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 192024*uk_100 + 328104*uk_101 + 155736*uk_102 + 1016127*uk_103 + 1736217*uk_104 + 824103*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 1295029*uk_109 + 5161477*uk_11 + 1223743*uk_110 + 285144*uk_111 + 1508887*uk_112 + 2578177*uk_113 + 1223743*uk_114 + 1156381*uk_115 + 269448*uk_116 + 1425829*uk_117 + 2436259*uk_118 + 1156381*uk_119 + 4877359*uk_12 + 62784*uk_120 + 332232*uk_121 + 567672*uk_122 + 269448*uk_123 + 1758061*uk_124 + 3003931*uk_125 + 1425829*uk_126 + 5132701*uk_127 + 2436259*uk_128 + 1156381*uk_129 + 1136472*uk_13 + 1092727*uk_130 + 254616*uk_131 + 1347343*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 59328*uk_135 + 313944*uk_136 + 536424*uk_137 + 254616*uk_138 + 1661287*uk_139 + 6013831*uk_14 + 2838577*uk_140 + 1347343*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 13824*uk_145 + 73152*uk_146 + 124992*uk_147 + 59328*uk_148 + 387096*uk_149 + 10275601*uk_15 + 661416*uk_150 + 313944*uk_151 + 1130136*uk_152 + 536424*uk_153 + 254616*uk_154 + 2048383*uk_155 + 3499993*uk_156 + 1661287*uk_157 + 5980303*uk_158 + 2838577*uk_159 + 4877359*uk_16 + 1347343*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 6867*uk_18 + 6489*uk_19 + 63*uk_2 + 1512*uk_20 + 8001*uk_21 + 13671*uk_22 + 6489*uk_23 + 11881*uk_24 + 11227*uk_25 + 2616*uk_26 + 13843*uk_27 + 23653*uk_28 + 11227*uk_29 + 109*uk_3 + 10609*uk_30 + 2472*uk_31 + 13081*uk_32 + 22351*uk_33 + 10609*uk_34 + 576*uk_35 + 3048*uk_36 + 5208*uk_37 + 2472*uk_38 + 16129*uk_39 + 103*uk_4 + 27559*uk_40 + 13081*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 244411420381*uk_47 + 230957580727*uk_48 + 53815358616*uk_49 + 24*uk_5 + 284772939343*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 325173051*uk_54 + 307273617*uk_55 + 71597736*uk_56 + 378871353*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 127*uk_6 + 562600993*uk_60 + 531632131*uk_61 + 123875448*uk_62 + 655507579*uk_63 + 1120040509*uk_64 + 531632131*uk_65 + 502367977*uk_66 + 117056616*uk_67 + 619424593*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 27275328*uk_71 + 144331944*uk_72 + 246614424*uk_73 + 117056616*uk_74 + 763756537*uk_75 + 1305001327*uk_76 + 619424593*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 432621*uk_82 + 408807*uk_83 + 95256*uk_84 + 504063*uk_85 + 861273*uk_86 + 408807*uk_87 + 748503*uk_88 + 707301*uk_89 + 2242306609*uk_9 + 164808*uk_90 + 872109*uk_91 + 1490139*uk_92 + 707301*uk_93 + 668367*uk_94 + 155736*uk_95 + 824103*uk_96 + 1408113*uk_97 + 668367*uk_98 + 36288*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 162540*uk_100 + 273420*uk_101 + 137340*uk_102 + 1048383*uk_103 + 1763559*uk_104 + 885843*uk_105 + 2966607*uk_106 + 1490139*uk_107 + 748503*uk_108 + 1000*uk_109 + 473530*uk_11 + 10900*uk_110 + 2000*uk_111 + 12900*uk_112 + 21700*uk_113 + 10900*uk_114 + 118810*uk_115 + 21800*uk_116 + 140610*uk_117 + 236530*uk_118 + 118810*uk_119 + 5161477*uk_12 + 4000*uk_120 + 25800*uk_121 + 43400*uk_122 + 21800*uk_123 + 166410*uk_124 + 279930*uk_125 + 140610*uk_126 + 470890*uk_127 + 236530*uk_128 + 118810*uk_129 + 947060*uk_13 + 1295029*uk_130 + 237620*uk_131 + 1532649*uk_132 + 2578177*uk_133 + 1295029*uk_134 + 43600*uk_135 + 281220*uk_136 + 473060*uk_137 + 237620*uk_138 + 1813869*uk_139 + 6108537*uk_14 + 3051237*uk_140 + 1532649*uk_141 + 5132701*uk_142 + 2578177*uk_143 + 1295029*uk_144 + 8000*uk_145 + 51600*uk_146 + 86800*uk_147 + 43600*uk_148 + 332820*uk_149 + 10275601*uk_15 + 559860*uk_150 + 281220*uk_151 + 941780*uk_152 + 473060*uk_153 + 237620*uk_154 + 2146689*uk_155 + 3611097*uk_156 + 1813869*uk_157 + 6074481*uk_158 + 3051237*uk_159 + 5161477*uk_16 + 1532649*uk_160 + 10218313*uk_161 + 5132701*uk_162 + 2578177*uk_163 + 1295029*uk_164 + 3969*uk_17 + 630*uk_18 + 6867*uk_19 + 63*uk_2 + 1260*uk_20 + 8127*uk_21 + 13671*uk_22 + 6867*uk_23 + 100*uk_24 + 1090*uk_25 + 200*uk_26 + 1290*uk_27 + 2170*uk_28 + 1090*uk_29 + 10*uk_3 + 11881*uk_30 + 2180*uk_31 + 14061*uk_32 + 23653*uk_33 + 11881*uk_34 + 400*uk_35 + 2580*uk_36 + 4340*uk_37 + 2180*uk_38 + 16641*uk_39 + 109*uk_4 + 27993*uk_40 + 14061*uk_41 + 47089*uk_42 + 23653*uk_43 + 11881*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 22423066090*uk_47 + 244411420381*uk_48 + 44846132180*uk_49 + 20*uk_5 + 289257552561*uk_50 + 486580534153*uk_51 + 244411420381*uk_52 + 187944057*uk_53 + 29832390*uk_54 + 325173051*uk_55 + 59664780*uk_56 + 384837831*uk_57 + 647362863*uk_58 + 325173051*uk_59 + 129*uk_6 + 4735300*uk_60 + 51614770*uk_61 + 9470600*uk_62 + 61085370*uk_63 + 102756010*uk_64 + 51614770*uk_65 + 562600993*uk_66 + 103229540*uk_67 + 665830533*uk_68 + 1120040509*uk_69 + 217*uk_7 + 562600993*uk_70 + 18941200*uk_71 + 122170740*uk_72 + 205512020*uk_73 + 103229540*uk_74 + 788001273*uk_75 + 1325552529*uk_76 + 665830533*uk_77 + 2229805417*uk_78 + 1120040509*uk_79 + 109*uk_8 + 562600993*uk_80 + 250047*uk_81 + 39690*uk_82 + 432621*uk_83 + 79380*uk_84 + 512001*uk_85 + 861273*uk_86 + 432621*uk_87 + 6300*uk_88 + 68670*uk_89 + 2242306609*uk_9 + 12600*uk_90 + 81270*uk_91 + 136710*uk_92 + 68670*uk_93 + 748503*uk_94 + 137340*uk_95 + 885843*uk_96 + 1490139*uk_97 + 748503*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 198072*uk_100 + 328104*uk_101 + 15120*uk_102 + 1081143*uk_103 + 1790901*uk_104 + 82530*uk_105 + 2966607*uk_106 + 136710*uk_107 + 6300*uk_108 + 238328*uk_109 + 2935886*uk_11 + 38440*uk_110 + 92256*uk_111 + 503564*uk_112 + 834148*uk_113 + 38440*uk_114 + 6200*uk_115 + 14880*uk_116 + 81220*uk_117 + 134540*uk_118 + 6200*uk_119 + 473530*uk_12 + 35712*uk_120 + 194928*uk_121 + 322896*uk_122 + 14880*uk_123 + 1063982*uk_124 + 1762474*uk_125 + 81220*uk_126 + 2919518*uk_127 + 134540*uk_128 + 6200*uk_129 + 1136472*uk_13 + 1000*uk_130 + 2400*uk_131 + 13100*uk_132 + 21700*uk_133 + 1000*uk_134 + 5760*uk_135 + 31440*uk_136 + 52080*uk_137 + 2400*uk_138 + 171610*uk_139 + 6203243*uk_14 + 284270*uk_140 + 13100*uk_141 + 470890*uk_142 + 21700*uk_143 + 1000*uk_144 + 13824*uk_145 + 75456*uk_146 + 124992*uk_147 + 5760*uk_148 + 411864*uk_149 + 10275601*uk_15 + 682248*uk_150 + 31440*uk_151 + 1130136*uk_152 + 52080*uk_153 + 2400*uk_154 + 2248091*uk_155 + 3723937*uk_156 + 171610*uk_157 + 6168659*uk_158 + 284270*uk_159 + 473530*uk_16 + 13100*uk_160 + 10218313*uk_161 + 470890*uk_162 + 21700*uk_163 + 1000*uk_164 + 3969*uk_17 + 3906*uk_18 + 630*uk_19 + 63*uk_2 + 1512*uk_20 + 8253*uk_21 + 13671*uk_22 + 630*uk_23 + 3844*uk_24 + 620*uk_25 + 1488*uk_26 + 8122*uk_27 + 13454*uk_28 + 620*uk_29 + 62*uk_3 + 100*uk_30 + 240*uk_31 + 1310*uk_32 + 2170*uk_33 + 100*uk_34 + 576*uk_35 + 3144*uk_36 + 5208*uk_37 + 240*uk_38 + 17161*uk_39 + 10*uk_4 + 28427*uk_40 + 1310*uk_41 + 47089*uk_42 + 2170*uk_43 + 100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 139023009758*uk_47 + 22423066090*uk_48 + 53815358616*uk_49 + 24*uk_5 + 293742165779*uk_50 + 486580534153*uk_51 + 22423066090*uk_52 + 187944057*uk_53 + 184960818*uk_54 + 29832390*uk_55 + 71597736*uk_56 + 390804309*uk_57 + 647362863*uk_58 + 29832390*uk_59 + 131*uk_6 + 182024932*uk_60 + 29358860*uk_61 + 70461264*uk_62 + 384601066*uk_63 + 637087262*uk_64 + 29358860*uk_65 + 4735300*uk_66 + 11364720*uk_67 + 62032430*uk_68 + 102756010*uk_69 + 217*uk_7 + 4735300*uk_70 + 27275328*uk_71 + 148877832*uk_72 + 246614424*uk_73 + 11364720*uk_74 + 812624833*uk_75 + 1346103731*uk_76 + 62032430*uk_77 + 2229805417*uk_78 + 102756010*uk_79 + 10*uk_8 + 4735300*uk_80 + 250047*uk_81 + 246078*uk_82 + 39690*uk_83 + 95256*uk_84 + 519939*uk_85 + 861273*uk_86 + 39690*uk_87 + 242172*uk_88 + 39060*uk_89 + 2242306609*uk_9 + 93744*uk_90 + 511686*uk_91 + 847602*uk_92 + 39060*uk_93 + 6300*uk_94 + 15120*uk_95 + 82530*uk_96 + 136710*uk_97 + 6300*uk_98 + 36288*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 167580*uk_100 + 273420*uk_101 + 78120*uk_102 + 1114407*uk_103 + 1818243*uk_104 + 519498*uk_105 + 2966607*uk_106 + 847602*uk_107 + 242172*uk_108 + 125*uk_109 + 236765*uk_11 + 1550*uk_110 + 500*uk_111 + 3325*uk_112 + 5425*uk_113 + 1550*uk_114 + 19220*uk_115 + 6200*uk_116 + 41230*uk_117 + 67270*uk_118 + 19220*uk_119 + 2935886*uk_12 + 2000*uk_120 + 13300*uk_121 + 21700*uk_122 + 6200*uk_123 + 88445*uk_124 + 144305*uk_125 + 41230*uk_126 + 235445*uk_127 + 67270*uk_128 + 19220*uk_129 + 947060*uk_13 + 238328*uk_130 + 76880*uk_131 + 511252*uk_132 + 834148*uk_133 + 238328*uk_134 + 24800*uk_135 + 164920*uk_136 + 269080*uk_137 + 76880*uk_138 + 1096718*uk_139 + 6297949*uk_14 + 1789382*uk_140 + 511252*uk_141 + 2919518*uk_142 + 834148*uk_143 + 238328*uk_144 + 8000*uk_145 + 53200*uk_146 + 86800*uk_147 + 24800*uk_148 + 353780*uk_149 + 10275601*uk_15 + 577220*uk_150 + 164920*uk_151 + 941780*uk_152 + 269080*uk_153 + 76880*uk_154 + 2352637*uk_155 + 3838513*uk_156 + 1096718*uk_157 + 6262837*uk_158 + 1789382*uk_159 + 2935886*uk_16 + 511252*uk_160 + 10218313*uk_161 + 2919518*uk_162 + 834148*uk_163 + 238328*uk_164 + 3969*uk_17 + 315*uk_18 + 3906*uk_19 + 63*uk_2 + 1260*uk_20 + 8379*uk_21 + 13671*uk_22 + 3906*uk_23 + 25*uk_24 + 310*uk_25 + 100*uk_26 + 665*uk_27 + 1085*uk_28 + 310*uk_29 + 5*uk_3 + 3844*uk_30 + 1240*uk_31 + 8246*uk_32 + 13454*uk_33 + 3844*uk_34 + 400*uk_35 + 2660*uk_36 + 4340*uk_37 + 1240*uk_38 + 17689*uk_39 + 62*uk_4 + 28861*uk_40 + 8246*uk_41 + 47089*uk_42 + 13454*uk_43 + 3844*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 11211533045*uk_47 + 139023009758*uk_48 + 44846132180*uk_49 + 20*uk_5 + 298226778997*uk_50 + 486580534153*uk_51 + 139023009758*uk_52 + 187944057*uk_53 + 14916195*uk_54 + 184960818*uk_55 + 59664780*uk_56 + 396770787*uk_57 + 647362863*uk_58 + 184960818*uk_59 + 133*uk_6 + 1183825*uk_60 + 14679430*uk_61 + 4735300*uk_62 + 31489745*uk_63 + 51378005*uk_64 + 14679430*uk_65 + 182024932*uk_66 + 58717720*uk_67 + 390472838*uk_68 + 637087262*uk_69 + 217*uk_7 + 182024932*uk_70 + 18941200*uk_71 + 125958980*uk_72 + 205512020*uk_73 + 58717720*uk_74 + 837627217*uk_75 + 1366654933*uk_76 + 390472838*uk_77 + 2229805417*uk_78 + 637087262*uk_79 + 62*uk_8 + 182024932*uk_80 + 250047*uk_81 + 19845*uk_82 + 246078*uk_83 + 79380*uk_84 + 527877*uk_85 + 861273*uk_86 + 246078*uk_87 + 1575*uk_88 + 19530*uk_89 + 2242306609*uk_9 + 6300*uk_90 + 41895*uk_91 + 68355*uk_92 + 19530*uk_93 + 242172*uk_94 + 78120*uk_95 + 519498*uk_96 + 847602*uk_97 + 242172*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 204120*uk_100 + 328104*uk_101 + 7560*uk_102 + 1148175*uk_103 + 1845585*uk_104 + 42525*uk_105 + 2966607*uk_106 + 68355*uk_107 + 1575*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 53045*uk_110 + 254616*uk_111 + 1432215*uk_112 + 2302153*uk_113 + 53045*uk_114 + 2575*uk_115 + 12360*uk_116 + 69525*uk_117 + 111755*uk_118 + 2575*uk_119 + 236765*uk_12 + 59328*uk_120 + 333720*uk_121 + 536424*uk_122 + 12360*uk_123 + 1877175*uk_124 + 3017385*uk_125 + 69525*uk_126 + 4850167*uk_127 + 111755*uk_128 + 2575*uk_129 + 1136472*uk_13 + 125*uk_130 + 600*uk_131 + 3375*uk_132 + 5425*uk_133 + 125*uk_134 + 2880*uk_135 + 16200*uk_136 + 26040*uk_137 + 600*uk_138 + 91125*uk_139 + 6392655*uk_14 + 146475*uk_140 + 3375*uk_141 + 235445*uk_142 + 5425*uk_143 + 125*uk_144 + 13824*uk_145 + 77760*uk_146 + 124992*uk_147 + 2880*uk_148 + 437400*uk_149 + 10275601*uk_15 + 703080*uk_150 + 16200*uk_151 + 1130136*uk_152 + 26040*uk_153 + 600*uk_154 + 2460375*uk_155 + 3954825*uk_156 + 91125*uk_157 + 6357015*uk_158 + 146475*uk_159 + 236765*uk_16 + 3375*uk_160 + 10218313*uk_161 + 235445*uk_162 + 5425*uk_163 + 125*uk_164 + 3969*uk_17 + 6489*uk_18 + 315*uk_19 + 63*uk_2 + 1512*uk_20 + 8505*uk_21 + 13671*uk_22 + 315*uk_23 + 10609*uk_24 + 515*uk_25 + 2472*uk_26 + 13905*uk_27 + 22351*uk_28 + 515*uk_29 + 103*uk_3 + 25*uk_30 + 120*uk_31 + 675*uk_32 + 1085*uk_33 + 25*uk_34 + 576*uk_35 + 3240*uk_36 + 5208*uk_37 + 120*uk_38 + 18225*uk_39 + 5*uk_4 + 29295*uk_40 + 675*uk_41 + 47089*uk_42 + 1085*uk_43 + 25*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 11211533045*uk_48 + 53815358616*uk_49 + 24*uk_5 + 302711392215*uk_50 + 486580534153*uk_51 + 11211533045*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 14916195*uk_55 + 71597736*uk_56 + 402737265*uk_57 + 647362863*uk_58 + 14916195*uk_59 + 135*uk_6 + 502367977*uk_60 + 24386795*uk_61 + 117056616*uk_62 + 658443465*uk_63 + 1058386903*uk_64 + 24386795*uk_65 + 1183825*uk_66 + 5682360*uk_67 + 31963275*uk_68 + 51378005*uk_69 + 217*uk_7 + 1183825*uk_70 + 27275328*uk_71 + 153423720*uk_72 + 246614424*uk_73 + 5682360*uk_74 + 863008425*uk_75 + 1387206135*uk_76 + 31963275*uk_77 + 2229805417*uk_78 + 51378005*uk_79 + 5*uk_8 + 1183825*uk_80 + 250047*uk_81 + 408807*uk_82 + 19845*uk_83 + 95256*uk_84 + 535815*uk_85 + 861273*uk_86 + 19845*uk_87 + 668367*uk_88 + 32445*uk_89 + 2242306609*uk_9 + 155736*uk_90 + 876015*uk_91 + 1408113*uk_92 + 32445*uk_93 + 1575*uk_94 + 7560*uk_95 + 42525*uk_96 + 68355*uk_97 + 1575*uk_98 + 36288*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 172620*uk_100 + 273420*uk_101 + 129780*uk_102 + 1182447*uk_103 + 1872927*uk_104 + 888993*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 681472*uk_109 + 4167064*uk_11 + 797632*uk_110 + 154880*uk_111 + 1060928*uk_112 + 1680448*uk_113 + 797632*uk_114 + 933592*uk_115 + 181280*uk_116 + 1241768*uk_117 + 1966888*uk_118 + 933592*uk_119 + 4877359*uk_12 + 35200*uk_120 + 241120*uk_121 + 381920*uk_122 + 181280*uk_123 + 1651672*uk_124 + 2616152*uk_125 + 1241768*uk_126 + 4143832*uk_127 + 1966888*uk_128 + 933592*uk_129 + 947060*uk_13 + 1092727*uk_130 + 212180*uk_131 + 1453433*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 41200*uk_135 + 282220*uk_136 + 447020*uk_137 + 212180*uk_138 + 1933207*uk_139 + 6487361*uk_14 + 3062087*uk_140 + 1453433*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 8000*uk_145 + 54800*uk_146 + 86800*uk_147 + 41200*uk_148 + 375380*uk_149 + 10275601*uk_15 + 594580*uk_150 + 282220*uk_151 + 941780*uk_152 + 447020*uk_153 + 212180*uk_154 + 2571353*uk_155 + 4072873*uk_156 + 1933207*uk_157 + 6451193*uk_158 + 3062087*uk_159 + 4877359*uk_16 + 1453433*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 5544*uk_18 + 6489*uk_19 + 63*uk_2 + 1260*uk_20 + 8631*uk_21 + 13671*uk_22 + 6489*uk_23 + 7744*uk_24 + 9064*uk_25 + 1760*uk_26 + 12056*uk_27 + 19096*uk_28 + 9064*uk_29 + 88*uk_3 + 10609*uk_30 + 2060*uk_31 + 14111*uk_32 + 22351*uk_33 + 10609*uk_34 + 400*uk_35 + 2740*uk_36 + 4340*uk_37 + 2060*uk_38 + 18769*uk_39 + 103*uk_4 + 29729*uk_40 + 14111*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 197322981592*uk_47 + 230957580727*uk_48 + 44846132180*uk_49 + 20*uk_5 + 307196005433*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 262525032*uk_54 + 307273617*uk_55 + 59664780*uk_56 + 408703743*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 137*uk_6 + 366701632*uk_60 + 429207592*uk_61 + 83341280*uk_62 + 570887768*uk_63 + 904252888*uk_64 + 429207592*uk_65 + 502367977*uk_66 + 97547180*uk_67 + 668198183*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 18941200*uk_71 + 129747220*uk_72 + 205512020*uk_73 + 97547180*uk_74 + 888768457*uk_75 + 1407757337*uk_76 + 668198183*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 349272*uk_82 + 408807*uk_83 + 79380*uk_84 + 543753*uk_85 + 861273*uk_86 + 408807*uk_87 + 487872*uk_88 + 571032*uk_89 + 2242306609*uk_9 + 110880*uk_90 + 759528*uk_91 + 1203048*uk_92 + 571032*uk_93 + 668367*uk_94 + 129780*uk_95 + 888993*uk_96 + 1408113*uk_97 + 668367*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 175140*uk_100 + 273420*uk_101 + 110880*uk_102 + 1217223*uk_103 + 1900269*uk_104 + 770616*uk_105 + 2966607*uk_106 + 1203048*uk_107 + 487872*uk_108 + 804357*uk_109 + 4403829*uk_11 + 761112*uk_110 + 172980*uk_111 + 1202211*uk_112 + 1876833*uk_113 + 761112*uk_114 + 720192*uk_115 + 163680*uk_116 + 1137576*uk_117 + 1775928*uk_118 + 720192*uk_119 + 4167064*uk_12 + 37200*uk_120 + 258540*uk_121 + 403620*uk_122 + 163680*uk_123 + 1796853*uk_124 + 2805159*uk_125 + 1137576*uk_126 + 4379277*uk_127 + 1775928*uk_128 + 720192*uk_129 + 947060*uk_13 + 681472*uk_130 + 154880*uk_131 + 1076416*uk_132 + 1680448*uk_133 + 681472*uk_134 + 35200*uk_135 + 244640*uk_136 + 381920*uk_137 + 154880*uk_138 + 1700248*uk_139 + 6582067*uk_14 + 2654344*uk_140 + 1076416*uk_141 + 4143832*uk_142 + 1680448*uk_143 + 681472*uk_144 + 8000*uk_145 + 55600*uk_146 + 86800*uk_147 + 35200*uk_148 + 386420*uk_149 + 10275601*uk_15 + 603260*uk_150 + 244640*uk_151 + 941780*uk_152 + 381920*uk_153 + 154880*uk_154 + 2685619*uk_155 + 4192657*uk_156 + 1700248*uk_157 + 6545371*uk_158 + 2654344*uk_159 + 4167064*uk_16 + 1076416*uk_160 + 10218313*uk_161 + 4143832*uk_162 + 1680448*uk_163 + 681472*uk_164 + 3969*uk_17 + 5859*uk_18 + 5544*uk_19 + 63*uk_2 + 1260*uk_20 + 8757*uk_21 + 13671*uk_22 + 5544*uk_23 + 8649*uk_24 + 8184*uk_25 + 1860*uk_26 + 12927*uk_27 + 20181*uk_28 + 8184*uk_29 + 93*uk_3 + 7744*uk_30 + 1760*uk_31 + 12232*uk_32 + 19096*uk_33 + 7744*uk_34 + 400*uk_35 + 2780*uk_36 + 4340*uk_37 + 1760*uk_38 + 19321*uk_39 + 88*uk_4 + 30163*uk_40 + 12232*uk_41 + 47089*uk_42 + 19096*uk_43 + 7744*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 208534514637*uk_47 + 197322981592*uk_48 + 44846132180*uk_49 + 20*uk_5 + 311680618651*uk_50 + 486580534153*uk_51 + 197322981592*uk_52 + 187944057*uk_53 + 277441227*uk_54 + 262525032*uk_55 + 59664780*uk_56 + 414670221*uk_57 + 647362863*uk_58 + 262525032*uk_59 + 139*uk_6 + 409556097*uk_60 + 387536952*uk_61 + 88076580*uk_62 + 612132231*uk_63 + 955630893*uk_64 + 387536952*uk_65 + 366701632*uk_66 + 83341280*uk_67 + 579221896*uk_68 + 904252888*uk_69 + 217*uk_7 + 366701632*uk_70 + 18941200*uk_71 + 131641340*uk_72 + 205512020*uk_73 + 83341280*uk_74 + 914907313*uk_75 + 1428308539*uk_76 + 579221896*uk_77 + 2229805417*uk_78 + 904252888*uk_79 + 88*uk_8 + 366701632*uk_80 + 250047*uk_81 + 369117*uk_82 + 349272*uk_83 + 79380*uk_84 + 551691*uk_85 + 861273*uk_86 + 349272*uk_87 + 544887*uk_88 + 515592*uk_89 + 2242306609*uk_9 + 117180*uk_90 + 814401*uk_91 + 1271403*uk_92 + 515592*uk_93 + 487872*uk_94 + 110880*uk_95 + 770616*uk_96 + 1203048*uk_97 + 487872*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 177660*uk_100 + 273420*uk_101 + 117180*uk_102 + 1252503*uk_103 + 1927611*uk_104 + 826119*uk_105 + 2966607*uk_106 + 1271403*uk_107 + 544887*uk_108 + 1643032*uk_109 + 5587654*uk_11 + 1294932*uk_110 + 278480*uk_111 + 1963284*uk_112 + 3021508*uk_113 + 1294932*uk_114 + 1020582*uk_115 + 219480*uk_116 + 1547334*uk_117 + 2381358*uk_118 + 1020582*uk_119 + 4403829*uk_12 + 47200*uk_120 + 332760*uk_121 + 512120*uk_122 + 219480*uk_123 + 2345958*uk_124 + 3610446*uk_125 + 1547334*uk_126 + 5556502*uk_127 + 2381358*uk_128 + 1020582*uk_129 + 947060*uk_13 + 804357*uk_130 + 172980*uk_131 + 1219509*uk_132 + 1876833*uk_133 + 804357*uk_134 + 37200*uk_135 + 262260*uk_136 + 403620*uk_137 + 172980*uk_138 + 1848933*uk_139 + 6676773*uk_14 + 2845521*uk_140 + 1219509*uk_141 + 4379277*uk_142 + 1876833*uk_143 + 804357*uk_144 + 8000*uk_145 + 56400*uk_146 + 86800*uk_147 + 37200*uk_148 + 397620*uk_149 + 10275601*uk_15 + 611940*uk_150 + 262260*uk_151 + 941780*uk_152 + 403620*uk_153 + 172980*uk_154 + 2803221*uk_155 + 4314177*uk_156 + 1848933*uk_157 + 6639549*uk_158 + 2845521*uk_159 + 4403829*uk_16 + 1219509*uk_160 + 10218313*uk_161 + 4379277*uk_162 + 1876833*uk_163 + 804357*uk_164 + 3969*uk_17 + 7434*uk_18 + 5859*uk_19 + 63*uk_2 + 1260*uk_20 + 8883*uk_21 + 13671*uk_22 + 5859*uk_23 + 13924*uk_24 + 10974*uk_25 + 2360*uk_26 + 16638*uk_27 + 25606*uk_28 + 10974*uk_29 + 118*uk_3 + 8649*uk_30 + 1860*uk_31 + 13113*uk_32 + 20181*uk_33 + 8649*uk_34 + 400*uk_35 + 2820*uk_36 + 4340*uk_37 + 1860*uk_38 + 19881*uk_39 + 93*uk_4 + 30597*uk_40 + 13113*uk_41 + 47089*uk_42 + 20181*uk_43 + 8649*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 264592179862*uk_47 + 208534514637*uk_48 + 44846132180*uk_49 + 20*uk_5 + 316165231869*uk_50 + 486580534153*uk_51 + 208534514637*uk_52 + 187944057*uk_53 + 352022202*uk_54 + 277441227*uk_55 + 59664780*uk_56 + 420636699*uk_57 + 647362863*uk_58 + 277441227*uk_59 + 141*uk_6 + 659343172*uk_60 + 519651822*uk_61 + 111753080*uk_62 + 787859214*uk_63 + 1212520918*uk_64 + 519651822*uk_65 + 409556097*uk_66 + 88076580*uk_67 + 620939889*uk_68 + 955630893*uk_69 + 217*uk_7 + 409556097*uk_70 + 18941200*uk_71 + 133535460*uk_72 + 205512020*uk_73 + 88076580*uk_74 + 941424993*uk_75 + 1448859741*uk_76 + 620939889*uk_77 + 2229805417*uk_78 + 955630893*uk_79 + 93*uk_8 + 409556097*uk_80 + 250047*uk_81 + 468342*uk_82 + 369117*uk_83 + 79380*uk_84 + 559629*uk_85 + 861273*uk_86 + 369117*uk_87 + 877212*uk_88 + 691362*uk_89 + 2242306609*uk_9 + 148680*uk_90 + 1048194*uk_91 + 1613178*uk_92 + 691362*uk_93 + 544887*uk_94 + 117180*uk_95 + 826119*uk_96 + 1271403*uk_97 + 544887*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 144144*uk_100 + 218736*uk_101 + 118944*uk_102 + 1288287*uk_103 + 1954953*uk_104 + 1063062*uk_105 + 2966607*uk_106 + 1613178*uk_107 + 877212*uk_108 + 8000*uk_109 + 947060*uk_11 + 47200*uk_110 + 6400*uk_111 + 57200*uk_112 + 86800*uk_113 + 47200*uk_114 + 278480*uk_115 + 37760*uk_116 + 337480*uk_117 + 512120*uk_118 + 278480*uk_119 + 5587654*uk_12 + 5120*uk_120 + 45760*uk_121 + 69440*uk_122 + 37760*uk_123 + 408980*uk_124 + 620620*uk_125 + 337480*uk_126 + 941780*uk_127 + 512120*uk_128 + 278480*uk_129 + 757648*uk_13 + 1643032*uk_130 + 222784*uk_131 + 1991132*uk_132 + 3021508*uk_133 + 1643032*uk_134 + 30208*uk_135 + 269984*uk_136 + 409696*uk_137 + 222784*uk_138 + 2412982*uk_139 + 6771479*uk_14 + 3661658*uk_140 + 1991132*uk_141 + 5556502*uk_142 + 3021508*uk_143 + 1643032*uk_144 + 4096*uk_145 + 36608*uk_146 + 55552*uk_147 + 30208*uk_148 + 327184*uk_149 + 10275601*uk_15 + 496496*uk_150 + 269984*uk_151 + 753424*uk_152 + 409696*uk_153 + 222784*uk_154 + 2924207*uk_155 + 4437433*uk_156 + 2412982*uk_157 + 6733727*uk_158 + 3661658*uk_159 + 5587654*uk_16 + 1991132*uk_160 + 10218313*uk_161 + 5556502*uk_162 + 3021508*uk_163 + 1643032*uk_164 + 3969*uk_17 + 1260*uk_18 + 7434*uk_19 + 63*uk_2 + 1008*uk_20 + 9009*uk_21 + 13671*uk_22 + 7434*uk_23 + 400*uk_24 + 2360*uk_25 + 320*uk_26 + 2860*uk_27 + 4340*uk_28 + 2360*uk_29 + 20*uk_3 + 13924*uk_30 + 1888*uk_31 + 16874*uk_32 + 25606*uk_33 + 13924*uk_34 + 256*uk_35 + 2288*uk_36 + 3472*uk_37 + 1888*uk_38 + 20449*uk_39 + 118*uk_4 + 31031*uk_40 + 16874*uk_41 + 47089*uk_42 + 25606*uk_43 + 13924*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 44846132180*uk_47 + 264592179862*uk_48 + 35876905744*uk_49 + 16*uk_5 + 320649845087*uk_50 + 486580534153*uk_51 + 264592179862*uk_52 + 187944057*uk_53 + 59664780*uk_54 + 352022202*uk_55 + 47731824*uk_56 + 426603177*uk_57 + 647362863*uk_58 + 352022202*uk_59 + 143*uk_6 + 18941200*uk_60 + 111753080*uk_61 + 15152960*uk_62 + 135429580*uk_63 + 205512020*uk_64 + 111753080*uk_65 + 659343172*uk_66 + 89402464*uk_67 + 799034522*uk_68 + 1212520918*uk_69 + 217*uk_7 + 659343172*uk_70 + 12122368*uk_71 + 108343664*uk_72 + 164409616*uk_73 + 89402464*uk_74 + 968321497*uk_75 + 1469410943*uk_76 + 799034522*uk_77 + 2229805417*uk_78 + 1212520918*uk_79 + 118*uk_8 + 659343172*uk_80 + 250047*uk_81 + 79380*uk_82 + 468342*uk_83 + 63504*uk_84 + 567567*uk_85 + 861273*uk_86 + 468342*uk_87 + 25200*uk_88 + 148680*uk_89 + 2242306609*uk_9 + 20160*uk_90 + 180180*uk_91 + 273420*uk_92 + 148680*uk_93 + 877212*uk_94 + 118944*uk_95 + 1063062*uk_96 + 1613178*uk_97 + 877212*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 182700*uk_100 + 273420*uk_101 + 25200*uk_102 + 1324575*uk_103 + 1982295*uk_104 + 182700*uk_105 + 2966607*uk_106 + 273420*uk_107 + 25200*uk_108 + 571787*uk_109 + 3930299*uk_11 + 137780*uk_110 + 137780*uk_111 + 998905*uk_112 + 1494913*uk_113 + 137780*uk_114 + 33200*uk_115 + 33200*uk_116 + 240700*uk_117 + 360220*uk_118 + 33200*uk_119 + 947060*uk_12 + 33200*uk_120 + 240700*uk_121 + 360220*uk_122 + 33200*uk_123 + 1745075*uk_124 + 2611595*uk_125 + 240700*uk_126 + 3908387*uk_127 + 360220*uk_128 + 33200*uk_129 + 947060*uk_13 + 8000*uk_130 + 8000*uk_131 + 58000*uk_132 + 86800*uk_133 + 8000*uk_134 + 8000*uk_135 + 58000*uk_136 + 86800*uk_137 + 8000*uk_138 + 420500*uk_139 + 6866185*uk_14 + 629300*uk_140 + 58000*uk_141 + 941780*uk_142 + 86800*uk_143 + 8000*uk_144 + 8000*uk_145 + 58000*uk_146 + 86800*uk_147 + 8000*uk_148 + 420500*uk_149 + 10275601*uk_15 + 629300*uk_150 + 58000*uk_151 + 941780*uk_152 + 86800*uk_153 + 8000*uk_154 + 3048625*uk_155 + 4562425*uk_156 + 420500*uk_157 + 6827905*uk_158 + 629300*uk_159 + 947060*uk_16 + 58000*uk_160 + 10218313*uk_161 + 941780*uk_162 + 86800*uk_163 + 8000*uk_164 + 3969*uk_17 + 5229*uk_18 + 1260*uk_19 + 63*uk_2 + 1260*uk_20 + 9135*uk_21 + 13671*uk_22 + 1260*uk_23 + 6889*uk_24 + 1660*uk_25 + 1660*uk_26 + 12035*uk_27 + 18011*uk_28 + 1660*uk_29 + 83*uk_3 + 400*uk_30 + 400*uk_31 + 2900*uk_32 + 4340*uk_33 + 400*uk_34 + 400*uk_35 + 2900*uk_36 + 4340*uk_37 + 400*uk_38 + 21025*uk_39 + 20*uk_4 + 31465*uk_40 + 2900*uk_41 + 47089*uk_42 + 4340*uk_43 + 400*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 186111448547*uk_47 + 44846132180*uk_48 + 44846132180*uk_49 + 20*uk_5 + 325134458305*uk_50 + 486580534153*uk_51 + 44846132180*uk_52 + 187944057*uk_53 + 247608837*uk_54 + 59664780*uk_55 + 59664780*uk_56 + 432569655*uk_57 + 647362863*uk_58 + 59664780*uk_59 + 145*uk_6 + 326214817*uk_60 + 78605980*uk_61 + 78605980*uk_62 + 569893355*uk_63 + 852874883*uk_64 + 78605980*uk_65 + 18941200*uk_66 + 18941200*uk_67 + 137323700*uk_68 + 205512020*uk_69 + 217*uk_7 + 18941200*uk_70 + 18941200*uk_71 + 137323700*uk_72 + 205512020*uk_73 + 18941200*uk_74 + 995596825*uk_75 + 1489962145*uk_76 + 137323700*uk_77 + 2229805417*uk_78 + 205512020*uk_79 + 20*uk_8 + 18941200*uk_80 + 250047*uk_81 + 329427*uk_82 + 79380*uk_83 + 79380*uk_84 + 575505*uk_85 + 861273*uk_86 + 79380*uk_87 + 434007*uk_88 + 104580*uk_89 + 2242306609*uk_9 + 104580*uk_90 + 758205*uk_91 + 1134693*uk_92 + 104580*uk_93 + 25200*uk_94 + 25200*uk_95 + 182700*uk_96 + 273420*uk_97 + 25200*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 148176*uk_100 + 218736*uk_101 + 83664*uk_102 + 1361367*uk_103 + 2009637*uk_104 + 768663*uk_105 + 2966607*uk_106 + 1134693*uk_107 + 434007*uk_108 + 6859*uk_109 + 899707*uk_11 + 29963*uk_110 + 5776*uk_111 + 53067*uk_112 + 78337*uk_113 + 29963*uk_114 + 130891*uk_115 + 25232*uk_116 + 231819*uk_117 + 342209*uk_118 + 130891*uk_119 + 3930299*uk_12 + 4864*uk_120 + 44688*uk_121 + 65968*uk_122 + 25232*uk_123 + 410571*uk_124 + 606081*uk_125 + 231819*uk_126 + 894691*uk_127 + 342209*uk_128 + 130891*uk_129 + 757648*uk_13 + 571787*uk_130 + 110224*uk_131 + 1012683*uk_132 + 1494913*uk_133 + 571787*uk_134 + 21248*uk_135 + 195216*uk_136 + 288176*uk_137 + 110224*uk_138 + 1793547*uk_139 + 6960891*uk_14 + 2647617*uk_140 + 1012683*uk_141 + 3908387*uk_142 + 1494913*uk_143 + 571787*uk_144 + 4096*uk_145 + 37632*uk_146 + 55552*uk_147 + 21248*uk_148 + 345744*uk_149 + 10275601*uk_15 + 510384*uk_150 + 195216*uk_151 + 753424*uk_152 + 288176*uk_153 + 110224*uk_154 + 3176523*uk_155 + 4689153*uk_156 + 1793547*uk_157 + 6922083*uk_158 + 2647617*uk_159 + 3930299*uk_16 + 1012683*uk_160 + 10218313*uk_161 + 3908387*uk_162 + 1494913*uk_163 + 571787*uk_164 + 3969*uk_17 + 1197*uk_18 + 5229*uk_19 + 63*uk_2 + 1008*uk_20 + 9261*uk_21 + 13671*uk_22 + 5229*uk_23 + 361*uk_24 + 1577*uk_25 + 304*uk_26 + 2793*uk_27 + 4123*uk_28 + 1577*uk_29 + 19*uk_3 + 6889*uk_30 + 1328*uk_31 + 12201*uk_32 + 18011*uk_33 + 6889*uk_34 + 256*uk_35 + 2352*uk_36 + 3472*uk_37 + 1328*uk_38 + 21609*uk_39 + 83*uk_4 + 31899*uk_40 + 12201*uk_41 + 47089*uk_42 + 18011*uk_43 + 6889*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 42603825571*uk_47 + 186111448547*uk_48 + 35876905744*uk_49 + 16*uk_5 + 329619071523*uk_50 + 486580534153*uk_51 + 186111448547*uk_52 + 187944057*uk_53 + 56681541*uk_54 + 247608837*uk_55 + 47731824*uk_56 + 438536133*uk_57 + 647362863*uk_58 + 247608837*uk_59 + 147*uk_6 + 17094433*uk_60 + 74675681*uk_61 + 14395312*uk_62 + 132256929*uk_63 + 195236419*uk_64 + 74675681*uk_65 + 326214817*uk_66 + 62884784*uk_67 + 577753953*uk_68 + 852874883*uk_69 + 217*uk_7 + 326214817*uk_70 + 12122368*uk_71 + 111374256*uk_72 + 164409616*uk_73 + 62884784*uk_74 + 1023250977*uk_75 + 1510513347*uk_76 + 577753953*uk_77 + 2229805417*uk_78 + 852874883*uk_79 + 83*uk_8 + 326214817*uk_80 + 250047*uk_81 + 75411*uk_82 + 329427*uk_83 + 63504*uk_84 + 583443*uk_85 + 861273*uk_86 + 329427*uk_87 + 22743*uk_88 + 99351*uk_89 + 2242306609*uk_9 + 19152*uk_90 + 175959*uk_91 + 259749*uk_92 + 99351*uk_93 + 434007*uk_94 + 83664*uk_95 + 768663*uk_96 + 1134693*uk_97 + 434007*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 187740*uk_100 + 273420*uk_101 + 23940*uk_102 + 1398663*uk_103 + 2036979*uk_104 + 178353*uk_105 + 2966607*uk_106 + 259749*uk_107 + 22743*uk_108 + 1728000*uk_109 + 5682360*uk_11 + 273600*uk_110 + 288000*uk_111 + 2145600*uk_112 + 3124800*uk_113 + 273600*uk_114 + 43320*uk_115 + 45600*uk_116 + 339720*uk_117 + 494760*uk_118 + 43320*uk_119 + 899707*uk_12 + 48000*uk_120 + 357600*uk_121 + 520800*uk_122 + 45600*uk_123 + 2664120*uk_124 + 3879960*uk_125 + 339720*uk_126 + 5650680*uk_127 + 494760*uk_128 + 43320*uk_129 + 947060*uk_13 + 6859*uk_130 + 7220*uk_131 + 53789*uk_132 + 78337*uk_133 + 6859*uk_134 + 7600*uk_135 + 56620*uk_136 + 82460*uk_137 + 7220*uk_138 + 421819*uk_139 + 7055597*uk_14 + 614327*uk_140 + 53789*uk_141 + 894691*uk_142 + 78337*uk_143 + 6859*uk_144 + 8000*uk_145 + 59600*uk_146 + 86800*uk_147 + 7600*uk_148 + 444020*uk_149 + 10275601*uk_15 + 646660*uk_150 + 56620*uk_151 + 941780*uk_152 + 82460*uk_153 + 7220*uk_154 + 3307949*uk_155 + 4817617*uk_156 + 421819*uk_157 + 7016261*uk_158 + 614327*uk_159 + 899707*uk_16 + 53789*uk_160 + 10218313*uk_161 + 894691*uk_162 + 78337*uk_163 + 6859*uk_164 + 3969*uk_17 + 7560*uk_18 + 1197*uk_19 + 63*uk_2 + 1260*uk_20 + 9387*uk_21 + 13671*uk_22 + 1197*uk_23 + 14400*uk_24 + 2280*uk_25 + 2400*uk_26 + 17880*uk_27 + 26040*uk_28 + 2280*uk_29 + 120*uk_3 + 361*uk_30 + 380*uk_31 + 2831*uk_32 + 4123*uk_33 + 361*uk_34 + 400*uk_35 + 2980*uk_36 + 4340*uk_37 + 380*uk_38 + 22201*uk_39 + 19*uk_4 + 32333*uk_40 + 2831*uk_41 + 47089*uk_42 + 4123*uk_43 + 361*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 269076793080*uk_47 + 42603825571*uk_48 + 44846132180*uk_49 + 20*uk_5 + 334103684741*uk_50 + 486580534153*uk_51 + 42603825571*uk_52 + 187944057*uk_53 + 357988680*uk_54 + 56681541*uk_55 + 59664780*uk_56 + 444502611*uk_57 + 647362863*uk_58 + 56681541*uk_59 + 149*uk_6 + 681883200*uk_60 + 107964840*uk_61 + 113647200*uk_62 + 846671640*uk_63 + 1233072120*uk_64 + 107964840*uk_65 + 17094433*uk_66 + 17994140*uk_67 + 134056343*uk_68 + 195236419*uk_69 + 217*uk_7 + 17094433*uk_70 + 18941200*uk_71 + 141111940*uk_72 + 205512020*uk_73 + 17994140*uk_74 + 1051283953*uk_75 + 1531064549*uk_76 + 134056343*uk_77 + 2229805417*uk_78 + 195236419*uk_79 + 19*uk_8 + 17094433*uk_80 + 250047*uk_81 + 476280*uk_82 + 75411*uk_83 + 79380*uk_84 + 591381*uk_85 + 861273*uk_86 + 75411*uk_87 + 907200*uk_88 + 143640*uk_89 + 2242306609*uk_9 + 151200*uk_90 + 1126440*uk_91 + 1640520*uk_92 + 143640*uk_93 + 22743*uk_94 + 23940*uk_95 + 178353*uk_96 + 259749*uk_97 + 22743*uk_98 + 25200*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 152208*uk_100 + 218736*uk_101 + 120960*uk_102 + 1436463*uk_103 + 2064321*uk_104 + 1141560*uk_105 + 2966607*uk_106 + 1640520*uk_107 + 907200*uk_108 + 729000*uk_109 + 4261770*uk_11 + 972000*uk_110 + 129600*uk_111 + 1223100*uk_112 + 1757700*uk_113 + 972000*uk_114 + 1296000*uk_115 + 172800*uk_116 + 1630800*uk_117 + 2343600*uk_118 + 1296000*uk_119 + 5682360*uk_12 + 23040*uk_120 + 217440*uk_121 + 312480*uk_122 + 172800*uk_123 + 2052090*uk_124 + 2949030*uk_125 + 1630800*uk_126 + 4238010*uk_127 + 2343600*uk_128 + 1296000*uk_129 + 757648*uk_13 + 1728000*uk_130 + 230400*uk_131 + 2174400*uk_132 + 3124800*uk_133 + 1728000*uk_134 + 30720*uk_135 + 289920*uk_136 + 416640*uk_137 + 230400*uk_138 + 2736120*uk_139 + 7150303*uk_14 + 3932040*uk_140 + 2174400*uk_141 + 5650680*uk_142 + 3124800*uk_143 + 1728000*uk_144 + 4096*uk_145 + 38656*uk_146 + 55552*uk_147 + 30720*uk_148 + 364816*uk_149 + 10275601*uk_15 + 524272*uk_150 + 289920*uk_151 + 753424*uk_152 + 416640*uk_153 + 230400*uk_154 + 3442951*uk_155 + 4947817*uk_156 + 2736120*uk_157 + 7110439*uk_158 + 3932040*uk_159 + 5682360*uk_16 + 2174400*uk_160 + 10218313*uk_161 + 5650680*uk_162 + 3124800*uk_163 + 1728000*uk_164 + 3969*uk_17 + 5670*uk_18 + 7560*uk_19 + 63*uk_2 + 1008*uk_20 + 9513*uk_21 + 13671*uk_22 + 7560*uk_23 + 8100*uk_24 + 10800*uk_25 + 1440*uk_26 + 13590*uk_27 + 19530*uk_28 + 10800*uk_29 + 90*uk_3 + 14400*uk_30 + 1920*uk_31 + 18120*uk_32 + 26040*uk_33 + 14400*uk_34 + 256*uk_35 + 2416*uk_36 + 3472*uk_37 + 1920*uk_38 + 22801*uk_39 + 120*uk_4 + 32767*uk_40 + 18120*uk_41 + 47089*uk_42 + 26040*uk_43 + 14400*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 201807594810*uk_47 + 269076793080*uk_48 + 35876905744*uk_49 + 16*uk_5 + 338588297959*uk_50 + 486580534153*uk_51 + 269076793080*uk_52 + 187944057*uk_53 + 268491510*uk_54 + 357988680*uk_55 + 47731824*uk_56 + 450469089*uk_57 + 647362863*uk_58 + 357988680*uk_59 + 151*uk_6 + 383559300*uk_60 + 511412400*uk_61 + 68188320*uk_62 + 643527270*uk_63 + 924804090*uk_64 + 511412400*uk_65 + 681883200*uk_66 + 90917760*uk_67 + 858036360*uk_68 + 1233072120*uk_69 + 217*uk_7 + 681883200*uk_70 + 12122368*uk_71 + 114404848*uk_72 + 164409616*uk_73 + 90917760*uk_74 + 1079695753*uk_75 + 1551615751*uk_76 + 858036360*uk_77 + 2229805417*uk_78 + 1233072120*uk_79 + 120*uk_8 + 681883200*uk_80 + 250047*uk_81 + 357210*uk_82 + 476280*uk_83 + 63504*uk_84 + 599319*uk_85 + 861273*uk_86 + 476280*uk_87 + 510300*uk_88 + 680400*uk_89 + 2242306609*uk_9 + 90720*uk_90 + 856170*uk_91 + 1230390*uk_92 + 680400*uk_93 + 907200*uk_94 + 120960*uk_95 + 1141560*uk_96 + 1640520*uk_97 + 907200*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 154224*uk_100 + 218736*uk_101 + 90720*uk_102 + 1474767*uk_103 + 2091663*uk_104 + 867510*uk_105 + 2966607*uk_106 + 1230390*uk_107 + 510300*uk_108 + 438976*uk_109 + 3598828*uk_11 + 519840*uk_110 + 92416*uk_111 + 883728*uk_112 + 1253392*uk_113 + 519840*uk_114 + 615600*uk_115 + 109440*uk_116 + 1046520*uk_117 + 1484280*uk_118 + 615600*uk_119 + 4261770*uk_12 + 19456*uk_120 + 186048*uk_121 + 263872*uk_122 + 109440*uk_123 + 1779084*uk_124 + 2523276*uk_125 + 1046520*uk_126 + 3578764*uk_127 + 1484280*uk_128 + 615600*uk_129 + 757648*uk_13 + 729000*uk_130 + 129600*uk_131 + 1239300*uk_132 + 1757700*uk_133 + 729000*uk_134 + 23040*uk_135 + 220320*uk_136 + 312480*uk_137 + 129600*uk_138 + 2106810*uk_139 + 7245009*uk_14 + 2988090*uk_140 + 1239300*uk_141 + 4238010*uk_142 + 1757700*uk_143 + 729000*uk_144 + 4096*uk_145 + 39168*uk_146 + 55552*uk_147 + 23040*uk_148 + 374544*uk_149 + 10275601*uk_15 + 531216*uk_150 + 220320*uk_151 + 753424*uk_152 + 312480*uk_153 + 129600*uk_154 + 3581577*uk_155 + 5079753*uk_156 + 2106810*uk_157 + 7204617*uk_158 + 2988090*uk_159 + 4261770*uk_16 + 1239300*uk_160 + 10218313*uk_161 + 4238010*uk_162 + 1757700*uk_163 + 729000*uk_164 + 3969*uk_17 + 4788*uk_18 + 5670*uk_19 + 63*uk_2 + 1008*uk_20 + 9639*uk_21 + 13671*uk_22 + 5670*uk_23 + 5776*uk_24 + 6840*uk_25 + 1216*uk_26 + 11628*uk_27 + 16492*uk_28 + 6840*uk_29 + 76*uk_3 + 8100*uk_30 + 1440*uk_31 + 13770*uk_32 + 19530*uk_33 + 8100*uk_34 + 256*uk_35 + 2448*uk_36 + 3472*uk_37 + 1440*uk_38 + 23409*uk_39 + 90*uk_4 + 33201*uk_40 + 13770*uk_41 + 47089*uk_42 + 19530*uk_43 + 8100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 170415302284*uk_47 + 201807594810*uk_48 + 35876905744*uk_49 + 16*uk_5 + 343072911177*uk_50 + 486580534153*uk_51 + 201807594810*uk_52 + 187944057*uk_53 + 226726164*uk_54 + 268491510*uk_55 + 47731824*uk_56 + 456435567*uk_57 + 647362863*uk_58 + 268491510*uk_59 + 153*uk_6 + 273510928*uk_60 + 323894520*uk_61 + 57581248*uk_62 + 550620684*uk_63 + 780945676*uk_64 + 323894520*uk_65 + 383559300*uk_66 + 68188320*uk_67 + 652050810*uk_68 + 924804090*uk_69 + 217*uk_7 + 383559300*uk_70 + 12122368*uk_71 + 115920144*uk_72 + 164409616*uk_73 + 68188320*uk_74 + 1108486377*uk_75 + 1572166953*uk_76 + 652050810*uk_77 + 2229805417*uk_78 + 924804090*uk_79 + 90*uk_8 + 383559300*uk_80 + 250047*uk_81 + 301644*uk_82 + 357210*uk_83 + 63504*uk_84 + 607257*uk_85 + 861273*uk_86 + 357210*uk_87 + 363888*uk_88 + 430920*uk_89 + 2242306609*uk_9 + 76608*uk_90 + 732564*uk_91 + 1038996*uk_92 + 430920*uk_93 + 510300*uk_94 + 90720*uk_95 + 867510*uk_96 + 1230390*uk_97 + 510300*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 156240*uk_100 + 218736*uk_101 + 76608*uk_102 + 1513575*uk_103 + 2119005*uk_104 + 742140*uk_105 + 2966607*uk_106 + 1038996*uk_107 + 363888*uk_108 + 474552*uk_109 + 3693534*uk_11 + 462384*uk_110 + 97344*uk_111 + 943020*uk_112 + 1320228*uk_113 + 462384*uk_114 + 450528*uk_115 + 94848*uk_116 + 918840*uk_117 + 1286376*uk_118 + 450528*uk_119 + 3598828*uk_12 + 19968*uk_120 + 193440*uk_121 + 270816*uk_122 + 94848*uk_123 + 1873950*uk_124 + 2623530*uk_125 + 918840*uk_126 + 3672942*uk_127 + 1286376*uk_128 + 450528*uk_129 + 757648*uk_13 + 438976*uk_130 + 92416*uk_131 + 895280*uk_132 + 1253392*uk_133 + 438976*uk_134 + 19456*uk_135 + 188480*uk_136 + 263872*uk_137 + 92416*uk_138 + 1825900*uk_139 + 7339715*uk_14 + 2556260*uk_140 + 895280*uk_141 + 3578764*uk_142 + 1253392*uk_143 + 438976*uk_144 + 4096*uk_145 + 39680*uk_146 + 55552*uk_147 + 19456*uk_148 + 384400*uk_149 + 10275601*uk_15 + 538160*uk_150 + 188480*uk_151 + 753424*uk_152 + 263872*uk_153 + 92416*uk_154 + 3723875*uk_155 + 5213425*uk_156 + 1825900*uk_157 + 7298795*uk_158 + 2556260*uk_159 + 3598828*uk_16 + 895280*uk_160 + 10218313*uk_161 + 3578764*uk_162 + 1253392*uk_163 + 438976*uk_164 + 3969*uk_17 + 4914*uk_18 + 4788*uk_19 + 63*uk_2 + 1008*uk_20 + 9765*uk_21 + 13671*uk_22 + 4788*uk_23 + 6084*uk_24 + 5928*uk_25 + 1248*uk_26 + 12090*uk_27 + 16926*uk_28 + 5928*uk_29 + 78*uk_3 + 5776*uk_30 + 1216*uk_31 + 11780*uk_32 + 16492*uk_33 + 5776*uk_34 + 256*uk_35 + 2480*uk_36 + 3472*uk_37 + 1216*uk_38 + 24025*uk_39 + 76*uk_4 + 33635*uk_40 + 11780*uk_41 + 47089*uk_42 + 16492*uk_43 + 5776*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 174899915502*uk_47 + 170415302284*uk_48 + 35876905744*uk_49 + 16*uk_5 + 347557524395*uk_50 + 486580534153*uk_51 + 170415302284*uk_52 + 187944057*uk_53 + 232692642*uk_54 + 226726164*uk_55 + 47731824*uk_56 + 462402045*uk_57 + 647362863*uk_58 + 226726164*uk_59 + 155*uk_6 + 288095652*uk_60 + 280708584*uk_61 + 59096544*uk_62 + 572497770*uk_63 + 801496878*uk_64 + 280708584*uk_65 + 273510928*uk_66 + 57581248*uk_67 + 557818340*uk_68 + 780945676*uk_69 + 217*uk_7 + 273510928*uk_70 + 12122368*uk_71 + 117435440*uk_72 + 164409616*uk_73 + 57581248*uk_74 + 1137655825*uk_75 + 1592718155*uk_76 + 557818340*uk_77 + 2229805417*uk_78 + 780945676*uk_79 + 76*uk_8 + 273510928*uk_80 + 250047*uk_81 + 309582*uk_82 + 301644*uk_83 + 63504*uk_84 + 615195*uk_85 + 861273*uk_86 + 301644*uk_87 + 383292*uk_88 + 373464*uk_89 + 2242306609*uk_9 + 78624*uk_90 + 761670*uk_91 + 1066338*uk_92 + 373464*uk_93 + 363888*uk_94 + 76608*uk_95 + 742140*uk_96 + 1038996*uk_97 + 363888*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 158256*uk_100 + 218736*uk_101 + 78624*uk_102 + 1552887*uk_103 + 2146347*uk_104 + 771498*uk_105 + 2966607*uk_106 + 1066338*uk_107 + 383292*uk_108 + 884736*uk_109 + 4545888*uk_11 + 718848*uk_110 + 147456*uk_111 + 1446912*uk_112 + 1999872*uk_113 + 718848*uk_114 + 584064*uk_115 + 119808*uk_116 + 1175616*uk_117 + 1624896*uk_118 + 584064*uk_119 + 3693534*uk_12 + 24576*uk_120 + 241152*uk_121 + 333312*uk_122 + 119808*uk_123 + 2366304*uk_124 + 3270624*uk_125 + 1175616*uk_126 + 4520544*uk_127 + 1624896*uk_128 + 584064*uk_129 + 757648*uk_13 + 474552*uk_130 + 97344*uk_131 + 955188*uk_132 + 1320228*uk_133 + 474552*uk_134 + 19968*uk_135 + 195936*uk_136 + 270816*uk_137 + 97344*uk_138 + 1922622*uk_139 + 7434421*uk_14 + 2657382*uk_140 + 955188*uk_141 + 3672942*uk_142 + 1320228*uk_143 + 474552*uk_144 + 4096*uk_145 + 40192*uk_146 + 55552*uk_147 + 19968*uk_148 + 394384*uk_149 + 10275601*uk_15 + 545104*uk_150 + 195936*uk_151 + 753424*uk_152 + 270816*uk_153 + 97344*uk_154 + 3869893*uk_155 + 5348833*uk_156 + 1922622*uk_157 + 7392973*uk_158 + 2657382*uk_159 + 3693534*uk_16 + 955188*uk_160 + 10218313*uk_161 + 3672942*uk_162 + 1320228*uk_163 + 474552*uk_164 + 3969*uk_17 + 6048*uk_18 + 4914*uk_19 + 63*uk_2 + 1008*uk_20 + 9891*uk_21 + 13671*uk_22 + 4914*uk_23 + 9216*uk_24 + 7488*uk_25 + 1536*uk_26 + 15072*uk_27 + 20832*uk_28 + 7488*uk_29 + 96*uk_3 + 6084*uk_30 + 1248*uk_31 + 12246*uk_32 + 16926*uk_33 + 6084*uk_34 + 256*uk_35 + 2512*uk_36 + 3472*uk_37 + 1248*uk_38 + 24649*uk_39 + 78*uk_4 + 34069*uk_40 + 12246*uk_41 + 47089*uk_42 + 16926*uk_43 + 6084*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 215261434464*uk_47 + 174899915502*uk_48 + 35876905744*uk_49 + 16*uk_5 + 352042137613*uk_50 + 486580534153*uk_51 + 174899915502*uk_52 + 187944057*uk_53 + 286390944*uk_54 + 232692642*uk_55 + 47731824*uk_56 + 468368523*uk_57 + 647362863*uk_58 + 232692642*uk_59 + 157*uk_6 + 436405248*uk_60 + 354579264*uk_61 + 72734208*uk_62 + 713704416*uk_63 + 986457696*uk_64 + 354579264*uk_65 + 288095652*uk_66 + 59096544*uk_67 + 579884838*uk_68 + 801496878*uk_69 + 217*uk_7 + 288095652*uk_70 + 12122368*uk_71 + 118950736*uk_72 + 164409616*uk_73 + 59096544*uk_74 + 1167204097*uk_75 + 1613269357*uk_76 + 579884838*uk_77 + 2229805417*uk_78 + 801496878*uk_79 + 78*uk_8 + 288095652*uk_80 + 250047*uk_81 + 381024*uk_82 + 309582*uk_83 + 63504*uk_84 + 623133*uk_85 + 861273*uk_86 + 309582*uk_87 + 580608*uk_88 + 471744*uk_89 + 2242306609*uk_9 + 96768*uk_90 + 949536*uk_91 + 1312416*uk_92 + 471744*uk_93 + 383292*uk_94 + 78624*uk_95 + 771498*uk_96 + 1066338*uk_97 + 383292*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 160272*uk_100 + 218736*uk_101 + 96768*uk_102 + 1592703*uk_103 + 2173689*uk_104 + 961632*uk_105 + 2966607*uk_106 + 1312416*uk_107 + 580608*uk_108 + 2197000*uk_109 + 6155890*uk_11 + 1622400*uk_110 + 270400*uk_111 + 2687100*uk_112 + 3667300*uk_113 + 1622400*uk_114 + 1198080*uk_115 + 199680*uk_116 + 1984320*uk_117 + 2708160*uk_118 + 1198080*uk_119 + 4545888*uk_12 + 33280*uk_120 + 330720*uk_121 + 451360*uk_122 + 199680*uk_123 + 3286530*uk_124 + 4485390*uk_125 + 1984320*uk_126 + 6121570*uk_127 + 2708160*uk_128 + 1198080*uk_129 + 757648*uk_13 + 884736*uk_130 + 147456*uk_131 + 1465344*uk_132 + 1999872*uk_133 + 884736*uk_134 + 24576*uk_135 + 244224*uk_136 + 333312*uk_137 + 147456*uk_138 + 2426976*uk_139 + 7529127*uk_14 + 3312288*uk_140 + 1465344*uk_141 + 4520544*uk_142 + 1999872*uk_143 + 884736*uk_144 + 4096*uk_145 + 40704*uk_146 + 55552*uk_147 + 24576*uk_148 + 404496*uk_149 + 10275601*uk_15 + 552048*uk_150 + 244224*uk_151 + 753424*uk_152 + 333312*uk_153 + 147456*uk_154 + 4019679*uk_155 + 5485977*uk_156 + 2426976*uk_157 + 7487151*uk_158 + 3312288*uk_159 + 4545888*uk_16 + 1465344*uk_160 + 10218313*uk_161 + 4520544*uk_162 + 1999872*uk_163 + 884736*uk_164 + 3969*uk_17 + 8190*uk_18 + 6048*uk_19 + 63*uk_2 + 1008*uk_20 + 10017*uk_21 + 13671*uk_22 + 6048*uk_23 + 16900*uk_24 + 12480*uk_25 + 2080*uk_26 + 20670*uk_27 + 28210*uk_28 + 12480*uk_29 + 130*uk_3 + 9216*uk_30 + 1536*uk_31 + 15264*uk_32 + 20832*uk_33 + 9216*uk_34 + 256*uk_35 + 2544*uk_36 + 3472*uk_37 + 1536*uk_38 + 25281*uk_39 + 96*uk_4 + 34503*uk_40 + 15264*uk_41 + 47089*uk_42 + 20832*uk_43 + 9216*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 291499859170*uk_47 + 215261434464*uk_48 + 35876905744*uk_49 + 16*uk_5 + 356526750831*uk_50 + 486580534153*uk_51 + 215261434464*uk_52 + 187944057*uk_53 + 387821070*uk_54 + 286390944*uk_55 + 47731824*uk_56 + 474335001*uk_57 + 647362863*uk_58 + 286390944*uk_59 + 159*uk_6 + 800265700*uk_60 + 590965440*uk_61 + 98494240*uk_62 + 978786510*uk_63 + 1335828130*uk_64 + 590965440*uk_65 + 436405248*uk_66 + 72734208*uk_67 + 722796192*uk_68 + 986457696*uk_69 + 217*uk_7 + 436405248*uk_70 + 12122368*uk_71 + 120466032*uk_72 + 164409616*uk_73 + 72734208*uk_74 + 1197131193*uk_75 + 1633820559*uk_76 + 722796192*uk_77 + 2229805417*uk_78 + 986457696*uk_79 + 96*uk_8 + 436405248*uk_80 + 250047*uk_81 + 515970*uk_82 + 381024*uk_83 + 63504*uk_84 + 631071*uk_85 + 861273*uk_86 + 381024*uk_87 + 1064700*uk_88 + 786240*uk_89 + 2242306609*uk_9 + 131040*uk_90 + 1302210*uk_91 + 1777230*uk_92 + 786240*uk_93 + 580608*uk_94 + 96768*uk_95 + 961632*uk_96 + 1312416*uk_97 + 580608*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 121716*uk_100 + 164052*uk_101 + 98280*uk_102 + 1633023*uk_103 + 2201031*uk_104 + 1318590*uk_105 + 2966607*uk_106 + 1777230*uk_107 + 1064700*uk_108 + 6859*uk_109 + 899707*uk_11 + 46930*uk_110 + 4332*uk_111 + 58121*uk_112 + 78337*uk_113 + 46930*uk_114 + 321100*uk_115 + 29640*uk_116 + 397670*uk_117 + 535990*uk_118 + 321100*uk_119 + 6155890*uk_12 + 2736*uk_120 + 36708*uk_121 + 49476*uk_122 + 29640*uk_123 + 492499*uk_124 + 663803*uk_125 + 397670*uk_126 + 894691*uk_127 + 535990*uk_128 + 321100*uk_129 + 568236*uk_13 + 2197000*uk_130 + 202800*uk_131 + 2720900*uk_132 + 3667300*uk_133 + 2197000*uk_134 + 18720*uk_135 + 251160*uk_136 + 338520*uk_137 + 202800*uk_138 + 3369730*uk_139 + 7623833*uk_14 + 4541810*uk_140 + 2720900*uk_141 + 6121570*uk_142 + 3667300*uk_143 + 2197000*uk_144 + 1728*uk_145 + 23184*uk_146 + 31248*uk_147 + 18720*uk_148 + 311052*uk_149 + 10275601*uk_15 + 419244*uk_150 + 251160*uk_151 + 565068*uk_152 + 338520*uk_153 + 202800*uk_154 + 4173281*uk_155 + 5624857*uk_156 + 3369730*uk_157 + 7581329*uk_158 + 4541810*uk_159 + 6155890*uk_16 + 2720900*uk_160 + 10218313*uk_161 + 6121570*uk_162 + 3667300*uk_163 + 2197000*uk_164 + 3969*uk_17 + 1197*uk_18 + 8190*uk_19 + 63*uk_2 + 756*uk_20 + 10143*uk_21 + 13671*uk_22 + 8190*uk_23 + 361*uk_24 + 2470*uk_25 + 228*uk_26 + 3059*uk_27 + 4123*uk_28 + 2470*uk_29 + 19*uk_3 + 16900*uk_30 + 1560*uk_31 + 20930*uk_32 + 28210*uk_33 + 16900*uk_34 + 144*uk_35 + 1932*uk_36 + 2604*uk_37 + 1560*uk_38 + 25921*uk_39 + 130*uk_4 + 34937*uk_40 + 20930*uk_41 + 47089*uk_42 + 28210*uk_43 + 16900*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 42603825571*uk_47 + 291499859170*uk_48 + 26907679308*uk_49 + 12*uk_5 + 361011364049*uk_50 + 486580534153*uk_51 + 291499859170*uk_52 + 187944057*uk_53 + 56681541*uk_54 + 387821070*uk_55 + 35798868*uk_56 + 480301479*uk_57 + 647362863*uk_58 + 387821070*uk_59 + 161*uk_6 + 17094433*uk_60 + 116961910*uk_61 + 10796484*uk_62 + 144852827*uk_63 + 195236419*uk_64 + 116961910*uk_65 + 800265700*uk_66 + 73870680*uk_67 + 991098290*uk_68 + 1335828130*uk_69 + 217*uk_7 + 800265700*uk_70 + 6818832*uk_71 + 91485996*uk_72 + 123307212*uk_73 + 73870680*uk_74 + 1227437113*uk_75 + 1654371761*uk_76 + 991098290*uk_77 + 2229805417*uk_78 + 1335828130*uk_79 + 130*uk_8 + 800265700*uk_80 + 250047*uk_81 + 75411*uk_82 + 515970*uk_83 + 47628*uk_84 + 639009*uk_85 + 861273*uk_86 + 515970*uk_87 + 22743*uk_88 + 155610*uk_89 + 2242306609*uk_9 + 14364*uk_90 + 192717*uk_91 + 259749*uk_92 + 155610*uk_93 + 1064700*uk_94 + 98280*uk_95 + 1318590*uk_96 + 1777230*uk_97 + 1064700*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 164304*uk_100 + 218736*uk_101 + 19152*uk_102 + 1673847*uk_103 + 2228373*uk_104 + 195111*uk_105 + 2966607*uk_106 + 259749*uk_107 + 22743*uk_108 + 571787*uk_109 + 3930299*uk_11 + 130891*uk_110 + 110224*uk_111 + 1122907*uk_112 + 1494913*uk_113 + 130891*uk_114 + 29963*uk_115 + 25232*uk_116 + 257051*uk_117 + 342209*uk_118 + 29963*uk_119 + 899707*uk_12 + 21248*uk_120 + 216464*uk_121 + 288176*uk_122 + 25232*uk_123 + 2205227*uk_124 + 2935793*uk_125 + 257051*uk_126 + 3908387*uk_127 + 342209*uk_128 + 29963*uk_129 + 757648*uk_13 + 6859*uk_130 + 5776*uk_131 + 58843*uk_132 + 78337*uk_133 + 6859*uk_134 + 4864*uk_135 + 49552*uk_136 + 65968*uk_137 + 5776*uk_138 + 504811*uk_139 + 7718539*uk_14 + 672049*uk_140 + 58843*uk_141 + 894691*uk_142 + 78337*uk_143 + 6859*uk_144 + 4096*uk_145 + 41728*uk_146 + 55552*uk_147 + 4864*uk_148 + 425104*uk_149 + 10275601*uk_15 + 565936*uk_150 + 49552*uk_151 + 753424*uk_152 + 65968*uk_153 + 5776*uk_154 + 4330747*uk_155 + 5765473*uk_156 + 504811*uk_157 + 7675507*uk_158 + 672049*uk_159 + 899707*uk_16 + 58843*uk_160 + 10218313*uk_161 + 894691*uk_162 + 78337*uk_163 + 6859*uk_164 + 3969*uk_17 + 5229*uk_18 + 1197*uk_19 + 63*uk_2 + 1008*uk_20 + 10269*uk_21 + 13671*uk_22 + 1197*uk_23 + 6889*uk_24 + 1577*uk_25 + 1328*uk_26 + 13529*uk_27 + 18011*uk_28 + 1577*uk_29 + 83*uk_3 + 361*uk_30 + 304*uk_31 + 3097*uk_32 + 4123*uk_33 + 361*uk_34 + 256*uk_35 + 2608*uk_36 + 3472*uk_37 + 304*uk_38 + 26569*uk_39 + 19*uk_4 + 35371*uk_40 + 3097*uk_41 + 47089*uk_42 + 4123*uk_43 + 361*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 186111448547*uk_47 + 42603825571*uk_48 + 35876905744*uk_49 + 16*uk_5 + 365495977267*uk_50 + 486580534153*uk_51 + 42603825571*uk_52 + 187944057*uk_53 + 247608837*uk_54 + 56681541*uk_55 + 47731824*uk_56 + 486267957*uk_57 + 647362863*uk_58 + 56681541*uk_59 + 163*uk_6 + 326214817*uk_60 + 74675681*uk_61 + 62884784*uk_62 + 640638737*uk_63 + 852874883*uk_64 + 74675681*uk_65 + 17094433*uk_66 + 14395312*uk_67 + 146652241*uk_68 + 195236419*uk_69 + 217*uk_7 + 17094433*uk_70 + 12122368*uk_71 + 123496624*uk_72 + 164409616*uk_73 + 14395312*uk_74 + 1258121857*uk_75 + 1674922963*uk_76 + 146652241*uk_77 + 2229805417*uk_78 + 195236419*uk_79 + 19*uk_8 + 17094433*uk_80 + 250047*uk_81 + 329427*uk_82 + 75411*uk_83 + 63504*uk_84 + 646947*uk_85 + 861273*uk_86 + 75411*uk_87 + 434007*uk_88 + 99351*uk_89 + 2242306609*uk_9 + 83664*uk_90 + 852327*uk_91 + 1134693*uk_92 + 99351*uk_93 + 22743*uk_94 + 19152*uk_95 + 195111*uk_96 + 259749*uk_97 + 22743*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 166320*uk_100 + 218736*uk_101 + 83664*uk_102 + 1715175*uk_103 + 2255715*uk_104 + 862785*uk_105 + 2966607*uk_106 + 1134693*uk_107 + 434007*uk_108 + 4330747*uk_109 + 7718539*uk_11 + 2205227*uk_110 + 425104*uk_111 + 4383885*uk_112 + 5765473*uk_113 + 2205227*uk_114 + 1122907*uk_115 + 216464*uk_116 + 2232285*uk_117 + 2935793*uk_118 + 1122907*uk_119 + 3930299*uk_12 + 41728*uk_120 + 430320*uk_121 + 565936*uk_122 + 216464*uk_123 + 4437675*uk_124 + 5836215*uk_125 + 2232285*uk_126 + 7675507*uk_127 + 2935793*uk_128 + 1122907*uk_129 + 757648*uk_13 + 571787*uk_130 + 110224*uk_131 + 1136685*uk_132 + 1494913*uk_133 + 571787*uk_134 + 21248*uk_135 + 219120*uk_136 + 288176*uk_137 + 110224*uk_138 + 2259675*uk_139 + 7813245*uk_14 + 2971815*uk_140 + 1136685*uk_141 + 3908387*uk_142 + 1494913*uk_143 + 571787*uk_144 + 4096*uk_145 + 42240*uk_146 + 55552*uk_147 + 21248*uk_148 + 435600*uk_149 + 10275601*uk_15 + 572880*uk_150 + 219120*uk_151 + 753424*uk_152 + 288176*uk_153 + 110224*uk_154 + 4492125*uk_155 + 5907825*uk_156 + 2259675*uk_157 + 7769685*uk_158 + 2971815*uk_159 + 3930299*uk_16 + 1136685*uk_160 + 10218313*uk_161 + 3908387*uk_162 + 1494913*uk_163 + 571787*uk_164 + 3969*uk_17 + 10269*uk_18 + 5229*uk_19 + 63*uk_2 + 1008*uk_20 + 10395*uk_21 + 13671*uk_22 + 5229*uk_23 + 26569*uk_24 + 13529*uk_25 + 2608*uk_26 + 26895*uk_27 + 35371*uk_28 + 13529*uk_29 + 163*uk_3 + 6889*uk_30 + 1328*uk_31 + 13695*uk_32 + 18011*uk_33 + 6889*uk_34 + 256*uk_35 + 2640*uk_36 + 3472*uk_37 + 1328*uk_38 + 27225*uk_39 + 83*uk_4 + 35805*uk_40 + 13695*uk_41 + 47089*uk_42 + 18011*uk_43 + 6889*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 365495977267*uk_47 + 186111448547*uk_48 + 35876905744*uk_49 + 16*uk_5 + 369980590485*uk_50 + 486580534153*uk_51 + 186111448547*uk_52 + 187944057*uk_53 + 486267957*uk_54 + 247608837*uk_55 + 47731824*uk_56 + 492234435*uk_57 + 647362863*uk_58 + 247608837*uk_59 + 165*uk_6 + 1258121857*uk_60 + 640638737*uk_61 + 123496624*uk_62 + 1273558935*uk_63 + 1674922963*uk_64 + 640638737*uk_65 + 326214817*uk_66 + 62884784*uk_67 + 648499335*uk_68 + 852874883*uk_69 + 217*uk_7 + 326214817*uk_70 + 12122368*uk_71 + 125011920*uk_72 + 164409616*uk_73 + 62884784*uk_74 + 1289185425*uk_75 + 1695474165*uk_76 + 648499335*uk_77 + 2229805417*uk_78 + 852874883*uk_79 + 83*uk_8 + 326214817*uk_80 + 250047*uk_81 + 646947*uk_82 + 329427*uk_83 + 63504*uk_84 + 654885*uk_85 + 861273*uk_86 + 329427*uk_87 + 1673847*uk_88 + 852327*uk_89 + 2242306609*uk_9 + 164304*uk_90 + 1694385*uk_91 + 2228373*uk_92 + 852327*uk_93 + 434007*uk_94 + 83664*uk_95 + 862785*uk_96 + 1134693*uk_97 + 434007*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 126252*uk_100 + 164052*uk_101 + 123228*uk_102 + 1757007*uk_103 + 2283057*uk_104 + 1714923*uk_105 + 2966607*uk_106 + 2228373*uk_107 + 1673847*uk_108 + 778688*uk_109 + 4356476*uk_11 + 1379632*uk_110 + 101568*uk_111 + 1413488*uk_112 + 1836688*uk_113 + 1379632*uk_114 + 2444348*uk_115 + 179952*uk_116 + 2504332*uk_117 + 3254132*uk_118 + 2444348*uk_119 + 7718539*uk_12 + 13248*uk_120 + 184368*uk_121 + 239568*uk_122 + 179952*uk_123 + 2565788*uk_124 + 3333988*uk_125 + 2504332*uk_126 + 4332188*uk_127 + 3254132*uk_128 + 2444348*uk_129 + 568236*uk_13 + 4330747*uk_130 + 318828*uk_131 + 4437023*uk_132 + 5765473*uk_133 + 4330747*uk_134 + 23472*uk_135 + 326652*uk_136 + 424452*uk_137 + 318828*uk_138 + 4545907*uk_139 + 7907951*uk_14 + 5906957*uk_140 + 4437023*uk_141 + 7675507*uk_142 + 5765473*uk_143 + 4330747*uk_144 + 1728*uk_145 + 24048*uk_146 + 31248*uk_147 + 23472*uk_148 + 334668*uk_149 + 10275601*uk_15 + 434868*uk_150 + 326652*uk_151 + 565068*uk_152 + 424452*uk_153 + 318828*uk_154 + 4657463*uk_155 + 6051913*uk_156 + 4545907*uk_157 + 7863863*uk_158 + 5906957*uk_159 + 7718539*uk_16 + 4437023*uk_160 + 10218313*uk_161 + 7675507*uk_162 + 5765473*uk_163 + 4330747*uk_164 + 3969*uk_17 + 5796*uk_18 + 10269*uk_19 + 63*uk_2 + 756*uk_20 + 10521*uk_21 + 13671*uk_22 + 10269*uk_23 + 8464*uk_24 + 14996*uk_25 + 1104*uk_26 + 15364*uk_27 + 19964*uk_28 + 14996*uk_29 + 92*uk_3 + 26569*uk_30 + 1956*uk_31 + 27221*uk_32 + 35371*uk_33 + 26569*uk_34 + 144*uk_35 + 2004*uk_36 + 2604*uk_37 + 1956*uk_38 + 27889*uk_39 + 163*uk_4 + 36239*uk_40 + 27221*uk_41 + 47089*uk_42 + 35371*uk_43 + 26569*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 206292208028*uk_47 + 365495977267*uk_48 + 26907679308*uk_49 + 12*uk_5 + 374465203703*uk_50 + 486580534153*uk_51 + 365495977267*uk_52 + 187944057*uk_53 + 274457988*uk_54 + 486267957*uk_55 + 35798868*uk_56 + 498200913*uk_57 + 647362863*uk_58 + 486267957*uk_59 + 167*uk_6 + 400795792*uk_60 + 710105588*uk_61 + 52277712*uk_62 + 727531492*uk_63 + 945355292*uk_64 + 710105588*uk_65 + 1258121857*uk_66 + 92622468*uk_67 + 1288996013*uk_68 + 1674922963*uk_69 + 217*uk_7 + 1258121857*uk_70 + 6818832*uk_71 + 94895412*uk_72 + 123307212*uk_73 + 92622468*uk_74 + 1320627817*uk_75 + 1716025367*uk_76 + 1288996013*uk_77 + 2229805417*uk_78 + 1674922963*uk_79 + 163*uk_8 + 1258121857*uk_80 + 250047*uk_81 + 365148*uk_82 + 646947*uk_83 + 47628*uk_84 + 662823*uk_85 + 861273*uk_86 + 646947*uk_87 + 533232*uk_88 + 944748*uk_89 + 2242306609*uk_9 + 69552*uk_90 + 967932*uk_91 + 1257732*uk_92 + 944748*uk_93 + 1673847*uk_94 + 123228*uk_95 + 1714923*uk_96 + 2228373*uk_97 + 1673847*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 127764*uk_100 + 164052*uk_101 + 69552*uk_102 + 1799343*uk_103 + 2310399*uk_104 + 979524*uk_105 + 2966607*uk_106 + 1257732*uk_107 + 533232*uk_108 + 35937*uk_109 + 1562649*uk_11 + 100188*uk_110 + 13068*uk_111 + 184041*uk_112 + 236313*uk_113 + 100188*uk_114 + 279312*uk_115 + 36432*uk_116 + 513084*uk_117 + 658812*uk_118 + 279312*uk_119 + 4356476*uk_12 + 4752*uk_120 + 66924*uk_121 + 85932*uk_122 + 36432*uk_123 + 942513*uk_124 + 1210209*uk_125 + 513084*uk_126 + 1553937*uk_127 + 658812*uk_128 + 279312*uk_129 + 568236*uk_13 + 778688*uk_130 + 101568*uk_131 + 1430416*uk_132 + 1836688*uk_133 + 778688*uk_134 + 13248*uk_135 + 186576*uk_136 + 239568*uk_137 + 101568*uk_138 + 2627612*uk_139 + 8002657*uk_14 + 3373916*uk_140 + 1430416*uk_141 + 4332188*uk_142 + 1836688*uk_143 + 778688*uk_144 + 1728*uk_145 + 24336*uk_146 + 31248*uk_147 + 13248*uk_148 + 342732*uk_149 + 10275601*uk_15 + 440076*uk_150 + 186576*uk_151 + 565068*uk_152 + 239568*uk_153 + 101568*uk_154 + 4826809*uk_155 + 6197737*uk_156 + 2627612*uk_157 + 7958041*uk_158 + 3373916*uk_159 + 4356476*uk_16 + 1430416*uk_160 + 10218313*uk_161 + 4332188*uk_162 + 1836688*uk_163 + 778688*uk_164 + 3969*uk_17 + 2079*uk_18 + 5796*uk_19 + 63*uk_2 + 756*uk_20 + 10647*uk_21 + 13671*uk_22 + 5796*uk_23 + 1089*uk_24 + 3036*uk_25 + 396*uk_26 + 5577*uk_27 + 7161*uk_28 + 3036*uk_29 + 33*uk_3 + 8464*uk_30 + 1104*uk_31 + 15548*uk_32 + 19964*uk_33 + 8464*uk_34 + 144*uk_35 + 2028*uk_36 + 2604*uk_37 + 1104*uk_38 + 28561*uk_39 + 92*uk_4 + 36673*uk_40 + 15548*uk_41 + 47089*uk_42 + 19964*uk_43 + 8464*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 73996118097*uk_47 + 206292208028*uk_48 + 26907679308*uk_49 + 12*uk_5 + 378949816921*uk_50 + 486580534153*uk_51 + 206292208028*uk_52 + 187944057*uk_53 + 98446887*uk_54 + 274457988*uk_55 + 35798868*uk_56 + 504167391*uk_57 + 647362863*uk_58 + 274457988*uk_59 + 169*uk_6 + 51567417*uk_60 + 143763708*uk_61 + 18751788*uk_62 + 264087681*uk_63 + 339094833*uk_64 + 143763708*uk_65 + 400795792*uk_66 + 52277712*uk_67 + 736244444*uk_68 + 945355292*uk_69 + 217*uk_7 + 400795792*uk_70 + 6818832*uk_71 + 96031884*uk_72 + 123307212*uk_73 + 52277712*uk_74 + 1352449033*uk_75 + 1736576569*uk_76 + 736244444*uk_77 + 2229805417*uk_78 + 945355292*uk_79 + 92*uk_8 + 400795792*uk_80 + 250047*uk_81 + 130977*uk_82 + 365148*uk_83 + 47628*uk_84 + 670761*uk_85 + 861273*uk_86 + 365148*uk_87 + 68607*uk_88 + 191268*uk_89 + 2242306609*uk_9 + 24948*uk_90 + 351351*uk_91 + 451143*uk_92 + 191268*uk_93 + 533232*uk_94 + 69552*uk_95 + 979524*uk_96 + 1257732*uk_97 + 533232*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 172368*uk_100 + 218736*uk_101 + 33264*uk_102 + 1842183*uk_103 + 2337741*uk_104 + 355509*uk_105 + 2966607*uk_106 + 451143*uk_107 + 68607*uk_108 + 3869893*uk_109 + 7434421*uk_11 + 813417*uk_110 + 394384*uk_111 + 4214979*uk_112 + 5348833*uk_113 + 813417*uk_114 + 170973*uk_115 + 82896*uk_116 + 885951*uk_117 + 1124277*uk_118 + 170973*uk_119 + 1562649*uk_12 + 40192*uk_120 + 429552*uk_121 + 545104*uk_122 + 82896*uk_123 + 4590837*uk_124 + 5825799*uk_125 + 885951*uk_126 + 7392973*uk_127 + 1124277*uk_128 + 170973*uk_129 + 757648*uk_13 + 35937*uk_130 + 17424*uk_131 + 186219*uk_132 + 236313*uk_133 + 35937*uk_134 + 8448*uk_135 + 90288*uk_136 + 114576*uk_137 + 17424*uk_138 + 964953*uk_139 + 8097363*uk_14 + 1224531*uk_140 + 186219*uk_141 + 1553937*uk_142 + 236313*uk_143 + 35937*uk_144 + 4096*uk_145 + 43776*uk_146 + 55552*uk_147 + 8448*uk_148 + 467856*uk_149 + 10275601*uk_15 + 593712*uk_150 + 90288*uk_151 + 753424*uk_152 + 114576*uk_153 + 17424*uk_154 + 5000211*uk_155 + 6345297*uk_156 + 964953*uk_157 + 8052219*uk_158 + 1224531*uk_159 + 1562649*uk_16 + 186219*uk_160 + 10218313*uk_161 + 1553937*uk_162 + 236313*uk_163 + 35937*uk_164 + 3969*uk_17 + 9891*uk_18 + 2079*uk_19 + 63*uk_2 + 1008*uk_20 + 10773*uk_21 + 13671*uk_22 + 2079*uk_23 + 24649*uk_24 + 5181*uk_25 + 2512*uk_26 + 26847*uk_27 + 34069*uk_28 + 5181*uk_29 + 157*uk_3 + 1089*uk_30 + 528*uk_31 + 5643*uk_32 + 7161*uk_33 + 1089*uk_34 + 256*uk_35 + 2736*uk_36 + 3472*uk_37 + 528*uk_38 + 29241*uk_39 + 33*uk_4 + 37107*uk_40 + 5643*uk_41 + 47089*uk_42 + 7161*uk_43 + 1089*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 352042137613*uk_47 + 73996118097*uk_48 + 35876905744*uk_49 + 16*uk_5 + 383434430139*uk_50 + 486580534153*uk_51 + 73996118097*uk_52 + 187944057*uk_53 + 468368523*uk_54 + 98446887*uk_55 + 47731824*uk_56 + 510133869*uk_57 + 647362863*uk_58 + 98446887*uk_59 + 171*uk_6 + 1167204097*uk_60 + 245335893*uk_61 + 118950736*uk_62 + 1271285991*uk_63 + 1613269357*uk_64 + 245335893*uk_65 + 51567417*uk_66 + 25002384*uk_67 + 267212979*uk_68 + 339094833*uk_69 + 217*uk_7 + 51567417*uk_70 + 12122368*uk_71 + 129557808*uk_72 + 164409616*uk_73 + 25002384*uk_74 + 1384649073*uk_75 + 1757127771*uk_76 + 267212979*uk_77 + 2229805417*uk_78 + 339094833*uk_79 + 33*uk_8 + 51567417*uk_80 + 250047*uk_81 + 623133*uk_82 + 130977*uk_83 + 63504*uk_84 + 678699*uk_85 + 861273*uk_86 + 130977*uk_87 + 1552887*uk_88 + 326403*uk_89 + 2242306609*uk_9 + 158256*uk_90 + 1691361*uk_91 + 2146347*uk_92 + 326403*uk_93 + 68607*uk_94 + 33264*uk_95 + 355509*uk_96 + 451143*uk_97 + 68607*uk_98 + 16128*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 130788*uk_100 + 164052*uk_101 + 118692*uk_102 + 1885527*uk_103 + 2365083*uk_104 + 1711143*uk_105 + 2966607*uk_106 + 2146347*uk_107 + 1552887*uk_108 + 1906624*uk_109 + 5871772*uk_11 + 2414032*uk_110 + 184512*uk_111 + 2660048*uk_112 + 3336592*uk_113 + 2414032*uk_114 + 3056476*uk_115 + 233616*uk_116 + 3367964*uk_117 + 4224556*uk_118 + 3056476*uk_119 + 7434421*uk_12 + 17856*uk_120 + 257424*uk_121 + 322896*uk_122 + 233616*uk_123 + 3711196*uk_124 + 4655084*uk_125 + 3367964*uk_126 + 5839036*uk_127 + 4224556*uk_128 + 3056476*uk_129 + 568236*uk_13 + 3869893*uk_130 + 295788*uk_131 + 4264277*uk_132 + 5348833*uk_133 + 3869893*uk_134 + 22608*uk_135 + 325932*uk_136 + 408828*uk_137 + 295788*uk_138 + 4698853*uk_139 + 8192069*uk_14 + 5893937*uk_140 + 4264277*uk_141 + 7392973*uk_142 + 5348833*uk_143 + 3869893*uk_144 + 1728*uk_145 + 24912*uk_146 + 31248*uk_147 + 22608*uk_148 + 359148*uk_149 + 10275601*uk_15 + 450492*uk_150 + 325932*uk_151 + 565068*uk_152 + 408828*uk_153 + 295788*uk_154 + 5177717*uk_155 + 6494593*uk_156 + 4698853*uk_157 + 8146397*uk_158 + 5893937*uk_159 + 7434421*uk_16 + 4264277*uk_160 + 10218313*uk_161 + 7392973*uk_162 + 5348833*uk_163 + 3869893*uk_164 + 3969*uk_17 + 7812*uk_18 + 9891*uk_19 + 63*uk_2 + 756*uk_20 + 10899*uk_21 + 13671*uk_22 + 9891*uk_23 + 15376*uk_24 + 19468*uk_25 + 1488*uk_26 + 21452*uk_27 + 26908*uk_28 + 19468*uk_29 + 124*uk_3 + 24649*uk_30 + 1884*uk_31 + 27161*uk_32 + 34069*uk_33 + 24649*uk_34 + 144*uk_35 + 2076*uk_36 + 2604*uk_37 + 1884*uk_38 + 29929*uk_39 + 157*uk_4 + 37541*uk_40 + 27161*uk_41 + 47089*uk_42 + 34069*uk_43 + 24649*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 278046019516*uk_47 + 352042137613*uk_48 + 26907679308*uk_49 + 12*uk_5 + 387919043357*uk_50 + 486580534153*uk_51 + 352042137613*uk_52 + 187944057*uk_53 + 369921636*uk_54 + 468368523*uk_55 + 35798868*uk_56 + 516100347*uk_57 + 647362863*uk_58 + 468368523*uk_59 + 173*uk_6 + 728099728*uk_60 + 921868204*uk_61 + 70461264*uk_62 + 1015816556*uk_63 + 1274174524*uk_64 + 921868204*uk_65 + 1167204097*uk_66 + 89213052*uk_67 + 1286154833*uk_68 + 1613269357*uk_69 + 217*uk_7 + 1167204097*uk_70 + 6818832*uk_71 + 98304828*uk_72 + 123307212*uk_73 + 89213052*uk_74 + 1417227937*uk_75 + 1777678973*uk_76 + 1286154833*uk_77 + 2229805417*uk_78 + 1613269357*uk_79 + 157*uk_8 + 1167204097*uk_80 + 250047*uk_81 + 492156*uk_82 + 623133*uk_83 + 47628*uk_84 + 686637*uk_85 + 861273*uk_86 + 623133*uk_87 + 968688*uk_88 + 1226484*uk_89 + 2242306609*uk_9 + 93744*uk_90 + 1351476*uk_91 + 1695204*uk_92 + 1226484*uk_93 + 1552887*uk_94 + 118692*uk_95 + 1711143*uk_96 + 2146347*uk_97 + 1552887*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 132300*uk_100 + 164052*uk_101 + 93744*uk_102 + 1929375*uk_103 + 2392425*uk_104 + 1367100*uk_105 + 2966607*uk_106 + 1695204*uk_107 + 968688*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 1315516*uk_110 + 127308*uk_111 + 1856575*uk_112 + 2302153*uk_113 + 1315516*uk_114 + 1583728*uk_115 + 153264*uk_116 + 2235100*uk_117 + 2771524*uk_118 + 1583728*uk_119 + 5871772*uk_12 + 14832*uk_120 + 216300*uk_121 + 268212*uk_122 + 153264*uk_123 + 3154375*uk_124 + 3911425*uk_125 + 2235100*uk_126 + 4850167*uk_127 + 2771524*uk_128 + 1583728*uk_129 + 568236*uk_13 + 1906624*uk_130 + 184512*uk_131 + 2690800*uk_132 + 3336592*uk_133 + 1906624*uk_134 + 17856*uk_135 + 260400*uk_136 + 322896*uk_137 + 184512*uk_138 + 3797500*uk_139 + 8286775*uk_14 + 4708900*uk_140 + 2690800*uk_141 + 5839036*uk_142 + 3336592*uk_143 + 1906624*uk_144 + 1728*uk_145 + 25200*uk_146 + 31248*uk_147 + 17856*uk_148 + 367500*uk_149 + 10275601*uk_15 + 455700*uk_150 + 260400*uk_151 + 565068*uk_152 + 322896*uk_153 + 184512*uk_154 + 5359375*uk_155 + 6645625*uk_156 + 3797500*uk_157 + 8240575*uk_158 + 4708900*uk_159 + 5871772*uk_16 + 2690800*uk_160 + 10218313*uk_161 + 5839036*uk_162 + 3336592*uk_163 + 1906624*uk_164 + 3969*uk_17 + 6489*uk_18 + 7812*uk_19 + 63*uk_2 + 756*uk_20 + 11025*uk_21 + 13671*uk_22 + 7812*uk_23 + 10609*uk_24 + 12772*uk_25 + 1236*uk_26 + 18025*uk_27 + 22351*uk_28 + 12772*uk_29 + 103*uk_3 + 15376*uk_30 + 1488*uk_31 + 21700*uk_32 + 26908*uk_33 + 15376*uk_34 + 144*uk_35 + 2100*uk_36 + 2604*uk_37 + 1488*uk_38 + 30625*uk_39 + 124*uk_4 + 37975*uk_40 + 21700*uk_41 + 47089*uk_42 + 26908*uk_43 + 15376*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 278046019516*uk_48 + 26907679308*uk_49 + 12*uk_5 + 392403656575*uk_50 + 486580534153*uk_51 + 278046019516*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 369921636*uk_55 + 35798868*uk_56 + 522066825*uk_57 + 647362863*uk_58 + 369921636*uk_59 + 175*uk_6 + 502367977*uk_60 + 604792516*uk_61 + 58528308*uk_62 + 853537825*uk_63 + 1058386903*uk_64 + 604792516*uk_65 + 728099728*uk_66 + 70461264*uk_67 + 1027560100*uk_68 + 1274174524*uk_69 + 217*uk_7 + 728099728*uk_70 + 6818832*uk_71 + 99441300*uk_72 + 123307212*uk_73 + 70461264*uk_74 + 1450185625*uk_75 + 1798230175*uk_76 + 1027560100*uk_77 + 2229805417*uk_78 + 1274174524*uk_79 + 124*uk_8 + 728099728*uk_80 + 250047*uk_81 + 408807*uk_82 + 492156*uk_83 + 47628*uk_84 + 694575*uk_85 + 861273*uk_86 + 492156*uk_87 + 668367*uk_88 + 804636*uk_89 + 2242306609*uk_9 + 77868*uk_90 + 1135575*uk_91 + 1408113*uk_92 + 804636*uk_93 + 968688*uk_94 + 93744*uk_95 + 1367100*uk_96 + 1695204*uk_97 + 968688*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 133812*uk_100 + 164052*uk_101 + 77868*uk_102 + 1973727*uk_103 + 2419767*uk_104 + 1148553*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 830584*uk_109 + 4451182*uk_11 + 910108*uk_110 + 106032*uk_111 + 1563972*uk_112 + 1917412*uk_113 + 910108*uk_114 + 997246*uk_115 + 116184*uk_116 + 1713714*uk_117 + 2100994*uk_118 + 997246*uk_119 + 4877359*uk_12 + 13536*uk_120 + 199656*uk_121 + 244776*uk_122 + 116184*uk_123 + 2944926*uk_124 + 3610446*uk_125 + 1713714*uk_126 + 4426366*uk_127 + 2100994*uk_128 + 997246*uk_129 + 568236*uk_13 + 1092727*uk_130 + 127308*uk_131 + 1877793*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 14832*uk_135 + 218772*uk_136 + 268212*uk_137 + 127308*uk_138 + 3226887*uk_139 + 8381481*uk_14 + 3956127*uk_140 + 1877793*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 1728*uk_145 + 25488*uk_146 + 31248*uk_147 + 14832*uk_148 + 375948*uk_149 + 10275601*uk_15 + 460908*uk_150 + 218772*uk_151 + 565068*uk_152 + 268212*uk_153 + 127308*uk_154 + 5545233*uk_155 + 6798393*uk_156 + 3226887*uk_157 + 8334753*uk_158 + 3956127*uk_159 + 4877359*uk_16 + 1877793*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 5922*uk_18 + 6489*uk_19 + 63*uk_2 + 756*uk_20 + 11151*uk_21 + 13671*uk_22 + 6489*uk_23 + 8836*uk_24 + 9682*uk_25 + 1128*uk_26 + 16638*uk_27 + 20398*uk_28 + 9682*uk_29 + 94*uk_3 + 10609*uk_30 + 1236*uk_31 + 18231*uk_32 + 22351*uk_33 + 10609*uk_34 + 144*uk_35 + 2124*uk_36 + 2604*uk_37 + 1236*uk_38 + 31329*uk_39 + 103*uk_4 + 38409*uk_40 + 18231*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 210776821246*uk_47 + 230957580727*uk_48 + 26907679308*uk_49 + 12*uk_5 + 396888269793*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 280424466*uk_54 + 307273617*uk_55 + 35798868*uk_56 + 528033303*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 177*uk_6 + 418411108*uk_60 + 458471746*uk_61 + 53414184*uk_62 + 787859214*uk_63 + 965906494*uk_64 + 458471746*uk_65 + 502367977*uk_66 + 58528308*uk_67 + 863292543*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 6818832*uk_71 + 100577772*uk_72 + 123307212*uk_73 + 58528308*uk_74 + 1483522137*uk_75 + 1818781377*uk_76 + 863292543*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 373086*uk_82 + 408807*uk_83 + 47628*uk_84 + 702513*uk_85 + 861273*uk_86 + 408807*uk_87 + 556668*uk_88 + 609966*uk_89 + 2242306609*uk_9 + 71064*uk_90 + 1048194*uk_91 + 1285074*uk_92 + 609966*uk_93 + 668367*uk_94 + 77868*uk_95 + 1148553*uk_96 + 1408113*uk_97 + 668367*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 135324*uk_100 + 164052*uk_101 + 71064*uk_102 + 2018583*uk_103 + 2447109*uk_104 + 1060038*uk_105 + 2966607*uk_106 + 1285074*uk_107 + 556668*uk_108 + 912673*uk_109 + 4593241*uk_11 + 884446*uk_110 + 112908*uk_111 + 1684211*uk_112 + 2041753*uk_113 + 884446*uk_114 + 857092*uk_115 + 109416*uk_116 + 1632122*uk_117 + 1978606*uk_118 + 857092*uk_119 + 4451182*uk_12 + 13968*uk_120 + 208356*uk_121 + 252588*uk_122 + 109416*uk_123 + 3107977*uk_124 + 3767771*uk_125 + 1632122*uk_126 + 4567633*uk_127 + 1978606*uk_128 + 857092*uk_129 + 568236*uk_13 + 830584*uk_130 + 106032*uk_131 + 1581644*uk_132 + 1917412*uk_133 + 830584*uk_134 + 13536*uk_135 + 201912*uk_136 + 244776*uk_137 + 106032*uk_138 + 3011854*uk_139 + 8476187*uk_14 + 3651242*uk_140 + 1581644*uk_141 + 4426366*uk_142 + 1917412*uk_143 + 830584*uk_144 + 1728*uk_145 + 25776*uk_146 + 31248*uk_147 + 13536*uk_148 + 384492*uk_149 + 10275601*uk_15 + 466116*uk_150 + 201912*uk_151 + 565068*uk_152 + 244776*uk_153 + 106032*uk_154 + 5735339*uk_155 + 6952897*uk_156 + 3011854*uk_157 + 8428931*uk_158 + 3651242*uk_159 + 4451182*uk_16 + 1581644*uk_160 + 10218313*uk_161 + 4426366*uk_162 + 1917412*uk_163 + 830584*uk_164 + 3969*uk_17 + 6111*uk_18 + 5922*uk_19 + 63*uk_2 + 756*uk_20 + 11277*uk_21 + 13671*uk_22 + 5922*uk_23 + 9409*uk_24 + 9118*uk_25 + 1164*uk_26 + 17363*uk_27 + 21049*uk_28 + 9118*uk_29 + 97*uk_3 + 8836*uk_30 + 1128*uk_31 + 16826*uk_32 + 20398*uk_33 + 8836*uk_34 + 144*uk_35 + 2148*uk_36 + 2604*uk_37 + 1128*uk_38 + 32041*uk_39 + 94*uk_4 + 38843*uk_40 + 16826*uk_41 + 47089*uk_42 + 20398*uk_43 + 8836*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 217503741073*uk_47 + 210776821246*uk_48 + 26907679308*uk_49 + 12*uk_5 + 401372883011*uk_50 + 486580534153*uk_51 + 210776821246*uk_52 + 187944057*uk_53 + 289374183*uk_54 + 280424466*uk_55 + 35798868*uk_56 + 533999781*uk_57 + 647362863*uk_58 + 280424466*uk_59 + 179*uk_6 + 445544377*uk_60 + 431764654*uk_61 + 55118892*uk_62 + 822190139*uk_63 + 996733297*uk_64 + 431764654*uk_65 + 418411108*uk_66 + 53414184*uk_67 + 796761578*uk_68 + 965906494*uk_69 + 217*uk_7 + 418411108*uk_70 + 6818832*uk_71 + 101714244*uk_72 + 123307212*uk_73 + 53414184*uk_74 + 1517237473*uk_75 + 1839332579*uk_76 + 796761578*uk_77 + 2229805417*uk_78 + 965906494*uk_79 + 94*uk_8 + 418411108*uk_80 + 250047*uk_81 + 384993*uk_82 + 373086*uk_83 + 47628*uk_84 + 710451*uk_85 + 861273*uk_86 + 373086*uk_87 + 592767*uk_88 + 574434*uk_89 + 2242306609*uk_9 + 73332*uk_90 + 1093869*uk_91 + 1326087*uk_92 + 574434*uk_93 + 556668*uk_94 + 71064*uk_95 + 1060038*uk_96 + 1285074*uk_97 + 556668*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 136836*uk_100 + 164052*uk_101 + 73332*uk_102 + 2063943*uk_103 + 2474451*uk_104 + 1106091*uk_105 + 2966607*uk_106 + 1326087*uk_107 + 592767*uk_108 + 1404928*uk_109 + 5303536*uk_11 + 1216768*uk_110 + 150528*uk_111 + 2270464*uk_112 + 2722048*uk_113 + 1216768*uk_114 + 1053808*uk_115 + 130368*uk_116 + 1966384*uk_117 + 2357488*uk_118 + 1053808*uk_119 + 4593241*uk_12 + 16128*uk_120 + 243264*uk_121 + 291648*uk_122 + 130368*uk_123 + 3669232*uk_124 + 4399024*uk_125 + 1966384*uk_126 + 5273968*uk_127 + 2357488*uk_128 + 1053808*uk_129 + 568236*uk_13 + 912673*uk_130 + 112908*uk_131 + 1703029*uk_132 + 2041753*uk_133 + 912673*uk_134 + 13968*uk_135 + 210684*uk_136 + 252588*uk_137 + 112908*uk_138 + 3177817*uk_139 + 8570893*uk_14 + 3809869*uk_140 + 1703029*uk_141 + 4567633*uk_142 + 2041753*uk_143 + 912673*uk_144 + 1728*uk_145 + 26064*uk_146 + 31248*uk_147 + 13968*uk_148 + 393132*uk_149 + 10275601*uk_15 + 471324*uk_150 + 210684*uk_151 + 565068*uk_152 + 252588*uk_153 + 112908*uk_154 + 5929741*uk_155 + 7109137*uk_156 + 3177817*uk_157 + 8523109*uk_158 + 3809869*uk_159 + 4593241*uk_16 + 1703029*uk_160 + 10218313*uk_161 + 4567633*uk_162 + 2041753*uk_163 + 912673*uk_164 + 3969*uk_17 + 7056*uk_18 + 6111*uk_19 + 63*uk_2 + 756*uk_20 + 11403*uk_21 + 13671*uk_22 + 6111*uk_23 + 12544*uk_24 + 10864*uk_25 + 1344*uk_26 + 20272*uk_27 + 24304*uk_28 + 10864*uk_29 + 112*uk_3 + 9409*uk_30 + 1164*uk_31 + 17557*uk_32 + 21049*uk_33 + 9409*uk_34 + 144*uk_35 + 2172*uk_36 + 2604*uk_37 + 1164*uk_38 + 32761*uk_39 + 97*uk_4 + 39277*uk_40 + 17557*uk_41 + 47089*uk_42 + 21049*uk_43 + 9409*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 251138340208*uk_47 + 217503741073*uk_48 + 26907679308*uk_49 + 12*uk_5 + 405857496229*uk_50 + 486580534153*uk_51 + 217503741073*uk_52 + 187944057*uk_53 + 334122768*uk_54 + 289374183*uk_55 + 35798868*uk_56 + 539966259*uk_57 + 647362863*uk_58 + 289374183*uk_59 + 181*uk_6 + 593996032*uk_60 + 514442992*uk_61 + 63642432*uk_62 + 959940016*uk_63 + 1150867312*uk_64 + 514442992*uk_65 + 445544377*uk_66 + 55118892*uk_67 + 831376621*uk_68 + 996733297*uk_69 + 217*uk_7 + 445544377*uk_70 + 6818832*uk_71 + 102850716*uk_72 + 123307212*uk_73 + 55118892*uk_74 + 1551331633*uk_75 + 1859883781*uk_76 + 831376621*uk_77 + 2229805417*uk_78 + 996733297*uk_79 + 97*uk_8 + 445544377*uk_80 + 250047*uk_81 + 444528*uk_82 + 384993*uk_83 + 47628*uk_84 + 718389*uk_85 + 861273*uk_86 + 384993*uk_87 + 790272*uk_88 + 684432*uk_89 + 2242306609*uk_9 + 84672*uk_90 + 1277136*uk_91 + 1531152*uk_92 + 684432*uk_93 + 592767*uk_94 + 73332*uk_95 + 1106091*uk_96 + 1326087*uk_97 + 592767*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 138348*uk_100 + 164052*uk_101 + 84672*uk_102 + 2109807*uk_103 + 2501793*uk_104 + 1291248*uk_105 + 2966607*uk_106 + 1531152*uk_107 + 790272*uk_108 + 2685619*uk_109 + 6582067*uk_11 + 2163952*uk_110 + 231852*uk_111 + 3535743*uk_112 + 4192657*uk_113 + 2163952*uk_114 + 1743616*uk_115 + 186816*uk_116 + 2848944*uk_117 + 3378256*uk_118 + 1743616*uk_119 + 5303536*uk_12 + 20016*uk_120 + 305244*uk_121 + 361956*uk_122 + 186816*uk_123 + 4654971*uk_124 + 5519829*uk_125 + 2848944*uk_126 + 6545371*uk_127 + 3378256*uk_128 + 1743616*uk_129 + 568236*uk_13 + 1404928*uk_130 + 150528*uk_131 + 2295552*uk_132 + 2722048*uk_133 + 1404928*uk_134 + 16128*uk_135 + 245952*uk_136 + 291648*uk_137 + 150528*uk_138 + 3750768*uk_139 + 8665599*uk_14 + 4447632*uk_140 + 2295552*uk_141 + 5273968*uk_142 + 2722048*uk_143 + 1404928*uk_144 + 1728*uk_145 + 26352*uk_146 + 31248*uk_147 + 16128*uk_148 + 401868*uk_149 + 10275601*uk_15 + 476532*uk_150 + 245952*uk_151 + 565068*uk_152 + 291648*uk_153 + 150528*uk_154 + 6128487*uk_155 + 7267113*uk_156 + 3750768*uk_157 + 8617287*uk_158 + 4447632*uk_159 + 5303536*uk_16 + 2295552*uk_160 + 10218313*uk_161 + 5273968*uk_162 + 2722048*uk_163 + 1404928*uk_164 + 3969*uk_17 + 8757*uk_18 + 7056*uk_19 + 63*uk_2 + 756*uk_20 + 11529*uk_21 + 13671*uk_22 + 7056*uk_23 + 19321*uk_24 + 15568*uk_25 + 1668*uk_26 + 25437*uk_27 + 30163*uk_28 + 15568*uk_29 + 139*uk_3 + 12544*uk_30 + 1344*uk_31 + 20496*uk_32 + 24304*uk_33 + 12544*uk_34 + 144*uk_35 + 2196*uk_36 + 2604*uk_37 + 1344*uk_38 + 33489*uk_39 + 112*uk_4 + 39711*uk_40 + 20496*uk_41 + 47089*uk_42 + 24304*uk_43 + 12544*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 311680618651*uk_47 + 251138340208*uk_48 + 26907679308*uk_49 + 12*uk_5 + 410342109447*uk_50 + 486580534153*uk_51 + 251138340208*uk_52 + 187944057*uk_53 + 414670221*uk_54 + 334122768*uk_55 + 35798868*uk_56 + 545932737*uk_57 + 647362863*uk_58 + 334122768*uk_59 + 183*uk_6 + 914907313*uk_60 + 737191504*uk_61 + 78984804*uk_62 + 1204518261*uk_63 + 1428308539*uk_64 + 737191504*uk_65 + 593996032*uk_66 + 63642432*uk_67 + 970547088*uk_68 + 1150867312*uk_69 + 217*uk_7 + 593996032*uk_70 + 6818832*uk_71 + 103987188*uk_72 + 123307212*uk_73 + 63642432*uk_74 + 1585804617*uk_75 + 1880434983*uk_76 + 970547088*uk_77 + 2229805417*uk_78 + 1150867312*uk_79 + 112*uk_8 + 593996032*uk_80 + 250047*uk_81 + 551691*uk_82 + 444528*uk_83 + 47628*uk_84 + 726327*uk_85 + 861273*uk_86 + 444528*uk_87 + 1217223*uk_88 + 980784*uk_89 + 2242306609*uk_9 + 105084*uk_90 + 1602531*uk_91 + 1900269*uk_92 + 980784*uk_93 + 790272*uk_94 + 84672*uk_95 + 1291248*uk_96 + 1531152*uk_97 + 790272*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 139860*uk_100 + 164052*uk_101 + 105084*uk_102 + 2156175*uk_103 + 2529135*uk_104 + 1620045*uk_105 + 2966607*uk_106 + 1900269*uk_107 + 1217223*uk_108 + 5639752*uk_109 + 8428834*uk_11 + 4404076*uk_110 + 380208*uk_111 + 5861540*uk_112 + 6875428*uk_113 + 4404076*uk_114 + 3439138*uk_115 + 296904*uk_116 + 4577270*uk_117 + 5369014*uk_118 + 3439138*uk_119 + 6582067*uk_12 + 25632*uk_120 + 395160*uk_121 + 463512*uk_122 + 296904*uk_123 + 6092050*uk_124 + 7145810*uk_125 + 4577270*uk_126 + 8381842*uk_127 + 5369014*uk_128 + 3439138*uk_129 + 568236*uk_13 + 2685619*uk_130 + 231852*uk_131 + 3574385*uk_132 + 4192657*uk_133 + 2685619*uk_134 + 20016*uk_135 + 308580*uk_136 + 361956*uk_137 + 231852*uk_138 + 4757275*uk_139 + 8760305*uk_14 + 5580155*uk_140 + 3574385*uk_141 + 6545371*uk_142 + 4192657*uk_143 + 2685619*uk_144 + 1728*uk_145 + 26640*uk_146 + 31248*uk_147 + 20016*uk_148 + 410700*uk_149 + 10275601*uk_15 + 481740*uk_150 + 308580*uk_151 + 565068*uk_152 + 361956*uk_153 + 231852*uk_154 + 6331625*uk_155 + 7426825*uk_156 + 4757275*uk_157 + 8711465*uk_158 + 5580155*uk_159 + 6582067*uk_16 + 3574385*uk_160 + 10218313*uk_161 + 6545371*uk_162 + 4192657*uk_163 + 2685619*uk_164 + 3969*uk_17 + 11214*uk_18 + 8757*uk_19 + 63*uk_2 + 756*uk_20 + 11655*uk_21 + 13671*uk_22 + 8757*uk_23 + 31684*uk_24 + 24742*uk_25 + 2136*uk_26 + 32930*uk_27 + 38626*uk_28 + 24742*uk_29 + 178*uk_3 + 19321*uk_30 + 1668*uk_31 + 25715*uk_32 + 30163*uk_33 + 19321*uk_34 + 144*uk_35 + 2220*uk_36 + 2604*uk_37 + 1668*uk_38 + 34225*uk_39 + 139*uk_4 + 40145*uk_40 + 25715*uk_41 + 47089*uk_42 + 30163*uk_43 + 19321*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 399130576402*uk_47 + 311680618651*uk_48 + 26907679308*uk_49 + 12*uk_5 + 414826722665*uk_50 + 486580534153*uk_51 + 311680618651*uk_52 + 187944057*uk_53 + 531016542*uk_54 + 414670221*uk_55 + 35798868*uk_56 + 551899215*uk_57 + 647362863*uk_58 + 414670221*uk_59 + 185*uk_6 + 1500332452*uk_60 + 1171607926*uk_61 + 101146008*uk_62 + 1559334290*uk_63 + 1829056978*uk_64 + 1171607926*uk_65 + 914907313*uk_66 + 78984804*uk_67 + 1217682395*uk_68 + 1428308539*uk_69 + 217*uk_7 + 914907313*uk_70 + 6818832*uk_71 + 105123660*uk_72 + 123307212*uk_73 + 78984804*uk_74 + 1620656425*uk_75 + 1900986185*uk_76 + 1217682395*uk_77 + 2229805417*uk_78 + 1428308539*uk_79 + 139*uk_8 + 914907313*uk_80 + 250047*uk_81 + 706482*uk_82 + 551691*uk_83 + 47628*uk_84 + 734265*uk_85 + 861273*uk_86 + 551691*uk_87 + 1996092*uk_88 + 1558746*uk_89 + 2242306609*uk_9 + 134568*uk_90 + 2074590*uk_91 + 2433438*uk_92 + 1558746*uk_93 + 1217223*uk_94 + 105084*uk_95 + 1620045*uk_96 + 1900269*uk_97 + 1217223*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 94248*uk_100 + 109368*uk_101 + 89712*uk_102 + 2203047*uk_103 + 2556477*uk_104 + 2097018*uk_105 + 2966607*uk_106 + 2433438*uk_107 + 1996092*uk_108 + 74088*uk_109 + 1988826*uk_11 + 313992*uk_110 + 14112*uk_111 + 329868*uk_112 + 382788*uk_113 + 313992*uk_114 + 1330728*uk_115 + 59808*uk_116 + 1398012*uk_117 + 1622292*uk_118 + 1330728*uk_119 + 8428834*uk_12 + 2688*uk_120 + 62832*uk_121 + 72912*uk_122 + 59808*uk_123 + 1468698*uk_124 + 1704318*uk_125 + 1398012*uk_126 + 1977738*uk_127 + 1622292*uk_128 + 1330728*uk_129 + 378824*uk_13 + 5639752*uk_130 + 253472*uk_131 + 5924908*uk_132 + 6875428*uk_133 + 5639752*uk_134 + 11392*uk_135 + 266288*uk_136 + 309008*uk_137 + 253472*uk_138 + 6224482*uk_139 + 8855011*uk_14 + 7223062*uk_140 + 5924908*uk_141 + 8381842*uk_142 + 6875428*uk_143 + 5639752*uk_144 + 512*uk_145 + 11968*uk_146 + 13888*uk_147 + 11392*uk_148 + 279752*uk_149 + 10275601*uk_15 + 324632*uk_150 + 266288*uk_151 + 376712*uk_152 + 309008*uk_153 + 253472*uk_154 + 6539203*uk_155 + 7588273*uk_156 + 6224482*uk_157 + 8805643*uk_158 + 7223062*uk_159 + 8428834*uk_16 + 5924908*uk_160 + 10218313*uk_161 + 8381842*uk_162 + 6875428*uk_163 + 5639752*uk_164 + 3969*uk_17 + 2646*uk_18 + 11214*uk_19 + 63*uk_2 + 504*uk_20 + 11781*uk_21 + 13671*uk_22 + 11214*uk_23 + 1764*uk_24 + 7476*uk_25 + 336*uk_26 + 7854*uk_27 + 9114*uk_28 + 7476*uk_29 + 42*uk_3 + 31684*uk_30 + 1424*uk_31 + 33286*uk_32 + 38626*uk_33 + 31684*uk_34 + 64*uk_35 + 1496*uk_36 + 1736*uk_37 + 1424*uk_38 + 34969*uk_39 + 178*uk_4 + 40579*uk_40 + 33286*uk_41 + 47089*uk_42 + 38626*uk_43 + 31684*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 94176877578*uk_47 + 399130576402*uk_48 + 17938452872*uk_49 + 8*uk_5 + 419311335883*uk_50 + 486580534153*uk_51 + 399130576402*uk_52 + 187944057*uk_53 + 125296038*uk_54 + 531016542*uk_55 + 23865912*uk_56 + 557865693*uk_57 + 647362863*uk_58 + 531016542*uk_59 + 187*uk_6 + 83530692*uk_60 + 354011028*uk_61 + 15910608*uk_62 + 371910462*uk_63 + 431575242*uk_64 + 354011028*uk_65 + 1500332452*uk_66 + 67430672*uk_67 + 1576191958*uk_68 + 1829056978*uk_69 + 217*uk_7 + 1500332452*uk_70 + 3030592*uk_71 + 70840088*uk_72 + 82204808*uk_73 + 67430672*uk_74 + 1655887057*uk_75 + 1921537387*uk_76 + 1576191958*uk_77 + 2229805417*uk_78 + 1829056978*uk_79 + 178*uk_8 + 1500332452*uk_80 + 250047*uk_81 + 166698*uk_82 + 706482*uk_83 + 31752*uk_84 + 742203*uk_85 + 861273*uk_86 + 706482*uk_87 + 111132*uk_88 + 470988*uk_89 + 2242306609*uk_9 + 21168*uk_90 + 494802*uk_91 + 574182*uk_92 + 470988*uk_93 + 1996092*uk_94 + 89712*uk_95 + 2097018*uk_96 + 2433438*uk_97 + 1996092*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 142884*uk_100 + 164052*uk_101 + 31752*uk_102 + 2250423*uk_103 + 2583819*uk_104 + 500094*uk_105 + 2966607*uk_106 + 574182*uk_107 + 111132*uk_108 + 1092727*uk_109 + 4877359*uk_11 + 445578*uk_110 + 127308*uk_111 + 2005101*uk_112 + 2302153*uk_113 + 445578*uk_114 + 181692*uk_115 + 51912*uk_116 + 817614*uk_117 + 938742*uk_118 + 181692*uk_119 + 1988826*uk_12 + 14832*uk_120 + 233604*uk_121 + 268212*uk_122 + 51912*uk_123 + 3679263*uk_124 + 4224339*uk_125 + 817614*uk_126 + 4850167*uk_127 + 938742*uk_128 + 181692*uk_129 + 568236*uk_13 + 74088*uk_130 + 21168*uk_131 + 333396*uk_132 + 382788*uk_133 + 74088*uk_134 + 6048*uk_135 + 95256*uk_136 + 109368*uk_137 + 21168*uk_138 + 1500282*uk_139 + 8949717*uk_14 + 1722546*uk_140 + 333396*uk_141 + 1977738*uk_142 + 382788*uk_143 + 74088*uk_144 + 1728*uk_145 + 27216*uk_146 + 31248*uk_147 + 6048*uk_148 + 428652*uk_149 + 10275601*uk_15 + 492156*uk_150 + 95256*uk_151 + 565068*uk_152 + 109368*uk_153 + 21168*uk_154 + 6751269*uk_155 + 7751457*uk_156 + 1500282*uk_157 + 8899821*uk_158 + 1722546*uk_159 + 1988826*uk_16 + 333396*uk_160 + 10218313*uk_161 + 1977738*uk_162 + 382788*uk_163 + 74088*uk_164 + 3969*uk_17 + 6489*uk_18 + 2646*uk_19 + 63*uk_2 + 756*uk_20 + 11907*uk_21 + 13671*uk_22 + 2646*uk_23 + 10609*uk_24 + 4326*uk_25 + 1236*uk_26 + 19467*uk_27 + 22351*uk_28 + 4326*uk_29 + 103*uk_3 + 1764*uk_30 + 504*uk_31 + 7938*uk_32 + 9114*uk_33 + 1764*uk_34 + 144*uk_35 + 2268*uk_36 + 2604*uk_37 + 504*uk_38 + 35721*uk_39 + 42*uk_4 + 41013*uk_40 + 7938*uk_41 + 47089*uk_42 + 9114*uk_43 + 1764*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 230957580727*uk_47 + 94176877578*uk_48 + 26907679308*uk_49 + 12*uk_5 + 423795949101*uk_50 + 486580534153*uk_51 + 94176877578*uk_52 + 187944057*uk_53 + 307273617*uk_54 + 125296038*uk_55 + 35798868*uk_56 + 563832171*uk_57 + 647362863*uk_58 + 125296038*uk_59 + 189*uk_6 + 502367977*uk_60 + 204849078*uk_61 + 58528308*uk_62 + 921820851*uk_63 + 1058386903*uk_64 + 204849078*uk_65 + 83530692*uk_66 + 23865912*uk_67 + 375888114*uk_68 + 431575242*uk_69 + 217*uk_7 + 83530692*uk_70 + 6818832*uk_71 + 107396604*uk_72 + 123307212*uk_73 + 23865912*uk_74 + 1691496513*uk_75 + 1942088589*uk_76 + 375888114*uk_77 + 2229805417*uk_78 + 431575242*uk_79 + 42*uk_8 + 83530692*uk_80 + 250047*uk_81 + 408807*uk_82 + 166698*uk_83 + 47628*uk_84 + 750141*uk_85 + 861273*uk_86 + 166698*uk_87 + 668367*uk_88 + 272538*uk_89 + 2242306609*uk_9 + 77868*uk_90 + 1226421*uk_91 + 1408113*uk_92 + 272538*uk_93 + 111132*uk_94 + 31752*uk_95 + 500094*uk_96 + 574182*uk_97 + 111132*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 144396*uk_100 + 164052*uk_101 + 77868*uk_102 + 2298303*uk_103 + 2611161*uk_104 + 1239399*uk_105 + 2966607*uk_106 + 1408113*uk_107 + 668367*uk_108 + 5451776*uk_109 + 8334128*uk_11 + 3190528*uk_110 + 371712*uk_111 + 5916416*uk_112 + 6721792*uk_113 + 3190528*uk_114 + 1867184*uk_115 + 217536*uk_116 + 3462448*uk_117 + 3933776*uk_118 + 1867184*uk_119 + 4877359*uk_12 + 25344*uk_120 + 403392*uk_121 + 458304*uk_122 + 217536*uk_123 + 6420656*uk_124 + 7294672*uk_125 + 3462448*uk_126 + 8287664*uk_127 + 3933776*uk_128 + 1867184*uk_129 + 568236*uk_13 + 1092727*uk_130 + 127308*uk_131 + 2026319*uk_132 + 2302153*uk_133 + 1092727*uk_134 + 14832*uk_135 + 236076*uk_136 + 268212*uk_137 + 127308*uk_138 + 3757543*uk_139 + 9044423*uk_14 + 4269041*uk_140 + 2026319*uk_141 + 4850167*uk_142 + 2302153*uk_143 + 1092727*uk_144 + 1728*uk_145 + 27504*uk_146 + 31248*uk_147 + 14832*uk_148 + 437772*uk_149 + 10275601*uk_15 + 497364*uk_150 + 236076*uk_151 + 565068*uk_152 + 268212*uk_153 + 127308*uk_154 + 6967871*uk_155 + 7916377*uk_156 + 3757543*uk_157 + 8993999*uk_158 + 4269041*uk_159 + 4877359*uk_16 + 2026319*uk_160 + 10218313*uk_161 + 4850167*uk_162 + 2302153*uk_163 + 1092727*uk_164 + 3969*uk_17 + 11088*uk_18 + 6489*uk_19 + 63*uk_2 + 756*uk_20 + 12033*uk_21 + 13671*uk_22 + 6489*uk_23 + 30976*uk_24 + 18128*uk_25 + 2112*uk_26 + 33616*uk_27 + 38192*uk_28 + 18128*uk_29 + 176*uk_3 + 10609*uk_30 + 1236*uk_31 + 19673*uk_32 + 22351*uk_33 + 10609*uk_34 + 144*uk_35 + 2292*uk_36 + 2604*uk_37 + 1236*uk_38 + 36481*uk_39 + 103*uk_4 + 41447*uk_40 + 19673*uk_41 + 47089*uk_42 + 22351*uk_43 + 10609*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 394645963184*uk_47 + 230957580727*uk_48 + 26907679308*uk_49 + 12*uk_5 + 428280562319*uk_50 + 486580534153*uk_51 + 230957580727*uk_52 + 187944057*uk_53 + 525050064*uk_54 + 307273617*uk_55 + 35798868*uk_56 + 569798649*uk_57 + 647362863*uk_58 + 307273617*uk_59 + 191*uk_6 + 1466806528*uk_60 + 858415184*uk_61 + 100009536*uk_62 + 1591818448*uk_63 + 1808505776*uk_64 + 858415184*uk_65 + 502367977*uk_66 + 58528308*uk_67 + 931575569*uk_68 + 1058386903*uk_69 + 217*uk_7 + 502367977*uk_70 + 6818832*uk_71 + 108533076*uk_72 + 123307212*uk_73 + 58528308*uk_74 + 1727484793*uk_75 + 1962639791*uk_76 + 931575569*uk_77 + 2229805417*uk_78 + 1058386903*uk_79 + 103*uk_8 + 502367977*uk_80 + 250047*uk_81 + 698544*uk_82 + 408807*uk_83 + 47628*uk_84 + 758079*uk_85 + 861273*uk_86 + 408807*uk_87 + 1951488*uk_88 + 1142064*uk_89 + 2242306609*uk_9 + 133056*uk_90 + 2117808*uk_91 + 2406096*uk_92 + 1142064*uk_93 + 668367*uk_94 + 77868*uk_95 + 1239399*uk_96 + 1408113*uk_97 + 668367*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 97272*uk_100 + 109368*uk_101 + 88704*uk_102 + 2346687*uk_103 + 2638503*uk_104 + 2139984*uk_105 + 2966607*uk_106 + 2406096*uk_107 + 1951488*uk_108 + 314432*uk_109 + 3220004*uk_11 + 813824*uk_110 + 36992*uk_111 + 892432*uk_112 + 1003408*uk_113 + 813824*uk_114 + 2106368*uk_115 + 95744*uk_116 + 2309824*uk_117 + 2597056*uk_118 + 2106368*uk_119 + 8334128*uk_12 + 4352*uk_120 + 104992*uk_121 + 118048*uk_122 + 95744*uk_123 + 2532932*uk_124 + 2847908*uk_125 + 2309824*uk_126 + 3202052*uk_127 + 2597056*uk_128 + 2106368*uk_129 + 378824*uk_13 + 5451776*uk_130 + 247808*uk_131 + 5978368*uk_132 + 6721792*uk_133 + 5451776*uk_134 + 11264*uk_135 + 271744*uk_136 + 305536*uk_137 + 247808*uk_138 + 6555824*uk_139 + 9139129*uk_14 + 7371056*uk_140 + 5978368*uk_141 + 8287664*uk_142 + 6721792*uk_143 + 5451776*uk_144 + 512*uk_145 + 12352*uk_146 + 13888*uk_147 + 11264*uk_148 + 297992*uk_149 + 10275601*uk_15 + 335048*uk_150 + 271744*uk_151 + 376712*uk_152 + 305536*uk_153 + 247808*uk_154 + 7189057*uk_155 + 8083033*uk_156 + 6555824*uk_157 + 9088177*uk_158 + 7371056*uk_159 + 8334128*uk_16 + 5978368*uk_160 + 10218313*uk_161 + 8287664*uk_162 + 6721792*uk_163 + 5451776*uk_164 + 3969*uk_17 + 4284*uk_18 + 11088*uk_19 + 63*uk_2 + 504*uk_20 + 12159*uk_21 + 13671*uk_22 + 11088*uk_23 + 4624*uk_24 + 11968*uk_25 + 544*uk_26 + 13124*uk_27 + 14756*uk_28 + 11968*uk_29 + 68*uk_3 + 30976*uk_30 + 1408*uk_31 + 33968*uk_32 + 38192*uk_33 + 30976*uk_34 + 64*uk_35 + 1544*uk_36 + 1736*uk_37 + 1408*uk_38 + 37249*uk_39 + 176*uk_4 + 41881*uk_40 + 33968*uk_41 + 47089*uk_42 + 38192*uk_43 + 30976*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 152476849412*uk_47 + 394645963184*uk_48 + 17938452872*uk_49 + 8*uk_5 + 432765175537*uk_50 + 486580534153*uk_51 + 394645963184*uk_52 + 187944057*uk_53 + 202860252*uk_54 + 525050064*uk_55 + 23865912*uk_56 + 575765127*uk_57 + 647362863*uk_58 + 525050064*uk_59 + 193*uk_6 + 218960272*uk_60 + 566720704*uk_61 + 25760032*uk_62 + 621460772*uk_63 + 698740868*uk_64 + 566720704*uk_65 + 1466806528*uk_66 + 66673024*uk_67 + 1608486704*uk_68 + 1808505776*uk_69 + 217*uk_7 + 1466806528*uk_70 + 3030592*uk_71 + 73113032*uk_72 + 82204808*uk_73 + 66673024*uk_74 + 1763851897*uk_75 + 1983190993*uk_76 + 1608486704*uk_77 + 2229805417*uk_78 + 1808505776*uk_79 + 176*uk_8 + 1466806528*uk_80 + 250047*uk_81 + 269892*uk_82 + 698544*uk_83 + 31752*uk_84 + 766017*uk_85 + 861273*uk_86 + 698544*uk_87 + 291312*uk_88 + 753984*uk_89 + 2242306609*uk_9 + 34272*uk_90 + 826812*uk_91 + 929628*uk_92 + 753984*uk_93 + 1951488*uk_94 + 88704*uk_95 + 2139984*uk_96 + 2406096*uk_97 + 1951488*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 147420*uk_100 + 164052*uk_101 + 51408*uk_102 + 2395575*uk_103 + 2665845*uk_104 + 835380*uk_105 + 2966607*uk_106 + 929628*uk_107 + 291312*uk_108 + 4330747*uk_109 + 7718539*uk_11 + 1806692*uk_110 + 318828*uk_111 + 5180955*uk_112 + 5765473*uk_113 + 1806692*uk_114 + 753712*uk_115 + 133008*uk_116 + 2161380*uk_117 + 2405228*uk_118 + 753712*uk_119 + 3220004*uk_12 + 23472*uk_120 + 381420*uk_121 + 424452*uk_122 + 133008*uk_123 + 6198075*uk_124 + 6897345*uk_125 + 2161380*uk_126 + 7675507*uk_127 + 2405228*uk_128 + 753712*uk_129 + 568236*uk_13 + 314432*uk_130 + 55488*uk_131 + 901680*uk_132 + 1003408*uk_133 + 314432*uk_134 + 9792*uk_135 + 159120*uk_136 + 177072*uk_137 + 55488*uk_138 + 2585700*uk_139 + 9233835*uk_14 + 2877420*uk_140 + 901680*uk_141 + 3202052*uk_142 + 1003408*uk_143 + 314432*uk_144 + 1728*uk_145 + 28080*uk_146 + 31248*uk_147 + 9792*uk_148 + 456300*uk_149 + 10275601*uk_15 + 507780*uk_150 + 159120*uk_151 + 565068*uk_152 + 177072*uk_153 + 55488*uk_154 + 7414875*uk_155 + 8251425*uk_156 + 2585700*uk_157 + 9182355*uk_158 + 2877420*uk_159 + 3220004*uk_16 + 901680*uk_160 + 10218313*uk_161 + 3202052*uk_162 + 1003408*uk_163 + 314432*uk_164 + 3969*uk_17 + 10269*uk_18 + 4284*uk_19 + 63*uk_2 + 756*uk_20 + 12285*uk_21 + 13671*uk_22 + 4284*uk_23 + 26569*uk_24 + 11084*uk_25 + 1956*uk_26 + 31785*uk_27 + 35371*uk_28 + 11084*uk_29 + 163*uk_3 + 4624*uk_30 + 816*uk_31 + 13260*uk_32 + 14756*uk_33 + 4624*uk_34 + 144*uk_35 + 2340*uk_36 + 2604*uk_37 + 816*uk_38 + 38025*uk_39 + 68*uk_4 + 42315*uk_40 + 13260*uk_41 + 47089*uk_42 + 14756*uk_43 + 4624*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 365495977267*uk_47 + 152476849412*uk_48 + 26907679308*uk_49 + 12*uk_5 + 437249788755*uk_50 + 486580534153*uk_51 + 152476849412*uk_52 + 187944057*uk_53 + 486267957*uk_54 + 202860252*uk_55 + 35798868*uk_56 + 581731605*uk_57 + 647362863*uk_58 + 202860252*uk_59 + 195*uk_6 + 1258121857*uk_60 + 524860652*uk_61 + 92622468*uk_62 + 1505115105*uk_63 + 1674922963*uk_64 + 524860652*uk_65 + 218960272*uk_66 + 38640048*uk_67 + 627900780*uk_68 + 698740868*uk_69 + 217*uk_7 + 218960272*uk_70 + 6818832*uk_71 + 110806020*uk_72 + 123307212*uk_73 + 38640048*uk_74 + 1800597825*uk_75 + 2003742195*uk_76 + 627900780*uk_77 + 2229805417*uk_78 + 698740868*uk_79 + 68*uk_8 + 218960272*uk_80 + 250047*uk_81 + 646947*uk_82 + 269892*uk_83 + 47628*uk_84 + 773955*uk_85 + 861273*uk_86 + 269892*uk_87 + 1673847*uk_88 + 698292*uk_89 + 2242306609*uk_9 + 123228*uk_90 + 2002455*uk_91 + 2228373*uk_92 + 698292*uk_93 + 291312*uk_94 + 51408*uk_95 + 835380*uk_96 + 929628*uk_97 + 291312*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 99288*uk_100 + 109368*uk_101 + 82152*uk_102 + 2444967*uk_103 + 2693187*uk_104 + 2022993*uk_105 + 2966607*uk_106 + 2228373*uk_107 + 1673847*uk_108 + 389017*uk_109 + 3456769*uk_11 + 868627*uk_110 + 42632*uk_111 + 1049813*uk_112 + 1156393*uk_113 + 868627*uk_114 + 1939537*uk_115 + 95192*uk_116 + 2344103*uk_117 + 2582083*uk_118 + 1939537*uk_119 + 7718539*uk_12 + 4672*uk_120 + 115048*uk_121 + 126728*uk_122 + 95192*uk_123 + 2833057*uk_124 + 3120677*uk_125 + 2344103*uk_126 + 3437497*uk_127 + 2582083*uk_128 + 1939537*uk_129 + 378824*uk_13 + 4330747*uk_130 + 212552*uk_131 + 5234093*uk_132 + 5765473*uk_133 + 4330747*uk_134 + 10432*uk_135 + 256888*uk_136 + 282968*uk_137 + 212552*uk_138 + 6325867*uk_139 + 9328541*uk_14 + 6968087*uk_140 + 5234093*uk_141 + 7675507*uk_142 + 5765473*uk_143 + 4330747*uk_144 + 512*uk_145 + 12608*uk_146 + 13888*uk_147 + 10432*uk_148 + 310472*uk_149 + 10275601*uk_15 + 341992*uk_150 + 256888*uk_151 + 376712*uk_152 + 282968*uk_153 + 212552*uk_154 + 7645373*uk_155 + 8421553*uk_156 + 6325867*uk_157 + 9276533*uk_158 + 6968087*uk_159 + 7718539*uk_16 + 5234093*uk_160 + 10218313*uk_161 + 7675507*uk_162 + 5765473*uk_163 + 4330747*uk_164 + 3969*uk_17 + 4599*uk_18 + 10269*uk_19 + 63*uk_2 + 504*uk_20 + 12411*uk_21 + 13671*uk_22 + 10269*uk_23 + 5329*uk_24 + 11899*uk_25 + 584*uk_26 + 14381*uk_27 + 15841*uk_28 + 11899*uk_29 + 73*uk_3 + 26569*uk_30 + 1304*uk_31 + 32111*uk_32 + 35371*uk_33 + 26569*uk_34 + 64*uk_35 + 1576*uk_36 + 1736*uk_37 + 1304*uk_38 + 38809*uk_39 + 163*uk_4 + 42749*uk_40 + 32111*uk_41 + 47089*uk_42 + 35371*uk_43 + 26569*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 163688382457*uk_47 + 365495977267*uk_48 + 17938452872*uk_49 + 8*uk_5 + 441734401973*uk_50 + 486580534153*uk_51 + 365495977267*uk_52 + 187944057*uk_53 + 217776447*uk_54 + 486267957*uk_55 + 23865912*uk_56 + 587698083*uk_57 + 647362863*uk_58 + 486267957*uk_59 + 197*uk_6 + 252344137*uk_60 + 563453347*uk_61 + 27654152*uk_62 + 680983493*uk_63 + 750118873*uk_64 + 563453347*uk_65 + 1258121857*uk_66 + 61748312*uk_67 + 1520552183*uk_68 + 1674922963*uk_69 + 217*uk_7 + 1258121857*uk_70 + 3030592*uk_71 + 74628328*uk_72 + 82204808*uk_73 + 61748312*uk_74 + 1837722577*uk_75 + 2024293397*uk_76 + 1520552183*uk_77 + 2229805417*uk_78 + 1674922963*uk_79 + 163*uk_8 + 1258121857*uk_80 + 250047*uk_81 + 289737*uk_82 + 646947*uk_83 + 31752*uk_84 + 781893*uk_85 + 861273*uk_86 + 646947*uk_87 + 335727*uk_88 + 749637*uk_89 + 2242306609*uk_9 + 36792*uk_90 + 906003*uk_91 + 997983*uk_92 + 749637*uk_93 + 1673847*uk_94 + 82152*uk_95 + 2022993*uk_96 + 2228373*uk_97 + 1673847*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 150444*uk_100 + 164052*uk_101 + 55188*uk_102 + 2494863*uk_103 + 2720529*uk_104 + 915201*uk_105 + 2966607*uk_106 + 997983*uk_107 + 335727*uk_108 + 6859000*uk_109 + 8997070*uk_11 + 2635300*uk_110 + 433200*uk_111 + 7183900*uk_112 + 7833700*uk_113 + 2635300*uk_114 + 1012510*uk_115 + 166440*uk_116 + 2760130*uk_117 + 3009790*uk_118 + 1012510*uk_119 + 3456769*uk_12 + 27360*uk_120 + 453720*uk_121 + 494760*uk_122 + 166440*uk_123 + 7524190*uk_124 + 8204770*uk_125 + 2760130*uk_126 + 8946910*uk_127 + 3009790*uk_128 + 1012510*uk_129 + 568236*uk_13 + 389017*uk_130 + 63948*uk_131 + 1060471*uk_132 + 1156393*uk_133 + 389017*uk_134 + 10512*uk_135 + 174324*uk_136 + 190092*uk_137 + 63948*uk_138 + 2890873*uk_139 + 9423247*uk_14 + 3152359*uk_140 + 1060471*uk_141 + 3437497*uk_142 + 1156393*uk_143 + 389017*uk_144 + 1728*uk_145 + 28656*uk_146 + 31248*uk_147 + 10512*uk_148 + 475212*uk_149 + 10275601*uk_15 + 518196*uk_150 + 174324*uk_151 + 565068*uk_152 + 190092*uk_153 + 63948*uk_154 + 7880599*uk_155 + 8593417*uk_156 + 2890873*uk_157 + 9370711*uk_158 + 3152359*uk_159 + 3456769*uk_16 + 1060471*uk_160 + 10218313*uk_161 + 3437497*uk_162 + 1156393*uk_163 + 389017*uk_164 + 3969*uk_17 + 11970*uk_18 + 4599*uk_19 + 63*uk_2 + 756*uk_20 + 12537*uk_21 + 13671*uk_22 + 4599*uk_23 + 36100*uk_24 + 13870*uk_25 + 2280*uk_26 + 37810*uk_27 + 41230*uk_28 + 13870*uk_29 + 190*uk_3 + 5329*uk_30 + 876*uk_31 + 14527*uk_32 + 15841*uk_33 + 5329*uk_34 + 144*uk_35 + 2388*uk_36 + 2604*uk_37 + 876*uk_38 + 39601*uk_39 + 73*uk_4 + 43183*uk_40 + 14527*uk_41 + 47089*uk_42 + 15841*uk_43 + 5329*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 426038255710*uk_47 + 163688382457*uk_48 + 26907679308*uk_49 + 12*uk_5 + 446219015191*uk_50 + 486580534153*uk_51 + 163688382457*uk_52 + 187944057*uk_53 + 566815410*uk_54 + 217776447*uk_55 + 35798868*uk_56 + 593664561*uk_57 + 647362863*uk_58 + 217776447*uk_59 + 199*uk_6 + 1709443300*uk_60 + 656786110*uk_61 + 107964840*uk_62 + 1790416930*uk_63 + 1952364190*uk_64 + 656786110*uk_65 + 252344137*uk_66 + 41481228*uk_67 + 687897031*uk_68 + 750118873*uk_69 + 217*uk_7 + 252344137*uk_70 + 6818832*uk_71 + 113078964*uk_72 + 123307212*uk_73 + 41481228*uk_74 + 1875226153*uk_75 + 2044844599*uk_76 + 687897031*uk_77 + 2229805417*uk_78 + 750118873*uk_79 + 73*uk_8 + 252344137*uk_80 + 250047*uk_81 + 754110*uk_82 + 289737*uk_83 + 47628*uk_84 + 789831*uk_85 + 861273*uk_86 + 289737*uk_87 + 2274300*uk_88 + 873810*uk_89 + 2242306609*uk_9 + 143640*uk_90 + 2382030*uk_91 + 2597490*uk_92 + 873810*uk_93 + 335727*uk_94 + 55188*uk_95 + 915201*uk_96 + 997983*uk_97 + 335727*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 101304*uk_100 + 109368*uk_101 + 95760*uk_102 + 2545263*uk_103 + 2747871*uk_104 + 2405970*uk_105 + 2966607*uk_106 + 2597490*uk_107 + 2274300*uk_108 + 1643032*uk_109 + 5587654*uk_11 + 2645560*uk_110 + 111392*uk_111 + 2798724*uk_112 + 3021508*uk_113 + 2645560*uk_114 + 4259800*uk_115 + 179360*uk_116 + 4506420*uk_117 + 4865140*uk_118 + 4259800*uk_119 + 8997070*uk_12 + 7552*uk_120 + 189744*uk_121 + 204848*uk_122 + 179360*uk_123 + 4767318*uk_124 + 5146806*uk_125 + 4506420*uk_126 + 5556502*uk_127 + 4865140*uk_128 + 4259800*uk_129 + 378824*uk_13 + 6859000*uk_130 + 288800*uk_131 + 7256100*uk_132 + 7833700*uk_133 + 6859000*uk_134 + 12160*uk_135 + 305520*uk_136 + 329840*uk_137 + 288800*uk_138 + 7676190*uk_139 + 9517953*uk_14 + 8287230*uk_140 + 7256100*uk_141 + 8946910*uk_142 + 7833700*uk_143 + 6859000*uk_144 + 512*uk_145 + 12864*uk_146 + 13888*uk_147 + 12160*uk_148 + 323208*uk_149 + 10275601*uk_15 + 348936*uk_150 + 305520*uk_151 + 376712*uk_152 + 329840*uk_153 + 288800*uk_154 + 8120601*uk_155 + 8767017*uk_156 + 7676190*uk_157 + 9464889*uk_158 + 8287230*uk_159 + 8997070*uk_16 + 7256100*uk_160 + 10218313*uk_161 + 8946910*uk_162 + 7833700*uk_163 + 6859000*uk_164 + 3969*uk_17 + 7434*uk_18 + 11970*uk_19 + 63*uk_2 + 504*uk_20 + 12663*uk_21 + 13671*uk_22 + 11970*uk_23 + 13924*uk_24 + 22420*uk_25 + 944*uk_26 + 23718*uk_27 + 25606*uk_28 + 22420*uk_29 + 118*uk_3 + 36100*uk_30 + 1520*uk_31 + 38190*uk_32 + 41230*uk_33 + 36100*uk_34 + 64*uk_35 + 1608*uk_36 + 1736*uk_37 + 1520*uk_38 + 40401*uk_39 + 190*uk_4 + 43617*uk_40 + 38190*uk_41 + 47089*uk_42 + 41230*uk_43 + 36100*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 264592179862*uk_47 + 426038255710*uk_48 + 17938452872*uk_49 + 8*uk_5 + 450703628409*uk_50 + 486580534153*uk_51 + 426038255710*uk_52 + 187944057*uk_53 + 352022202*uk_54 + 566815410*uk_55 + 23865912*uk_56 + 599631039*uk_57 + 647362863*uk_58 + 566815410*uk_59 + 201*uk_6 + 659343172*uk_60 + 1061654260*uk_61 + 44701232*uk_62 + 1123118454*uk_63 + 1212520918*uk_64 + 1061654260*uk_65 + 1709443300*uk_66 + 71976560*uk_67 + 1808411070*uk_68 + 1952364190*uk_69 + 217*uk_7 + 1709443300*uk_70 + 3030592*uk_71 + 76143624*uk_72 + 82204808*uk_73 + 71976560*uk_74 + 1913108553*uk_75 + 2065395801*uk_76 + 1808411070*uk_77 + 2229805417*uk_78 + 1952364190*uk_79 + 190*uk_8 + 1709443300*uk_80 + 250047*uk_81 + 468342*uk_82 + 754110*uk_83 + 31752*uk_84 + 797769*uk_85 + 861273*uk_86 + 754110*uk_87 + 877212*uk_88 + 1412460*uk_89 + 2242306609*uk_9 + 59472*uk_90 + 1494234*uk_91 + 1613178*uk_92 + 1412460*uk_93 + 2274300*uk_94 + 95760*uk_95 + 2405970*uk_96 + 2597490*uk_97 + 2274300*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 102312*uk_100 + 109368*uk_101 + 59472*uk_102 + 2596167*uk_103 + 2775213*uk_104 + 1509102*uk_105 + 2966607*uk_106 + 1613178*uk_107 + 877212*uk_108 + 157464*uk_109 + 2557062*uk_11 + 344088*uk_110 + 23328*uk_111 + 591948*uk_112 + 632772*uk_113 + 344088*uk_114 + 751896*uk_115 + 50976*uk_116 + 1293516*uk_117 + 1382724*uk_118 + 751896*uk_119 + 5587654*uk_12 + 3456*uk_120 + 87696*uk_121 + 93744*uk_122 + 50976*uk_123 + 2225286*uk_124 + 2378754*uk_125 + 1293516*uk_126 + 2542806*uk_127 + 1382724*uk_128 + 751896*uk_129 + 378824*uk_13 + 1643032*uk_130 + 111392*uk_131 + 2826572*uk_132 + 3021508*uk_133 + 1643032*uk_134 + 7552*uk_135 + 191632*uk_136 + 204848*uk_137 + 111392*uk_138 + 4862662*uk_139 + 9612659*uk_14 + 5198018*uk_140 + 2826572*uk_141 + 5556502*uk_142 + 3021508*uk_143 + 1643032*uk_144 + 512*uk_145 + 12992*uk_146 + 13888*uk_147 + 7552*uk_148 + 329672*uk_149 + 10275601*uk_15 + 352408*uk_150 + 191632*uk_151 + 376712*uk_152 + 204848*uk_153 + 111392*uk_154 + 8365427*uk_155 + 8942353*uk_156 + 4862662*uk_157 + 9559067*uk_158 + 5198018*uk_159 + 5587654*uk_16 + 2826572*uk_160 + 10218313*uk_161 + 5556502*uk_162 + 3021508*uk_163 + 1643032*uk_164 + 3969*uk_17 + 3402*uk_18 + 7434*uk_19 + 63*uk_2 + 504*uk_20 + 12789*uk_21 + 13671*uk_22 + 7434*uk_23 + 2916*uk_24 + 6372*uk_25 + 432*uk_26 + 10962*uk_27 + 11718*uk_28 + 6372*uk_29 + 54*uk_3 + 13924*uk_30 + 944*uk_31 + 23954*uk_32 + 25606*uk_33 + 13924*uk_34 + 64*uk_35 + 1624*uk_36 + 1736*uk_37 + 944*uk_38 + 41209*uk_39 + 118*uk_4 + 44051*uk_40 + 23954*uk_41 + 47089*uk_42 + 25606*uk_43 + 13924*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 121084556886*uk_47 + 264592179862*uk_48 + 17938452872*uk_49 + 8*uk_5 + 455188241627*uk_50 + 486580534153*uk_51 + 264592179862*uk_52 + 187944057*uk_53 + 161094906*uk_54 + 352022202*uk_55 + 23865912*uk_56 + 605597517*uk_57 + 647362863*uk_58 + 352022202*uk_59 + 203*uk_6 + 138081348*uk_60 + 301733316*uk_61 + 20456496*uk_62 + 519083586*uk_63 + 554882454*uk_64 + 301733316*uk_65 + 659343172*uk_66 + 44701232*uk_67 + 1134293762*uk_68 + 1212520918*uk_69 + 217*uk_7 + 659343172*uk_70 + 3030592*uk_71 + 76901272*uk_72 + 82204808*uk_73 + 44701232*uk_74 + 1951369777*uk_75 + 2085947003*uk_76 + 1134293762*uk_77 + 2229805417*uk_78 + 1212520918*uk_79 + 118*uk_8 + 659343172*uk_80 + 250047*uk_81 + 214326*uk_82 + 468342*uk_83 + 31752*uk_84 + 805707*uk_85 + 861273*uk_86 + 468342*uk_87 + 183708*uk_88 + 401436*uk_89 + 2242306609*uk_9 + 27216*uk_90 + 690606*uk_91 + 738234*uk_92 + 401436*uk_93 + 877212*uk_94 + 59472*uk_95 + 1509102*uk_96 + 1613178*uk_97 + 877212*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 154980*uk_100 + 164052*uk_101 + 40824*uk_102 + 2647575*uk_103 + 2802555*uk_104 + 697410*uk_105 + 2966607*uk_106 + 738234*uk_107 + 183708*uk_108 + 8365427*uk_109 + 9612659*uk_11 + 2225286*uk_110 + 494508*uk_111 + 8447845*uk_112 + 8942353*uk_113 + 2225286*uk_114 + 591948*uk_115 + 131544*uk_116 + 2247210*uk_117 + 2378754*uk_118 + 591948*uk_119 + 2557062*uk_12 + 29232*uk_120 + 499380*uk_121 + 528612*uk_122 + 131544*uk_123 + 8531075*uk_124 + 9030455*uk_125 + 2247210*uk_126 + 9559067*uk_127 + 2378754*uk_128 + 591948*uk_129 + 568236*uk_13 + 157464*uk_130 + 34992*uk_131 + 597780*uk_132 + 632772*uk_133 + 157464*uk_134 + 7776*uk_135 + 132840*uk_136 + 140616*uk_137 + 34992*uk_138 + 2269350*uk_139 + 9707365*uk_14 + 2402190*uk_140 + 597780*uk_141 + 2542806*uk_142 + 632772*uk_143 + 157464*uk_144 + 1728*uk_145 + 29520*uk_146 + 31248*uk_147 + 7776*uk_148 + 504300*uk_149 + 10275601*uk_15 + 533820*uk_150 + 132840*uk_151 + 565068*uk_152 + 140616*uk_153 + 34992*uk_154 + 8615125*uk_155 + 9119425*uk_156 + 2269350*uk_157 + 9653245*uk_158 + 2402190*uk_159 + 2557062*uk_16 + 597780*uk_160 + 10218313*uk_161 + 2542806*uk_162 + 632772*uk_163 + 157464*uk_164 + 3969*uk_17 + 12789*uk_18 + 3402*uk_19 + 63*uk_2 + 756*uk_20 + 12915*uk_21 + 13671*uk_22 + 3402*uk_23 + 41209*uk_24 + 10962*uk_25 + 2436*uk_26 + 41615*uk_27 + 44051*uk_28 + 10962*uk_29 + 203*uk_3 + 2916*uk_30 + 648*uk_31 + 11070*uk_32 + 11718*uk_33 + 2916*uk_34 + 144*uk_35 + 2460*uk_36 + 2604*uk_37 + 648*uk_38 + 42025*uk_39 + 54*uk_4 + 44485*uk_40 + 11070*uk_41 + 47089*uk_42 + 11718*uk_43 + 2916*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 455188241627*uk_47 + 121084556886*uk_48 + 26907679308*uk_49 + 12*uk_5 + 459672854845*uk_50 + 486580534153*uk_51 + 121084556886*uk_52 + 187944057*uk_53 + 605597517*uk_54 + 161094906*uk_55 + 35798868*uk_56 + 611563995*uk_57 + 647362863*uk_58 + 161094906*uk_59 + 205*uk_6 + 1951369777*uk_60 + 519083586*uk_61 + 115351908*uk_62 + 1970595095*uk_63 + 2085947003*uk_64 + 519083586*uk_65 + 138081348*uk_66 + 30684744*uk_67 + 524197710*uk_68 + 554882454*uk_69 + 217*uk_7 + 138081348*uk_70 + 6818832*uk_71 + 116488380*uk_72 + 123307212*uk_73 + 30684744*uk_74 + 1990009825*uk_75 + 2106498205*uk_76 + 524197710*uk_77 + 2229805417*uk_78 + 554882454*uk_79 + 54*uk_8 + 138081348*uk_80 + 250047*uk_81 + 805707*uk_82 + 214326*uk_83 + 47628*uk_84 + 813645*uk_85 + 861273*uk_86 + 214326*uk_87 + 2596167*uk_88 + 690606*uk_89 + 2242306609*uk_9 + 153468*uk_90 + 2621745*uk_91 + 2775213*uk_92 + 690606*uk_93 + 183708*uk_94 + 40824*uk_95 + 697410*uk_96 + 738234*uk_97 + 183708*uk_98 + 9072*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 104328*uk_100 + 109368*uk_101 + 102312*uk_102 + 2699487*uk_103 + 2829897*uk_104 + 2647323*uk_105 + 2966607*uk_106 + 2775213*uk_107 + 2596167*uk_108 + 3869893*uk_109 + 7434421*uk_11 + 5003747*uk_110 + 197192*uk_111 + 5102343*uk_112 + 5348833*uk_113 + 5003747*uk_114 + 6469813*uk_115 + 254968*uk_116 + 6597297*uk_117 + 6916007*uk_118 + 6469813*uk_119 + 9612659*uk_12 + 10048*uk_120 + 259992*uk_121 + 272552*uk_122 + 254968*uk_123 + 6727293*uk_124 + 7052283*uk_125 + 6597297*uk_126 + 7392973*uk_127 + 6916007*uk_128 + 6469813*uk_129 + 378824*uk_13 + 8365427*uk_130 + 329672*uk_131 + 8530263*uk_132 + 8942353*uk_133 + 8365427*uk_134 + 12992*uk_135 + 336168*uk_136 + 352408*uk_137 + 329672*uk_138 + 8698347*uk_139 + 9802071*uk_14 + 9118557*uk_140 + 8530263*uk_141 + 9559067*uk_142 + 8942353*uk_143 + 8365427*uk_144 + 512*uk_145 + 13248*uk_146 + 13888*uk_147 + 12992*uk_148 + 342792*uk_149 + 10275601*uk_15 + 359352*uk_150 + 336168*uk_151 + 376712*uk_152 + 352408*uk_153 + 329672*uk_154 + 8869743*uk_155 + 9298233*uk_156 + 8698347*uk_157 + 9747423*uk_158 + 9118557*uk_159 + 9612659*uk_16 + 8530263*uk_160 + 10218313*uk_161 + 9559067*uk_162 + 8942353*uk_163 + 8365427*uk_164 + 3969*uk_17 + 9891*uk_18 + 12789*uk_19 + 63*uk_2 + 504*uk_20 + 13041*uk_21 + 13671*uk_22 + 12789*uk_23 + 24649*uk_24 + 31871*uk_25 + 1256*uk_26 + 32499*uk_27 + 34069*uk_28 + 31871*uk_29 + 157*uk_3 + 41209*uk_30 + 1624*uk_31 + 42021*uk_32 + 44051*uk_33 + 41209*uk_34 + 64*uk_35 + 1656*uk_36 + 1736*uk_37 + 1624*uk_38 + 42849*uk_39 + 203*uk_4 + 44919*uk_40 + 42021*uk_41 + 47089*uk_42 + 44051*uk_43 + 41209*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 352042137613*uk_47 + 455188241627*uk_48 + 17938452872*uk_49 + 8*uk_5 + 464157468063*uk_50 + 486580534153*uk_51 + 455188241627*uk_52 + 187944057*uk_53 + 468368523*uk_54 + 605597517*uk_55 + 23865912*uk_56 + 617530473*uk_57 + 647362863*uk_58 + 605597517*uk_59 + 207*uk_6 + 1167204097*uk_60 + 1509187463*uk_61 + 59475368*uk_62 + 1538925147*uk_63 + 1613269357*uk_64 + 1509187463*uk_65 + 1951369777*uk_66 + 76901272*uk_67 + 1989820413*uk_68 + 2085947003*uk_69 + 217*uk_7 + 1951369777*uk_70 + 3030592*uk_71 + 78416568*uk_72 + 82204808*uk_73 + 76901272*uk_74 + 2029028697*uk_75 + 2127049407*uk_76 + 1989820413*uk_77 + 2229805417*uk_78 + 2085947003*uk_79 + 203*uk_8 + 1951369777*uk_80 + 250047*uk_81 + 623133*uk_82 + 805707*uk_83 + 31752*uk_84 + 821583*uk_85 + 861273*uk_86 + 805707*uk_87 + 1552887*uk_88 + 2007873*uk_89 + 2242306609*uk_9 + 79128*uk_90 + 2047437*uk_91 + 2146347*uk_92 + 2007873*uk_93 + 2596167*uk_94 + 102312*uk_95 + 2647323*uk_96 + 2775213*uk_97 + 2596167*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 105336*uk_100 + 109368*uk_101 + 79128*uk_102 + 2751903*uk_103 + 2857239*uk_104 + 2067219*uk_105 + 2966607*uk_106 + 2146347*uk_107 + 1552887*uk_108 + 1685159*uk_109 + 5635007*uk_11 + 2223277*uk_110 + 113288*uk_111 + 2959649*uk_112 + 3072937*uk_113 + 2223277*uk_114 + 2933231*uk_115 + 149464*uk_116 + 3904747*uk_117 + 4054211*uk_118 + 2933231*uk_119 + 7434421*uk_12 + 7616*uk_120 + 198968*uk_121 + 206584*uk_122 + 149464*uk_123 + 5198039*uk_124 + 5397007*uk_125 + 3904747*uk_126 + 5603591*uk_127 + 4054211*uk_128 + 2933231*uk_129 + 378824*uk_13 + 3869893*uk_130 + 197192*uk_131 + 5151641*uk_132 + 5348833*uk_133 + 3869893*uk_134 + 10048*uk_135 + 262504*uk_136 + 272552*uk_137 + 197192*uk_138 + 6857917*uk_139 + 9896777*uk_14 + 7120421*uk_140 + 5151641*uk_141 + 7392973*uk_142 + 5348833*uk_143 + 3869893*uk_144 + 512*uk_145 + 13376*uk_146 + 13888*uk_147 + 10048*uk_148 + 349448*uk_149 + 10275601*uk_15 + 362824*uk_150 + 262504*uk_151 + 376712*uk_152 + 272552*uk_153 + 197192*uk_154 + 9129329*uk_155 + 9478777*uk_156 + 6857917*uk_157 + 9841601*uk_158 + 7120421*uk_159 + 7434421*uk_16 + 5151641*uk_160 + 10218313*uk_161 + 7392973*uk_162 + 5348833*uk_163 + 3869893*uk_164 + 3969*uk_17 + 7497*uk_18 + 9891*uk_19 + 63*uk_2 + 504*uk_20 + 13167*uk_21 + 13671*uk_22 + 9891*uk_23 + 14161*uk_24 + 18683*uk_25 + 952*uk_26 + 24871*uk_27 + 25823*uk_28 + 18683*uk_29 + 119*uk_3 + 24649*uk_30 + 1256*uk_31 + 32813*uk_32 + 34069*uk_33 + 24649*uk_34 + 64*uk_35 + 1672*uk_36 + 1736*uk_37 + 1256*uk_38 + 43681*uk_39 + 157*uk_4 + 45353*uk_40 + 32813*uk_41 + 47089*uk_42 + 34069*uk_43 + 24649*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 266834486471*uk_47 + 352042137613*uk_48 + 17938452872*uk_49 + 8*uk_5 + 468642081281*uk_50 + 486580534153*uk_51 + 352042137613*uk_52 + 187944057*uk_53 + 355005441*uk_54 + 468368523*uk_55 + 23865912*uk_56 + 623496951*uk_57 + 647362863*uk_58 + 468368523*uk_59 + 209*uk_6 + 670565833*uk_60 + 884696099*uk_61 + 45080056*uk_62 + 1177716463*uk_63 + 1222796519*uk_64 + 884696099*uk_65 + 1167204097*uk_66 + 59475368*uk_67 + 1553793989*uk_68 + 1613269357*uk_69 + 217*uk_7 + 1167204097*uk_70 + 3030592*uk_71 + 79174216*uk_72 + 82204808*uk_73 + 59475368*uk_74 + 2068426393*uk_75 + 2147600609*uk_76 + 1553793989*uk_77 + 2229805417*uk_78 + 1613269357*uk_79 + 157*uk_8 + 1167204097*uk_80 + 250047*uk_81 + 472311*uk_82 + 623133*uk_83 + 31752*uk_84 + 829521*uk_85 + 861273*uk_86 + 623133*uk_87 + 892143*uk_88 + 1177029*uk_89 + 2242306609*uk_9 + 59976*uk_90 + 1566873*uk_91 + 1626849*uk_92 + 1177029*uk_93 + 1552887*uk_94 + 79128*uk_95 + 2067219*uk_96 + 2146347*uk_97 + 1552887*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 106344*uk_100 + 109368*uk_101 + 59976*uk_102 + 2804823*uk_103 + 2884581*uk_104 + 1581867*uk_105 + 2966607*uk_106 + 1626849*uk_107 + 892143*uk_108 + 704969*uk_109 + 4214417*uk_11 + 942599*uk_110 + 63368*uk_111 + 1671331*uk_112 + 1718857*uk_113 + 942599*uk_114 + 1260329*uk_115 + 84728*uk_116 + 2234701*uk_117 + 2298247*uk_118 + 1260329*uk_119 + 5635007*uk_12 + 5696*uk_120 + 150232*uk_121 + 154504*uk_122 + 84728*uk_123 + 3962369*uk_124 + 4075043*uk_125 + 2234701*uk_126 + 4190921*uk_127 + 2298247*uk_128 + 1260329*uk_129 + 378824*uk_13 + 1685159*uk_130 + 113288*uk_131 + 2987971*uk_132 + 3072937*uk_133 + 1685159*uk_134 + 7616*uk_135 + 200872*uk_136 + 206584*uk_137 + 113288*uk_138 + 5297999*uk_139 + 9991483*uk_14 + 5448653*uk_140 + 2987971*uk_141 + 5603591*uk_142 + 3072937*uk_143 + 1685159*uk_144 + 512*uk_145 + 13504*uk_146 + 13888*uk_147 + 7616*uk_148 + 356168*uk_149 + 10275601*uk_15 + 366296*uk_150 + 200872*uk_151 + 376712*uk_152 + 206584*uk_153 + 113288*uk_154 + 9393931*uk_155 + 9661057*uk_156 + 5297999*uk_157 + 9935779*uk_158 + 5448653*uk_159 + 5635007*uk_16 + 2987971*uk_160 + 10218313*uk_161 + 5603591*uk_162 + 3072937*uk_163 + 1685159*uk_164 + 3969*uk_17 + 5607*uk_18 + 7497*uk_19 + 63*uk_2 + 504*uk_20 + 13293*uk_21 + 13671*uk_22 + 7497*uk_23 + 7921*uk_24 + 10591*uk_25 + 712*uk_26 + 18779*uk_27 + 19313*uk_28 + 10591*uk_29 + 89*uk_3 + 14161*uk_30 + 952*uk_31 + 25109*uk_32 + 25823*uk_33 + 14161*uk_34 + 64*uk_35 + 1688*uk_36 + 1736*uk_37 + 952*uk_38 + 44521*uk_39 + 119*uk_4 + 45787*uk_40 + 25109*uk_41 + 47089*uk_42 + 25823*uk_43 + 14161*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 199565288201*uk_47 + 266834486471*uk_48 + 17938452872*uk_49 + 8*uk_5 + 473126694499*uk_50 + 486580534153*uk_51 + 266834486471*uk_52 + 187944057*uk_53 + 265508271*uk_54 + 355005441*uk_55 + 23865912*uk_56 + 629463429*uk_57 + 647362863*uk_58 + 355005441*uk_59 + 211*uk_6 + 375083113*uk_60 + 501515623*uk_61 + 33715336*uk_62 + 889241987*uk_63 + 914528489*uk_64 + 501515623*uk_65 + 670565833*uk_66 + 45080056*uk_67 + 1188986477*uk_68 + 1222796519*uk_69 + 217*uk_7 + 670565833*uk_70 + 3030592*uk_71 + 79931864*uk_72 + 82204808*uk_73 + 45080056*uk_74 + 2108202913*uk_75 + 2168151811*uk_76 + 1188986477*uk_77 + 2229805417*uk_78 + 1222796519*uk_79 + 119*uk_8 + 670565833*uk_80 + 250047*uk_81 + 353241*uk_82 + 472311*uk_83 + 31752*uk_84 + 837459*uk_85 + 861273*uk_86 + 472311*uk_87 + 499023*uk_88 + 667233*uk_89 + 2242306609*uk_9 + 44856*uk_90 + 1183077*uk_91 + 1216719*uk_92 + 667233*uk_93 + 892143*uk_94 + 59976*uk_95 + 1581867*uk_96 + 1626849*uk_97 + 892143*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 107352*uk_100 + 109368*uk_101 + 44856*uk_102 + 2858247*uk_103 + 2911923*uk_104 + 1194291*uk_105 + 2966607*uk_106 + 1216719*uk_107 + 499023*uk_108 + 300763*uk_109 + 3172651*uk_11 + 399521*uk_110 + 35912*uk_111 + 956157*uk_112 + 974113*uk_113 + 399521*uk_114 + 530707*uk_115 + 47704*uk_116 + 1270119*uk_117 + 1293971*uk_118 + 530707*uk_119 + 4214417*uk_12 + 4288*uk_120 + 114168*uk_121 + 116312*uk_122 + 47704*uk_123 + 3039723*uk_124 + 3096807*uk_125 + 1270119*uk_126 + 3154963*uk_127 + 1293971*uk_128 + 530707*uk_129 + 378824*uk_13 + 704969*uk_130 + 63368*uk_131 + 1687173*uk_132 + 1718857*uk_133 + 704969*uk_134 + 5696*uk_135 + 151656*uk_136 + 154504*uk_137 + 63368*uk_138 + 4037841*uk_139 + 10086189*uk_14 + 4113669*uk_140 + 1687173*uk_141 + 4190921*uk_142 + 1718857*uk_143 + 704969*uk_144 + 512*uk_145 + 13632*uk_146 + 13888*uk_147 + 5696*uk_148 + 362952*uk_149 + 10275601*uk_15 + 369768*uk_150 + 151656*uk_151 + 376712*uk_152 + 154504*uk_153 + 63368*uk_154 + 9663597*uk_155 + 9845073*uk_156 + 4037841*uk_157 + 10029957*uk_158 + 4113669*uk_159 + 4214417*uk_16 + 1687173*uk_160 + 10218313*uk_161 + 4190921*uk_162 + 1718857*uk_163 + 704969*uk_164 + 3969*uk_17 + 4221*uk_18 + 5607*uk_19 + 63*uk_2 + 504*uk_20 + 13419*uk_21 + 13671*uk_22 + 5607*uk_23 + 4489*uk_24 + 5963*uk_25 + 536*uk_26 + 14271*uk_27 + 14539*uk_28 + 5963*uk_29 + 67*uk_3 + 7921*uk_30 + 712*uk_31 + 18957*uk_32 + 19313*uk_33 + 7921*uk_34 + 64*uk_35 + 1704*uk_36 + 1736*uk_37 + 712*uk_38 + 45369*uk_39 + 89*uk_4 + 46221*uk_40 + 18957*uk_41 + 47089*uk_42 + 19313*uk_43 + 7921*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 150234542803*uk_47 + 199565288201*uk_48 + 17938452872*uk_49 + 8*uk_5 + 477611307717*uk_50 + 486580534153*uk_51 + 199565288201*uk_52 + 187944057*uk_53 + 199877013*uk_54 + 265508271*uk_55 + 23865912*uk_56 + 635429907*uk_57 + 647362863*uk_58 + 265508271*uk_59 + 213*uk_6 + 212567617*uk_60 + 282365939*uk_61 + 25381208*uk_62 + 675774663*uk_63 + 688465267*uk_64 + 282365939*uk_65 + 375083113*uk_66 + 33715336*uk_67 + 897670821*uk_68 + 914528489*uk_69 + 217*uk_7 + 375083113*uk_70 + 3030592*uk_71 + 80689512*uk_72 + 82204808*uk_73 + 33715336*uk_74 + 2148358257*uk_75 + 2188703013*uk_76 + 897670821*uk_77 + 2229805417*uk_78 + 914528489*uk_79 + 89*uk_8 + 375083113*uk_80 + 250047*uk_81 + 265923*uk_82 + 353241*uk_83 + 31752*uk_84 + 845397*uk_85 + 861273*uk_86 + 353241*uk_87 + 282807*uk_88 + 375669*uk_89 + 2242306609*uk_9 + 33768*uk_90 + 899073*uk_91 + 915957*uk_92 + 375669*uk_93 + 499023*uk_94 + 44856*uk_95 + 1194291*uk_96 + 1216719*uk_97 + 499023*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 108360*uk_100 + 109368*uk_101 + 33768*uk_102 + 2912175*uk_103 + 2939265*uk_104 + 907515*uk_105 + 2966607*uk_106 + 915957*uk_107 + 282807*uk_108 + 148877*uk_109 + 2509709*uk_11 + 188203*uk_110 + 22472*uk_111 + 603935*uk_112 + 609553*uk_113 + 188203*uk_114 + 237917*uk_115 + 28408*uk_116 + 763465*uk_117 + 770567*uk_118 + 237917*uk_119 + 3172651*uk_12 + 3392*uk_120 + 91160*uk_121 + 92008*uk_122 + 28408*uk_123 + 2449925*uk_124 + 2472715*uk_125 + 763465*uk_126 + 2495717*uk_127 + 770567*uk_128 + 237917*uk_129 + 378824*uk_13 + 300763*uk_130 + 35912*uk_131 + 965135*uk_132 + 974113*uk_133 + 300763*uk_134 + 4288*uk_135 + 115240*uk_136 + 116312*uk_137 + 35912*uk_138 + 3097075*uk_139 + 10180895*uk_14 + 3125885*uk_140 + 965135*uk_141 + 3154963*uk_142 + 974113*uk_143 + 300763*uk_144 + 512*uk_145 + 13760*uk_146 + 13888*uk_147 + 4288*uk_148 + 369800*uk_149 + 10275601*uk_15 + 373240*uk_150 + 115240*uk_151 + 376712*uk_152 + 116312*uk_153 + 35912*uk_154 + 9938375*uk_155 + 10030825*uk_156 + 3097075*uk_157 + 10124135*uk_158 + 3125885*uk_159 + 3172651*uk_16 + 965135*uk_160 + 10218313*uk_161 + 3154963*uk_162 + 974113*uk_163 + 300763*uk_164 + 3969*uk_17 + 3339*uk_18 + 4221*uk_19 + 63*uk_2 + 504*uk_20 + 13545*uk_21 + 13671*uk_22 + 4221*uk_23 + 2809*uk_24 + 3551*uk_25 + 424*uk_26 + 11395*uk_27 + 11501*uk_28 + 3551*uk_29 + 53*uk_3 + 4489*uk_30 + 536*uk_31 + 14405*uk_32 + 14539*uk_33 + 4489*uk_34 + 64*uk_35 + 1720*uk_36 + 1736*uk_37 + 536*uk_38 + 46225*uk_39 + 67*uk_4 + 46655*uk_40 + 14405*uk_41 + 47089*uk_42 + 14539*uk_43 + 4489*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 118842250277*uk_47 + 150234542803*uk_48 + 17938452872*uk_49 + 8*uk_5 + 482095920935*uk_50 + 486580534153*uk_51 + 150234542803*uk_52 + 187944057*uk_53 + 158111667*uk_54 + 199877013*uk_55 + 23865912*uk_56 + 641396385*uk_57 + 647362863*uk_58 + 199877013*uk_59 + 215*uk_6 + 133014577*uk_60 + 168150503*uk_61 + 20077672*uk_62 + 539587435*uk_63 + 544606853*uk_64 + 168150503*uk_65 + 212567617*uk_66 + 25381208*uk_67 + 682119965*uk_68 + 688465267*uk_69 + 217*uk_7 + 212567617*uk_70 + 3030592*uk_71 + 81447160*uk_72 + 82204808*uk_73 + 25381208*uk_74 + 2188892425*uk_75 + 2209254215*uk_76 + 682119965*uk_77 + 2229805417*uk_78 + 688465267*uk_79 + 67*uk_8 + 212567617*uk_80 + 250047*uk_81 + 210357*uk_82 + 265923*uk_83 + 31752*uk_84 + 853335*uk_85 + 861273*uk_86 + 265923*uk_87 + 176967*uk_88 + 223713*uk_89 + 2242306609*uk_9 + 26712*uk_90 + 717885*uk_91 + 724563*uk_92 + 223713*uk_93 + 282807*uk_94 + 33768*uk_95 + 907515*uk_96 + 915957*uk_97 + 282807*uk_98 + 4032*uk_99,
uk_0 + 47353*uk_1 + 2983239*uk_10 + 109368*uk_100 + 109368*uk_101 + 26712*uk_102 + 2966607*uk_103 + 2966607*uk_104 + 724563*uk_105 + 2966607*uk_106 + 724563*uk_107 + 176967*uk_108 + 103823*uk_109 + 2225591*uk_11 + 117077*uk_110 + 17672*uk_111 + 479353*uk_112 + 479353*uk_113 + 117077*uk_114 + 132023*uk_115 + 19928*uk_116 + 540547*uk_117 + 540547*uk_118 + 132023*uk_119 + 2509709*uk_12 + 3008*uk_120 + 81592*uk_121 + 81592*uk_122 + 19928*uk_123 + 2213183*uk_124 + 2213183*uk_125 + 540547*uk_126 + 2213183*uk_127 + 540547*uk_128 + 132023*uk_129 + 378824*uk_13 + 148877*uk_130 + 22472*uk_131 + 609553*uk_132 + 609553*uk_133 + 148877*uk_134 + 3392*uk_135 + 92008*uk_136 + 92008*uk_137 + 22472*uk_138 + 2495717*uk_139 + 10275601*uk_14 + 2495717*uk_140 + 609553*uk_141 + 2495717*uk_142 + 609553*uk_143 + 148877*uk_144 + 512*uk_145 + 13888*uk_146 + 13888*uk_147 + 3392*uk_148 + 376712*uk_149 + 10275601*uk_15 + 376712*uk_150 + 92008*uk_151 + 376712*uk_152 + 92008*uk_153 + 22472*uk_154 + 10218313*uk_155 + 10218313*uk_156 + 2495717*uk_157 + 10218313*uk_158 + 2495717*uk_159 + 2509709*uk_16 + 609553*uk_160 + 10218313*uk_161 + 2495717*uk_162 + 609553*uk_163 + 148877*uk_164 + 3969*uk_17 + 2961*uk_18 + 3339*uk_19 + 63*uk_2 + 504*uk_20 + 13671*uk_21 + 13671*uk_22 + 3339*uk_23 + 2209*uk_24 + 2491*uk_25 + 376*uk_26 + 10199*uk_27 + 10199*uk_28 + 2491*uk_29 + 47*uk_3 + 2809*uk_30 + 424*uk_31 + 11501*uk_32 + 11501*uk_33 + 2809*uk_34 + 64*uk_35 + 1736*uk_36 + 1736*uk_37 + 424*uk_38 + 47089*uk_39 + 53*uk_4 + 47089*uk_40 + 11501*uk_41 + 47089*uk_42 + 11501*uk_43 + 2809*uk_44 + 106179944855977*uk_45 + 141265316367*uk_46 + 105388410623*uk_47 + 118842250277*uk_48 + 17938452872*uk_49 + 8*uk_5 + 486580534153*uk_50 + 486580534153*uk_51 + 118842250277*uk_52 + 187944057*uk_53 + 140212233*uk_54 + 158111667*uk_55 + 23865912*uk_56 + 647362863*uk_57 + 647362863*uk_58 + 158111667*uk_59 + 217*uk_6 + 104602777*uk_60 + 117956323*uk_61 + 17804728*uk_62 + 482953247*uk_63 + 482953247*uk_64 + 117956323*uk_65 + 133014577*uk_66 + 20077672*uk_67 + 544606853*uk_68 + 544606853*uk_69 + 217*uk_7 + 133014577*uk_70 + 3030592*uk_71 + 82204808*uk_72 + 82204808*uk_73 + 20077672*uk_74 + 2229805417*uk_75 + 2229805417*uk_76 + 544606853*uk_77 + 2229805417*uk_78 + 544606853*uk_79 + 53*uk_8 + 133014577*uk_80 + 250047*uk_81 + 186543*uk_82 + 210357*uk_83 + 31752*uk_84 + 861273*uk_85 + 861273*uk_86 + 210357*uk_87 + 139167*uk_88 + 156933*uk_89 + 2242306609*uk_9 + 23688*uk_90 + 642537*uk_91 + 642537*uk_92 + 156933*uk_93 + 176967*uk_94 + 26712*uk_95 + 724563*uk_96 + 724563*uk_97 + 176967*uk_98 + 4032*uk_99,
]
def sol_165x165():
return {
uk_0: -QQ(295441,1683)*uk_2 - QQ(175799,1683)*uk_7 + QQ(2401696807,1)*uk_9 - QQ(9606787228,1683)*uk_10 + QQ(9606787228,1683)*uk_15 - QQ(29030443,1683)*uk_17 - QQ(5965893,187)*uk_22 + QQ(262901,99)*uk_42 + QQ(235539209256104,1)*uk_45 - QQ(232597130667529,1683)*uk_46 + QQ(1364372733998209,1683)*uk_51 - QQ(1133600892904,1683)*uk_53 - QQ(172922170104,187)*uk_58 + QQ(249776467928,99)*uk_78 - QQ(2401889209,1683)*uk_81 - QQ(636292759,187)*uk_86 - QQ(1034157281,187)*uk_106 + QQ(10558824289,1683)*uk_161,
uk_1: QQ(4,1683)*uk_2 - QQ(4,1683)*uk_7 - QQ(98072,1)*uk_9 + QQ(96847,1683)*uk_10 - QQ(568087,1683)*uk_15 + QQ(472,1683)*uk_17 + QQ(72,187)*uk_22 - QQ(104,99)*uk_42 - QQ(7216420377,1)*uk_45 - QQ(108808244,1683)*uk_46 - QQ(46106641036,1683)*uk_51 + QQ(17259541,1683)*uk_53 + QQ(1095291,187)*uk_58 - QQ(9936587,99)*uk_78 + QQ(41836,1683)*uk_81 + QQ(10036,187)*uk_86 + QQ(10124,187)*uk_106 - QQ(8,1)*uk_149 - QQ(586156,1683)*uk_161,
uk_3: -QQ(295441,1683)*uk_18 - QQ(175799,1683)*uk_28 + QQ(2401696807,1)*uk_47 - QQ(9606787228,1683)*uk_54 + QQ(9606787228,1683)*uk_64 - QQ(29030443,1683)*uk_82 - QQ(5965893,187)*uk_92 + QQ(262901,99)*uk_127 + QQ(8,1)*uk_149,
uk_4: -QQ(295441,1683)*uk_19 + QQ(1602583,3366)*uk_29 - QQ(175799,1683)*uk_33 - QQ(45670,99)*uk_34 - QQ(76006,187)*uk_38 + QQ(295441,1683)*uk_41 - QQ(45670,99)*uk_44 + QQ(2401696807,1)*uk_48 - QQ(9606787228,1683)*uk_55 + QQ(74452601017,3366)*uk_65 + QQ(9606787228,1683)*uk_69 - QQ(2401696807,99)*uk_70 - QQ(4803393614,187)*uk_74 + QQ(9606787228,1683)*uk_77 - QQ(2401696807,99)*uk_80 - QQ(29030443,1683)*uk_83 + QQ(11596905,374)*uk_93 - QQ(5965893,187)*uk_97 - QQ(769658,33)*uk_98 - QQ(17335370,1683)*uk_102 + QQ(29030443,1683)*uk_105 - QQ(769658,33)*uk_108 + QQ(77314807,3366)*uk_114 + QQ(750229,198)*uk_119 + QQ(72457964,1683)*uk_123 + QQ(11596905,374)*uk_126 + QQ(31304645,306)*uk_128 + QQ(750229,198)*uk_129 - QQ(3191393,99)*uk_134 - QQ(647642,9)*uk_138 - QQ(769658,33)*uk_141 + QQ(262901,99)*uk_142 - QQ(10478626,99)*uk_143 - QQ(3191393,99)*uk_144 - QQ(20480616,187)*uk_148 - QQ(17335370,1683)*uk_151 - QQ(174199750,1683)*uk_153 - QQ(647642,9)*uk_154 + QQ(29030443,1683)*uk_157 + QQ(5965893,187)*uk_159 - QQ(769658,33)*uk_160 - QQ(10478626,99)*uk_163 - QQ(3191393,99)*uk_164,
uk_5: -QQ(295441,1683)*uk_20 - QQ(175799,1683)*uk_37 + QQ(2401696807,1)*uk_49 - QQ(9606787228,1683)*uk_56 + QQ(9606787228,1683)*uk_73 - QQ(29030443,1683)*uk_84 - QQ(5965893,187)*uk_101 + QQ(262901,99)*uk_152,
uk_6: -QQ(295441,1683)*uk_21 - QQ(175799,1683)*uk_40 + QQ(2401696807,1)*uk_50 - QQ(9606787228,1683)*uk_57 + QQ(9606787228,1683)*uk_76 - QQ(29030443,1683)*uk_85 - QQ(5965893,187)*uk_104 + QQ(262901,99)*uk_158,
uk_8: -QQ(295441,1683)*uk_23 - QQ(1602583,3366)*uk_29 + QQ(45670,99)*uk_34 + QQ(76006,187)*uk_38 - QQ(295441,1683)*uk_41 - QQ(175799,1683)*uk_43 + QQ(45670,99)*uk_44 + QQ(2401696807,1)*uk_52 - QQ(9606787228,1683)*uk_59 - QQ(74452601017,3366)*uk_65 + QQ(2401696807,99)*uk_70 + QQ(4803393614,187)*uk_74 - QQ(9606787228,1683)*uk_77 + QQ(9606787228,1683)*uk_79 + QQ(2401696807,99)*uk_80 - QQ(29030443,1683)*uk_87 - QQ(11596905,374)*uk_93 + QQ(769658,33)*uk_98 + QQ(17335370,1683)*uk_102 - QQ(29030443,1683)*uk_105 - QQ(5965893,187)*uk_107 + QQ(769658,33)*uk_108 - QQ(77314807,3366)*uk_114 - QQ(750229,198)*uk_119 - QQ(72457964,1683)*uk_123 - QQ(11596905,374)*uk_126 - QQ(31304645,306)*uk_128 - QQ(750229,198)*uk_129 + QQ(3191393,99)*uk_134 + QQ(647642,9)*uk_138 + QQ(769658,33)*uk_141 + QQ(10478626,99)*uk_143 + QQ(3191393,99)*uk_144 + QQ(20480616,187)*uk_148 + QQ(17335370,1683)*uk_151 + QQ(174199750,1683)*uk_153 + QQ(647642,9)*uk_154 - QQ(29030443,1683)*uk_157 - QQ(5965893,187)*uk_159 + QQ(769658,33)*uk_160 + QQ(262901,99)*uk_162 + QQ(10478626,99)*uk_163 + QQ(3191393,99)*uk_164,
uk_11: QQ(4,1683)*uk_18 - QQ(4,1683)*uk_28 - QQ(98072,1)*uk_47 + QQ(96847,1683)*uk_54 - QQ(568087,1683)*uk_64 + QQ(472,1683)*uk_82 + QQ(72,187)*uk_92 - QQ(104,99)*uk_127,
uk_12: QQ(4,1683)*uk_19 - QQ(31,3366)*uk_29 - QQ(4,1683)*uk_33 + QQ(1,99)*uk_34 + QQ(2,187)*uk_38 - QQ(4,1683)*uk_41 + QQ(1,99)*uk_44 - QQ(98072,1)*uk_48 + QQ(96847,1683)*uk_55 - QQ(1437649,3366)*uk_65 - QQ(568087,1683)*uk_69 + QQ(52402,99)*uk_70 + QQ(120138,187)*uk_74 - QQ(96847,1683)*uk_77 + QQ(52402,99)*uk_80 + QQ(472,1683)*uk_83 - QQ(225,374)*uk_93 + QQ(72,187)*uk_97 + QQ(17,33)*uk_98 + QQ(590,1683)*uk_102 - QQ(472,1683)*uk_105 + QQ(17,33)*uk_108 - QQ(1519,3366)*uk_114 - QQ(13,198)*uk_119 - QQ(1388,1683)*uk_123 - QQ(225,374)*uk_126 - QQ(605,306)*uk_128 - QQ(13,198)*uk_129 + QQ(68,99)*uk_134 + QQ(14,9)*uk_138 + QQ(17,33)*uk_141 - QQ(104,99)*uk_142 + QQ(229,99)*uk_143 + QQ(68,99)*uk_144 + QQ(472,187)*uk_148 + QQ(590,1683)*uk_151 + QQ(4450,1683)*uk_153 + QQ(14,9)*uk_154 - QQ(472,1683)*uk_157 - QQ(72,187)*uk_159 + QQ(17,33)*uk_160 + QQ(229,99)*uk_163 + QQ(68,99)*uk_164,
uk_13: QQ(4,1683)*uk_20 - QQ(4,1683)*uk_37 - QQ(98072,1)*uk_49 + QQ(96847,1683)*uk_56 - QQ(568087,1683)*uk_73 + QQ(472,1683)*uk_84 + QQ(72,187)*uk_101 - QQ(104,99)*uk_152,
uk_14: QQ(4,1683)*uk_21 - QQ(4,1683)*uk_40 - QQ(98072,1)*uk_50 + QQ(96847,1683)*uk_57 - QQ(568087,1683)*uk_76 + QQ(472,1683)*uk_85 + QQ(72,187)*uk_104 - QQ(104,99)*uk_158,
uk_16: QQ(4,1683)*uk_23 + QQ(31,3366)*uk_29 - QQ(1,99)*uk_34 - QQ(2,187)*uk_38 + QQ(4,1683)*uk_41 - QQ(4,1683)*uk_43 - QQ(1,99)*uk_44 - QQ(98072,1)*uk_52 + QQ(96847,1683)*uk_59 + QQ(1437649,3366)*uk_65 - QQ(52402,99)*uk_70 - QQ(120138,187)*uk_74 + QQ(96847,1683)*uk_77 - QQ(568087,1683)*uk_79 - QQ(52402,99)*uk_80 + QQ(472,1683)*uk_87 + QQ(225,374)*uk_93 - QQ(17,33)*uk_98 - QQ(590,1683)*uk_102 + QQ(472,1683)*uk_105 + QQ(72,187)*uk_107 - QQ(17,33)*uk_108 + QQ(1519,3366)*uk_114 + QQ(13,198)*uk_119 + QQ(1388,1683)*uk_123 + QQ(225,374)*uk_126 + QQ(605,306)*uk_128 + QQ(13,198)*uk_129 - QQ(68,99)*uk_134 - QQ(14,9)*uk_138 - QQ(17,33)*uk_141 - QQ(229,99)*uk_143 - QQ(68,99)*uk_144 - QQ(472,187)*uk_148 - QQ(590,1683)*uk_151 - QQ(4450,1683)*uk_153 - QQ(14,9)*uk_154 + QQ(472,1683)*uk_157 + QQ(72,187)*uk_159 - QQ(17,33)*uk_160 - QQ(104,99)*uk_162 - QQ(229,99)*uk_163 - QQ(68,99)*uk_164,
uk_24: -QQ(295441,1683)*uk_88 - QQ(175799,1683)*uk_113,
uk_26: -QQ(295441,1683)*uk_90 - QQ(175799,1683)*uk_122, uk_25: -uk_29 - QQ(295441,1683)*uk_89 - QQ(295441,1683)*uk_93 - QQ(175799,1683)*uk_118 - QQ(175799,1683)*uk_128,
uk_27: -QQ(295441,1683)*uk_91 - QQ(175799,1683)*uk_125 - QQ(4,1)*uk_149,
uk_30: -uk_34 - uk_44 - QQ(295441,1683)*uk_94 - QQ(295441,1683)*uk_98 - QQ(295441,1683)*uk_108 - QQ(175799,1683)*uk_133 - QQ(175799,1683)*uk_143 - QQ(175799,1683)*uk_163,
uk_31: -uk_38 - QQ(295441,1683)*uk_95 - QQ(295441,1683)*uk_102 - QQ(175799,1683)*uk_137 - QQ(175799,1683)*uk_153,
uk_32: -uk_41 - QQ(295441,1683)*uk_96 - QQ(295441,1683)*uk_105 - QQ(175799,1683)*uk_140 + QQ(4,1)*uk_149 - QQ(175799,1683)*uk_159,
uk_35: -QQ(295441,1683)*uk_99 - QQ(175799,1683)*uk_147,
uk_36: -QQ(295441,1683)*uk_100 - QQ(2,1)*uk_149 - QQ(175799,1683)*uk_150,
uk_39: -QQ(295441,1683)*uk_103 - QQ(175799,1683)*uk_156,
uk_60: QQ(4,1683)*uk_88 - QQ(4,1683)*uk_113,
uk_61: -uk_65 + QQ(4,1683)*uk_89 + QQ(4,1683)*uk_93 - QQ(4,1683)*uk_118 - QQ(4,1683)*uk_128,
uk_62: QQ(4,1683)*uk_90 - QQ(4,1683)*uk_122,
uk_63: QQ(4,1683)*uk_91 - QQ(4,1683)*uk_125,
uk_66: -uk_70 - uk_80 + QQ(4,1683)*uk_94 + QQ(4,1683)*uk_98 + QQ(4,1683)*uk_108 - QQ(4,1683)*uk_133 - QQ(4,1683)*uk_143 - QQ(4,1683)*uk_163,
uk_67: -uk_74 + QQ(4,1683)*uk_95 + QQ(4,1683)*uk_102 - QQ(4,1683)*uk_137 - QQ(4,1683)*uk_153,
uk_68: -uk_77 + QQ(4,1683)*uk_96 + QQ(4,1683)*uk_105 - QQ(4,1683)*uk_140 - QQ(4,1683)*uk_159,
uk_71: QQ(4,1683)*uk_99 - QQ(4,1683)*uk_147,
uk_72: QQ(4,1683)*uk_100 - QQ(4,1683)*uk_150,
uk_75: QQ(4,1683)*uk_103 - QQ(4,1683)*uk_156,
uk_109: 0,
uk_110: -uk_114,
uk_111: 0,
uk_112: 0,
uk_115: -uk_119 - uk_129,
uk_116: -uk_123,
uk_117: -uk_126,
uk_120: 0,
uk_121: 0,
uk_124: 0,
uk_130: -uk_134 - uk_144 - uk_164,
uk_131: -uk_138 - uk_154,
uk_132: -uk_141 - uk_160,
uk_135: -uk_148,
uk_136: -uk_151,
uk_139: -uk_157,
uk_145: 0,
uk_146: 0,
uk_155: 0,
}
def time_eqs_165x165():
if len(eqs_165x165()) != 165:
raise ValueError("length should be 165")
def time_solve_lin_sys_165x165():
eqs = eqs_165x165()
sol = solve_lin_sys(eqs, R_165)
if sol != sol_165x165():
raise ValueError("Value should be equal")
def time_verify_sol_165x165():
eqs = eqs_165x165()
sol = sol_165x165()
zeros = [ eq.compose(sol) for eq in eqs ]
if not all([ zero == 0 for zero in zeros ]):
raise ValueError("All should be 0")
def time_to_expr_eqs_165x165():
eqs = eqs_165x165()
assert [ R_165.from_expr(eq.as_expr()) for eq in eqs ] == eqs
# Benchmark R_49: shows how fast are arithmetics in rational function fields.
F_abc, a, b, c = field("a,b,c", ZZ)
R_49, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49 = ring("k1:50", F_abc)
def eqs_189x49():
return [
-b*k8/a+c*k8/a,
-b*k11/a+c*k11/a,
-b*k10/a+c*k10/a+k2,
-k3-b*k9/a+c*k9/a,
-b*k14/a+c*k14/a,
-b*k15/a+c*k15/a,
-b*k18/a+c*k18/a-k2,
-b*k17/a+c*k17/a,
-b*k16/a+c*k16/a+k4,
-b*k13/a+c*k13/a-b*k21/a+c*k21/a+b*k5/a-c*k5/a,
b*k44/a-c*k44/a,
-b*k45/a+c*k45/a,
-b*k20/a+c*k20/a,
-b*k44/a+c*k44/a,
b*k46/a-c*k46/a,
b**2*k47/a**2-2*b*c*k47/a**2+c**2*k47/a**2,
k3,
-k4,
-b*k12/a+c*k12/a-a*k6/b+c*k6/b,
-b*k19/a+c*k19/a+a*k7/c-b*k7/c,
b*k45/a-c*k45/a,
-b*k46/a+c*k46/a,
-k48+c*k48/a+c*k48/b-c**2*k48/(a*b),
-k49+b*k49/a+b*k49/c-b**2*k49/(a*c),
a*k1/b-c*k1/b,
a*k4/b-c*k4/b,
a*k3/b-c*k3/b+k9,
-k10+a*k2/b-c*k2/b,
a*k7/b-c*k7/b,
-k9,
k11,
b*k12/a-c*k12/a+a*k6/b-c*k6/b,
a*k15/b-c*k15/b,
k10+a*k18/b-c*k18/b,
-k11+a*k17/b-c*k17/b,
a*k16/b-c*k16/b,
-a*k13/b+c*k13/b+a*k21/b-c*k21/b+a*k5/b-c*k5/b,
-a*k44/b+c*k44/b,
a*k45/b-c*k45/b,
a*k14/c-b*k14/c+a*k20/b-c*k20/b,
a*k44/b-c*k44/b,
-a*k46/b+c*k46/b,
-k47+c*k47/a+c*k47/b-c**2*k47/(a*b),
a*k19/b-c*k19/b,
-a*k45/b+c*k45/b,
a*k46/b-c*k46/b,
a**2*k48/b**2-2*a*c*k48/b**2+c**2*k48/b**2,
-k49+a*k49/b+a*k49/c-a**2*k49/(b*c),
k16,
-k17,
-a*k1/c+b*k1/c,
-k16-a*k4/c+b*k4/c,
-a*k3/c+b*k3/c,
k18-a*k2/c+b*k2/c,
b*k19/a-c*k19/a-a*k7/c+b*k7/c,
-a*k6/c+b*k6/c,
-a*k8/c+b*k8/c,
-a*k11/c+b*k11/c+k17,
-a*k10/c+b*k10/c-k18,
-a*k9/c+b*k9/c,
-a*k14/c+b*k14/c-a*k20/b+c*k20/b,
-a*k13/c+b*k13/c+a*k21/c-b*k21/c-a*k5/c+b*k5/c,
a*k44/c-b*k44/c,
-a*k45/c+b*k45/c,
-a*k44/c+b*k44/c,
a*k46/c-b*k46/c,
-k47+b*k47/a+b*k47/c-b**2*k47/(a*c),
-a*k12/c+b*k12/c,
a*k45/c-b*k45/c,
-a*k46/c+b*k46/c,
-k48+a*k48/b+a*k48/c-a**2*k48/(b*c),
a**2*k49/c**2-2*a*b*k49/c**2+b**2*k49/c**2,
k8,
k11,
-k15,
k10-k18,
-k17,
k9,
-k16,
-k29,
k14-k32,
-k21+k23-k31,
-k24-k30,
-k35,
k44,
-k45,
k36,
k13-k23+k39,
-k20+k38,
k25+k37,
b*k26/a-c*k26/a-k34+k42,
-2*k44,
k45,
k46,
b*k47/a-c*k47/a,
k41,
k44,
-k46,
-b*k47/a+c*k47/a,
k12+k24,
-k19-k25,
-a*k27/b+c*k27/b-k33,
k45,
-k46,
-a*k48/b+c*k48/b,
a*k28/c-b*k28/c+k40,
-k45,
k46,
a*k48/b-c*k48/b,
a*k49/c-b*k49/c,
-a*k49/c+b*k49/c,
-k1,
-k4,
-k3,
k15,
k18-k2,
k17,
k16,
k22,
k25-k7,
k24+k30,
k21+k23-k31,
k28,
-k44,
k45,
-k30-k6,
k20+k32,
k27+b*k33/a-c*k33/a,
k44,
-k46,
-b*k47/a+c*k47/a,
-k36,
k31-k39-k5,
-k32-k38,
k19-k37,
k26-a*k34/b+c*k34/b-k42,
k44,
-2*k45,
k46,
a*k48/b-c*k48/b,
a*k35/c-b*k35/c-k41,
-k44,
k46,
b*k47/a-c*k47/a,
-a*k49/c+b*k49/c,
-k40,
k45,
-k46,
-a*k48/b+c*k48/b,
a*k49/c-b*k49/c,
k1,
k4,
k3,
-k8,
-k11,
-k10+k2,
-k9,
k37+k7,
-k14-k38,
-k22,
-k25-k37,
-k24+k6,
-k13-k23+k39,
-k28+b*k40/a-c*k40/a,
k44,
-k45,
-k27,
-k44,
k46,
b*k47/a-c*k47/a,
k29,
k32+k38,
k31-k39+k5,
-k12+k30,
k35-a*k41/b+c*k41/b,
-k44,
k45,
-k26+k34+a*k42/c-b*k42/c,
k44,
k45,
-2*k46,
-b*k47/a+c*k47/a,
-a*k48/b+c*k48/b,
a*k49/c-b*k49/c,
k33,
-k45,
k46,
a*k48/b-c*k48/b,
-a*k49/c+b*k49/c,
]
def sol_189x49():
return {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42,
k31: k39,
k26: a/c*k42,
k23: k39,
}
def time_eqs_189x49():
if len(eqs_189x49()) != 189:
raise ValueError("Length should be equal to 189")
def time_solve_lin_sys_189x49():
eqs = eqs_189x49()
sol = solve_lin_sys(eqs, R_49)
if sol != sol_189x49():
raise ValueError("Values should be equal")
def time_verify_sol_189x49():
eqs = eqs_189x49()
sol = sol_189x49()
zeros = [ eq.compose(sol) for eq in eqs ]
assert all([ zero == 0 for zero in zeros ])
def time_to_expr_eqs_189x49():
eqs = eqs_189x49()
assert [ R_49.from_expr(eq.as_expr()) for eq in eqs ] == eqs
# Benchmark R_8: shows how fast polynomial GCDs are computed.
F_a5_5, a_11, a_12, a_13, a_14, a_21, a_22, a_23, a_24, a_31, a_32, a_33, a_34, a_41, a_42, a_43, a_44 = field("a_(1:5)(1:5)", ZZ)
R_8, x0, x1, x2, x3, x4, x5, x6, x7 = ring("x:8", F_a5_5)
def eqs_10x8():
return [
(a_33*a_34 + a_33*a_44 + a_43*a_44)*x3 + (a_33*a_34 + a_33*a_44 + a_43*a_44)*x4 + (a_12*a_34 + a_12*a_44 + a_22*a_34 + a_22*a_44)*x5 + (a_12*a_44 + a_22*a_44)*x6 + (a_12*a_33 + a_22*a_33)*x7 - a_12*a_33 - a_12*a_43 - a_22*a_33 - a_22*a_43,
(a_33 + a_34 + a_43 + a_44)*x3 + (a_33 + a_34 + a_43 + a_44)*x4 + (a_12 + a_22 + a_34 + a_44)*x5 + (a_12 + a_22 + a_44)*x6 + (a_12 + a_22 + a_33)*x7 - a_12 - a_22 - a_33 - a_43,
x3 + x4 + x5 + x6 + x7 - 1,
(a_12*a_33*a_34 + a_12*a_33*a_44 + a_12*a_43*a_44 + a_22*a_33*a_34 + a_22*a_33*a_44 + a_22*a_43*a_44)*x0 + (a_22*a_33*a_34 + a_22*a_33*a_44 + a_22*a_43*a_44)*x1 + (a_12*a_33*a_34 + a_12*a_33*a_44 + a_12*a_43*a_44 + a_22*a_33*a_34 + a_22*a_33*a_44 + a_22*a_43*a_44)*x2 + (a_11*a_33*a_34 + a_11*a_33*a_44 + a_11*a_43*a_44 + a_31*a_33*a_34 + a_31*a_33*a_44 + a_31*a_43*a_44)*x3 + (a_11*a_33*a_34 + a_11*a_33*a_44 + a_11*a_43*a_44 + a_21*a_33*a_34 + a_21*a_33*a_44 + a_21*a_43*a_44 + a_31*a_33*a_34 + a_31*a_33*a_44 + a_31*a_43*a_44)*x4 + (a_11*a_12*a_34 + a_11*a_12*a_44 + a_11*a_22*a_34 + a_11*a_22*a_44 + a_12*a_31*a_34 + a_12*a_31*a_44 + a_21*a_22*a_34 + a_21*a_22*a_44 + a_22*a_31*a_34 + a_22*a_31*a_44)*x5 + (a_11*a_12*a_44 + a_11*a_22*a_44 + a_12*a_31*a_44 + a_21*a_22*a_44 + a_22*a_31*a_44)*x6 + (a_11*a_12*a_33 + a_11*a_22*a_33 + a_12*a_31*a_33 + a_21*a_22*a_33 + a_22*a_31*a_33)*x7 - a_11*a_12*a_33 - a_11*a_12*a_43 - a_11*a_22*a_33 - a_11*a_22*a_43 - a_12*a_31*a_33 - a_12*a_31*a_43 - a_21*a_22*a_33 - a_21*a_22*a_43 - a_22*a_31*a_33 - a_22*a_31*a_43,
(a_12*a_33 + a_12*a_34 + a_12*a_43 + a_12*a_44 + a_22*a_33 + a_22*a_34 + a_22*a_43 + a_22*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x0 + (a_22*a_33 + a_22*a_34 + a_22*a_43 + a_22*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x1 + (a_12*a_33 + a_12*a_34 + a_12*a_43 + a_12*a_44 + a_22*a_33 + a_22*a_34 + a_22*a_43 + a_22*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x2 + (a_11*a_33 + a_11*a_34 + a_11*a_43 + a_11*a_44 + a_31*a_33 + a_31*a_34 + a_31*a_43 + a_31*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x3 + (a_11*a_33 + a_11*a_34 + a_11*a_43 + a_11*a_44 + a_21*a_33 + a_21*a_34 + a_21*a_43 + a_21*a_44 + a_31*a_33 + a_31*a_34 + a_31*a_43 + a_31*a_44 + a_33*a_34 + a_33*a_44 + a_43*a_44)*x4 + (a_11*a_12 + a_11*a_22 + a_11*a_34 + a_11*a_44 + a_12*a_31 + a_12*a_34 + a_12*a_44 + a_21*a_22 + a_21*a_34 + a_21*a_44 + a_22*a_31 + a_22*a_34 + a_22*a_44 + a_31*a_34 + a_31*a_44)*x5 + (a_11*a_12 + a_11*a_22 + a_11*a_44 + a_12*a_31 + a_12*a_44 + a_21*a_22 + a_21*a_44 + a_22*a_31 + a_22*a_44 + a_31*a_44)*x6 + (a_11*a_12 + a_11*a_22 + a_11*a_33 + a_12*a_31 + a_12*a_33 + a_21*a_22 + a_21*a_33 + a_22*a_31 + a_22*a_33 + a_31*a_33)*x7 - a_11*a_12 - a_11*a_22 - a_11*a_33 - a_11*a_43 - a_12*a_31 - a_12*a_33 - a_12*a_43 - a_21*a_22 - a_21*a_33 - a_21*a_43 - a_22*a_31 - a_22*a_33 - a_22*a_43 - a_31*a_33 - a_31*a_43,
(a_12 + a_22 + a_33 + a_34 + a_43 + a_44)*x0 + (a_22 + a_33 + a_34 + a_43 + a_44)*x1 + (a_12 + a_22 + a_33 + a_34 + a_43 + a_44)*x2 + (a_11 + a_31 + a_33 + a_34 + a_43 + a_44)*x3 + (a_11 + a_21 + a_31 + a_33 + a_34 + a_43 + a_44)*x4 + (a_11 + a_12 + a_21 + a_22 + a_31 + a_34 + a_44)*x5 + (a_11 + a_12 + a_21 + a_22 + a_31 + a_44)*x6 + (a_11 + a_12 + a_21 + a_22 + a_31 + a_33)*x7 - a_11 - a_12 - a_21 - a_22 - a_31 - a_33 - a_43,
x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 - 1,
(a_12*a_34 + a_12*a_44 + a_22*a_34 + a_22*a_44)*x2 + (a_31*a_34 + a_31*a_44)*x3 + (a_31*a_34 + a_31*a_44)*x4 + (a_12*a_31 + a_22*a_31)*x7 - a_12*a_31 - a_22*a_31,
(a_12 + a_22 + a_34 + a_44)*x2 + a_31*x3 + a_31*x4 + a_31*x7 - a_31,
x2,
]
def sol_10x8():
return {
x0: -a_21/a_12*x4,
x1: a_21/a_12*x4,
x2: 0,
x3: -x4,
x5: a_43/a_34,
x6: -a_43/a_34,
x7: 1,
}
def time_eqs_10x8():
if len(eqs_10x8()) != 10:
raise ValueError("Value should be equal to 10")
def time_solve_lin_sys_10x8():
eqs = eqs_10x8()
sol = solve_lin_sys(eqs, R_8)
if sol != sol_10x8():
raise ValueError("Values should be equal")
def time_verify_sol_10x8():
eqs = eqs_10x8()
sol = sol_10x8()
zeros = [ eq.compose(sol) for eq in eqs ]
if not all([ zero == 0 for zero in zeros ]):
raise ValueError("All values in zero should be 0")
def time_to_expr_eqs_10x8():
eqs = eqs_10x8()
assert [ R_8.from_expr(eq.as_expr()) for eq in eqs ] == eqs
|
62a1830b37b046ccc2c9efc69e77835cc44d077f0e452a55bbf267d042c8c92a | """Benchmark of the Groebner bases algorithms. """
from sympy.polys.rings import ring
from sympy.polys.domains import QQ
from sympy.polys.groebnertools import groebner
R, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = ring("x1:13", QQ)
V = R.gens
E = [(x1, x2), (x2, x3), (x1, x4), (x1, x6), (x1, x12), (x2, x5), (x2, x7), (x3, x8),
(x3, x10), (x4, x11), (x4, x9), (x5, x6), (x6, x7), (x7, x8), (x8, x9), (x9, x10),
(x10, x11), (x11, x12), (x5, x12), (x5, x9), (x6, x10), (x7, x11), (x8, x12)]
F3 = [ x**3 - 1 for x in V ]
Fg = [ x**2 + x*y + y**2 for x, y in E ]
F_1 = F3 + Fg
F_2 = F3 + Fg + [x3**2 + x3*x4 + x4**2]
def time_vertex_color_12_vertices_23_edges():
assert groebner(F_1, R) != [1]
def time_vertex_color_12_vertices_24_edges():
assert groebner(F_2, R) == [1]
|
2f978be1152cdde6e14ccb58c56f32e771dd6ed69f9763b01a7bffbec6df0c9d | """Implementation of :class:`CompositeDomain` class. """
from sympy.polys.domains.domain import Domain
from sympy.polys.polyerrors import GeneratorsError
from sympy.utilities import public
@public
class CompositeDomain(Domain):
"""Base class for composite domains, e.g. ZZ[x], ZZ(X). """
is_Composite = True
gens, ngens, symbols, domain = [None]*4
def inject(self, *symbols):
"""Inject generators into this domain. """
if not (set(self.symbols) & set(symbols)):
return self.__class__(self.domain, self.symbols + symbols, self.order)
else:
raise GeneratorsError("common generators in %s and %s" % (self.symbols, symbols))
|
bc76115173eb7c9cc317cc2b77529216a1bc5b3c1f2133ff7b0780f921cf5580 | """Implementation of :class:`CharacteristicZero` class. """
from sympy.polys.domains.domain import Domain
from sympy.utilities import public
@public
class CharacteristicZero(Domain):
"""Domain that has infinite number of elements. """
has_CharacteristicZero = True
def characteristic(self):
"""Return the characteristic of this domain. """
return 0
|
cc5ad5a0a68ed382941187d8a01bd64a9dac6aaef7ef4a0cd48423d6b6630152 | """Implementation of :class:`RationalField` class. """
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.utilities import public
@public
class RationalField(Field, CharacteristicZero, SimpleDomain):
"""General class for rational fields. """
rep = 'QQ'
is_RationalField = is_QQ = True
is_Numerical = True
has_assoc_Ring = True
has_assoc_Field = True
def algebraic_field(self, *extension):
r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """
from sympy.polys.domains import AlgebraicField
return AlgebraicField(self, *extension)
def from_AlgebraicField(K1, a, K0):
"""Convert a ``ANP`` object to ``dtype``. """
if a.is_ground:
return K1.convert(a.LC(), K0.dom)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.